(W Common Weakness Enumeration
. A Community-Developed Dictionary of Software Weakness Tyvpes
CWE Version 4.13

MITRE

CWE Version 4.13
2023-10-26

CWE is a Software Assurance strategic initiative sponsored by the National

Cyber Security Division of the U.S. Department of Homeland Security

Copyright 2023, The MITRE Corporation

CWE and the CWE logo are trademarks of The MITRE Corporation
Contact cwe@mitre.org for more information

CWE Version 4.13
Table of Contents

Table of Contents

SYMDBOIS USEA 1N CWE.........oiiiie s XXVii
Individual CWE Weaknesses

CWE-5: J2EE Misconfiguration: Data Transmission Without ENCryption............c.cooiiiiiiia i
CWE-6: J2EE Misconfiguration: Insufficient SeSSion-ID Length............oooiiiiiiiiiiii e
CWE-7: J2EE Misconfiguration: Missing CUStOM Error Page..........ooooi i e
CWE-8: J2EE Misconfiguration: Entity Bean Declared REMOLE.c..ooiiiiiiiiiiiiiiiee e
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods............ccccooiiiiiiiiiiiiiiie e
CWE-11: ASP.NET Misconfiguration: Creating Debug BiNAry............cooouueiiiiiiiiiiiaee e
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page...........cccooiiiuiiiiiiiiiiiee e
CWE-13: ASP.NET Misconfiguration: Password in Configuration File..............ccccciiiiiiiiiii e
CWE-14: Compiler Removal of Code t0 Clear BUFfEIS...........uiiiiiiiiei e
CWE-15: External Control of System or Configuration SettiNg.........cooiueeirieaiiiiiire e
CWE-20: Improper INput Validation.............ooueiiiiiiii e e e

CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal’)

CWE-23: Relative Path TIAVEISAL.........cocuiiiiiiieiiiieiiiee ettt e s e e e e nnne e nenees
CWE-24: Path Traversal: "./fileir..........c.ooo e e e e e es
CWE-25: Path Traversal: [Il INooo et e s
CWE-26: Path Traversal: '/dir/../filename’

CWE-27: Path Traversal: "dir/../.. /flENaME..........coo e
CWE-28: Path Traversal: " Miledir'..........coui e e e
CWE-29: Path Traversal: ‘\..\filename'

CWE-30: Path Traversal: \dir\.\fileNaMEooi e
CWE-31: Path Traversal: "dir\.\..\fllename'...........oo e
CWE-32: Path Traversal: "..." (THPIE DOL)....ccciii ittt e e e e e et e e e e e e e nneeeaeeeaneeeeens
CWE-33: Path Traversal: '...." (Multiple Dot)

CWE-34: Path Traversal: ".../[....cccccooiiiiiiiieee e

CWE-35: Path TraVerSal: "ol et e st
CWE-36: ADSOIULE Pat TIAVEISAL.......cciiueieiiiiiieiiiie ettt e s e e nn e e s e e s e nnnees
CWE-37: Path Traversal: ‘/absolute/pathname/here’

CWE-38: Path Traversal: \absolute\pathname\here'

CWE-39: Path Traversal: "CidiMaIME"..........cuii ittt e et s e e e s e e e snn e e s nnneeenneee s
CWE-40: Path Traversal: "\UNC\share\name\' (Windows UNC Share)............cccceiiiuiiiiieiiniiiiee e 85
CWE-41: Improper Resolution of Path EQUIVAIENCE...........coiiiiiiiee e e 86
CWE-42: Path Equivalence: filename.' (Trailing DOL)........cccooiiiiiiiiiiiiiie e e e 92
CWE-43: Path Equivalence: ‘filename...." (Multiple Trailing DOt).........cccuuiiiiaiiiiiiie e 93
CWE-44: Path Equivalence: file.name' (Internal Dot)

CWE-45: Path Equivalence: ‘file...name' (Multiple Internal DOt)............ooiiiiiiiiiiii e 95

CWE-46:
CWE-47:
CWE-48:
CWE-49:
CWE-50:
CWE-51:
CWE-52:
CWE-53:
CWE-54:
CWE-55:
CWE-56:
CWE-57:
CWE-58:
CWE-59:
CWE-61:
CWE-62:
CWE-64:
CWE-65:
CWE-66:
CWE-67:

Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:

filename "' (Trailing SPACE).......cuueiiieiiiiiie e ee s 96
' filename' (Leading SPACE)........uueiieiiiiiiiiee et et e s 97
'file name' (Internal Whit€SPACE)......ccoeiiiiiiiiiee e 98
filename/* (Trailing SIash)...........ooo e 99
‘l/multiple/leading/slash’
‘Imultiple//internal/slash’
‘Imultiple/trailing/slash//'
\multiple\internal\backslash'..............cooo e 104
filedir\' (Trailing Backslash)..........coo e 105
[.1' (SINQIE DOt DIFECLONY). . .eeeieeeieiitieee ettt e et a e et e e e e et e e e e e aneeeeae e e anees 106
FIledir® (WIlACAId)......cooeeeeee e e e 107
‘fakedir/../realdir/fleNamE’...........oooiii e 108

Path Equivalence: WINAOWS 8.3 FIlENAME.........ocuuiiiiii e 110
Improper Link Resolution Before File Access (‘Link FOIOWING')......ooocuiiiiiiiiiiiiieee e 111
UNIX Symbolic Link (Symlink) FOHOWING........coiiuiiiiiiiiiii ettt e e e 116
UNIX HEI LINK .ttt et h bttt e et e e sat et eeab e e nbe e et e e nneeenne s 119
Windows Shortcut FOHOWING ((LNK)......ooiiiiiiiee et e e e e enneeeea e 121
WINAOWS HAIT LINK. ..ottt e e e e s e e e s n e e e e e nanes 123
Improper Handling of File Names that Identify Virtual RESOUICES..........ccoiiiiiiiiiiiiiiiiee e 124
Improper Handling of WINdOWS DeViCe NAIMES........c.ooiiiiiiiee e e e e s 126

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.13
Table of Contents

CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream.............ccccveveeeiiiiiiiieecceiiiee e
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

CWE-73: External Control of File Name Or Path...........ccccooiiiiiiiiii e e
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

(][1o o 1 T PP 137
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)................... 142
CWE-76: Improper Neutralization of Equivalent Special EIements............ccccooiiiiiiieiiiiiiiee e 144
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)................ 145
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

a1 =To 1 o] o N TSROSO 151
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting')..................... 163
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS).........cccccvveeiins
CWE-81: Improper Neutralization of Script in an Error Message Web Page.............cccoovviiiiiiiiiiie e,
CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web Page..............ccocovvveeiiiiinne.n.
CWE-83: Improper Neutralization of Script in Attributes in a Web Page..........cccccveeiiiiiiiee i
CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page.............

CWE-85: Doubled Character XSS ManipUlatioNS............uviieiiiiiiiie et e et e e e sibae e e e e naaeeas
CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages............cccccoevivieiiiivnnne.n.
CWE-87: Improper Neutralization of Alternate XSS SYNTAX.........ccciiiiiiiieiiiiiiiiee e e e
CWE-88: Improper Neutralization of Argument Delimiters in a Command (‘Argument Injection’)

CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)............... 201
CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection’).................. 212
CWE-91: XML Injection (aka Blind XPath INJECHON)..........oiiiiiiiiiiiie et e e e 215
CWE-93: Improper Neutralization of CRLF Sequences ('CRLF INJECHION")..........ceveiiiiiiiiiee e 217
CWE-94: Improper Control of Generation of Code (‘Code INJECION").......ccvvevieiiiiiiiiee e 219
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code (‘Eval Injection’).................... 226
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection’)................... 231
CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page............ccccveveeeiiiiiiieeeeens 234
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File

g Tod [T 7o) o) TR PUPR O UPRN:
CWE-99: Improper Control of Resource Identifiers ('Resource Injection’)

CWE-102: Struts: Duplicate Validation FOIMMS............uiiiiiiiiiii et essaare e e e
CWE-103: Struts: Incomplete validate() Method Definition.............coccviiiiiiiiiiiie e
CWE-104: Struts: Form Bean Does Not Extend Validation Class.........c.ccceeviiiiiiieiiiiiieniie e
CWE-105: Struts: Form Field WithOut Validator............oiuiiiiiiie it
CWE-106: Struts: Plug-in FrameWork NOt iN USE........cooiiuiiiiiiiiiiiiie ettt e sttt s st e e e s e e e e e s s satveeeaeaenns
CWE-107: Struts: Unused Validation FOMM.........ocuiiiiuiiiiiiie ettt e e e e sneeeesnnee
CWE-108: Struts: Unvalidated Action Form...............

CWE-109: Struts: Validator TUMME Off..........ciiiiiiiiieie et et e et e e sne e s nnaee s
CWE-110: Struts: Validator Without FOrm Field...........coouiiiiiiiiiiie e
CWE-111: Direct Use Of UNSAE INL......ccciiiiiiiiiiiiie ittt sttt e b e e ettt e e snte e e s nneeeessbeeennes
CWE-112: MiSSING XML ValidatiON........ccciiuiiiieeiiiiiiee e e ettt e e e sttt e e e s e st e e e e e s st e e s e e e sstbaaeaesasntbeeeeessnsbrneeaeaanns
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ((HTTP Request/Response

S o] 11110 To) OSSP OPPPRRTN:
CWE-114: PrOCESS CONLIOL....cciutiiiiiiiiieiitie it ee ettt sttt ettt s et e et e e st e e e abee e e sabe e e e bt e e s anteeesnbeeeeabbeeesnteeesnnees
CWE-115: Misinterpretation Of INPUL...........ooiiiiiiiie e e e e e e e e e e st e e e e e s st e e e e e e s eaaaeeaeas
CWE-116: Improper Encoding or Escaping Of OULPUL...........ooiiiiieiiiiiiiiee et e e e s
CWE-117: Improper Output Neutralization fOr LOGS........ccuuiiiiiiiiiiiie ettt e e st e e e s staae e e s natre e e e e s enens
CWE-118: Incorrect Access of Indexable Resource ('Range Error)........cccoveiieiiiiiieecicciieee e
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')............cccoceveeiiiiiiiee i,
CWE-121: Stack-based BUffer OVEITIOW.........ccoiuiiiiiiiiii et
CWE-122: Heap-based BUffer OVEIIOW.coouiiiiiiii ettt s et e e e e e eaaae e e e e s snees
CWE-123: Write-what-Where CONGItION.cciiiiiiiiiie ettt ettt st e nbee e e snbe e e saeee s nnaee s
CWE-124: Buffer Underwrite (‘Buffer UnderfloW')..........uveiioiiiiiiiee ettt e
CWE-125: OUL-0f-DOUNAS REAM.ooiiiiiiiiiii ettt e e st e e sabee e beee s
CWE-126: Buffer Over-read

CWE-127: BUFfEr UNGEI-TEAU.........eiiiieieiiiiieeiiit ettt ettt e bt e e ssb e e sttt e s abbe e e snbeeesbeeessnbeeeanbeeenans
CWE-128: Wrap-arOUNG EITOF......ccuviiieee i ittt e e eeiite e e e e ettt e e e e st e e e e e s e tbaaeeeeaaataeeaeeesantaeseeesasssseeeesassssseeeesaanees
CWE-129: Improper Validation Of Array INAEX.........coiiiuiiiiie ittt e e e e e e e e e snraee s
CWE-130: Improper Handling of Length Parameter INCONSISIENCY.........ccccoiiiiiiieeiiiiiiiee e

iv

CWE Version 4.13
Table of Contents

CWE-131:
CWE-134:
CWE-135:
CWE-138:
CWE-140:
CWE-141:
CWE-142:
CWE-143:
CWE-144:
CWE-145:
CWE-146:
CWE-147:
CWE-148:
CWE-149:
CWE-150:
CWE-151:
CWE-152:
CWE-153:
CWE-154:
CWE-155:
CWE-156:
CWE-157:
CWE-158:
CWE-159:
CWE-160:
CWE-161.:
CWE-162:
CWE-163:
CWE-164:
CWE-165:
CWE-166:
CWE-167:
CWE-168:
CWE-170:
CWE-172:
CWE-173:
CWE-174:
CWE-175:
CWE-176:
CWE-177:
CWE-178:
CWE-179:
CWE-180:
CWE-181.:
CWE-182:
CWE-183:
CWE-184:
CWE-185:
CWE-186:
CWE-187:
CWE-188:
CWE-190:
CWE-191:
CWE-192:
CWE-193:
CWE-194:
CWE-195:
CWE-196:
CWE-197:
CWE-198:
CWE-200:

Incorrect Calculation of BUfEr SIZ€........cocuiiiiiiiiiii e 354
Use of Externally-Controlled FOrmat StriNg..........coeeeiiiiiiiiee it ee et e st e e e sevaeeea e e 364
Incorrect Calculation of Multi-Byte String LeNgth............oooiiiiiiiiiiiiieee e 370
Improper Neutralization of Special EIEMENTS............coiiiiiiiiiicceecee e 372
Improper Neutralization of DEIMILEIS.......c.coiiiiiiii e 375
Improper Neutralization of Parameter/Argument Delimiters .
Improper Neutralization of Value DeliMIters..........cccoviiieiiiiiiiie e
Improper Neutralization of Record Delimiters

Improper Neutralization of Line DeliMIters...........coiiiiiiiiiiiiiiiie e
Improper Neutralization of Section Delimiters .
Improper Neutralization of Expression/Command Delimiters...........cccccovvuiiieeiiiiiiiee e 386
Improper Neutralization of INPUt TEIrMINALOIS.........c.uviiiiiiiiiiee e 388
Improper Neutralization of INPUL LEAAEIS........cccoiiiiiiii et e e e 390
Improper Neutralization of QUOTING SYNTAX.......c.uuiiiiiiiiiiiie et e e e e e e e e e saareree e 391
Improper Neutralization of Escape, Meta, or Control SEQUENCES...........ccuvvieeeeiiiiiee et 393
Improper Neutralization of Comment DeliMItersS...........ccooiiiiiiiieiiiiiiee e 395
Improper Neutralization of Macro Symbols

Improper Neutralization of Substitution Characters............cccvieiiiiiiiiiiie e 399
Improper Neutralization of Variable Name Delimiters...........cccoovvivivieiiiiiiiiee e 400
Improper Neutralization of Wildcards or Matching Symbols............ccccooviiiiiie i 402
Improper Neutralization of WhIitE@SPaACE.ccoiiiiiiii et 404
Failure to Sanitize Paired DeliMIterS..........cueeiiiiiiiiiieiiie ettt e e sbee e e 406
Improper Neutralization of Null Byte or NUL Character..........cccveveeiiiiieiiee i 408
Improper Handling of Invalid Use of Special Elements...........ccccccvieiieiiiiiieee e 410
Improper Neutralization of Leading Special EIEMENtS.........ccuvviiiiiiiiiiiii e 412
Improper Neutralization of Multiple Leading Special Elements...........cccccoeiviiiiiee i 414
Improper Neutralization of Trailing Special EIEMENtS..........cccoviiiiiiiiiiiee e
Improper Neutralization of Multiple Trailing Special Elements

Improper Neutralization of Internal Special Elements...........ccccooviviiieeiiiiiiicc e
Improper Neutralization of Multiple Internal Special Elements............cccccoveiiiiiiiiieee e, 421
Improper Handling of Missing Special EIEMENt............cocoiiiiiiiiiie e
Improper Handling of Additional Special EIEmMEeNt...........ccoviviiiiiiiiiee e
Improper Handling of Inconsistent Special EIements............cccccoiiiiiiie i
IMproper NUll TerMINALION.vviiie e e e s e e e s st e e e e s e e b e e e e e s sntaeraeesanes

[a1t To [TaTo = o SR PRSP PPRP
Improper Handling of Alternate ENCOQING.........cccuuiiiieiiiiiiiiee et e e e et e e e earaee e
Double Decoding of the SAME Data..........cceceiiiiiiiiii it e e e e et re e
Improper Handling of MiXed ENCOAING.........ccooiuiiiiiiiiiiiie e e e e eaaaee e e
Improper Handling of Unicode ENCOAING.........c.coiiiiiiiiieiiciiiiee et
Improper Handling of URL Encoding (Hex Encoding)

Improper Handling of Case SENSITIVITY.........coiiiuiiiieiiiiiiie e e e e rrare e e
Incorrect Behavior Order: Early Validation..............oeeeiiiiiiieiee e
Incorrect Behavior Order: Validate Before Canonicalize.............coovviiiiiiieiiieeiniiec e 450
Incorrect Behavior Order: Validate Before Filter............oouiiiiiiiiiiiiiiiiie e 453
Collapse of Data into UNSafe ValUE...........cuveiiiiiiiiiiie ettt et e 455
Permissive List of AIOWEA INPULS........oiiiiiiiiiiee et e e e e e e e e s earaee s 457
Incomplete List of DiSAllOWEd INPULS........cooiiiiiie et e s 459
INCOITECt REQUIAT EXPIrESSION. ... ittt ettt e e e e e e e e e e s et e e e e e e abtr e e e e e s eatraeeaeean 462
Overly Restrictive Regular EXPreSSIiON.........c..uuiiiiiiiiiiiee ettt e atvee e e saraee s 465
Partial String COMPAIISON.ciiiiiiiiiii ettt e e e e e e e et e e e e s e aa b e e e e e s stbeeeeessansraeeaeas 467
Reliance on Data/MemOry LAYOUL.........c.uuuiieiiiiiiiee e e e ittt e s et e e e s st e e e e s stba e e e e s e eaaae e e e e e sntaeeaeeaan 469
Integer Overflow or WraparOUNG.............oeeiiiiiiiirie e e e e et e e e e e e s et e e e e s s ana e e e e e s sntaeeeeesannes 471
Integer Underflow (Wrap or WraparoUNd)...........ccuuuieeeeiiiiiieieeeiiiieeeeeessiiveeeeessstseseeessnsnsseesesasnsveneas 479
Integer Coercion Error .
(015 o) 2T o] LI T o SRR
Unexpected SigN EXIENSION..........uiii ittt et e e e e e s e e e e e e e sab e e e e e s santraeeaeeaanns
Signed to Unsigned Conversion Error

Unsigned to Signed Conversion Error

NUMETIC TIUNCALION EITOF ...ttt e et e e st e e bt e e e s st e e snteee e nees
Use Of INCOITect BYtE OFUEIING......ccciuviieieeiiiiieie e ettt e e e ettt e e e et e e e e et e e e e e s st e e e e s s rntbaeeaeeennneees
Exposure of Sensitive Information to an Unauthorized ACOr.............cccviieeiiiiiiieee e 504

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.13
Table of Contents

CWE-201:
CWE-202:
CWE-203:
CWE-204:
CWE-205:
CWE-206:
CWE-207:
CWE-208:
CWE-209:
CWE-210:
CWE-211:
CWE-212:
CWE-213:
CWE-214:
CWE-215:
CWE-219:
CWE-220:
CWE-221.:
CWE-222:
CWE-223:
CWE-224:
CWE-226:
CWE-228:
CWE-229:
CWE-230:
CWE-231:
CWE-232:
CWE-233:
CWE-234:
CWE-235:
CWE-236:
CWE-237:
CWE-238:
CWE-239:
CWE-240:
CWE-241.:
CWE-242:
CWE-243:
CWE-244:
CWE-245:
CWE-246:
CWE-248:
CWE-250:
CWE-252:
CWE-253:
CWE-256:
CWE-257:
CWE-258:
CWE-259:
CWE-260:
CWE-261.:
CWE-262:
CWE-263:
CWE-266:
CWE-267:
CWE-268:
CWE-269:
CWE-270:
CWE-271.:
CWE-272:
CWE-273:

Insertion of Sensitive Information INt0 SNt DAta..........ccuviiiiiiiiiieeeiie e
Exposure of Sensitive Information Through Data Queries

ODSEIVADIE DISCIEPANCY......uuviiiiiiiiiieee e e ettt e et e e e e et e e e e et e e e e et b et e e e e asatreeeeeasatbaeeeessansraeeaeas
Observable RESPONSE DiSCIEPANCY........cccuuiiieeiiiiiiee e e eie e e e e e e e e e e e e e e e s st e e e e e ssatbe e e e e s asraeeaeean
Observable Behavioral Discrepancy..........cccccveveeeennns

Observable Internal Behavioral Discrepancy

Observable Behavioral Discrepancy With Equivalent Products............cccceoviiiveiee i 527
Observable TimiNg DiSCIEPANCY........ciieiiiiiiiiee e ittt e e e eetr e e e s e e e e ssbe e e e s e st e e e e e s stbaeeeeesasraeeeeas 528
Generation of Error Message Containing Sensitive Information.............ccccceeeeviiiiiee e, 531
Self-generated Error Message Containing Sensitive Information.............ccccceeovviiieeeciiiieee e, 538
Externally-Generated Error Message Containing Sensitive Information..............ccccoecvveieeiiiiinnen.n. 540
Improper Removal of Sensitive Information Before Storage or Transfer..........coccvveeeeviiiieneec e, 542
Exposure of Sensitive Information Due to Incompatible PoliCies.............cccoevieiiiiiiiee e 545
Invocation of Process Using Visible Sensitive INformation.............ccccceeeiiiiiiiii i 547
Insertion of Sensitive Information Into Debugging Code...........coociiiiieiiiiiiiiee e 549
Storage of File with Sensitive Data Under Web Root

Storage of File With Sensitive Data Under FTP Root
INFOrMAtion LOSS OF OIMISSION.iiitiiiiiiieeiiieeeitie ettt ettt ettt et e e st e e s bt e e e stb e e e anteeesneeeesnneeean
Truncation of Security-relevant INformation...............cooiiiiiiii i e
Omission of Security-relevant INfOrMation..............cooiiiiiii i
Obscured Security-relevant Information by Alternate Name...........ccccvviveeiiiiiiiee e 558
Sensitive Information in Resource Not Removed Before ReUSE...........cccevveeiiiiiiiiieieniee e 560
Improper Handling of Syntactically Invalid StruCture..........cc.cceeeiiiiiiiee e 564
Improper Handling of Values
Improper Handling of MISSING ValUES.........ccciuiiiiiiiiiiiiee ettt et a e e eaare e e e aeaees
Improper Handling Of EXIra ValUES..........coocuiiiii ittt e e
Improper Handling of Undefined Values
Improper Handling Of Parameters..........cooiuiiiii oottt e e e e e e e eaebaee s
Failure to Handle MiSSING Parameter.........c.vuiiiiiiiiiiiie ettt e
Improper Handling of Extra Parameters
Improper Handling of Undefined Parameters.............ueeiiiiiiiiiie et 575
Improper Handling of Structural EIEMENTS.............oiiiiiiiiii e 576
Improper Handling of Incomplete Structural Elements..........c.cccoccviieei e 577
Failure to Handle Incomplete EIEMENT...........ocuiiiii it e aarre e 578
Improper Handling of Inconsistent Structural EIements............ccccveviieiiiiiiii e 579
Improper Handling of Unexpected Data TYPE......ccccuuiiiie ittt e e e 580
Use of Inherently Dangerous FUNCHON...........oooiiiiiie it e e 581
Creation of chroot Jail Without Changing Working Dir€Ctory...........ccccovcvveieeeiiiiiieee e 584
Improper Clearing of Heap Memory Before Release ('Heap Inspection’).........cccccceevviiivieeeceicineen.. 586
J2EE Bad Practices: Direct Management of CONNECLIONS..........cccuvevieiiiiiiiiiee e 588
J2EE Bad Practices: DireCt USE Of SOCKELS.......c.uiiiiuiiiiiiiiiiiiie e 590
UNCAUGNE EXCEPLION. ... ittt e et e e e e et e e e e s et e e e e e seatbeeeaeeeasbeaeeeeesssaaeeeessanses
Execution with Unnecessary Privileges
UNChecked RETUIN VAIUE........cocuuiiiiiieeii ettt e e anb e e sbe e e nreee s
Incorrect Check of FUNCLON REUIN ValUE..........oouiiiiiiiiiiii e 608
Plaintext Storage of a Password
Storing Passwords in a Recoverable FOrMat..........cccoiiiiiiiiciiiiiiic et 613
Empty Password in Configuration File
Use of Hard-coded Password......................
Password in Configuration File
Weak ENCoding fOr PASSWOI..........uoiiiiiiiiiieie ettt e e sttt e e st e e e e e st e e e e e s saba e e e e e s abaaaeaeas
NOt USING PASSWOIA AQING.....uviiieeiiiiiiiee ettt e e ettt e e e e sttt e e e s et e e e e e e e aatb e e e e e s sabaeeeeesasreees
Password Aging With LONG EXPIratioN.........c..ueiiiiiiiiiiie ettt e e e e e e e e envaee s
INCOITECt PrivIlege ASSIGNIMENL......cciiiiiiii et e e e e s e e e e st e e e e e st b e e e e e e ennaenes
Privilege Defined With UNSafe ACHONS........ccciiiiiiiiieiiiiiei ettt e e erare e e e e s saae e e e e
e A1 T=To TR @1 F= Tl 1 o o T PSPPI
Improper Privilege ManagemENt...........coiiiiiiiie it e e e st e e e e e et e e e e s st e e e e e s esrraeaes
Privilege Context SWItChING EFTON.........c.oiiiiiiiiie ettt e e e e s et e e e e s earaeeas
Privilege Dropping / LOWEING EITOIS.......iiiiiiiiiiii ettt e ettt e e e e e et e e e e s sntraeeaeaenans
Least Privilege Violation............c.ccoecvveneeenne

Improper Check for Dropped Privileges

Vi

CWE Version 4.13
Table of Contents

CWE-274: Improper Handling of INSUffiCieNnt PriVIlEgES.uvviiiiiiiiiee e
CWE-276: INncorrect Default PermMiSSIONS.cuiiiiiiieiiiee ittt ettt st e e s e e stbe e e snbe e e snteeesnneeean
CWE-277: Insecure INherited PerMISSIONS.cuuiiiiiieiiiie ettt ettt et e e s b e st e e st e e s neeeesnneeean
CWE-278: Insecure Preserved Inherited PErmISSIONS.ccoiiuiiiiiiiiiiiiieeiiie ettt e
CWE-279: Incorrect Execution-Assigned PermMiSSIONS..........ciiiiiiiiiiiiiiiiiiie et s et e e e et e e s sstaea e e e anes
CWE-280: Improper Handling of Insufficient Permissions or PriVilEgesccovcveiiiiiiieee e
CWE-281: Improper Preservation of Permissions...........ccccccocevvveeeeviiiiiieneesiinns
CWE-282: Improper OwWnership ManagemMENt............iciiiiiuiiieeeiiiiiiee e e eeiiie e e e e s eitre e e e e s siraeeaessssataeeeeesssrreeeessanses
CWE-283: UNVENfied OWNEISNID......uiiiiii ittt e e e e e e e et e e e e s s etba et e e e s aatbeaeaeesantaeeaeesannees
CWE-284: IMproper ACCESS CONLIOL........oeiiiiiiiiiiie e e e e e e e e et e e e e e e sata e e e e e s satbe e e e e s santaaeeaeas
CWE-285: IMProper AUTNOTIZALION.ciiiiiiiee e eiiieee e s e s e e e e e e e e e e st e e e e e s stba et e e e sasbaaeeesasnsreeaeesasees
CWE-286: INCOreCt USEr MaNagEIMENT......ccciiiiiiuiiiiiitiietee et teeeeaeaeeeaeeeaeassssssatas bbb eserrrereeeeatataaasaeeseesesnnnnnnnns
CWE-287: Improper AUTNENTICALION.iiiiiiiiiiiee e e e e e e e e e e et e e e e e e st e e e e e s sabaeeeeesatnreeeeas
CWE-288: Authentication Bypass Using an Alternate Path or Channel............ccccccoooiiiiiiic e
CWE-289: Authentication Bypass by Alternate Name
CWE-290: Authentication Bypass by SPOOfiNG........cceiiiiiiiiiiiiiiiiiii et e e e et e e e e anees
CWE-291: Reliance on IP Address for Authentication
CWE-293: Using Referer Field for Authentication................cccoeveeiiiiinne.n.

CWE-294: Authentication Bypass by Capture-replay..........ccouiieiiiiiiiiee et e e a e
CWE-295: Improper Certificate ValidatioN.............oeeiiiiiiiiiic e e e e e e e st e e e e s sareeeas
CWE-296: Improper Following of a Certificate's Chain of TrUSE.........ccccciiiiiiiiiiee e
CWE-297: Improper Validation of Certificate with HOSt MiSmatCh.............cccovviiiiiiiiiiiii e
CWE-298: Improper Validation of Certificate EXPIration............cccoiiiiiiriiiiiiiiiie e
CWE-299: Improper Check for Certificate REVOCALION............eiieiiiiiiiiee et
CWE-300: Channel Accessible by NON-ENAPOINT..........cooiiiiiiiiiiiice e rrre e e e e
CWE-301: Reflection Attack in an Authentication ProtOCOL...........cccoiiiiiiiiiiiiiiieiee e s
CWE-302: Authentication Bypass by Assumed-Immutable Data.............ccccooevviiieiiiiiiiice e
CWE-303: Incorrect Implementation of Authentication Algorithm
CWE-304: Missing Critical Step in Authentication..............ccccceeeevunn.

CWE-305: Authentication Bypass by Primary WEaKNESS..........ccuuiieiiiiiiiiiie ettt et e e s sivre s e e e
CWE-306: Missing Authentication for Critical FUNCHION..............ooiiiiiiie e
CWE-307: Improper Restriction of Excessive Authentication AEMPLS.........c.ceeeiiiiiiiieee e
CWE-308: Use of Single-factor AUthentiCatioN...............coiiiiiiiii e
CWE-309: Use of Password System for Primary Authentication
CWE-311: Missing Encryption of Sensitive Data.............ccccceeeevevvneen..

CWE-312: Cleartext Storage of Sensitive INformation............c.cooiiiiiiiie i
CWE-313: Cleartext Storage in @ File 0r 0N DiSK..........oiiiiiiiiiiiec e
CWE-314: Cleartext Storage in the REQISINY.......cuuiiiii et e e e e e e e sare e e e e s aaees
CWE-315: Cleartext Storage of Sensitive Information in @ Cookie.............cccocvvieiiiiiiiiiii e,
CWE-316: Cleartext Storage of Sensitive Information in MEMOIY...........cceeeiiiiiiiiii i i
CWE-317: Cleartext Storage of Sensitive Information in GUlL.........ccceeiiiiiiiiiie e
CWE-318: Cleartext Storage of Sensitive Information in Executable..............cccccoeeiiiiiiiiii e
CWE-319: Cleartext Transmission of Sensitive INfOrmation............cooceiiiiiiiiiiine e
CWE-321: Use of Hard-coded CryptographiC KEY.........cccuiiiiiiiiiiiie ettt e e e e et ea e e s eanes
CWE-322: Key Exchange without Entity AUthentiCation...............coccviiiii i
CWE-323: Reusing a Nonce, Key Pair in ENCryption..........c.ooiiiiiiiii it a e
CWE-324: Use of a Key Past its EXPIration Date..........cccuueiieiiiiiiiiiee e et e st e e e e s eiaee e e e e e snnaeeaeessnenes
CWE-325: MiSSiNG CryptographiC SEEP.....uciieiiiiiiiie e ittt e ettt e e e e e e e e s st e e e e e st br e e e e e s asatreeeeessntrees
CWE-326: Inadequate ENCryption StrENGN.........cooiiiiiii it e e s eerraeaaeeaans
CWE-327: Use of a Broken or Risky Cryptographic AlgOrithm..........cc.eeeiiiiiiiiiie e
CWE-328: USE Of WEAK HASN......coiiiiiiiiii ettt ettt e e s e e st e e nneeas
CWE-329: Generation of Predictable [V with CBC MOUE..........ccoiuiiiiiiiiiiiee e
CWE-330: Use of Insufficiently RanNdom ValUES...........ccooiuiiiiiiiiiiiiiee ettt e e s e e etaae e e e
CWE-331L: INSUfICIENT ENITOPY...c.uitiiiie i ittt ee e ettt e e ettt e e e e e e e e e e st e e e e e s eatataeeeeeaaasbeeeaeesantaaseaeeeasssaeeaeesansses
CWE-332: Insufficient ENtropy in PRING.........coiiiiiiii ettt e e e st e e e e e e atre e e e e s enaaee s
CWE-333: Improper Handling of Insufficient Entropy in TRNG...........coiiiiiiiiiiie e
CWE-334: Small Space of RANAOM VAIUES..........ccoiiiiiiiii ettt e e e et a e e e st e e e s enaraeeea s
CWE-335: Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG)...........c.ccooevvveveeeiinnnenn.
CWE-336: Same Seed in Pseudo-Random Number Generator (PRNG)..........cccveveeiiiiiieeee st eeiieee e
CWE-337: Predictable Seed in Pseudo-Random Number Generator (PRNG)...........cccccovviviiieiiiiiiieec e
CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG)

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.13
Table of Contents

CWE-339:
CWE-340:
CWE-341.:
CWE-342:
CWE-343:
CWE-344:
CWE-345:
CWE-346:
CWE-347:
CWE-348:
CWE-349:
CWE-350:
CWE-351.:
CWE-352:
CWE-353:
CWE-354:
CWE-356:
CWE-357:
CWE-358:
CWE-359:
CWE-360:
CWE-362:

Condition’)

CWE-363:
CWE-364:
CWE-366:
CWE-367:
CWE-368:
CWE-369:
CWE-370:
CWE-372:
CWE-374:
CWE-375:
CWE-377:
CWE-378:
CWE-379:
CWE-382:
CWE-383:
CWE-384:
CWE-385:
CWE-386:
CWE-390:
CWE-391:
CWE-392:
CWE-393:
CWE-394:
CWE-395:
CWE-396:
CWE-397:
CWE-400:
CWE-401.:
CWE-402:
CWE-403:
CWE-404:
CWE-405:
CWE-406:
CWE-407:
CWE-408:
CWE-409:
CWE-410:
CWE-412:

Small Seed SPace iN PRING.........ooiiiiiie et e s e e s et e e e s e s ataeeae e s snnes
Generation of Predictable Numbers or Identifiers

Predictable from ODServable STate...........cccoiiiiiiiiiiii e
Predictable Exact Value from Previous ValUES..........cociiiiiiiiiiiiieiiiie e
Predictable Value Range from Previous ValUES.............ooouviiiiiiiiiiiii et
Use of Invariant Value in Dynamically Changing ConteXt...........ccccoevuvireeiiiiiiiiee e e seiviee e e 842
Insufficient Verification of Data AUtNENTICITY..........cciuiiii i e 843
Origin Validation EFTOT........uiiiiiiiiiiie ettt e e e e s st e e e e et e e e e e e satb e e e e e s s tbeeeeeesanasareeaeeaas 846
Improper Verification of CryptographiC SIgNature............ccccviviiiiiiiieii e 850
USE Of LESS TIUSIEA SOUICE.....cciueeiiiiiieeiiie ettt ettt ettt e e sab e e st e e bt e e e snb e e sntaee e nnees 852
Acceptance of Extraneous Untrusted Data With Trusted Data..........c..cccccveeeeeiiiiiieiec e 854
Reliance on Reverse DNS Resolution for a Security-Critical ACtion.............cccccvvvveeiiiiiiiee e, 855
INSUFfICIENt TYPE DISHINCHON. .. .eiiiiiiiiiiii et e e e e e e e e e s et e e e e s e atbeeeeessnraaeas
Cross-Site Request FOrgery (CSRF) ...ttt e s senaraeea s
Missing Support for INegrity CHECK.........cciiiiiiei e
Improper Validation of Integrity Check ValUe..........cc..eeiiiiiiiiiiic et
Product Ul does not Warn User of Unsafe Actions

Insufficient Ul Warning of Dangerous OPErationsS............ccuuvieeiiiiiiieeeeiiiiiereeesesisreeeesesiveeeeessevvenes
Improperly Implemented Security Check for Standard.............ccccceeeiiiiiiiii e 874
Exposure of Private Personal Information to an Unauthorized ACtOr............cccovvvieeiiiiiiiee e 875
Trust Of SYStEM EVENT DALA.........cciiiiiiiii ettt e s e e st e e e s ettt e e e e e s atb e e e e e s snbaeeas 880
Concurrent Execution using Shared Resource with Improper Synchronization (‘Race
.. 881
Race Condition Enabling Link FOIHOWING........ccoiiiiiiiiic et 890
Signal Handler RAce CONITION..........ccuiiiiieiiiiiiie et e e e s e e e s e e e e e e sarr e e e e e s sabaeeaesaanes 891
Race Condition Within @ TRrEAG.coouiiiiiiie e 896
Time-of-check Time-of-use (TOCTOU) Race Condition...........ccccuvverieiiiiiiiie e eeireee e 899
Context Switching Race Condition

DAoL A= o PP PPP
Missing Check for Certificate Revocation after Initial ChecK............cocovvieeiiiiiie i, 910
Incomplete Internal State DiStINCHON.cuviiiiiiiiie e e e e eaanes 912
Passing Mutable Objects to an Untrusted Method.............c.cooiiiiiiiiiiiiiie e 913
Returning a Mutable Object to an Untrusted Caller............ccocviiiiiiiiiiiec e 916
INSECUre TEMPOTANY FilE.....oiiii i e e e e e e e e e s e r e e e e e e saabaeeeeaans 918
Creation of Temporary File With INnSecure PermiSSiONS............cccoiiiiiiiieeiiiiiiiee e eciiiee e ssivee e e 921
Creation of Temporary File in Directory with Insecure Permissions.............cccvuvveeeviiiivieeeeeiiiiveneeenn. 923
J2EE Bad Practices: Use Of SYStemM.eXIt().......cccurrieeiiiiiiiie ettt e et e e straea e 926
J2EE Bad Practices: Direct Use Of Threads..........cooviiiiiiiiiiiiii e 928
Session Fixation

Covert Timing Channel
Symbolic Name not Mapping t0 CorreCt ODJECT.........cccuiiiii i 935
Detection of Error Condition WithOUt ACLION..........coiiiiiiiiiie e 936
Unchecked Error CONQITION.........ooueiiiiiieiiiie ettt sttt e e e st e e sebe e et e e sneeeenanes
Missing Report of Error CONItION...........ccuvveiieiiiiiiee ettt e s e e e e e saareeeas
Return of Wrong StatuS COOE..........uuviiiiiiiiiiie ettt e e s e e e e e e et e e e e e e sanreeeas
Unexpected Status Code or Return Value
Use of NullPointerException Catch to Detect NULL Pointer Dereference...........ccoccveeeeviiiveeeeeninns
Declaration of Catch for Generic EXCEPLION........ccuviiiiiiiiiiiie e
Declaration of Throws for GEneric EXCEPLION..........cviiiiiiiiiii e
Uncontrolled ReSoOUrce CONSUMPLION.........uuiiieiiiiiiieeeeeeiiie et e e s st e e e s e st e e e e e s stbaeeeeesstrareeeeeaanreeens
Missing Release of Memory after Effective Lifetime
Transmission of Private Resources into a New Sphere ('Resource Leak’)
Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor Leak’)
Improper Resource Shutdown Or REIEASE.coiiiiiiiii it e
Asymmetric Resource Consumption (Amplification)............coooviiiiieiiiiiieie e
Insufficient Control of Network Message Volume (Network Amplification)...........ccccccooviiveneeeiinnen.
Inefficient Algorithmic COMPIEXItY.........cviiiieiiiiiie e e e e stbee e e e e
Incorrect Behavior Order: Early AMPIfiCation...........cccuviiiiiiiiiiiee e
Improper Handling of Highly Compressed Data (Data Amplification)..............cccccvveeeeiiiiienee e,
INSUTFICIENt RESOUICE POOL......coiiiiiiiiiie e
Unrestricted Externally AcCeSSIDIE LOCK.........oociiiiiiiiiii e

viii

CWE Version 4.13
Table of Contents

CWE-413:
CWE-414:
CWE-415:
CWE-416:
CWE-419:
CWE-420:
CWE-421.:
CWE-422:
CWE-424:
CWE-425:
CWE-426:
CWE-427:
CWE-428:
CWE-430:
CWE-431.:
CWE-432:
CWE-433:
CWE-434:
CWE-435:
CWE-436:
CWE-437:
CWE-439:
CWE-440:
CWE-441.:
CWE-444:
CWE-446:
CWE-447:
CWE-448:
CWE-449:
CWE-450:
CWE-451.:
CWE-453:
CWE-454:
CWE-455:
CWE-456:
CWE-457:
CWE-459:
CWE-460:
CWE-462:
CWE-463:
CWE-464:
CWE-466:
CWE-467:
CWE-468:
CWE-469:
CWE-470:
CWE-471.:
CWE-472:
CWE-473:
CWE-474:
CWE-475:
CWE-476:
CWE-477:
CWE-478:
CWE-479:
CWE-480:
CWE-481.:
CWE-482:
CWE-483:
CWE-484:
CWE-486:

IMProper RESOUICE LOCKING.......iiiiiiiiiiiee et e s e e e e s et e e e e e sabr e e e e e e enaaees
MISSING LOCK CHECK. .. .eiiiiiiiiiie ettt e e e e e e e e e e e et e e e e e s satb e e e e e s sanbraeeaean
(D o10] o] (=R ! (T TP TPPPOTRR
O N (=T (=T TSP TPPPTRRN
Unprotected Primary Channel.................
Unprotected Alternate Channel
Race Condition During Access to Alternate Channel.............ccoccviviiiiiiiiie e
Unprotected Windows Messaging Channel ('Shatter')........c.cccooiiiiiieei e
Improper Protection of Alternate Path
Direct Request (‘Forced Browsing')..............

UNtrusted SEArCh Path........o..oiiiiiiiii et et e et
Uncontrolled Search Path EIBMENT...........cooiiiiiiiiiii e
Unquoted Search Path or EIEMENL..........oooiiiiiiiiii ettt e e
Deployment of Wrong HAaNAIET...........cooiiiiii ettt e e e earae e
[T EE] [a o I F= Lo 1] PO PRPRUOPPUPRN
Dangerous Signal Handler not Disabled During Sensitive Operations...........c.ccccuvveeeeeiiiveeeeesinnns
Unparsed Raw Web Content DeliVery.........cccvevveeiiiiiiiiie e

Unrestricted Upload of File with Dangerous Type
Improper Interaction Between Multiple Correctly-Behaving Entities............cccccveeeiviiiieiicciiciinenen
INterpretation CONFlICE..........iii e e e e e s et e e e s e e e e e e e e snrreeaeeaan
Incomplete Model of ENApPOint FEALUIES...........ccoiiiiiiiii it
Behavioral Change in New Version or ENVIFONMENt...........cocoiiiiiiiie et
Expected Behavior VIOIAtioN............ciiiiiiiiiiie ettt e e et e e e et e e e e s etraaeaeean
Unintended Proxy or Intermediary (‘Confused DePULY").......cccvriiieiiiiiiiie e
Inconsistent Interpretation of HTTP Requests (‘(HTTP Request/Response Smuggling’)
Ul Discrepancy for SECUINTY FEAUIE........ccuuiiii ettt et e st e e e e s eaaeeas
Unimplemented or Unsupported Feature in Ul...........cccviiiiiiiiiiiec e
ODbSO0lEte FEAUIE 1N Ul ciiiiiiiiiii ettt ettt e bbbt e e e e s ta e e e nteeennneas
The Ul Performs the Wrong Action
Multiple Interpretations Of Ul INPUL........cooiiiiiii it e e e
User Interface (Ul) Misrepresentation of Critical Information............cccccecvieiieiiiiiiiee e
Insecure Default Variable INItialiZation.............oociiiiiiiiii e
External Initialization of Trusted Variables or Data StOres...........cccouveevciieniieeiniie e
Non-exit on Failed INItIaliZatIoN.cueiiiiii e
Missing Initialization of @ Variable..........cc..oeii i
Use of Uninitialized Variable.............ooiiiiiii e
[aToTo]] o] (=) (SR @ ST T U] o PRSPPI
Improper Cleanup on Thrown EXCEPLION........ccuviiiiii et
Duplicate Key in AsSOCIatiVe LiSt (AlISL).......cccuuriieiiiiiiiii et e s eaaae e e e
Deletion of Data StruCture SENLINEL..........ccooiuiiiiiiie e e e
Addition of Data StruCture SENTINEL........cociuiiiiiiii et
Return of Pointer Value Outside of EXpected RaNQE..........ccccoviiuiviiieeiiiiiiiee e
Use Of SizeOf() 0N @ POINET TYPE..cciiiiiiiiiie et e e e e e e et e e e e e satreeaaeaan
INCOITECt POINTET SCAIING........ itiiiie ittt e e e e e e e s sttt e e e s e bbae e e e e eenraeeeeeaaanees
Use of Pointer Subtraction to Determing SIZe.........cceoiiiiiiiiiiiiie et
Use of Externally-Controlled Input to Select Classes or Code (‘Unsafe Reflection’)
Modification of Assumed-Immutable Data (MAID).........cccuiieeiiiiiiiee e
External Control of Assumed-Immutable Web Parameter..........ccocovevviiiiiieeiniieeiee e
PHP External Variable MOIfiCatioN............ooiiiiiiiiiieiiie e
Use of Function with Inconsistent Implementations.....................
Undefined Behavior for Input to APL........ccccooviiieeeeiiiieece e,
NULL POINtEr DEIEIEIENCE. .. .ciitiiiiieiiie ittt ettt et e e s bt e sr b e e st e e s nees
UsE Of ODSOIEtE FUNCHON. ...ttt e et sta e s e e snneeas
Missing Default Case in Multiple Condition EXPression.............cuieiiiiieieeciiiiiiiee e
Signal Handler Use of a Non-reentrant FUNCHON............ccuuviiiiiiiiiec e
(0o Tt (= To A @) o T=T 1 (o] SRS
Assigning instead of Comparing
Comparing instead of Assigning
Incorrect BIOCK DelMItAtION.......cccuuiiiiiiieiiiee ittt e st e e e e e snnee e e
Omitted Break Statement in Switch
Comparison of Classes DY NAME........ooiiiiiiiiiii e e e e e e e e e s saees

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.13
Table of Contents

CWE-487:
CWE-488:
CWE-489:
CWE-491.:
CWE-492:
CWE-493:
CWE-494:
CWE-495:
CWE-496:
CWE-497:
CWE-498:
CWE-499:
CWE-500:
CWE-501:
CWE-502:
CWE-506:
CWE-507:
CWE-508:
CWE-509:
CWE-510:
CWE-511:
CWE-512:
CWE-514:
CWE-515:
CWE-520:
CWE-521.:
CWE-522:
CWE-523:
CWE-524:
CWE-525:
CWE-526:
CWE-527:
CWE-528:
CWE-529:
CWE-530:
CWE-531:
CWE-532:
CWE-535:
CWE-536:
CWE-537:
CWE-538:
CWE-539:
CWE-540:
CWE-541.:
CWE-543:
CWE-544:
CWE-546:
CWE-547:
CWE-548:
CWE-549:
CWE-550:
CWE-551.:
CWE-552:
CWE-553:
CWE-554:
CWE-555:
CWE-556:
CWE-558:
CWE-560:
CWE-561.:
CWE-562:

Reliance on Package-1eVel SCOPE.........cvvuiie ittt
Exposure of Data Element to Wrong Session
ACHVE DEDUG COUEB....coi ittt e e et e e e st e e e s et e e e e e s stbaeeeessansraeeaeas

Public cloneable() Method Without Final (‘Object Hijack').........cccccooviiiiieiiiiiiiee e 1163
Use of Inner Class Containing Sensitive Data

Critical Public Variable Without Final MOIfier...........ccccoiiiiiiiiiiiie e
Download of Code Without Integrity ChecK.........cccccoevviveeieiiiiiinnenn.

