(W Common Weakness Enumeration
. A Community-Developed Dictionary of Software Weakness Tyvpes
CWE Version 4.2

MITRE

CWE Version 4.2
2020-08-20

CWE is a Software Assurance strategic initiative sponsored by the National

Cyber Security Division of the U.S. Department of Homeland Security

Copyright 2020, The MITRE Corporation

CWE and the CWE logo are trademarks of The MITRE Corporation
Contact cwe@mitre.org for more information

CWE Version 4.2
Table of Contents

Table of Contents

SYMDBOIS USEA IN CWE ... XXV
Individual CWE Weaknesses

CWE-5: J2EE Misconfiguration: Data Transmission Without ENCryption............c.cooiiiiiiia i
CWE-6: J2EE Misconfiguration: Insufficient SeSSion-ID Length............oooiiiiiiiiiiii e
CWE-7: J2EE Misconfiguration: Missing CUStOM Error Page..........ooooi i e
CWE-8: J2EE Misconfiguration: Entity Bean Declared REMOLE.c..ooiiiiiiiiiiiiiiiee e
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods............ccccooiiiiiiiiiiiiiiie e
CWE-11: ASP.NET Misconfiguration: Creating Debug BiNAry............cooouueiiiiiiiiiiiaee e
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page...........cccooiiiuiiiiiiiiiiiee e
CWE-13: ASP.NET Misconfiguration: Password in Configuration File..............ccccciiiiiiiiiii e
CWE-14: Compiler Removal of Code t0 Clear BUFfEIS...........uiiiiiiiiei e
CWE-15: External Control of System or Configuration SettiNg.........cooiueeirieaiiiiiire e
CWE-20: Improper INput Validation.............ooueiiiiiiii e e e

CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal’)

CWE-23: Relative Path TIAVEISAL.........cocuiiiiiiieiiiieiiiee ettt e s e e e e nnne e nenees
CWE-24: Path Traversal: "./fileir..........c.ooo e e e e e es
CWE-25: Path Traversal: [Il INooo et e s
CWE-26: Path Traversal: '/dir/../filename’

CWE-27: Path Traversal: "dir/../.. /flENaME..........coo e
CWE-28: Path Traversal: " Miledir'..........coui e e e
CWE-29: Path Traversal: ‘\..\filename'

CWE-30: Path Traversal: \dir\.\fileNaMEooi e
CWE-31: Path Traversal: "dir\.\..\fllename'...........oo e
CWE-32: Path Traversal: "..." (THPIE DOL)....ccciii ittt e e e e e et e e e e e e e nneeeaeeeaneeeeens
CWE-33: Path Traversal: '...." (Multiple Dot)

CWE-34: Path Traversal: ".../[....cccccooiiiiiiiieee e

CWE-35: Path TraVerSal: "ol et e st
CWE-36: ADSOIULE Pat TIAVEISAL.......cciiueieiiiiiieiiiie ettt e s e e nn e e s e e s e nnnees
CWE-37: Path Traversal: ‘/absolute/pathname/here’

CWE-38: Path Traversal: \absolute\pathname\here'

CWE-39: Path Traversal: "CidiMaIME"..........cuii ittt e et s e e e s e e e snn e e s nnneeenneee s
CWE-40: Path Traversal: "\UNC\share\name\' (Windows UNC Share)............cccceiiiuiiiiieiiniiiiee e 80
CWE-41: Improper Resolution of Path EQUIVAIENCE...........coiiiiiiiee e e 81
CWE-42: Path Equivalence: filename.' (Trailing DOL)........cccooiiiiiiiiiiiiiie e e e 87
CWE-43: Path Equivalence: ‘filename...." (Multiple Trailing DOt).........cccuuiiiiaiiiiiiie e 88
CWE-44: Path Equivalence: file.name' (Internal Dot)

CWE-45: Path Equivalence: ‘file...name' (Multiple Internal DOt)............ooiiiiiiiiiiii e 90

CWE-46:
CWE-47:
CWE-48:
CWE-49:
CWE-50:
CWE-51:
CWE-52:
CWE-53:
CWE-54:
CWE-55:
CWE-56:
CWE-57:
CWE-58:
CWE-59:
CWE-61:
CWE-62:
CWE-64:
CWE-65:
CWE-66:
CWE-67:

Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:

filename "' (Trailing SPACE).......cuueiiieiiiiiie e ee s 91
' filename' (Leading SPACE)........uueiieiiiiiiiiee et et e s 92
'file name' (Internal Whit€SPACE)......ccoeiiiiiiiiiee e 93
filename/* (Trailing SIash)...........ooo e 94
‘/Imultiple/leading/slash’
‘/multiple//internal/slash’
‘/multiple/trailing/slash//"
\multiple\\internal\backslash'..............oooo e 99
filedir\' (Trailing Backslash)..........coo e 100
[.1' (SINQIE DOt DIFECLONY). . .eeeieeeieiitieee ettt e et a e et e e e e et e e e e e aneeeeae e e anees 101
FIledir® (WIlACAId)......cooeeeeee e e e 102
‘fakedir/../realdir/fleNamE’...........oooiii e 103

Path Equivalence: WINAOWS 8.3 FIlENAME.........ocuuiiiiii e 104
Improper Link Resolution Before File Access (‘Link FOIOWING')......ooocuiiiiiiiiiiiiieee e 106
UNIX Symbolic Link (Symlink) FOHOWING........coiiuiiiiiiiiiii ettt e e e 111
UNIX HEI LINK .ttt et h bttt e et e e sat et eeab e e nbe e et e e nneeenne s 113
Windows Shortcut FOHOWING ((LNK)......ooiiiiiiiee et e e e e enneeeea e 115
WINAOWS HAIT LINK. ..ottt e e e e s e e e s n e e e e e nanes 117
Improper Handling of File Names that Identify Virtual RESOUICES..........ccoiiiiiiiiiiiiiiiiee e 118
Improper Handling of WINdOWS DeViCe NAIMES........c.ooiiiiiiiee e e e e s 120

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.2
Table of Contents

CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream.............ccccveveeeiiiiiiiieecceiiiee e
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path
CWE-73: External Control of File Name Or Path...........ccccooiiiiiiiiii e e
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

(][1o o 1 T PP 131
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)................... 134
CWE-76: Improper Neutralization of Equivalent Special EIements............ccccooiiiiiiieiiiiiiiee e 135
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)................ 136
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

a1 =To 1 o] o N TSROSO 142
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting')..................... 153
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS).........cccccvveeiins
CWE-81: Improper Neutralization of Script in an Error Message Web Page.............cccoovviiiiiiiiiiie e,
CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web Page..............ccocovvveeiiiiinne.n.
CWE-83: Improper Neutralization of Script in Attributes in a Web Page..........cccccveeiiiiiiiee i
CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page.............
CWE-85: Doubled Character XSS ManipUlatioNS............uviieiiiiiiiie et e et e e e sibae e e e e naaeeas
CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages............cccccoevivieiiiivnnne.n.
CWE-87: Improper Neutralization of Alternate XSS SYNTAX.........ccciiiiiiiieiiiiiiiiee e e e
CWE-88: Improper Neutralization of Argument Delimiters in a Command (‘Argument Injection’)
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)............... 188
CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection’).................. 199
CWE-91: XML Injection (aka Blind XPath INJECHON)..........oiiiiiiiiiiiie et e e e 201
CWE-93: Improper Neutralization of CRLF Sequences ('CRLF INJECHION")..........ceveiiiiiiiiiee e 203
CWE-94: Improper Control of Generation of Code (‘Code INJECION").......ccvvevieiiiiiiiiee e 205
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code (‘Eval Injection’).................... 211
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection’)................... 215
CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page............ccccveveeeiiiiiiieeeeens 218
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File

g Tod [T 7o) o) TR PUPR O UPRN:
CWE-99: Improper Control of Resource Identifiers ('Resource Injection’)
CWE-102: Struts: Duplicate Validation FOIMMS............uiiiiiiiiiii et essaare e e e
CWE-103: Struts: Incomplete validate() Method Definition.............coccviiiiiiiiiiiie e
CWE-104: Struts: Form Bean Does Not Extend Validation Class.........c.ccceeviiiiiiieiiiiiieniie e
CWE-105: Struts: Form Field WithOut Validator............oiuiiiiiiie it
CWE-106: Struts: Plug-in FrameWork NOt iN USE........cooiiuiiiiiiiiiiiiie ettt e sttt s st e e e s e e e e e s s satveeeaeaenns
CWE-107: Struts: Unused Validation FOMM.........ocuiiiiuiiiiiiie ettt e e e e sneeeesnnee
CWE-108: Struts: Unvalidated Action Form...............
CWE-109: Struts: Validator TUMME Off..........ciiiiiiiiieie et et e et e e sne e s nnaee s
CWE-110: Struts: Validator Without FOrm Field...........coouiiiiiiiiiiie e
CWE-111: Direct Use Of UNSAE INL......ccciiiiiiiiiiiiie ittt sttt e b e e ettt e e snte e e s nneeeessbeeennes
CWE-112: MiSSING XML ValidatiON........ccciiuiiiieeiiiiiiee e e ettt e e e sttt e e e s e st e e e e e s st e e s e e e sstbaaeaesasntbeeeeessnsbrneeaeaanns
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers (‘HTTP Response Splitting’)......... 253
CWE-114: PrOCESS CONLIOL....cciutiiiiiiiiieiiiie it ee ettt ettt e sttt e e sttt e et e e s bt e e sttt e e sabe e e aatb e e e anteeesnbeeeenbbeeeanteeesnnees
CWE-115: Misinterpretation Of INPUL...........ooiiiiiiiii e e e e e e e e st e e e e s st ba e e e e e s aanaeeaeas
CWE-116: Improper Encoding or Escaping of Output
CWE-117: Improper Output Neutralization fOr LOGS........ccuuiiiiiiiiiiiie ettt e e et e e e st e e e s satre e e e e s enens
CWE-118: Incorrect Access of Indexable Resource ('Range Error)........cccovevieiiiiieiee e cciiiiee e
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer
CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow")
CWE-121: Stack-based BUffer OVEITIOW.ccoiiiiiiiiiiiii ettt
CWE-122: Heap-based BUffer OVEITIOW.cooiiiiii ettt e e st e e e e s aaae e e e e s anens
CWE-123: Write-what-Where CONGItION.coiiiiiiiiiie ettt ettt ste e e nbe e e snbe e e sneeesnneee s
CWE-124: Buffer Underwrite (‘Buffer UnderfloW')..........uveiioiiiiiiicc ettt e
CWE-125: OUL-0f-DOUNAS REAM.coiiiiiiiiiiii ittt et e s rbbe e e sabeeesbaee s
CWE-126: BUFfEI OVEI-TEAM.cciiiiiiitiee ittt ettt ettt e ettt e e et e e s abb e e s kbt e e sabeeeanbeeesbeeeesnbeeeanbeeeaan
CWE-127: Buffer Under-read
CWE-128: Wrap-arOUNG EITOF......ccuiiiiieei ittt e e ceeite e e e e ettt e e e e st e et e e e s e stba e e e e e eaatbeeeeeesantaeseeesasssseeeesassssseeeesaanees
CWE-129: Improper Validation Of Array INAEX.........coiiiiiiiie it e e e e e e e e e e e saraee s
CWE-130: Improper Handling of Length Parameter INCONSISIENCY.........cccooiiiiiiieiiiiiiei e
CWE-131: Incorrect Calculation of BUfEr SIZ€.........cccuiiiiiiiiiiii e

iv

CWE Version 4.2
Table of Contents

CWE-134:
CWE-135:
CWE-138:
CWE-140:
CWE-141.:
CWE-142:
CWE-143:
CWE-144:
CWE-145:
CWE-146:
CWE-147:
CWE-148:
CWE-149:
CWE-150:
CWE-151:
CWE-152:
CWE-153:
CWE-154:
CWE-155:
CWE-156:
CWE-157:
CWE-158:
CWE-159:
CWE-160:
CWE-161.:
CWE-162:
CWE-163:
CWE-164:
CWE-165:
CWE-166:
CWE-167:
CWE-168:
CWE-170:
CWE-172:
CWE-173:
CWE-174:
CWE-175:
CWE-176:
CWE-177:
CWE-178:
CWE-179:
CWE-180:
CWE-181.:
CWE-182:
CWE-183:
CWE-184:
CWE-185:
CWE-186:
CWE-187:
CWE-188:
CWE-190:
CWE-191:
CWE-192:
CWE-193:
CWE-194:
CWE-195:
CWE-196:
CWE-197:
CWE-198:
CWE-200:
CWE-201:

Use of Externally-Controlled FOrmat StriNg..........ceeeeiiiiiiiiee et ee et e st e e esvaneea e e
Incorrect Calculation of Multi-Byte String LeNgth...........coooiiiiiiiiiiiee e
Improper Neutralization of Special EIEMENTS............coiiiiiiiiiiic e
Improper Neutralization of DEIMILEIS.......c.cciiiiiiii e
Improper Neutralization of Parameter/Argument Delimiters..........ccccceeviiiiiee e iiiiiiee e
Improper Neutralization of Value Delimiters
Improper Neutralization of Record DeliMiters..........ccciuviiiiiiiiiiiee e
Improper Neutralization of Line DeliMIters...........cooiiiiiiiiiiiiiiie e
Improper Neutralization of Section DeliMItErs...........ccoviiiiie i
Improper Neutralization of Expression/Command Delimiters .
Improper Neutralization of INPUt TEIMINALOIS.........c.uviiiiiiiiiee e e

Improper Neutralization of INPUL LEAAEIS........cccoiiiiiiii ittt

Improper Neutralization of QUOTING SYNTAX.......c.uuiiiiiiiiiiie e e e s e s e e e e e e satreree e