Private Data Structure Returned From A Public Method

Public Data Assigned to Private Array-Typed Field...........cccvviieiiiiiiiie e
Exposure of Sensitive System Information to an Unauthorized Control Sphere..........cccccccoovunnee.. 1182
Cloneable Class Containing Sensitive INformation............cccccvvveiiiiiiiiie e 1185
Serializable Class Containing SenSitive Data.............ccoiiiuiiiee i 1188
Public Static Field Not Marked FiNal.............ccooiiiiiiiii e 1189
Trust BoUNAAry ViIOIAtiION.coiiuiiiiie ittt e st e e e e st e e e e e s satb e e e e e s senrraeeaeas 1192
Deserialization Of UNruSted Dat@........cc.ueeiuiieiiiiiiiiiiie ettt e e neee s 1193
Embedded MaliCIOUS COUE.........uiiiiiieiiiie ettt b et e e et e e s ane e e neaeeas 1199
o)=L I [0 €T T PP PPPRP 1201
Non-Replicating MaliCioUS COUE...........ociiiiiiiiiii et s s e e e s eannees 1202
Replicating Malicious Code (VIiruS OF WOIM)......ccciiiiuiiieeieiiiiiis sttt e e et e e e sare e e e s etvaeeaeeeanes 1203
B I =10 L 0T | PO EPRPPPPPPRN
(oo (o7l I T g L= 2T 1 o T PP PPSPP

] 0)VAT L= L= OSSP
(@0)V/=T @1 0 T o] o 1= T PP PRSPPI
Covert Storage Channel

.NET Misconfiguration: Use of IMPersoNation............c.ccciiiiuuiieeeiiiiiiiee s cciies e s esiree e e e sniveee e e e 1210
Weak PassWord REQUIFEIMENTS.c.iiiiiiiiiie et e ettt e e e et e e e s et e e e e s st e e e s s aara e e e e e s snnraeeaeeaan
Insufficiently Protected Credentials.............

Unprotected Transport of Credentials

Use of Cache Containing Sensitive Information

Use of Web Browser Cache Containing Sensitive Information.............ccccccceeeiiiiiiiini e 1222
Cleartext Storage of Sensitive Information in an Environment Variable..............ccccccooceinieeinnen, 1223
Exposure of Version-Control Repository to an Unauthorized Control Sphere.........ccccccccovcvveeenn. 1225
Exposure of Core Dump File to an Unauthorized Control Sphere...........ccooceeeiviiiiie e 1226
Exposure of Access Control List Files to an Unauthorized Control Sphere.........cccccccooveveeeeeninns 1227
Exposure of Backup File to an Unauthorized Control Sphere..........ccccoooviiviiiiiiieeee e 1228
Inclusion of Sensitive Information iN TESt COUE........ccuuiiiiiiiiiiie et 1229
Insertion of Sensitive Information iNt0 LOg File.........ccvviiiiiiiii e 1230
Exposure of Information Through Shell Error MeSSage........cuvvvvieiiiiiiiie e 1233
Servlet Runtime Error Message Containing Sensitive Information.............ccocceeeiiiiieee e, 1234
Java Runtime Error Message Containing Sensitive Information.............ccccceeeeiiiiiieni i 1235
Insertion of Sensitive Information into Externally-Accessible File or Directory...........cccvveeeeenneee. 1237
Use of Persistent Cookies Containing Sensitive Information.............cccoocvveiieiiiiiiiee e 1239
Inclusion of Sensitive Information in SOUrCe COUE..........ceieiiiieiiiiie e 1240
Inclusion of Sensitive Information in an INclude File...........ccccooiiiiiiiiiii e 1242
Use of Singleton Pattern Without Synchronization in a Multithreaded Context..............ccccceeeeenns 1243
Missing Standardized Error Handling MeChaniSm.............cccviiiiiiiiiiiii e
SUSPICIOUS COMIMEINL....eiiiiiiiiiiiie e e e ittt e e e et e e e e ettt e e e e e seat e e e e e e aasbereeaeeasatbeeeeessastasseaesaasssneeeeeaanees

Use of Hard-coded, Security-relevant CoNStaNtS...........c.ceeeiiiiiiiieeiiiiieiee e ee et
Exposure of Information Through Directory Listing

Missing Password Field Masking..........c.cccvevieiiiiiiieee e

Server-generated Error Message Containing Sensitive Information

Incorrect Behavior Order: Authorization Before Parsing and Canonicalization
Files or Directories Accessible to External Parties...........ccccoiiiiiiiiiiniieiee e
Command Shell in Externally Accessible Directory
ASP.NET Misconfiguration: Not Using Input Validation Framework.............cccceeviiveeieeiiiiieeeeeens
J2EE Misconfiguration: Plaintext Password in Configuration File............ccccccooviiiiieeiiiiiieec e,
ASP.NET Misconfiguration: Use of Identity Impersonation............cccccceeeviiiveeeeeeiiiieee e ee e
Use of getlogin() in Multithreaded AppliCatioN.............cooiiiiiiiiiiii e
Use of umask() with chmod-style ArgUMENT...........coiiiiiiiiiiee e
[D1=T To [oo [T TSP RP
Return of Stack Variable AQAreSS........c.uuiiiiiieiiiie ettt

CWE Version 4.13
Table of Contents

CWE-563:
CWE-564:
CWE-565:
CWE-566:
CWE-567:
CWE-568:
CWE-570:
CWE-571:
CWE-572:
CWE-573:
CWE-574:
CWE-575:
CWE-576:
CWE-577:
CWE-578:
CWE-579:
CWE-580:
CWE-581.:
CWE-582:
CWE-583:
CWE-584:
CWE-585:
CWE-586:
CWE-587:
CWE-588:
CWE-589:
CWE-590:
CWE-591.:
CWE-593:
CWE-594:
CWE-595:
CWE-597:
CWE-598:
CWE-599:
CWE-600:
CWE-601.:
CWE-602:
CWE-603:
CWE-605:
CWE-606:
CWE-607:
CWE-608:
CWE-609:
CWE-610:
CWE-611:
CWE-612:
CWE-613:
CWE-614:
CWE-615:
CWE-616:
CWE-617:
CWE-618:
CWE-619:
CWE-620:
CWE-621.:
CWE-622:
CWE-623:
CWE-624:
CWE-625:
CWE-626:
CWE-627:

Assignment to Variable without Use
SQL Injection: Hibernate
Reliance on Cookies without Validation and Integrity Checking...........cccccovvviiieeeeiiiiienc e, 1272
Authorization Bypass Through User-Controlled SQL Primary KeY.........ccovvuveeeiiiiiieeeeeiiiiieee e 1274
Unsynchronized Access to Shared Data in a Multithreaded Context...........ccccceeeviiiieeeeeiiciienennn. 1276
finalize() Method Without SUPer.finalize()..........cccciuuiiieiiiiiiiie e
EXPression iS AIWaYS FalSE..........cciiiiiiiiiiie ettt e s e e e e et e e e e e s ataaaaa e an
EXPresSion iS AIWAYS TIUE.......uuiiiieiiiiieie e e s ettt e e e ettt e e e e st e e e e s sttt e e e s etbeeeaeseasaaeeaeesssraeseesaanses

Call to Thread run() instead Of STAM().......cciiiuiiiiie i e e
Improper Following of Specification By Caller...........ccouviiiiiiiiii e

EJB Bad Practices: Use of Synchronization Primitives
EJB Bad Practices: Use Of AWT SWINQ.....cccuuieiieiiiiiiiie et e e e et e e s s sivee e e e s s sataa e e e s s snaaeeeeeannnes
EJB Bad Practices: Use of Java I/O.............
EJB Bad Practices: UsSe Of SOCKELS.ooiiiiiiiiiic e
EJB Bad Practices: Use Of Class LOAUET..........coiuiiiiiiiiiiiiiee ettt
J2EE Bad Practices: Non-serializable Object Stored in Session
clone() Method Without super.clone()........cccuvevieiiiiiiiee e
Object Model Violation: Just One of Equals and Hashcode Defined
Array Declared Public, Final, and StatiC.............cooiviiiiiiiiiiiiiie et sarre e e e
finalize() Method Declared PUDIIC.............oooiiiiiiii e
Return Inside Finally Block
Empty Synchronized Block
EXPIiCit Call 10 FINAIZE(). ... cvreeee ettt e e e et e e e e s et e e e e s st bae e e e e e eanenes
Assignment of a Fixed Address t0 @ POINTEI...........ocioiiiiiiiie e
Attempt to Access Child of a NON-Structure POINLEN...........ccoiiiiiiiieiiiiiiiee e

Call to NON-UBIQUITOUS APL......c ettt e e e e e e e e e e e et e e e e e s stbaeeae s

Free of Memory NOt 0N the HEAP........coiiiiii et eaaee e 1315
Sensitive Data Storage in Improperly Locked MemOry..........cooiviiiiieiiiiiiiee e 1318
Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created............... 1319
J2EE Framework: Saving Unserializable Objects t0 DisSK..........cccccovcviiiieiiiiiiieec e
Comparison of Object References Instead of Object Contents...........ccccoecvvveeeeiiiiieiee e

Use of Wrong Operator in String COMPAriSON.........c.uuiiieiiiiiiieeeeeciiree e e e s eeiiee e e e s sise e e e e s ssireeeaeeenns

Use of GET Request Method With Sensitive QUEry StriNgS.........ccovvverieiiiiiiiee e eeriveee e
Missing Validation of OpenSSL CertifiCate..........ccuiiiiiiiiiiiee e
Uncaught EXCEPLioN iN SEIVIELuviiii it e e e e e e eaaees

URL Redirection to Untrusted Site ('Open RedireCt)).......cccccooeiiiiiiiiiiiiieei e
Client-Side Enforcement of Server-Side Security

Use of Client-Side Authentication............cccoovveveviieiniieennnennne
Multiple Binds to the Same Port.........cccceeeevvnnneeen.
Unchecked Input for Loop Condition
Public Static Final Field References Mutable ObJEeCt..........ccueeviiiiiiiiiii e
Struts: Non-private Field in ACONFOIM CIaSsS........cccuiiiiiiiiiiiiiee et
Double-ChecKed LOCKING........ciiiiiiiiee ettt e et e e st e e e s et b e e e e e et e e e e e snnraaeeaeas
Externally Controlled Reference to a Resource in Another Sphere
Improper Restriction of XML External Entity Reference.........ccoccveevviiiiiec i
Improper Authorization of Index Containing Sensitive Information
INSUFfICIENt SESSION EXPITALION.ciiiiiiiiiiiee et e e eete e e s e e e et e e e e st e e e s e bb e e e e e e s sanrreeaeeaas
Sensitive Cookie in HTTPS Session Without 'Secure’ Attribute............ccocoviiiiieeiiiee
Inclusion of Sensitive Information in Source Code COMMENLS.........cceeeiiiiiiiieeeniiee e
Incomplete Identification of Uploaded File Variables (PHP).....................

Reachable ASSErtiON...........ooiiiiiiiiiie e

Exposed Unsafe ACtIVEX METhOU...........oooiiiiiiiii e
Dangling Database Cursor ('CUrsor INJECHION").........coiiiiiii e
Unverified Password ChanQe.........oiiiiiiiiiii ittt et e s et e e e e e s saraeeae e
Variable EXIFACHON ETOr........oiiiiiii ettt ettt e ettt e e b e e enae e e nnneas
Improper Validation of FuNction HOOK ArQUMENES.........cccuviiiieiiiiiiiee ettt s e
Unsafe ActiveX Control Marked Safe FOr SCHPHNG.........ccociuiiiieiiiiiiiie e
Executable Regular EXPreSSiON EFTON............ciiiiiiiie ettt e et e e e e s stbae e e s eeaaaeea s
Permissive RegUIAr EXPIrESSION.ccciiiiiiieie e ettt e ettt e e e e e e et e e e s e st e e e e e s saba e e e e s sntaneeaeas
Null Byte Interaction Error (PoiSON NUIl BYTE).........cvieiiiiiiiiee et
Dynamic Variable EValUAtioN.............ccoiiiiiiie ittt e e e e et e e e e sntaaeaaeaan

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.13
Table of Contents

CWE-628:
CWE-636:
CWE-637:
CWE-638:
CWE-639:
CWE-640:
CWE-641.:
CWE-642:
CWE-643:
CWE-644:
CWE-645:
CWE-646:
CWE-647:
CWE-648:
CWE-649:
CWE-650:
CWE-651.:
CWE-652:
CWE-653:
CWE-654:
CWE-655:
CWE-656:
CWE-657:
CWE-662:
CWE-663:
CWE-664:
CWE-665:
CWE-666:
CWE-667:
CWE-668:
CWE-669:
CWE-670:
CWE-671:
CWE-672:
CWE-673:
CWE-674:
CWE-675:
CWE-676:
CWE-680:
CWE-681.:
CWE-682:
CWE-683:
CWE-684:
CWE-685:
CWE-686:
CWE-687:
CWE-688:
CWE-689:
CWE-690:
CWE-691.:
CWE-692:
CWE-693:
CWE-694:
CWE-695:
CWE-696:
CWE-697:
CWE-698:
CWE-703:
CWE-704:
CWE-705:
CWE-706:

Function Call with Incorrectly Specified ArgUMENTES...........cccuviiieiiiiiiiieee e 1386
Not Failing Securely ('"Failing OPEN")......ccoiiiiiiie et e e e e s e e e e e e e annnes 1389
Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism’)........... 1391
Not Using Complete Meiation............coiiiiiiiiiiiiiiii e e e e e aaaaea s
Authorization Bypass Through User-Controlled Key...........cooiiiiiiiiiiiiiiiie et
Weak Password Recovery Mechanism for Forgotten Password

Improper Restriction of Names for Files and Other RESOUICES............c.ccovvvveveeeiiiiiiieee e
External Control of Critical State Dat@.........cc.ceiiiiiiiiiieiiiie e
Improper Neutralization of Data within XPath Expressions ("XPath Injection’)............ccccccvvveeeiinnns 1407
Improper Neutralization of HTTP Headers for Scripting SyntaX........ccccceeeiviiiiiiee i 1410
Overly Restrictive Account LOCkout MEChaniSmM............ocoiiiiiiiiiiiiiiiii e 1411
Reliance on File Name or Extension of Externally-Supplied File............cccccovviieiiiiiieec e 1413
Use of Non-Canonical URL Paths for Authorization DecCiSiONS...........ccccovvvveriiieiniieeniie e 1414
INCOorrect Use Of PriVIIEGEA APIS......ccoo ettt e e e st e e e etbaeeeeean 1416
Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity Checking.... 1418
Trusting HTTP Permission Methods on the Server Side........c.ccocovviiiiiiiiiiii e
Exposure of WSDL File Containing Sensitive Information

Improper Neutralization of Data within XQuery Expressions (‘"XQuery Injection’)...........cccccveeeeenns 1423
Improper Isolation or CompartmentaliZation.............ccoccviiiiiiiiiiiie e 1424
Reliance on a Single Factor in @ Security DeCISION............ceieiiiiiieiie e 1427
Insufficient Psychological ACCEptability...........ccvveiiiiiiiiiiic e 1429
Reliance on Security Through OBSCUNLY........ccuuviiiiiiiiiie e eavaee e 1431
Violation of Secure Design PriNCIPIES...........co i 1433
IMPropPer SYNCRIONIZATION.cciiiiieie ettt e e s e e e e e st b e e e e s snatb e e e e e s snnraaeeaeas 1436
Use of a Non-reentrant Function in @ Concurrent CONEXL.........ccuveruieeiriieinieee e 1440
Improper Control of a Resource Through its Lifetime.........cccvvieiiiiiiiiie e 1442
IMProper INItAIZALION..........oiiiieee e e e e e e e e e s et e e e e e s sanraeeaeeaas
Operation on Resource in Wrong Phase of Lifetime

[0 o] o] o[gl WoTod (1T R PO PRPRUUPPRPRN
Exposure of Resource t0 Wrong SPhEIE........coouiiiiie ittt
Incorrect Resource Transfer BEtWEeN SPNEIES.........c.cioiiiiiiiiiiiiiiie et
Always-Incorrect Control FIow Implementation...............eeeeiiiiiiiee e
Lack of Administrator CONrol OVEI SECUILY.......iieiiiiiiieee e it e e st essire e e e et e e e e s eeaae e e e e e
Operation on a Resource after Expiration or REIEASE............ceeeiiiiiiiieciiiiiei e 1464
External Influence of Sphere Definition............cooiiiiiii i 1468
UNCONLIOIEA RECUISION.ciiiiiieiiiie ettt ettt st e et e e bt e e s abe e e e bb e e s anteeesnbeeeanbbeeennee 1469
Multiple Operations on Resource in Single-Operation CONteXt.............ccccveieeeiiiiiiieeeeeiiiieeee e 1472
Use of Potentially Dangerous Function

Integer Overflow to BUffer OVEIMIOW............cooiiiiiiiic e
Incorrect Conversion between NUMEKC TYPES......cccuuiiieiiiiiiiee e e e et e e e s setree e e e s ssaaee e e e e siatreeaeeasanes 1479
[aoo]q (=To1 Q@2 1[o10] - L1 o] o PO ORI 1483
Function Call With Incorrect Order of ArQUMENLS.........ccciuiiiieiiiiiiie e 1488
Incorrect Provision of Specified FUNCHONAIILY...........coooiiiiiiiiiiiei e 1490
Function Call With Incorrect Number of ArgUMENTS.........cccoviiiiiiiiiiiiiiei e 1492
Function Call With INCOrrect ArgUmMENT TYPE...uuuiiiiiiiiieee e ettt e e s e e e st e e e e s etraeeeaeeaans 1493
Function Call With Incorrectly Specified Argument Value...........ccccoeoiviiiiiee e 1494
Function Call With Incorrect Variable or Reference as Argument..........cccccoovvveeeeeiiiiieneeeeeciieeenn. 1496
Permission Race Condition DUring RESOUICE COPY.....cccicuviiiieiiiiiiiieeeeiiiiiee e e erreee e s ssiree e e e eanees
Unchecked Return Value to NULL Pointer Dereference

Insufficient Control Flow Management..................cccuveeee..

Incomplete Denylist to Cross-Site Scripting............ccc.c......

Protection MechaniSm FailUre............ccuuiiiiii it

Use of Multiple Resources with Duplicate [dentifier............ceeceiiiieiic e,

Use of LOW-Level FUNCHONAIILY..........oociiiiii et e e e e e e e e e e
INCOITECE BENAVIOT OFUENeiiiiiiieiiiie ettt ettt et e s e e et e e snte e e nenes

[Tofo]q (=To1 S @f0] 0] o F= 1y 1T o U PRSP
Execution After REAIFEC (EAR).....ccii ettt ettt e e et e e e e et e e e e s e etbaeeaeeanes
Improper Check or Handling of Exceptional Conditions.............ccooeiiiiiiieeciiiiiiee e
Incorrect Type CONVEISION OF CaSt........uuiiiiiiiiiiiee ettt e s s e e s et e e e e et e e e e e st e e e e e s sesaaeeeaeeaaes
Incorrect Control FIOW SCOPING.......uuiiieiiiiiiiie et e e e e e e e s e e e e e s s satbe e e e e s seasaees

Use of Incorrectly-Resolved Name Or REfEreNnCe.........cvvviiiiiiiiiiic e

Xii

CWE Version 4.13
Table of Contents

CWE-707:
CWE-708:
CWE-710:
CWE-732:
CWE-733:
CWE-749:
CWE-754:
CWE-755:
CWE-756:
CWE-757:
CWE-758:
CWE-759:
CWE-760:
CWE-761.:
CWE-762:
CWE-763:
CWE-764:
CWE-765:
CWE-766:
CWE-767:
CWE-768:
CWE-770:
CWE-771:
CWE-772:
CWE-773:
CWE-774:
CWE-775:
CWE-776:
CWE-777:
CWE-778:
CWE-779:
CWE-780:
CWE-781.:
CWE-782:
CWE-783:
CWE-784:
CWE-785:
CWE-786:
CWE-787:
CWE-788:
CWE-789:
CWE-790:
CWE-791.:
CWE-792:
CWE-793:
CWE-794:
CWE-795:
CWE-796:
CWE-797:
CWE-798:
CWE-799:
CWE-804:
CWE-805:
CWE-806:
CWE-807:
CWE-820:
CWE-821.:
CWE-822:
CWE-823:
CWE-824:
CWE-825:

IMProper NEULTAlIZAtION..........uiii e e e e e e e s e e e s e a e e e e s e ab e e e e e e e sntaeeeas
INncorrect OWNErShip ASSIGNIMENL........ciiiiiiiie et e s e e s e e e e e st e e e e s searaaaeaeas
Improper Adherence to Coding Standards............ccociiiiiieeiiiiiiie e
Incorrect Permission Assignment for Critical RESOUICE............ccccuviiieeiiiiiiiiie e e
Compiler Optimization Removal or Modification of Security-critical Code............cc.cccoccvveveeeeinnen.
Exposed Dangerous Method or FUNCLION...........cccooiiiiiiie e

Improper Check for Unusual or Exceptional Conditions

Improper Handling of Exceptional Conditions..............cooiiiiiiiiiiiiiiic e
MiSSING CUSIOM EITOr PAgE.........vviiee i ittt e et e e et e e e e et e e e e e st e e e e e s etbaneeeean
Selection of Less-Secure Algorithm During Negotiation (‘Algorithm Downgrade')

Reliance on Undefined, Unspecified, or Implementation-Defined Behavior...............ccccceeevnnneeen.

Use of a One-Way Hash WithOUt @ Sall...........cccuviiiiiiiiiiiii e

Use of a One-Way Hash with a Predictable Salt.............ccccooiiiiiiiii e

Free of Pointer not at Start Of BUfEr..........cooiuiiiiii e
Mismatched Memory Management ROULINES.occuuiiieeiiiiiiiee et e e e
Release of Invalid Pointer or REfEIENCE.ccoiiiiiiiiii e
Multiple LOCKS Of @ CritiCal RESOUICE.cciuiiiiie et e ettt e e e s e e e e e etbaeeaeeenes
Multiple Unlocks of @ CritiCal RESOUICE...........ciiieiiiiiiiie ettt e e e e e e s
Critical Data Element Declared PUDBIIC..........c..ooiiiiiiiiii e
Access to Critical Private Variable via Public Method.............ccocoiiiiiiiiii e
Incorrect Short Circuit Evaluation

Allocation of Resources Without Limits or Throtthing..........cccccveiiiiiiiiiiie e
Missing Reference to Active Allocated RESOUICE..........cccoiiiiiiiieiiiiiiiee e e e e e
Missing Release of Resource after Effective Lifetime..........ccccveeiiiiiiieei i
Missing Reference to Active File Descriptor or Handle.............cccoooiviiiiei i
Allocation of File Descriptors or Handles Without Limits or Throttling............ccccceeeeiiiiineeeninnen.
Missing Release of File Descriptor or Handle after Effective Lifetime...........c.cccoovvveiiiiiiincc i,
Improper Restriction of Recursive Entity References in DTDs (‘XML Entity Expansion’)............... 1611
Regular EXpression WithOUL ANCROTS.cuuuiiii et e e e 1614
Lo IS 015 ol =T a1 A oo o 11 o TR PP PPPST 1616
LOQQiNg Of EXCESSIVE DaAlA..........vviiieiiiiiiiie ettt e e s e e e et e e e e e et e e e e e s sabaaeaeean 1620
Use of RSA Algorithm WithOUt OAEP............coiiiiiiiie e e eaaae e 1621
Improper Address Validation in IOCTL with METHOD_NEITHER 1I/O Control Code..................... 1623
Exposed IOCTL with Insufficient ACCESS CONLIOL..........ccoiiiiiiiiiiiiiiiei e 1626
Operator PreCedence LOGIC EITON......ccoiuiiiii it e ettt e e e e e e e e e e e s eabaeeae s 1628
Reliance on Cookies without Validation and Integrity Checking in a Security Decision................. 1631
Use of Path Manipulation Function without Maximum-sized Buffer............ccccccooviieie e 1633
Access of Memory Location Before Start of BUffer.............cooiiiiiiiiiiicc e 1635
OUL-Of-DOUNAS WIITE.....eei it st et e e rat e e s nb e e s bbe e e sneeeesnneee s 1638
Access of Memory Location After ENd of BUFfer...........ccooiiiiiiiiciiiiec e 1647
Memory Allocation with EXCESSIVE SIiZ€ ValU.........ccuveiiiiiiiiiiiie et 1651
Improper Filtering of Special EIEMENTS.........cccoiiiiiiiii e 1656
Incomplete Filtering of Special EIEMENTS...........ccoiiiiiiiiiiiiiee e 1657
Incomplete Filtering of One or More Instances of Special Elements.............ccccocvieiiiiiiiiiee s 1659
Only Filtering One Instance of a Special Element............ccoovviiiiiiiiei e 1660
Incomplete Filtering of Multiple Instances of Special Elements..........ccccccccviviiieeiciiiciiiece e, 1661
Only Filtering Special Elements at a Specified LOCAtioN.............c.ceeeeiiiiiiieeeiiiiiieee e 1663
Only Filtering Special Elements Relative t0 @ Marker...........cccovviieiiiiiiiee e 1665
Only Filtering Special Elements at an Absolute POSItioN............cccvviieiiiiiiiei e 1666
Use of Hard-coded CredentialS..........ooueii ettt et as 1668
Improper Control of INteraction FrEQUENCY.........cuuiiie ettt e e e e e et 1676
GUESSADIE CAPTCHA. ... ettt ettt ettt st et e e e s n bt e e sb et e e s bb e e e anbeeesneeeenebeeean 1678
Buffer Access with Incorrect Length ValUe............ooooiiiiiiii oot 1680
Buffer Access Using Size of Source BUFfer.........ccuviiiiiiiiiii e 1687
Reliance on Untrusted Inputs in a Security DeCISION...........ccoiiiiiiiieiiiiiiii e 1691
MiSSING SYNCRIONIZATION.ciiuiiiiie ettt e e e e e e s et e e e e e e bt e e e e s e sabaeeeessantbeaeeesaanes 1697
INCOITECE SYNCNIONIZALION.cciiiiiiii ettt e e e e e et e e e s e b e e e e e s atbeeeeessesbaaeeaeaaans 1699
Untrusted PoINter DErefErENCE.couuii ittt e e et eennes 1700
Use of Out-of-range PoINter OffSEL.........uuiiiiiiiiiiie et a e 1703
Access Of UNINItialiZed POINTET.........oouiiiiiiieiiie ettt e e snbee e 1706
Expired Pointer Dereference

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.13
Table of Contents

CWE-826: Premature Release of Resource During Expected Lifetime..........ccovveeiiiiiiiiecicciiiieec e 1711
CWE-827: Improper Control of Document Type Definition............cooiiiiiiii i 1713
CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe..............cccccovviiieiiiiiiiee i, 1714
CWE-829: Inclusion of Functionality from Untrusted Control Sphere..........cccccveiiiiiiiiee e

CWE-830: Inclusion of Web Functionality from an Untrusted Source
CWE-831: Signal Handler Function Associated with Multiple Signals
CWE-832: Unlock of a Resource that is NOt LOCKEM............coviuiiiiiiiiiiiiieieee e

(@1 1 i 1= To | o Tod OO PPRPPTRN
CWE-834: EXCESSIVE ITEIALION. ... utiiiiiiieiitie ittt ettt et e e st e e s bt e ettt e e sabe e e s beeeesbbeeesnneeeaneeeas
CWE-835: Loop with Unreachable Exit Condition ('Infinit€ LOOP")......cccuviiiiiiiiiiiii e
CWE-836: Use of Password Hash Instead of Password for Authentication.............cccoceeeiiieeinieeenieeesnineeee 1737
CWE-837: Improper Enforcement of a Single, Unique ACHON..........cccviiieiiiiiiieee e
CWE-838: Inappropriate Encoding for Output Context..............cccuvee....

CWE-839: Numeric Range Comparison Without Minimum Check
CWE-841: Improper Enforcement of Behavioral WOorkflow...............cooiiiiiiiiiiiiic e
CWE-842: Placement of User int0 INCOIMECt GrOUP........cciiiuriereeiiiiiiieeeesiiieeeeeeesreeeeeeesseveeeee s e
CWE-843: Access of Resource Using Incompatible Type (‘Type Confusion’).........ccccccoevvivvieeeenns
CWE-862: MiSSING AULNOMZALION.cuiiiiie ettt eeie e e et e e e e et e e e e e s e e e e e s saaaeaeeeaannes
CWE-863: INCOITECt AULNOTIZATION.ciiitiiiiiiiie ittt st e et e e st e e s nbe e e snbeeeabaeeenee
CWE-908: Use of UniNitialiZE0d RESOUITE........coiuiiiiiiiiieiiiie ittt ettt sbe e bbe e e snaeeenanes
CWE-909: Missing Initialization Of RESOUICE.........ciiiiuiiiee it e s e s e e e e e e e e e s saraeeas
CWE-910: Use oOf EXPIred File DeSCHPION.vviiieeiiiiiiie e ettt e ettt e e e st e e e s et e e e e e s eaab e e e e s s entaeeeeesenanenes
CWE-911: Improper Update of Reference COUNL...........ccoiiiuiiiiiiiiiiiiii et e e e e eaaree s
CWE-912: Hidden FUNCONAlILY.........ccoiiiiiiiieeiiiiiiee et

CWE-913: Improper Control of Dynamically-Managed Code Resources
CWE-914: Improper Control of Dynamically-ldentified Variables............ccccceiiiiiiiiiiic e,
CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes
CWE-916: Use of Password Hash With Insufficient Computational Effort.............ccccceeieiiiiii i,
CWE-917: Improper Neutralization of Special Elements used in an Expression Language Statement
('EXpression Language INJECHION").........iii ettt e et e e st e e e e e et e e e e e e stt e e e e e s etbeeeaeeeaaraeeaeeaaas
CWE-918: Server-Side Request FOrgery (SSRF)... ...ttt et e e e e eabaeaa e
CWE-920: Improper Restriction of Power Consumption...........ccccoevvvveeeeiiiiieeeeeeecineennn

CWE-921: Storage of Sensitive Data in a Mechanism without Access Control............ccccveeeeiiiiieeeeeiicieeeeenn,
CWE-922: Insecure Storage of Sensitive INfOrmation...............eoiiiiiiiiiie i
CWE-923: Improper Restriction of Communication Channel to Intended Endpoints
CWE-924: Improper Enforcement of Message Integrity During Transmission in a Communication Channel. 1803

CWE-925: Improper Verification of Intent by Broadcast RECEIVET............cccceiiiiiiiie i 1804
CWE-926: Improper Export of Android Application COMPONENTS..........ccoeeiiiiiiiiieiiiiiiiee e
CWE-927: Use of Implicit Intent for Sensitive COMMUNICALION.ccciuviieeiiiiiiiee e
CWE-939: Improper Authorization in Handler for Custom URL Scheme

CWE-940: Improper Verification of Source of a Communication Channel............cccccccovviiieeiiiiiiienee e, 1816
CWE-941: Incorrectly Specified Destination in a Communication Channel.............ccccceeeeiviiiinie e, 1818
CWE-942: Permissive Cross-domain Policy with Untrusted DOMAINS............cccvuvieeiiiiiiiiree e ciieeee e 1820
CWE-943: Improper Neutralization of Special Elements in Data Query LOgIC..........ccccocvuvieeeeiiiiiieee e, 1824
CWE-1004: Sensitive Cookie Without 'HttpONIY' Flag..........ccveviiiiiiiiiee e 1826
CWE-1007: Insufficient Visual Distinction of Homoglyphs Presented t0 USEr..........ccccvveeiiiiiiiieei e 1828
CWE-1021: Improper Restriction of Rendered Ul Layers or FFames...........cccovveiieiiiiiiieeeesiiiieee e ssivieeee e 1831
CWE-1022: Use of Web Link to Untrusted Target with window.opener Access 1834
CWE-1023: Incomplete Comparison with Missing Factors

CWE-1024: Comparison of Incompatible Types........ccccvvveeeeviiiveneeeiiinenn.

CWE-1025: Comparison UsiNg WIONQ FaCLOrS..........cuuuiiieiiiiiiiie ettt e st e e earae e e e s sanrr e e e e s snnaneeas
CWE-1037: Processor Optimization Removal or Modification of Security-critical Code............ccccceeevvivnnnn.n. 1842
CWE-1038: Insecure Automated OPtiMIZAtIONS..........cciiiiiiiiiie et eec e e e s e e e e e e b e e e e s snrbeeeae s 1843
CWE-1039: Automated Recognition Mechanism with Inadequate Detection or Handling of Adversarial Input

[T 10] o F= Vo] LT PP SUPPTPPPTR 1845
CWE-1041: Use Of ReAUNAANT COUE.cuuiiiiiiiiiiiiee ittt ettt ettt ettt e bt e e e snb e e et e e s nnaeeesnneeas
CWE-1042: Static Member Data Element outside of a Singleton Class Element

CWE-1043: Data Element Aggregating an Excessively Large Number of Non-Primitive Elements................ 1849
CWE-1044: Architecture with Number of Horizontal Layers Outside of Expected Range...........ccccccceeevunnee.. 1850
CWE-1045: Parent Class with a Virtual Destructor and a Child Class without a Virtual Destructor................ 1851
CWE-1046: Creation of Immutable Text Using String Concatenation.............cccueeeeiiiiuiieeeeeiiiiiee e e siiieeee e 1852

Xiv

CWE Version 4.13
Table of Contents

CWE-1047: Modules with Circular DEPENUENCIES.........cccuuiiiie et e e sarrer e e
CWE-1048: Invokable Control Element with Large Number of Outward Calls

CWE-1049: Excessive Data Query Operations in a Large Data Table...........ccccooviiiiiec i
CWE-1050: Excessive Platform Resource Consumption within @ LOOP.......ccccoeeiiiiiiiiiiiiieice e
CWE-1051.: Initialization with Hard-Coded Network Resource Configuration Data.............ccccoevvvveeeeiiiinnnennn.
CWE-1052: Excessive Use of Hard-Coded Literals in Initialization

CWE-1053: Missing Documentation fOr DESIGN...........uiiiiiiiiiiiei ittt e s e e s e e et e e e e e earraea e
CWE-1054: Invocation of a Control Element at an Unnecessarily Deep Horizontal Layer

CWE-1055: Multiple Inheritance from Concrete ClasSEsS..........uuiiiiiiiiiiei et e
CWE-1056: Invokable Control Element with Variadic Parameters............ccoocvieiiieeeiiiiee i
CWE-1057: Data Access Operations Outside of Expected Data Manager Component..........ccccecevvcvvveeeeenns
CWE-1058: Invokable Control Element in Multi-Thread Context with non-Final Static Storable or Member
[T o =T o | S RSO PPPRP 1865
CWE-1059: Insufficient Technical DOCUMENTALION.cciiiiiiiiiie ettt seee e 1866
CWE-1060: Excessive Number of Inefficient Server-Side Data ACCESSES........uiuvurieriieeiiiieeiieeesiieeenieeennes 1868
CWE-1061: Insufficient ENCAPSUIALION............eiiiiiiiiiiie e e s e e e e e e e e saar e e e e e s erbaaeee s
CWE-1062: Parent Class with References to Child ClIass...........ccooiiiiiiiiieiiiiie e
CWE-1063: Creation of Class Instance within a Static Code Block

CWE-1064: Invokable Control Element with Signature Containing an Excessive Number of Parameters...... 1872
CWE-1065: Runtime Resource Management Control Element in a Component Built to Run on Application

1= V=] £ F TP P OO PPPP PP 1874
CWE-1066: Missing Serialization Control EIEMENL............ccoiiiiiiiii e 1875
CWE-1067: Excessive Execution of Sequential Searches of Data ReSOUICE..........cccceeeeviiiieeeee e, 1876
CWE-1068: Inconsistency Between Implementation and Documented DesSign..........ccveeeeeiiiviereeeiiiivieeeesenns 1877
CWE-1069: EMPtY EXCEPLON BIOCK.cciiiiiiiiieeiiiiiee e ettt e st e e e e st e e e e e s st e e e e s s satbaeeeessnaaraeeaeaaans 1878
CWE-1070: Serializable Data Element Containing non-Serializable Item Elements.............cccccocceveeiiiiiiinnen. 1879
CWE-1071: EMPLY COAE BIOCK.......coiiiiiiiiiiii ettt e e e e e s st e e e e e e aa e e e e e s snataeeeeesenes
CWE-1072: Data Resource Access without Use of Connection Pooling

CWE-1073: Non-SQL Invokable Control Element with Excessive Number of Data Resource Accesses........ 1882
CWE-1074: Class with Excessively Deep INheritancCe..........c.cooiiiiiie it 1883
CWE-1075: Unconditional Control Flow Transfer outside of Switch BIOCK.............ccccceviiiiiiiiiniiciie e, 1884
CWE-1076: Insufficient Adherence to Expected CONVENLIONS...........ccviiiieiiiiiiiee et e e 1885
CWE-1077: Floating Point Comparison with INCOrrect OPErator............cccuviieieiiiiiiiiee et e e 1886
CWE-1078: Inappropriate Source Code Style or Formatting

CWE-1079: Parent Class without Virtual Destructor Method

CWE-1080: Source Code File with Excessive Number of Lines of Code...........cccvvuiririiiiiiieeeiiiee e 1889
CWE-1082: Class Instance Self Destruction Control Element...........cccoiieiiiiiiiiiie e
CWE-1083: Data Access from Outside Expected Data Manager COmMpOoNeNt.........cccceeeeviiuiieeeeeiiiivieeeessevnnes
CWE-1084: Invokable Control Element with Excessive File or Data Access Operations

CWE-1085: Invokable Control Element with Excessive Volume of Commented-out Code.............ccccevverenee. 1894
CWE-1086: Class with Excessive Number of Child CIasSes..........cccoviiiiiiiiiiiiiieiieee e
CWE-1087: Class with Virtual Method without a Virtual DeSIIUCTON.ccceeiiiiiiiiie e
CWE-1088: Synchronous Access of Remote Resource without Timeout

CWE-1089: Large Data Table with Excessive Number of INdiCES..........cceeeiiiiiiiiie i
CWE-1090: Method Containing Access of a Member Element from Another Class...........ccccvvveeeiiiiieneeeinns 1899
CWE-1091: Use of Object without Invoking Destructor Method..............ccooviiiiiiiiiiee e, 1900
CWE-1092: Use of Same Invokable Control Element in Multiple Architectural Layers.............cccccveveeeiinnnenn.. 1901
CWE-1093: Excessively Complex Data RepreSentation..............ccuiiuiieeeiiiiiiieee st e e esiiree e st e e e eaveeees
CWE-1094: Excessive Index Range Scan for a Data Resource

CWE-1095: Loop Condition Value Update within the LOOP..........ceiiiiiiiiiiiiiiie e
CWE-1096: Singleton Class Instance Creation without Proper Locking or Synchronization........................... 1905
CWE-1097: Persistent Storable Data Element without Associated Comparison Control Element.................. 1906
CWE-1098: Data Element containing Pointer Item without Proper Copy Control Element..............cccccccoonu. 1907
CWE-1099: Inconsistent Naming Conventions for Identifiers............ccccocviiiiiiiiiii e 1908
CWE-1100: Insufficient Isolation of System-Dependent FUNCHONS............cccveiieiiiiiiiiee e 1909
CWE-1101: Reliance on Runtime Component in Generated COUE...........ccooviuiririeeiiiiiiiie e eciiieee et 1910
CWE-1102: Reliance on Machine-Dependent Data Representation...............cceceoivviveieeeiiiiinieeeeesiiiree e 1911
CWE-1103: Use of Platform-Dependent Third Party COMPONENTS...........cvveiiiiiiiiieiiiiiiiee e eeiiieee e eeireeea e 1912
CWE-1104: Use of Unmaintained Third Party COMPONENTS........cccuuviiiiiiiiiiiie e ciiiieee et e et e e eearaeee e 1913
CWE-1105: Insufficient Encapsulation of Machine-Dependent Functionality............ccccccueveeeiiiiiiiee i, 1914
CWE-1106: Insufficient Use of Symbolic CONSIANTS..........cccoiiiiiiiiiiiiiiicc et 1915

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.13
Table of Contents

CWE-1107:
CWE-1108:
CWE-1109:
CWE-1110:
CWE-1111:
CWE-1112:
CWE-1113:
CWE-1114:
CWE-1115:
CWE-1116:
CWE-1117:
CWE-1118:
CWE-1119:
CWE-1120:
CWE-1121:
CWE-1122:
CWE-1123:
CWE-1124:
CWE-1125:
CWE-1126:
CWE-1127:
CWE-1164:
CWE-1173:
CWE-1174:
CWE-1176:
CWE-1177:
CWE-1188:
CWE-1189:
CWE-1190:
CWE-1191:
CWE-1192:
CWE-1193:
CWE-1204:
CWE-1209:
CWE-1220:
CWE-1221:
CWE-1222:
CWE-1223:
CWE-1224:
CWE-1229:
CWE-1230:
CWE-1231:
CWE-1232:
CWE-1233:
CWE-1234:
CWE-1235:
CWE-1236:
CWE-1239:
CWE-1240:
CWE-1241.:
CWE-1242:
CWE-1243:
CWE-1244:
CWE-1245:
CWE-1246:
CWE-1247:
CWE-1248:
CWE-1249:
CWE-1250:

CWE-1251

Insufficient Isolation of Symbolic Constant Definitions............cccuvevieiiiiiiiie e, 1916
Excessive Reliance on Global Variables. ..o

Use of Same Variable for MUltiple PUIMPOSES.........cccuviiiie it
Incomplete Design DOCUMENTALION..........ciiiiiiiiiiie et e e e e e e e e e s s atreeeaeaan
Incomplete 1/O DOCUMENTALION.ccoiiuiiiiee e ettt e e s e e e e e e et e e e e s e e e e e s satb e e e e e s santraeeaeas
Incomplete Documentation of Program Execution
Inappropriate CoMMENE SEYIE.......oiiiiiie e et e e e s s r e e e e e ara e e e e e aannees
Inappropriate WhIiteSPACe StYIE........coiiiiiiie e e earaae e
Source Code Element without Standard Prologue.............ccooiiiiiieie e 1923
Inaccurate Comments
Callable with Insufficient Behavioral SUMMAIY..........ccccueiieeiiiiiiiie s 1926
Insufficient Documentation of Error Handling Techniques...........ccccoocvieiie e 1927
Excessive Use of Unconditional BranChing...........ccccocvuviiiiiiiiiiiiiie e 1928
EXCESSIVE COUE COMPIEXILY....cuviiiieeeeiiiiit e e ettt e ettt e e st e e e e et e e e e s st e e e e s seabaeeaeeaantreeeas 1928
Excessive McCabe Cyclomatic COMPIEXItY.........ccuvieiieiiiiiiiie e 1929
Excessive Halstead COMPIEXILY.......ccuuiiiiiiiiiiiie ettt e e s e e e e et e e e e e s etbaeeeeeeaans
Excessive Use of Self-Modifying Code
EXCESSIVElY DEEP NESHING. ...cciiiiiiiiiie ettt e e e e e e e e e st e e e s e s atr e e e e e s snraeeas
EXCESSIVE ALACK SUIMACE. ... ittt
Declaration of Variable with Unnecessarily Wide SCOPE.......ccccoiviiiiiieiiiiiiieee e
Compilation with Insufficient Warnings Or EFTOIS............cooiiiiiiiiieiiiiiiiee et eiveee e
IITEIEVANT COUB. ...ttt et et e e bt e e b bt e e s b bt e e anbe e e eanee e e sbbeeeanteeesnnees
Improper Use of Validation FrameWOTK............uuuiieiiiiiiiieeceiiiiee et e e st e e s savaeea e
ASP.NET Misconfiguration: Improper Model Validation...............c.ccovvvieiiiiiiiee e,
INefficient CPU COMPULALION.c.uuiiii et e e et e e e e e et e e e e e s aabe e e e e s snrreeas
Use Of Prohibited COE........ouuiiiiiiii ittt e e snaeeas
Initialization of a Resource with an Insecure Default.............ccccoiiiiiiiiiiniei e
Improper Isolation of Shared Resources on System-on-a-Chip (SoC)
DMA Device Enabled Too Early in Boot Phase...........ccccooovvieeieiiiiieneeciis

On-Chip Debug and Test Interface With Improper Access Control...........ccccvveeeeiiiiiieieeeiiciineennn.
System-on-Chip (SoC) Using Components without Unique, Immutable Identifiers..................... 1952
Power-On of Untrusted Execution Core Before Enabling Fabric Access Control........................ 1954
Generation of Weak Initialization VECtor (IV)........ccoiiiiiiie ittt 1955
Failure to Disable RESEIVEA BilS..........cooiiiiiiiiiieiiiee ettt sneee e snneeas 1958
Insufficient Granularity of ACCESS CONLIOL...........coeiiiiiiiiei i 1960
Incorrect Register Defaults or Module Parameters.ooccvvviiiiiiiieiii e 1963
Insufficient Granularity of Address Regions Protected by Register LOCKS...........ccccvvveeiiiivennennn. 1967
Race Condition for Write-Once AttDULES..........ooiiiiiii e
Improper Restriction of Write-Once Bit Fields
Creation Of EMErgeNt RESOUICE........ccuuiiiii ettt e e e e e e s b e e e e e s eatreaeaeaan
Exposure of Sensitive Information Through Metadata..............ccccvveveeiiiiiiiiiie e 1974
Improper Prevention of Lock Bit Modification.............cccoviveiiiiiiiiii e 1975
Improper Lock Behavior After Power State TranSition...........ccuvveeeiiiiiierieeiiiiiiee e esireee e 1978
Security-Sensitive Hardware Controls with Missing Lock Bit Protection..............ccccceeeeviiiivieneen. 1979
Hardware Internal or Debug Modes Allow Override of LOCKS..........c.cccoecviiieiiiiiiiiee e 1982
Incorrect Use of Autoboxing and Unboxing for Performance Critical Operations........................ 1984
Improper Neutralization of Formula Elements in @ CSV File.......cccccioiiiiiiiiei e
Improper Zeroization of Hardware REQISIEr...........vveiiiiiiiiiie ettt

Use of a Cryptographic Primitive with a Risky Implementation..............c.ccooveeiiiiiiin e,

Use of Predictable Algorithm in Random Number Generator..............cccvveeeeiiiiiereeeecciiieee e
Inclusion of Undocumented Features or Chicken Bits....................

Sensitive Non-Volatile Information Not Protected During Debug
Internal Asset Exposed to Unsafe Debug Access Level or State..........ccoccvvveeeiiiiiviee e, 2002
Improper Finite State Machines (FSMs) in Hardware LOQIC..........ccccvvveeeiiiiiiie e 2005
Improper Write Handling in Limited-write Non-Volatile Memories...........ccccccovvvieeeeiiiiieree e, 2007
Improper Protection Against Voltage and CIOCK GIItCheS...........cccovvvieeiiiiiiiee e, 2009
Semiconductor Defects in Hardware Logic with Security-Sensitive Implications...............c......... 2013
Application-Level Admin Tool with Inconsistent View of Underlying Operating System............... 2014
Improper Preservation of Consistency Between Independent Representations of Shared

: Mirrored Regions with Different Values

XVi

CWE Version 4.13
Table of Contents

CWE-1252:
CWE-1253:
CWE-1254:
CWE-1255:
CWE-1256:
CWE-1257:
CWE-1258:
CWE-1259:
CWE-1260:
CWE-1261.:
CWE-1262:
CWE-1263:
CWE-1264:
CWE-1265:
CWE-1266:
CWE-1267:
CWE-1268:
CWE-1269:
CWE-1270:
CWE-1271:
CWE-1272:
CWE-1273:
CWE-1274:
CWE-1275:
CWE-1276:
CWE-1277:
CWE-1278:
Techniques
CWE-1279:
CWE-1280:
CWE-1281.:
CWE-1282:
CWE-1283:
CWE-1284:
CWE-1285:
CWE-1286:
CWE-1287:
CWE-1288:
CWE-1289:
CWE-1290:
CWE-1291.:
CWE-1292:
CWE-1293:
CWE-1294:
CWE-1295:
CWE-1296:
CWE-1297:
CWE-1298:
CWE-1299:
CWE-1300:
CWE-1301:
CWE-1302:
CWE-1303:
CWE-1304:
Operation...
CWE-1310:
CWE-1311:
CWE-1312:
CWE-1313:
CWE-1314:
CWE-1315:

CPU Hardware Not Configured to Support Exclusivity of Write and Execute Operations............ 2020
Incorrect Selection Of FUSE VaAIUES.........couiiiiiiii e
Incorrect Comparison LOgiC GranUIArity............cccueieiiiiiiiiiee e e
Comparison Logic is Vulnerable to Power Side-Channel Attacks.............ccocoveveeeiiiiiiene e,
Improper Restriction of Software Interfaces to Hardware Features............ccccveveeeiiiiieiec e,
Improper Access Control Applied to Mirrored or Aliased Memory Regions...............

Exposure of Sensitive System Information Due to Uncleared Debug Information

Improper Restriction of Security ToKen ASSIGNMENT.........cc.vviiiiiiiiiiiiee e e
Improper Handling of Overlap Between Protected Memory Ranges.........cccccovevvveeeeeiiiivieeeeesnis
Improper Handling of Single EVENt UPSELS........coiiiuiiiie ittt
Improper Access Control for Register INterface..........ccoeoviiiiiiii i
Improper Physical ACCESS CONLIOL.........ccciiiiiiiiie e e e e e e e e e
Hardware Logic with Insecure De-Synchronization between Control and Data Channels........... 2051
Unintended Reentrant Invocation of Non-reentrant Code Via Nested Calls...........ccccccceevinirnee 2053
Improper Scrubbing of Sensitive Data from Decommissioned DeviCe...........ccccceeeeviiveeeeesicnnnnn. 2056
Policy Uses ObSsolete ENCOAING........uuiiiiiiiiiiiei ettt e s e e s e e e e e e s raarae e e e s aaens 2058
Policy Privileges are not Assigned Consistently Between Control and Data Agents................... 2060
Product Released in Non-Release Configuration..............ccooiiiiierieiiiiieiee e 2063
Generation of INCOrrect SECUNLY TOKENS.......ciiiiiiiiiiii ettt e e e 2065
Uninitialized Value on Reset for Registers Holding Security Settings.........ccccoovvvvvveeeiiiiiiinee e, 2067
Sensitive Information Uncleared Before Debug/Power State Transition.............ccccocevveeeeeiinnnen.. 2069
Device Unlock Credential Sharing.........c.uuvieiiiiiiieiic et e e e e e earaeee s 2071
Improper Access Control for Volatile Memory Containing Boot Code...........ccccccovviviveeeeiiiineen.n. 2073
Sensitive Cookie with Improper SamesSite Attribute............cooovieiiiiici e, 2075
Hardware Child Block Incorrectly Connected to Parent System.........cccccocvveveeiiiiiiieee e 2078
Firmware Not Updateable............cuuiiiiiiiiei e e e 2081
Missing Protection Against Hardware Reverse Engineering Using Integrated Circuit (IC) Imaging

Cryptographic Operations are run Before Supporting Units are Ready
Access Control Check Implemented After Asset iS ACCESSE........ccvuiiieiiiiiiieei e
Sequence of Processor Instructions Leads to Unexpected Behavior............cccccoovvvieeeeiiiiieneenn.
Assumed-Immutable Data is Stored in Writable MemOry.........ccccveeiiiiiiiee e
Mutable Attestation or Measurement Reporting Data............cccooiivieeieiiiiiiiiee e
Improper Validation of Specified Quantity in INPUL.............eeiiiiiiiiee e
Improper Validation of Specified Index, Position, or Offset in Input .
Improper Validation of Syntactic Correctness of INPUL..........ccccviieiiiiiiiii e
Improper Validation of Specified Type of INPUL.........ccvvviiiiiiie e
Improper Validation of Consistency within Input.........................
Improper Validation of Unsafe Equivalence in Input..................
Incorrect Decoding of Security [dentifiersoooiiiiiiiii i
Public Key Re-Use for Signing both Debug and Production Code...........ccccvveeeeiiiiiereeciiciiienennn.
Incorrect Conversion of Security 1dentifiers.............oooiiiiiiii e
Missing Source Correlation of Multiple Independent Data............cccceeeeiviiiiiiee e
Insecure Security Identifier MEChaNISIM............coiiiiiiiii e
Debug Messages Revealing Unnecessary INnformation.............cccceeeeiiiiiieeeceiciiiee e
Incorrect Chaining or Granularity of Debug Components
Unprotected Confidential Information on Device is Accessible by OSAT Vendors...................... 2120
Hardware Logic Contains RaCe CONAItIONS..........ccuviiiieiiiiiiiee e e et e st e e e e e e saree e e e

Missing Protection Mechanism for Alternate Hardware Interface
Improper Protection of Physical Side Channels...........ccccviiiiiiiiii e

Insufficient or Incomplete Data Removal within Hardware Component............cccoccvveeeeiiiiveneenn. 2133
MiSSING SECUIILY IAENTIFIEI.....eiii i e e e s e s eaaeeas 2135
Non-Transparent Sharing of Microarchitectural RESOUICES..........cccuvvieiiiiiiierie e 2137
Improperly Preserved Integrity of Hardware Configuration State During a Power Save/Restore

Missing Ability t0 Patch ROM COdE...........ooiiiiiiiiiiic et
Improper Translation of Security Attributes by Fabric Bridge
Missing Protection for Mirrored Regions in On-Chip Fabric Firewall
Hardware Allows Activation of Test or Debug Logic at Runtime...........ccccccoecvvveeeiivciiien e
Missing Write Protection for Parametric Data Values............coccvvveeeiiiiiiiie e
Improper Setting of Bus Controlling Capability in Fabric End-point

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.13
Table of Contents

CWE-1316: Fabric-Address Map Allows Programming of Unwarranted Overlaps of Protected and Unprotected
L T[T PRSP
CWE-1317: Improper Access Control in Fabric Bridge........ccuuviiiiiiiiiiii et
CWE-1318: Missing Support for Security Features in On-chip Fabrics or BUSES...........cccccccvveeeeeiiiiienee e,
CWE-1319: Improper Protection against Electromagnetic Fault Injection (EM-FI)..........c.cccoivieiieiiiiiiiee e,
CWE-1320: Improper Protection for Outbound Error Messages and Alert Signals

CWE-1321: Improperly Controlled Modification of Object Prototype Attributes ('Prototype Pollution)............ 2164
CWE-1322: Use of Blocking Code in Single-threaded, Non-blocking Context...........cccccovviiiieeceiiiiiee e, 2167
CWE-1323: Improper Management of Sensitive Trace Data..........ccccccuviiiieiiiiiiiiie e sereee e 2168
CWE-1325: Improperly Controlled Sequential Memory AlIOCAtION............ccccuverieiiiiiiii e 2170
CWE-1326: Missing Immutable Root of Trust in HardwWare............ccccooiuviieieiiiiiiicc e 2172
CWE-1327: Binding to an Unrestricted 1P AAUIESS.......ccoiiiiiiiie ettt saaree s 2175
CWE-1328: Security Version Number Mutable to Older VErSioNS...........cccuviieeiiiiiieee e e 2177
CWE-1329: Reliance on Component That is Not Updateable............ccooovviiiiiiiiiiiiic e 2179
CWE-1330: Remanent Data Readable after MEmOry Erase........ccccceeciiiiiieiieiiiiiiie e ee e 2181
CWE-1331: Improper Isolation of Shared Resources in Network On Chip (NOC)..........cccocvveeeviiiiieeeeciiinenen. 2184
CWE-1332: Improper Handling of Faults that Lead to INStruction SKipS.........ccccooviuvieeieiiiiiiiee e 2187
CWE-1333: Inefficient Regular EXpression COMPIEXItY..........uuiiieiiiiiiiieeeiiiiieee et e s e e e e 2190
CWE-1334: Unauthorized Error Injection Can Degrade Hardware Redundancy..........ccccccceeeeviiiereeeiiineeeenn. 2193
CWE-1335: Incorrect Bitwise Shift Of INEQET........cciiiiiiiee et 2194
CWE-1336: Improper Neutralization of Special Elements Used in a Template Engine............cccoceeeeevvvvnen.. 2197
CWE-1338: Improper Protections Against Hardware Overheating............cccveeeeiiiiiieeee i 2199
CWE-1339: Insufficient Precision or Accuracy of a Real NUMDEr............cooiiiiiiiiii e 2201
CWE-1341: Multiple Releases of Same Resource or Handle............ccceeeiiiiiiiei i 2205
CWE-1342: Information Exposure through Microarchitectural State after Transient Execution..................... 2209
CWE-1351: Improper Handling of Hardware Behavior in Exceptionally Cold Environments...............cccccc.u. 2212
CWE-1357: Reliance on Insufficiently Trustworthy COmMpPONENt............ccoiiiiiiieiiiiiiieee e
CWE-1384: Improper Handling of Physical or Environmental Conditions

CWE-1385: Missing Origin Validation in WebSOCKELS.............coiiiiiiiiiiiiiiiee e
CWE-1386: Insecure Operation on Windows Junction / Mount POINt...........ccccccciiiiie i
CWE-1389: Incorrect Parsing of Numbers with Different RadiCes............ccccoiviiiiiieiiiiiiiee e
CWE-1390: WeEak AULNENTICALION.cciitiieiiiieiiiee ettt ee et e et e st e e s sate e e sabe e e abb e e e enbeeesnbeeeessbeeennee
CWE-1391: Use Of Weak CredentialS..........c.ccoiuiieiiiiiiiie ettt sttt e et e s s e e
CWE-1392: Use of Default CredentialS...........cc.ii ittt e s
CWE-1393: Use Of Default PASSWOIT...........cocuuiiiiiiiaiiiie ittt s e et e et e e s nne e e e s
CWE-1394: Use of Default CryptographiC KEY..........iciiiiiiiiii ettt e e e e s sivae e e e
CWE-1395: Dependency on Vulnerable Third-Party COMPONENt.........cveevieiiiiiiiiie et
CWE-1419: Incorrect Initialization Of RESOUICE.........ccciuiiiiiiiieiiiie ettt e

CWE Categories

Category-2

A o S =l 01V o] o 41T o | OO PRPRRR

(O 11=To (o] VAl K T @Xo] o1 T [0 =Y i o] o FHN P PPP T OPPRRRN

Category-19: Data Processing Errors

(O 11=To To] VAl RS S H S 41T I =1 (0] 6= T PRSPPI
LOF=1 =T [o] oY ST S Y o =T = (o] £~ T PP PP PUPRURUR N
Category-137: Data NeULraliZation ISSUES........ccciiiiuieiieeeiiiiiee e ettt e e s e e e e e et e e e e e s et e e e e e s aarra e e e e e satbereaeaan 2246

Category-189: Numeric Errors

Category-199: Information ManagemeENt EITOIS..........c.iiiiiiiiiie it e et e e e e e e e s s iatbeeea e 2247

Category-2
Category-2
Category-2
Category-2
Category-2
Category-2
Category-2

277 TPK = APL ADUSE.....iiiii ettt e st e e e e e e e e e st e e e e e s s abbaeeeesassabaeeeessantbaeeaeeaanes 2248
51: Often Misused: String ManagemENt...........cocciuiiieeiiiiiiiee e e e e e e e sere e e e e s saraeeas 2249
54: 7PK - Security Features.............cccccveveeeeennnen.

55: Credentials Management Errors
64: Permissions, Privileges, and Access CONLIOIS............coeeiiiiiiiieieiiiiieec e 2251
65: Privilege Issues...............

75: Permission Issues

Category-310: CryptographiC ISSUEBS..........uueiiiiiiiiiiee ettt e e et e e e e et e e e e s e et e e e e s s starr e e e e e s atbaeeeeeaaaes
Category-320: KeY ManagemMeENt EFTOrS.uuuuuieiiieiiiiiiiiieeeee e e e e s sesss sttt eee e et e e e aaeaaaeaeeaeessssasassnssnsnenenrnes

Category-355: User Interface Security Issues

Category-361: 7PK - TIME AN SEALE......c.cciiiiiiiie ettt e s e e s e e e e e e s et e e e e e sstbereeeessntaeeeas
LOF= 1 =0 [0 oY A B = (= £ U1 PP PP P UPRRR TR
(0 1=To (o] gV aC TS A [o | F= U A4 (o] £ PSP RPT PRSP

XViii

CWE Version 4.13
Table of Contents

Category-388:
Category-389:
Category-398:
Category-399:
Category-411.:
Category-417:
Category-429:
Category-438:
Category-452:
Category-465:
Category-485:
Category-557:
Category-569:
Category-712:
Category-713:
Category-714:
Category-715:
Category-716:
Category-717:
Category-718:
Category-719:
Category-720:
Category-721.:
Category-722:
Category-723:
Category-724:
Category-725:
Category-726:
Category-727:
Category-728:
Category-729:
Category-730:
Category-731.:
Category-735:
Category-736:
Category-737:
Category-738:
Category-739:
Category-740:
Category-741.:
Category-742:
Category-743:
Category-744:
Category-745:
Category-746:
Category-747:
Category-748:
Category-751:
Category-752:
Category-753:
Category-801.:
Category-802:
Category-803:
Category-808:
Category-810:
Category-811.:
Category-812:
Category-813:
Category-814:
Category-815:
Category-816:

4 5 SR =1 (o] 1= TP PP O PP PRPR R PPPPRPPN 2257
Error Conditions, Return Values, Status COUES..........coiiiiiiiiiieiiiee e 2257
4 (G oo [C I @ U T 1) Y2 PP PP 2258
ReSOUrce ManagemMeENt EFTOrIS.........uuuuiiiiiiiiiiiiiiiieeie e e e e e e e e s s ereeeeaaaeaeaaaeanenaeas 2259
Resource LOCKING ProbIEMS..........oiiiiiiiiiic et e 2260
Communication ChanNEl EITOrS.........ocuuii ittt st e et e e 2260
[L= TaTo | L Bty (o] T PRSPPI 2261
Behavioral ProbIEMS.oo e 2261
Initialization and Cleanup EITOIS..........oiiiiiiiiiiee et e e 2262
POINEET ISSUBS. ...ttt ettt b e et e e st e e e sab e e e nbe e e sbbe e e snbeeeebeee s 2263
TPK = ENCAPSUIALION.ccciiiiiiiie ettt e e e e e e et e e e e st e e e e e e e tbea e e e e e aasbaeeeeeans 2263
CONCUITENCY ISSUEBS....uuuutuittiiitiiettiettettttteaeaaeeaaeaasssasaasa s aeaststbebtsaeeeeeretaaaaaaaaaeaaeeessssnssanannsnsnenes 2264
EXPIESSION ISSUES.....ciiiiiiiiiiie e ettt ettt e e ettt e e e e ettt e e e e e et e e e e e s st b et eeesatbsseaeesansaaeeeessanees 2265
OWASP Top Ten 2007 Category Al - Cross Site Scripting (XSS)......ccoveeeeiiiiiieee e 2265
OWASP Top Ten 2007 Category A2 - Injection Flaws............cccccovvviieeie i 2265
OWASP Top Ten 2007 Category A3 - Malicious File EXeCUtiON...........cccceeeeiiiiiieeeeeiiiiieeee, 2266
OWASP Top Ten 2007 Category A4 - Insecure Direct Object Reference..........ccccccecovvnnnee... 2266
OWASP Top Ten 2007 Category A5 - Cross Site Request Forgery (CSRF).........cccccoevveeeen. 2266
OWASP Top Ten 2007 Category A6 - Information Leakage and Improper Error Handling..... 2267
OWASP Top Ten 2007 Category A7 - Broken Authentication and Session Management....... 2267
OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage...........cccceveeeevivnenennn. 2268
OWASP Top Ten 2007 Category A9 - Insecure COmMmMUNICALIONS...........ccovvvrieeeeiiiireeeeesiinnns 2268
OWASP Top Ten 2007 Category A10 - Failure to Restrict URL ACCESS.........cccuvveveeeiivreneennn. 2268
OWASP Top Ten 2004 Category Al - Unvalidated INPUL...........ccceeeiiiiiiieciiiiiien e 2269
OWASP Top Ten 2004 Category A2 - Broken Access Control.........c.ccocccveveeeiiiiieeeecccciieeenen, 2270
OWASP Top Ten 2004 Category A3 - Broken Authentication and Session Management....... 2270
OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) Flaws..........ccccccoeevivveen.n. 2271
OWASP Top Ten 2004 Category A5 - Buffer OVerflows...........ccceoovvciiviiee i 2271
OWASP Top Ten 2004 Category A6 - Injection Flaws............cccccoevviieeeiiiiiiece e 2272
OWASP Top Ten 2004 Category A7 - Improper Error Handling...........ccccceeeeiiiiieeee e, 2272
OWASP Top Ten 2004 Category A8 - INSECUIEe STOrage.........coceveiiivrrrrriiiriinirrieieieaeaeaaeaeaeens 2273
OWASP Top Ten 2004 Category A9 - Denial of SErviCe.........ccovvviveiiiiiiiiie e 2274
OWASP Top Ten 2004 Category A10 - Insecure Configuration Management........................ 2274
CERT C Secure Coding Standard (2008) Chapter 2 - Preprocessor (PRE)...........cccccccecuve... 2275
CERT C Secure Coding Standard (2008) Chapter 3 - Declarations and Initialization (DCL)... 2276
CERT C Secure Coding Standard (2008) Chapter 4 - Expressions (EXP).......cccccoccveveeeiinns 2276
CERT C Secure Coding Standard (2008) Chapter 5 - Integers (INT).....ccccceeevviivieeeeiiiiieeenen, 2277
CERT C Secure Coding Standard (2008) Chapter 6 - Floating Point (FLP)..............ccccvveeee.. 2278
CERT C Secure Coding Standard (2008) Chapter 7 - Arrays (ARR)........c..ccoecvvveeeeiiiiiiieeeenns 2279
CERT C Secure Coding Standard (2008) Chapter 8 - Characters and Strings (STR)............. 2279
CERT C Secure Coding Standard (2008) Chapter 9 - Memory Management (MEM)............. 2280
CERT C Secure Coding Standard (2008) Chapter 10 - Input Output (FIO)..........cccccvvveeennns 2282
CERT C Secure Coding Standard (2008) Chapter 11 - Environment (ENV).........c.cccovveeeinis 2283
CERT C Secure Coding Standard (2008) Chapter 12 - Signals (SIG).........cccovveeeeiiiiiiereeeiinns 2284
CERT C Secure Coding Standard (2008) Chapter 13 - Error Handling (ERR).........c..cccvvve.... 2285
CERT C Secure Coding Standard (2008) Chapter 14 - Miscellaneous (MSC)............cccvee..... 2285
CERT C Secure Coding Standard (2008) Appendix - POSIX (POS)......cccccevvivvveeeeeiiiiieeeeee 2286
2009 Top 25 - Insecure Interaction Between COMPONENLES.........ccoocuvieeeeiiiiieeeees it ee e 2287
2009 Top 25 - Risky Resource Management...........cccuuveeeeiiiiiiereeesiiirieeeeeeiireeee e s seitrenee e s enanes 2288
2009 TOP 25 - POroUS DEENSES........uviiieiiiiiiiei ettt e e a e e e eaareee s 2288
2010 Top 25 - Insecure Interaction Between COMPONENES.........ccovvvrieeeeiiiirieeee et ee e 2289
2010 Top 25 - Risky ResoUrce Management...........cccuveeeeeiiiiiiereeeseiirieeeeeeiivee e e e s seitreeee e s ennneas 2289
2010 TOP 25 - POroUS DEENSES........uviiiiiiiiiiiee et e e e e e eaaree s 2290
2010 Top 25 - Weaknesses ON the CUSP......uueiieiiiiiiiie ettt e e saraae s 2290
OWASP Top Ten 2010 Category AL - INJECHION.........cvieiiiiiiiie e 2291
OWASP Top Ten 2010 Category A2 - Cross-Site Scripting (XSS).......ccovvvveeeiiiiiieiee e, 2292
OWASP Top Ten 2010 Category A3 - Broken Authentication and Session Management....... 2292
OWASP Top Ten 2010 Category A4 - Insecure Direct Object References..........ccccceeeevunnen.. 2292
OWASP Top Ten 2010 Category A5 - Cross-Site Request Forgery(CSRF).........cccccveeeevneee. 2293
OWASP Top Ten 2010 Category A6 - Security Misconfiguration..............ccccceeeeviiveeeeesicnnnen. 2293
OWASP Top Ten 2010 Category A7 - Insecure Cryptographic Storage...........cccceveeeevivnnnennn. 2294

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.13
Table of Contents

Category-817: OWASP Top Ten 2010 Category A8 - Failure to Restrict URL ACCESS........cccevvvivvieeeeeinnnnnen. 2294
Category-818: OWASP Top Ten 2010 Category A9 - Insufficient Transport Layer Protection....................... 2294
Category-819: OWASP Top Ten 2010 Category A10 - Unvalidated Redirects and Forwards........................ 2295
Category-840: BUSINESS LOQIC EITOIS.......cciiiuiiiee et it e ettt e ettt e e e e et e e e e e st e e e e e e sab it e e e e e s sabaeeeeesansnaeeaeas 2295
Category-845: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 2 - Input Validation and
Data SaNItiZAtION (IDS)........uviiii ettt e et e e e e et e e e e et e e e e e e e bbb e e e e e e st — e e e e e aa b rreaeeaaanreeaeeaaare 2297
Category-846: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 3 - Declarations and

a1 E 1Tz Vi o] o I (1 I T PSPPI 2297
Category-847: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 4 - Expressions (EXP). 2298

Category-848: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 5 - Numeric Types and
(@1 =1 (o] ET (1N 1611 PSSP EUPUPTPRPTN 2298
Category-849: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 6 - Object Orientation

(O] =) TSP RR 2299
Category-850: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 7 - Methods (MET)....... 2299
Category-851: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 8 - Exceptional Behavior
(SR LR TSRO PPOTRPTPI 2300
Category-852: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 9 - Visibility and Atomicity
(VN e ettt e e nen et 2301
Category-853: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 10 - Locking (LCK)....... 2301
Category-854: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 11 - Thread APIs

(LI L) T USROS 2302
Category-855: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 12 - Thread Pools

QLIRS TP TPRT 2302
Category-856: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 13 - Thread-Safety
MISCEIIANEOUS (TSM)....iiiiiiiie ittt e et e e e e st e e e e e s eat b et e e e e e asaeaeeeeeasasbaeeeessassbaeeeeeaasntseeeeesssreneas 2302
Category-857: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 14 - Input Output

(L1) RSP TPPT 2303
Category-858: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 15 - Serialization

ST PRSPPI 2303
Category-859: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 16 - Platform Security

(5] =13 PRSPPI 2304
Category-860: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 17 - Runtime Environment
(ENV). e e ettt en et 2305
Category-861: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 18 - Miscellaneous

L5103 T PP PRT 2305
Category-864: 2011 Top 25 - Insecure Interaction Between COMPONENTS...........ceeeveiivieeeeiiiiiieeeeesiiiieeee e 2306
Category-865: 2011 Top 25 - Risky Resource Management...........ccuvieeeiiiiuiiereeeiiiiieeee e s esiireee e e s saraee e e e s esnees 2306
Category-866: 2011 TOp 25 - POrOUS DEfENSES.......uciiiiiiiiiiei ettt e e e e e rarae e e e 2307
Category-867: 2011 Top 25 - Weaknesses On the CUSP......uuiiiiiiiiiiie ettt estre e e st e e eiaaee e 2307
Category-869: CERT C++ Secure Coding Section 01 - Preprocessor (PRE)........cccccccovviiiiiiee i 2308
Category-870: CERT C++ Secure Coding Section 02 - Declarations and Initialization (DCL).............cc......... 2308
Category-871: CERT C++ Secure Coding Section 03 - EXpressions (EXP).........cccovcveeiiiiiieee e 2309
Category-872: CERT C++ Secure Coding Section 04 - Integers (INT).....uveiiiiiiieee e 2309
Category-873: CERT C++ Secure Coding Section 05 - Floating Point Arithmetic (FLP)..........c.ccoovvveeieeniins 2310
Category-874: CERT C++ Secure Coding Section 06 - Arrays and the STL (ARR)........cccoocviiveeiiiiiiieneeeinns 2310
Category-875: CERT C++ Secure Coding Section 07 - Characters and Strings (STR)......ccccovvvvveveeiiiiiieeenn. 2311
Category-876: CERT C++ Secure Coding Section 08 - Memory Management (MEM)............ccccceeeeeviinneennn. 2311
Category-877: CERT C++ Secure Coding Section 09 - Input Output (FIO)........cceeiiiiiiieeieeiiieeee e 2312
Category-878: CERT C++ Secure Coding Section 10 - Environment (ENV).........ccocciviieiiiiiiieee e 2313
Category-879: CERT C++ Secure Coding Section 11 - Signals (SIG).....c.ccoiiiriiieeiiiiiiiie e 2314
Category-880: CERT C++ Secure Coding Section 12 - Exceptions and Error Handling (ERR)...................... 2314
Category-881: CERT C++ Secure Coding Section 13 - Object Oriented Programming (OOP)...................... 2315
Category-882: CERT C++ Secure Coding Section 14 - Concurrency (CON).......cccooviiiieiieiiiiiiiee e eiiiiea e 2315
Category-883: CERT C++ Secure Coding Section 49 - Miscellaneous (MSC)..........ccoovvvieeeiiiiiieeeee i, 2316
Category-885: SFP Primary Cluster: RISKY ValUES.............coiiiiiiiiiiie ettt a et e e e eavane e e 2317
Category-886: SFP Primary Cluster: UNUSEd ENtItIES........cccciiiiiiiie ittt s et e e e e e itve e e e e s 2317
Category-887: SFP Primary CIUSIE: APl... ..ottt e e e e e s st e e e s et e e e e s e ntaeeeeeasnees 2317
Category-889: SFP Primary Cluster: Exception Management............ccoiiiviieiiiiiiiiiie e iciieeee e esiiree e e s siinee e 2317
Category-890: SFP Primary CIUSter: MEMOIY ACCESS.......uuiieiiiiiiiiteeeiiiiteeeeesertre e e e s s sttaee e e s sstrareaessaaraeeaeaans 2318
Category-891: SFP Primary Cluster: Memory Management...........ccouiiurieeieeiiiiiireeeseiiieeeeessiinreeeesssiveeeaesenns 2318
Category-892: SFP Primary Cluster: Resource Management...........ccoociuuiiieeiiiiiiieeeeeiiiiereeeseeinneeeeessnnneeeee s 2318

XX

CWE Version 4.13
Table of Contents

Category-893:
Category-894:
Category-895:
Category-896:
Category-897:
Category-898:
Category-899:
Category-901:
Category-902:
Category-903:
Category-904:
Category-905:
Category-906:
Category-907:
Category-929:
Category-930:
Category-931.:
Category-932:
Category-933:
Category-934:
Category-935:
Category-936:
Category-937:
Category-938:
Category-944:
Category-945:
Category-946:
Category-947:
Category-948:
Category-949:
Category-950:
Category-951.:
Category-952:
Category-953:
Category-954:
Category-955:
Category-956:
Category-957:
Category-958:
Category-959:
Category-960:
Category-961.:
Category-962:
Category-963:
Category-964:
Category-965:
Category-966:
Category-967:
Category-968:
Category-969:
Category-970:
Category-971.:
Category-972:
Category-973:
Category-974:
Category-975:
Category-976:
Category-977:
Category-978:
Category-979:
Category-980:

SFP Primary Cluster: Path RESOIULION.oociiiiici e

SFP Primary Cluster: SYNChronization............c.uueiiiiiiiiiiie et

SFP Primary Cluster: INnformation LeaK.............ccuiiieiiiiiiiiiic et

SFP Primary Cluster: Tainted INPUL..........ooeiiiiiiiiiec e e e s e etvee e e e e e eanees
SFP Primary ClIUSter: ENtry POINES.......cooiiiiiii ittt eivane e

SFP Primary Cluster: AUtNENtICALION.cccuviiiieiiiieie e atvee s

SFP Primary Cluster: ACCESS CONIOL.......cccuuiiieiiiiiiiiie e e

SFP Primary CIUSIEr: PriVIIEgE. ... et

SFP Primary CIUSter: ChanNel..........c.uviiiiiiiiiiie ettt

SFP Primary Cluster: Cryptography.....cc..uceee oottt e e st e e e e saeae e e e e s snnes

SFP Primary CIUSIEr: MaIWAIE........cccoiiiuiiiiie ettt e s e e e e e e e e e st e e e e e s ennnes

SFP Primary Cluster: Predictability............ccoiiiiiiiiicc e

SFP Primary CIUSIEI: Uluviiiii ettt e e e e s e e e e s et e e e e s sataeeeaeaan

SFP Primary ClIUSIEr: Other.......ccoiiiiiiie e e e s e earaae e
OWASP Top Ten 2013 Category Al - Injection

OWASP Top Ten 2013 Category A2 - Broken Authentication and Session Management....... 2324
OWASP Top Ten 2013 Category A3 - Cross-Site Scripting (XSS).......ccovvveveeeiiiiiieiee e, 2325
OWASP Top Ten 2013 Category A4 - Insecure Direct Object References..........ccccceeeevunnee.. 2325
OWASP Top Ten 2013 Category A5 - Security Misconfiguration..............ccccceeevviiveeeeesinnnen. 2326
OWASP Top Ten 2013 Category A6 - Sensitive Data EXPOSUIE.........cccoevuvieeeeeiiiivereeeeeennne, 2326
OWASP Top Ten 2013 Category A7 - Missing Function Level Access Control...................... 2327
OWASP Top Ten 2013 Category A8 - Cross-Site Request Forgery (CSRF)........cccccvvveeeninns 2327
OWASP Top Ten 2013 Category A9 - Using Components with Known Vulnerabilities........... 2327
OWASP Top Ten 2013 Category A10 - Unvalidated Redirects and Forwards........................ 2328
SFP Secondary Cluster: ACCESS ManNagemMENt..........cciieiiiiiiiiieeiiiiiiee e e ciieee e e e e e e e e sarreee s 2328
SFP Secondary Cluster: INSECUre RESOUICE ACCESS......uuuiieiiiireieeeiiiieieeeeesiireeeeessiareeeessanns 2329
SFP Secondary Cluster: Insecure Resource PermisSions.........cccoocvuveeeeeiiiiiereeeisiieeeeeeesnenes 2329
SFP Secondary Cluster: Authentication BYPasS........cccouiiiriiiieiiiiiiiiee e 2329
SFP Secondary Cluster: Digital CertifiCate...........cccuviriiiiiiiiiei e 2330
SFP Secondary Cluster: Faulty Endpoint Authentication..............cccoccviieei i 2330
SFP Secondary Cluster: Hardcoded Sensitive Data.........c.ccccccvveiieeiiiiiiiie e 2331
SFP Secondary Cluster: Insecure Authentication PoliCy...........cccccvieiiiiiiiee e, 2331
SFP Secondary Cluster: Missing AUthentiCation..............ccccuvieeiiiiiiiee e 2331
SFP Secondary Cluster: Missing Endpoint Authentication............cccccooeviiviee i 2332
SFP Secondary Cluster: Multiple Binds to the Same Port..........c.cccoccvvieeeieiiiieee e 2332
SFP Secondary Cluster: Unrestricted Authentication..............cceeevviiiieee e 2332
SFP Secondary Cluster: Channel AHACK............cciuviiieiiiiiiiee e 2332
SFP Secondary Cluster: ProtOCOl EITOr..........uuiiieiiiiiiiie ettt e 2333
SFP Secondary Cluster: Broken Cryptography.......ccc.eieeiiiiiiieei i 2333
SFP Secondary Cluster;: Weak Cryptography........c.coooiiiiiiiiiiiiiei e 2333
SFP Secondary Cluster: Ambiguous EXCEPtion TYPE......ceiciiiiiiiieeiiiiiiiee e eeiieee e essiieee e e 2334
SFP Secondary Cluster: Incorrect Exception BEhavior............cceeeiiiiuiiiee i 2334
SFP Secondary Cluster: Unchecked Status Condition............cceeveeiiiiiiiiee i 2335
SFP Secondary Cluster: EXPOSEA Datal..........c.vveeiiiiiiiiiiee i iciiiiee ettt e e 2335
SFP Secondary Cluster: Exposure Temporary File..........ccooiiiiieiiiiiiiiiiee e 2337
SFP Secondary Cluster: Insecure Session Management...........cccvvveeiiiiieieeeeesiiieee e seiineeeen 2338
SFP Secondary Cluster: Other EXPOSUIES...........ciieiiiiiirieeeeiiiiiieeeessiiieseessstvsreeesesnsaeeeeessnnns 2338
SFP Secondary Cluster: State DISCIOSUIE..........ccciuiiiiieiiiiiee et riveee e 2338
SFP Secondary Cluster: Covert Channel..............oiieiiiiiiiie e 2339
SFP Secondary Cluster: Faulty Memory Release...........ccccooeiivieeieiiiiiiiee e 2339
SFP Secondary Cluster: Faulty BUffer ACCESS........uuiiiiiiiiiiiie it 2340
SFP Secondary Cluster; Faulty POINtEr USE..........ccoooiiiiiiiieiiiiiiiie ettt 2340
SFP Secondary Cluster: Faulty String EXPansion............ccccooiiiiiri e 2340
SFP Secondary Cluster: Improper NULL Termination..........ccccceeeiviviiieeceiiiieee e cciieee e 2341
SFP Secondary Cluster: Incorrect Buffer Length Computation...............cccccveeiiiiiiiee e, 2341
SFP Secondary Cluster: ArChiteCIUIE...........iiiiiiiiiieie et e 2341
SFP Secondary Cluster: COMPIIET...........oiviiiiiiiiei e e 2342
SFP Secondary CIUSIE: DeSIGN........ueiii it e e e e e e e e e s saraeaeeeans 2342
SFP Secondary Cluster: Implementation..............uveeeeiiiiiieee e e s e sbree e e e 2343
SFP Secondary Cluster: Failed Chroot Jail...........cc.ceiiiiiiiiiieii i 2343
SFP Secondary Cluster: Link in Resource Name Resolution..............cccceveeeiiiiiieee i, 2344

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.13
Table of Contents

Category-981: SFP Secondary Cluster: Path Traversal...........ccccceeiiiiiiiie et 2344
Category-982: SFP Secondary Cluster: Failure to Release REeSOUICE...........cccceovvvieiieiiiiiiiee e 2345
Category-983: SFP Secondary Cluster: Faulty RESOUICE USE........cccuvieiiiiiiiiiiie et 2345
Category-984: SFP Secondary CIUSter: Life CYCIE.......ccciiiiiiiieii it 2346
Category-985: SFP Secondary Cluster: Unrestricted CONSUMPLION.........ccocvvirieeiiiiiiiee e e e e ssiveeas 2346
Category-986: SFP Secondary Cluster: MiSSING LOCK............cciiiiiiiiiiiiiiiiee et 2346
Category-987: SFP Secondary Cluster: Multiple LOCKS/UNIOCKS..............ccooiiiiiiiieiiiiiiiee e 2347
Category-988: SFP Secondary Cluster: Race Condition WINAOW.............cccciviiieeiiiiiiiie e 2347
Category-989: SFP Secondary Cluster: Unrestricted LOCK.........ccoiiuiiiieiiiiiiiee et 2348
Category-990: SFP Secondary Cluster: Tainted Input to0 COMMaNd............ccccvveeiiiiiiieie e 2348
Category-991: SFP Secondary Cluster: Tainted Input to ENVIrONMENt...........cooociviiiieiiiiiiieee e 2351
Category-992: SFP Secondary Cluster: Faulty Input Transformation.............ccccccviieiiiiiiiie e 2351
Category-993: SFP Secondary Cluster: Incorrect Input Handling...........ccccveeiiiiiiiiiie e 2352
Category-994: SFP Secondary Cluster: Tainted Input to Variable.............ccccevieiiiiiiiii e 2352
Category-995: SFP Secondary ClIUSIEI: FEATUIE..........vviiie ittt ce e e e e e e e e earre e e e e e snaaeeeas 2353
Category-996: SFP Secondary CIUSIEI: SECUILY........uiiiiiiiiiiieeeecciiee e et e s et e e e e e e e e e st e e e e e s senaraeeaeas 2353
Category-997: SFP Secondary Cluster: INnfOrmation LOSS..........coiiiiiiiieiiiiiiieee et e s 2353
Category-998: SFP Secondary Cluster: Glitch in COMPULALION...........cccvviiieiiiiiiiee e 2354
Category-1001: SFP Secondary Cluster: Use of an Improper APl.........ccviiii i 2355
Category-1002: SFP Secondary Cluster: Unexpected Entry POINtS........cccoeieiiiiiiiie e 2356
Category-1005: 7PK - Input Validation and Representation...........ccccoccvieeeeiiiiiieieesiiiiieee e esiiree e e e seiireee e 2356
Category-1006: Bad CodiNG PraCliCES........uuuiiiiiiiiiiiieeiiiiiie e e e e ettt e e e s sttt e e e s sttt e e e s e ebta e e e e e s saabreeeessatbareeesannes 2357
(0 11=To (o] V2N (0101 AN E T [SO PP UPPOOUPPP 2359
Category-1010: AUTNENTICAIE ACIOIS.......cci ittt e et s e e e e e et e e e e e e st e e e e e s estbreeeeeeasaraeeeeeaaas 2359
(0 11=To (o] Y2l (0) I A\ U1 g To) (A= I Xt (0] £ PP PRRPP 2360
Category-1012: CroSS CULING.......cuuiiieeiiiiriee e e e it e e e e s e e e e e e st e e e e e s iatreeeeesstbreteeesataaseeeesasssreeeeeasnsseeeeessanses 2362
Category-1013: ENCIYPE DALA......cccuuiuiiiiiiiiiiiiiieeeret et e e e e e e e e e e e s s s s ssss bbb e s aeeereteeaaaaaaaaeaseeessssssasasasssnssssennnns 2363
Category-1014: IAENtfY ACLOIS........uuiiie it ee et e e e et e e e e e et e e e e e e stb et e e e satbaeeeeeeaasseeeeeassrseeeessannes 2364
(0= 1=To To] Y2l (0 ST I 4 1) AN oo =T P UUPOPPRR 2365
Category-1016: LIMIt EXPOSUIE.......uuuiieiiiiiiieeeeiiitieeeeeeetteeeeeseeabaeeeeeasatreeeeaasatbaeeeessastbaseeeaaasssseeeesaasseeeeessanses 2366
Category-1017: LOCK COMPULET.......iiiiiiiiiiee ettt et e et e e e e et e e e e s st e e e e e s et b e e e e e e e asatbeeeesssnsbaeeeessnnsreeas 2366
Category-1018: Manage USEI SESSIONS.....c.ccciiiuiiiieeiiiiiiteeeeeiite e e e e e sitte e e e e s st ae e e e e s s ssbaaeaeesasatbeeeeesssraeeaessansreees 2367
Category-1019: Validate INPULS..........eiiiiiiiiiee ettt s e e e e e e e e e st e e e e e s stb e et e e e sabbaeeaeeesbereeaeeaasbeeeeessanses 2368
Category-1020: Verify MeSSage INtEOIITY......ccciiiiiiiie ittt e e e st e e s e e e e e s aratreeaeesanees 2369
Category-1027: OWASP Top Ten 2017 Category AL - INJECHON........ccoiiiiiieeiiiiiee et 2370
Category-1028: OWASP Top Ten 2017 Category A2 - Broken Authentication..............ccccveeeeiiiiieee e, 2371
Category-1029: OWASP Top Ten 2017 Category A3 - Sensitive Data EXPOSUIe..........cccoeviuvveeeeeiiiviereesiinnns 2371
Category-1030: OWASP Top Ten 2017 Category A4 - XML External Entities (XXE)........ccccceeeeiiiiiiereeeniinnnen. 2372
Category-1031: OWASP Top Ten 2017 Category A5 - Broken Access CONtrol.........ccccccovvvvvieeeciiiiieeeeesinns 2372
Category-1032: OWASP Top Ten 2017 Category A6 - Security Misconfiguration.............cccccveveeeiiiiieeeeennns 2373
Category-1033: OWASP Top Ten 2017 Category A7 - Cross-Site Scripting (XSS)

Category-1034: OWASP Top Ten 2017 Category A8 - Insecure Deserialization

Category-1035: OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities......... 2374
Category-1036: OWASP Top Ten 2017 Category A10 - Insufficient Logging & Monitoring.............c.cceeevvvee... 2374
Category-1129: CISQ Quality Measures (2016) - Reliability...........ccccvviiiiiiiiiiiie e 2375
Category-1130: CISQ Quality Measures (2016) - Maintainability.............ccccvevieiiiiiiiii e 2376
Category-1131: CISQ Quality Measures (2016) - SECUILY......ceieeiiiiuiiiieeiiiiriee e e eerrre e e e e e e e sneveee s 2377
Category-1132: CISQ Quality Measures (2016) - Performance EffiCiencCy.........cccccocvveiieiiiiiiiiee e 2378
Category-1134: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data
SANIZALON (IDS)...eiiiiiiiiiiie ettt e e e et e e e et et e e e e e e e sabbaeeeeesastbeeeeeeaasbaaeeeeeaaaseaeeaeessatbaeeeeesanaraeeaeas 2379
Category-1135: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 01. Declarations and

a1 E 1Tz Vi o] o I (1 I T PSPPI 2379
Category-1136: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 02. Expressions (EXP)....2380
Category-1137: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 03. Numeric Types and
(@1 =1 (o] ET (N 1611 PSSP EUPUTPRPTN 2380
Category-1138: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 04. Characters and Strings
(LIRS T SRR 2381
Category-1139: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 05. Object Orientation

(=) TP PRT 2381
Category-1140: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET)......... 2382

XXii

CWE Version 4.13
Table of Contents

Category-1141: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior
(SR L TSRO PPOTRPTP 2383
Category-1142: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity
Y0 PR PSS PPR 2383
Category-1143: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 09. Locking (LCK)........... 2384
Category-1144: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 10. Thread APIs (THI).....2384
Category-1145: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 11. Thread Pools (TPS).. 2385
Category-1146: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 12. Thread-Safety
MISCEIIANEOUS (TSM).. .ttt ettt e et e e e e st e e e e e st b et e e e e e asaeaeeeeessasbaeeeeesastbaseeeeaasnnseeeeesssreneas 2385
Category-1147: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO).....2385
Category-1148: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER)....2386
Category-1149: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 15. Platform Security

(5] =13 PRSPPI 2387
Category-1150: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 16. Runtime Environment
(ENV). e ettt 2387
Category-1151: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 17. Java Native Interface
811 T PR PSS PPR 2388
Category-1152: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous

L5103 T PO TPRT 2388
Category-1153: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 50. Android (DRD).......... 2389
Category-1155: SEI CERT C Coding Standard - Guidelines 01. Preprocessor (PRE).........ccccccccvvvivieeeesinnns 2389
Category-1156: SEI CERT C Coding Standard - Guidelines 02. Declarations and Initialization (DCL)........... 2390
Category-1157: SEI CERT C Coding Standard - Guidelines 03. Expressions (EXP).........cccccvvvveeiiiiiieeeeeennns 2390
Category-1158: SEI CERT C Coding Standard - Guidelines 04. Integers (INT).......ccccceeeiiiiiiee e i 2391
Category-1159: SEI CERT C Coding Standard - Guidelines 05. Floating Point (FLP)..........ccccccovvviiieeeeiiins 2392
Category-1160: SEI CERT C Coding Standard - Guidelines 06. Arrays (ARR).........ccccooiiiiiieeeeiiiiieee e 2392
Category-1161: SElI CERT C Coding Standard - Guidelines 07. Characters and Strings (STR)...........cc....... 2393
Category-1162: SEI CERT C Coding Standard - Guidelines 08. Memory Management (MEM)..................... 2393
Category-1163: SEI CERT C Coding Standard - Guidelines 09. Input Output (FIO).......cccccveeeviiiiiiereeeiinene. 2394
Category-1165: SEI CERT C Coding Standard - Guidelines 10. Environment (ENV).........cccccovviiieeeeiicinnen. 2395
Category-1166: SEI CERT C Coding Standard - Guidelines 11. Signals (SIG).........cccccoviiieeeiiiiiiieee e, 2395
Category-1167: SEI CERT C Coding Standard - Guidelines 12. Error Handling (ERR)..........cccccooviviiieeninn, 2396
Category-1168: SEI CERT C Coding Standard - Guidelines 13. Application Programming Interfaces (API).. 2397
Category-1169: SEI CERT C Coding Standard - Guidelines 14. Concurrency (CON)........cccccccevvvivieeeeniiinnnnn. 2397
Category-1170: SEI CERT C Coding Standard - Guidelines 48. Miscellaneous (MSC).........cccccceevviiviveeeiinns 2398
Category-1171: SEI CERT C Coding Standard - Guidelines 50. POSIX (POS).......cccooiviieeiiiiiiieeeeeiiiieeeeenn 2398
Category-1172: SEI CERT C Coding Standard - Guidelines 51. Microsoft Windows (WIN)ccccceeuuneee. 2399
Category-1175: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 18. Concurrency (CON).. 2399
Category-1179: SEI CERT Perl Coding Standard - Guidelines 01. Input Validation and Data Sanitization

({1515 PO PPR 2400
Category-1180: SEI CERT Perl Coding Standard - Guidelines 02. Declarations and Initialization (DCL)....... 2400
Category-1181: SEI CERT Perl Coding Standard - Guidelines 03. Expressions (EXP)..........ccccccvveeviivvenennn. 2401
Category-1182: SEI CERT Perl Coding Standard - Guidelines 04. Integers (INT)......cccceeeiiiiiieiieeiiiiiieeeeees 2401
Category-1183: SEI CERT Perl Coding Standard - Guidelines 05. Strings (STR).......cccovviiieeeeeiiiieeee e 2402
Category-1184: SEI CERT Perl Coding Standard - Guidelines 06. Object-Oriented Programming (OOP)..... 2402
Category-1185: SEI CERT Perl Coding Standard - Guidelines 07. File Input and Output (FIO)..................... 2403
Category-1186: SEI CERT Perl Coding Standard - Guidelines 50. Miscellaneous (MSC)............ccccveveeeinns 2403
Category-1195: Manufacturing and Life Cycle Management CONCEIMS...........ccoviurieeeeiiiiieeeeesiiieeeeeessiraeeaens 2404
Category-1196: SECUNTY FIOW ISSUES........ciiiuiiiee ittt e e e et e e s st e e e e e s ta e e e e e s saba e e e e e satraaeaeas 2404
Category-1197: INTEQIratioN ISSUEBS.......ccuuiiie e ittt e s ettt e e e ettt e e e e et e e e e e st e e e e e s e tb e e e e e e eabbaeeaeesantreeeeesssreeeas 2405
Category-1198: Privilege Separation and AcCess CoNtrol ISSUES..........ccuuieiiiiiiiieiie e 2405
Category-1199: General Circuit and LogiC DeSIigN CONCEIMNS.........cciiiiuiiieeeiiiiiiee e e e et e e e s et e e e e s s sarre e e e s seaees 2406
Category-1201: Core and COMPULE ISSUES......uuiiiiiiirieie e e ittt e e e ettt e e e e s st et e e s s et e e e e e e esataeeeeessataeeeeesassneeaens 2406
Category-1202: Memory and StOrAQE ISSUES.......uuiiiiiiiiiieeeiiiittee e e e sttt e e e s s e e e e s s stba e e e e e satb e e e e e s stbaeeeeesansreees 2407
Category-1203: Peripherals, On-chip Fabric, and Interface/lO Problems............cccoocveeiiiiiiiie i 2407
Category-1205: Security Primitives and Cryptography ISSUES..........cccoiiiiiiiiiiiiiiiiiiie et e e 2408
Category-1206: Power, Clock, Thermal, and Reset CONCEINS.........ccuvueiiiiiiiiiiiee e e ee e 2408
Category-1207: Debug and Test ProbIEmMS..........coiiiiiiii e et e e st e e 2409
Category-1208: Cross-Cutting ProbIemS...........oouiiiii i e e e e s e e e e e e eanes 2409
Category-1210: AUdit / LOGQING EITOIS......ciiiiiiiiiiee ettt e sttt e e ettt e e e e st e e e e e s etba e e e e e e asabb e e e e e s sntaeeeeesesneees 2410
Category-1211: AUTHENTICAION EITOIS........ccuiiieeeiiciiiee e ettt e e e e e et e e e e s st e e e e s eab e e e e e e e satreeaeesesranaeaean 2410

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.13
Table of Contents

Category-1212:
Category-1213:
Category-1214:
Category-1215:
Category-1216:
Category-1217:
Category-1218:
Category-1219:
Category-1225:
Category-1226:
Category-1227:
Category-1228:
Category-1237:
Category-1238:
Category-1306:
Category-1307:
Category-1308:
Category-1309:
Category-1345:
Category-1346:
Category-1347:
Category-1348:
Category-1349:
Category-1352:
Category-1353:
Category-1354:
Category-1355:
Category-1356:
Category-1359:
Category-1360:
Category-1361.:
Category-1362:
Category-1363:
Category-1364:
Category-1365:
Category-1366:
Category-1367:
Category-1368:
Category-1369:
Category-1370:
Category-1371.:
Category-1372:
Category-1373:
Category-1374:
Category-1375:
Category-1376:
Category-1377:
Category-1378:
Category-1379:
Category-1380:
Category-1381.:
Category-1382:
Category-1383:

Requirements...