Improper Neutralization of Escape, Meta, or Control SEQUENCES..........cccvvvieeeeiiiiiee e 365
Improper Neutralization of Comment DeliMIters...........ccooiiiiiiiiiiiiiiiee e 367
Improper Neutralization of Macro SYMbOIS...........cciuiiiiiiiii e 369
Improper Neutralization of Substitution Characters............cccvveiiiiiiiiiiie e 371
Improper Neutralization of Variable Name Delimiters...........cccoovvveviiiiiiiiiiee e 372
Improper Neutralization of Wildcards or Matching Symbols............ccccooviiiiiie i, 374
Improper Neutralization of WhIite@SPACE.coiiiiiiii i e 376
Failure to Sanitize Paired Delimiters
Improper Neutralization of Null Byte or NUL Character..........cccuveeieiiiiiiiie e 380
Improper Handling of Invalid Use of Special Elements...........cccoccvviiieiiiiiiiee e 382
Improper Neutralization of Leading Special EIEMENtS.........cccuvviiiiiiiiiiiic e 384
Improper Neutralization of Multiple Leading Special Elements...........cccccoeiiiiiiiiee e 386
Improper Neutralization of Trailing Special EIEMENtS..........cccoviiiiiiiiiiiee e 387
Improper Neutralization of Multiple Trailing Special Elements...........ccccccveeiiiiiiiee e 389
Improper Neutralization of Internal Special Elements
Improper Neutralization of Multiple Internal Special Elements............cccocovveviiiiiiiieee e, 392
Improper Handling of Missing Special EIEMENt............cooiiiiiiiiiii e

Improper Handling of Additional Special EIEmMEeNt...........ccoviiiiiiiiiiiee e

Improper Handling of Inconsistent Special Elements
IMproper NUll TerMINALION.uiiiie e e e e s e e e s et e e e e s e saare e e e e s sntaereeesanes
[a1t To [TaTo =t o SR PRSP RPRP
Improper Handling of Alternate ENCOQING.........cccuviiiiiiiiiiiiiee ettt e e et e s eiraee e
Double Decoding of the SAmME Data..........cceceiiiiiiiie i e e et are e
Improper Handling of MiXed ENCOAING..........cooiiiiieiiiiiiii ettt e aarae e e
Improper Handling of Unicode ENCOING.........c.ioiiiiiiiiie it
Improper Handling of URL Encoding (Hex Encoding)
Improper Handling of Case SENSITIVITY.........cciiiuiiiieiiiiiiie e e sbare e e e

Incorrect Behavior Order: Early Validation...............eeiiiiiiiiiiee e

Incorrect Behavior Order: Validate Before Canonicalize.............covvviiiiiiieiiieeiiiiee e 420
Incorrect Behavior Order: Validate Before Filter...........coouiiiiiiiiiiieiiie e 423
Collapse of Data into UNSafe ValUE...........cuveiiiiiiiiiiiee ettt e 425
Permissive List of AIOWEA INPULS........oiiiiiiiiii et e e e e e e e e e e earaee s 427
Incomplete List of DiSAllOWEA INPULS........coociiiiiie it e s 428
INCOITECt REQUIAT EXPrESSION.......iiiiiiie ittt e e e e e e e e s et e e e e e e saatr e e e e e s entreeaaeean 432
Overly Restrictive Regular EXPreSSIiON...........uuiii ittt ee e e earaee s 434
Partial String COMPAIISON.iiiiiiiiiiei ettt e e e e e e e s e e e e e e s e aatr e e e e e s stbeeeeessansraeeaeas

Reliance on Data/Memory Layout
Integer Overflow or Wraparound............c..cccocvveveeeninns
Integer Underflow (Wrap or Wraparound)
Ty Yo Lo O T=T (ol o] T o PSPPSR

(015 o) 2t o] LI I o SRR

Unexpected SigN EXIENSION..........uii ittt e e e e e e e e e e s et e e e e e s sbra e e e e s snntbareeesaanes

Signed to Unsigned CONVEISION EITON..........uuiiiiiiiiieee e s ettt e e et e e e e et e e e e s seiaaa e e e e s essaaae e e e e s esaaeeas

Unsigned to Signed CONVEISION EFTON.........c.iiiiiiiiii et eeee e e e et e e e eaare e e e e s eaareaea e

NUMETIC TIUNCALION EITOF ... iiiiiiiiiii ettt ettt ettt et e e st e s bt e e e snb e e snneee e nnes

Use Of INCOIrect BYte OFUEIING......ccciuuriiieeiiiiieie e e ettt e e ettt e e s e e e s et e e e e e e st e e e e s s entbaeeaeeennnnees

Exposure of Sensitive Information to an Unauthorized ACOr.............ocoiiieeiiiiiiieee e 469
Insertion of Sensitive Information Into Sent Data

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.2
Table of Contents

CWE-202:
CWE-203:
CWE-204:
CWE-205:
CWE-206:
CWE-207:
CWE-208:
CWE-209:
CWE-210:
CWE-211:
CWE-212:
CWE-213:
CWE-214:
CWE-215:
CWE-219:
CWE-220:
CWE-221:
CWE-222:
CWE-223:
CWE-224:
CWE-226:
CWE-228:
CWE-229:
CWE-230:
CWE-231:
CWE-232:
CWE-233:
CWE-234:
CWE-235:
CWE-236:
CWE-237:
CWE-238:
CWE-239:
CWE-240:
CWE-241.:
CWE-242:
CWE-243:
CWE-244:
CWE-245:
CWE-246:
CWE-248:
CWE-250:
CWE-252:
CWE-253:
CWE-256:
CWE-257:
CWE-258:
CWE-259:
CWE-260:
CWE-261.:
CWE-262:
CWE-263:
CWE-266:
CWE-267:
CWE-268:
CWE-269:
CWE-270:
CWE-271.:
CWE-272:
CWE-273:
CWE-274:

Exposure of Sensitive Information Through Data QUENIES..........cccuvvvieeiiiiiiiee e
Observable Differences in Behavior to Error INPULS............eiieiiiiiiiie e esiiree e
Observable RESPONSE DiSCIEPANCY........cccuuiiiee ittt e e eiie e e e e st e e e e e b e e e e e et ra e e e e s ssataeraeesssraeeaeeas
Observable Behavioral DISCIEPANCY.........cciiiiuuriieeeeiiiieeee e s et e e e e eitree e e e s s stbeaeeesasbareeaeesssareeeesanees
Observable Internal Behavioral Discrepancy...........cccccoccvveeeeeevnnnen...

Observable Behavioral Discrepancy With Equivalent Products
Observable TimiNg DiSCIEPANCY........ciieiiiiiieiee e ittt e e e e et e e e e s s e e e e sabe e e e e s s tr e e e e e s stbaeeeessasraeeeeas
Generation of Error Message Containing Sensitive Information.............cccccveeeviiiiiee e,
Self-generated Error Message Containing Sensitive Information.............ccccceeovviiieeeceiiiieee e,
Externally-Generated Error Message Containing Sensitive Information
Improper Removal of Sensitive Information Before Storage or Transfer..........ccoccveeeeviiiienee e, 504
Exposure of Sensitive Information Due to Incompatible PoliCies.............cccovvieiiiiiiiee e 507
Invocation of Process Using Visible Sensitive INformation.............ccccceeeiiiiiieei i 509
Insertion of Sensitive Information Into Debugging Code...........coociiiiieiiiiiiiee e 511
Storage of File with Sensitive Data Under Web Root
Storage of File With Sensitive Data Under FTP Root

INFOrMAtion LOSS OF OIMISSION.iiitiiiiiiieeiiieeeitie ettt ettt et e et e e s be e e e sbb e e e anbeeesneeeesnneeean
Truncation of Security-relevant Information.................

Omission of Security-relevant INfOrMation..............cooiiiiiiii i
Obscured Security-relevant Information by Alternate Name...........ccccvviiieiiiiiiiee e 519
Sensitive Information in Resource Not Removed Before ReUSE...........cccovviveiiiiiviieeeniiee e 520
Improper Handling of Syntactically Invalid StruCture..........cc.cceeeiiiiiiiiii e 523
Improper Handling Of VaAlUES..........cc.uuiiiiii ettt et e e e et e e e e s earaee s
Improper Handling of MISSING ValUES.........ccciuiiiiiiiiiieie ettt e et e e e eaare e e e
Improper Handling Of EXIra ValUES..........coocuiiiiiiiiiiiiie ettt e e
Improper Handling of Undefined ValUES............ccuiiiii ittt
Improper Handling Of Parameters..........cooiuiiiii ittt e e et e e e e e s eatraee s
Failure to Handle MiSSING Parameter.........cc.vuiiiiiiiiiiiiie ettt e
Improper Handling of Extra Parameters...............

Improper Handling of Undefined Parameters

Improper Handling of Structural EIEMENTS.............oeiiiiiiiiii et
Improper Handling of Incomplete Structural Elements..........c.ccccccviiieiiiiiiiei e 535
Failure to Handle Incomplete EIEMENT...........ocuiiiiiiiiiiee et e e e 536
Improper Handling of Inconsistent Structural EIements............cccccveviiiiiiiiiii e 537
Improper Handling of Unexpected Data TYPE......ccccuuiiiieiiiiiiiee ettt e e s 538
Use of Inherently Dangerous FUNCHON...........cooiiiiiie it et e e e e 540
Creation of chroot Jail Without Changing Working Dir€Ctory...........ccccovciveieeeiiiiiieee e 542
Improper Clearing of Heap Memory Before Release ('Heap Inspection’).........cccccceeeviiiiieeeeeiiineen.. 543
J2EE Bad Practices: Direct Management of CONNECLIONS..........cccuvevieeiiiiiiiiee e 545
J2EE Bad Practices: DireCt USE Of SOCKELS........uiiiiuiiiiiiiiiiiiie it 547
UNCAUGNE EXCEPLION. ... ittt e et e e e e e et e e e e e s et e e e e e ssatbeeeaeeeasbeaeeeeesssbaeeeessanses 548
Execution with UnNNecesSary PriVIIEgES.ccvuiiii ittt et e e e s e e e e e 550
UNChecked RETUIN VAIUE........cocuiiiiiiiieeii ettt e e st e e sbe e e s nneeeeas 557
Incorrect Check of FUNCLION REUIN ValUE..........oocuiiiiiiiiiiii e 564
Unprotected Storage of CredentialS............ooiiiviiiie i rrare e e 565
Storing Passwords in a Recoverable FOrMat...........coooiiiiiiiiiiiiiiiicc e 568
Empty Password in Configuration File..............ociuiiiiiiiiiiiiee et e e 571
Use Of Hard-Coded PasSWOIT.cieiuiiiiiiieiiiiieiiiee ettt sie ettt et e st s sbe e e e st e e stee e s saneeesnbeeennes 572
Password in Configuration FilE.............coiiiiiiiie ittt e e e e e e e eaaaee s 577
Weak Encoding for Password

NOt USING PASSWOIT AQING.....uuiiieeiiiiiiiie ettt ettt e e e et e e e e e sttt e e e s et e e e e e e aata e e e e e s sataeeeeesansnnees
Password Aging With LONG EXPIratioN...........ueiiiiiiiiiiiee e e et e e et e e e e envaee s
INCOITECt PrivIlege ASSIGNIMENL......cci ittt s e e e e e e s st e e e e e st a e e e e e eennenes
Privilege Defined With UNSafe ACHONS........ccciiiiiiiiie ittt e e e e s e e e e

e A1 [=To TR @1 F= Tl 1 o o T PRSPPI
Improper Privilege ManagemENt...........coiiiiiiiie et e e e e e e et e e e e s st e e e e e s asrraeaes
Privilege Context SWItChING EFTON.........coiiiiiiiiiie et e e et e e s st e e e e s araeeas
Privilege Dropping / LOWEING EITOIS.......iiiiiiiiiiie ettt e e e e et e e e e s sntraeeeeaenes
Least Privilege VIOIation..........c.iiiiiiiiei ettt e e e e et e e e e s st e e e e e earaaea s
Improper Check for Dropped Privileges.........

Improper Handling of Insufficient Privileges

Vi

CWE Version 4.2
Table of Contents

CWE-276:
CWE-277:
CWE-278:
CWE-279:
CWE-280:
CWE-281.:
CWE-282:
CWE-283:
CWE-284:
CWE-285:
CWE-286:
CWE-287:
CWE-288:
CWE-289:
CWE-290:
CWE-291.:
CWE-293:
CWE-294:
CWE-295:
CWE-296:
CWE-297:
CWE-298:
CWE-299:
CWE-300:
CWE-301:
CWE-302:
CWE-303:
CWE-304:
CWE-305:
CWE-306:
CWE-307:
CWE-308:
CWE-309:
CWE-311:
CWE-312:
CWE-313:
CWE-314:
CWE-315:
CWE-316:
CWE-317:
CWE-318:
CWE-319:
CWE-321:
CWE-322:
CWE-323:
CWE-324:
CWE-325:
CWE-326:
CWE-327:
CWE-328:
CWE-329:
CWE-330:
CWE-331:
CWE-332:
CWE-333:
CWE-334:
CWE-335:
CWE-336:
CWE-337:
CWE-338:
CWE-339:

INcorrect Default PeIMISSIONS.c.uiiiiiiieiiie ettt sttt e st e e s bee e e snbeeennes
Insecure INNErited PeIMISSIONS.uiiiiiieiiiie ettt ettt ettt bt e et e e ste e e s saeeeesnbeeennee
Insecure Preserved Inherited PErmiSSIONS.coiuiiiiiiiiiiiie e
Incorrect Execution-AsSigned PermMiSSIONS.........ccioiiiiiiiieeiiiiiiiee e e et e st e e e s e s e e e e s satreeeeeaeens
Improper Handling of Insufficient Permissions or Privilegesccccvviieiiiiiiiee e
Improper Preservation of Permissions
Improper OWNErship ManagemMENT..........ceiiiiiiiiiiie et e e e e e e e e e e e s st r e e e s s sber e e e e e s ssbaeeeesaanees
UNVENIfIEd OWNEISNID. .. .viiiie i e e e e e e e e e e s st e e e e e s st aeeeeeesaraeeeeesanees
IMPrOPEr ACCESS CONLIOL...uiiiiiiiieitieiiee sttt e see et se e et e s e et e st e e steessbe e teeasaeesbeeasteeaseeanbeenseeanreens
IMPrOPEr AUNOFIZALION.ttt e et e e e e e e e e et e e e e s etb e e e e e saabaeeeeeesntraeeas
INCOITECT USEI IMANAGEMENT. .. .eviiiiiieiieetee st eteesteeeteesteeasbeesseeasbeessseaseesseeesessseeesteeanseesseeanseesseeans
IMPrOPEr AUtNENTICATION.cciiiiiiee ettt e s e e e e e e e e e st b e e e e e s sabr e e e e e sataareaeseannnnes
Authentication Bypass Using an Alternate Path or Channel............ccccccoieiiiiiii e
Authentication Bypass by Alternate NaME...........oeiieiiiiiiiiie et a e
Authentication Bypass by SPOOTiNG.......ccooiuiiiiiiiiiiic e
Reliance on IP Address for AUthENTICALION...........uiiiiiiiiiiie e
Using Referer Field for Authentication..............ccocoveeiiiiiiieneen.