Category-1388:
Category-1396:
Category-1397:
Category-1398:
Category-1399:
Category-1401.:
Category-1402:

AULNOTIZATION EFTOIS...ciiiiiiii ittt ettt st et e e sste e e sbe e e et b e e e snteeesbeeeensbeeenns 2411
RANAOM NUMDET ISSUES.......tiiiiiiie ittt st e ettt e e sbe e e nna e e e anbeeennes 2411
Data INtEGIITY ISSUBS....uuiiieiiiiiiiee ettt e e e e e e st e e e e e et e e e e e s et e et e e e eaabaaeaeas 2412
Data Validation ISSUES.cccuuiiiiiiieiiiee ettt sttt e et e st e e sbeeeenrneeen 2413
LOCKOUE MECNANISM EFTOIS....cciutiiiiiiii ittt ettt et e e st e e s b e e sneee e 2413
USEI SESSION ETTOIS. ...ciiiitiieiiiie et ettt ettt ettt e et e bt e e s bt e e sttt e e bb e e e anbeeesnbeeeenrneeas 2414
MEMOTY BUFTEI EITOIS.....ciiiiviiiie e e ittt ettt e et e e e s et e e e et e e e e e e st b e e e e e s entbaeeaeean 2414
File HANAIiNG ISSUES......ccciiiiiiiii ettt e e e e e e et e e e e e s etb e e e e e s sanaraaeaeas 2414
DOCUMENTALION ISSUES. ... uteieiitiie ittt e eitie ettt et et e ettt e e st e e et e e e snte e e sbeeeessbeeesnteeesnees 2415
COMPIEXITY ISSUBS. . uutiiiieiiiiiee ettt e e e et e e e ettt e e e e e ettt e e e e e e sratb e e e e e s astaaaeeeeeasasranaaeaaas 2415
ENCAPSUIALION ISSUES......cciiiiiiie ettt e e e e e e e s et r e e e e s e bt e e e e e s sarraeeaeas 2416
W I A] ot [o] g T = (o £ T PP TR 2417
SFP Primary Cluster: Faulty Resource Release...........ccccoovuvveiiiiiiiiiei e 2417
SFP Primary Cluster: Failure to Release MemOIY.........cccooiiiiiiiieiiiiieiee et eeeiiree e 2417
CISQ Quality Measures - Reliability...........ccouiiiiiiiiiiiic e 2417
CISQ Quality Measures - Maintainability..............cccouiiiiiiiiiiiie e 2419
CISQ Quality MEASUIES = SECUIMLY....uuueeieeiiiiiiiieeeeiiti e e e ecitbe e e e e s st e e e s e sibe e e e e e s staee e e e e senaaeeas 2420
CISQ Quality Measures - EffiCIENCY.......cccoiiiiiiie it 2421
OWASP Top Ten 2021 Category A01:2021 - Broken Access Control............ccccceeuvveeeeeeinnns 2422
OWASP Top Ten 2021 Category A02:2021 - Cryptographic Failures...........ccccooeveeeviiiiennennn. 2423
OWASP Top Ten 2021 Category A03:2021 - INJECHON.........ccvviieeiiiiiiiee e 2424
OWASP Top Ten 2021 Category A04:2021 - Insecure DeSIgN..........cccuvveeeeiiiiveeeeeiiiiieeeeens 2426
OWASP Top Ten 2021 Category A05:2021 - Security Misconfiguration................ccceeveeeinns 2427
OWASP Top Ten 2021 Category A06:2021 - Vulnerable and Outdated Components.......... 2428
OWASP Top Ten 2021 Category A07:2021 - Identification and Authentication Failures....... 2429
OWASP Top Ten 2021 Category A08:2021 - Software and Data Integrity Failures.............. 2430
OWASP Top Ten 2021 Category A09:2021 - Security Logging and Monitoring Failures...... 2431
OWASP Top Ten 2021 Category A10:2021 - Server-Side Request Forgery (SSRF)............ 2431
(@3S @] 110910 1oz i o] o PR 2432
ICS Dependencies (& ArChItECIUIE)........ccuuiiiie et e e e e e 2433
(@I STRS YU o] o]V @1 o F- 1] PRSP PRPR 2433
ICS Engineering (Constructions/DeploymMENt)..........ccuuiieeiiiiiiiee e e e e e e e 2434
ICS Operations (& MaINTENANCE)........ccceiiiiiiiieeeeeiiiiee e e e e e e e e e e e e et e e e e s searaeeaeas 2435
ICS Communications: Zone Boundary Failures..........cc.eveeiiiiiiiee i eecieee e e 2436
ICS Communications: Unreliability............ccoooiiirioiiiiiiiic e 2437
ICS Communications: Frail Security in ProtoCoIS..........cccovuiiiieiiiiiiiee e 2438
ICS Dependencies (& Architecture): External Physical Systems..........cccccceeevviiieieecciciveeennn. 2439
ICS Dependencies (& Architecture): External Digital Systems........c.cccccvveveeeiiiiiiereeciiciieennn. 2440
ICS Supply Chain: IT/OT Convergence/EXPanSiON..........ccuuveeeeeiiiiereeeiiiirieeeeesiiireeeesesnsnenens 2441
ICS Supply Chain: Common Mode Frailti€s............cccicuiiiieiiiiiiiie et 2442
ICS Supply Chain: Poorly Documented or Undocumented Features..............ccccveeeevivnnnnnn. 2443
ICS Supply Chain: OT Counterfeit and Malicious Corruption...........ccccccvvveeeeiiiiieeeeeiiciieeeennn 2443
ICS Engineering (Construction/Deployment): Trust Model Problems...........ccccccooeiviiiiieeenns 2444
ICS Engineering (Construction/Deployment): Maker Breaker Blindness.............ccocveeeeennne. 2445
ICS Engineering (Construction/Deployment): Gaps in Details/Data

ICS Engineering (Construction/Deployment): Security Gaps in Commissioning................... 2447
ICS Engineering (Construction/Deployment): Inherent Predictability in Design..................... 2447
ICS Operations (& Maintenance): Gaps in obligations and training.............cccceevviiveeeeeninns 2448
ICS Operations (& Maintenance): Human factors in ICS environments...........cccccccoovcvveennn. 2449
ICS Operations (& Maintenance): Post-analysis changes............ccccvvvievieiiiiiiiee e, 2450
ICS Operations (& Maintenance): Exploitable Standard Operational Procedures................. 2451
ICS Operations (& Maintenance): Emerging Energy Technologies..........cccccccovviiieieeiiinnen. 2451
ICS Operations (& Maintenance): Compliance/Conformance with Regulatory
.. 2452
Physical Access ISSUES and CONCEINS...........oeeiiiiuiiieeeeiiiiiee e et e e s e e e s e e e e s earaeee s 2453
Comprehensive Categorization: ACCESS CONIOL..........cccuiiiieiiiiiiii e 2454
Comprehensive Categorization: COMPAIISON...........ccoiiiuiiiieeiiiiiiereeeiiiiree e e s esirre e e e e e sarreeaee s 2458
Comprehensive Categorization: Component INteraction...........ccccveeeiviiuiieeeeeiiiiiee e ciieeeeen 2459
Comprehensive Categorization: Memory Safety........ccccveviiiiiiiiiie e 2459
Comprehensive Categorization: CONCUITENCY..........cciiiiurrreeeeiiiireeeeesiirereeesssarreeeeessnraeeaeaaas 2461
Comprehensive Categorization: ENCIYPtioN............cooiiiiiiii i 2462

XXiV

CWE Version 4.13
Table of Contents

Category-1403: Comprehensive Categorization: EXpoSed RESOUICE..........cccuvviiieeiiiiiiiie e ceiiieee e esiieee e e e 2463
Category-1404: Comprehensive Categorization: File Handling............ccocceeeiiiiiiiee e 2464
Category-1405: Comprehensive Categorization: Improper Check or Handling of Exceptional Conditions......2466
Category-1406: Comprehensive Categorization: Improper Input Validation.............cccccecvveveeiiiiiiiee e, 2466
Category-1407: Comprehensive Categorization: Improper Neutralization...............cccceveeiiiiiiiiee s 2467
Category-1408: Comprehensive Categorization: Incorrect Calculation..............cccceeviiiiieee i 2469
Category-1409: Comprehensive Categorization: INJECHION.............vii i 2469
Category-1410: Comprehensive Categorization: Insufficient Control Flow Management.................cccccuvveee... 2471
Category-1411: Comprehensive Categorization: Insufficient Verification of Data Authenticity........................ 2472
Category-1412: Comprehensive Categorization: Poor Coding PractiCes............cccvvvevieiiiiieiieeiiiiiiiee e 2473
Category-1413: Comprehensive Categorization: Protection Mechanism Failure.............cccccooevivieeciiiiiien e, 2477
Category-1414: Comprehensive Categorization: RANAOMNESS.ccoocuiiieeeiiiiiiee e et ee e eciree e e e saraeae e
Category-1415: Comprehensive Categorization: Resource Control

Category-1416: Comprehensive Categorization: Resource Lifecycle Management...........ccccccoevciveeeeeiiinnen. 2479
Category-1417: Comprehensive Categorization: Sensitive Information EXpoSuUre...........ccccocveveeviiciieeeeeeeennnen. 2482
Category-1418: Comprehensive Categorization: Violation of Secure Design Principles...........ccccooeveeeiiinnen.. 2484
CWE Views

ViIieW-604; DEPIECAIEU ENMIIES.cciiiiiiii e ettt e e e e et e e e et e e e e e et e e e e e s sasbaeeeaeesssataeeeeesantbeeeaenan 2485
View-629: Weaknesses in OWASP TOP TN (2007)......uuuiiieiiiiieieeeeieiiiiee e eeiiree e e e s etbaee e e e s ssaaseeae e s snataeeeaesenns 2485
View-635: Weaknesses Originally Used by NVD from 2008 to 2016 ... 2486
View-658: Weaknesses in Software Written in C..........ccoocveiviieeiniiennieeeninenns ... 2487
View-659: Weaknesses in Software WHEN iN CHt... .ottt 2488
View-660: Weaknesses in Software WItEN IN JAVA.........c.cooruiieiiiieiiiie ettt sbee e 2488
View-661: Weaknesses in Software Written in PHP

VieW-677: Weakness Base EIEMENTS..........oiiiiiiiiiie ettt st e ettt e br e e snbe e e sneeesnneee s
VIBW-B78: COMPOSITES. ...t iiteiiie e it et e e e sttt e e e e et e e e s e st e e e e e s eatbe e e e e e aasaeaeeaeessastaeeeessaatbaseeeesasssseeaeessnntanseesnanses
View-699:; SOftWware DEVEIOPIMENL.........ccouiiiiie et e e e e e e e s sttt e e e e s tb e e e e e e e aatbeeeeessasbraeeaeaaans
View-700: Seven Pernicious Kingdoms....

View-701: Weaknesses Introduced During Design

View-702: Weaknesses Introduced During Implementation

VIEW-709: NAMEA CRAINS.ttt ettt et et e e ste e e s bt e e e st be e e sateeeanbaeeeasbeeesnbaeesanbeeeanbeeenas
View-711: Weaknesses in OWASP TOp TN (2004)........ueiiiiiiiiiiiee e eetret e eiraee e e et e e e e s sstvaeeaeseans
View-734: Weaknesses Addressed by the CERT C Secure Coding Standard (2008)..........ccccceevcvvieeeeevinnnen. 2495
View-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors................... 2496
View-800: Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors
View-809: Weaknesses in OWASP Top TeN (2010).......uuiiiiiiiiiiiiee e eiiiiiee et e s et e e e e e e e e s ssatveeeeesenns
View-844: Weaknesses Addressed by The CERT Oracle Secure Coding Standard for Java (2011)............. 2499
View-868: Weaknesses Addressed by the SEI CERT C++ Coding Standard (2016 Version)

VIEW-884: CWE CrOSS-SECHOMN. ...cceitiiiiitiieiitieeitieeeeitee e st e e ettt e e s et e e sb e e e astb e e e anteeesnbeeeesbbeeesnteeesneeeessbeeenns
View-888: Software Fault Pattern (SFP) CIUSIEIS..........ciiiiiiiiiie ettt e e e et
View-900: Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors.............cccccvveeee..
View-919: Weaknesses in Mobile APPlICALIONS...........ccoiiiiiiiiiiiiier et e e e e s e e e e
View-928: Weaknesses in OWASP TOP TN (2013)......uuiiiieiiiiiiieee e eciiiiee e e eetirer e e s et ee e e e e saaae e e e e s ssataeeeaesenes
View-1000: RESEAICH CONCEPLS. .. cciiiiiuiiiiie ettt ettt c e e e e e e st e e e e e s et e e e e s sasba e e e e e s estbsaeeeeeannsbaeeas
View-1003: Weaknesses for Simplified Mapping of Published Vulnerabilities................ccoovveeiiiiiiienc e,
View-1008: ArChiteCtUral CONCEPLS. .. .uuiiie ittt e ettt e et e e e et e e e e e st r e e e e e s et b et e e e s sasabaeeaesasntaeeaeeaas
View-1026: Weaknesses in OWASP TOP TN (2017)....uuiieiiiiiiiiie et e ettt e et e e s et e e e e e aaanee e e e e snnes
View-1040: Quality Weaknesses with Indirect Security IMpPacts..........ccceeeiviiiiiiie i
View-1081: Entries With MaintENanCe NOLES.........coiuiiiiiiieiiiie ettt ste e st e et e e sreee e nnnes
View-1128: CISQ Quality MEaSUres (2016).......cueiieeiiiiiiiieeiiiiiiee e e eeite e e e e s st e e e e s setber e e e s esasaeeaeessnsbaeeeesasasrees
View-1133: Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java

View-1154: Weaknesses Addressed by the SEI CERT C Coding Standard............cccccceeeiviiiieeeeiiiiiieee e
View-1178: Weaknesses Addressed by the SEI CERT Perl Coding Standard

ViIEW-1194: HArdWare DESIQN........ccciuuiiiieeiiiiiet e e e eiititt e e e e e etve e e e e e st e e e e e s e tbe e e e e e e asatbaeeeessasbaaeeaessasstaeeeessstbaneeasan
View-1200: Weaknesses in the 2019 CWE Top 25 Most Dangerous Software Errors.........ccccceeeevvveeeeeninns
View-1305: CISQ Quality Measures (2020).........cceeuiiiuiiiieeeiiiieiee e eeiiie e e e e s s ae e e e e setra e e e e s esataeeaeeassbaeeeessnasreees
View-1337: Weaknesses in the 2021 CWE Top 25 Most Dangerous Software Weaknesses

View-1340: CISQ Data ProteCtion MEASUIES.........c.uuiiiiiiiiiieie e e ettt e e e e ettt e e e e e st e e e e e s sttt e e e s asataeeeessstbaeeaeean
View-1343: Weaknesses in the 2021 CWE Most Important Hardware Weaknesses List.............cccveveeeinnnes
View-1344: Weaknesses in OWASP TOP TN (2021)......cceiiiiiuiiieieeiiiieiee e eeiieee e e e siire e e e s eeibar e e e e s enaaneeeeessnees

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.13
Table of Contents

View-1350: Weaknesses in the 2020 CWE Top 25 Most Dangerous Software Weaknesses...........ccccveeeenn. 2529
View-1358: Weaknesses in SEI ETF Categories of Security Vulnerabilities in ICS...........cccccceeiviiienie e, 2531
View-1387: Weaknesses in the 2022 CWE Top 25 Most Dangerous Software Weaknesses...........ccccvveeeenn. 2532
View-1400: Comprehensive Categorization for Software Assurance Trends..........ccccvveeeeeeiiiieeeeesciiier e e 2533
View-1425: Weaknesses in the 2023 CWE Top 25 Most Dangerous Software Weaknesses...........ccccveeeenn. 2534
View-2000: Comprehensive CWE DICHONAIY..........ueiiiiiiiiiiee e ittt e e eeiii e e e e st e e e e s sstaaa e e e e s ssaabaeeeesssntaeeeaesannes 2536

Appendix A: Graph Views

XXVi

CWE Version 4.13
Symbols Used in CWE

Symbols

Symbol Meaning
View
Category

Weakness - Class
Weakness - Base
Weakness - Variant

Compound Element - Composite

Compound Element - Named Chain
Deprecated

s GRS

XXVii

3IMD Ul pasn s|oquis

CWE Version 4.13

XXViii

CWE Version 4.13
CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption

Weaknesses

CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption

Weakness ID : 5
Structure : Simple
Abstraction : Variant

Description

Information sent over a network can be compromised while in transit. An attacker may be able to
read or modify the contents if the data are sent in plaintext or are weakly encrypted.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 319 Cleartext Transmission of Sensitive Information 774

Applicable Platforms
Language : Java (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Integrity Modify Application Data

Potential Mitigations
Phase: System Configuration

The product configuration should ensure that SSL or an encryption mechanism of equivalent
strength and vetted reputation is used for all access-controlled pages.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2243
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure 711 2274
Configuration Management
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2335
MemberOf 1402 Comprehensive Categorization: Encryption 1400 2462
Notes
Other

If an application uses SSL to guarantee confidential communication with client browsers, the
application configuration should make it impossible to view any access controlled page without
SSL. There are three common ways for SSL to be bypassed: A user manually enters URL and
types "HTTP" rather than "HTTPS". Attackers intentionally send a user to an insecure URL.

uondAi1oug InoylM uoIsSIwSUeRL] Bleq :uoleInBiyuosIA IIZC S-IMD

CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

CWE Version 4.13
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

A programmer erroneously creates a relative link to a page in the application, which does not
switch from HTTP to HTTPS. (This is particularly easy to do when the link moves between public
and secured areas on a web site.)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Insecure
Transport
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

Weakness ID : 6
Structure : Simple
Abstraction : Variant

Description
The J2EE application is configured to use an insufficient session ID length.
Extended Description

If an attacker can guess or steal a session ID, then they may be able to take over the user's
session (called session hijacking). The number of possible session IDs increases with increased
session ID length, making it more difficult to guess or steal a session ID.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf E] 334 Small Space of Random Values 820
Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1018 Manage User Sessions 2367

Applicable Platforms
Language : Java (Prevalence = Undetermined)

Background Details
Session ID's can be used to identify communicating parties in a web environment.

The expected number of seconds required to guess a valid session identifier is given by the
equation: (2"B+1)/(2*A*S) Where: - B is the number of bits of entropy in the session identifier. -

A is the number of guesses an attacker can try each second. - S is the number of valid session
identifiers that are valid and available to be guessed at any given time. The number of bits of
entropy in the session identifier is always less than the total number of bits in the session identifier.

CWE Version 4.13
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

For example, if session identifiers were provided in ascending order, there would be close to zero
bits of entropy in the session identifier no matter the identifier's length. Assuming that the session
identifiers are being generated using a good source of random numbers, we will estimate the
number of bits of entropy in a session identifier to be half the total number of bits in the session
identifier. For realistic identifier lengths this is possible, though perhaps optimistic.

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Ildentity

If an attacker can guess an authenticated user's session
identifier, they can take over the user's session.

Potential Mitigations
Phase: Implementation

Session identifiers should be at least 128 bits long to prevent brute-force session guessing. A
shorter session identifier leaves the application open to brute-force session guessing attacks.

Phase: Implementation

A lower bound on the number of valid session identifiers that are available to be guessed is the
number of users that are active on a site at any given moment. However, any users that abandon
their sessions without logging out will increase this number. (This is one of many good reasons to
have a short inactive session timeout.) With a 64 bit session identifier, assume 32 bits of entropy.
For a large web site, assume that the attacker can try 1,000 guesses per second and that there
are 10,000 valid session identifiers at any given moment. Given these assumptions, the expected
time for an attacker to successfully guess a valid session identifier is less than 4 minutes. Now
assume a 128 bit session identifier that provides 64 bits of entropy. With a very large web site, an
attacker might try 10,000 guesses per second with 100,000 valid session identifiers available to
be guessed. Given these assumptions, the expected time for an attacker to successfully guess a
valid session identifier is greater than 292 years.

Demonstrative Examples
Example 1:

The following XML example code is a deployment descriptor for a Java web application deployed
on a Sun Java Application Server. This deployment descriptor includes a session configuration
property for configuring the session ID length.

Example Language: XML (Bad)
<sun-web-app>

<session-config>
<session-properties>
<property name="idLengthBytes" value="8">
<description>The number of bytes in this web module's session ID.</description>
</property>
</session-properties>
</session-config>

</sun-web-app>

This deployment descriptor has set the session ID length for this Java web application to 8 bytes
(or 64 bits). The session ID length for Java web applications should be set to 16 bytes (128 bits) to
prevent attackers from guessing and/or stealing a session ID and taking over a user's session.

Note for most application servers including the Sun Java Application Server the session ID length is
by default set to 128 bits and should not be changed. And for many application servers the session
ID length cannot be changed from this default setting. Check your application server documentation

3

y1Bua QI-uoISSas JUBIDIHNSU| (UOIRINBIFUOISIN IT2ZC :9-IMD

CWE Version 4.13
CWE-7: J2EE Misconfiguration: Missing Custom Error Page

for the session ID length default setting and configuration options to ensure that the session 1D
length is set to 128 bits.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2243
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure 711 2274

Configuration Management
MemberOf 965 SFP Secondary Cluster: Insecure Session Management 888 2338

MemberOf 1414 Comprehensive Categorization: Randomness 1400 2478
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms J2EE Misconfiguration: Insufficient

Session-ID Length
Related Attack Patterns
CAPEC-ID Attack Pattern Name

21 Exploitation of Trusted Identifiers
59 Session Credential Falsification through Prediction
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-482]zvi Gutterman. "Hold Your Sessions: An Attack on Java Session-id Generation". 2005
February 3. < https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/gm05.pdf
>.2023-04-07.

CWE-7: J2EE Misconfiguration: Missing Custom Error Page

Weakness ID : 7
Structure : Simple
Abstraction : Variant

CWE-7: J2EE Misconfiguration: Missing Custom Error Page

Description

The default error page of a web application should not display sensitive information about the
product.

Extended Description

A Web application must define a default error page for 4xx errors (e.g. 404), 5xx (e.g. 500) errors
and catch java.lang.Throwable exceptions to prevent attackers from mining information from the
application container's built-in error response.

When an attacker explores a web site looking for vulnerabilities, the amount of information that the
site provides is crucial to the eventual success or failure of any attempted attacks.

Relationships

4

CWE Version 4.13
CWE-7: J2EE Misconfiguration: Missing Custom Error Page

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 756 Missing Custom Error Page 1557

Applicable Platforms
Language : Java (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

A stack trace might show the attacker a malformed SQL
query string, the type of database being used, and the
version of the application container. This information
enables the attacker to target known vulnerabilities in
these components.

Potential Mitigations
Phase: Implementation
Handle exceptions appropriately in source code.
Phase: Implementation
Phase: System Configuration

Always define appropriate error pages. The application configuration should specify a default
error page in order to guarantee that the application will never leak error messages to an
attacker. Handling standard HTTP error codes is useful and user-friendly in addition to being a
good security practice, and a good configuration will also define a last-chance error handler that
catches any exception that could possibly be thrown by the application.

Phase: Implementation
Do not attempt to process an error or attempt to mask it.
Phase: Implementation
Verify return values are correct and do not supply sensitive information about the system.
Demonstrative Examples
Example 1:

In the snippet below, an unchecked runtime exception thrown from within the try block may cause
the container to display its default error page (which may contain a full stack trace, among other
things).

Example Language: Java (Bad)

Public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServietException, IOException {
try {

} catch (ApplicationSpecificException ase) {
logger.error("Caught: " + ase.toString());
}
}

MemberOf Relationships

abed 10443 woisnd BuissIy :uoneinbiyuodsIN I3ZC 2-IMD

CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

CWE Version 4.13
CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 2 7PK - Environment 700 2243

MemberOf 728 OWASP Top Ten 2004 Category A7 - Improper Error 711 2272
Handling

MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure 711 2274
Configuration Management

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2335

MemberOf 1405 Comprehensive Categorization: Improper Check or 1400 2466

Handling of Exceptional Conditions

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Missing Error
Handling
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-65]M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". 2005 July 6.
McGraw-Hill/Osborne.

CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

Weakness ID : 8
Structure : Simple
Abstraction : Variant

Description

When an application exposes a remote interface for an entity bean, it might also expose methods
that get or set the bean's data. These methods could be leveraged to read sensitive information,
or to change data in ways that violate the application's expectations, potentially leading to other
vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf @ 668 Exposure of Resource to Wrong Sphere 1457
Common Consequences

Scope Impact Likelihood

Confidentiality Read Application Data

Integrity Modify Application Data

CWE Version 4.13
CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

Potential Mitigations
Phase: Implementation

Declare Java beans "local" when possible. When a bean must be remotely accessible, make
sure that sensitive information is not exposed, and ensure that the application logic performs
appropriate validation of any data that might be modified by an attacker.

Demonstrative Examples
Example 1:
The following example demonstrates the weakness.

Example Language: XML (Bad)

<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>

</entity>
</enterprise-beans>

</ejb-jar>

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this

weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2243
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure 711 2274
Configuration Management
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2335
MemberOf 1403 Comprehensive Categorization: Exposed Resource 1400 2463
Notes
Other

Entity beans that expose a remote interface become part of an application's attack surface. For
performance reasons, an application should rarely use remote entity beans, so there is a good
chance that a remote entity bean declaration is an error.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Unsafe Bean
Declaration
Software Fault Patterns SFP23 Exposed Data
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

ajoway paltejoaq ueag Aug :uonesnBiyuoaSIA IIZC 8-IMD

CWE Version 4.13
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

Weakness ID : 9
Structure : Simple
Abstraction : Variant

Description

If elevated access rights are assigned to EJB methods, then an attacker can take advantage of the
permissions to exploit the product.

Extended Description

If the EJB deployment descriptor contains one or more method permissions that grant access to
the special ANYONE role, it indicates that access control for the application has not been fully
thought through or that the application is structured in such a way that reasonable access control
restrictions are impossible.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (E] 266 Incorrect Privilege Assignment 633
Common Consequences

Scope Impact Likelihood

Other Other

Potential Mitigations
Phase: Architecture and Design
Phase: System Configuration

Follow the principle of least privilege when assigning access rights to EJB methods. Permission
to invoke EJB methods should not be granted to the ANYONE role.

Demonstrative Examples
Example 1:

The following deployment descriptor grants ANYONE permission to invoke the Employee EJB's
method named getSalary().

Example Language: XML (Bad)
<ejb-jar>

<assembly-descriptor>
<method-permission>
<role-name>ANYONE</role-name>
<method>
<ejb-name>Employee</ejb-name>
<method-name>getSalary</method-name>
</method-permission>
</assembly-descriptor>

CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

</ejb-jar>

MemberOf Relationships

CWE Version 4.13
CWE-11: ASP.NET Misconfiguration: Creating Debug Binary

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2243
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access 711 2270
Control
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure 711 2274
Configuration Management
MemberOf 901 SFP Primary Cluster: Privilege 888 2321
MemberOf 1396 Comprehensive Categorization: Access Control 1400 2454
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Weak Access
Permissions
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-11: ASP.NET Misconfiguration: Creating Debug Binary

Weakness ID : 11
Structure : Simple
Abstraction : Variant

Description
Debugging messages help attackers learn about the system and plan a form of attack.
Extended Description

ASP .NET applications can be configured to produce debug binaries. These binaries give detailed
debugging messages and should not be used in production environments. Debug binaries are
meant to be used in a development or testing environment and can pose a security risk if they are
deployed to production.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf E] 489 Active Debug Code 1160

Applicable Platforms
Language : ASP.NET (Prevalence = Undetermined)
Background Details

Areuig Bngaq Buiresi) :uoireinbiyuodsiN 1IN'dSY TT-IMD

CWE-11: ASP.NET Misconfiguration: Creating Debug Binary

CWE Version 4.13
CWE-11: ASP.NET Misconfiguration: Creating Debug Binary

The debug attribute of the <compilation> tag defines whether compiled binaries should include
debugging information. The use of debug binaries causes an application to provide as much
information about itself as possible to the user.

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Attackers can leverage the additional information they
gain from debugging output to mount attacks targeted on
the framework, database, or other resources used by the
application.

Detection Methods
Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST),
can find some instances of this weakness by analyzing source code (or binary/compiled code)
without having to execute it. Typically, this is done by building a model of data flow and control
flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input)
with "sinks" (destinations where the data interacts with external components, a lower layer such
as the OS, etc.)

Effectiveness = High
Potential Mitigations
Phase: System Configuration

Avoid releasing debug binaries into the production environment. Change the debug mode to
false when the application is deployed into production.

Demonstrative Examples
Example 1:

The file web.config contains the debug mode setting. Setting debug to "true" will let the browser
display debugging information.

Example Language: XML (Bad)

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<compilation
defaultLanguage="c#"
debug="true"
/>

</system.web>
</configuration>

Change the debug mode to false when the application is deployed into production.
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2243
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure 711 2274

Configuration Management

10

CWE Version 4.13
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2335
MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security 1344 2427

Misconfiguration

MemberOf 1412 Comprehensive Categorization: Poor Coding Practices 1400 2473

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Creating
Debug Binary

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

Weakness ID : 12
Structure : Simple
Abstraction : Variant

Description

An ASP .NET application must enable custom error pages in order to prevent attackers from mining

information from the framework's built-in responses.
Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (E] 756 Missing Custom Error Page 1557

Applicable Platforms
Language : ASP.NET (Prevalence = Undetermined)
Background Details

The mode attribute of the <customErrors> tag defines whether custom or default error pages are
used.

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Default error pages gives detailed information about the
error that occurred, and should not be used in production
environments. Attackers can leverage the additional
information provided by a default error page to mount
attacks targeted on the framework, database, or other
resources used by the application.

11

abed 10443 woisnd BuissIN :uoeInBiyuodSIN 1IN'dSY Z2T-IMD

CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

CWE Version 4.13
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

Potential Mitigations
Phase: System Configuration

Handle exceptions appropriately in source code. ASP .NET applications should be configured to
use custom error pages instead of the framework default page.

Phase: Architecture and Design
Do not attempt to process an error or attempt to mask it.
Phase: Implementation
Verify return values are correct and do not supply sensitive information about the system.
Demonstrative Examples
Example 1:

The mode attribute of the <customErrors> tag in the Web.config file defines whether custom or
default error pages are used.

In the following insecure ASP.NET application setting, custom error message mode is turned off.
An ASP.NET error message with detailed stack trace and platform versions will be returned.
Example Language: ASP.NET (Bad)

<customErrors mode="0ff" />

A more secure setting is to set the custom error message mode for remote users only. No
defaultRedirect error page is specified. The local user on the web server will see a detailed stack
trace. For remote users, an ASP.NET error message with the server customError configuration
setting and the platform version will be returned.

Example Language: ASP.NET (Good)

<customErrors mode="RemoteOnly" />

Another secure option is to set the mode attribute of the <customErrors> tag to use a custom page
as follows:
Example Language: ASP.NET (Good)

<customErrors mode="0On" defaultRedirect="YourErrorPage.htm" />

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 2 7PK - Environment 700 2243

MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure 711 2274
Configuration Management

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2335

MemberOf 1405 Comprehensive Categorization: Improper Check or 1400 2466

Handling of Exceptional Conditions
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration; Missing
Custom Error Handling

12

CWE Version 4.13
CWE-13: ASP.NET Misconfiguration: Password in Configuration File

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-65]M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". 2005 July 6.
McGraw-Hill/Osborne.

[REF-66]OWASP, Fortify Software. "ASP.NET Misconfiguration: Missing Custom Error Handling". <
http://www.owasp.org/index.php/ASP.NET_Misconfiguration:_Missing_Custom_Error_Handling >.

CWE-13: ASP.NET Misconfiguration: Password in Configuration File

Weakness ID : 13
Structure : Simple
Abstraction : Variant

Description

Storing a plaintext password in a configuration file allows anyone who can read the file access to
the password-protected resource making them an easy target for attackers.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (E] 260 Password in Configuration File 623
Common Consequences

Scope Impact Likelihood

Access Control Gain Privileges or Assume ldentity

Potential Mitigations
Phase: Implementation

Credentials stored in configuration files should be encrypted, Use standard APIs and industry
accepted algorithms to encrypt the credentials stored in configuration files.

Demonstrative Examples
Example 1:

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database, but
the pair is stored in plaintext.

Example Language: ASP.NET (Bad)

<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />

</connectionStrings>

13

914 uoneinblyuo) ul plomssed :uoleinbiyuodsin LIN'dSY :€T-IMD

CWE-14: Compiler Removal of Code to Clear Buffers

CWE Version 4.13
CWE-14: Compiler Removal of Code to Clear Buffers

Username and password information should not be included in a configuration file or a properties
file in plaintext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 2 7PK - Environment 700 2243

MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure 711 2274
Configuration Management

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2335

MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security 1344 2427
Misconfiguration

MemberOf 1396 Comprehensive Categorization: Access Control 1400 2454

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration;: Password

in Configuration File
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-103]Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using
DPAPI". < https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ff647398(v=pandp.10)?
redirectedfrom=MSDN >.2023-04-07.

[REF-104]Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using
RSA". < https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ff650304(v=pandp.10)?
redirectedfrom=MSDN >.2023-04-07.

[REF-105]Microsoft Corporation. ".NET Framework Developer's Guide - Securing Connection
Strings". < http://msdn.microsoft.com/en-us/library/89211k9b(VS.80).aspx >.

CWE-14: Compiler Removal of Code to Clear Buffers

Weakness ID : 14
Structure : Simple
Abstraction : Variant

Description

Sensitive memory is cleared according to the source code, but compiler optimizations leave the
memory untouched when it is not read from again, aka "dead store removal."

Extended Description
This compiler optimization error occurs when:

» 1. Secret data are stored in memory.
» 2. The secret data are scrubbed from memory by overwriting its contents.

14

CWE Version 4.13
CWE-14: Compiler Removal of Code to Clear Buffers

» 3. The source code is compiled using an optimizing compiler, which identifies and removes
the function that overwrites the contents as a dead store because the memory is not used
subsequently.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf] 733 Compiler Optimization Removal or Modification of Security- 1542
critical Code

Applicable Platforms
Language : C (Prevalence = Undetermined)
Language : C++ (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory
Access Control Bypass Protection Mechanism

This weakness will allow data that has not been cleared
from memory to be read. If this data contains sensitive
password information, then an attacker can read the
password and use the information to bypass protection
mechanisms.

Detection Methods
Black Box

This specific weakness is impossible to detect using black box methods. While an analyst could
examine memory to see that it has not been scrubbed, an analysis of the executable would

not be successful. This is because the compiler has already removed the relevant code. Only
the source code shows whether the programmer intended to clear the memory or not, so this
weakness is indistinguishable from others.

White Box

This weakness is only detectable using white box methods (see black box detection factor).
Careful analysis is required to determine if the code is likely to be removed by the compiler.

Potential Mitigations
Phase: Implementation
Store the sensitive data in a "volatile" memory location if available.
Phase: Build and Compilation
If possible, configure your compiler so that it does not remove dead stores.
Phase: Architecture and Design
Where possible, encrypt sensitive data that are used by a software system.
Demonstrative Examples
Example 1:

15

sJiayng Iea|D 01 apoI Jo [eAoway Ja1dwod FT-IMD

CWE Version 4.13
CWE-14: Compiler Removal of Code to Clear Buffers

The following code reads a password from the user, uses the password to connect to a back-end
mainframe and then attempts to scrub the password from memory using memset().

Example Language: C (Bad)

void GetData(char *MFAddr) {
char pwd[64];
if (GetPasswordFromUser(pwd, sizeof(pwd))) {
if (ConnectToMainframe(MFAddr, pwd)) {
/I Interaction with mainframe

}
}

memset(pwd, 0, sizeof(pwd));

}

The code in the example will behave correctly if it is executed verbatim, but if the code is compiled
using an optimizing compiler, such as Microsoft Visual C++ .NET or GCC 3.x, then the call to
memset() will be removed as a dead store because the buffer pwd is not used after its value

is overwritten [18]. Because the buffer pwd contains a sensitive value, the application may be
vulnerable to attack if the data are left memory resident. If attackers are able to access the correct
region of memory, they may use the recovered password to gain control of the system.

It is common practice to overwrite sensitive data manipulated in memory, such as passwords or
cryptographic keys, in order to prevent attackers from learning system secrets. However, with the
advent of optimizing compilers, programs do not always behave as their source code alone would
suggest. In the example, the compiler interprets the call to memset() as dead code because the
memory being written to is not subsequently used, despite the fact that there is clearly a security
motivation for the operation to occur. The problem here is that many compilers, and in fact many
programming languages, do not take this and other security concerns into consideration in their
efforts to improve efficiency.

Attackers typically exploit this type of vulnerability by using a core dump or runtime mechanism to
access the memory used by a particular application and recover the secret information. Once an
attacker has access to the secret information, it is relatively straightforward to further exploit the
system and possibly compromise other resources with which the application interacts.

Affected Resources
* Memory
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE-14: Compiler Removal of Code to Clear Buffers

Nature Type ID Name Page

MemberOf 2 7PK - Environment 700 2243

MemberOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 2273

MemberOf 747 CERT C Secure Coding Standard (2008) Chapter 14 - 734 2285
Miscellaneous (MSC)

MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous 868 2316
(MSC)

MemberOf 884 CWE Cross-section 884 2502

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2335

MemberOf 1398 Comprehensive Categorization: Component Interaction 1400 2459

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Insecure Compiler Optimization

16

CWE Version 4.13
CWE-15: External Control of System or Configuration Setting

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Sensitive memory uncleared by
compiler optimization

OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage

CERT C Secure Coding MSCO06- Be aware of compiler optimization when

C dealing with sensitive data
Software Fault Patterns SFP23 Exposed Data
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-124]Michael Howard. "When scrubbing secrets in memory doesn't work". BugTrag. 2002
November 5. < http://cert.uni-stuttgart.de/archive/bugtrag/2002/11/msg00046.html >.

[REF-125]Michael Howard. "Some Bad News and Some Good News". 2002 October 1. Microsoft. <
https://learn.microsoft.com/en-us/previous-versions/ms972826(v=msdn.10) >.2023-04-07.

[REF-126]Joseph Wagner. "GNU GCC: Optimizer Removes Code Necessary for Security".
Bugtrag. 2002 November 6. < https://seclists.org/bugtraq/2002/Nov/266 >.2023-04-07.

CWE-15: External Control of System or Configuration Setting

Weakness ID : 15
Structure : Simple
Abstraction : Base

Description
One or more system settings or configuration elements can be externally controlled by a user.
Extended Description

Allowing external control of system settings can disrupt service or cause an application to behave
in unexpected, and potentially malicious ways.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf @ 610 Externally Controlled Reference to a Resource in Another 1353
Sphere

ChildOf (C) 642 External Control of Critical State Data 1401

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page

MemberOf 1011 Authorize Actors 2360

Relevant to the view "Software Development" (CWE-699)

17

Buias uoneinbiyuod 10 WalSAS JO [041U0D [eUIBIXT ST-IMD

CWE-15: External Control of System or Configuration Setting

CWE Version 4.13
CWE-15: External Control of System or Configuration Setting

Nature Type ID Name Page
MemberOf 371 State Issues 2256
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf @ 20 Improper Input Validation 20

Applicable Platforms
Technology : Not Technology-Specific (Prevalence = Undetermined)
Technology : ICS/OT (Prevalence = Undetermined)
Common Consequences
Scope Impact Likelihood
Other Varies by Context
Detection Methods
Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST),
can find some instances of this weakness by analyzing source code (or binary/compiled code)
without having to execute it. Typically, this is done by building a model of data flow and control
flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input)
with "sinks" (destinations where the data interacts with external components, a lower layer such
as the OS, etc.)

Effectiveness = High
Potential Mitigations
Phase: Architecture and Design
Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design, and the compartmentalization allows for and
reinforces privilege separation functionality. Architects and designers should rely on the principle
of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

Phase: Implementation
Phase: Architecture and Design

Because setting manipulation covers a diverse set of functions, any attempt at illustrating it

will inevitably be incomplete. Rather than searching for a tight-knit relationship between the
functions addressed in the setting manipulation category, take a step back and consider the sorts
of system values that an attacker should not be allowed to control.

Phase: Implementation
Phase: Architecture and Design

In general, do not allow user-provided or otherwise untrusted data to control sensitive values.
The leverage that an attacker gains by controlling these values is not always immediately
obvious, but do not underestimate the creativity of the attacker.

Demonstrative Examples
Example 1:

The following C code accepts a number as one of its command line parameters and sets it as the
host ID of the current machine.

18

CWE Version 4.13
CWE-15: External Control of System or Configuration Setting

Example Language: C (Bad)

é(.ethostid(argv[l]);

Although a process must be privileged to successfully invoke sethostid(), unprivileged users may
be able to invoke the program. The code in this example allows user input to directly control the
value of a system setting. If an attacker provides a malicious value for host ID, the attacker can
misidentify the affected machine on the network or cause other unintended behavior.

Example 2:

The following Java code snippet reads a string from an HttpServletRequest and sets it as the active
catalog for a database Connection.

Example Language: Java (Bad)

conn.setCatalog(request.getParameter("catalog"));

In this example, an attacker could cause an error by providing a nonexistent catalog name or
connect to an unauthorized portion of the database.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 994 SFP Secondary Cluster: Tainted Input to Variable 888 2352

MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security 1344 2427
Misconfiguration

MemberOf 1368 ICS Dependencies (& Architecture): External Digital 1358 2440
Systems

MemberOf 1403 Comprehensive Categorization: Exposed Resource 1400 2463

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Setting Manipulation
Software Fault Patterns SFP25 Tainted input to variable

Related Attack Patterns
CAPEC-ID Attack Pattern Name

13 Subverting Environment Variable Values

69 Target Programs with Elevated Privileges

76 Manipulating Web Input to File System Calls

77 Manipulating User-Controlled Variables

146 XML Schema Poisoning

176 Configuration/Environment Manipulation

203 Manipulate Registry Information

270 Modification of Registry Run Keys

271 Schema Poisoning

579 Replace Winlogon Helper DLL
References

19

Buias uoneinbiyuod 10 WalSAS JO [041U0D [eUIBIXT ST-IMD

CWE-20: Improper Input Validation

CWE Version 4.13
CWE-20: Improper Input Validation

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-20: Improper Input Validation

Weakness ID : 20
Structure : Simple
Abstraction : Class

Description

The product receives input or data, but it does not validate or incorrectly validates that the input has
the properties that are required to process the data safely and correctly.

Extended Description

Input validation is a frequently-used technique for checking potentially dangerous inputs in order to
ensure that the inputs are safe for processing within the code, or when communicating with other
components. When software does not validate input properly, an attacker is able to craft the input
in a form that is not expected by the rest of the application. This will lead to parts of the system
receiving unintended input, which may result in altered control flow, arbitrary control of a resource,
or arbitrary code execution.

Input validation is not the only technique for processing input, however. Other techniques attempt
to transform potentially-dangerous input into something safe, such as filtering (CWE-790) - which
attempts to remove dangerous inputs - or encoding/escaping (CWE-116), which attempts to ensure
that the input is not misinterpreted when it is included in output to another component. Other
techniques exist as well (see CWE-138 for more examples.)

Input validation can be applied to:

» raw data - strings, numbers, parameters, file contents, etc.
* metadata - information about the raw data, such as headers or size

Data can be simple or structured. Structured data can be composed of many nested layers,
composed of combinations of metadata and raw data, with other simple or structured data.

Many properties of raw data or metadata may need to be validated upon entry into the code, such
as:

 specified quantities such as size, length, frequency, price, rate, number of operations, time,
etc.

 implied or derived quantities, such as the actual size of a file instead of a specified size

* indexes, offsets, or positions into more complex data structures

» symbolic keys or other elements into hash tables, associative arrays, etc.

» well-formedness, i.e. syntactic correctness - compliance with expected syntax

« lexical token correctness - compliance with rules for what is treated as a token

* specified or derived type - the actual type of the input (or what the input appears to be)

 consistency - between individual data elements, between raw data and metadata, between
references, etc.

» conformance to domain-specific rules, e.g. business logic

» equivalence - ensuring that equivalent inputs are treated the same

 authenticity, ownership, or other attestations about the input, e.g. a cryptographic signature to
prove the source of the data

20

CWE Version 4.13
CWE-20: Improper Input Validation

Implied or derived properties of data must often be calculated or inferred by the code itself. Errors
in deriving properties may be considered a contributing factor to improper input validation.

Note that “input validation" has very different meanings to different people, or within different
classification schemes. Caution must be used when referencing this CWE entry or mapping to it.
For example, some weaknesses might involve inadvertently giving control to an attacker over an
input when they should not be able to provide an input at all, but sometimes this is referred to as
input validation.

Finally, it is important to emphasize that the distinctions between input validation and output
escaping are often blurred, and developers must be careful to understand the difference, including
how input validation is not always sufficient to prevent vulnerabilities, especially when less stringent
data types must be supported, such as free-form text. Consider a SQL injection scenario in which

a person's last name is inserted into a query. The name "O'Reilly" would likely pass the validation
step since it is a common last name in the English language. However, this valid name cannot be
directly inserted into the database because it contains the " apostrophe character, which would
need to be escaped or otherwise transformed. In this case, removing the apostrophe might reduce
the risk of SQL injection, but it would produce incorrect behavior because the wrong name would
be recorded.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf [P 707 Improper Neutralization 1526
ParentOf E] 179 Incorrect Behavior Order: Early Validation 447
ParentOf (V] 622 Improper Validation of Function Hook Arguments 1376
ParentOf (B] 1173 Improper Use of Validation Framework 1937
ParentOf (B) 1284 Improper Validation of Specified Quantity in Input 2094
ParentOf Q 1285 Improper Validation of Specified Index, Position, or Offset in 2097
Input
ParentOf B] 1286 Improper Validation of Syntactic Correctness of Input 2100
ParentOf Q 1287 Improper Validation of Specified Type of Input 2102
ParentOf (] 1288 Improper Validation of Consistency within Input 2104
ParentOf Q 1289 Improper Validation of Unsafe Equivalence in Input 2105
PeerOf ® 345 Insufficient Verification of Data Authenticity 843
CanPrecede @ 22 Improper Limitation of a Pathname to a Restricted Directory 33
(‘Path Traversal’)
CanPrecede @ 41 Improper Resolution of Path Equivalence 86
CanPrecede @ 74 Improper Neutralization of Special Elements in Output Used 137
by a Downstream Component (‘Injection’)
CanPrecede @ 119 Improper Restriction of Operations within the Bounds ofa 292
Memory Buffer
CanPrecede @ 770 Allocation of Resources Without Limits or Throttling 1591

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf V] 129 Improper Validation of Array Index 340
ParentOf B] 1284 Improper Validation of Specified Quantity in Input 2094

21

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE Version 4.13

CWE-20: Improper Input Validation

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature
MemberOf

Type ID
1019 Validate Inputs

Name

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature

ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf

ParentOf
ParentOf
ParentOf

ParentOf

ParentOf
ParentOf
ParentOf
ParentOf
ParentOf

CWE-20: Improper Input Validation

ParentOf

Applicable Platforms

Type ID

COCEEEEEEEEE0E

@ @06

@06

<)

15

73

102
103
104
105
106
107
108
109
110
111
112
113

114
117
119

120

134
170
190
466
470

785

Name

External Control of System or Configuration Setting
External Control of File Name or Path

Struts:
Struts:
Struts:
Struts:
Struts:
Struts:
Struts:
Struts:
Struts:

Duplicate Validation Forms

Incomplete validate() Method Definition

Form Bean Does Not Extend Validation Class
Form Field Without Validator

Plug-in Framework not in Use

Unused Validation Form

Unvalidated Action Form

Validator Turned Off

Validator Without Form Field

Direct Use of Unsafe JNI

Missing XML Validation

Improper Neutralization of CRLF Sequences in HTTP
Headers ("HTTP Request/Response Splitting')

Process Control

Improper Output Neutralization for Logs

Improper Restriction of Operations within the Bounds of a
Memory Buffer

Buffer Copy without Checking Size of Input (‘Classic Buffer
Overflow")

Use of Externally-Controlled Format String

Improper Null Termination

Integer Overflow or Wraparound

Return of Pointer Value Outside of Expected Range

Use of Externally-Controlled Input to Select Classes or Code 1108
(‘Unsafe Reflection")
Use of Path Manipulation Function without Maximum-sized 1633

Buffer

Language : Not Language-Specific (Prevalence = Often)
Likelihood Of Exploit

High

Common Consequences

Scope
Availability

Confidentiality

Impact

Likelihood

DoS: Crash, Exit, or Restart
DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)

An attacker could provide unexpected values and cause
a program crash or excessive consumption of resources,
such as memory and CPU.

Read Memory
Read Files or Directories

Page
2368

Page
17
132
246
247
250
253
256
258
261
262
264
266
269
271

276
288
292

304

364
427
471
1099

22

CWE Version 4.13
CWE-20: Improper Input Validation

Scope Impact Likelihood
An attacker could read confidential data if they are able to
control resource references.

Integrity Modify Memory
Confidentiality Execute Unauthorized Code or Commands
Availability An attacker could use malicious input to modify data or

possibly alter control flow in unexpected ways, including
arbitrary command execution.

Detection Methods

Automated Static Analysis

Some instances of improper input validation can be detected using automated static analysis. A
static analysis tool might allow the user to specify which application-specific methods or functions
perform input validation; the tool might also have built-in knowledge of validation frameworks
such as Struts. The tool may then suppress or de-prioritize any associated warnings. This allows
the analyst to focus on areas of the software in which input validation does not appear to be
present. Except in the cases described in the previous paragraph, automated static analysis
might not be able to recognize when proper input validation is being performed, leading to

false positives - i.e., warnings that do not have any security consequences or require any code

changes.

Manual Static Analysis
When custom input validation is required, such as when enforcing business rules, manual
analysis is necessary to ensure that the validation is properly implemented.

Fuzzing

Fuzzing techniques can be useful for detecting input validation errors. When unexpected inputs
are provided to the software, the software should not crash or otherwise become unstable, and
it should generate application-controlled error messages. If exceptions or interpreter-generated
error messages occur, this indicates that the input was not detected and handled within the
application logic itself.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = SOAR Partial
Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial
Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Web
Application Scanner Web Services Scanner Database Scanners

Effectiveness = High
Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Fuzz
Tester Framework-based Fuzzer Cost effective for partial coverage: Host Application Interface
Scanner Monitored Virtual Environment - run potentially malicious code in sandbox / wrapper /
virtual machine, see if it does anything suspicious

23

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 4.13
CWE-20: Improper Input Validation

Effectiveness = High
Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)
Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High
Architecture or Desigh Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction Cost effective for partial coverage: Attack Modeling

Effectiveness = High
Potential Mitigations
Phase: Architecture and Design
Strategy = Attack Surface Reduction

Consider using language-theoretic security (LangSec) techniques that characterize inputs using
a formal language and build "recognizers" for that language. This effectively requires parsing

to be a distinct layer that effectively enforces a boundary between raw input and internal data
representations, instead of allowing parser code to be scattered throughout the program, where
it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110]
[REF-1111]

Phase: Architecture and Design
Strategy = Libraries or Frameworks

Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that
using a framework does not automatically address all input validation problems; be mindful of
weaknesses that could arise from misusing the framework itself (CWE-1173).

Phase: Architecture and Design
Phase: Implementation
Strategy = Attack Surface Reduction

Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may
be obtained indirectly through API calls.

Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be

24

CWE Version 4.13
CWE-20: Improper Input Validation

syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Effectiveness = High
Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client
to remove the client-side checks entirely. Then, these modified values would be submitted to
the server. Even though client-side checks provide minimal benefits with respect to server-
side security, they are still useful. First, they can support intrusion detection. If the server
receives input that should have been rejected by the client, then it may be an indication of an
attack. Second, client-side error-checking can provide helpful feedback to the user about the
expectations for valid input. Third, there may be a reduction in server-side processing time for
accidental input errors, although this is typically a small savings.

Phase: Implementation

When your application combines data from multiple sources, perform the validation after the
sources have been combined. The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.

Phase: Implementation

Be especially careful to validate all input when invoking code that crosses language boundaries,
such as from an interpreted language to native code. This could create an unexpected interaction
between the language boundaries. Ensure that you are not violating any of the expectations

of the language with which you are interfacing. For example, even though Java may not be
susceptible to buffer overflows, providing a large argument in a call to native code might trigger
an overflow.

Phase: Implementation

Directly convert your input type into the expected data type, such as using a conversion function
that translates a string into a number. After converting to the expected data type, ensure that the
input's values fall within the expected range of allowable values and that multi-field consistencies

are maintained.
Phase: Implementation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
allowlist schemes by introducing dangerous inputs after they have been checked. Use

libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated
canonicalization until your input does not change any more. This will avoid double-decoding and
similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-
encoded dangerous content.

Phase: Implementation

When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set
the encoding you are using whenever the protocol allows you to do so.

Demonstrative Examples

Example 1:

25

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 4.13
CWE-20: Improper Input Validation

This example demonstrates a shopping interaction in which the user is free to specify the quantity
of items to be purchased and a total is calculated.

Example Language: Java (Bad)

public static final double price = 20.00;

int quantity = currentUser.getAttribute("quantity");
double total = price * quantity;

chargeUser(total);

The user has no control over the price variable, however the code does not prevent a negative
value from being specified for quantity. If an attacker were to provide a negative value, then the
user would have their account credited instead of debited.

Example 2:

This example asks the user for a height and width of an m X n game board with a maximum
dimension of 100 squares.

Example Language: C (Bad)

#define MAX_DIM 100

/* board dimensions */
int m,n, error;
board_square_t *board,;
printf("Please specify the board height: \n");
error = scanf("%d", &m);
if (EOF == error){
die("No integer passed: Die evil hacker\n");

}
printf("Please specify the board width: \n");
error = scanf("%d", &n);
if (EOF == error){
die("No integer passed: Die evil hacker\n");

}
if (m>MAX_DIM || n>MAX_DIM) {
die("Value too large: Die evil hacker'\n");

}

board = (board_square_t*) malloc(m * n * sizeof(board_square_t));

While this code checks to make sure the user cannot specify large, positive integers and consume
too much memory, it does not check for negative values supplied by the user. As a result, an
attacker can perform a resource consumption (CWE-400) attack against this program by specifying
two, large negative values that will not overflow, resulting in a very large memory allocation
(CWE-789) and possibly a system crash. Alternatively, an attacker can provide very large negative
values which will cause an integer overflow (CWE-190) and unexpected behavior will follow
depending on how the values are treated in the remainder of the program.

Example 3:

The following example shows a PHP application in which the programmer attempts to display a
user's birthday and homepage.

Example Language: PHP (Bad)
$birthday = $_GET['birthday'];

$homepage = $_GET['homepage'];
echo "Birthday: $birthday
Homepage: click here"

26

CWE Version 4.13
CWE-20: Improper Input Validation

The programmer intended for $birthday to be in a date format and $homepage to be a valid URL.
However, since the values are derived from an HTTP request, if an attacker can trick a victim into
clicking a crafted URL with <script> tags providing the values for birthday and / or homepage, then
the script will run on the client's browser when the web server echoes the content. Notice that even
if the programmer were to defend the $birthday variable by restricting input to integers and dashes,
it would still be possible for an attacker to provide a string of the form:

Example Language: (Attack)
2009-01-09--

If this data were used in a SQL statement, it would treat the remainder of the statement as a
comment. The comment could disable other security-related logic in the statement. In this case,
encoding combined with input validation would be a more useful protection mechanism.

Furthermore, an XSS (CWE-79) attack or SQL injection (CWE-89) are just a few of the potential
consequences when input validation is not used. Depending on the context of the code, CRLF
Injection (CWE-93), Argument Injection (CWE-88), or Command Injection (CWE-77) may also be
possible.

Example 4:

The following example takes a user-supplied value to allocate an array of objects and then
operates on the array.

Example Language: Java (Bad)

private void buildList (int untrustedListSize){
if (0 > untrustedListSize){
die("Negative value supplied for list size, die evil hacker!");

}
Widget[] list = new Widget [untrustedListSize];
list[0] = new Widget();

}

This example attempts to build a list from a user-specified value, and even checks to ensure a non-
negative value is supplied. If, however, a 0 value is provided, the code will build an array of size 0
and then try to store a new Widget in the first location, causing an exception to be thrown.

Example 5:

This Android application has registered to handle a URL when sent an intent:

Example Language: Java (Bad)

IntentFilter filter = new IntentFilter("com.example.URLHandler.openURL");
MyReceiver receiver = new MyReceiver();
registerReceiver(receiver, filter);

public class UrlHandlerReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {
if("com.example.URLHandler.openURL".equals(intent.getAction())) {
String URL = intent.getStringExtra("URLToOpen");
int length = URL.length();

The application assumes the URL will always be included in the intent. When the URL is not
present, the call to getStringExtra() will return null, thus causing a null pointer exception when
length() is called.

27

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 4.13
CWE-20: Improper Input Validation

Observed Examples

Reference

CVE-2022-45918

CVE-2021-30860

CVE-2021-30663

CVE-2021-22205

CVE-2021-21220

CVE-2020-9054

CVE-2020-3452

CVE-2020-3161

CVE-2020-3580

CVE-2021-37147

CVE-2008-5305

CVE-2008-2223

CVE-2008-3477

CVE-2008-3843

CVE-2008-3174

CVE-2007-3409

CVE-2006-6870

CVE-2008-1303

Description

Chain: a learning management tool debugger uses external input to locate
previous session logs (CWE-73) and does not properly validate the given
path (CWE-20), allowing for filesystem path traversal using "../" sequences
(CWE-24)

https://www.cve.org/CVERecord?id=CVE-2022-45918

Chain: improper input validation (CWE-20) leads to integer overflow
(CWE-190) in mobile OS, as exploited in the wild per CISA KEV.
https://www.cve.org/CVERecord?id=CVE-2021-30860

Chain: improper input validation (CWE-20) leads to integer overflow
(CWE-190) in mobile OS, as exploited in the wild per CISA KEV.
https://www.cve.org/CVERecord?id=CVE-2021-30663

Chain: backslash followed by a newline can bypass a validation step
(CWE-20), leading to eval injection (CWE-95), as exploited in the wild per
CISA KEV.

https://www.cve.org/CVERecord?id=CVE-2021-22205

Chain: insufficient input validation (CWE-20) in browser allows heap corruption

(CWE-787), as exploited in the wild per CISA KEV.
https://www.cve.org/CVERecord?id=CVE-2021-21220
Chain: improper input validation (CWE-20) in username parameter, leading to
OS command injection (CWE-78), as exploited in the wild per CISA KEV.
https://www.cve.org/CVERecord?id=CVE-2020-9054

Chain: security product has improper input validation (CWE-20) leading to
directory traversal (CWE-22), as exploited in the wild per CISA KEV.
https://www.cve.org/CVERecord?id=CVE-2020-3452

Improper input validation of HTTP requests in IP phone, as exploited in the
wild per CISA KEV.

https://www.cve.org/CVERecord?id=CVE-2020-3161

Chain: improper input validation (CWE-20) in firewall product leads to XSS
(CWE-79), as exploited in the wild per CISA KEV.
https://www.cve.org/CVERecord?id=CVE-2020-3580

Chain: caching proxy server has improper input validation (CWE-20) of
headers, allowing HTTP response smuggling (CWE-444) using an "LF line
ending"”

https://www.cve.org/CVERecord?id=CVE-2021-37147

Eval injection in Perl program using an ID that should only contain hyphens
and numbers.

https://www.cve.org/CVERecord?id=CVE-2008-5305

SQL injection through an ID that was supposed to be numeric.
https://www.cve.org/CVERecord?id=CVE-2008-2223

lack of input validation in spreadsheet program leads to buffer overflows,
integer overflows, array index errors, and memory corruption.
https://www.cve.org/CVERecord?id=CVE-2008-3477

insufficient validation enables XSS
https://www.cve.org/CVERecord?id=CVE-2008-3843

driver in security product allows code execution due to insufficient validation
https://www.cve.org/CVERecord?id=CVE-2008-3174

infinite loop from DNS packet with a label that points to itself
https://www.cve.org/CVERecord?id=CVE-2007-3409

infinite loop from DNS packet with a label that points to itself
https://www.cve.org/CVERecord?id=CVE-2006-6870

missing parameter leads to crash
https://www.cve.org/CVERecord?id=CVE-2008-1303

28

CWE Version 4.13
CWE-20: Improper Input Validation

Reference
CVE-2007-5893

CVE-2006-6658

CVE-2008-4114

CVE-2006-3790

CVE-2008-2309

CVE-2008-3494

CVE-2008-3571

CVE-2006-5525

CVE-2008-1284

CVE-2008-0600

CVE-2008-1738

CVE-2008-1737

CVE-2008-3464

CVE-2008-2252

CVE-2008-2374

CVE-2008-1440

CVE-2008-1625

CVE-2008-3177

CVE-2007-2442

CVE-2008-5563

CVE-2008-5285

CVE-2008-3812

CVE-2008-3680

CVE-2008-3660

Description

HTTP request with missing protocol version number leads to crash
https://www.cve.org/CVERecord?id=CVE-2007-5893

request with missing parameters leads to information exposure
https://www.cve.org/CVERecord?id=CVE-2006-6658

system crash with offset value that is inconsistent with packet size
https://www.cve.org/CVERecord?id=CVE-2008-4114

size field that is inconsistent with packet size leads to buffer over-read
https://www.cve.org/CVERecord?id=CVE-2006-3790

product uses a denylist to identify potentially dangerous content, allowing
attacker to bypass a warning
https://www.cve.org/CVERecord?id=CVE-2008-2309

security bypass via an extra header
https://www.cve.org/CVERecord?id=CVE-2008-3494

empty packet triggers reboot
https://www.cve.org/CVERecord?id=CVE-2008-3571

incomplete denylist allows SQL injection
https://www.cve.org/CVERecord?id=CVE-2006-5525

NUL byte in theme name causes directory traversal impact to be worse
https://www.cve.org/CVERecord?id=CVE-2008-1284

kernel does not validate an incoming pointer before dereferencing it
https://www.cve.org/CVERecord?id=CVE-2008-0600

anti-virus product has insufficient input validation of hooked SSDT functions,
allowing code execution

https://www.cve.org/CVERecord?id=CVE-2008-1738

anti-virus product allows DoS via zero-length field
https://www.cve.org/CVERecord?id=CVE-2008-1737

driver does not validate input from userland to the kernel
https://www.cve.org/CVERecord?id=CVE-2008-3464

kernel does not validate parameters sent in from userland, allowing code
execution

https://www.cve.org/CVERecord?id=CVE-2008-2252

lack of validation of string length fields allows memory consumption or buffer
over-read

https://www.cve.org/CVERecord?id=CVE-2008-2374

lack of validation of length field leads to infinite loop
https://www.cve.org/CVERecord?id=CVE-2008-1440

lack of validation of input to an IOCTL allows code execution
https://www.cve.org/CVERecord?id=CVE-2008-1625

zero-length attachment causes crash
https://www.cve.org/CVERecord?id=CVE-2008-3177

zero-length input causes free of uninitialized pointer
https://www.cve.org/CVERecord?id=CVE-2007-2442

crash via a malformed frame structure
https://www.cve.org/CVERecord?id=CVE-2008-5563

infinite loop from a long SMTP request
https://www.cve.org/CVERecord?id=CVE-2008-5285

router crashes with a malformed packet
https://www.cve.org/CVERecord?id=CVE-2008-3812

packet with invalid version number leads to NULL pointer dereference
https://www.cve.org/CVERecord?id=CVE-2008-3680

crash via multiple "." characters in file extension
https://www.cve.org/CVERecord?id=CVE-2008-3660

MemberOf Relationships

29

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 4.13
CWE-20: Improper Input Validation

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2486

MemberOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 2269

MemberOf 738 CERT C Secure Coding Standard (2008) Chapter5- 734 2277
Integers (INT)

MemberOf 742 CERT C Secure Coding Standard (2008) Chapter 9- 734 2280
Memory Management (MEM)

MemberOf 746 CERT C Secure Coding Standard (2008) Chapter 13- 734 2285
Error Handling (ERR)

MemberOf 747 CERT C Secure Coding Standard (2008) Chapter 14 - 734 2285
Miscellaneous (MSC)

MemberOf 751 2009 Top 25 - Insecure Interaction Between 750 2287
Components

MemberOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 2309

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory 868 2311
Management (MEM)

MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous 868 2316
(MSC)

MemberOf 994 SFP Secondary Cluster: Tainted Input to Variable 888 2352

MemberOf 1003 Weaknesses for Simplified Mapping of Published 1003 2511
Vulnerabilities

MemberOf 1005 7PK - Input Validation and Representation 700 2356

MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input 1154 2394
Output (FIO)

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous 1200 2522
Software Errors

MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous 1337 2524
Software Weaknesses

MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2424

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous 1350 2529
Software Weaknesses

MemberOf 1382 ICS Operations (& Maintenance): Emerging Energy 1358 2451
Technologies

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous 1387 2532
Software Weaknesses

MemberOf 1406 Comprehensive Categorization: Improper Input 1400 2466
Validation

MemberOf 1425 Weaknesses in the 2023 CWE Top 25 Most Dangerous 1425 2534
Software Weaknesses

Notes

Relationship

CWE-116 and CWE-20 have a close association because, depending on the nature of the
structured message, proper input validation can indirectly prevent special characters from
changing the meaning of a structured message. For example, by validating that a numeric
ID field should only contain the 0-9 characters, the programmer effectively prevents injection
attacks.

Maintenance

30

CWE Version 4.13

CWE-20: Improper Input Validation

As of 2020, this entry is used more often than preferred, and it is a source of frequent confusion.

It is being actively modified for CWE 4.1 and subsequent versions.

Maintenance

Concepts such as validation, data transformation, and neutralization are being refined, so
relationships between CWE-20 and other entries such as CWE-707 may change in future

versions, along with an update to the Vulnerability Theory document.

Maintenance

Input validation - whether missing or incorrect - is such an essential and widespread part of
secure development that it is implicit in many different weaknesses. Traditionally, problems such
as buffer overflows and XSS have been classified as input validation problems by many security
professionals. However, input validation is not necessarily the only protection mechanism
available for avoiding such problems, and in some cases it is not even sufficient. The CWE team
has begun capturing these subtleties in chains within the Research Concepts view (CWE-1000),

but more work is needed.

Terminology

The "input validation" term is extremely common, but it is used in many different ways. In some
cases its usage can obscure the real underlying weakness or otherwise hide chaining and
composite relationships. Some people use "input validation" as a general term that covers
many different neutralization techniques for ensuring that input is appropriate, such as filtering,
canonicalization, and escaping. Others use the term in a more narrow context to simply mean
"checking if an input conforms to expectations without changing it." CWE uses this more narrow

interpretation.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Input validation and representation
OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input
CERT C Secure Coding ERRO7- Prefer functions that support error
C checking over equivalent functions that
don't
CERT C Secure Coding FIO30-C CWE More Exclude user input from format strings
Abstract
CERT C Secure Coding MEM10- Define and use a pointer validation
c function
WASC 20 Improper Input Handling
Software Fault Patterns SFP25 Tainted input to variable

Related Attack Patterns
CAPEC-ID Attack Pattern Name

3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
7 Blind SQL Injection

8 Buffer Overflow in an API Call

9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables

13 Subverting Environment Variable Values

14 Client-side Injection-induced Buffer Overflow

22 Exploiting Trust in Client

23 File Content Injection

24 Filter Failure through Buffer Overflow

28 Fuzzing

31 Accessing/Intercepting/Modifying HTTP Cookies
42 MIME Conversion

31

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 4.13
CWE-20: Improper Input Validation

CAPEC-ID Attack Pattern Name

43
45
46
a7
52
53
63
64
67
71
72
73
78
79
80
81
83
85
88
101
104
108
109
110
120
135
136
153
182
209
230
231
250
261
267
473
588
664

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security

Exploiting Multiple Input Interpretation Layers
Buffer Overflow via Symbolic Links

Overflow Variables and Tags

Buffer Overflow via Parameter Expansion
Embedding NULL Bytes

Postfix, Null Terminate, and Backslash

Cross-Site Scripting (XSS)

Using Slashes and URL Encoding Combined to Bypass Validation Logic
String Format Overflow in syslog()

Using Unicode Encoding to Bypass Validation Logic
URL Encoding

User-Controlled Filename

Using Escaped Slashes in Alternate Encoding
Using Slashes in Alternate Encoding

Using UTF-8 Encoding to Bypass Validation Logic
Web Server Logs Tampering

XPath Injection

AJAX Footprinting

OS Command Injection

Server Side Include (SSI) Injection

Cross Zone Scripting

Command Line Execution through SQL Injection
Object Relational Mapping Injection

SQL Injection through SOAP Parameter Tampering
Double Encoding

Format String Injection

LDAP Injection

Input Data Manipulation

Flash Injection

XSS Using MIME Type Mismatch

Serialized Data with Nested Payloads

Oversized Serialized Data Payloads

XML Injection

Fuzzing for garnering other adjacent user/sensitive data
Leverage Alternate Encoding

Signature Spoof

DOM-Based XSS

Server Side Request Forgery

%?20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-166]Jim Manico. "Input Validation with ESAPI - Very Important”. 2008 August 5. < https://

manicode.blogspot.com/2008/08/input-validation-with-esapi.html >.2023-04-07.

[REF-45]O0WASP. "OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/

index.php/ESAPI >.

[REF-168]Joel Scambray, Mike Shema and Caleb Sima. "Hacking Exposed Web Applications,

Second Edition". 2006 June 5. McGraw-Hill.

32

CWE Version 4.13
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

[REF-48]Jeremiah Grossman. "Input validation or output filtering, which is better?". 2007 January 0.
< https://blog.jeremiahgrossman.com/2007/01/input-validation-or-output-filtering.html >.2023-04-07.

[REF-170]Kevin Beaver. "The importance of input validation". 2006 September 6. < http://
searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1214373,00.html >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-1109]"LANGSEC: Language-theoretic Security". < http://langsec.org/ >.

[REF-1110]"LangSec: Recognition, Validation, and Compositional Correctness for Real World
Security". < http://langsec.org/bof-handout.pdf >.

[REF-1111]Sergey Bratus, Lars Hermerschmidt, Sven M. Hallberg, Michael E. Locasto, Falcon D.
Momot, Meredith L. Patterson and Anna Shubina. "Curing the Vulnerable Parser: Design Patterns
for Secure Input Handling". USENIX ;login:. 2017. < https://www.usenix.org/system/files/login/
articles/login_springl7_08_bratus.pdf >.

[REF-1287]MITRE. "Supplemental Details - 2022 CWE Top 25". 2022 June 8. < https://
cwe.mitre.org/top25/archive/2022/2022_cwe_top25_supplemental.html#problematicMappingDetails
>,

CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path
Traversal')

Weakness ID : 22
Structure : Simple
Abstraction : Base

Description

The product uses external input to construct a pathname that is intended to identify a file or
directory that is located underneath a restricted parent directory, but the product does not properly
neutralize special elements within the pathname that can cause the pathname to resolve to a
location that is outside of the restricted directory.

Extended Description

Many file operations are intended to take place within a restricted directory. By using special
elements such as ".." and "/" separators, attackers can escape outside of the restricted location
to access files or directories that are elsewhere on the system. One of the most common special
elements is the "../" sequence, which in most modern operating systems is interpreted as the
parent directory of the current location. This is referred to as relative path traversal. Path traversal
also covers the use of absolute pathnames such as "/usr/local/bin", which may also be useful in
accessing unexpected files. This is referred to as absolute path traversal.

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

In many programming languages, the injection of a null byte (the 0 or NUL) may allow an attacker
to truncate a generated filename to widen the scope of attack. For example, the product may add
"txt" to any pathname, thus limiting the attacker to text files, but a null injection may effectively
remove this restriction.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

33

CWE-22: Improper Limitation of a Pathname

to a Restricted Directory (‘Path Traversal')

CWE Version 4.13
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Nature Type ID Name Page
ChildOf @ 668 Exposure of Resource to Wrong Sphere 1457
ChildOf (C] 706 Use of Incorrectly-Resolved Name or Reference 1525
ParentOf (B] 23 Relative Path Traversal 46
ParentOf Q 36 Absolute Path Traversal 75
CanFollow (C) 20 Improper Input Validation 20
CanFollow Q 73 External Control of File Name or Path 132
CanFollow @ 172 Encoding Error 432

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page

ChildOf @ 706 Use of Incorrectly-Resolved Name or Reference 1525

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page

ParentOf (B] 23 Relative Path Traversal 46

ParentOf (B 36 Absolute Path Traversal 75

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page

ParentOf B 23 Relative Path Traversal 46

ParentOf (E] 36 Absolute Path Traversal 75

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page

MemberOf 1219 File Handling Issues 2414
Weakness Ordinalities

Primary :

Resultant :

Applicable Platforms

Language : Not Language-Specific (Prevalence = Undetermined)
Alternate Terms

Directory traversal :

Path traversal : "Path traversal" is preferred over "directory traversal," but both terms are attack-
focused.

Likelihood Of Exploit
High

Common Consequences

Scope Impact Likelihood
Integrity Execute Unauthorized Code or Commands
Con_ﬂde_ntmhty The attacker may be able to create or overwrite critical
Avallability files that are used to execute code, such as programs or
libraries.
Integrity Modify Files or Directories

The attacker may be able to overwrite or create critical
files, such as programs, libraries, or important data. If
the targeted file is used for a security mechanism, then

34

CWE Version 4.13
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Scope Impact Likelihood
the attacker may be able to bypass that mechanism.
For example, appending a new account at the end
of a password file may allow an attacker to bypass
authentication.
Confidentiality Read Files or Directories

The attacker may be able read the contents of unexpected
files and expose sensitive data. If the targeted file is used
for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, by reading a
password file, the attacker could conduct brute force
password guessing attacks in order to break into an
account on the system.

Availability DoS: Crash, Exit, or Restart

The attacker may be able to overwrite, delete, or corrupt
unexpected critical files such as programs, libraries, or
important data. This may prevent the product from working
at all and in the case of a protection mechanisms such as
authentication, it has the potential to lockout every user of
the product.

Detection Methods
Automated Static Analysis

Automated techniques can find areas where path traversal weaknesses exist. However, tuning
or customization may be required to remove or de-prioritize path-traversal problems that are only
exploitable by the product's administrator - or other privileged users - and thus potentially valid
behavior or, at worst, a bug instead of a vulnerability.

Effectiveness = High
Manual Static Analysis

Manual white box techniques may be able to provide sufficient code coverage and reduction of
false positives if all file access operations can be assessed within limited time constraints.

Effectiveness = High

Automated Static Analysis - Binary or Bytecode

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Bytecode Weakness Analysis - including disassembler + source code weakness analysis Cost
effective for partial coverage: Binary Weakness Analysis - including disassembler + source code
weakness analysis

Effectiveness = High
Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Patrtial
Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Web
Application Scanner Web Services Scanner Database Scanners

Effectiveness = High
Dynamic Analysis with Manual Results Interpretation

35

CWE-22: Improper Limitation of a Pathname

to a Restricted Directory (‘Path Traversal')

CWE Version 4.13
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

According to SOAR, the following detection techniques may be useful: Highly cost effective: Fuzz
Tester Framework-based Fuzzer

Effectiveness = High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[.../I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

36

CWE Version 4.13
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked. Use a built-in path canonicalization
function (such as realpath() in C) that produces the canonical version of the pathname, which
effectively removes ".." sequences and symbolic links (CWE-23, CWE-59). This includes:
realpath() in C getCanonicalPath() in Java GetFullPath() in ASP.NET realpath() or abs_path() in
Perl realpath() in PHP

Phase: Architecture and Design
Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Phase: Operation
Strategy = Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.

Effectiveness = Moderate

An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Phase: Architecture and Design
Phase: Operation
Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

Phase: Architecture and Design
Strategy = Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLSs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLS,
and reject all other inputs. For example, ID 1 could map to "inbox.txt" and ID 2 could map to
"profile.txt". Features such as the ESAPI AccessReferenceMap [REF-185] provide this capability.

Phase: Architecture and Design
Phase: Operation
Strategy = Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed
in a particular directory or which commands can be executed by the software. OS-level examples

37

CWE Version 4.13
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the
software to specify restrictions on file operations. This may not be a feasible solution, and it
only limits the impact to the operating system; the rest of the application may still be subject to
compromise. Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness = Limited

The effectiveness of this mitigation depends on the prevention capabilities of the specific
sandbox or jail being used and might only help to reduce the scope of an attack, such as
restricting the attacker to certain system calls or limiting the portion of the file system that can be
accessed.

Phase: Architecture and Design
Phase: Operation
Strategy = Attack Surface Reduction

Store library, include, and utility files outside of the web document root, if possible. Otherwise,
store them in a separate directory and use the web server's access control capabilities to prevent
attackers from directly requesting them. One common practice is to define a fixed constant in
each calling program, then check for the existence of the constant in the library/include file; if the
constant does not exist, then the file was directly requested, and it can exit immediately. This
significantly reduces the chance of an attacker being able to bypass any protection mechanisms
that are in the base program but not in the include files. It will also reduce the attack surface.

Phase: Implementation

Ensure that error messages only contain minimal details that are useful to the intended audience
and no one else. The messages need to strike the balance between being too cryptic (which

can confuse users) or being too detailed (which may reveal more than intended). The messages
should not reveal the methods that were used to determine the error. Attackers can use detailed
information to refine or optimize their original attack, thereby increasing their chances of success.
If errors must be captured in some detail, record them in log messages, but consider what

could occur if the log messages can be viewed by attackers. Highly sensitive information such
as passwords should never be saved to log files. Avoid inconsistent messaging that might
accidentally tip off an attacker about internal state, such as whether a user account exists or

not. In the context of path traversal, error messages which disclose path information can help
attackers craft the appropriate attack strings to move through the file system hierarchy.

Phase: Operation

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

Phase: Implementation
Strategy = Environment Hardening

When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Demonstrative Examples
Example 1:
The following code could be for a social networking application in which each user's profile
information is stored in a separate file. All files are stored in a single directory.
Example Language: Perl (Bad)

my $dataPath = "/users/cwe/profiles";

my $username = param(“user");

my $profilePath = $dataPath . "/* . $username;

open(my $fh, "<", $profilePath) || ExitError("profile read error: $profilePath");

38

CWE Version 4.13
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

print "\n";
while (<$fh>) {
print "$_\n";

print "\n";

While the programmer intends to access files such as "/users/cwe/profiles/alice" or "/users/cwe/
profiles/bob", there is no verification of the incoming user parameter. An attacker could provide a
string such as:

Example Language: (Attack)

.[..1..letc/passwd

The program would generate a profile pathname like this:

Example Language: (Result)

lusers/cwelprofiles/../../../etc/passwd

When the file is opened, the operating system resolves the "../" during path canonicalization and
actually accesses this file:
Example Language: (Result)

/etc/passwd

As a result, the attacker could read the entire text of the password file.

Notice how this code also contains an error message information leak (CWE-209) if the user
parameter does not produce a file that exists: the full pathname is provided. Because of the lack
of output encoding of the file that is retrieved, there might also be a cross-site scripting problem
(CWE-79) if profile contains any HTML, but other code would need to be examined.

Example 2:

In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object.

Example Language: Java (Bad)

String filename = System.getProperty(“com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

However, the path is not validated or modified to prevent it from containing relative or absolute
path sequences before creating the File object. This allows anyone who can control the system
property to determine what file is used. Ideally, the path should be resolved relative to some kind of
application or user home directory.

Example 3:

The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /home/user/ directory and attempts to read the file in the final
resulting path.

Example Language: Perl (Bad)

my $Username = GetUntrustedInput();
$Username =~ sN\.\.V//;

my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

39

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

CWE Version 4.13
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:
Example Language: (Attack)

.[..I..letc/passwd

will have the first "../" stripped, resulting in:

Example Language: (Result)

.I..letc/passwd

This value is then concatenated with the /home/user/ directory:

Example Language: (Result)

/home/user/../..letc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).

Example 4:

The following code attempts to validate a given input path by checking it against an allowlist and
once validated delete the given file. In this specific case, the path is considered valid if it starts with
the string "/safe_dir/".

Example Language: Java (Bad)

String path = getlnputPath();
if (path.startsWith("/safe_dir/"))

File f = new File(path);
f.delete()
}

An attacker could provide an input such as this:

Example Language: (Attack)

/safe_dir/../important.dat

The software assumes that the path is valid because it starts with the "/safe_path/" sequence, but
the "../" sequence will cause the program to delete the important.dat file in the parent directory

Example 5:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The action attribute of an HTML form is sending the upload file request to the
Java servlet.

Example Language: HTML (Good)

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:

<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>

</form>

40

CWE Version 4.13
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

Example Language: Java (Bad)

public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,
I0Exception {
response.setContentType(“text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
/I the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
/I verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data”) != -1) {
Il extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getinputStream()));

pLine = br.readLine();
String filename = pLine.substring(pLine.lastindexOf("\\"), pLine.lastindexOf("\""));

I/l output the file to the local upload directory
try {
BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null;) {
if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

}
} /lend of for loop
bw.close();
} catch (IOException ex) {...}
/l output successful upload response HTML page
}
/I output unsuccessful upload response HTML page
else

{3

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

This code does not perform a check on the type of the file being uploaded (CWE-434). This could
allow an attacker to upload any executable file or other file with malicious code.

Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-23).
Since the code does not check the filename that is provided in the header, an attacker can use
"..I" sequences to write to files outside of the intended directory. Depending on the executing
environment, the attacker may be able to specify arbitrary files to write to, leading to a wide variety
of consequences, from code execution, XSS (CWE-79), or system crash.

Example 6:

This script intends to read a user-supplied file from the current directory. The user inputs the
relative path to the file and the script uses Python's os.path.join() function to combine the path to
the current working directory with the provided path to the specified file. This results in an absolute
path to the desired file. If the file does not exist when the script attempts to read it, an error is
printed to the user.

41

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

CWE Version 4.13
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Example Language: Python (Bad)
import os
import sys
def main():
filename = sys.argv[1]
path = os.path.join(os.getcwd(), filename)
try:
with open(path, 'r') as f:
file_data = f.read()
except FileNotFoundError as e:
print("Error - file not found")
main()

However, if the user supplies an absolute path, the os.path.join() function will discard the path to
the current working directory and use only the absolute path provided. For example, if the current
working directory is /home/user/documents, but the user inputs /etc/passwd, os.path.join() will use
only /etc/passwd, as it is considered an absolute path. In the above scenario, this would cause the
script to access and read the /etc/passwd file.

Example Language: Python (Good)
import os
import sys
def main():
filename = sys.argv[1]
path = os.path.normpath(f*{os.getcwd()}{os.sep}filename}")
try:
with open(path, 'r') as f:
file_data = f.read()
except FileNotFoundError as e:
print("Error - file not found")
main()

The constructed path string uses o0s.sep to add the appropriate separation character for the given
operating system (e.g. '\' or /") and the call to os.path.normpath() removes any additional slashes
that may have been entered - this may occur particularly when using a Windows path. By putting
the pieces of the path string together in this fashion, the script avoids a call to os.path.join() and
any potential issues that might arise if an absolute path is entered. With this version of the script,

if the current working directory is /home/user/documents, and the user inputs /etc/passwd, the
resulting path will be /home/user/documents/etc/passwd. The user is therefore contained within the
current working directory as intended.

Observed Examples

Reference Description

CVE-2022-45918 Chain: a learning management tool debugger uses external input to locate
previous session logs (CWE-73) and does not properly validate the given
path (CWE-20), allowing for filesystem path traversal using "../" sequences
(CWE-24)
https://www.cve.org/CVERecord?id=CVE-2022-45918

CVE-2019-20916 Python package manager does not correctly restrict the filename specified in
a Content-Disposition header, allowing arbitrary file read using path traversal
sequences such as "../"
https://www.cve.org/CVERecord?id=CVE-2019-20916

CVE-2022-31503 Python package constructs filenames using an unsafe os.path.join call on
untrusted input, allowing absolute path traversal because os.path.join resets
the pathname to an absolute path that is specified as part of the input.
https://www.cve.org/CVERecord?id=CVE-2022-31503

CVE-2022-24877 directory traversal in Go-based Kubernetes operator app allows accessing
data from the controller's pod file system via ../ sequences in a yaml file

42

CWE Version 4.13

CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Reference

CVE-2021-21972

CVE-2020-4053

CVE-2020-3452

CVE-2019-10743

CVE-2010-0467

CVE-2006-7079

CVE-2009-4194

CVE-2009-4053

CVE-2009-0244

CVE-2009-4013

CVE-2009-4449

CVE-2009-4581

CVE-2010-0012

CVE-2010-0013

CVE-2008-5748

CVE-2009-1936

Description

https://www.cve.org/CVERecord?id=CVE-2022-24877

Chain: Cloud computing virtualization platform does not require authentication
for upload of a tar format file (CWE-306), then uses .. path traversal sequences
(CWE-23) in the file to access unexpected files, as exploited in the wild per
CISA KEV.

https://www.cve.org/CVERecord?id=CVE-2021-21972

a Kubernetes package manager written in Go allows malicious plugins to inject
path traversal sequences into a plugin archive ("Zip slip") to copy a file outside
the intended directory

https://www.cve.org/CVERecord?id=CVE-2020-4053

Chain: security product has improper input validation (CWE-20) leading to
directory traversal (CWE-22), as exploited in the wild per CISA KEV.
https://www.cve.org/CVERecord?id=CVE-2020-3452

Go-based archive library allows extraction of files to locations outside of the
target folder with "../" path traversal sequences in filenames in a zip file, aka
"Zip Slip"

https://www.cve.org/CVERecord?id=CVE-2019-10743

Newsletter module allows reading arbitrary files using "../" sequences.
https://www.cve.org/CVERecord?id=CVE-2010-0467

Chain: PHP app uses extract for register_globals compatibility layer
(CWE-621), enabling path traversal (CWE-22)
https://www.cve.org/CVERecord?id=CVE-2006-7079

FTP server allows deletion of arbitrary files using ".."
https://www.cve.org/CVERecord?id=CVE-2009-4194
FTP server allows creation of arbitrary directories using ".." in the MKD
command.

https://www.cve.org/CVERecord?id=CVE-2009-4053

FTP service for a Bluetooth device allows listing of directories, and creation or
reading of files using ".." sequences.
https://www.cve.org/CVERecord?id=CVE-2009-0244

Software package maintenance program allows overwriting arbitrary files using
"..I" sequences.

https://www.cve.org/CVERecord?id=CVE-2009-4013

Bulletin board allows attackers to determine the existence of files using the
avatar.

https://www.cve.org/CVERecord?id=CVE-2009-4449

PHP program allows arbitrary code execution using ".."
fed to the include() function.
https://www.cve.org/CVERecord?id=CVE-2009-4581
Overwrite of files using a .. in a Torrent file.
https://www.cve.org/CVERecord?id=CVE-2010-0012

Chat program allows overwriting files using a custom smiley request.
https://www.cve.org/CVERecord?id=CVE-2010-0013

Chain: external control of values for user's desired language and theme
enables path traversal.

https://www.cve.org/CVERecord?id=CVE-2008-5748

Chain: library file sends a redirect if it is directly requested but continues to
execute, allowing remote file inclusion and path traversal.
https://www.cve.org/CVERecord?id=CVE-2009-1936

in the DELE command.

in filenames that are

(,res1anel] yred,) A1019811Q pa1dli1say e 0]

aweuyred e jo uonenwi sadoidwi :zz-IMD

Functional Areas
« File Processing

Affected Resources

43

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

CWE Version 4.13
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

* File or Directory
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2486

MemberOf 715 OWASP Top Ten 2007 Category A4 - Insecure Direct 629 2266
Object Reference

MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access 711 2270
Control

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 2282
Input Output (FIO)

MemberOf 802 2010 Top 25 - Risky Resource Management 800 2289

MemberOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct 809 2292
Object References

MemberOf 865 2011 Top 25 - Risky Resource Management 900 2306

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 2312
(FIO)

MemberOf 884 CWE Cross-section 884 2502

MemberOf 932 OWASP Top Ten 2013 Category A4 - Insecure Direct 928 2325
Object References

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1031 OWASP Top Ten 2017 Category A5 - Broken Access 1026 2372
Control

MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2377

MemberOf 1179 SEI CERT Perl Coding Standard - Guidelines 01. Input 1178 2400
Validation and Data Sanitization (IDS)

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous 1200 2522
Software Errors

MemberOf 1308 CISQ Quality Measures - Security 1305 2420

MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous 1337 2524
Software Weaknesses

MemberOf 1340 CISQ Data Protection Measures 1340 2525

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken 1344 2422
Access Control

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous 1350 2529
Software Weaknesses

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous 1387 2532
Software Weaknesses

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464

MemberOf 1425 Weaknesses in the 2023 CWE Top 25 Most Dangerous 1425 2534
Software Weaknesses

Notes

Relationship
Pathname equivalence can be regarded as a type of canonicalization error.
Relationship

Some pathname equivalence issues are not directly related to directory traversal, rather are used
to bypass security-relevant checks for whether a file/directory can be accessed by the attacker

44

CWE Version 4.13
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

(e.g. a trailing "/" on a filename could bypass access rules that don't expect a trailing /, causing a
server to provide the file when it normally would not).

Terminology

Like other weaknesses, terminology is often based on the types of manipulations used, instead
of the underlying weaknesses. Some people use "directory traversal” only to refer to the injection
of ".." and equivalent sequences whose specific meaning is to traverse directories. Other variants
like "absolute pathname" and "drive letter" have the *effect* of directory traversal, but some

people may not call it such, since it doesn't involve ".." or equivalent.
Research Gap

Many variants of path traversal attacks are probably under-studied with respect to root cause.
CWE-790 and CWE-182 begin to cover part of this gap.

Research Gap

Incomplete diagnosis or reporting of vulnerabilities can make it difficult to know which variant is
affected. For example, a researcher might say that "..\" is vulnerable, but not test "../" which may
also be vulnerable. Any combination of directory separators ("/", "\", etc.) and numbers of "." (e.g.

"....") can produce unique variants; for example, the "//../" variant is not listed (CVE-2004-0325). =
See this entry's children and lower-level descendants. @
Taxonomy Mappings g
Mapped Taxonomy Name Node ID Fit Mapped Node Name 2
PLOVER Path Traversal §
OWASP Top Ten 2007 A4 CWE More Specific Insecure Direct Object Reference 8
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control o
CERT C Secure Coding FI002-C Canonicalize path names originating =F
from untrusted sources &
SEI CERT Perl Coding IDS00- Exact Canonicalize path names before o
Standard PL validating them <
WASC 33 Path Traversal ’_'6
Software Fault Patterns SFP16 Path Traversal 7]
OMG ASCSM ASCSM- >
CWE-22 =
Q
Related Attack Patterns é
CAPEC-ID Attack Pattern Name »
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic ED—;
76 Manipulating Web Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
126 Path Traversal
References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-45]0WASP. "OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

[REF-185]OWASP. "Testing for Path Traversal (OWASP-AZ-001)". < http://www.owasp.org/
index.php/Testing_for_Path_Traversal (OWASP-AZ-001) >.

[REF-186]Johannes Ullrich. "Top 25 Series - Rank 7 - Path Traversal'. 2010 March 9. SANS
Software Security Institute. < https://www.sans.org/blog/top-25-series-rank-7-path-traversal/
>.2023-04-07.

45

aweuyred e jo uonenwi sadoidwi :zz-IMD

CWE-23: Relative Path Traversal

CWE Version 4.13
CWE-23: Relative Path Traversal

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
web.archive.org/web/20211209014121/https://www.cisa.gov/uscert/bsi/articles/knowledge/
principles/least-privilege >.2023-04-07.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. 1st Edition. 2006. Addison Wesley.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-23: Relative Path Traversal

Weakness ID : 23
Structure : Simple
Abstraction : Base

Description
The product uses external input to construct a pathname that should be within a restricted

directory, but it does not properly neutralize sequences such as ".." that can resolve to a location
that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B] 22 Improper Limitation of a Pathname to a Restricted Directory 33
(‘Path Traversal')

ParentOf (V] 24 Path Traversal: '../filedir' 53
ParentOf V] 25 Path Traversal: '/../filedir' 54
ParentOf (V] 26 Path Traversal: '/dir/../filename’ 56
ParentOf V] 27 Path Traversal: 'dir/../../filename’ 58
ParentOf (V] 28 Path Traversal: "..\filedir' 59
ParentOf V] 29 Path Traversal: \..\filename' 61
ParentOf (V] 30 Path Traversal: \dir\..\filename' 63
ParentOf V] 31 Path Traversal: 'dir\..\..\filename' 65
ParentOf V] 32 Path Traversal: "..." (Triple Dot) 67
ParentOf V] 33 Path Traversal: '...." (Multiple Dot) 69
ParentOf (V] 34 Path Traversal: "..../I 71
ParentOf V] 35 Path Traversal: '.../..II" 73
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf (B] 22 Improper Limitation of a Pathname to a Restricted Directory 33

(‘Path Traversal')
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

46

CWE Version 4.13

CWE-23: Relative Path Traversal

Nature
ChildOf

Applicable Platforms

Type ID Name

Page

22 Improper Limitation of a Pathname to a Restricted Directory 33

(‘Path Traversal’)

Language : Not Language-Specific (Prevalence = Undetermined)

Alternate Terms

Zip Slip : "Zip slip" is an attack that uses file archives (e.g., ZIP, tar, rar, etc.) that contain filenames
with path traversal sequences that cause the files to be written outside of the directory under which
the archive is expected to be extracted [REF-1282]. It is most commonly used for relative path

traversal (CWE-23) and link following (CWE-59).

Common Consequences

Scope
Integrity
Confidentiality
Availability

Integrity

Confidentiality

Availability

Detection Methods

Impact
Execute Unauthorized Code or Commands

The attacker may be able to create or overwrite critical
files that are used to execute code, such as programs or
libraries.

Modify Files or Directories

The attacker may be able to overwrite or create critical
files, such as programs, libraries, or important data. If
the targeted file is used for a security mechanism, then
the attacker may be able to bypass that mechanism.
For example, appending a new account at the end

of a password file may allow an attacker to bypass
authentication.