Authentication Bypass by Capture-replay..................
Improper Certificate Validation.............oooiiiiii i e st e e e
Improper Following of a Certificate's Chain of TrUSE..........cccoiiiiiiiiiii e
Improper Validation of Certificate with Host Mismatch............cccccoooiiiiiii e
Improper Validation of Certificate EXPiration.............cooiiiuiiieiiiiiiiiie et
Improper Check for Certificate REVOCALION...........oiiiiiiiiiiiee et
Channel Accessible by NON-ENAPOINT.........oooiiiiiiiiiic et
Reflection Attack in an Authentication ProtOCOL...........cccuiiiiiiiiiiiie et
Authentication Bypass by Assumed-Immutable Data............ccccuvveiiiiiiiiiiiie e
Incorrect Implementation of Authentication Algorithm............cccoviiiiiiiiii e
Missing Critical Step in Authentication.........................
Authentication Bypass by Primary Weakness............cooiiiiiiiiiiiiiiiieee ettt
Missing Authentication for Critical FUNCHON............ccoiiiiiiiii e
Improper Restriction of Excessive Authentication AttemMPLS........cccvveveeeiiiiiiiie e e
Use of Single-factor AUThENtICAtION............ooiiiiiiiee e
Use of Password System for Primary Authentication............ccccoooviiii i
Missing Encryption of SENSItIVE Datal............uevieeiiiiiiiiie et eavaee s
Cleartext Storage of Sensitive Information
Cleartext Storage in @ File 0r 0N DiSK..........ciiiiiiiiiiec e
Cleartext Storage in the REQISIIY.......ciiciiiii et e s e e s e e e e e e e saraeaae e
Cleartext Storage of Sensitive Information in @ COOKIE.........cccivvieiieiiiiiiiiee e
Cleartext Storage of Sensitive Information in MEMOIY..........cccvuviieiiiiiiiie e
Cleartext Storage of Sensitive Information in GULL...........cccoiiiiiiiiiiiiec e
Cleartext Storage of Sensitive Information in Executable...........cccccocoiiiieeiiiiiiiiie e
Cleartext Transmission of Sensitive INfOrmMation..............ccoiiiiiiiiie i
Use of Hard-coded CryptographiC KEY.........cuuiiiiiiiiiiiiie ettt e ettt e e e sarae e e e e enees
Key Exchange without Entity AUthentiCation..............cooiiiiii it
Reusing a Nonce, Key Pair in ENCIYPLON.coiiiiiiie e esanaeee s
Use of a Key Past its EXPIration Date..........cuuviieiiiiiiiiei ettt e et e et e e e e e sanrae e e e e e nnnnes
MiSSING CryptOgraphiC STEP......cciiiuiiiieeee ittt e e s et e e e e et e e e e e sata e e e e e s esbaeeeeean
Inadequate ENCryption Srength............ooiiiiiiiiic e
Use of a Broken or Risky Cryptographic Algorithm............ccouviiiiiiiiiiicc e
Reversible One-Way Hash..........c.uoiiiiiii et e e
Not Using a Random IV with CBC Mode
Use of Insufficiently RANAOM ValUES..........cooiuiiiiii ittt evae e e e
oI 0] (o T=T L = a1 0] o) AP PP PSPPI
Insufficient ENtropy iN PRING.........uuiiiiiiiiis ettt e st e e s et e e e e st e e e e s s satbeeeaeaan
Improper Handling of Insufficient Entropy in TRNG...........oooiiiiiiiiiie e
Small Space of RANAOM VAIUES..........ccoiiiiiiiiii ettt e e e e et e e s eearaeeea s
Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG)..........ccccceeeeiiiiieneeeiinn,
Same Seed in Pseudo-Random Number Generator (PRNG).........cccccoiviiiiiiee i
Predictable Seed in Pseudo-Random Number Generator (PRNG)...........ccccovviiiieeceiiiieec e
Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG)
Small Seed SPace iN PRING.........oooiiiiie et e e e e e st e e e e e e ataeeaeessaees

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.2
Table of Contents

CWE-340: Generation of Predictable Numbers or [dentifiers..........coociiiiiiiiiiiiiie e 757
CWE-341: Predictable from ODSErvable STate...........cccoiiiiiiiiiiiiiiie e 758
CWE-342: Predictable Exact Value from Previous ValUEs...........cccooueioiiiieiiiie et 760
CWE-343: Predictable Value Range from Previous ValUES.............ocouuiiiiiiiiiiiei et 761
CWE-344: Use of Invariant Value in Dynamically Changing ConteXt............ccocvuvivieiiiiiiiieeee e seiireee e 763
CWE-345: Insufficient Verification of Data Authenticity

CWE-346: Origin Validation ETOr........c.ciiiiuiiiei ittt e e et e e e e st e e e e s et e e e e s e taaeeeeeasatreeeeesanens
CWE-347: Improper Verification of CryptographiC SIgNature.............cccoviieeiiiiiiiee e 769
CWE-348: USE Of LESS TIUSIEA SOUICE.cciuiieiiiieeiiieeeieee sttt ettt sttt et et e et e e stb e e sbe e e s nnteeesnbeeesnteeeennees 771
CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data............cccccoevvvieeeeiiiiiiiiee e 773
CWE-350: Reliance on Reverse DNS Resolution for a Security-Critical ACtON...........cccvvveeeeviiiiiee e 774
CWE-351: Insufficient TYPe DiStNCHON..........oiiiiiiiiiiie et e e e e s e e e e e e sarae e e e e s snbreaeeeeannes
CWE-352: Cross-Site Request FOrgery (CSRIF).....ccuuiiiiiiiiiiii ettt e e st e e e e s naaaeea s
CWE-353: Missing Support for INtegrity ChECK...........ooiiiiiiiii et
CWE-354: Improper Validation of Integrity Check ValUe............ccuviiiiiiiiiiiii e
CWE-356: Product Ul does not Warn User of Unsafe ACHONS...........ccoiiiiiiiiiiiiiiee e
CWE-357: Insufficient Ul Warning of Dangerous OPEratioNS.cccvvereeeiiiiiirieesiiiirereeeeesinreeeessssveeeeessnsnenas
CWE-358: Improperly Implemented Security Check for Standard

CWE-359: Exposure of Private Personal Information to an Unauthorized Actor...........cccccceeeiviiiiiee e, 793
CWE-360: Trust of SYStemM EVENE Datal.........c.uviiiiiiiiiiiii ettt s s e e e e e e e e e e s san e e e e e s ratranaee s 797
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization (‘Race

(00] 0o {1110 o 1) PRSP 799
CWE-363: Race Condition Enabling Link FOIOWING...........ccoiiiiiiiiiiiiiice e 806
CWE-364: Signal Handler RAce CONITION..........ccuuuiieiiiiiiiiie et e sttt e st e e e s e e e e e e st e e e e s s entbeeeaesaanes 808
CWE-365: Race Condition iN SWILCN......ccoiiiiiiiiiiie ettt e s e e e snbee s 813
CWE-366: Race Condition Within @ TRIEAM.coiuiiiiiiii et 815
CWE-367: Time-of-check Time-of-use (TOCTOU) Race ConditioN...........cccoeiiuiiiiieeiiiiiei e csiiiee e esivee e 817
CWE-368: Context Switching Race Condition

CWE-369: DiIVIAE BY ZEIO.....uuiiiiiiiiiiiiee e ettt e e e ettt e e e ettt e e e e st e e e e e s e tb e e e e e e easatbeeeeeesaabaeseeesaasbsseeeesasssrseeeesaanees
CWE-370: Missing Check for Certificate Revocation after Initial Check..............ocoovieiiiiii e, 827
CWE-372: Incomplete Internal State DiStiNCHON.ccviiieiiiiiiie et e e e eaees 829
CWE-374: Passing Mutable Objects to an Untrusted Method...............cooiuiiiiii i 830
CWE-375: Returning a Mutable Object to an Untrusted Caller............cocuviiiiiiiiiiiiie e 833
CWE-377: INSeCUre TeMPOTArY File......c.uuiiii ittt e e e e e e e st e e e s et e e e e e s e abae e e e e s snrreeeas 834
CWE-378: Creation of Temporary File With Insecure PermisSSioNns............coocvuviieeiiiiiiiiee e e 837
CWE-379: Creation of Temporary File in Directory with Insecure Permissions..............cccccvveeiieiiiieee v, 839
CWE-382: J2EE Bad Practices: Use Of SYStEMLEXIt()......uieeiiiiuriiieeiiiiiiieeeeeiiiiee e e e s st e s esivrre e e e e e satve e e e e s saaaeees 841
CWE-383: J2EE Bad Practices: Direct Use Of Threads.........ccceiiiiiiiiiiiiiiee e 843

CWE-384: Session Fixation
CWE-385: Covert Timing Channel
CWE-386: Symbolic Name not Mapping t0 CorreCt ODbJECL...........uiiiiiiiiiiee e 850
CWE-390: Detection of Error Condition WithOUt ACLION..........cooiuiiiiiiie i 851
CWE-391: Unchecked Error CONQILION.........ooueiiiiieeiiiie ettt ettt nste e et e e sttt e e snbeeesnbeeesneeeenanes
CWE-392: Missing Report of Error CONAIitiON...........coiuuiiiiieiiiiiis et e e e st e e e e s eara e e e s e snraeeeas
CWE-393: Return of WIroNg StatuS COOE........cciiiiiiieeiciiiiee ettt e st e e e et e e e e e st e e e e s s st aeeaesaenasaeaaeeananaes
CWE-394: Unexpected Status Code or Return Value
CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference.........ccccccccevvvvveeeeeiinnnnn..
CWE-396: Declaration of Catch for Generic EXCEPLION.ccuviiiii ittt
CWE-397: Declaration of Throws for Generic EXCEPLION.........cvuiiiiiiiiiiiie e
CWE-400: Uncontrolled ReSource CONSUMPLION.c.uuiirieiiiiieiee e i ettt e e e eeiire e e e e e saibe e e e e s etbaee e e e s asaraseaeessntreeeas
CWE-401: Missing Release of Memory after Effective Lifetime
CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak’)
CWE-403: Exposure of File Descriptor to Unintended Control Sphere (‘File Descriptor Leak')
CWE-404: Improper Resource Shutdown OF REIEASE...........ccoiiuiiiiiiiiiiiie et
CWE-405: Asymmetric Resource Consumption (AMPplification).........ccc.eeeiiiiiiiiiii i
CWE-406: Insufficient Control of Network Message Volume (Network Amplification)............ccccccevveveeeiiiinnen.n.
CWE-407: Inefficient AlgorithmiC COMPIEXITY........coiiiuiiiiieiiiieie e e e e e e e et e e e e s saraaeee s
CWE-408: Incorrect Behavior Order: Early AMPIfiCation...........ccoouiiiiiiiiiiiiiec e
CWE-409: Improper Handling of Highly Compressed Data (Data Amplification).............cccocevveeieiiiiieneeeiennnen,
CWE-410: InSUfficient RESOUICE POOL.........coiiiiiiiiieiiie et
CWE-412: Unrestricted Externally ACCESSIDIE LOCK..........ooiiiiiiiiiiiiiiiiiie e

viii

CWE Version 4.2
Table of Contents

CWE-413:
CWE-414:
CWE-415:
CWE-416:
CWE-419:
CWE-420:
CWE-421.:
CWE-422:
CWE-424:
CWE-425:
CWE-426:
CWE-427:
CWE-428:
CWE-430:
CWE-431.:
CWE-432:
CWE-433:
CWE-434:
CWE-435:
CWE-436:
CWE-437:
CWE-439:
CWE-440:
CWE-441.:
CWE-444:
CWE-446:
CWE-447:
CWE-448:
CWE-449:
CWE-450:
CWE-451.:
CWE-453:
CWE-454:
CWE-455:
CWE-456:
CWE-457:
CWE-459:
CWE-460:
CWE-462:
CWE-463:
CWE-464:
CWE-466:
CWE-467:
CWE-468:
CWE-469:
CWE-470:
CWE-471.:
CWE-472:
CWE-473:
CWE-474:
CWE-475:
CWE-476:
CWE-477:
CWE-478:
CWE-479:
CWE-480:
CWE-481.:
CWE-482:
CWE-483:
CWE-484:
CWE-486:

IMProper RESOUICE LOCKING.......iiiiiiiiiiiee et e s e e e e s et e e e e e sabr e e e e e e enaaees
MISSING LOCK CHECK. .. .eiiiiiiiiiie ettt e e e e e e e e e e e et e e e e e s satb e e e e e s sanbraeeaean
(Do 10 o] (S (T T PSPPSR
L0 N (=T (= T PRSP
Unprotected Primary Channel.................
Unprotected Alternate Channel
Race Condition During Access to Alternate Channel............cccooiiiiiiiiiiiiiiiee e
Unprotected Windows Messaging Channel ('Shatter')..........ccccooiiiiiii e
Improper Protection of Alternate Path
Direct Request (‘Forced Browsing)..............