Read Files or Directories

The attacker may be able read the contents of unexpected
files and expose sensitive data. If the targeted file is used
for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, by reading a
password file, the attacker could conduct brute force
password guessing attacks in order to break into an
account on the system.

DoS: Crash, Exit, or Restart

The attacker may be able to overwrite, delete, or corrupt
unexpected critical files such as programs, libraries, or
important data. This may prevent the product from working
at all and in the case of a protection mechanisms such as
authentication, it has the potential to lockout every user of
the product.

Automated Static Analysis

Likelihood

Automated static analysis, commonly referred to as Static Application Security Testing (SAST),
can find some instances of this weakness by analyzing source code (or binary/compiled code)
without having to execute it. Typically, this is done by building a model of data flow and control
flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input)
with "sinks" (destinations where the data interacts with external components, a lower layer such

as the OS, etc.)

Effectiveness = High

47

[esianel] yred aAleay :€z-3MD

CWE-23: Relative Path Traversal

CWE Version 4.13
CWE-23: Relative Path Traversal

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[.../I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked. Use a built-in path canonicalization
function (such as realpath() in C) that produces the canonical version of the pathname, which
effectively removes ".." sequences and symbolic links (CWE-23, CWE-59). This includes:
realpath() in C getCanonicalPath() in Java GetFullPath() in ASP.NET realpath() or abs_path() in
Perl realpath() in PHP

Demonstrative Examples
Example 1:
The following URLs are vulnerable to this attack:

Example Language: (Bad)

http://example.com.br/get-files.jsp?file=report.pdf
http://example.com.br/get-page.php?home=aaa.html
http://example.com.br/some-page.asp?page=index.html

A simple way to execute this attack is like this:

Example Language: (Attack)

http://example.com.br/get-files?file=../../../../somedir/somefile
http://example.com.br/../../../../etc/shadow
http://example.com.br/get-files?file=../../../../etc/passwd

48

CWE Version 4.13
CWE-23: Relative Path Traversal

Example 2:

The following code could be for a social networking application in which each user's profile
information is stored in a separate file. All files are stored in a single directory.

Example Language: Perl (Bad)

my $dataPath = "/users/cwe/profiles";
my $username = param(“"user");
my $profilePath = $dataPath . "/" . $username;
open(my $fh, "<", $profilePath) || ExitError("profile read error: $profilePath");
print "\n";
while (<$fh>) {
print "$_\n";

print "\n";

While the programmer intends to access files such as "/users/cwe/profiles/alice" or "/users/cwe/
profiles/bob", there is no verification of the incoming user parameter. An attacker could provide a
string such as:

Example Language: (Attack)

.[..I..Jetc/passwd

The program would generate a profile pathname like this:

Example Language: (Result)

lusers/cwel/profiles/../../../etc/passwd

When the file is opened, the operating system resolves the "../" during path canonicalization and
actually accesses this file:

Example Language: (Result)

letc/passwd

As a result, the attacker could read the entire text of the password file.

Notice how this code also contains an error message information leak (CWE-209) if the user
parameter does not produce a file that exists: the full pathname is provided. Because of the lack
of output encoding of the file that is retrieved, there might also be a cross-site scripting problem
(CWE-79) if profile contains any HTML, but other code would need to be examined.

Example 3:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The action attribute of an HTML form is sending the upload file request to the
Java servlet.

Example Language: HTML (Good)

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:

<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>

</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

49

[esianel] yred aAleay :€z-3MD

CWE-23: Relative Path Traversal

CWE Version 4.13
CWE-23: Relative Path Traversal

Example Language: Java

public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,
I0Exception {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
/I the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
/I verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data”) != -1) {
/Il extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getinputStream()));

pLine = br.readLine();
String filename = pLine.substring(pLine.lastindexOf("\\"), pLine.lastindexOf("\""));

/I output the file to the local upload directory
try {
BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null;) {
if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

}
} /lend of for loop
bw.close();
} catch (IOException ex) {...}
/I output successful upload response HTML page
}
/I output unsuccessful upload response HTML page
else

{3

(Bad)

This code does not perform a check on the type of the file being uploaded (CWE-434). This could
allow an attacker to upload any executable file or other file with malicious code.

Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-23).

Since the code does not check the filename that is provided in the header, an attacker can use
"..I" sequences to write to files outside of the intended directory. Depending on the executing

environment, the attacker may be able to specify arbitrary files to write to, leading to a wide variety
of consequences, from code execution, XSS (CWE-79), or system crash.

Observed Examples

CVE-2019-20916

Reference Description
CVE-2022-45918

Chain: a learning management tool debugger uses external input to locate
previous session logs (CWE-73) and does not properly validate the given

path (CWE-20), allowing for filesystem path traversal using "../" sequences

(CWE-24)
https://www.cve.org/CVERecord?id=CVE-2022-45918

Python package manager does not correctly restrict the filename specified in

a Content-Disposition header, allowing arbitrary file read using path traversal

sequences such as "../"
https://www.cve.org/CVERecord?id=CVE-2019-20916

50

CWE Version 4.13
CWE-23: Relative Path Traversal

Reference
CVE-2022-24877

CVE-2020-4053

CVE-2021-21972

CVE-2019-10743

CVE-2002-0298

CVE-2002-0661

CVE-2002-0946

CVE-2002-1042

CVE-2002-1209

CVE-2002-1178

CVE-2002-1987

CVE-2005-2142

CVE-2002-0160

CVE-2001-0467

CVE-2001-0963

CVE-2001-1193

CVE-2001-1131

Description

directory traversal in Go-based Kubernetes operator app allows accessing
data from the controller's pod file system via ../ sequences in a yaml file
https://www.cve.org/CVERecord?id=CVE-2022-24877

a Kubernetes package manager written in Go allows malicious plugins to inject
path traversal sequences into a plugin archive ("Zip slip") to copy a file outside
the intended directory

https://www.cve.org/CVERecord?id=CVE-2020-4053

Chain: Cloud computing virtualization platform does not require authentication
for upload of a tar format file (CWE-306), then uses .. path traversal sequences
(CWE-23) in the file to access unexpected files, as exploited in the wild per
CISA KEV.

https://www.cve.org/CVERecord?id=CVE-2021-21972

Go-based archive library allows extraction of files to locations outside of the
target folder with "../" path traversal sequences in filenames in a zip file, aka
"Zip Slip"

https://www.cve.org/CVERecord?id=CVE-2019-10743

Server allows remote attackers to cause a denial of service via certain

HTTP GET requests containing a %2e%2e (encoded dot-dot), several "/../"
sequences, or several "../" in a URL.
https://www.cve.org/CVERecord?id=CVE-2002-0298

"\" not in denylist for web server, allowing path traversal attacks when the
server is run in Windows and other OSes.
https://www.cve.org/CVERecord?id=CVE-2002-0661

Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.
https://www.cve.org/CVERecord?id=CVE-2002-0946

Directory traversal vulnerability in search engine for web server allows remote
attackers to read arbitrary files via "..\" sequences in queries.
https://www.cve.org/CVERecord?id=CVE-2002-1042

Directory traversal vulnerability in FTP server allows remote attackers to read
arbitrary files via "..\" sequences in a GET request.
https://www.cve.org/CVERecord?id=CVE-2002-1209

Directory traversal vulnerability in servlet allows remote attackers to execute
arbitrary commands via "..\" sequences in an HTTP request.
https://www.cve.org/CVERecord?id=CVE-2002-1178

Protection mechanism checks for "/.." but doesn't account for Windows-specific
"\.." allowing read of arbitrary files.
https://www.cve.org/CVERecord?id=CVE-2002-1987

Directory traversal vulnerability in FTP server allows remote authenticated
attackers to list arbitrary directories via a "\.." sequence in an LS command.
https://www.cve.org/CVERecord?id=CVE-2005-2142

The administration function in Access Control Server allows remote attackers
to read HTML, Java class, and image files outside the web root viaa "..\.."
sequence in the URL to port 2002.
https://www.cve.org/CVERecord?id=CVE-2002-0160

"\..." in web server

https://www.cve.org/CVERecord?id=CVE-2001-0467

"..."in cd command in FTP server
https://www.cve.org/CVERecord?id=CVE-2001-0963

"..."in cd command in FTP server
https://www.cve.org/CVERecord?id=CVE-2001-1193

"..."in cd command in FTP server
https://www.cve.org/CVERecord?id=CVE-2001-1131

51

[esianel] yred aAleay :€z-3MD

CWE-23: Relative Path Traversal

CWE Version 4.13
CWE-23: Relative Path Traversal

Reference Description

CVE-2001-0480 read of arbitrary files and directories using GET or CD with "..." in Windows-
based FTP server.
https://www.cve.org/CVERecord?id=CVE-2001-0480

CVE-2002-0288 read files using "." and Unicode-encoded "/" or "\" characters in the URL.
https://www.cve.org/CVERecord?id=CVE-2002-0288

CVE-2003-0313 Directory listing of web server using "..."
https://www.cve.org/CVERecord?id=CVE-2003-0313

CVE-2005-1658 Triple dot
https://www.cve.org/CVERecord?id=CVE-2005-1658

CVE-2000-0240 read files via"/.......... /" in URL
https://www.cve.org/CVERecord?id=CVE-2000-0240

CVE-2000-0773 read files via "...." in web server
https://www.cve.org/CVERecord?id=CVE-2000-0773

CVE-1999-1082 read files via "......" in web server (doubled triple dot?)
https://www.cve.org/CVERecord?id=CVE-1999-1082
CVE-2004-2121 read files via "......" in web server (doubled triple dot?)
https://www.cve.org/CVERecord?id=CVE-2004-2121
CVE-2001-0491 multiple attacks using "..", "...", and "...." in different commands
https://www.cve.org/CVERecord?id=CVE-2001-0491
CVE-2001-0615 ".."or"...."in chat server

https://www.cve.org/CVERecord?id=CVE-2001-0615

CVE-2005-2169 chain: ".../.../[" bypasses protection mechanism using regexp's that remove "../"
resulting in collapse into an unsafe value "../* (CWE-182) and resultant path
traversal.
https://www.cve.org/CVERecord?id=CVE-2005-2169

CVE-2005-0202 "...[.../II" bypasses regexp's that remove "./* and "../"
https://www.cve.org/CVERecord?id=CVE-2005-0202

CVE-2004-1670 Mail server allows remote attackers to create arbitrary directories via a ".." or
rename arbitrary files via a "....//" in user supplied parameters.
https://www.cve.org/CVERecord?id=CVE-2004-1670

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2502
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken 1344 2422
Access Control

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Relative Path Traversal

Software Fault Patterns SFP16 Path Traversal

Related Attack Patterns
CAPEC-ID Attack Pattern Name

76 Manipulating Web Input to File System Calls
139 Relative Path Traversal
References

52

CWE Version 4.13
CWE-24: Path Traversal: "../filedir'

[REF-192]OWASP. "OWASP Attack listing". < http://www.owasp.org/index.php/
Relative_Path_Traversal >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. 1st Edition. 2006. Addison Wesley.

[REF-1282]Snyk. "Zip Slip Vulnerability". 2018 June 5. < https://security.snyk.io/research/zip-slip-
vulnerability >.

CWE-24: Path Traversal: '../filedir'

Weakness ID : 24
Structure : Simple
Abstraction : Variant

Description

The product uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "../" sequences that can resolve to a location that is
outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The "../" manipulation is the canonical manipulation for operating systems that use "/* as directory
separators, such as UNIX- and Linux-based systems. In some cases, it is useful for bypassing
protection schemes in environments for which "/" is supported but not the primary separator, such
as Windows, which uses "\" but can also accept "/".

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 46

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the

53

.Jlesianel] yred vz-aMOD

AIPB[Y/,

. [filedir'

CWE-25: Path Traversal:

CWE Version 4.13
CWE-25: Path Traversal: '/../filedir'

full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2022-45918 Chain: a learning management tool debugger uses external input to locate
previous session logs (CWE-73) and does not properly validate the given
path (CWE-20), allowing for filesystem path traversal using "../" sequences
(CWE-24)
https://www.cve.org/CVERecord?id=CVE-2022-45918

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER " ffiledir

Software Fault Patterns SFP16 Path Traversal

CWE-25: Path Traversal: '/../filedir’

Weakness ID : 25
Structure : Simple
Abstraction : Variant

Description

54

CWE Version 4.13
CWE-25: Path Traversal: '/../filedir'

The product uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "/../" sequences that can resolve to a location that is
outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

Sometimes a program checks for "../" at the beginning of the input, so a "/../" can bypass that
check.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 23 Relative Path Traversal 46

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[.../I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

55

.Jesianel] yred :GZ-ImMD

AIPB/,

‘Idir/..[filename’

CWE-26; Path Traversal:

CWE Version 4.13
CWE-26: Path Traversal: '/dir/../filename'

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2022-20775 A cloud management tool allows attackers to bypass the restricted shell using
path traversal sequences like "/../" in the USER environment variable.
https://www.cve.org/CVERecord?id=CVE-2022-20775

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER '/..[filedir

Software Fault Patterns SFP16 Path Traversal

CWE-26: Path Traversal: '/dir/../filename’

Weakness ID : 26
Structure : Simple
Abstraction : Variant

Description

The product uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "/dir/../filename" sequences that can resolve to a
location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The '/dir/../[filename' manipulation is useful for bypassing some path traversal protection schemes.
Sometimes a program only checks for "../" at the beginning of the input, so a "/../" can bypass that
check.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

56

CWE Version 4.13
CWE-26: Path Traversal: '/dir/../filename'

Nature Type ID Name Page
ChildOf (B 23 Relative Path Traversal 46

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)
Technology : Web Server (Prevalence = Often)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344
MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464

57

.Jlesianel] yred :92-ImMo

Sweus|y//Ip/,

'dir/../../[filename'

CWE-27: Path Traversal:

CWE Version 4.13
CWE-27: Path Traversal: 'dir/../../filename'

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER '[directoryl/../filename
Software Fault Patterns SFP16 Path Traversal

CWE-27: Path Traversal: 'dir/../../filename'

Weakness ID : 27
Structure : Simple
Abstraction : Variant

Description

The product uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize multiple internal "../" sequences that can resolve to a
location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The 'directory/../../filename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "../" sequence, so multiple "../" can bypass that
check. Alternately, this manipulation could be used to bypass a check for "../" at the beginning of
the pathname, moving up more than one directory level.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B] 23 Relative Path Traversal 46

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if

58

CWE Version 4.13
CWE-28: Path Traversal: "..\filedir'

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[...I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-0298 Server allows remote attackers to cause a denial of service via certain
HTTP GET requests containing a %2e%2e (encoded dot-dot), several "/../"
sequences, or several "../" in a URI.
https://www.cve.org/CVERecord?id=CVE-2002-0298

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER 'directory/../../filename

Software Fault Patterns SFP16 Path Traversal

CWE-28: Path Traversal: '. \filedir'

Weakness ID : 28
Structure : Simple
Abstraction : Variant

Description

The product uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "..\" sequences that can resolve to a location that is
outside of that directory.

59

.Jlesianel] yred :82-IMD

ARSI,

Xfiledir!

CWE-28: Path Traversal:

CWE Version 4.13
CWE-28: Path Traversal: "..\filedir'

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The '..\" manipulation is the canonical manipulation for operating systems that use "\" as directory
separators, such as Windows. However, it is also useful for bypassing path traversal protection
schemes that only assume that the "/" separator is valid.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 46

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[.../I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

60

CWE Version 4.13
CWE-29: Path Traversal: '\..\flename'

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-0661 "\" not in denylist for web server, allowing path traversal attacks when the
server is run in Windows and other OSes.
https://www.cve.org/CVERecord?id=CVE-2002-0661

CVE-2002-0946 Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.
https://www.cve.org/CVERecord?id=CVE-2002-0946

CVE-2002-1042 Directory traversal vulnerability in search engine for web server allows remote
attackers to read arbitrary files via "..\" sequences in queries.
https://www.cve.org/CVERecord?id=CVE-2002-1042

CVE-2002-1209 Directory traversal vulnerability in FTP server allows remote attackers to read
arbitrary files via "..\" sequences in a GET request.
https://www.cve.org/CVERecord?id=CVE-2002-1209

CVE-2002-1178 Directory traversal vulnerability in servlet allows remote attackers to execute
arbitrary commands via "..\" sequences in an HTTP request.
https://www.cve.org/CVERecord?id=CVE-2002-1178

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER ".\filename' (‘dot dot backslash")

Software Fault Patterns SFP16 Path Traversal

CWE-29: Path Traversal: '\..\filename'

Weakness ID : 29
Structure : Simple
Abstraction : Variant

Description

The product uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize \..\filename' (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

61

.Jlesianel] yred :62-IMD

SWEBUS[IN™,

\..\filename'

CWE-29: Path Traversal:

CWE Version 4.13
CWE-29: Path Traversal: ‘\..\filename'

This is similar to CWE-25, except using "\" instead of "/". Sometimes a program checks for "..\"
at the beginning of the input, so a "\..\" can bypass that check. It is also useful for bypassing path
traversal protection schemes that only assume that the "/* separator is valid.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf B 23 Relative Path Traversal 46

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..[I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same

62

CWE Version 4.13
CWE-30: Path Traversal: \dir\..\filename'

input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific
"\.." allowing read of arbitrary files.
https://www.cve.org/CVERecord?id=CVE-2002-1987

CVE-2005-2142 Directory traversal vulnerability in FTP server allows remote authenticated
attackers to list arbitrary directories via a "\.." sequence in an LS command.
https://www.cve.org/CVERecord?id=CVE-2005-2142

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER \..\filename' ('leading dot dot

backslash’)
Software Fault Patterns SFP16 Path Traversal

CWE-30: Path Traversal: "\dir\..\filename'

Weakness ID : 30
Structure : Simple
Abstraction : Variant

Description

The product uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "\dir\..\filename' (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

This is similar to CWE-26, except using "\" instead of "/". The "\dir\..\filename' manipulation is useful
for bypassing some path traversal protection schemes. Sometimes a program only checks for "..\"
at the beginning of the input, so a "\..\" can bypass that check.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 23 Relative Path Traversal 46

63

.Jlesianel] yred :0e-IMO

SWEUS[IN\\JIP\,

\dir\..\filename'

CWE-30; Path Traversal:

CWE Version 4.13
CWE-30: Path Traversal: \dir\..\filename'

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[.../I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific
"\.." allowing read of arbitrary files.
https://www.cve.org/CVERecord?id=CVE-2002-1987

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

64

CWE Version 4.13
CWE-31: Path Traversal: ‘dir\..\..\filename'

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER 7 - \directory\..\filename

Software Fault Patterns SFP16 Path Traversal

CWE-31: Path Traversal: 'dir\..\..\filename'

Weakness ID : 31
Structure : Simple
Abstraction : Variant

Description

The product uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize 'dir\..\..\filename' (multiple internal backslash dot dot)
sequences that can resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The 'din\..\..\flename' manipulation is useful for bypassing some path traversal protection schemes.
Sometimes a program only removes one "..\" sequence, so multiple "..\" can bypass that check.
Alternately, this manipulation could be used to bypass a check for "..\" at the beginning of the
pathname, moving up more than one directory level.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 23 Relative Path Traversal 46

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

65

.Jlesianel] yred :T€-IMD

SWEBUS[IN"\"\JIP,

'dir\..\..\filename'

CWE-31: Path Traversal:

CWE Version 4.13
CWE-31: Path Traversal: 'dir\..\..\filename'

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-0160 The administration function in Access Control Server allows remote attackers
to read HTML, Java class, and image files outside the web root via a "..\.."
sequence in the URL to port 2002.
https://www.cve.org/CVERecord?id=CVE-2002-0160

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344
MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER 8 - 'directory\..\..\filename
Software Fault Patterns SFP16 Path Traversal
References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

66

CWE Version 4.13
CWE-32: Path Traversal: "..." (Triple Dot)

CWE-32: Path Traversal: "..." (Triple Dot)

Weakness ID : 32
Structure : Simple
Abstraction : Variant

Description

The product uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '..." (triple dot) sequences that can resolve to a location
that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The '..." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\.." and might bypass checks that assume only two dots
are valid. Incomplete filtering, such as removal of "./" sequences, can ultimately produce valid ".."
sequences due to a collapse into unsafe value (CWE-182).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 23 Relative Path Traversal 46

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue."” Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a

single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory

67

.Jlesianel] yred :2e-amMo

(rog eiduy)

... (Triple Dot)

CWE-32; Path Traversal:

CWE Version 4.13
CWE-32: Path Traversal: "..." (Triple Dot)

separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/ is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2001-0467 "\..."in web server
https://www.cve.org/CVERecord?id=CVE-2001-0467

CVE-2001-0615 ".."or"..."in chat server
https://www.cve.org/CVERecord?id=CVE-2001-0615
CVE-2001-0963 "..."in cd command in FTP server
https://www.cve.org/CVERecord?id=CVE-2001-0963
CVE-2001-1193 "..."in cd command in FTP server
https://www.cve.org/CVERecord?id=CVE-2001-1193
CVE-2001-1131 "..."in cd command in FTP server

https://www.cve.org/CVERecord?id=CVE-2001-1131

CVE-2001-0480 read of arhitrary files and directories using GET or CD with "..." in Windows-
based FTP server.
https://www.cve.org/CVERecord?id=CVE-2001-0480

CVE-2002-0288 read files using "." and Unicode-encoded "/" or "\" characters in the URL.
https://www.cve.org/CVERecord?id=CVE-2002-0288

CVE-2003-0313 Directory listing of web server using "..."
https://www.cve.org/CVERecord?id=CVE-2003-0313

CVE-2005-1658 Triple dot
https://www.cve.org/CVERecord?id=CVE-2005-1658

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Notes

Maintenance

This manipulation-focused entry is currently hiding two distinct weaknesses, so it might need
to be split. The manipulation is effective in two different contexts: it is equivalent to "..\.." on
Windows, or it can take advantage of incomplete filtering, e.g. if the programmer does a single-
pass removal of "./" in a string (collapse of data into unsafe value, CWE-182).

68

CWE Version 4.13
CWE-33: Path Traversal: "...." (Multiple Dot)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER "..." (triple dot)

Software Fault Patterns SFP16 Path Traversal
CWE-33: Path Traversal: "...." (Multiple Dot)

Weakness ID : 33
Structure : Simple
Abstraction : Variant

Description

The product uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '...." (multiple dot) sequences that can resolve to a
location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The '...." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\..\.." and might bypass checks that assume only two dots
are valid. Incomplete filtering, such as removal of "./" sequences, can ultimately produce valid ".."
sequences due to a collapse into unsafe value (CWE-182).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B] 23 Relative Path Traversal 46
CanFollow E] 182 Collapse of Data into Unsafe Value 455

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

69

|lesianel] yred :€€-ImMD

(o@ aydnininy)

.... (Multiple Dot)

CWE-33: Path Traversal:

CWE Version 4.13
CWE-33: Path Traversal: "...." (Multiple Dot)

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2000-0240 read files via ".......... /" in URL
https://www.cve.org/CVERecord?id=CVE-2000-0240

CVE-2000-0773 read files via "...." in web server
https://www.cve.org/CVERecord?id=CVE-2000-0773

CVE-1999-1082 read files via "......" in web server (doubled triple dot?)
https://www.cve.org/CVERecord?id=CVE-1999-1082
CVE-2004-2121 read files via "......" in web server (doubled triple dot?)
https://www.cve.org/CVERecord?id=CVE-2004-2121
CVE-2001-0491 multiple attacks using "..", "...", and "...." in different commands
https://www.cve.org/CVERecord?id=CVE-2001-0491
CVE-2001-0615 ".."or"..."in chat server

https://www.cve.org/CVERecord?id=CVE-2001-0615
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Notes

Maintenance

Like the triple-dot CWE-32, this manipulation probably hides multiple weaknesses that should be
made more explicit.

Taxonomy Mappings

70

CWE Version 4.13
CWE-34: Path Traversal: "..../I"

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER "...." (multiple dot)
Software Fault Patterns SFP16 Path Traversal

CWE-34: Path Traversal: '..../I'

Weakness ID : 34
Structure : Simple
Abstraction : Variant

Description

The product uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '....//' (doubled dot dot slash) sequences that can
resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The "..../I' manipulation is useful for bypassing some path traversal protection schemes. If "../"

is filtered in a sequential fashion, as done by some regular expression engines, then "....//" can
collapse into the "../" unsafe value (CWE-182). It could also be useful when ".." is removed, if the
operating system treats "//" and "/" as equivalent.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (] 23 Relative Path Traversal 46
CanFollow Q 182 Collapse of Data into Unsafe Value 455

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Detection Methods
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Patrtial
Architecture or Design Review

71

.[esianel] yred v£-ImMOD

T

Al

CWE-34: Path Traversal:

CWE Version 4.13
CWE-34: Path Traversal: "..../I"

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction

Effectiveness = High
Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/ is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..[I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2004-1670 Mail server allows remote attackers to create arbitrary directories via a ".." or
rename arbitrary files via a "..../I" in user supplied parameters.
https://www.cve.org/CVERecord?id=CVE-2004-1670

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344
MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464

72

CWE Version 4.13
CWE-35: Path Traversal: ".../.../I"

Notes
Relationship
This could occur due to a cleansing error that removes a single "../" from "..../["
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER "..../I' (doubled dot dot slash)
Software Fault Patterns SFP16 Path Traversal

CWE-35: Path Traversal: '.../[...II"

Weakness ID : 35
Structure : Simple
Abstraction : Variant

Description

The product uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '.../.../I' (doubled triple dot slash) sequences that can
resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The '.../.../I'manipulation is useful for bypassing some path traversal protection schemes. If "../"
is filtered in a sequential fashion, as done by some regular expression engines, then ".../.../[" can
collapse into the "../" unsafe value (CWE-182). Removing the first "../" yields "..../["; the second
removal yields "../". Depending on the algorithm, the product could be susceptible to CWE-34 but
not CWE-35, or vice versa.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf Q@ 23 Relative Path Traversal 46
CanFollow E] 182 Collapse of Data into Unsafe Value 455

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

73

.[esianel] yred :Ge-IMOD

e

Il

A

CWE-35:; Path Traversal:

CWE Version 4.13
CWE-35: Path Traversal: "...[.../I"

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2005-2169 chain: ".../.../[" bypasses protection mechanism using regexp's that remove "../"
resulting in collapse into an unsafe value "../" (CWE-182) and resultant path

traversal.
https://www.cve.org/CVERecord?id=CVE-2005-2169
CVE-2005-0202 "...I.../lI" bypasses regexp's that remove "./" and "../"

https://www.cve.org/CVERecord?id=CVE-2005-0202
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken 1344 2422
Access Control

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER LT

74

CWE Version 4.13
CWE-36: Absolute Path Traversal

Mapped Taxonomy Name Node ID Fit
Software Fault Patterns

SFP16

Mapped Node Name
Path Traversal

CWE-36: Absolute Path Traversal

Weakness ID : 36
Structure : Simple
Abstraction : Base

Description

The product uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize absolute path sequences such as "/abs/path” that can
resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the

restricted directory.
Relationships

The table(s) below shows the weaknesses and high level categories that are related to this

weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID
ChildOf (B] 22
ParentOf V] 37
ParentOf (V] 38
ParentOf V] 39
ParentOf (V] 40

Name

Improper Limitation of a Pathname to a Restricted Directory
(‘Path Traversal’)

Path Traversal:
Path Traversal:
Path Traversal:
Path Traversal:

'labsolute/pathname/here’
\absolute\pathname\here'

'C:dirname’

"WUNC\share\name\' (Windows UNC Share)

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID

ChildOf (B}

22

Name

Improper Limitation of a Pathname to a Restricted Directory
(‘Path Traversal’)

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID

ChildOf (B}

Applicable Platforms

22

Name

Page
33

79
80
82

Page

Improper Limitation of a Pathname to a Restricted Directory 33
(‘Path Traversal’)

Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope
Integrity
Confidentiality
Availability

Integrity

Impact

Likelihood

Execute Unauthorized Code or Commands

The attacker may be able to create or overwrite critical
files that are used to execute code, such as programs or

libraries.
Modify Files or Directories

75

[esiaAel] ylred ain|osqy :9¢-IMD

CWE-36: Absolute Path Traversal

CWE Version 4.13
CWE-36: Absolute Path Traversal

Scope Impact Likelihood
The attacker may be able to overwrite or create critical
files, such as programs, libraries, or important data. If
the targeted file is used for a security mechanism, then
the attacker may be able to bypass that mechanism.
For example, appending a new account at the end
of a password file may allow an attacker to bypass
authentication.
Confidentiality Read Files or Directories

The attacker may be able read the contents of unexpected
files and expose sensitive data. If the targeted file is used
for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, by reading a
password file, the attacker could conduct brute force
password guessing attacks in order to break into an
account on the system.

Availability DoS: Crash, Exit, or Restart

The attacker may be able to overwrite, delete, or corrupt
unexpected critical files such as programs, libraries, or
important data. This may prevent the product from working
at all and in the case of a protection mechanisms such as
authentication, it has the potential to lockout every user of
the product.

Detection Methods
Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST),
can find some instances of this weakness by analyzing source code (or binary/compiled code)
without having to execute it. Typically, this is done by building a model of data flow and control
flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input)
with "sinks" (destinations where the data interacts with external components, a lower layer such
as the OS, etc.)

Effectiveness = High
Demonstrative Examples
Example 1:
In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object.
Example Language: Java (Bad)

String filename = System.getProperty(“com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);

However, the path is not validated or modified to prevent it from containing relative or absolute
path sequences before creating the File object. This allows anyone who can control the system
property to determine what file is used. Ideally, the path should be resolved relative to some kind of
application or user home directory.

Example 2:

This script intends to read a user-supplied file from the current directory. The user inputs the
relative path to the file and the script uses Python's os.path.join() function to combine the path to
the current working directory with the provided path to the specified file. This results in an absolute

76

CWE Version 4.13
CWE-36: Absolute Path Traversal

path to the desired file. If the file does not exist when the script attempts to read it, an error is
printed to the user.

Example Language: Python (Bad)
import os
import sys
def main():
filename = sys.argv[1]
path = os.path.join(os.getcwd(), filename)
try:
with open(path, 'r') as f:
file_data = f.read()
except FileNotFoundError as e:
print("Error - file not found")
main()

However, if the user supplies an absolute path, the os.path.join() function will discard the path to
the current working directory and use only the absolute path provided. For example, if the current
working directory is /home/user/documents, but the user inputs /etc/passwd, os.path.join() will use
only /etc/passwd, as it is considered an absolute path. In the above scenario, this would cause the
script to access and read the /etc/passwd file.

Example Language: Python (Good)
import os
import sys
def main():
filename = sys.argv[1]
path = os.path.normpath(f*{os.getcwd()}{os.sep}{filename}")
try:
with open(path, 'r') as f:
file_data = f.read()
except FileNotFoundError as e:
print("Error - file not found")
main()

The constructed path string uses o0s.sep to add the appropriate separation character for the given
operating system (e.g. '\' or /') and the call to os.path.normpath() removes any additional slashes
that may have been entered - this may occur particularly when using a Windows path. By putting
the pieces of the path string together in this fashion, the script avoids a call to os.path.join() and
any potential issues that might arise if an absolute path is entered. With this version of the script,

if the current working directory is /nome/user/documents, and the user inputs /etc/passwd, the
resulting path will be /home/user/documents/etc/passwd. The user is therefore contained within the
current working directory as intended.

Observed Examples

Reference Description

CVE-2022-31503 Python package constructs filenames using an unsafe os.path.join call on
untrusted input, allowing absolute path traversal because os.path.join resets
the pathname to an absolute path that is specified as part of the input.
https://www.cve.org/CVERecord?id=CVE-2022-31503

CVE-2002-1345 Multiple FTP clients write arbitrary files via absolute paths in server responses
https://www.cve.org/CVERecord?id=CVE-2002-1345

CVE-2001-1269 ZIP file extractor allows full path
https://www.cve.org/CVERecord?id=CVE-2001-1269

CVE-2002-1818 Path traversal using absolute pathname
https://www.cve.org/CVERecord?id=CVE-2002-1818

CVE-2002-1913 Path traversal using absolute pathname
https://www.cve.org/CVERecord?id=CVE-2002-1913

77

[esiaAel] ylred ain|osqy :9¢-IMD

CWE-36: Absolute Path Traversal

CWE Version 4.13
CWE-36: Absolute Path Traversal

Reference
CVE-2005-2147
CVE-2000-0614

CVE-1999-1263

CVE-2003-0753

CVE-2002-1525

CVE-2001-0038

CVE-2001-0255

CVE-2001-0933

CVE-2002-0466

CVE-2002-1483

CVE-2004-2488

CVE-2001-0687

Description

Path traversal using absolute pathname
https://www.cve.org/CVERecord?id=CVE-2005-2147

Arbitrary files may be overwritten via compressed attachments that specify
absolute path names for the decompressed output.
https://www.cve.org/CVERecord?id=CVE-2000-0614

Malil client allows remote attackers to overwrite arbitrary files via an e-mail
message containing a uuencoded attachment that specifies the full pathname
for the file to be modified.

https://www.cve.org/CVERecord?id=CVE-1999-1263

Remote attackers can read arbitrary files via a full pathname to the target file in
config parameter.

https://www.cve.org/CVERecord?id=CVE-2003-0753

Remote attackers can read arbitrary files via an absolute pathname.
https://www.cve.org/CVERecord?id=CVE-2002-1525

Remote attackers can read arbitrary files by specifying the drive letter in the
requested URL.

https://www.cve.org/CVERecord?id=CVE-2001-0038

FTP server allows remote attackers to list arbitrary directories by using the
"Is" command and including the drive letter name (e.g. C:) in the requested
pathname.

https://www.cve.org/CVERecord?id=CVE-2001-0255

FTP server allows remote attackers to list the contents of arbitrary drives via a
Is command that includes the drive letter as an argument.
https://www.cve.org/CVERecord?id=CVE-2001-0933

Server allows remote attackers to browse arbitrary directories via a full
pathname in the arguments to certain dynamic pages.
https://www.cve.org/CVERecord?id=CVE-2002-0466

Remote attackers can read arbitrary files via an HTTP request whose
argument is a filename of the form "C:" (Drive letter), "//absolute/path”, or ".." .
https://www.cve.org/CVERecord?id=CVE-2002-1483

FTP server read/access arbitrary files using "C:\" filenames
https://www.cve.org/CVERecord?id=CVE-2004-2488

FTP server allows a remote attacker to retrieve privileged web server system
information by specifying arbitrary paths in the UNC format (\\computername
\sharename).

https://www.cve.org/CVERecord?id=CVE-2001-0687

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type

MemberOf
MemberOf
MemberOf

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit

PLOVER

Software Fault Patterns

ID Name Page
884 CWE Cross-section 884 2502
981 SFP Secondary Cluster: Path Traversal 888 2344
1404 Comprehensive Categorization: File Handling 1400 2464

Mapped Node Name
Absolute Path Traversal

SFP16 Path Traversal

Related Attack Patterns

78

CWE Version 4.13
CWE-37: Path Traversal: '/absolute/pathname/here'

CAPEC-ID Attack Pattern Name
597 Absolute Path Traversal

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. 1st Edition. 2006. Addison Wesley.

CWE-37: Path Traversal: '/absolute/pathname/here'

Weakness ID : 37
Structure : Simple
Abstraction : Variant

Description

The product accepts input in the form of a slash absolute path (‘/absolute/pathname/here’) without
appropriate validation, which can allow an attacker to traverse the file system to unintended
locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 160 Improper Neutralization of Leading Special Elements 412
ChildOf (B) 36 Absolute Path Traversal 75

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a

single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
79

,SJGH/SWEUHIBd/Sln|OSC]E/, .lesianel] ylred :.&-aMND

CWE-38: Path Traversal: \absolute\pathname\here'

CWE Version 4.13
CWE-38: Path Traversal: \absolute\pathname\here'

separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/ is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-1345 Multiple FTP clients write arbitrary files via absolute paths in server responses
https://www.cve.org/CVERecord?id=CVE-2002-1345

CVE-2001-1269 ZIP file extractor allows full path
https://www.cve.org/CVERecord?id=CVE-2001-1269

CVE-2002-1818 Path traversal using absolute pathname
https://www.cve.org/CVERecord?id=CVE-2002-1818

CVE-2002-1913 Path traversal using absolute pathname
https://www.cve.org/CVERecord?id=CVE-2002-1913

CVE-2005-2147 Path traversal using absolute pathname
https://www.cve.org/CVERecord?id=CVE-2005-2147

CVE-2000-0614 Arbitrary files may be overwritten via compressed attachments that specify
absolute path names for the decompressed output.
https://www.cve.org/CVERecord?id=CVE-2000-0614

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 2282
Input Output (FIO)

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 2312

(FIO)

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER /absolute/pathname/here

CERT C Secure Coding FIO05-C Identify files using multiple file attributes

Software Fault Patterns SFP16 Path Traversal

CWE-38: Path Traversal: \absolute\pathname\here'

80

CWE Version 4.13
CWE-38: Path Traversal: "\absolute\pathname\here'

Weakness ID : 38
Structure : Simple
Abstraction : Variant

Description

The product accepts input in the form of a backslash absolute path (\absolute\pathname\here')
without appropriate validation, which can allow an attacker to traverse the file system to unintended
locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf E) 36 Absolute Path Traversal 75

Applicable Platforms

Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue."” Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High
Phase: Implementation

81

,SJGH\SWEULHEd\S],n|OSC]E\, .lesianel] ylred :8¢-amnMD

'C:dirname’

CWE-39: Path Traversal:

CWE Version 4.13
CWE-39: Path Traversal: 'C:dirname’

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-1999-1263 Mail client allows remote attackers to overwrite arbitrary files via an e-mail
message containing a uuencoded attachment that specifies the full pathname
for the file to be modified.
https://www.cve.org/CVERecord?id=CVE-1999-1263

CVE-2003-0753 Remote attackers can read arbitrary files via a full pathname to the target file in
config parameter.
https://www.cve.org/CVERecord?id=CVE-2003-0753

CVE-2002-1525 Remote attackers can read arbitrary files via an absolute pathname.
https://www.cve.org/CVERecord?id=CVE-2002-1525

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 2282
Input Output (FIO)

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 2312

(FI0)
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344
MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER \absolute\pathname\here (‘backslash
absolute path’)

CERT C Secure Coding FIO05-C Identify files using multiple file attributes

Software Fault Patterns SFP16 Path Traversal

CWE-39: Path Traversal: 'C:dirname’

Weakness ID : 39
Structure : Simple
Abstraction : Variant

Description

The product accepts input that contains a drive letter or Windows volume letter ('C:dirname’) that
potentially redirects access to an unintended location or arbitrary file.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

82

CWE Version 4.13

CWE-39: Path Traversal: 'C:dirname’

Nature
ChildOf

Applicable Platforms

Type ID Name

36 Absolute Path Traversal

Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope
Integrity
Confidentiality
Availability

Integrity

Confidentiality

Availability

Potential Mitigations

Impact
Execute Unauthorized Code or Commands

The attacker may be able to create or overwrite critical
files that are used to execute code, such as programs or
libraries.

Modify Files or Directories

The attacker may be able to overwrite or create critical
files, such as programs, libraries, or important data. If
the targeted file is used for a security mechanism, then
the attacker may be able to bypass that mechanism.
For example, appending a new account at the end

of a password file may allow an attacker to bypass
authentication.

Read Files or Directories

The attacker may be able read the contents of unexpected
files and expose sensitive data. If the targeted file is used
for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, by reading a
password file, the attacker could conduct brute force
password guessing attacks in order to break into an
account on the system.

DoS: Crash, Exit, or Restart

The attacker may be able to overwrite, delete, or corrupt
unexpected critical files such as programs, libraries,

or important data. This may prevent the software from
working at all and in the case of a protection mechanisms
such as authentication, it has the potential to lockout every
user of the software.

Phase: Implementation

Strategy = Input Validation

Page
75

Likelihood

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory

83

.[esianel] yred :6£-IMD

2weulp:D,

'C:dirname’

CWE-39: Path Traversal:

CWE Version 4.13
CWE-39: Path Traversal: 'C:dirname’

separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/ is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2001-0038 Remote attackers can read arbitrary files by specifying the drive letter in the
requested URL.
https://www.cve.org/CVERecord?id=CVE-2001-0038

CVE-2001-0255 FTP server allows remote attackers to list arbitrary directories by using the
"Is" command and including the drive letter name (e.g. C:) in the requested
pathname.
https://www.cve.org/CVERecord?id=CVE-2001-0255

CVE-2001-0687 FTP server allows a remote attacker to retrieve privileged system information
by specifying arbitrary paths.
https://www.cve.org/CVERecord?id=CVE-2001-0687

CVE-2001-0933 FTP server allows remote attackers to list the contents of arbitrary drives via a
Is command that includes the drive letter as an argument.
https://www.cve.org/CVERecord?id=CVE-2001-0933

CVE-2002-0466 Server allows remote attackers to browse arbitrary directories via a full
pathname in the arguments to certain dynamic pages.
https://www.cve.org/CVERecord?id=CVE-2002-0466

CVE-2002-1483 Remote attackers can read arbitrary files via an HTTP request whose
argument is a filename of the form "C:" (Drive letter), "//absolute/path”, or ".." .
https://www.cve.org/CVERecord?id=CVE-2002-1483

CVE-2004-2488 FTP server read/access arbitrary files using "C:\" filenames
https://www.cve.org/CVERecord?id=CVE-2004-2488

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 2282
Input Output (FIO)

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 2312

(FIO)
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344
MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464

Taxonomy Mappings

84

CWE Version 4.13
CWE-40: Path Traversal: \UNC\share\name\' (Windows UNC Share)

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER 'C:dirname’ or C: (Windows volume or
'drive letter")

CERT C Secure Coding FIO05-C Identify files using multiple file attributes

Software Fault Patterns SFP16 Path Traversal

CWE-40: Path Traversal: "WUNC\share\name\' (Windows UNC Share)

Weakness ID : 40
Structure : Simple
Abstraction : Variant

Description

The product accepts input that identifies a Windows UNC share (\\UNC\share\name") that
potentially redirects access to an unintended location or arbitrary file.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B] 36 Absolute Path Traversal 75

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing

input validation, consider all potentially relevant properties, including length, type of input, the

full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For

85

(812YyS DNN SMOPUIAN) \aweu\ateys\ONN\\, :[esianell yred :0t-3MD

CWE-41: Improper Resolution of Path Equivalence

CWE Version 4.13
CWE-41: Improper Resolution of Path Equivalence

example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2001-0687 FTP server allows a remote attacker to retrieve privileged web server system
information by specifying arbitrary paths in the UNC format (\\computername
\sharename).
https://www.cve.org/CVERecord?id=CVE-2001-0687

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344
MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER "WUNC\share\name\' (Windows UNC
share)
Software Fault Patterns SFP16 Path Traversal
References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. 1st Edition. 2006. Addison Wesley.

CWE-41: Improper Resolution of Path Equivalence

Weakness ID : 41
Structure : Simple
Abstraction : Base

Description

The product is vulnerable to file system contents disclosure through path equivalence. Path
equivalence involves the use of special characters in file and directory names. The associated
manipulations are intended to generate multiple names for the same object.

Extended Description

Path equivalence is usually employed in order to circumvent access controls expressed using
an incomplete set of file name or file path representations. This is different from path traversal,
wherein the manipulations are performed to generate a name for a different object.