UNtrusted SEArCh Path............oo i e
Uncontrolled Search Path EIBMENT...........cooiiiiiiiiiiiie e
Unquoted Search Path or EIEMENL...........coiiiiiiiiiiee ettt e e e e e
Deployment of Wrong HandIEr............cooiiiiiiiii et et e
T EE] o I F- Ta o | (=] G PP PUPRNt
Dangerous Signal Handler not Disabled During Sensitive Operations............c.ccccvveeeeeiiiiieneeeiinns
Unparsed Raw Web Content DeliVery..........coovvieiiiiiiiee e

Unrestricted Upload of File with Dangerous Type
Improper Interaction Between Multiple Correctly-Behaving Entities...........cccocceiiiiiiiiie e,
INterpretation CONTlICE.........iiii e e e e e e e s st e e e e s e tbar e e e e e antaeeaeessnnes
Incomplete Model of ENAPOINt FEALUIES............ociiiiiiiiie ittt e e eeaees
Behavioral Change in New Version or ENVIrONMENL.............vieiiiiiiirce e
Expected Behavior VIOIatioN.........c..ueiiiiiiiiiee ettt e e et e e e st e e e e e s etbeaeee s
Unintended Proxy or Intermediary ('Confused DEPULY").......ccoiiuiriieeiiiiiiiieeeeciriee e
Inconsistent Interpretation of HTTP Requests (HTTP Request Smuggling’)........ccccceevvvieeeeeiiivnennn.
Ul Discrepancy for SECUNTY FEAIUIE.........ccuuiiii ettt e e et e e e e s earaee s
Unimplemented or Unsupported Feature in Ul
ODSO0lEtE FEAIUIE 1N Ul . .iiiiiiiiiiiie ittt ettt e et s rnb e e sabe e e ebb e e e snbeeesnneeean
The Ul Performs the Wrong Action .
Multiple Interpretations Of Ul INPUL...........ooiiiiiiie e e e e e aaees
User Interface (Ul) Misrepresentation of Critical Information...............cccovieiiiiiiiee e,
Insecure Default Variable INItIaliZation............cooiiiiiiiiiii e
External Initialization of Trusted Variables or Data StOres...........cccovvveiiiiieiiiee i
Non-exit on Failed INItAlIZAtION.eiiiiiie et e e nnee
Missing Initialization of @ Variable............cc.oeiiiiiiiiiie e
Use of Uninitialized Variable.............ooiiiiiii ettt
[aToTo] o] o] (=] (SR @4 (== T U] o T PSPPI
Improper Cleanup on Thrown EXCEPLION.cc.vviiii it stvae e e
Duplicate Key in AsSSOCIative LiSt (AlISL).......cciiiuuiieeeiiiiiiiie e esie e e e e s rarre e e
Deletion of Data StruCture SENLINEL..........cciiiiiiiiiiiie it
Addition of Data StruCtUre SENTINEL.........coiiuiiiiiiiii it e e saeeeeas
Return of Pointer Value Outside of Expected RaNgE.........ccceeiiiiiiiiiic i
Use Of SiZ€OT() ON @ POINIET TYPE...iiii ittt e e e e e et e e e e e st e e e e e s etbaaeaeean
INCOITECt POINTET SCAIING........ itiiiie ittt e e e e e e e s sttt e e e s e bbae e e e e eenraeeeeeaaanees
Use of Pointer Subtraction to Determing SIZe.........cceoiiiiiiiiiiiiie et
Use of Externally-Controlled Input to Select Classes or Code (‘Unsafe Reflection’)
Modification of Assumed-Immutable Data (MAID).........cccuiieeiiiiiiiee e
External Control of Assumed-Immutable Web Parameter..........ccocovevviiiiiieeiniieeiee e
PHP External Variable MOIfiCatioN............ooiiiiiiiiiieiiie e
Use of Function with Inconsistent Implementations.....................
Undefined Behavior for Input to APL........ccccooviiieeeeiiiieece e,
NULL POINtEr DEIEIEIENCE. .. .ciitiiiiieiiie ittt ettt et e e s bt e sr b e e st e e s nees
UsE Of ODSOIEtE FUNCHON. ...ttt e et sta e s e e snneeas
Missing Default Case in SWItCh StatemMeENt...........cocoiiiiiiiie e
Signal Handler Use of a Non-reentrant FUNCHON............ccuuviiiiiiiiiec e
(0o Tt (= To A @) o T=T 1 (o] SRS
Assigning instead of Comparing
Comparing instead of Assigning
Incorrect BIOCK DelMItAtION.......cccuuiiiiiiieiiiee ittt e st e e e e e snnee e e
Omitted Break Statement in Switch
Comparison of Classes DY NAME........ooiiiiiiiiiii e e e e e e e e e s saees

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.2
Table of Contents

CWE-487:
CWE-488:
CWE-489:
CWE-491.:
CWE-492:
CWE-493:
CWE-494:
CWE-495:
CWE-496:
CWE-497:
CWE-498:
CWE-499:
CWE-500:
CWE-501:
CWE-502:
CWE-506:
CWE-507:
CWE-508:
CWE-509:
CWE-510:
CWE-511:
CWE-512:
CWE-514:
CWE-515:
CWE-520:
CWE-521.:
CWE-522:
CWE-523:
CWE-524:
CWE-525:
CWE-526:
CWE-527:
CWE-528:
CWE-529:
CWE-530:
CWE-531:
CWE-532:
CWE-535:
CWE-536:
CWE-537:
CWE-538:
CWE-539:
CWE-540:
CWE-541.:
CWE-543:
CWE-544:
CWE-546:
CWE-547:
CWE-548:
CWE-549:
CWE-550:
CWE-551.:
CWE-552:
CWE-553:
CWE-554:
CWE-555:
CWE-556:
CWE-558:
CWE-560:
CWE-561.:
CWE-562:

Reliance on Package-1eVel SCOPE.........cvvuiie ittt
Exposure of Data Element to Wrong Session
ACHVE DEDUG COUEB....coi ittt e e et e e e st e e e s et e e e e e s stbaeeeessansraeeaeas

Public cloneable() Method Without Final (‘Object Hijack').........cccccooviiiiieiiiiiiiee e 1052
Use of Inner Class Containing Sensitive Data

Critical Public Variable Without Final MOIfier...........ccccoiiiiiiiiiiiie e
Download of Code Without Integrity ChecK.........cccccoevviveeieiiiiiinnenn.

Private Data Structure Returned From A Public Method

Public Data Assigned to Private Array-Typed Field...........cccvviieiiiiiiiie e
Exposure of Sensitive System Information to an Unauthorized Control Sphere..........cccccccoovunnee.. 1070
Cloneable Class Containing Sensitive INformation............cccccvvveiiiiiiiiie e 1073
Serializable Class Containing SenSitive Data.............ccoiiiuiiiee i 1075
Public Static Field Not Marked FiNal.............ccooiiiiiiiii e 1077
Trust BoUNAAry ViIOIAtiION.coiiuiiiiie ittt e st e e e e st e e e e e s satb e e e e e s senrraeeaeas 1079
Deserialization Of UNruSted Dat@........cc.ueeiuiieiiiiiiiiiiie ettt e e neee s 1080
Embedded MaliCIOUS COUE.........uiiiiiieiiiie ettt b et e e et e e s ane e e neaeeas 1085
o)=L I [0 €T T PP PPPRP 1087
Non-Replicating MaliCioUS COUE...........ociiiiiiiiiii et s s e e e s eannees 1088
Replicating Malicious Code (VIiruS OF WOIM)......ccciiiiuiiieeieiiiiiis sttt e e et e e e sare e e e s etvaeeaeeeanes 1089
B I =10 L 0T | PO EPRPPPPPPRN
(oo (o7l I T g L= 2T 1 o T PP PPSPP

] 0)VAT L= L= OSSP
(@0)V/=T @1 0 T o] o 1= T PP PRSPPI
Covert Storage Channel

.NET Misconfiguration: Use of IMPersoNation............c.ccciiiiuuiieeeiiiiiiiee s cciies e s esiree e e e sniveee e e e 1096
Weak PassWord REQUIFEIMENTS.c.iiiiiiiiiie et e ettt e e e et e e e s et e e e e s st e e e s s aara e e e e e s snnraeeaeeaan
Insufficiently Protected Credentials.............

Unprotected Transport of Credentials

Use of Cache Containing Sensitive Information

Use of Web Browser Cache Containing Sensitive Information.............ccccccceeeiiiiiiiini e 1106
Exposure of Sensitive Information Through Environmental Variables.............ccccccoovieiiiiiiiieneenn. 1107
Exposure of Version-Control Repository to an Unauthorized Control Sphere.........ccccccccovcvveeenn. 1108
Exposure of Core Dump File to an Unauthorized Control Sphere...........ccooceeeiviiiiie e 1109
Exposure of Access Control List Files to an Unauthorized Control Sphere.........cccccccooveveeeeeninns 1110
Exposure of Backup File to an Unauthorized Control Sphere..........ccccoooviiviiiiiiieeee e 1111
Inclusion of Sensitive Information iN TESt COUE........ccuuiiiiiiiiiiie et 1111
Insertion of Sensitive Information iNt0 LOg File.........ccvviiiiiiiii e 1112
Exposure of Information Through Shell Error MeSSage........cuvvvvieiiiiiiiie e 1115
Servlet Runtime Error Message Containing Sensitive Information.............ccocceeeiiiiieee e, 1116
Java Runtime Error Message Containing Sensitive Information.............ccccceeeeiiiiiieni i 1117
Insertion of Sensitive Information into Externally-Accessible File or Directory...........cccvveeeeenneee. 1119
Use of Persistent Cookies Containing Sensitive Information.............cccoocvveiieiiiiiiiee e 1120
Inclusion of Sensitive Information in SOUrCe COUE..........ceieiiiieiiiiie e 1121
Inclusion of Sensitive Information in an INclude File...........ccccooiiiiiiiiiii e 1122
Use of Singleton Pattern Without Synchronization in a Multithreaded Context..............ccccceeeeenns 1124
Missing Standardized Error Handling MeChaniSm.............cccviiiiiiiiiiiii e
SUSPICIOUS COMIMEINL....eiiiiiiiiiiiie e e e ittt e e e et e e e e ettt e e e e e seat e e e e e e aasbereeaeeasatbeeeeessastasseaesaasssneeeeeaanees

Use of Hard-coded, Security-relevant CoNStaNtS...........c.ceeeiiiiiiiieeiiiiieiee e ee et
Exposure of Information Through Directory Listing

Missing Password Field Masking..........c.cccvevieiiiiiiieee e

Server-generated Error Message Containing Sensitive Information

Incorrect Behavior Order: Authorization Before Parsing and Canonicalization
Files or Directories Accessible to External Parties...........ccccoiiiiiiiiiiniieiee e
Command Shell in Externally Accessible Directory
ASP.NET Misconfiguration: Not Using Input Validation Framework.............cccceeviiveeieeiiiiieeeeeens
J2EE Misconfiguration: Plaintext Password in Configuration File............ccccccooviiiiieeiiiiiieec e,
ASP.NET Misconfiguration: Use of Identity Impersonation............cccccceeeviiiveeeeeeiiiieee e ee e
Use of getlogin() in Multithreaded AppliCatioN.............cooiiiiiiiiiiii e
Use of umask() with chmod-style ArgUMENT...........coiiiiiiiiiiee e
[D1=T To [oo [T TSP RP
Return of Stack Variable AQAreSS........c.uuiiiiiieiiiie ettt

CWE Version 4.2
Table of Contents

CWE-563:
CWE-564:
CWE-565:
CWE-566:
CWE-567:
CWE-568:
CWE-570:
CWE-571:
CWE-572:
CWE-573:
CWE-574:
CWE-575:
CWE-576:
CWE-577:
CWE-578:
CWE-579:
CWE-580:
CWE-581.:
CWE-582:
CWE-583:
CWE-584:
CWE-585:
CWE-586:
CWE-587:
CWE-588:
CWE-589:
CWE-590:
CWE-591.:
CWE-593:
CWE-594:
CWE-595:
CWE-597:
CWE-598:
CWE-599:
CWE-600:
CWE-601.:
CWE-602:
CWE-603:
CWE-605:
CWE-606:
CWE-607:
CWE-608:
CWE-609:
CWE-610:
CWE-611:
CWE-612:
CWE-613:
CWE-614:
CWE-615:
CWE-616:
CWE-617:
CWE-618:
CWE-619:
CWE-620:
CWE-621.:
CWE-622:
CWE-623:
CWE-624:
CWE-625:
CWE-626:
CWE-627:

Assignment to Variable without Use
SQL Injection: Hibernate
Reliance on Cookies without Validation and Integrity Checking...........cccccovvviiieeeeiiiiienc e, 1149
Authorization Bypass Through User-Controlled SQL Primary KeY.........ccovvuveeeiiiiiieeeeeiiiiieee e 1151
Unsynchronized Access to Shared Data in a Multithreaded Context...........ccccceeeviiiieeeeeiiciienennn. 1153
finalize() Method Without SUPer.finalize()..........cccciuuiiieiiiiiiiie e
EXPression iS AIWaYS FalSE..........cciiiiiiiiiiie ettt e s e e e e et e e e e e s ataaaaa e an
EXPresSion iS AIWAYS TIUE.......uuiiiieiiiiieie e e s ettt e e e ettt e e e e st e e e e s sttt e e e s etbeeeaeseasaaeeaeesssraeseesaanses

Call to Thread run() instead Of STAM().......cciiiuiiiiie i e e
Improper Following of Specification By Caller...........ccouviiiiiiiiii e

EJB Bad Practices: Use of Synchronization Primitives
EJB Bad Practices: Use Of AWT SWINQ.....cccuuieiieiiiiiiiie et e e e et e e s s sivee e e e s s sataa e e e s s snaaeeeeeannnes
EJB Bad Practices: Use of Java I/O.............
EJB Bad Practices: UsSe Of SOCKELS.ooiiiiiiiiiic e
EJB Bad Practices: Use Of Class LOAUET..........coiuiiiiiiiiiiiiiee ettt
J2EE Bad Practices: Non-serializable Object Stored in Session
clone() Method Without super.clone()........cccuvevieiiiiiiiee e
Object Model Violation: Just One of Equals and Hashcode Defined
Array Declared Public, Final, and StatiC.............cooiviiiiiiiiiiiiiie et sarre e e e
finalize() Method Declared PUDIIC.............oooiiiiiiii e
Return Inside Finally Block
Empty Synchronized Block
EXPIiCit Call 10 FINAIZE(). ... cvreeee ettt e e e et e e e e s et e e e e s st bae e e e e e eanenes
Assignment of a Fixed Address t0 @ POINTEI...........ocioiiiiiiiie e
Attempt to Access Child of a NON-Structure POINLEN...........ccoiiiiiiiieiiiiiiiee e

Call to NON-UBIQUITOUS APL......c ettt e e e e e e e e e e e et e e e e e s stbaeeae s

Free of Memory NOt 0N the HEAP........coiiiiii et eaaee e 1188
Sensitive Data Storage in Improperly Locked MemOry..........cooiviiiiieiiiiiiiee e 1191
Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created............... 1192
J2EE Framework: Saving Unserializable Objects t0 DisSK..........cccccovcviiiieiiiiiiieec e
Comparison of Object References Instead of Object Contents...........ccccoecvvveeeeiiiiieiee e

Use of Wrong Operator in String COMPAriSON.........c.uuiiieiiiiiiieeeeeciiree e e e s eeiiee e e e s sise e e e e s ssireeeaeeenns

Use of GET Request Method With Sensitive QUEry StriNgS.........ccovvverieiiiiiiiee e eeriveee e
Missing Validation of OpenSSL CertifiCate..........ccuiiiiiiiiiiiee e
Uncaught EXCEPLioN iN SEIVIELuviiii it e e e e e e eaaees

URL Redirection to Untrusted Site ('Open RedireCt)).......cccccooeiiiiiiiiiiiiieei e
Client-Side Enforcement of Server-Side Security

Use of Client-Side Authentication............cccoovveveviieiniieennnennne
Multiple Binds to the Same Port.........cccceeeevvnnneeen.
Unchecked Input for Loop Condition
Public Static Final Field References Mutable ObJEeCt..........ccueeviiiiiiiiiii e
Struts: Non-private Field in ACONFOIM CIaSsS........cccuiiiiiiiiiiiiiee et
Double-ChecKed LOCKING........ciiiiiiiiee ettt e et e e st e e e s et b e e e e e et e e e e e snnraaeeaeas
Externally Controlled Reference to a Resource in Another Sphere
Improper Restriction of XML External Entity Reference.........ccoccveevviiiiiec i
Improper Authorization of Index Containing Sensitive Information
INSUFfICIENt SESSION EXPITALION.ciiiiiiiiiiiee et e e eete e e s e e e et e e e e st e e e s e bb e e e e e e s sanrreeaeeaas
Sensitive Cookie in HTTPS Session Without 'Secure’ Attribute............ccocoviiiiieeiiiee
Inclusion of Sensitive Information in Source Code COMMENLS.........cceeeiiiiiiiieeeniiee e
Incomplete Identification of Uploaded File Variables (PHP).....................

Reachable ASSErtiON...........ooiiiiiiiiiie e

Exposed Unsafe ACtIVEX METhOU...........oooiiiiiiiii e
Dangling Database Cursor ('CUrsor INJECHION").........coiiiiiii e
Unverified Password ChanQe.........oiiiiiiiiiii ittt et e s et e e e e e s saraeeae e
Variable EXIFACHON ETOr........oiiiiiii ettt ettt e ettt e e b e e enae e e nnneas
Improper Validation of FuNction HOOK ArQUMENES.........cccuviiiieiiiiiiiee ettt s e
Unsafe ActiveX Control Marked Safe FOr SCHPHNG.........ccociuiiiieiiiiiiiie e
Executable Regular EXPreSSiON EFTON............ciiiiiiiie ettt e et e e e e s stbae e e s eeaaaeea s
Permissive RegUIAr EXPIrESSION.ccciiiiiiieie e ettt e ettt e e e e e e et e e e s e st e e e e e s saba e e e e s sntaneeaeas
Null Byte Interaction Error (PoiSON NUIl BYTE).........cvieiiiiiiiiee et
Dynamic Variable EValUAtioN.............ccoiiiiiiie ittt e e e e et e e e e sntaaeaaeaan

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.2
Table of Contents

CWE-628:
CWE-636:
CWE-637:
CWE-638:
CWE-639:
CWE-640:
CWE-641.:
CWE-642:
CWE-643:
CWE-644:
CWE-645:
CWE-646:
CWE-647:
CWE-648:
CWE-649:
CWE-650:
CWE-651.:
CWE-652:
CWE-653:
CWE-654:
CWE-655:
CWE-656:
CWE-657:
CWE-662:
CWE-663:
CWE-664:
CWE-665:
CWE-666:
CWE-667:
CWE-668:
CWE-669:
CWE-670:
CWE-671:
CWE-672:
CWE-673:
CWE-674:
CWE-675:
CWE-676:
CWE-680:
CWE-681.:
CWE-682:
CWE-683:
CWE-684:
CWE-685:
CWE-686:
CWE-687:
CWE-688:
CWE-689:
CWE-690:
CWE-691.:
CWE-692:
CWE-693:
CWE-694:
CWE-695:
CWE-696:
CWE-697:
CWE-698:
CWE-703:
CWE-704:
CWE-705:
CWE-706:

Function Call with Incorrectly Specified ArgUMENTES...........cccuviiieiiiiiiiieee e 1252
Not Failing Securely ('"Failing OPEN")......ccoiiiiiiie et e e e e s e e e e e e e annnes 1254
Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism’)........... 1256
Not Using Complete Meiation............coiiiiiiiiiiiiiiii e e e e e aaaaea s
Authorization Bypass Through User-Controlled Key...........cooiiiiiiiiiiiiiiiie et
Weak Password Recovery Mechanism for Forgotten Password

Improper Restriction of Names for Files and Other RESOUICES............c.ccovvvveveeeiiiiiiieee e
External Control of Critical State Dat@.........cc.ceiiiiiiiiiieiiiie e
Improper Neutralization of Data within XPath Expressions ("XPath Injection’)............ccccccvvveeeiinnns 1272
Improper Neutralization of HTTP Headers for Scripting SyntaX........ccccceeeiviiiiiiee i 1274
Overly Restrictive Account LOCkout MEChaniSmM............ocoiiiiiiiiiiiiiiiii e 1276
Reliance on File Name or Extension of Externally-Supplied File............cccccovviieiiiiiieec e 1277
Use of Non-Canonical URL Paths for Authorization DecCiSiONS...........ccccovvvveriiieiniieeniie e 1278
INCOorrect Use Of PriVIIEGEA APIS......ccoo ettt e e e st e e e etbaeeeeean 1280
Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity Checking.... 1282
Trusting HTTP Permission Methods on the Server Side........c.ccocovviiiiiiiiiiii e
Exposure of WSDL File Containing Sensitive Information

Improper Neutralization of Data within XQuery Expressions (‘"XQuery Injection’)...........cccccveeeeenns 1287
Insufficient CompartmMeNntaliZatioN..............coiiiiiiiie i a e 1288
Reliance on a Single Factor in @ Security DeCISION............ceieiiiiiieiie e 1290
Insufficient Psychological ACCEptability...........ccvveiiiiiiiiiiic e 1292
Reliance on Security Through OBSCUNLY........ccuuviiiiiiiiiie e eavaee e 1294
Violation of Secure Design PriNCIPIES...........co i 1296
IMPropPer SYNCRIONIZATION.cciiiiieie ettt e e s e e e e e st b e e e e s snatb e e e e e s snnraaeeaeas 1297
Use of a Non-reentrant Function in @ Concurrent CONEXL.........ccuveruieeiriieinieee e 1299
Improper Control of a Resource Through its Lifetime.........cccvvieiiiiiiiiie e 1301
IMProper INItAIZALION..........oiiiieee e e e e e e e e e s et e e e e e s sanraeeaeeaas
Operation on Resource in Wrong Phase of Lifetime

[0 o] o] o[gl WoTod (1T R PO PRPRUUPPRPRN
Exposure of Resource t0 Wrong SPhEIE........coouiiiiie ittt
Incorrect Resource Transfer BEtWEeN SPNEIES.........c.cioiiiiiiiiiiiiiiie et
Always-Incorrect Control FIow Implementation...............eeeeiiiiiiiee e
Lack of Administrator CONrol OVEI SECUILY.......iieiiiiiiieee e it e e st essire e e e et e e e e s eeaae e e e e e
Operation on a Resource after Expiration or REIEASE............ceeeiiiiiiiieciiiiiei e 1320
External Influence of Sphere Definition............cooiiiiiii i 1323
UNCONLIOIEA RECUISION.ciiiiiieiiiie ettt ettt st e et e e bt e e s abe e e e bb e e s anteeesnbeeeanbbeeennee 1324
Duplicate Operations 0N RESOUICE.cciiiuiiiiee ittt ee e e eiiir e e e e e s i e e e e s ssbaareeesasbaaeeaesassbeeaeessnnees 1326
Use of Potentially Dangerous FUNCHON............cooiiiiiiiie et 1327
Integer Overflow to Buffer Overflow

Incorrect Conversion between NUMEKC TYPES......cccuuiiieiiiiiiiee e e e et e e e s setree e e e s ssaaee e e e e siatreeaeeasanes 1332
[aoo]q (=To1 Q@2 1[o10] - L1 o] o PO ORI 1336
Function Call With Incorrect Order of ArQUMENLS.........ccciuiiiieiiiiiiie e 1341
Incorrect Provision of Specified FUNCHONAIILY...........coooiiiiiiiiiiiei e 1342
Function Call With Incorrect Number of ArgUMENTS.........cccoviiiiiiiiiiiiiiei e 1343
Function Call With INCOrrect ArgUmMENT TYPE...uuuiiiiiiiiieee e ettt e e s e e e st e e e e s etraeeeaeeaans 1344
Function Call With Incorrectly Specified Argument Value...........ccccoeoiviiiiiee e 1346
Function Call With Incorrect Variable or Reference as Argument..........cccccoovvveeeeeiiiiieneeeeeciieeenn. 1347
Permission Race Condition DUring RESOUICE COPY.....cccicuviiiieiiiiiiiieeeeiiiiiee e e erreee e s ssiree e e e eanees
Unchecked Return Value to NULL Pointer Dereference

Insufficient Control Flow Management..................cccuveeee..

Incomplete Denylist to Cross-Site Scripting............ccc.c......

Protection MechaniSm FailUre............ccuuiiiiii it

Use of Multiple Resources with Duplicate [dentifier............ceeceiiiieiic e,

Use of LOW-Level FUNCHONAIILY..........oociiiiii et e e e e e e e e e e
INCOITECE BENAVIOT OFUENeiiiiiiieiiiie ettt ettt et e s e e et e e snte e e nenes

[Tofo]q (=To1 S @f0] 0] o F= 1y 1T o U PRSP
Execution After REAIFEC (EAR).....ccii ettt ettt e e et e e e e et e e e e s e etbaeeaeeanes
Improper Check or Handling of Exceptional Conditions.............ccooeiiiiiiieeciiiiiiee e
Incorrect Type CONVEISION OF CaSt........uuiiiiiiiiiiiee ettt e s s e e s et e e e e et e e e e e st e e e e e s sesaaeeeaeeaaes
Incorrect Control FIOW SCOPING.......uuiiieiiiiiiiie et e e e e e e e s e e e e e s s satbe e e e e s seasaees

Use of Incorrectly-Resolved Name Or REfEreNnCe.........cvvviiiiiiiiiiic e

Xii

CWE Version 4.2
Table of Contents

CWE-707:
CWE-708:
CWE-710:
CWE-732:
CWE-733:
CWE-749:
CWE-754:
CWE-755:
CWE-756:
CWE-757:
CWE-758:
CWE-759:
CWE-760:
CWE-761.:
CWE-762:
CWE-763:
CWE-764:
CWE-765:
CWE-766:
CWE-767:
CWE-768:
CWE-770:
CWE-771:
CWE-772:
CWE-773:
CWE-774:
CWE-775:
CWE-776:
CWE-777:
CWE-778:
CWE-779:
CWE-780:
CWE-781.:
CWE-782:
CWE-783:
CWE-784:
CWE-785:
CWE-786:
CWE-787:
CWE-788:
CWE-789:
CWE-790:
CWE-791.:
CWE-792:
CWE-793:
CWE-794:
CWE-795:
CWE-796:
CWE-797:
CWE-798:
CWE-799:
CWE-804:
CWE-805:
CWE-806:
CWE-807:
CWE-820:
CWE-821.:
CWE-822:
CWE-823:
CWE-824:
CWE-825:

IMProper NEULTAlIZAtION..........uiii e e e e e e e s e e e s e a e e e e s e ab e e e e e e e sntaeeeas
INncorrect OWNErShip ASSIGNIMENL........ciiiiiiiie et e s e e s e e e e e st e e e e s searaaaeaeas
Improper Adherence to Coding Standards............ccociiiiiieeiiiiiiie e
Incorrect Permission Assignment for Critical RESOUICE............ccccuviiieeiiiiiiiiie e e
Compiler Optimization Removal or Modification of Security-critical Code............cc.cccoccvveveeeeinnen.
Exposed Dangerous Method or FUNCLION...........cccooiiiiiiie e

Improper Check for Unusual or Exceptional Conditions

Improper Handling of Exceptional Conditions..............cooiiiiiiiiiiiiiiic e
MiSSING CUSIOM EITOr PAgE.........vviiee i ittt e et e e et e e e e et e e e e e st e e e e e s etbaneeeean
Selection of Less-Secure Algorithm During Negotiation (‘Algorithm Downgrade')

Reliance on Undefined, Unspecified, or Implementation-Defined Behavior...............ccccceeevnnneeen.