86

CWE Version 4.13

CWE-41: Improper Resolution of Path Equivalence

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID
ChildOf (C] 706
ParentOf (V] 42
ParentOf O 44
ParentOf O 46
ParentOf O 47
ParentOf O 48
ParentOf O 49
ParentOf O 50
ParentOf O 51
ParentOf O 52
ParentOf O 53
ParentOf O 54
ParentOf O 55
ParentOf O 56
ParentOf O 57
ParentOf O 58
PeerOf B 1289
CanFollow (C) 20
CanFollow B 73
CanFollow (C) 172

Relevant to the view "Software Development" (CWE-699)

Nature
MemberOf

Applicable Platforms

Type ID

Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope
Confidentiality
Integrity
Access Control

Detection Methods

Name Page
Use of Incorrectly-Resolved Name or Reference 1525
Path Equivalence: ‘filename.' (Trailing Dot) 92
Path Equivalence: ‘file.name' (Internal Dot) 94
Path Equivalence: ‘filename ' (Trailing Space) 96
Path Equivalence: ' filename' (Leading Space) 97
Path Equivalence: 'file name' (Internal Whitespace) 98
Path Equivalence: ‘filename/' (Trailing Slash) 99
Path Equivalence: '//multiple/leading/slash’ 100
Path Equivalence: '/multiple//internal/slash’ 102
Path Equivalence: '/multiple/trailing/slash//' 103
Path Equivalence: \multiple\\internal\backslash’ 104
Path Equivalence: 'filedir\' (Trailing Backslash) 105
Path Equivalence: '/./' (Single Dot Directory) 106
Path Equivalence: 'filedir*' (Wildcard) 107
Path Equivalence: ‘fakedir/../realdir/filename’ 108
Path Equivalence: Windows 8.3 Filename 110
Improper Validation of Unsafe Equivalence in Input 2105
Improper Input Validation 20
External Control of File Name or Path 132
Encoding Error 432
Name Page
1219 File Handling Issues 2414
Likelihood

Impact

Read Files or Directories
Modify Files or Directories
Bypass Protection Mechanism

An attacker may be able to traverse the file system to
unintended locations and read or overwrite the contents
of unexpected files. If the files are used for a security
mechanism than an attacker may be able to bypass the
mechanism.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness

analysis

87

9ouajeAlnb3 yred Jo uonnjosay Jadoisdw| :Ty-IMD

CWE Version 4.13
CWE-41: Improper Resolution of Path Equivalence

Effectiveness = SOAR Partial
Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial
Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial
Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial
Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial
Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High
Potential Mitigations

Phase: Implementation

CWE-41: Improper Resolution of Path Equivalence

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

88

CWE Version 4.13
CWE-41: Improper Resolution of Path Equivalence

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that

is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either

by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference
CVE-2000-1114

CVE-2002-1986

CVE-2004-2213

CVE-2005-3293

CVE-2004-0061

CVE-2000-1133

CVE-2001-1386

CVE-2001-0693

CVE-2001-0778

CVE-2001-1248

CVE-2004-0280

CVE-2005-0622

CVE-2005-1656

CVE-2002-1603

CVE-2001-0054

CVE-2002-1451

Description

Source code disclosure using trailing dot
https://www.cve.org/CVERecord?id=CVE-2000-1114

Source code disclosure using trailing dot
https://www.cve.org/CVERecord?id=CVE-2002-1986

Source code disclosure using trailing dot or trailing encoding space "%20
https://www.cve.org/CVERecord?id=CVE-2004-2213

Source code disclosure using trailing dot
https://www.cve.org/CVERecord?id=CVE-2005-3293

Bypass directory access restrictions using trailing dot in URL
https://www.cve.org/CVERecord?id=CVE-2004-0061

Bypass directory access restrictions using trailing dot in URL
https://www.cve.org/CVERecord?id=CVE-2000-1133

Bypass check for ".Ink" extension using ".Ink."
https://www.cve.org/CVERecord?id=CVE-2001-1386

Source disclosure via trailing encoded space "%20"
https://www.cve.org/CVERecord?id=CVE-2001-0693

Source disclosure via trailing encoded space "%20"
https://www.cve.org/CVERecord?id=CVE-2001-0778

Source disclosure via trailing encoded space "%20"
https://www.cve.org/CVERecord?id=CVE-2001-1248

Source disclosure via trailing encoded space "%20"
https://www.cve.org/CVERecord?id=CVE-2004-0280

Source disclosure via trailing encoded space "%20"
https://www.cve.org/CVERecord?id=CVE-2005-0622

Source disclosure via trailing encoded space "%20"
https://www.cve.org/CVERecord?id=CVE-2005-1656

Source disclosure via trailing encoded space "%20"
https://www.cve.org/CVERecord?id=CVE-2002-1603

Multi-Factor Vulnerability (MFV). directory traversal and other issues in FTP
server using Web encodings such as "%20"; certain manipulations have
unusual side effects.
https://www.cve.org/CVERecord?id=CVE-2001-0054

Trailing space ("+" in query string) leads to source code disclosure.
https://www.cve.org/CVERecord?id=CVE-2002-1451

89

9ouajeAlnb3 yred Jo uonnjosay Jadoisdw| :Ty-IMD

CWE-41: Improper Resolution of Path Equivalence

CWE Version 4.13
CWE-41: Improper Resolution of Path Equivalence

Reference
CVE-2000-0293

CVE-2001-1567

CVE-2002-0253

CVE-2001-0446

CVE-2004-0334

CVE-2001-0893

CVE-2001-0892

CVE-2004-1814

BID:3518

CVE-2002-1483

CVE-1999-1456

CVE-2004-0578

CVE-2002-0275

CVE-2004-1032

CVE-2002-1238

CVE-2004-1878

CVE-2005-1365

CVE-2000-1050

CVE-2001-1072

Description

Filenames with spaces allow arbitrary file deletion when the product does not
properly quote them; some overlap with path traversal.
https://www.cve.org/CVERecord?id=CVE-2000-0293

"+" characters in query string converted to spaces before sensitive file/
extension (internal space), leading to bypass of access restrictions to the file.
https://www.cve.org/CVERecord?id=CVE-2001-1567

Overlaps infoleak

https://www.cve.org/CVERecord?id=CVE-2002-0253

Application server allows remote attackers to read source code for .jsp files by
appending a / to the requested URL.
https://www.cve.org/CVERecord?id=CVE-2001-0446

Bypass Basic Authentication for files using trailing "/"
https://www.cve.org/CVERecord?id=CVE-2004-0334

Read sensitive files with trailing "/"
https://www.cve.org/CVERecord?id=CVE-2001-0893

Web server allows remote attackers to view sensitive files under the document
root (such as .htpasswd) via a GET request with a trailing /.
https://www.cve.org/CVERecord?id=CVE-2001-0892

Directory traversal vulnerability in server allows remote attackers to read
protected files via .. (dot dot) sequences in an HTTP request.
https://www.cve.org/CVERecord?id=CVE-2004-1814

Source code disclosure

http://www.securityfocus.com/bid/3518

Read files with full pathname using multiple internal slash.
https://www.cve.org/CVERecord?id=CVE-2002-1483

Server allows remote attackers to read arbitrary files via a GET request with
more than one leading / (slash) character in the filename.
https://www.cve.org/CVERecord?id=CVE-1999-1456

Server allows remote attackers to read arbitrary files via leading slash (//)
characters in a URL request.

https://www.cve.org/CVERecord?id=CVE-2004-0578

Server allows remote attackers to bypass authentication and read restricted
files via an extra / (slash) in the requested URL.
https://www.cve.org/CVERecord?id=CVE-2002-0275

Product allows local users to delete arbitrary files or create arbitrary empty files
via a target filename with a large number of leading slash (/) characters.
https://www.cve.org/CVERecord?id=CVE-2004-1032

Server allows remote attackers to bypass access restrictions for files via an
HTTP request with a sequence of multiple / (slash) characters such as http://
www.example.com///file/.

https://www.cve.org/CVERecord?id=CVE-2002-1238

Product allows remote attackers to bypass authentication, obtain sensitive
information, or gain access via a direct request to admin/user.pl preceded by //
(double leading slash).

https://www.cve.org/CVERecord?id=CVE-2004-1878

Server allows remote attackers to execute arbitrary commands via a URL with
multiple leading "/" (slash) characters and ".." sequences.
https://www.cve.org/CVERecord?id=CVE-2005-1365

Access directory using multiple leading slash.
https://www.cve.org/CVERecord?id=CVE-2000-1050

Bypass access restrictions via multiple leading slash, which causes a regular
expression to fail.

https://www.cve.org/CVERecord?id=CVE-2001-1072

90

CWE Version 4.13
CWE-41: Improper Resolution of Path Equivalence

Reference

CVE-2004-0235

CVE-2002-1078

CVE-2004-0847

CVE-2000-0004

CVE-2002-0304

BID:6042

CVE-1999-1083

CVE-2004-0815

CVE-2002-0112

CVE-2004-0696

CVE-2002-0433

CVE-2001-1152

CVE-2000-0191

CVE-2005-1366

CVE-1999-0012

CVE-2001-0795

CVE-2005-0471

Description

Archive extracts to arbitrary files using multiple leading slash in filenames in
the archive.

https://www.cve.org/CVERecord?id=CVE-2004-0235

Directory listings in web server using multiple trailing slash
https://www.cve.org/CVERecord?id=CVE-2002-1078

ASP.NET allows remote attackers to bypass authentication for .aspx files

in restricted directories via a request containing a (1) "\" (backslash) or (2)
"%5C" (encoded backslash), aka "Path Validation Vulnerability."
https://www.cve.org/CVERecord?id=CVE-2004-0847

Server allows remote attackers to read source code for executable files by
inserting a . (dot) into the URL.
https://www.cve.org/CVERecord?id=CVE-2000-0004

Server allows remote attackers to read password-protected files via a /./ in the
HTTP request.

https://www.cve.org/CVERecord?id=CVE-2002-0304

Input Validation error

http://www.securityfocus.com/bid/6042

Possibly (could be a cleansing error)
https://www.cve.org/CVERecord?id=CVE-1999-1083

"/.llllletc" cleansed to ".///etc" then "/etc"
https://www.cve.org/CVERecord?id=CVE-2004-0815

Server allows remote attackers to view password protected files via /./ in the
URL.

https://www.cve.org/CVERecord?id=CVE-2002-0112

List directories using desired path and "*"
https://www.cve.org/CVERecord?id=CVE-2004-0696

List files in web server using "*.ext"
https://www.cve.org/CVERecord?id=CVE-2002-0433

Proxy allows remote attackers to bypass denylist restrictions and connect to
unauthorized web servers by modifying the requested URL, including (1) a //
(double slash), (2) a /SUBDIR/.. where the desired file is in the parentdir, (3)
al.l, or (4) URL-encoded characters.
https://www.cve.org/CVERecord?id=CVE-2001-1152

application check access for restricted URL before canonicalization
https://www.cve.org/CVERecord?id=CVE-2000-0191

CGil source disclosure using "dirname/../cgi-bin"
https://www.cve.org/CVERecord?id=CVE-2005-1366

Multiple web servers allow restriction bypass using 8.3 names instead of long
names

https://www.cve.org/CVERecord?id=CVE-1999-0012

Source code disclosure using 8.3 file name.
https://www.cve.org/CVERecord?id=CVE-2001-0795

Multi-Factor Vulnerability. Product generates temporary filenames using long
filenames, which become predictable in 8.3 format.
https://www.cve.org/CVERecord?id=CVE-2005-0471

9ouajeAlnb3 yred Jo uonnjosay Jadoisdw| :Ty-IMD

Affected Resources
* File or Directory
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

91

CWE-42: Path Equivalence: 'filename.' (Trailing Dot)

CWE Version 4.13
CWE-42: Path Equivalence: filename.' (Trailing Dot)

Nature Type ID Name Page

MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access 711 2270
Control

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 2282

Input Output (FIO)

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 2312
(FIO)
MemberOf 884 CWE Cross-section 884 2502
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344
MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Notes

Relationship
Some of these manipulations could be effective in path traversal issues, too.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Path Equivalence
CERT C Secure Coding FIO02-C Canonicalize path names originating

from untrusted sources
Related Attack Patterns

CAPEC-ID Attack Pattern Name
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters

CWE-42: Path Equivalence: 'filename.' (Trailing Dot)

Weakness ID : 42
Structure : Simple
Abstraction : Variant

Description

The product accepts path input in the form of trailing dot (‘filedir.") without appropriate validation,
which can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 162 Improper Neutralization of Trailing Special Elements 416
ChildOf (B] 41 Improper Resolution of Path Equivalence 86
ParentOf V] 43 Path Equivalence: 'filename...." (Multiple Trailing Dot) 93

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

92

CWE Version 4.13
CWE-43: Path Equivalence: filename...." (Multiple Trailing Dot)

Scope Impact Likelihood
Observed Examples

Reference Description
CVE-2000-1114 Source code disclosure using trailing dot
https://www.cve.org/CVERecord?id=CVE-2000-1114
CVE-2002-1986 Source code disclosure using trailing dot
https://www.cve.org/CVERecord?id=CVE-2002-1986
CVE-2004-2213 Source code disclosure using trailing dot
https://www.cve.org/CVERecord?id=CVE-2004-2213
CVE-2005-3293 Source code disclosure using trailing dot
https://www.cve.org/CVERecord?id=CVE-2005-3293
CVE-2004-0061 Bypass directory access restrictions using trailing dot in URL
https://www.cve.org/CVERecord?id=CVE-2004-0061
CVE-2000-1133 Bypass directory access restrictions using trailing dot in URL
https://www.cve.org/CVERecord?id=CVE-2000-1133
CVE-2001-1386 Bypass check for ".Ink" extension using ".Ink."
https://www.cve.org/CVERecord?id=CVE-2001-1386

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Trailing Dot - filedir.'

Software Fault Patterns SFP16 Path Traversal

CWE-43: Path Equivalence: 'filename...." (Multiple Trailing Dot)

Weakness ID : 43
Structure : Simple
Abstraction : Variant

Description

The product accepts path input in the form of multiple trailing dot (‘filedir....") without appropriate
validation, which can lead to ambiguous path resolution and allow an attacker to traverse the file
system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 163 Improper Neutralization of Multiple Trailing Special Elements 418
ChildOf V] 42 Path Equivalence: ‘filename.' (Trailing Dot) 92

93

‘awreua|ly, :@ouafeAinbg yred -3

(yo@ Buijreay sidniny)

CWE-44: Path Equivalence: 'file.name' (Internal Dot)

CWE Version 4.13
CWE-44: Path Equivalence: file.name' (Internal Dot)

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Observed Examples

Reference Description
CVE-2004-0281 Multiple trailing dot allows directory listing
https://www.cve.org/CVERecord?id=CVE-2004-0281

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Multiple Trailing Dot - ‘filedir....'

Software Fault Patterns SFP16 Path Traversal

CWE-44: Path Equivalence: 'file.name' (Internal Dot)

Weakness ID : 44
Structure : Simple
Abstraction : Variant

Description

The product accepts path input in the form of internal dot (‘file.ordir’) without appropriate validation,
which can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 86
ParentOf V] 45 Path Equivalence: 'file...name' (Multiple Internal Dot) 95

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

94

CWE Version 4.13
CWE-45: Path Equivalence: 'file...name' (Multiple Internal Dot)

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Notes

Relationship

An improper attempt to remove the internal dots from the string could lead to CWE-181 (Incorrect
Behavior Order: Validate Before Filter).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Internal Dot - file.ordir'
Software Fault Patterns SFP16 Path Traversal

CWE-45: Path Equivalence: 'file...name' (Multiple Internal Dot)

Weakness ID : 45
Structure : Simple
Abstraction : Variant

Description

The product accepts path input in the form of multiple internal dot (‘file...dir") without appropriate
validation, which can lead to ambiguous path resolution and allow an attacker to traverse the file
system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 165 Improper Neutralization of Multiple Internal Special Elements 421
ChildOf V] 44 Path Equivalence: 'file.name’ (Internal Dot) 94

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

MemberOf Relationships

95

(10@ reussiul a|dinN) ,sweua|ly, :8ousfeAinb3 yred :Gy-3MO

CWE-46: Path Equivalence: 'filename ' (Trailing Space)

CWE Version 4.13
CWE-46: Path Equivalence: filename ' (Trailing Space)

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Notes

Relationship

An improper attempt to remove the internal dots from the string could lead to CWE-181 (Incorrect
Behavior Order: Validate Before Filter).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Multiple Internal Dot - ‘file...dir'
Software Fault Patterns SFP16 Path Traversal

CWE-46: Path Equivalence: 'filename ' (Trailing Space)

Weakness ID : 46
Structure : Simple
Abstraction : Variant

Description

The product accepts path input in the form of trailing space (filedir ") without appropriate validation,
which can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 162 Improper Neutralization of Trailing Special Elements 416
ChildOf (B] 41 Improper Resolution of Path Equivalence 86
CanPrecede @ 289 Authentication Bypass by Alternate Name 697

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Observed Examples

Reference Description

CVE-2001-0693 Source disclosure via trailing encoded space "%20"
https://www.cve.org/CVERecord?id=CVE-2001-0693

CVE-2001-0778 Source disclosure via trailing encoded space "%20"

96

CWE Version 4.13
CWE-47: Path Equivalence: ' filename' (Leading Space)

Reference Description
https://www.cve.org/CVERecord?id=CVE-2001-0778

CVE-2001-1248 Source disclosure via trailing encoded space "%20"
https://www.cve.org/CVERecord?id=CVE-2001-1248

CVE-2004-0280 Source disclosure via trailing encoded space "%20"
https://www.cve.org/CVERecord?id=CVE-2004-0280

CVE-2004-2213 Source disclosure via trailing encoded space "%20"
https://www.cve.org/CVERecord?id=CVE-2004-2213

CVE-2005-0622 Source disclosure via trailing encoded space "%20"
https://www.cve.org/CVERecord?id=CVE-2005-0622

CVE-2005-1656 Source disclosure via trailing encoded space "%20"
https://www.cve.org/CVERecord?id=CVE-2005-1656

CVE-2002-1603 Source disclosure via trailing encoded space "%20"
https://www.cve.org/CVERecord?id=CVE-2002-1603

CVE-2001-0054 Multi-Factor Vulnerability (MFV). directory traversal and other issues in FTP
server using Web encodings such as "%20"; certain manipulations have
unusual side effects.
https://www.cve.org/CVERecord?id=CVE-2001-0054

CVE-2002-1451 Trailing space ("+" in query string) leads to source code disclosure.
https://www.cve.org/CVERecord?id=CVE-2002-1451

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this

weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Trailing Space - ‘filedir

Software Fault Patterns SFP16 Path Traversal

Related Attack Patterns

CAPEC-ID Attack Pattern Name
649 Adding a Space to a File Extension

CWE-47: Path Equivalence: ' filename' (Leading Space)

Weakness ID : 47
Structure : Simple
Abstraction : Variant

Description

The product accepts path input in the form of leading space (' filedir') without appropriate validation,

which can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

97

(eoedsg Bulpea) ,oweus|ly , :@2uaeAinb3 yred :Z#-3MD

CWE-48: Path Equivalence: 'file name' (Internal Whitespace)

CWE Version 4.13
CWE-48: Path Equivalence: file name' (Internal Whitespace)

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 86

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Leading Space - ' filedir'

Software Fault Patterns SFP16 Path Traversal

CWE-48: Path Equivalence: 'file name' (Internal Whitespace)

Weakness ID : 48
Structure : Simple
Abstraction : Variant

Description

The product accepts path input in the form of internal space (‘file(SPACE)name") without
appropriate validation, which can lead to ambiguous path resolution and allow an attacker to
traverse the file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B) 41 Improper Resolution of Path Equivalence 86

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

98

CWE Version 4.13
CWE-49: Path Equivalence: filename/' (Trailing Slash)

Observed Examples

Reference Description

CVE-2000-0293 Filenames with spaces allow arbitrary file deletion when the product does not
properly quote them; some overlap with path traversal.
https://www.cve.org/CVERecord?id=CVE-2000-0293

CVE-2001-1567 "+" characters in query string converted to spaces before sensitive file/
extension (internal space), leading to bypass of access restrictions to the file.
https://www.cve.org/CVERecord?id=CVE-2001-1567

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Notes

Relationship

This weakness is likely to overlap quoting problems, e.g. the "Program Files" unquoted search
path (CWE-428). It also could be an equivalence issue if filtering removes all extraneous spaces.

Relationship

Whitespace can be a factor in other weaknesses not directly related to equivalence. It can also
be used to spoof icons or hide files with dangerous names (see icon manipulation and visual
truncation in CWE-451).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER file(SPACE)name (internal space)
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service

Software Fault Patterns SFP16 Path Traversal

CWE-49: Path Equivalence: 'filename/' (Trailing Slash)

Weakness ID : 49
Structure : Simple
Abstraction : Variant

Description

The product accepts path input in the form of trailing slash (‘filedir/") without appropriate validation,
which can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 162 Improper Neutralization of Trailing Special Elements 416

99

(yse|s Buijrel]) /owreus|ly, :dousfeAlinb3 yred :6-3MO

CWE-50: Path Equivalence: '//multiple/leading/slash’

CWE Version 4.13
CWE-50: Path Equivalence: '//multiple/leading/slash’

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 86

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Observed Examples

Reference Description

CVE-2002-0253 Overlaps infoleak
https://www.cve.org/CVERecord?id=CVE-2002-0253

CVE-2001-0446 Application server allows remote attackers to read source code for .jsp files by
appending a / to the requested URL.
https://www.cve.org/CVERecord?id=CVE-2001-0446

CVE-2004-0334 Bypass Basic Authentication for files using trailing "/"
https://www.cve.org/CVERecord?id=CVE-2004-0334

CVE-2001-0893 Read sensitive files with trailing "/"
https://www.cve.org/CVERecord?id=CVE-2001-0893

CVE-2001-0892 Web server allows remote attackers to view sensitive files under the document
root (such as .htpasswd) via a GET request with a trailing /.
https://www.cve.org/CVERecord?id=CVE-2001-0892

CVE-2004-1814 Directory traversal vulnerability in server allows remote attackers to read
protected files via .. (dot dot) sequences in an HTTP request.
https://www.cve.org/CVERecord?id=CVE-2004-1814

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER filedir/ (trailing slash, trailing /)

Software Fault Patterns SFP16 Path Traversal

CWE-50: Path Equivalence: '//multiple/leading/slash’

Weakness ID : 50
Structure : Simple
Abstraction : Variant

Description

The product accepts path input in the form of multiple leading slash (‘//multiple/leading/slash’)
without appropriate validation, which can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.

Relationships

100

CWE Version 4.13
CWE-50: Path Equivalence: '//multiple/leading/slash’

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf V] 161 Improper Neutralization of Multiple Leading Special 414
Elements

ChildOf Q 41 Improper Resolution of Path Equivalence 86

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Observed Examples

Reference Description

CVE-2002-1483 Read files with full pathname using multiple internal slash.
https://www.cve.org/CVERecord?id=CVE-2002-1483

CVE-1999-1456 Server allows remote attackers to read arbitrary files via a GET request with
more than one leading / (slash) character in the filename.
https://www.cve.org/CVERecord?id=CVE-1999-1456

CVE-2004-0578 Server allows remote attackers to read arbitrary files via leading slash (//)
characters in a URL request.
https://www.cve.org/CVERecord?id=CVE-2004-0578

CVE-2002-0275 Server allows remote attackers to bypass authentication and read restricted
files via an extra / (slash) in the requested URL.
https://www.cve.org/CVERecord?id=CVE-2002-0275

CVE-2004-1032 Product allows local users to delete arbitrary files or create arbitrary empty files
via a target filename with a large number of leading slash (/) characters.
https://www.cve.org/CVERecord?id=CVE-2004-1032

CVE-2002-1238 Server allows remote attackers to bypass access restrictions for files via an
HTTP request with a sequence of multiple / (slash) characters such as http://
www.example.com///file/.
https://www.cve.org/CVERecord?id=CVE-2002-1238

CVE-2004-1878 Product allows remote attackers to bypass authentication, obtain sensitive
information, or gain access via a direct request to admin/user.pl preceded by //
(double leading slash).
https://www.cve.org/CVERecord?id=CVE-2004-1878

CVE-2005-1365 Server allows remote attackers to execute arbitrary commands via a URL with
multiple leading "/" (slash) characters and ".." sequences.
https://www.cve.org/CVERecord?id=CVE-2005-1365

CVE-2000-1050 Access directory using multiple leading slash.
https://www.cve.org/CVERecord?id=CVE-2000-1050

CVE-2001-1072 Bypass access restrictions via multiple leading slash, which causes a regular
expression to fail.
https://www.cve.org/CVERecord?id=CVE-2001-1072

CVE-2004-0235 Archive extracts to arbitrary files using multiple leading slash in filenames in
the archive.
https://www.cve.org/CVERecord?id=CVE-2004-0235

101

.yse|s/buipesj/e|dninwy/, :2ouafeAinb3 yred :05-3MD

CWE-51: Path Equivalence: '/'multiple//internal/slash’

CWE Version 4.13
CWE-51: Path Equivalence: ''multiple//internal/slash’

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER /Imultiple/leading/slash ('multiple
leading slash")

Software Fault Patterns SFP16 Path Traversal

CWE-51: Path Equivalence: '/multiple//internal/slash’

Weakness ID : 51
Structure : Simple
Abstraction : Variant

Description

The product accepts path input in the form of multiple internal slash (‘/multiple//internal/slash/")
without appropriate validation, which can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 86

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

102

CWE Version 4.13
CWE-52: Path Equivalence: '/multiple/trailing/slash//'

Reference Description
CVE-2002-1483 Read files with full pathname using multiple internal slash.
https://www.cve.org/CVERecord?id=CVE-2002-1483

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER /multiple//internal/slash (‘'multiple
internal slash’)

Software Fault Patterns SFP16 Path Traversal

CWE-52: Path Equivalence: '/multiple/trailing/slash//'

Weakness ID : 52
Structure : Simple
Abstraction : Variant

Description

The product accepts path input in the form of multiple trailing slash (‘/multiple/trailing/slash//")
without appropriate validation, which can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (V] 163 Improper Neutralization of Multiple Trailing Special Elements 418
ChildOf E] 41 Improper Resolution of Path Equivalence 86
CanPrecede @ 289 Authentication Bypass by Alternate Name 697

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

103

Jiysej|s/butjrenyadinnwy, :@ousfeainb3 yred :25-3IM9

CWE-53: Path Equivalence: \multiple\\internal\backslash'

CWE Version 4.13
CWE-53: Path Equivalence: \multiple\\internal\backslash'

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-1078 Directory listings in web server using multiple trailing slash
https://www.cve.org/CVERecord?id=CVE-2002-1078

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Imultiple/trailing/slash// (‘'multiple trailing

slash’)
Software Fault Patterns SFP16 Path Traversal

CWE-53: Path Equivalence: "\multiple\internal\backslash'

Weakness ID : 53
Structure : Simple
Abstraction : Variant

Description

The product accepts path input in the form of multiple internal backslash (\multiple\trailing\\slash")
without appropriate validation, which can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 165 Improper Neutralization of Multiple Internal Special Elements 421
ChildOf (B] 41 Improper Resolution of Path Equivalence 86

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

104

CWE Version 4.13
CWE-54: Path Equivalence: filedir\' (Trailing Backslash)

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER \multiple\\internal\backslash

Software Fault Patterns SFP16 Path Traversal

CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash)

Weakness ID : 54
Structure : Simple
Abstraction : Variant

Description

The product accepts path input in the form of trailing backslash (‘filedir\') without appropriate
validation, which can lead to ambiguous path resolution and allow an attacker to traverse the file
system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 162 Improper Neutralization of Trailing Special Elements 416
ChildOf Q 41 Improper Resolution of Path Equivalence 86

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation

105

(yse|sxoeg buljrel]) \1pajly, :@dusfeAIinbl yled #S-aMD

CWE-55: Path Equivalence: '/.I' (Single Dot Directory)

CWE Version 4.13
CWE-55: Path Equivalence: '/./' (Single Dot Directory)

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2004-0847 web framework for .NET allows remote attackers to bypass authentication
for .aspx files in restricted directories via a request containing a (1)
"\" (backslash) or (2) "%5C" (encoded backslash)
https://www.cve.org/CVERecord?id=CVE-2004-0847

CVE-2004-0061 Bypass directory access restrictions using trailing dot in URL
https://www.cve.org/CVERecord?id=CVE-2004-0061

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER filedir\ (trailing backslash)

Software Fault Patterns SFP16 Path Traversal

CWE-55: Path Equivalence: '/.I' (Single Dot Directory)

Weakness ID : 55
Structure : Simple
Abstraction : Variant

Description

The product accepts path input in the form of single dot directory exploit ('/./') without appropriate
validation, which can lead to ambiguous path resolution and allow an attacker to traverse the file
system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B) 41 Improper Resolution of Path Equivalence 86

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

106

CWE Version 4.13
CWE-56: Path Equivalence: filedir*' (Wildcard)

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2000-0004 Server allows remote attackers to read source code for executable files by
inserting a . (dot) into the URL.
https://www.cve.org/CVERecord?id=CVE-2000-0004

CVE-2002-0304 Server allows remote attackers to read password-protected files via a /./ in the
HTTP request.
https://www.cve.org/CVERecord?id=CVE-2002-0304

BID:6042 Input Validation error
http://www.securityfocus.com/bid/6042

CVE-1999-1083 Possibly (could be a cleansing error)
https://www.cve.org/CVERecord?id=CVE-1999-1083

CVE-2004-0815 "/./lllletc" cleansed to ".///etc" then "/etc"
https://www.cve.org/CVERecord?id=CVE-2004-0815

CVE-2002-0112 Server allows remote attackers to view password protected files via /./ in the
URL.
https://www.cve.org/CVERecord?id=CVE-2002-0112

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER 1./ (single dot directory)

Software Fault Patterns SFP16 Path Traversal

CWE-56: Path Equivalence: 'filedir* (Wildcard)

Weakness ID : 56
Structure : Simple
Abstraction : Variant

Description

The product accepts path input in the form of asterisk wildcard (‘filedir*") without appropriate
validation, which can lead to ambiguous path resolution and allow an attacker to traverse the file
system to unintended locations or access arbitrary files.

107

(P1edp|IM) «41P3JYY, :DOUB[EAINDT Yled :9G-IMD

CWE-57: Path Equivalence: 'fakedir/../realdir/filename'’

CWE Version 4.13
CWE-57: Path Equivalence: 'fakedir/../realdir/filename’

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (V] 155 Improper Neutralization of Wildcards or Matching Symbols 402
ChildOf (B] 41 Improper Resolution of Path Equivalence 86

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2004-0696 List directories using desired path and "*"
https://www.cve.org/CVERecord?id=CVE-2004-0696

CVE-2002-0433 List files in web server using "*.ext"
https://www.cve.org/CVERecord?id=CVE-2002-0433

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER filedir* (asterisk / wildcard)

Software Fault Patterns SFP16 Path Traversal

CWE-57: Path Equivalence: 'fakedir/../realdir/filename’

Weakness ID : 57
Structure : Simple
Abstraction : Variant

108

CWE Version 4.13
CWE-57: Path Equivalence: 'fakedir/../realdir/filename’

Description

The product contains protection mechanisms to restrict access to 'realdir/filename’, but it constructs
pathnames using external input in the form of 'fakedir/../realdir/filename’ that are not handled by
those mechanisms. This allows attackers to perform unauthorized actions against the targeted file.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 86

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2001-1152 Proxy allows remote attackers to bypass denylist restrictions and connect to
unauthorized web servers by modifying the requested URL, including (1) a //
(double slash), (2) a /SUBDIR/.. where the desired file is in the parentdir, (3)
al.l, or (4) URL-encoded characters.
https://www.cve.org/CVERecord?id=CVE-2001-1152

CVE-2000-0191 application check access for restricted URL before canonicalization
https://www.cve.org/CVERecord?id=CVE-2000-0191

CVE-2005-1366 CGil source disclosure using "dirname/../cgi-bin"
https://www.cve.org/CVERecord?id=CVE-2005-1366

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Notes

Theoretical

109

DUIRUS|IY/IIp[eal/ /1Ipase), :9oudfeAInbl yred :/G-IMO

CWE-58: Path Equivalence: Windows 8.3 Filename

CWE Version 4.13
CWE-58: Path Equivalence: Windows 8.3 Filename

This is a manipulation that uses an injection for one consequence (containment violation using
relative path) to achieve a different consequence (equivalence by alternate name).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER dirname/fakechild/../realchild/filename
Software Fault Patterns SFP16 Path Traversal

CWE-58: Path Equivalence: Windows 8.3 Filename

Weakness ID : 58
Structure : Simple
Abstraction : Variant

Description

The product contains a protection mechanism that restricts access to a long filename on a
Windows operating system, but it does not properly restrict access to the equivalent short "8.3"
filename.

Extended Description

On later Windows operating systems, a file can have a "long name" and a short name that

is compatible with older Windows file systems, with up to 8 characters in the filename and 3
characters for the extension. These "8.3" filenames, therefore, act as an alternate name for files
with long names, so they are useful pathname equivalence manipulations.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf E] 41 Improper Resolution of Path Equivalence 86

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: System Configuration

Disable Windows from supporting 8.3 filenames by editing the Windows registry. Preventing 8.3
filenames will not remove previously generated 8.3 filenames.

Observed Examples

Reference Description
CVE-1999-0012 Multiple web servers allow restriction bypass using 8.3 names instead of long
names

https://www.cve.org/CVERecord?id=CVE-1999-0012

110

CWE Version 4.13
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

Reference Description

CVE-2001-0795 Source code disclosure using 8.3 file name.
https://www.cve.org/CVERecord?id=CVE-2001-0795

CVE-2005-0471 Multi-Factor Vulnerability. Product generates temporary filenames using long
filenames, which become predictable in 8.3 format.
https://www.cve.org/CVERecord?id=CVE-2005-0471

Functional Areas
 File Processing
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Notes

Research Gap
Probably under-studied.
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Windows 8.3 Filename

Software Fault Patterns SFP16 Path Traversal
References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. 1st Edition. 2006. Addison Wesley.

CWE-59: Improper Link Resolution Before File Access ('Link Following')

Weakness ID : 59
Structure : Simple
Abstraction : Base

Description

The product attempts to access a file based on the filename, but it does not properly prevent that
filename from identifying a link or shortcut that resolves to an unintended resource.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf C] 706 Use of Incorrectly-Resolved Name or Reference 1525

111

(,6uimol|o4 3ulq,) SS8290V 9|I4 8l10jag uolnjosay Juiq Jadoidw] :65-IMD

CWE-59: Improper Link Resolution Before File Access ('Link Following")

CWE Version 4.13
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

Nature Type ID Name Page
ParentOf & 61 UNIX Symbolic Link (Symlink) Following 116
ParentOf V] 62 UNIX Hard Link 119
ParentOf V] 64 Windows Shortcut Following (.LNK) 121
ParentOf V] 65 Windows Hard Link 123
ParentOf Q 1386 Insecure Operation on Windows Junction / Mount Point 2220
CanFollow (] 73 External Control of File Name or Path 132
CanFollow Q 363 Race Condition Enabling Link Following 890

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf (C]) 706 Use of Incorrectly-Resolved Name or Reference 1525
Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2368
Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1219 File Handling Issues 2414

Weakness Ordinalities
Resultant :
Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Sometimes)
Operating_System : Unix (Prevalence = Often)
Background Details
Soft links are a UNIX term that is synonymous with simple shortcuts on Windows-based platforms.
Alternate Terms

insecure temporary file : Some people use the phrase "insecure temporary file" when referring to
a link following weakness, but other weaknesses can produce insecure temporary files without any
symlink involvement at all.

Zip Slip : "Zip slip" is an attack that uses file archives (e.g., ZIP, tar, rar, etc.) that contain filenames
with path traversal sequences that cause the files to be written outside of the directory under which
the archive is expected to be extracted [REF-1282]. It is most commonly used for relative path
traversal (CWE-23) and link following (CWE-59).

Likelihood Of Exploit
Medium

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories

Integrity Modify Files or Directories

Access Control Bypass Protection Mechanism

An attacker may be able to traverse the file system to
unintended locations and read or overwrite the contents
of unexpected files. If the files are used for a security

112

CWE Version 4.13
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

Scope Impact Likelihood
mechanism then an attacker may be able to bypass the
mechanism.

Other Execute Unauthorized Code or Commands

Windows simple shortcuts, sometimes referred to as soft
links, can be exploited remotely since a ".LNK" file can
be uploaded like a normal file. This can enable remote
execution.

Detection Methods
Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis

Effectiveness = SOAR Partial
Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial
Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial
Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial
Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial
Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High
Potential Mitigations
Phase: Architecture and Design

113

(,6uimol|o4 3ulq,) SS8290V 9|I4 8l10jag uolnjosay Juiq Jadoidw] :65-IMD

CWE-59: Improper Link Resolution Before File Access ('Link Following")

CWE Version 4.13
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that

can be trusted.

Observed Examples

Reference
CVE-1999-1386

CVE-2000-1178

CVE-2004-0217

CVE-2003-0517

CVE-2004-0689

CVE-2005-1879

CVE-2005-1880

CVE-2005-1916

CVE-2000-0972

CVE-2005-0824

CVE-2001-1494

CVE-2002-0793

CVE-2003-0578

CVE-1999-0783

CVE-2004-1603

CVE-2004-1901

CVE-2005-1111

Description

Some versions of Perl follow symbolic links when running with the -e option,
which allows local users to overwrite arbitrary files via a symlink attack.
https://www.cve.org/CVERecord?id=CVE-1999-1386

Text editor follows symbolic links when creating a rescue copy during an
abnormal exit, which allows local users to overwrite the files of other users.
https://www.cve.org/CVERecord?id=CVE-2000-1178

Antivirus update allows local users to create or append to arbitrary files via a
symlink attack on a lodfile.

https://www.cve.org/CVERecord?id=CVE-2004-0217

Symlink attack allows local users to overwrite files.
https://www.cve.org/CVERecord?id=CVE-2003-0517

Window manager does not properly handle when certain symbolic links point
to "stale" locations, which could allow local users to create or truncate arbitrary
files.

https://www.cve.org/CVERecord?id=CVE-2004-0689

Second-order symlink vulnerabilities
https://www.cve.org/CVERecord?id=CVE-2005-1879

Second-order symlink vulnerabilities
https://www.cve.org/CVERecord?id=CVE-2005-1880

Symlink in Python program

https://www.cve.org/CVERecord?id=CVE-2005-1916

Setuid product allows file reading by replacing a file being edited with a symlink
to the targeted file, leaking the result in error messages when parsing fails.
https://www.cve.org/CVERecord?id=CVE-2000-0972

Signal causes a dump that follows symlinks.
https://www.cve.org/CVERecord?id=CVE-2005-0824

Hard link attack, file overwrite; interesting because program checks against
soft links

https://www.cve.org/CVERecord?id=CVE-2001-1494

Hard link and possibly symbolic link following vulnerabilities in embedded
operating system allow local users to overwrite arbitrary files.
https://www.cve.org/CVERecord?id=CVE-2002-0793

Server creates hard links and unlinks files as root, which allows local users to
gain privileges by deleting and overwriting arbitrary files.
https://www.cve.org/CVERecord?id=CVE-2003-0578

Operating system allows local users to conduct a denial of service by creating
a hard link from a device special file to a file on an NFS file system.
https://www.cve.org/CVERecord?id=CVE-1999-0783

Web hosting manager follows hard links, which allows local users to read or
modify arbitrary files.

https://www.cve.org/CVERecord?id=CVE-2004-1603

Package listing system allows local users to overwrite arbitrary files via a hard
link attack on the lockfiles.

https://www.cve.org/CVERecord?id=CVE-2004-1901

Hard link race condition

https://www.cve.org/CVERecord?id=CVE-2005-1111

114

CWE Version 4.13
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

Reference Description

CVE-2000-0342 Mail client allows remote attackers to bypass the user warning for executable
attachments such as .exe, .com, and .bat by using a .Ink file that refers to the
attachment, aka "Stealth Attachment."
https://www.cve.org/CVERecord?id=CVE-2000-0342

CVE-2001-1042 FTP server allows remote attackers to read arbitrary files and directories by
uploading a .Ink (link) file that points to the target file.
https://www.cve.org/CVERecord?id=CVE-2001-1042

CVE-2001-1043 FTP server allows remote attackers to read arbitrary files and directories by
uploading a .Ink (link) file that points to the target file.
https://www.cve.org/CVERecord?id=CVE-2001-1043

CVE-2005-0587 Browser allows remote malicious web sites to overwrite arbitrary files by
tricking the user into downloading a .LNK (link) file twice, which overwrites the
file that was referenced in the first .LNK file.
https://www.cve.org/CVERecord?id=CVE-2005-0587

CVE-2001-1386 ".LNK."-.LNK with trailing dot
https://www.cve.org/CVERecord?id=CVE-2001-1386

CVE-2003-1233 Rootkits can bypass file access restrictions to Windows kernel directories
using NtCreateSymbolicLinkObject function to create symbolic link
https://www.cve.org/CVERecord?id=CVE-2003-1233

CVE-2002-0725 File system allows local attackers to hide file usage activities via a hard link to
the target file, which causes the link to be recorded in the audit trail instead of
the target file.
https://www.cve.org/CVERecord?id=CVE-2002-0725

CVE-2003-0844 Web server plugin allows local users to overwrite arbitrary files via a symlink
attack on predictable temporary filenames.
https://www.cve.org/CVERecord?id=CVE-2003-0844

CVE-2015-3629 A Libcontainer used in Docker Engine allows local users to escape
containerization and write to an arbitrary file on the host system via a symlink
attack in an image when respawning a container.
https://www.cve.org/CVERecord?id=CVE-2015-3629

CVE-2021-21272 "Zip Slip" vulnerability in Go-based Open Container Initiative (OCI) registries
product allows writing arbitrary files outside intended directory via symbolic
links or hard links in a gzipped tarball.
https://www.cve.org/CVERecord?id=CVE-2021-21272

CVE-2020-27833 "Zip Slip" vulnerability in container management product allows writing
arbitrary files outside intended directory via a container image (.tar format)
with filenames that are symbolic links that point to other files within the same
tar file; however, the files being pointed to can also be symbolic links to
destinations outside the intended directory, bypassing the initial check.
https://www.cve.org/CVERecord?id=CVE-2020-27833

Functional Areas
» File Processing
Affected Resources
 File or Directory
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2486

115

(,6uimol|o4 3ulq,) SS8290V 9|I4 8l10jag uolnjosay Juiq Jadoidw] :65-IMD

CWE-61: UNIX Symbolic Link (Symlink) Following

CWE Version 4.13
CWE-61: UNIX Symbolic Link (Symlink) Following

Nature
MemberOf

MemberOf

MemberOf
MemberOf

MemberOf
MemberOf

MemberOf

MemberOf

MemberOf
Notes
Theoretical

Type ID
743
748
808
877
884
980
1185
1345
1404

Name

CERT C Secure Coding Standard (2008) Chapter 10 -
Input Output (FIO)

CERT C Secure Coding Standard (2008) Appendix -
POSIX (POS)

2010 Top 25 - Weaknesses On the Cusp

CERT C++ Secure Coding Section 09 - Input Output
(FIO)

CWE Cross-section

SFP Secondary Cluster: Link in Resource Name
Resolution

SEI CERT Perl Coding Standard - Guidelines 07. File
Input and Output (FIO)

OWASP Top Ten 2021 Category A01:2021 - Broken
Access Control

Comprehensive Categorization: File Handling

Page
734 2282
734 2286
800 2290
868 2312
884 2502
888 2344
1178 2403
1344 2422
1400 2464

Link following vulnerabilities are Multi-factor Vulnerabilities (MFV). They are the combination

of multiple elements: file or directory permissions, filename predictability, race conditions, and
in some cases, a design limitation in which there is no mechanism for performing atomic file
creation operations. Some potential factors are race conditions, permissions, and predictability.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit

PLOVER

CERT C Secure Coding

CERT C Secure Coding

SEI CERT Perl Coding

Standard

Software Fault Patterns
Related Attack Patterns

CAPEC-ID Attack Pattern Name

Using Malicious Files

Leverage Executable Code in Non-Executable Files
Manipulating Web Input to File System Calls

17
35
76
132

References

Symlink Attack

Mapped Node Name
Link Following

FIO02-C Canonicalize path names originating
from untrusted sources

POSO01- Check for the existence of links when

C dealing with files

FIO01- CWE More Specific Do not operate on files that can be

PL modified by untrusted users

SFP18 Link in resource name resolution

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-1282]Snyk. "Zip Slip Vulnerability". 2018 June 5. < https://security.snyk.io/research/zip-slip-

vulnerability

>,

CWE-61: UNIX Symbolic Link (Symlink) Following

Weakness ID :

61

Structure : Composite
Abstraction : Compound

116

CWE Version 4.13
CWE-61: UNIX Symbolic Link (Symlink) Following

Description

The product, when opening a file or directory, does not sufficiently account for when the file is a
symbolic link that resolves to a target outside of the intended control sphere. This could allow an
attacker to cause the product to operate on unauthorized files.

Composite Components

Nature Type ID Name Page

Requires (C] 362 Concurrent Execution using Shared Resource with Improper 881
Synchronization (‘Race Condition’)

Requires C] 340 Generation of Predictable Numbers or Identifiers 835

Requires (] 386 Symbolic Name not Mapping to Correct Object 935

Requires C] 732 Incorrect Permission Assignment for Critical Resource 1531

Extended Description

A product that allows UNIX symbolic links (symlink) as part of paths whether in internal code or
through user input can allow an attacker to spoof the symbolic link and traverse the file system to
unintended locations or access arbitrary files. The symbolic link can permit an attacker to read/
write/corrupt a file that they originally did not have permissions to access.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 59 Improper Link Resolution Before File Access ('Link 111
Following')

Weakness Ordinalities
Resultant :
Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)
Alternate Terms
Symlink following :
symlink vulnerability :
Likelihood Of Exploit
High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation

Symbolic link attacks often occur when a program creates a tmp directory that stores files/
links. Access to the directory should be restricted to the program as to prevent attackers from
manipulating the files.

Phase: Architecture and Design

117

Buimo|jo4 (uijwAS) Yul] dIjoqwAS XINN T9-IMD

CWE-61: UNIX Symbolic Link (Symlink) Following

CWE Version 4.13
CWE-61: UNIX Symbolic Link (Symlink) Following

Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that
can be trusted.

Observed Examples

Reference Description

CVE-1999-1386 Some versions of Perl follow symbolic links when running with the -e option,
which allows local users to overwrite arbitrary files via a symlink attack.
https://www.cve.org/CVERecord?id=CVE-1999-1386

CVE-2000-1178 Text editor follows symbolic links when creating a rescue copy during an
abnormal exit, which allows local users to overwrite the files of other users.
https://www.cve.org/CVERecord?id=CVE-2000-1178

CVE-2004-0217 Antivirus update allows local users to create or append to arbitrary files via a
symlink attack on a lodfile.
https://www.cve.org/CVERecord?id=CVE-2004-0217

CVE-2003-0517 Symlink attack allows local users to overwrite files.
https://www.cve.org/CVERecord?id=CVE-2003-0517

CVE-2004-0689 Possible interesting example
https://www.cve.org/CVERecord?id=CVE-2004-0689

CVE-2005-1879 Second-order symlink vulnerabilities
https://www.cve.org/CVERecord?id=CVE-2005-1879

CVE-2005-1880 Second-order symlink vulnerabilities
https://www.cve.org/CVERecord?id=CVE-2005-1880

CVE-2005-1916 Symlink in Python program
https://www.cve.org/CVERecord?id=CVE-2005-1916

CVE-2000-0972 Setuid product allows file reading by replacing a file being edited with a symlink
to the targeted file, leaking the result in error messages when parsing fails.
https://www.cve.org/CVERecord?id=CVE-2000-0972

CVE-2005-0824 Signal causes a dump that follows symlinks.
https://www.cve.org/CVERecord?id=CVE-2005-0824

CVE-2015-3629 A Libcontainer used in Docker Engine allows local users to escape
containerization and write to an arbitrary file on the host system via a symlink
attack in an image when respawning a container.
https://www.cve.org/CVERecord?id=CVE-2015-3629

CVE-2020-26277 In a MySQL database deployment tool, users may craft a maliciously
packaged tarball that contains symlinks to files external to the target and once
unpacked, will execute.
https://www.cve.org/CVERecord?id=CVE-2020-26277

CVE-2021-21272 “Zip Slip" vulnerability in Go-based Open Container Initiative (OCI) registries
product allows writing arbitrary files outside intended directory via symbolic
links or hard links in a gzipped tarball.
https://www.cve.org/CVERecord?id=CVE-2021-21272

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Notes

Research Gap

118

CWE Version 4.13
CWE-62: UNIX Hard Link

Symlink vulnerabilities are regularly found in C and shell programs, but all programming
languages can have this problem. Even shell programs are probably under-reported. "Second-
order symlink vulnerabilities" may exist in programs that invoke other programs that follow
symlinks. They are rarely reported but are likely to be fairly common when process invocation is
used [REF-493].

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER UNIX symbolic link following

Related Attack Patterns

CAPEC-ID Attack Pattern Name
27 Leveraging Race Conditions via Symbolic Links

References

[REF-493]Steve Christey. "Second-Order Symlink Vulnerabilities". Bugtrag. 2005 June 7. < https://
seclists.org/bugtraq/2005/Jun/44 >.2023-04-07.

[REF-494]Shaun Colley. "Crafting Symlinks for Fun and Profit". Infosec Writers Text Library. 2004
April 2. < http://www.infosecwriters.com/texts.php?op=display&id=159 >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-62: UNIX Hard Link

Weakness ID : 62
Structure : Simple
Abstraction : Variant

Description

The product, when opening a file or directory, does not sufficiently account for when the name is
associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the product to operate on unauthorized files.

AUIT pleH XINN :¢9-aMO

Extended Description

Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. /etc/passwd). When the process opens the file, the
attacker can assume the privileges of that process.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B) 59 Improper Link Resolution Before File Access ('Link 111
Following")

Weakness Ordinalities
Resultant :
Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

119

CWE-62: UNIX Hard Link

CWE Version 4.13
CWE-62: UNIX Hard Link

Operating_System : Unix (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Architecture and Design
Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that
can be trusted.

Observed Examples

Reference Description
CVE-2001-1494 Hard link attack, file overwrite; interesting because program checks against
soft links

https://www.cve.org/CVERecord?id=CVE-2001-1494

CVE-2002-0793 Hard link and possibly symbolic link following vulnerabilities in embedded
operating system allow local users to overwrite arbitrary files.
https://www.cve.org/CVERecord?id=CVE-2002-0793

CVE-2003-0578 Server creates hard links and unlinks files as root, which allows local users to
gain privileges by deleting and overwriting arbitrary files.
https://www.cve.org/CVERecord?id=CVE-2003-0578

CVE-1999-0783 Operating system allows local users to conduct a denial of service by creating
a hard link from a device special file to a file on an NFS file system.
https://www.cve.org/CVERecord?id=CVE-1999-0783

CVE-2004-1603 Web hosting manager follows hard links, which allows local users to read or
modify arbitrary files.
https://www.cve.org/CVERecord?id=CVE-2004-1603

CVE-2004-1901 Package listing system allows local users to overwrite arbitrary files via a hard
link attack on the lockfiles.
https://www.cve.org/CVERecord?id=CVE-2004-1901

CVE-2005-0342 The Finder in Mac OS X and earlier allows local users to overwrite arbitrary
files and gain privileges by creating a hard link from the .DS_Store file to an
arbitrary file.
https://www.cve.org/CVERecord?id=CVE-2005-0342

CVE-2005-1111 Hard link race condition
https://www.cve.org/CVERecord?id=CVE-2005-1111

CVE-2021-21272 "Zip Slip" vulnerability in Go-based Open Container Initiative (OCI) registries
product allows writing arbitrary files outside intended directory via symbolic
links or hard links in a gzipped tarball.
https://www.cve.org/CVERecord?id=CVE-2021-21272

BUGTRAQ:20030208enBSD chpass/chfn/chsh file content leak

ASA-0001 https://seclists.org/bugtraq/2003/Feb/7

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

120

CWE Version 4.13
CWE-64: Windows Shortcut Following (.LNK)

Nature Type ID Name Page

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 2282
Input Output (FIO)

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 2312

(FIO)

MemberOf 980 SFP Secondary Cluster: Link in Resource Name 888 2344
Resolution

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER UNIX hard link

CERT C Secure Coding FIO05-C Identify files using multiple file attributes

Software Fault Patterns SFP18 Link in resource name resolution

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-64: Windows Shortcut Following (.LNK)

Weakness ID : 64
Structure : Simple
Abstraction : Variant

Description

The product, when opening a file or directory, does not sufficiently handle when the file is a
Windows shortcut (.LNK) whose target is outside of the intended control sphere. This could allow
an attacker to cause the product to operate on unauthorized files.