Use of a One-Way Hash WithOUt @ Sall...........cccuviiiiiiiiiiiii e

Use of a One-Way Hash with a Predictable Salt.............ccccooiiiiiiiii e

Free of Pointer not at Start Of BUfEr..........cooiuiiiiii e
Mismatched Memory Management ROULINES.occuuiiieeiiiiiiiee et e e e
Release of Invalid Pointer or REfEIENCE.ccoiiiiiiiiii e
Multiple LOCKS Of @ CritiCal RESOUICE.cciuiiiiie et e ettt e e e s e e e e e etbaeeaeeenes
Multiple Unlocks of @ CritiCal RESOUICE...........ciiieiiiiiiiie ettt e e e e e e s
Critical Data Element Declared PUDBIIC..........c..ooiiiiiiiiii e
Access to Critical Private Variable via Public Method.............ccocoiiiiiiiiii e
Incorrect Short Circuit Evaluation

Allocation of Resources Without Limits or Throtthing..........cccccveiiiiiiiiiiie e
Missing Reference to Active Allocated RESOUICE..........cccoiiiiiiiieiiiiiiiee e e e e e
Missing Release of Resource after Effective Lifetime..........ccccveeiiiiiiieei i
Missing Reference to Active File Descriptor or Handle.............cccoooiviiiiei i
Allocation of File Descriptors or Handles Without Limits or Throttling............ccccceeeeiiiiineeeninnen.
Missing Release of File Descriptor or Handle after Effective Lifetime...........c.cccoovvveiiiiiiincc i,
Improper Restriction of Recursive Entity References in DTDs (‘XML Entity Expansion’)............... 1451
Regular EXpression WithOUL ANCROTS.cuuuiiii et e e e 1453
Lo IS 015 ol =T a1 A oo o 11 o TR PP PPPST 1455
LOQQiNg Of EXCESSIVE DaAlA..........vviiieiiiiiiiie ettt e e s e e e et e e e e e et e e e e e s sabaaeaeean 1457
Use of RSA Algorithm WithOUt OAEP............coiiiiiiiie e e eaaae e 1459
Improper Address Validation in IOCTL with METHOD_NEITHER 1I/O Control Code..................... 1460
Exposed IOCTL with Insufficient ACCESS CONLIOL..........ccoiiiiiiiiiiiiiiiei e 1463
Operator PreCedence LOGIC EITON......ccoiuiiiii it e ettt e e e e e e e e e e e s eabaeeae s 1464
Reliance on Cookies without Validation and Integrity Checking in a Security Decision................. 1467
Use of Path Manipulation Function without Maximum-sized Buffer............ccccccooviieie e 1470
Access of Memory Location Before Start of BUffer.............cooiiiiiiiiiiicc e 1472
OUL-Of-DOUNAS WIITE.....eei it st et e e rat e e s nb e e s bbe e e sneeeesnneee s 1475
Access of Memory Location After ENd of BUFfer...........ccooiiiiiiiiciiiiec e 1481
Uncontrolled Memory AlIOCALION...........ciiiiiiiiiee e et e e st a e e annas 1485
Improper Filtering of Special EIEMENTS.........cccoiiiiiiiii e 1488
Incomplete Filtering of Special EIEMENTS...........ccoiiiiiiiiiiiiiee e 1489
Incomplete Filtering of One or More Instances of Special Elements.............ccccocvieiiiiiiiiiee s 1490
Only Filtering One Instance of a Special Element............ccoovviiiiiiiiei e 1492
Incomplete Filtering of Multiple Instances of Special Elements..........ccccccccviviiieeiciiiciiiece e, 1493
Only Filtering Special Elements at a Specified LOCAtioN.............c.ceeeeiiiiiiieeeiiiiiieee e 1494
Only Filtering Special Elements Relative t0 @ Marker...........cccovviieiiiiiiiee e 1496
Only Filtering Special Elements at an Absolute POSItioN............cccvviieiiiiiiiei e 1497
Use of Hard-coded CredentialS..........ooueii ettt et as 1498
Improper Control of INteraction FrEQUENCY.........cuuiiie ettt e e e e e et 1505
GUESSADIE CAPTCHA. ... ettt ettt ettt st et e e e s n bt e e sb et e e s bb e e e anbeeesneeeenebeeean 1507
Buffer Access with Incorrect Length ValUe............ooooiiiiiiii oot 1509
Buffer Access Using Size of Source BUFfer.........ccuviiiiiiiiiii e 1515
Reliance on Untrusted Inputs in a Security DeCISION...........ccoiiiiiiiieiiiiiiii e 1519
MiSSING SYNCRIONIZATION.ciiuiiiiie ettt e e e e e e s et e e e e e e bt e e e e s e sabaeeeessantbeaeeesaanes 1524
INCOITECE SYNCNIONIZALION.cciiiiiiii ettt e e e e e et e e e s e b e e e e e s atbeeeeessesbaaeeaeaaans 1526
Untrusted PoINter DErefErENCE.couuii ittt e e et eennes 1527
Use of Out-of-range PoINter OffSEL.........uuiiiiiiiiiiie et a e 1530
Access Of UNINItialiZed POINTET.........oouiiiiiiieiiie ettt e e snbee e 1532
Expired Pointer Dereference

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.2
Table of Contents

CWE-826: Premature Release of Resource During Expected Lifetime..........ccovveeiiiiiiiiecicciiiieec e 1537
CWE-827: Improper Control of Document Type Definition............cooiiiiiiii i 1539
CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe..............cccccovviiieiiiiiiiee i, 1540
CWE-829: Inclusion of Functionality from Untrusted Control Sphere..........cccccveiiiiiiiiee e

CWE-830: Inclusion of Web Functionality from an Untrusted Source
CWE-831: Signal Handler Function Associated with Multiple Signals
CWE-832: Unlock of a Resource that is NOt LOCKEM............coviuiiiiiiiiiiiiieieee e

(@1 1 i 1= To | o Tod OO PPRPPTRN
CWE-834: EXCESSIVE ITEIALION. ... utiiiiiiieiitie ittt ettt et e e st e e s bt e ettt e e sabe e e s beeeesbbeeesnneeeaneeeas
CWE-835: Loop with Unreachable Exit Condition ('Infinit€ LOOP")......cccuviiiiiiiiiiiii e
CWE-836: Use of Password Hash Instead of Password for Authentication.............cccoceeeiiieeinieeenieeesnineeee 1561
CWE-837: Improper Enforcement of a Single, Unique ACHON..........cccviiieiiiiiiieee e
CWE-838: Inappropriate Encoding for Output Context..............cccuvee....

CWE-839: Numeric Range Comparison Without Minimum Check
CWE-841: Improper Enforcement of Behavioral WOorkflow...............cooiiiiiiiiiiiiic e
CWE-842: Placement of User int0 INCOIMECt GrOUP........cciiiuriereeiiiiiiieeeesiiieeeeeeesreeeeeeesseveeeee s e
CWE-843: Access of Resource Using Incompatible Type (‘Type Confusion’).........ccccccoevvivvieeeenns
CWE-862: MiSSING AULNOMZALION.cuiiiiie ettt eeie e e et e e e e et e e e e e s e e e e e s saaaeaeeeaannes
CWE-863: INCOITECt AULNOTIZATION.ciiitiiiiiiiie ittt st e et e e st e e s nbe e e snbeeeabaeeenee
CWE-908: Use of UniNitialiZE0d RESOUITE........coiuiiiiiiiiieiiiie ittt ettt sbe e bbe e e snaeeenanes
CWE-909: Missing Initialization Of RESOUICE.........ciiiiuiiiee it e s e s e e e e e e e e e s saraeeas
CWE-910: Use oOf EXPIred File DeSCHPION.vviiieeiiiiiiie e ettt e ettt e e e st e e e s et e e e e e s eaab e e e e s s entaeeeeesenanenes
CWE-911: Improper Update of Reference COUNL...........ccoiiiuiiiiiiiiiiiiii et e e e e eaaree s
CWE-912: Hidden FUNCONAlILY.........ccoiiiiiiiieeiiiiiiee et

CWE-913: Improper Control of Dynamically-Managed Code Resources
CWE-914: Improper Control of Dynamically-ldentified Variables............ccccceiiiiiiiiiiic e,
CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes
CWE-916: Use of Password Hash With Insufficient Computational Effort.............ccccceeieiiiiii i,
CWE-917: Improper Neutralization of Special Elements used in an Expression Language Statement
('EXpression Language INJECHION").........iii ettt e et e e st e e e e e et e e e e e e stt e e e e e s etbeeeaeeeaaraeeaeeaaas
CWE-918: Server-Side Request FOrgery (SSRF)... ...ttt et e e e e eabaeaa e
CWE-920: Improper Restriction of Power Consumption...........ccccoevvvveeeeiiiiieeeeeeecineennn

CWE-921: Storage of Sensitive Data in a Mechanism without Access Control............ccccveeeeiiiiieeeeeiicieeeeenn,
CWE-922: Insecure Storage of Sensitive INfOrmation...............eoiiiiiiiiiie i
CWE-923: Improper Restriction of Communication Channel to Intended Endpoints
CWE-924: Improper Enforcement of Message Integrity During Transmission in a Communication Channel. 1618

CWE-925: Improper Verification of Intent by Broadcast RECEIVET............cccceiiiiiiiie i 1619
CWE-926: Improper Export of Android Application COMPONENTS..........ccoeeiiiiiiiiieiiiiiiiee e
CWE-927: Use of Implicit Intent for Sensitive COMMUNICALION.ccciuviieeiiiiiiiee e
CWE-939: Improper Authorization in Handler for Custom URL Scheme

CWE-940: Improper Verification of Source of a Communication Channel............cccccccovviiieeiiiiiiienee e, 1630
CWE-941: Incorrectly Specified Destination in a Communication Channel.............ccccceeeeiviiiinie e, 1632
CWE-942: Permissive Cross-domain Policy with Untrusted DOMAINS............cccvuvieeiiiiiiiiree e ciieeee e 1634
CWE-943: Improper Neutralization of Special Elements in Data Query LOgIC..........ccccocvuvieeeeiiiiiieee e, 1637
CWE-1004: Sensitive Cookie Without 'HttpONIY' Flag..........ccveviiiiiiiiiee e 1639
CWE-1007: Insufficient Visual Distinction of Homoglyphs Presented t0 USEr..........ccccvveeiiiiiiiieei e 1641
CWE-1021: Improper Restriction of Rendered Ul Layers or FFames...........cccovveiieiiiiiiieeeesiiiieee e ssivieeee e 1644
CWE-1022: Use of Web Link to Untrusted Target with window.opener Access 1646
CWE-1023: Incomplete Comparison with Missing Factors

CWE-1024: Comparison of Incompatible Types........ccccvvveeeeviiiveneeeiiinenn.

CWE-1025: Comparison UsiNg WIONQ FaCLOrS..........cuuuiiieiiiiiiiie ettt e st e e earae e e e s sanrr e e e e s snnaneeas
CWE-1037: Processor Optimization Removal or Modification of Security-critical Code............ccccceeevvivnnnn.n. 1652
CWE-1038: Insecure Automated OPtiMIZAtIONS..........cciiiiiiiiiie et eec e e e s e e e e e e b e e e e s snrbeeeae s 1654
CWE-1039: Automated Recognition Mechanism with Inadequate Detection or Handling of Adversarial Input

[T 10] o F= Vo] LT PP SUPPTPPPTR 1654
CWE-1041: Use Of ReAUNAANT COUE.cuuiiiiiiiiiiiiee ittt ettt ettt ettt e bt e e e snb e e et e e s nnaeeesnneeas
CWE-1042: Static Member Data Element outside of a Singleton Class Element

CWE-1043: Data Element Aggregating an Excessively Large Number of Non-Primitive Elements................ 1658
CWE-1044: Architecture with Number of Horizontal Layers Outside of Expected Range...........ccccccceeevunnee.. 1659
CWE-1045: Parent Class with a Virtual Destructor and a Child Class without a Virtual Destructor................ 1660
CWE-1046: Creation of Immutable Text Using String Concatenation.............cccueeeeiiiiuiieeeeeiiiiiee e e siiieeee e 1661

Xiv

CWE Version 4.2
Table of Contents

CWE-1047: Modules with Circular DEPENUENCIES.........cccuuiiiie et e e sarrer e e
CWE-1048: Invokable Control Element with Large Number of Outward Calls

CWE-1049: Excessive Data Query Operations in a Large Data Table...........ccccooviiiiiec i
CWE-1050: Excessive Platform Resource Consumption within @ LOOP.......ccccoeeiiiiiiiiiiiiieice e
CWE-1051.: Initialization with Hard-Coded Network Resource Configuration Data.............ccccoevvvveeeeiiiinnnennn.
CWE-1052: Excessive Use of Hard-Coded Literals in Initialization

CWE-1053: Missing Documentation fOr DESIGN...........uiiiiiiiiiiiei ittt e s e e s e e et e e e e e earraea e
CWE-1054: Invocation of a Control Element at an Unnecessarily Deep Horizontal Layer

CWE-1055: Multiple Inheritance from Concrete ClasSEsS..........uuiiiiiiiiiiei et e
CWE-1056: Invokable Control Element with Variadic Parameters............ccoocvieiiieeeiiiiee i
CWE-1057: Data Access Operations Outside of Expected Data Manager Component..........ccccecevvcvvveeeeenns
CWE-1058: Invokable Control Element in Multi-Thread Context with non-Final Static Storable or Member
[T o =T o | S RSO PPPRP 1673
CWE-1059: Incomplete DOCUMENTALION..........iiiiiiiiiiiee e e ettt e e e e e e st e e e e s st e e e e s e anre e e e e e sntbaraaenan 1674
CWE-1060: Excessive Number of Inefficient Server-Side Data ACCESSES........uiuvurieriieeiiiieeiieeesiieeenieeennes 1675
CWE-1061: Insufficient ENCAPSUIALION............eiiiiiiiiiiie e e s e e e e e e e e saar e e e e e s erbaaeee s
CWE-1062: Parent Class with References to Child ClIass...........ccooiiiiiiiiieiiiiie e
CWE-1063: Creation of Class Instance within a Static Code Block

CWE-1064: Invokable Control Element with Signature Containing an Excessive Number of Parameters...... 1679
CWE-1065: Runtime Resource Management Control Element in a Component Built to Run on Application