Extended Description

The shortcut (file with the .Ink extension) can permit an attacker to read/write a file that they
originally did not have permissions to access.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf E] 59 Improper Link Resolution Before File Access ('Link 111
Following")

Weakness Ordinalities
Resultant :
Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)
Alternate Terms

Windows symbolic link following :

121

(MNT) Buimojjo4 1N2110YS SMOPUIM #9-IMD

CWE-64: Windows Shortcut Following (.LNK)

CWE Version 4.13

CWE-64: Windows Shortcut Following (.LNK)

symlink :

Likelihood Of Exploit

Low

Common Consequences

Scope
Confidentiality
Integrity

Potential Mitigations

Impact Likelihood
Read Files or Directories
Modify Files or Directories

Phase: Architecture and Design

Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that

can be trusted.
Observed Examples

Reference
CVE-2019-19793

CVE-2000-0342

CVE-2001-1042

CVE-2001-1043

CVE-2005-0587

CVE-2001-1386

CVE-2003-1233

Description

network access control service executes program with high privileges and
allows symlink to invoke another executable or perform DLL injection.
https://www.cve.org/CVERecord?id=CVE-2019-19793

Mail client allows remote attackers to bypass the user warning for executable
attachments such as .exe, .com, and .bat by using a .Ink file that refers to the
attachment, aka "Stealth Attachment."
https://www.cve.org/CVERecord?id=CVE-2000-0342

FTP server allows remote attackers to read arbitrary files and directories by
uploading a .Ink (link) file that points to the target file.
https://www.cve.org/CVERecord?id=CVE-2001-1042

FTP server allows remote attackers to read arbitrary files and directories by
uploading a .Ink (link) file that points to the target file.
https://www.cve.org/CVERecord?id=CVE-2001-1043

Browser allows remote malicious web sites to overwrite arbitrary files by
tricking the user into downloading a .LNK (link) file twice, which overwrites the
file that was referenced in the first .LNK file.
https://www.cve.org/CVERecord?id=CVE-2005-0587

".LNK." - .LNK with trailing dot
https://www.cve.org/CVERecord?id=CVE-2001-1386

Rootkits can bypass file access restrictions to Windows kernel directories
using NtCreateSymbolicLinkObject function to create symbolic link
https://www.cve.org/CVERecord?id=CVE-2003-1233

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type
MemberOf

MemberOf

MemberOf

ID Name Page

743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 2282
Input Output (FIO)

877 CERT C++ Secure Coding Section 09 - Input Output 868 2312
(FIO)

980 SFP Secondary Cluster: Link in Resource Name 888 2344
Resolution

122

CWE Version 4.13

CWE-65: Windows Hard Link

Nature Type ID Name Page
MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Notes

Research Gap

Under-studied. Windows .LNK files are more "portable” than Unix symlinks and have been used
in remote exploits. Some Windows API's will access LNK's as if they are regular files, so one
would expect that they would be reported more frequently.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Windows Shortcut Following (.LNK)
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
Software Fault Patterns SFP18 Link in resource name resolution

CWE-65: Windows Hard Link

Weakness ID : 65
Structure : Simple
Abstraction : Variant

Description

The product, when opening a file or directory, does not sufficiently handle when the name is
associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the product to operate on unauthorized files.

Extended Description

Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. AUTOEXEC.BAT). When the process opens the
file, the attacker can assume the privileges of that process, or prevent the program from accurately
processing data.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf Q 59 Improper Link Resolution Before File Access ('Link 111
Following')

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations

123

AUl pleH SMOPUIM :§9-4MO

CWE-66: Improper Handling of File Names that Identify Virtual Resources

CWE Version 4.13
CWE-66: Improper Handling of File Names that Identify Virtual Resources

Phase: Architecture and Design
Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that
can be trusted.

Observed Examples

Reference Description

CVE-2002-0725 File system allows local attackers to hide file usage activities via a hard link to
the target file, which causes the link to be recorded in the audit trail instead of
the target file.
https://www.cve.org/CVERecord?id=CVE-2002-0725

CVE-2003-0844 Web server plugin allows local users to overwrite arbitrary files via a symlink
attack on predictable temporary filenames.
https://www.cve.org/CVERecord?id=CVE-2003-0844

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 2282
Input Output (FIO)

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 2312

(FIO)

MemberOf 980 SFP Secondary Cluster: Link in Resource Name 888 2344
Resolution

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Windows hard link

CERT C Secure Coding FIO05-C Identify files using multiple file attributes

Software Fault Patterns SFP18 Link in resource name resolution

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-66: Improper Handling of File Names that Identify Virtual Resources

Weakness ID : 66
Structure : Simple
Abstraction : Base

Description

The product does not handle or incorrectly handles a file name that identifies a "virtual" resource
that is not directly specified within the directory that is associated with the file name, causing the
product to perform file-based operations on a resource that is not a file.

Extended Description

124

CWE Version 4.13
CWE-66: Improper Handling of File Names that Identify Virtual Resources

Virtual file names are represented like normal file names, but they are effectively aliases for other
resources that do not behave like normal files. Depending on their functionality, they could be
alternate entities. They are not necessarily listed in directories.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf @ 706 Use of Incorrectly-Resolved Name or Reference 1525

ParentOf (V] 67 Improper Handling of Windows Device Names 126

ParentOf V] 69 Improper Handling of Windows ::DATA Alternate Data 129
Stream

ParentOf V] 72 Improper Handling of Apple HFS+ Alternate Data Stream 130
Path

Relevant to the view "Software Development” (CWE-699)

Nature Type ID Name Page

MemberOf 1219 File Handling Issues 2414

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)
Common Consequences
Scope Impact Likelihood
Other Other
Detection Methods
Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis

Effectiveness = SOAR Partial
Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial
Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial
Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

125

$S92IN0SaY [enUIA Ajnuap| reyl sswep 3|4 o BulpueH Jadoidw) :99-JMMD

CWE-67: Improper Handling of Windows Device Names

CWE Version 4.13
CWE-67: Improper Handling of Windows Device Names

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial
Architecture or Desigh Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High
Observed Examples

Reference Description

CVE-1999-0278 In IIS, remote attackers can obtain source code for ASP files by appending "::
$DATA" to the URL.
https://www.cve.org/CVERecord?id=CVE-1999-0278

CVE-2004-1084 Server allows remote attackers to read files and resource fork content via
HTTP requests to certain special file names related to multiple data streams in
HFS+.
https://www.cve.org/CVERecord?id=CVE-2004-1084

CVE-2002-0106 Server allows remote attackers to cause a denial of service via a series of
requests to .JSP files that contain an MS-DOS device name.
https://www.cve.org/CVERecord?id=CVE-2002-0106

Functional Areas

 File Processing
Affected Resources

* File or Directory
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Virtual Files

CWE-67: Improper Handling of Windows Device Names

Weakness ID : 67
Structure : Simple
Abstraction : Variant

126

CWE Version 4.13
CWE-67: Improper Handling of Windows Device Names

Description

The product constructs pathnames from user input, but it does not handle or incorrectly handles a
pathname containing a Windows device name such as AUX or CON. This typically leads to denial
of service or an information exposure when the application attempts to process the pathname as a
regular file.

Extended Description

Not properly handling virtual flenames (e.g. AUX, CON, PRN, COM1, LPT1) can result in different
types of vulnerabilities. In some cases an attacker can request a device via injection of a virtual
filename in a URL, which may cause an error that leads to a denial of service or an error page that
reveals sensitive information. A product that allows device names to bypass filtering runs the risk of
an attacker injecting malicious code in a file with the name of a device.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf Q 66 Improper Handling of File Names that Identify Virtual 124
Resources

Weakness Ordinalities
Resultant :
Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)
Background Details

Historically, there was a bug in the Windows operating system that caused a blue screen of death.
Even after that issue was fixed DOS device nhames continue to be a factor.

Likelihood Of Exploit
High

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

Confidentiality Read Application Data

Other Other

Potential Mitigations
Phase: Implementation

Be familiar with the device names in the operating system where your system is deployed. Check
input for these device names.

Observed Examples

Reference Description

CVE-2002-0106 Server allows remote attackers to cause a denial of service via a series of
requests to .JSP files that contain an MS-DOS device name.
https://www.cve.org/CVERecord?id=CVE-2002-0106

127

SaweN 991Aag SMOpPUIA Jo BuljpueH Jadoidwy) :29-MD

CWE Version 4.13

CWE-67: Improper Handling of Windows Device Names

Reference
CVE-2002-0200

CVE-2002-1052

CVE-2001-0493

CVE-2001-0558

CVE-2000-0168

CVE-2001-0492

CVE-2004-0552

CVE-2005-2195

Affected Resources

 File or Directory

CWE-67: Improper Handling of Windows Device Names

Nature Type
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf

Description

Server allows remote attackers to cause a denial of service via an HTTP
request for an MS-DOS device name.
https://www.cve.org/CVERecord?id=CVE-2002-0200

Product allows remote attackers to use MS-DOS device names in HTTP
reguests to cause a denial of service or obtain the physical path of the server.
https://www.cve.org/CVERecord?id=CVE-2002-1052

Server allows remote attackers to cause a denial of service via a URL that
contains an MS-DOS device name.
https://www.cve.org/CVERecord?id=CVE-2001-0493

Server allows a remote attacker to create a denial of service via a URL request
which includes a MS-DOS device name.
https://www.cve.org/CVERecord?id=CVE-2001-0558

Microsoft Windows 9x operating systems allow an attacker to cause a denial of
service via a pathname that includes file device names, aka the "DOS Device
in Path Name" vulnerability.

https://www.cve.org/CVERecord?id=CVE-2000-0168

Server allows remote attackers to determine the physical path of the server via
a URL containing MS-DOS device names.
https://www.cve.org/CVERecord?id=CVE-2001-0492

Product does not properly handle files whose names contain reserved MS-
DOS device names, which can allow malicious code to bypass detection when
it is installed, copied, or executed.
https://www.cve.org/CVERecord?id=CVE-2004-0552

Server allows remote attackers to cause a denial of service (application crash)
via a URL with a filename containing a .cgi extension and an MS-DOS device
name.

https://www.cve.org/CVERecord?id=CVE-2005-2195

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

ID Name Page

743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 2282
Input Output (FIO)

857 The CERT Oracle Secure Coding Standard for Java 844 2303
(2011) Chapter 14 - Input Output (FIO)

877 CERT C++ Secure Coding Section 09 - Input Output 868 2312
(FIO)

981 SFP Secondary Cluster: Path Traversal 888 2344

1147 SEI CERT Oracle Secure Coding Standard for Java- 1133 2385
Guidelines 13. Input Output (FIO)

1163 SEI CERT C Coding Standard - Guidelines 09. Input 1154 2394
Output (FIO)

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER

Windows MS-DOS device names

128

CWE Version 4.13
CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding FIO32-C CWE More Specific Do not perform operations on devices
that are only appropriate for files

The CERT Oracle Secure FIO00-J Do not operate on files in shared
Coding Standard for Java directories
(2011)
Software Fault Patterns SFP16 Path Traversal
References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. 1st Edition. 2006. Addison Wesley.

CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream

Weakness ID : 69
Structure : Simple
Abstraction : Variant

Description
The product does not properly prevent access to, or detect usage of, alternate data streams (ADS).
Extended Description

An attacker can use an ADS to hide information about a file (e.g. size, the name of the process)
from a system or file browser tools such as Windows Explorer and 'dir' at the command line utility.
Alternately, the attacker might be able to bypass intended access restrictions for the associated
data fork.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 66 Improper Handling of File Names that Identify Virtual 124
Resources

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)
Background Details

Alternate data streams (ADS) were first implemented in the Windows NT operating system

to provide compatibility between NTFS and the Macintosh Hierarchical File System (HFS). In
HFS, data and resource forks are used to store information about a file. The data fork provides
information about the contents of the file while the resource fork stores metadata such as file type.

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

129

Wwealls ereq areulsl|y V.vAa:: SMOpUIA Jo BuljpueH Jadosdw| :69-9MD

CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

CWE Version 4.13
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

Scope Impact Likelihood
Non-Repudiation Hide Activities
Other Other

Potential Mitigations
Phase: Testing
Software tools are capable of finding ADSs on your system.
Phase: Implementation
Ensure that the source code correctly parses the filename to read or write to the correct stream.
Observed Examples

Reference Description

CVE-1999-0278 In lIS, remote attackers can obtain source code for ASP files by appending "::
$DATA" to the URL.
https://www.cve.org/CVERecord?id=CVE-1999-0278

CVE-2000-0927 Product does not properly record file sizes if they are stored in alternative data
streams, which allows users to bypass quota restrictions.
https://www.cve.org/CVERecord?id=CVE-2000-0927

Affected Resources
» System Process
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 904 SFP Primary Cluster: Malware 888 2322

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Notes

Theoretical

This and similar problems exist because the same resource can have multiple identifiers that
dictate which behavior can be performed on the resource.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Windows ::DATA alternate data stream

Related Attack Patterns

CAPEC-ID Attack Pattern Name
168 Windows ::DATA Alternate Data Stream

References

[REF-562]Don Parker. "Windows NTFS Alternate Data Streams". 2005 February 6. < https://
seclists.org/basics/2005/Feb/312 >.2023-04-07.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

130

CWE Version 4.13
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

Weakness ID : 72
Structure : Simple
Abstraction : Variant

Description

The product does not properly handle special paths that may identify the data or resource fork of a
file on the HFS+ file system.

Extended Description

If the product chooses actions to take based on the file name, then if an attacker provides the
data or resource fork, the product may take unexpected actions. Further, if the product intends to
restrict access to a file, then an attacker might still be able to bypass intended access restrictions
by requesting the data or resource fork for that file.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 66 Improper Handling of File Names that Identify Virtual 124
Resources

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)
Operating_System : macOS (Prevalence = Undetermined)

Background Details

The Apple HFS+ file system permits files to have multiple data input streams, accessible through
special paths. The Mac OS X operating system provides a way to access the different data input
streams through special paths and as an extended attribute:

- Resource fork: file/..namedfork/rsrc, file/rsrc (deprecated), xattr:com.apple.ResourceFork
- Data fork: file/..namedfork/data (only versions prior to Mac OS X v10.5)

Additionally, on filesystems that lack native support for multiple streams, the resource fork and file
metadata may be stored in a file with "._" prepended to the name.

Forks can also be accessed through non-portable APIs.
Forks inherit the file system access controls of the file they belong to.

Programs need to control access to these paths, if the processing of a file system object is
dependent on the structure of its path.

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Demonstrative Examples

Example 1:

131

yred weains eleq aleulal|v +S4H 9|ddy Jo BuljpueH Jadoadwy :2/-3MD

CWE-73: External Control of File Name or Path

CWE Version 4.13
CWE-73: External Control of File Name or Path

A web server that interprets FILE.cgi as processing instructions could disclose the source code
for FILE.cgi by requesting FILE.cgi/..namedfork/data. This might occur because the web server
invokes the default handler which may return the contents of the file.

Observed Examples

Reference Description

CVE-2004-1084 Server allows remote attackers to read files and resource fork content via
HTTP requests to certain special file names related to multiple data streams in
HFS+.
https://www.cve.org/CVERecord?id=CVE-2004-1084

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1404 Comprehensive Categorization: File Handling 1400 2464
Notes

Theoretical

This and similar problems exist because the same resource can have multiple identifiers that
dictate which behavior can be performed on the resource.

Research Gap
Under-studied
References

[REF-578]NetSec. "NetSec Security Advisory: Multiple Vulnerabilities Resulting From Use Of Apple
OSX HFS+". BugTraq. 2005 February 6. < https://seclists.org/bugtraq/2005/Feb/309 >.2023-04-07.

CWE-73: External Control of File Name or Path

Weakness ID : 73
Structure : Simple
Abstraction : Base

Description

The product allows user input to control or influence paths or file names that are used in filesystem
operations.

Extended Description

This could allow an attacker to access or modify system files or other files that are critical to the
application.

Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the filesystem.
2. By specifying the resource, the attacker gains a capability that would not otherwise be
permitted.

For example, the program may give the attacker the ability to overwrite the specified file or run with
a configuration controlled by the attacker.

132

CWE Version 4.13

CWE-73: External Control of File Name or Path

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

similar items that may exist at higher and lower levels of abstraction. In addition,

relationships such

as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf C]) 610 Externally Controlled Reference to a Resource in Another 1353
Sphere
ChildOf C] 642 External Control of Critical State Data 1401
ParentOf (C]) 114 Process Control 276
CanPrecede @ 22 Improper Limitation of a Pathname to a Restricted Directory 33
(‘Path Traversal’)
CanPrecede @ 41 Improper Resolution of Path Equivalence 86
CanPrecede @ 59 Improper Link Resolution Before File Access ('Link 111
Following")
CanPrecede © 98 Improper Control of Filename for Include/Require Statement 236
in PHP Program ('PHP Remote File Inclusion’)
CanPrecede @ 434 Unrestricted Upload of File with Dangerous Type 1039
Relevant to the view "Architectural Concepts" (CWE-1008)
Nature Type ID Name Page
MemberOf 1015 Limit Access 2365
Relevant to the view "Software Development" (CWE-699)
Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2259
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)
Nature Type ID Name Page
ChildOf (C] 20 Improper Input Validation 20
Weakness Ordinalities
Primary :
Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)
Operating_System : Unix (Prevalence = Often)
Operating_System : Windows (Prevalence = Often)
Operating_System : macOS (Prevalence = Often)
Likelihood Of Exploit
High
Common Consequences
Scope Impact Likelihood
Integrity Read Files or Directories

Confidentiality Modify Files or Directories

The application can operate on unexpected files.
Confidentiality is violated when the targeted filename is not
directly readable by the attacker.

Integrity Modify Files or Directories

133

yyed 40 SWeN 3|14 40 [043U0D [eUIBIXT €2-IMD

CWE-73: External Control of File Name or Path

CWE Version 4.13
CWE-73: External Control of File Name or Path

Scope Impact Likelihood
Confidentiality Execute Unauthorized Code or Commands
Availability

The application can operate on unexpected files. This

may violate integrity if the filename is written to, or if the
filename is for a program or other form of executable code.
Availability DoS: Crash, Exit, or Restart

DoS: Resource Consumption (Other)

The application can operate on unexpected files.
Availability can be violated if the attacker specifies an
unexpected file that the application modifies. Availability
can also be affected if the attacker specifies a filename for
a large file, or points to a special device or a file that does
not have the format that the application expects.

Detection Methods
Automated Static Analysis

The external control or influence of flenames can often be detected using automated static
analysis that models data flow within the product. Automated static analysis might not be able
to recognize when proper input validation is being performed, leading to false positives - i.e.,
warnings that do not have any security consequences or require any code changes.

Potential Mitigations
Phase: Architecture and Design

When the set of filenames is limited or known, create a mapping from a set of fixed input values
(such as numeric IDs) to the actual filenames, and reject all other inputs. For example, 1D

1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as the ESAPI
AccessReferenceMap provide this capability.

Phase: Architecture and Design
Phase: Operation

Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict all access to files within a
particular directory. Examples include the Unix chroot jail and AppArmor. In general, managed
code may provide some protection. This may not be a feasible solution, and it only limits the
impact to the operating system; the rest of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if

134

CWE Version 4.13
CWE-73: External Control of File Name or Path

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[...I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High
Phase: Implementation

Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical
version of the pathname, which effectively removes ".." sequences and symbolic links (CWE-23,
CWE-59).

Phase: Installation
Phase: Operation

Use OS-level permissions and run as a low-privileged user to limit the scope of any successful
attack.

Phase: Operation
Phase: Implementation

If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary

of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Phase: Testing

Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Demonstrative Examples
Example 1:

The following code uses input from an HTTP request to create a file name. The programmer has
not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/
server.xml", which causes the application to delete one of its own configuration files (CWE-22).
Example Language: Java (Bad)

String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);

(File.delete();

Example 2:

135

yyed 40 SWeN 3|14 40 [043U0D [eUIBIXT €2-IMD

CWE-73: External Control of File Name or Path

CWE Version 4.13
CWE-73: External Control of File Name or Path

The following code uses input from a configuration file to determine which file to open and
echo back to the user. If the program runs with privileges and malicious users can change the
configuration file, they can use the program to read any file on the system that ends with the
extension .txt.

Example Language: Java (Bad)

fis = new FilelnputStream(cfg.getProperty("sub")+".txt");
amt = fis.read(arr);
out.printin(arr);

Observed Examples

Reference Description

CVE-2022-45918 Chain: a learning management tool debugger uses external input to locate
previous session logs (CWE-73) and does not properly validate the given
path (CWE-20), allowing for filesystem path traversal using "../" sequences
(CWE-24)
https://www.cve.org/CVERecord?id=CVE-2022-45918

CVE-2008-5748 Chain: external control of values for user's desired language and theme
enables path traversal.
https://www.cve.org/CVERecord?id=CVE-2008-5748

CVE-2008-5764 Chain: external control of user's target language enables remote file inclusion.
https://www.cve.org/CVERecord?id=CVE-2008-5764

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access 711 2270
Control

MemberOf 752 2009 Top 25 - Risky Resource Management 750 2288

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 2312
(F10)

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2344

MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure 1344 2426
Design

MemberOf 1403 Comprehensive Categorization: Exposed Resource 1400 2463

Notes
Maintenance

CWE-114 is a Class, but it is listed a child of CWE-73 in view 1000. This suggests some
abstraction problems that should be resolved in future versions.

Relationship

The external control of filenames can be the primary link in chains with other file-related
weaknesses, as seen in the CanPrecede relationships. This is because software systems use
files for many different purposes: to execute programs, load code libraries, to store application
data, to store configuration settings, record temporary data, act as signals or semaphores to
other processes, etc. However, those weaknesses do not always require external control. For
example, link-following weaknesses (CWE-59) often involve pathnames that are not controllable
by the attacker at all. The external control can be resultant from other issues. For example, in
PHP applications, the register_globals setting can allow an attacker to modify variables that

the programmer thought were immutable, enabling file inclusion (CWE-98) and path traversal

136

CWE Version 4.13

CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

('Injection’)

(CWE-22). Operating with excessive privileges (CWE-250) might allow an attacker to specify
an input filename that is not directly readable by the attacker, but is accessible to the privileged
program. A buffer overflow (CWE-119) might give an attacker control over nearby memory
locations that are related to pathnames, but were not directly modifiable by the attacker.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Path Manipulation
Software Fault Patterns SFP16 Path Traversal

Related Attack Patterns
CAPEC-ID Attack Pattern Name

13
64
72
76
78
79
80
267

References

Subverting Environment Variable Values

Using Slashes and URL Encoding Combined to Bypass Validation Logic
URL Encoding

Manipulating Web Input to File System Calls

Using Escaped Slashes in Alternate Encoding

Using Slashes in Alternate Encoding

Using UTF-8 Encoding to Bypass Validation Logic

Leverage Alternate Encoding

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-45]0WASP. "OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

CWE-74: Improper Neutralization of Special Elements in Output Used by a
Downstream Component (‘Injection’)

Weakness ID : 74
Structure : Simple
Abstraction : Class

Description

The product constructs all or part of a command, data structure, or record using externally-
influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes
special elements that could modify how it is parsed or interpreted when it is sent to a downstream

component.

Extended Description

Software or other automated logic has certain assumptions about what constitutes data and control
respectively. It is the lack of verification of these assumptions for user-controlled input that leads

to injection problems. Injection problems encompass a wide variety of issues -- all mitigated in

very different ways and usually attempted in order to alter the control flow of the process. For

this reason, the most effective way to discuss these weaknesses is to note the distinct features
that classify them as injection weaknesses. The most important issue to note is that all injection
problems share one thing in common -- i.e., they allow for the injection of control plane data into
the user-controlled data plane. This means that the execution of the process may be altered

by sending code in through legitimate data channels, using no other mechanism. While buffer

137

(,uonoalu],) Jusuodwo) weansumoq e Ag pasn indino
ul syjuswa|3 eroads Jo uonezifeainaN Jadoidwi /-IMD

CWE-74. Improper Neutralization of Special Elements in
Output Used by a Downstream Component (‘Injection’)

CWE Version 4.13
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection”)

overflows, and many other flaws, involve the use of some further issue to gain execution, injection
problems need only for the data to be parsed.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf [P 707 Improper Neutralization 1526

ParentOf @ 75 Failure to Sanitize Special Elements into a Different Plane 142
(Special Element Injection)

ParentOf @ 77 Improper Neutralization of Special Elements used in a 145
Command (‘Command Injection’)

ParentOf (B] 79 Improper Neutralization of Input During Web Page 163
Generation (‘Cross-site Scripting’)

ParentOf (] 91 XML Injection (aka Blind XPath Injection) 215

ParentOf Q 93 Improper Neutralization of CRLF Sequences ('CRLF 217
Injection’)

ParentOf o 94 Improper Control of Generation of Code ('Code Injection’) 219

ParentOf (C] 99 Improper Control of Resource Identifiers ('Resource 242
Injection’)

ParentOf @ 943 Improper Neutralization of Special Elements in Data Query 1824
Logic

ParentOf (E] 1236 Improper Neutralization of Formula Elements in a CSV File 1986

CanFollow @ 20 Improper Input Validation 20

CanFollow @ 116 Improper Encoding or Escaping of Output 281

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page

ParentOf C] 77 Improper Neutralization of Special Elements used in a 145
Command (‘Command Injection’)

ParentOf o 78 Improper Neutralization of Special Elements used in an OS 151
Command ('OS Command Injection’)

ParentOf Q 79 Improper Neutralization of Input During Web Page 163
Generation ('Cross-site Scripting’)

ParentOf Q 88 Improper Neutralization of Argument Delimiters in a 194
Command ('Argument Injection’)

ParentOf (E] 89 Improper Neutralization of Special Elements used in an SQL 201
Command ('SQL Injection")

ParentOf E] 91 XML Injection (aka Blind XPath Injection) 215

ParentOf (B) 94 Improper Control of Generation of Code (‘Code Injection’) 219

ParentOf Q 917 Improper Neutralization of Special Elements used in an 1792
Expression Language Statement ('Expression Language
Injection’)

ParentOf (B] 1236 Improper Neutralization of Formula Elements in a CSV File 1986

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page

MemberOf 1019 Validate Inputs 2368

Weakness Ordinalities

138

CWE Version 4.13
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection’)

Primary :
Applicable Platforms

Language : Not Language-Specific (Prevalence = Undetermined)
Likelihood Of Exploit

High
Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Many injection attacks involve the disclosure of important
information -- in terms of both data sensitivity and
usefulness in further exploitation.

Access Control Bypass Protection Mechanism

In some cases, injectable code controls authentication; this
may lead to a remote vulnerability.
Other Alter Execution Logic

Injection attacks are characterized by the ability to

significantly change the flow of a given process, and in

some cases, to the execution of arbitrary code.
Integrity Other

Other Data injection attacks lead to loss of data integrity in nearly

all cases as the control-plane data injected is always
incidental to data recall or writing.
Non-Repudiation Hide Activities

Often the actions performed by injected control code are
unlogged.

Detection Methods
Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST),
can find some instances of this weakness by analyzing source code (or binary/compiled code)
without having to execute it. Typically, this is done by building a model of data flow and control
flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input)
with "sinks" (destinations where the data interacts with external components, a lower layer such
as the OS, etc.)

Effectiveness = High
Potential Mitigations
Phase: Requirements

Programming languages and supporting technologies might be chosen which are not subject to
these issues.

Phase: Implementation

Utilize an appropriate mix of allowlist and denylist parsing to filter control-plane syntax from all
input.

Demonstrative Examples
Example 1:

This example code intends to take the name of a user and list the contents of that user's home
directory. It is subject to the first variant of OS command injection.

139

(,uonoalu],) Jusuodwo) weansumoq e Ag pasn indino
ul syjuswa|3 eroads Jo uonezifeainaN Jadoidwi /-IMD

CWE-74. Improper Neutralization of Special Elements in
Output Used by a Downstream Component (‘Injection’)

CWE Version 4.13
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection”)

Example Language: PHP (Bad)

$userName = $_POST["user"];
$command ="Is -| /home/' . SuserName;
system($command);

The $userName variable is not checked for malicious input. An attacker could set the $userName
variable to an arbitrary OS command such as:

Example Language: (Attack)

;rm -rf /

Which would result in $command being:

Example Language: (Result)

Is -l /home/;rm -rf /

Since the semi-colon is a command separator in Unix, the OS would first execute the Is command,
then the rm command, deleting the entire file system.

Also note that this example code is vulnerable to Path Traversal (CWE-22) and Untrusted Search
Path (CWE-426) attacks.

Example 2:

Consider the following program. It intends to perform an "Is -I" on an input filename. The
validate_name() subroutine performs validation on the input to make sure that only alphanumeric
and "-" characters are allowed, which avoids path traversal (CWE-22) and OS command injection
(CWE-78) weaknesses. Only filenames like "abc" or "d-e-f" are intended to be allowed.

Example Language: Perl (Bad)

my $arg = GetArgument(“filename");
do_listing($arg);
sub do_listing {
my($fname) = @_;
if (! validate_name($fname)) {

print "Error: name is not well-formed!\n";
return;

}

build command

my $cmd = "/bin/ls -| $fname";
system($cmd);

sub validate_name {
my($name) = @_;

if ($name =~ /"\W\-]+$/) {
return(1);

else {
return(0);

}
However, validate_name() alows filenames that begin with a "-". An adversary could supply a

filename like "-aR", producing the "Is -l -aR" command (CWE-88), thereby getting a full recursive
listing of the entire directory and all of its sub-directories.

There are a couple possible mitigations for this weakness. One would be to refactor the code to
avoid using system() altogether, instead relying on internal functions.

140

CWE Version 4.13

CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

('Injection’)

Another option could be to add a "--" argument to the Is command, such as "Is -I --", so that any

remaining argument

s are treated as filenames, causing any leading "-" to be treated as part of a

filename instead of another option.

Another fix might be

to change the regular expression used in validate_name to force the first

character of the filename to be a letter or number, such as:

Example Language: Perl

(Good)

if (fname =~ /MNw[\Ww\-]+$/) ...

Observed Examples

Reference
CVE-2022-36069

CVE-1999-0067

CVE-2022-1509

CVE-2020-9054

CVE-2021-44228

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits

within the context of

Nature Type
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
Notes
Theoretical

Description

Python-based dependency management tool avoids OS command injection
when generating Git commands but allows injection of optional arguments with
input beginning with a dash, potentially allowing for code execution.
https://www.cve.org/CVERecord?id=CVE-2022-36069

Canonical example of OS command injection. CGI program does not
neutralize "|" metacharacter when invoking a phonebook program.
https://www.cve.org/CVERecord?id=CVE-1999-0067

injection of sed script syntax ("sed injection")
https://www.cve.org/CVERecord?id=CVE-2022-1509

Chain: improper input validation (CWE-20) in username parameter, leading to
OS command injection (CWE-78), as exploited in the wild per CISA KEV.
https://www.cve.org/CVERecord?id=CVE-2020-9054

Product does not neutralize ${xyz} style expressions, allowing remote code
execution. (log4shell vulnerability)
https://www.cve.org/CVERecord?id=CVE-2021-44228

external information sources.

ID Name Page
727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 2272
929 OWASP Top Ten 2013 Category Al - Injection 928 2324
990 SFP Secondary Cluster: Tainted Input to Command 888 2348
1003 Weaknesses for Simplified Mapping of Published 1003 2511

Vulnerabilities
1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2424
1409 Comprehensive Categorization: Injection 1400 2469

(,uonoalu],) Jusuodwo) weansumoq e Ag pasn indino
ul syjuswa|3 eroads Jo uonezifeainaN Jadoidwi /-IMD

Many people treat injection only as an input validation problem (CWE-20) because many people

do not distinguish

between the consequence/attack (injection) and the protection mechanism that

prevents the attack from succeeding. However, input validation is only one potential protection
mechanism (output encoding is another), and there is a chaining relationship between improper
input validation and the improper enforcement of the structure of messages to other components.
Other issues not directly related to input validation, such as race conditions, could similarly
impact message structure.

Taxonomy Mappings

141

CWE-75: Failure to Sanitize Special Elements
into a Different Plane (Special Element Injection)

CWE Version 4.13
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

Mapped Taxonomy Name Node ID Fit Mapped Node Name

CLASP Injection problem (‘data’ used as
something else)

OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws

Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name

3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
6 Argument Injection

7 Blind SQL Injection

8 Buffer Overflow in an API Call

9 Buffer Overflow in Local Command-Line Utilities

10 Buffer Overflow via Environment Variables
13 Subverting Environment Variable Values
14 Client-side Injection-induced Buffer Overflow
24 Filter Failure through Buffer Overflow
28 Fuzzing
34 HTTP Response Splitting
42 MIME Conversion
43 Exploiting Multiple Input Interpretation Layers
45 Buffer Overflow via Symbolic Links
46 Overflow Variables and Tags
a7 Buffer Overflow via Parameter Expansion
51 Poison Web Service Registry
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
67 String Format Overflow in syslog()
71 Using Unicode Encoding to Bypass Validation Logic
72 URL Encoding
76 Manipulating Web Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
83 XPath Injection
84 XQuery Injection
101 Server Side Include (SSI) Injection
105 HTTP Request Splitting
108 Command Line Execution through SQL Injection
120 Double Encoding
135 Format String Injection
250 XML Injection
267 Leverage Alternate Encoding
273 HTTP Response Smuggling
References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special
Element Injection)

142

CWE Version 4.13
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

Weakness ID : 75
Structure : Simple
Abstraction : Class

Description

The product does not adequately filter user-controlled input for special elements with control
implications.

Relationships
The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf C] 74 Improper Neutralization of Special Elements in Output Used 137
by a Downstream Component (‘Injection’)

ParentOf Q 76 Improper Neutralization of Equivalent Special Elements 144

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2368

Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

Confidentiality Execute Unauthorized Code or Commands

Availability

Potential Mitigations
Phase: Requirements

Programming languages and supporting technologies might be chosen which are not subject to
these issues.

Phase: Implementation

Utilize an appropriate mix of allowlist and denylist parsing to filter special element syntax from all
input.
MemberOf Relationships
This MemberOf relationships table shows additional CWE Catgeories and Views that reference this

weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2348
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2424

MemberOf 1409 Comprehensive Categorization: Injection 1400 2469
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Special Element Injection

143

(uonoalul Juswa|3 e19ads) aue|d 1UaJa}}IQ B 01Ul
sjuswa|3 [e10ads azniues ol ainjred :G/-3MD

CWE-76: Improper Neutralization of Equivalent Special Elements

CWE Version 4.13
CWE-76: Improper Neutralization of Equivalent Special Elements

Related Attack Patterns

CAPEC-ID Attack Pattern Name
81 Web Server Logs Tampering
93 Log Injection-Tampering-Forging

CWE-76: Improper Neutralization of Equivalent Special Elements

Weakness ID : 76
Structure : Simple
Abstraction : Base

Description

The product correctly neutralizes certain special elements, but it improperly neutralizes equivalent
special elements.

Extended Description

The product may have a fixed list of special characters it believes is complete. However, there may
be alternate encodings, or representations that also have the same meaning. For example, the
product may filter out a leading slash (/) to prevent absolute path names, but does not account for
a tilde (~) followed by a user name, which on some *nix systems could be expanded to an absolute
pathname. Alternately, the product might filter a dangerous "-e" command-line switch when calling
an external program, but it might not account for "--exec" or other switches that have the same
semantics.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf C] 75 Failure to Sanitize Special Elements into a Different Plane 142
(Special Element Injection)

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2368
Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2246

Weakness Ordinalities
Primary :
Applicable Platforms
Language : Not Language-Specific (Prevalence = Undetermined)
Likelihood Of Exploit
High
Common Consequences

Scope Impact Likelihood
Other Other

144

CWE Version 4.13
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

Scope Impact Likelihood
Potential Mitigations
Phase: Requirements

Programming languages and supporting technologies might be chosen which are not subject to
these issues.

Phase: Implementation

Utilize an appropriate mix of allowlist and denylist parsing to filter equivalent special element
syntax from all input.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2348

MemberOf 1409 Comprehensive Categorization: Injection 1400 2469
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Equivalent Special Element Injection

CWE-77: Improper Neutralization of Special Elements used in a Command
(Command Injection’)

Weakness ID : 77
Structure : Simple
Abstraction : Class

Description

The product constructs all or part of a command using externally-influenced input from an upstream
component, but it does not neutralize or incorrectly neutralizes special elements that could modify
the intended command when it is sent to a downstream component.

Extended Description

Command injection vulnerabilities typically occur when:

(,uonoalu] puewwo),) puerWWOD © Ul Pasn sjusawa|3

1. Data enters the application from an untrusted source.

2. The data is part of a string that is executed as a command by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the
attacker would not otherwise have.

Many protocols and products have their own custom command language. While OS or shell
command strings are frequently discovered and targeted, developers may not realize that these
other command languages might also be vulnerable to attacks.

Command injection is a common problem with wrapper programs.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

145

[e1oads jo uoneziesnaN Jadoudwy :22-3MD

CWE-77: Improper Neutralization of Special
Elements used in a Command (Command Injection’)

CWE Version 4.13
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf C] 74 Improper Neutralization of Special Elements in Output Used 137
by a Downstream Component (‘'Injection’)

ParentOf Q 78 Improper Neutralization of Special Elements used in an OS 151
Command ('OS Command Injection’)

ParentOf Q 88 Improper Neutralization of Argument Delimiters in a 194
Command ('Argument Injection’)

ParentOf (B) 624 Executable Regular Expression Error 1378

ParentOf E] 917 Improper Neutralization of Special Elements used in an 1792
Expression Language Statement ('Expression Language
Injection’)

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf @ 74 Improper Neutralization of Special Elements in Output Used 137
by a Downstream Component (‘Injection’)

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page

MemberOf 1019 Validate Inputs 2368

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page

ParentOf (E] 78 Improper Neutralization of Special Elements used in an OS 151
Command ('OS Command Injection’)

ParentOf E] 88 Improper Neutralization of Argument Delimiters in a 194
Command (‘Argument Injection’)

ParentOf (B) 624 Executable Regular Expression Error 1378

ParentOf Q 917 Improper Neutralization of Special Elements used in an 1792
Expression Language Statement ('Expression Language
Injection’)

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page

ParentOf (E] 78 Improper Neutralization of Special Elements used in an OS 151
Command ('OS Command Injection’)

ParentOf (E] 88 Improper Neutralization of Argument Delimiters in a 194
Command ('Argument Injection’)

ParentOf (B) 624 Executable Regular Expression Error 1378

ParentOf (B) 917 Improper Neutralization of Special Elements used in an 1792
Expression Language Statement ('Expression Language
Injection’)

Weakness Ordinalities

Primary :
Applicable Platforms

Language : Not Language-Specific (Prevalence = Undetermined)
Likelihood Of Exploit

146

CWE Version 4.13
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

High
Common Consequences
Scope Impact Likelihood
Integrity Execute Unauthorized Code or Commands
Con_f|de_nt|a||ty If a malicious user injects a character (such as a semi-
Availability

colon) that delimits the end of one command and the
beginning of another, it may be possible to then insert an
entirely new and unrelated command that was not intended
to be executed.

Detection Methods
Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST),
can find some instances of this weakness by analyzing source code (or binary/compiled code)
without having to execute it. Typically, this is done by building a model of data flow and control
flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input)
with "sinks" (destinations where the data interacts with external components, a lower layer such
as the OS, etc.)

Effectiveness = High
Potential Mitigations
Phase: Architecture and Design

If at all possible, use library calls rather than external processes to recreate the desired
functionality.

Phase: Implementation

If possible, ensure that all external commands called from the program are statically created.
Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue.” Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

(,uonoalu] puewwo),) puerWWOD © Ul Pasn sjusawa|3

Phase: Operation

Run time: Run time policy enforcement may be used in an allowlist fashion to prevent use of any
non-sanctioned commands.

Phase: System Configuration
Assign permissions that prevent the user from accessing/opening privileged files.
Demonstrative Examples

Example 1:

147

[e1oads jo uoneziesnaN Jadoudwy :22-3MD

CWE-77: Improper Neutralization of Special
Elements used in a Command (Command Injection’)

CWE Version 4.13
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

The following simple program accepts a filename as a command line argument and displays the
contents of the file back to the user. The program is installed setuid root because it is intended for
use as a learning tool to allow system administrators in-training to inspect privileged system files
without giving them the ability to modify them or damage the system.

Example Language: C (Bad)

int main(int argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat *;
strcat(cmd, argv[1]);
system(cmd);

}

Because the program runs with root privileges, the call to system() also executes with root
privileges. If a user specifies a standard filename, the call works as expected. However, if an
attacker passes a string of the form ";rm -rf /", then the call to system() fails to execute cat due to a
lack of arguments and then plows on to recursively delete the contents of the root partition.

Note that if argv[1] is a very long argument, then this issue might also be subject to a buffer
overflow (CWE-120).

Example 2:

The following code is from an administrative web application designed to allow users to kick

off a backup of an Oracle database using a batch-file wrapper around the rman utility and then
run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single
command line parameter, which specifies what type of backup to perform. Because access to the
database is restricted, the application runs the backup as a privileged user.

Example Language: Java (Bad)

String btype = request.getParameter("backuptype");
String cmd = new String("cmd.exe /K \"

c:\\util\rmanDB.bat "

+btype+

"&&c:\\utl\\cleanup.bat\"")
System.Runtime.getRuntime().exec(cmd);

The problem here is that the program does not do any validation on the backuptype parameter
read from the user. Typically the Runtime.exec() function will not execute multiple commands,

but in this case the program first runs the cmd.exe shell in order to run multiple commands with a
single call to Runtime.exec(). Once the shell is invoked, it will happily execute multiple commands
separated by two ampersands. If an attacker passes a string of the form "& del c:\\dbms*.*", then
the application will execute this command along with the others specified by the program. Because
of the nature of the application, it runs with the privileges necessary to interact with the database,
which means whatever command the attacker injects will run with those privileges as well.

Example 3:

The following code from a system utility uses the system property APPHOME to determine the
directory in which it is installed and then executes an initialization script based on a relative path
from the specified directory.

Example Language: Java (Bad)

String home = System.getProperty("APPHOME");
String cmd = home + INITCMD;
java.lang.Runtime.getRuntime().exec(cmd);

148

CWE Version 4.13
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

The code above allows an attacker to execute arbitrary commands with the elevated privilege of
the application by modifying the system property APPHOME to point to a different path containing
a malicious version of INITCMD. Because the program does not validate the value read from the
environment, if an attacker can control the value of the system property APPHOME, then they can
fool the application into running malicious code and take control of the system.

Example 4:

The following code is a wrapper around the UNIX command cat which prints the contents of a file to
standard out. It is also injectable:

Example Language: C (Bad)

#include <stdio.h>

#include <unistd.h>

int main(int argc, char **argv) {
char cat[] = "cat “;
char *command;
size_t commandLength;
commandLength = strlen(cat) + strlen(argv[1]) + 1;
command = (char *) malloc(commandLength);
strncpy(command, cat, commandLength);
strncat(command, argv[1], (commandLength - strlen(cat)));
system(command);
return (0);

Used normally, the output is simply the contents of the file requested:

Example Language: (Informative)

$./catWrapper Story.txt
When last we left our heroes...

However, if we add a semicolon and another command to the end of this line, the command is
executed by catWrapper with no complaint:

Example Language: (Attack)

$./catWrapper Story.txt; Is
When last we left our heroes...
Story.txt

SensitiveFile.txt
PrivateData.db

a.out*

(,uonoalu] puewwo),) puerWWOD © Ul Pasn sjusawa|3

If catWrapper had been set to have a higher privilege level than the standard user, arbitrary
commands could be executed with that higher privilege.

Observed Examples

Reference Description

CVE-2022-36069 Python-based dependency management tool avoids OS command injection
when generating Git commands but allows injection of optional arguments with
input beginning with a dash, potentially allowing for code execution.
https://www.cve.org/CVERecord?id=CVE-2022-36069

CVE-1999-0067 Canonical example of OS command injection. CGI program does not
neutralize "|" metacharacter when invoking a phonebook program.
https://www.cve.org/CVERecord?id=CVE-1999-0067

CVE-2020-9054 Chain: improper input validation (CWE-20) in username parameter, leading to
OS command injection (CWE-78), as exploited in the wild per CISA KEV.
https://www.cve.org/CVERecord?id=CVE-2020-9054

149

[e1oads jo uoneziesnaN Jadoudwy :22-3MD

CWE Version 4.13

CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

Reference
CVE-2022-1509

CVE-2021-41282

CVE-2019-13398

CVE-2019-12921

CVE-2020-11698

Description

injection of sed script syntax ("sed injection")
https://www.cve.org/CVERecord?id=CVE-2022-1509

injection of sed script syntax ("sed injection")
https://www.cve.org/CVERecord?id=CVE-2021-41282

injection of sed script syntax ("sed injection")
https://www.cve.org/CVERecord?id=CVE-2019-13398

image program allows injection of commands in "Magick Vector Graphics
(MVG)" language.

https://www.cve.org/CVERecord?id=CVE-2019-12921

anti-spam product allows injection of SNMP commands into confiuration file
https://www.cve.org/CVERecord?id=CVE-2020-11698

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this

=
S
S g Nature Type
3 = MemberOf
=
N o MemberOf
5 % MemberOf
c £ MemberOf
o g MemberOf
6,3 O MemberOf
= — MemberOf
=
ISINc MemberOf
S @
Qe
Z c MemberOf
o O MemberOf
o O
© ®
o - MemberOf
s MemberOf
< Y MemberOf
l\l >
'%J 0 MemberOf
O & MemberoOf
S
Q
LI Notes

Terminology

weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

ID Name Page
713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 2265
722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 2269
727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 2272

929 OWASP Top Ten 2013 Category Al - Injection 928 2324
990 SFP Secondary Cluster: Tainted Input to Command 888 2348
1005 7PK - Input Validation and Representation 700 2356
1027 OWASP Top Ten 2017 Category Al - Injection 1026 2370

1179 SEI CERT Perl Coding Standard - Guidelines 01. Input 1178 2400
Validation and Data Sanitization (IDS)

1308 CISQ Quality Measures - Security 1305 2420

1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous 1337 2524
Software Weaknesses

1340 CISQ Data Protection Measures 1340 2525

1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2424

1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous 1387 2532
Software Weaknesses

1409 Comprehensive Categorization: Injection 1400 2469

1425 Weaknesses in the 2023 CWE Top 25 Most Dangerous 1425 2534
Software Weaknesses

The "command injection" phrase carries different meanings to different people. For some people,
it refers to any type of attack that can allow the attacker to execute commands of their own
choosing, regardless of how those commands are inserted. The command injection could thus
be resultant from another weakness. This usage also includes cases in which the functionality
allows the user to specify an entire command, which is then executed; within CWE, this situation
might be better regarded as an authorization problem (since an attacker should not be able

to specify arbitrary commands.) Another common usage, which includes CWE-77 and its
descendants, involves cases in which the attacker injects separators into the command being

constructed.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Command Injection

150

CWE Version 4.13
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command

Injection’)
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Command injection
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
Software Fault Patterns SFP24 Tainted input to command
SEI CERT Perl Coding IDS34- CWE More Specific Do not pass untrusted, unsanitized data
Standard PL to a command interpreter

Related Attack Patterns
CAPEC-ID Attack Pattern Name

15 Command Delimiters
40 Manipulating Writeable Terminal Devices
43 Exploiting Multiple Input Interpretation Layers
75 Manipulatin