1= V=] £ F TP P OO PPPP PP 1680
CWE-1066: Missing Serialization Control EIEMENL............ccoiiiiiiiii e 1681
CWE-1067: Excessive Execution of Sequential Searches of Data ReSOUICE..........cccceeeeviiiieeeee e, 1682
CWE-1068: Inconsistency Between Implementation and Documented DesSign..........ccveeeeeiiiviereeeiiiivieeeesenns 1683
CWE-1069: EMPtY EXCEPLON BIOCK.cciiiiiiiiieeiiiiiee e ettt e st e e e e st e e e e e s st e e e e s s satbaeeeessnaaraeeaeaaans 1684
CWE-1070: Serializable Data Element Containing non-Serializable Item Elements.............cccccocceveeiiiiiiinnen. 1685
CWE-1071: EMPLY COAE BIOCK.......coiiiiiiiiiiii ettt e e e e e s st e e e e e e aa e e e e e s snataeeeeesenes
CWE-1072: Data Resource Access without Use of Connection Pooling

CWE-1073: Non-SQL Invokable Control Element with Excessive Number of Data Resource Accesses........ 1687
CWE-1074: Class with Excessively Deep INheritancCe..........c.cooiiiiiie it 1689
CWE-1075: Unconditional Control Flow Transfer outside of Switch BIOCK.............ccccceviiiiiiiiiniiciie e, 1690
CWE-1076: Insufficient Adherence to Expected CONVENLIONS...........ccviiiieiiiiiiiee et e e 1691
CWE-1077: Floating Point Comparison with INCOrrect OPErator............cccuviieieiiiiiiiiee et e e 1691
CWE-1078: Inappropriate Source Code Style or Formatting

CWE-1079: Parent Class without Virtual Destructor Method

CWE-1080: Source Code File with Excessive Number of Lines of Code...........cccvvuiririiiiiiieeeiiiee e 1694
CWE-1082: Class Instance Self Destruction Control Element...........cccoiieiiiiiiiiiie e
CWE-1083: Data Access from Outside Expected Data Manager COmMpOoNeNt.........cccceeeeviiuiieeeeeiiiivieeeessevnnes
CWE-1084: Invokable Control Element with Excessive File or Data Access Operations

CWE-1085: Invokable Control Element with Excessive Volume of Commented-out Code.............ccccevverenee. 1698
CWE-1086: Class with Excessive Number of Child CIasSes..........cccoviiiiiiiiiiiiiieiieee e
CWE-1087: Class with Virtual Method without a Virtual DeSIIUCTON.ccceeiiiiiiiiie e
CWE-1088: Synchronous Access of Remote Resource without Timeout

CWE-1089: Large Data Table with Excessive Number of INdiCES..........cceeeiiiiiiiiie i
CWE-1090: Method Containing Access of a Member Element from Another Class...........ccccvvveeeiiiiieneeeinns 1704
CWE-1091: Use of Object without Invoking Destructor Method..............ccooviiiiiiiiiiee e, 1705
CWE-1092: Use of Same Invokable Control Element in Multiple Architectural Layers.............cccccveveeeiinnnenn.. 1706
CWE-1093: Excessively Complex Data RepreSentation..............ccuiiuiieeeiiiiiiieee st e e esiiree e st e e e eaveeees
CWE-1094: Excessive Index Range Scan for a Data Resource

CWE-1095: Loop Condition Value Update within the LOOP..........ceiiiiiiiiiiiiiiie e
CWE-1096: Singleton Class Instance Creation without Proper Locking or Synchronization........................... 1709
CWE-1097: Persistent Storable Data Element without Associated Comparison Control Element.................. 1710
CWE-1098: Data Element containing Pointer Item without Proper Copy Control Element..............cccccccoonu. 1711
CWE-1099: Inconsistent Naming Conventions for Identifiers............ccccocviiiiiiiiiii e 1712
CWE-1100: Insufficient Isolation of System-Dependent FUNCHONS............cccveiieiiiiiiiiee e 1713
CWE-1101: Reliance on Runtime Component in Generated COUE...........ccooviuiririeeiiiiiiiie e eciiieee et 1714
CWE-1102: Reliance on Machine-Dependent Data Representation...............cceceoivviveieeeiiiiinieeeeesiiiree e 1715
CWE-1103: Use of Platform-Dependent Third Party COMPONENTS...........cvveiiiiiiiiieiiiiiiiee e eeiiieee e eeireeea e 1716
CWE-1104: Use of Unmaintained Third Party COMPONENTS........cccuuviiiiiiiiiiiie e ciiiieee et e et e e eearaeee e 1716
CWE-1105: Insufficient Encapsulation of Machine-Dependent Functionality............ccccccueveeeiiiiiiiee i, 1717
CWE-1106: Insufficient Use of Symbolic CONSIANTS..........cccoiiiiiiiiiiiiiiicc et 1718

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.2
Table of Contents

CWE-1107:
CWE-1108:
CWE-1109:
CWE-1110:
CWE-1111:
CWE-1112:
CWE-1113:
CWE-1114:
CWE-1115:
CWE-1116:
CWE-1117:
CWE-1118:
CWE-1119:
CWE-1120:
CWE-1121:
CWE-1122:
CWE-1123:
CWE-1124:
CWE-1125:
CWE-1126:
CWE-1127:
CWE-1164:
CWE-1173:
CWE-1174:
CWE-1176:
CWE-1177:
CWE-1188:
CWE-1189:
CWE-1190:
CWE-1191:
CWE-1192:
CWE-1193:
CWE-1209:
CWE-1220:
CWE-1221:
CWE-1222:
CWE-1223:
CWE-1224:
CWE-1229:
CWE-1230:
CWE-1231:
CWE-1232:
CWE-1233:
CWE-1234:
CWE-1235:
CWE-1236:
CWE-1239:
CWE-1240:
CWE-1241.:
CWE-1242:
CWE-1243:
CWE-1244:
CWE-1245:
CWE-1246:
CWE-1247:
CWE-1248:
CWE-1249:
CWE-1250:

CWE-1251:
CWE-1252:

Insufficient Isolation of Symbolic Constant Definitions............cccuvevieiiiiiiiie e, 1719
Excessive Reliance on Global Variables. ..o

Use of Same Variable for MUltiple PUIMPOSES.........cccuviiiie it

Incomplete Design DOCUMENTALION..........ciiiiiiiiiiie et e e e e e e e e e s s atreeeaeaan

Incomplete 1/O DOCUMENTALION.ccoiiuiiiiee e ettt e e s e e e e e e et e e e e s e e e e e s satb e e e e e s santraeeaeas

Incomplete Documentation of Program Execution
Inappropriate CoMMENE SEYIE.......oiiiiiie e et e e e s s r e e e e e ara e e e e e aannees

Inappropriate WhIiteSPACe StYIE........coiiiiiiie e e earaae e

Source Code Element without Standard Prologue.............ccooiiiiiieie e 1724
Inaccurate Comments
Callable with Insufficient Behavioral SUMMAIY..........ccccueiieeiiiiiiiie s 1726
Insufficient Documentation of Error Handling Techniques...........ccccoocvieiie e 1727
Excessive Use of Unconditional BranChing...........ccccocvuviiiiiiiiiiiiiie e 1728
EXCESSIVE COUE COMPIEXILY....cuviiiieeeeiiiiit e e ettt e ettt e e st e e e e et e e e e s st e e e e s seabaeeaeeaantreeeas 1728
Excessive McCabe Cyclomatic COMPIEXItY.........ccuvieiieiiiiiiiie e 1729
Excessive Halstead COMPIEXILY.......ccuuiiiiiiiiiiiie ettt e e s e e e e et e e e e e s etbaeeeeeeaans

Excessive Use of Self-Modifying Code
EXCESSIVElY DEEP NESHING. ...cciiiiiiiiiie ettt e e e e e e e e e st e e e s e s atr e e e e e s snraeeas
EXCESSIVE ALACK SUIMACE. ... ittt
Declaration of Variable with Unnecessarily Wide SCOPE.......ccccoiviiiiiieiiiiiiieee e
Compilation with Insufficient Warnings Or EFTOIS............cooiiiiiiiiieiiiiiiiee et eiveee e
IITEIEVANT COUB. ...ttt et et e e bt e e b bt e e s b bt e e anbe e e eanee e e sbbeeeanteeesnnees
Improper Use of Validation FrameWOTK............uuuiieiiiiiiiieeceiiiiee et e e st e e s savaeea e
ASP.NET Misconfiguration: Improper Model Validation...............c.ccovvvieiiiiiiiee e,
INefficient CPU COMPULALION.c.uuiiii et e e et e e e e e et e e e e e s aabe e e e e s snrreeas
Use Of Prohibited COE........ouuiiiiiiii ittt e e snaeeas
Insecure Default Initialization Of RESOUICE..........cooiiiiiiiiiiieiiiee e
Improper Isolation of Shared Resources on System-on-a-Chip (SoC)
DMA Device Enabled Too Early in BOOt PhaSe.........ccccoiiiiiiiiiiiiiiiiee et

Exposed Chip Debug and Test Interface With Insufficient or Missing Authorization.................... 1743
System-on-Chip (SoC) Using Components without Unique, Immutable Identifiers..................... 1745
Power-On of Untrusted Execution Core Before Enabling Fabric Access Control........................ 1746
Failure to Disable RESEIVEA BilS..........couiiiiiiiiiieiiiee ettt sneee e 1747
Insufficient Granularity of ACCESS CONLIOL..........ccociiiiiiiiii i 1749
Incorrect Register Defaults or Module Parameters.ooccvvviiiiiiiieiie e 1751
Insufficient Granularity of Address Regions Protected by Register LOCKS...........ccccvvvveeiiiivennennn. 1754
Race Condition for Write-Once AttDULES..........ooiiiiiiii e

Improper Restriction of Write-Once Bit Fields

Creation of Emergent Resource

Exposure of Sensitive Information Through Metadata..............ccccuveeeiiiiiiiiiie e 1761
Improper Implementation of Lock Protection REQISIErS.......cccuvviiiiiiiiiiiie e 1761
Improper Lock Behavior After Power State TranSition...........ccuvveeeiiiiiierieeiiiiiiee e 1763
Improper Hardware Lock Protection for Security Sensitive Controls.............cccccvvveeeieiiiiiieeeeniinnns 1764
Hardware Internal or Debug Modes Allow Override of LOCKS..........c.cccoocviiiei i 1766
Incorrect Use of Autoboxing and Unboxing for Performance Critical Operations........................ 1769
Improper Neutralization of Formula Elements in @ CSV File.......cccccoeiiiiiiiiec e,
Improper Zeroization of Hardware REQISIEr...........uueiiiiiiiiiie et

Use of a Risky CryptographiC PrimitiVe............ccciiiiiiiiiiiiiie et

Use of Predictable Algorithm in Random Number Generator..............cccvveeeeiiiiierieceeciieeee e
Inclusion of Undocumented Features or Chicken Bits....................

Sensitive Non-Volatile Information Not Protected During Debug

Improper Access to Sensitive Information Using Debug and Test Interfaces...........ccccccoeuvveneen. 1781
Improper Finite State Machines (FSMs) in Hardware LOQIC..........ccccveveeeiiiiiiiie e 1783
Improper Write Handling in Limited-write Non-Volatile Memories...........ccccccovvvveeeeiiiiieree e, 1785
Missing or Improperly Implemented Protection Against Voltage and Clock Glitches................... 1787
Semiconductor Defects in Hardware Logic with Security-Sensitive Implications...............c......... 1789
Application-Level Admin Tool with Inconsistent View of Underlying Operating System............... 1791
Improper Preservation of Consistency Between Independent Representations of Shared
... 1793
Mirrored Regions with Different ValUEs.............ceiieiiiiiiiie ettt 1794
CPU Hardware Not Configured to Support Exclusivity of Write and Execute Operations............ 1796

XVi

CWE Version 4.2
Table of Contents

CWE-1253: Incorrect Selection Of FUSE VAIUES............oiiiiiiiiiieeiiiee ettt
CWE-1254: Incorrect Comparison LOgiC GranUIArity............cccouviieiiiiiiieri e
CWE-1255: Comparison Logic is Vulnerable to Power Side-Channel Attacks...........ccccccoovvivieeeiiiiiiieec e,
CWE-1256: Hardware Features Enable Physical Attacks from Software..............cccocoveviiiiiiiiee e,
CWE-1257: Improper Access Control Applied to Mirrored or Aliased Memory Regions............ccccocccvveveeeeenns
CWE-1258: Exposure of Sensitive System Information Due to Uncleared Debug Information
CWE-1259: Improper Restriction of Security ToKen ASSIGNMENT..........ccooiiiiiiiiieiiiiiiee e
CWE-1260: Improper Handling of Overlap Between Protected Memory Ranges...........ccccvveeeeviiivereeessnnnnn.
CWE-1261: Improper Handling of Single EVENt UPSELS........cciiiiiiiiiiiiiiis ettt e e eivee e e
CWE-1262: Register Interface Allows Software Access to Sensitive Data or Security Settings..................... 1816
CWE-1263: Improper Physical ACCESS CONLIOL..........ccciiiiiiiiiieiiiiies et e s raree e e e 1818
CWE-1264: Hardware Logic with Insecure De-Synchronization between Control and Data Channels........... 1819
CWE-1265: Unintended Reentrant Invocation of Non-reentrant Code Via Nested Calls...........cccccocveeiineens 1821
CWE-1266: Improper Scrubbing of Sensitive Data from Decommissioned DevVice..............cccocvveveeeiiiiveneennn. 1824
CWE-1267: Policy Uses Obsolete ENCOUING........uuiiiiiiiiiiiiiei it ee e ettt e et e s st e e e seaaa e e e e s s sanreeaeessanes 1826
CWE-1268: Policy Privileges are not Assigned Consistently Between Control and Data Agents................... 1828
CWE-1269: Product Released in Non-Release Configuration
CWE-1270: Generation of Incorrect Security TOKENS..........ccceevviivieeeeiiiiieree e,
CWE-1271: Unitialized Value on Reset for Registers Holding Security Settings
CWE-1272: Sensitive Information Uncleared Before Debug/Power State Transition.............cccccoccvveveeeiiinnen.. 1836
CWE-1273: Device Unlock Credential Sharing.........cc.ueeeieiiiiiiiie et e e e e e e e snavee s 1837
CWE-1274: Insufficient Protections on the Volatile Memory Containing Boot Code.............ccoccvveveeeiiivennennn. 1839
CWE-1275: Sensitive Cookie with Improper SameSite AttribULE..........c.vevvieiiiiii e 1841
CWE-1276: Hardware Child Block Incorrectly Connected to Parent System.........ccccceeevviiiieeeciiiiiiee e 1843
CWE-1277: Firmware NOt Updateable............ccuuiiiiiiiiiiiii et e e e e 1845
CWE-1278: Missing Protection Against Hardware Reverse Engineering Using Integrated Circuit (IC) Imaging
LT 01T T8 1= USRS
CWE-1279: Cryptographic Operations are run Before Supporting Units are Ready
CWE-1280: Access Control Check Implemented After Asset iS ACCESSE........cccvviiieiiiiiiiieie e
CWE-1281: Sequence of Processor Instructions Leads to Unexpected Behavior (Halt and Catch Fire)........ 1852
CWE-1282: Assumed-Immutable Data is Stored in Writable MemOry..........ccccceoviiiiiiei i 1854
CWE-1283: Mutable Attestation or Measurement Reporting Data............ccccvevieeiiiiiiiieeciiiiiee e 1855
CWE-1284: Improper Validation of Specified Quantity in INPUL............coooiiiiiiiiie e 1857
CWE-1285: Improper Validation of Specified Index, Position, or Offset in INpUt............cccooviiiiiiii i, 1859
CWE-1286: Improper Validation of Syntactic Correctness of Input .
CWE-1287: Improper Validation of Specified Type Of INPUL..........ceviiiiiiiiiiii e
CWE-1288: Improper Validation of Consistency Within INPUL...........ccoiii i
CWE-1289: Improper Validation of Unsafe Equivalence in Input
CWE-1290: Incorrect Decoding of Security ldentifierscccccoovvvivieiiiiiiieee e,
CWE-1291: Public Key Re-Use for Signing both Debug and Production Code
CWE-1292: Incorrect Conversion of Security 1dentifiers.............oeoiiiiiiiii i
CWE-1293: Missing Source Correlation of Multiple Independent Data..............cccoovvvieeieiiiiieee e,
CWE-1294: Insecure Security Identifier MEChaNISIM............cooiiiiiiiiiiiiee et
CWE-1295: Debug Messages Revealing Unnecessary INformation.............c.cccoovvvieeieiiiiieee e
CWE-1296: Incorrect Chaining or Granularity of Debug COmMPONENTS...........ccooiiiiiiiieiiiiiiiieee e
CWE-1297: Unprotected Confidential Information on Device is Accessible by OSAT Vendors
CWE-1298: Hardware Logic Contains Race CONItiONS............ooeiiiiiiiiii it
CWE-1299: Missing Protection Mechanism for Alternate Hardware Interface..............cccocvvveeiiiiiiienc e,
CWE-1300: Improper Protection Against Physical Side Channels...........ccccccooviiiiiiii e,
CWE-1301: Insufficient or Incomplete Data Removal within Hardware Component
CWE-1302: Missing Security Identifier.........cccccoviiiiiiiiiiiiie s
CWE-1303: Non-Transparent Sharing of Microarchitectural RESOUICES............c.ccooviviiieeiiiiiieiee e
CWE-1304: Improperly Preserved Integrity of Hardware Configuration State During a Power Save/Restore
(@0 1=T - (o] o P PPPTSPUP 1894

CWE Categories

Category-2: TPK = ENVIFONMENT....... vttt st e e e ettt e e e s et e e e e e st et e e e s stbeeeeeeeasnnaseeeessatbaeaeenan 1896
(O 11=To (o] VAl K T @fo] o1 T [0 =Y i o] o FHN OO PPP PSSR 1897
Category-19: Data ProCeSSING EFTOIS........uuiii i iiiiiie ettt e e e e e e s et e e e e s et e e e e e e satbeeeaeaanes 1897
(O 11=To [0 VAl RS IS H S 1T I =1 (0] 6= T PRSP 1898
LOF=1 (=T [o] oY ST S Y/ o =T = (o £~ T PP PP PUPRTR PR 1898

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.2
Table of Contents

Category-137:
Category-189:
Category-199:
Category-227:
Category-251:
Category-254:
Category-255:
Category-264:
Category-265:
Category-275:
Category-310:
Category-320:
Category-355:
Category-361:
Category-371.:
Category-387:
Category-388:
Category-389:
Category-398:
Category-399:
Category-411.:
Category-417:
Category-429:
Category-438:
Category-452:
Category-465:
Category-485:
Category-557:
Category-569:
Category-712:
Category-713:
Category-714:
Category-715:
Category-716:
Category-717:
Category-718:
Category-719:
Category-720:
Category-721.:
Category-722:
Category-723:
Category-724:
Category-725:
Category-726:
Category-727:
Category-728:
Category-729:
Category-730:
Category-731.:
Category-735:
Category-736:
Category-737:
Category-738:
Category-739:
Category-740:
Category-741.:
Category-742:
Category-743:
Category-744:
Category-745:
Category-746:

Data NeULTaliZAtION ISSUES.c.uuii ittt ettt ettt e et e e st e e s nnteaesnbeee s 1899
N U a 1= ol o (=P RPPPP 1900
Information ManagemMENT EITOIS........iiiiiiiiii et e ettt e e e e e e e s e e e e e s sabae e e e e aanees 1900
TPK = AP ADUSE....ccciiiiteiee ettt e e e st e e e st e e e e e et e e e e e e e e e e e e taaes 1901
Often Misused: String ManagemENT..........cooiiuuiiiieiiiiiiie e e e e e s e e e e e e e saere e e e s s earaeeas 1902
TPK = SECUNLY FEAIUIES. .. ceiiiiiiiiiii e e ettt e et e e e et e e e e s e e e e e e st b e e e e e e aatbe e e e e s esaaeeas 1902
Credentials Management EITOIS..........oiiiiiiiiiei et e e e e e e s raaae e e e 1903
Permissions, Privileges, and ACCEeSS CONLIOIS........c.ccoiiiiiiiieiiiiiiiee et e e 1904
PrIVIIEE ISSUES.... ettt e e e e et e e e st e e e e e e saabreeeeeesntreaeeesannes 1904
PEIMISSION ISSUBS.......eeiieiitiee ittt ettt et et e e e sn bt e sab e e e e sbb e e e snbeeesneeeesnbeeean 1905
CryptographiC ISSUEBS.........uiiiiiiiiiiiee et e e e e s et e e e e et e e e e e eataee e e e s enanees 1906
KeY MaNAgEMENT EFTOIS. .. .uuuiiiiiiiiiiieieieie e ettt e et e et e e e aaaaaeeeeeeassasasnanensnenenenes 1907
USer INtErface SECUILY ISSUBS......iii ittt e e e e e e e e e st e e e e s earaeeas 1908
A SO 11T T o B - (T PP 1908
SHALE ISSUEBS. .. eiie ettt ettt ettt e e ookt e et e e s a et e e e e e bbb et e e e e nbr e e e e e na b er e e e e aan 1909
S (o F= U A4 o] £ PP USPRPPRNY 1909
4 5 SR =1 (o] 1= T O PP PPPPSPPPTRPPN 1910
Error Conditions, Return Values, Status COUES..........coiiiiiiiiiieiiiee e 1911
424 (G oo [C I @ U T 1) Y2 PSP P R OPRPR 1911
ReSOUrce ManagemeNt EFTOrS.........uuuuiiiiiiiiiiiiiiiiiiie e e e e e e e e e e s e e s s r e e e e aeaaaeaeaaaeananaaas 1912
Resource LOCKING ProbIEMS..........oiiiiiiiiiic ettt e 1913
Communication ChanNEl EITOTS.........ccuuii ittt e e b e e 1913
[L= TaTo | L Bty (o] T PRSPPI 1914
Behavioral ProbIEMS.oi et 1915
Initialization and Cleanup EITOIS..........oiiiiiiiiiiee et e s e 1915
POINEET ISSUBS. ...ttt ettt b e st e e s be e eab e e enbe e e ebbe e e snbeeeeneee s 1916
TPK = ENCAPSUIALION.cciiiiiiiiie ettt e e e e et e e e e e st e e e e s eabtr e e e e e aanaaeeeeaaas 1916
CONCUITENCY ISSUEBS. .. uuuutuiutiitiiieteieteetettteaeaaaeaaeaassssssa s aeases b ebbaaaereeretaaaeaeaeaeaaeessssssssanannsnsnenes 1917
EXPIESSION ISSUES.....ciiiiiiiiieee e ettt et e e e e ettt e e e et e e e e e e bbb e e e e e e st ta et eeesatbseeaeesanraaeeeessnnees 1918
OWASP Top Ten 2007 Category Al - Cross Site Scripting (XSS)......ccovvveeiiiiiieee e 1918
OWASP Top Ten 2007 Category A2 - Injection Flaws............ccccooeiviieee i 1919
OWASP Top Ten 2007 Category A3 - Malicious File EXeCUtiON...........cccceeeeeiiiiieeeeeiiiiience, 1919
OWASP Top Ten 2007 Category A4 - Insecure Direct Object Reference..........ccccccecevvvvnee... 1919
OWASP Top Ten 2007 Category A5 - Cross Site Request Forgery (CSRF).........cccccocvveee.. 1920
OWASP Top Ten 2007 Category A6 - Information Leakage and Improper Error Handling..... 1920
OWASP Top Ten 2007 Category A7 - Broken Authentication and Session Management....... 1921
OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage...........cccceveeeevivnennnn. 1921
OWASP Top Ten 2007 Category A9 - Insecure COmMmMUNICALIONS...........ccovvvvieeeeriiiireeeeesiinnns 1921
OWASP Top Ten 2007 Category A10 - Failure to Restrict URL ACCESS.........cccuvveeeeeiivreneennn. 1922
OWASP Top Ten 2004 Category Al - Unvalidated INPUL...........cceeeeiiiiiiee i 1922
OWASP Top Ten 2004 Category A2 - Broken Access Control.........c.ccccccvveveeeiiiiieeeeccsiiieennn, 1923
OWASP Top Ten 2004 Category A3 - Broken Authentication and Session Management....... 1924
OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) Flaws..........ccccccceevivvneeen. 1925
OWASP Top Ten 2004 Category A5 - Buffer OVerflows..........ccccecovvciiviiee i 1925
OWASP Top Ten 2004 Category A6 - Injection Flaws............ccccooevviieei i 1925
OWASP Top Ten 2004 Category A7 - Improper Error Handling...........ccccceeeeiiiiieeeeeciiiieneene 1926
OWASP Top Ten 2004 Category A8 - INSECUIe STOrage.........cooevviiurvrrirriiiiiiiiieieieieaeaeaaeaeeeens 1926
OWASP Top Ten 2004 Category A9 - Denial of SErViCe.........ccccvviveiiiiiiiiie e 1927
OWASP Top Ten 2004 Category A10 - Insecure Configuration Management........................ 1928
CERT C Secure Coding Standard (2008) Chapter 2 - Preprocessor (PRE)...........cccccccocuve... 1929
CERT C Secure Coding Standard (2008) Chapter 3 - Declarations and Initialization (DCL)... 1929
CERT C Secure Coding Standard (2008) Chapter 4 - Expressions (EXP).......cccccoccveveeeiinns 1930
CERT C Secure Coding Standard (2008) Chapter 5 - Integers (INT).....cccccveeeiviiveeeeeeccireeenen, 1930
CERT C Secure Coding Standard (2008) Chapter 6 - Floating Point (FLP)..............ccccvveee.. 1931
CERT C Secure Coding Standard (2008) Chapter 7 - Arrays (ARR).......c.cccoecvvvveeeeiiiiiiieeeeens 1932
CERT C Secure Coding Standard (2008) Chapter 8 - Characters and Strings (STR)............. 1933
CERT C Secure Coding Standard (2008) Chapter 9 - Memory Management (MEM)............. 1934
CERT C Secure Coding Standard (2008) Chapter 10 - Input Output (FIO)..........cccccvvieeennns 1935
CERT C Secure Coding Standard (2008) Chapter 11 - Environment (ENV).........ccccovveeeinns 1937
CERT C Secure Coding Standard (2008) Chapter 12 - Signals (SIG).........ccccoveeeeiiciiereeennnns 1937
CERT C Secure Coding Standard (2008) Chapter 13 - Error Handling (ERR).........c..cccvvee... 1938

XViii

CWE Version 4.2
Table of Contents

Category-747: CERT C Secure Coding Standard (2008) Chapter 14 - Miscellaneous (MSC)...............ccu...... 1939
Category-748: CERT C Secure Coding Standard (2008) Appendix - POSIX (POS)........ccccvvveeeiiiiiieeeeeiiinns 1939
Category-751: 2009 Top 25 - Insecure Interaction Between COMPONENTS..........c.ceeevivirieeeeiiiiiereeesiiiieeeee e 1940
Category-752: 2009 Top 25 - Risky Resource Management...........ccuvireeiiiiiiiereeeiiiieeee e s esitre e e e e s siraee e e e s eaveees 1941
Category-753: 2009 TOp 25 - POrOUS DEIENSES.......uiiiiiiiiiiiei ettt e e e e e sarae e e e 1941
Category-801: 2010 Top 25 - Insecure Interaction Between COMPONENTS...........ceeeviiiiieeeeiiiiiiereeesiiieeeeeeenans 1942
Category-802: 2010 Top 25 - Risky Resource Management...........ccuuuieeeiiiiriereeeiiiiieeee e s esinreee e e s saraeeeeesssnees 1943
Category-803: 2010 TOp 25 - POrOUS DEfENSES.......uiiiiiiiiiiiie ettt e e e e e e s arae e e e 1943
Category-808: 2010 Top 25 - Weaknesses On the CUSP......uuiiiiiiiiiiiie ettt e et e e st e e eianaea s 1944
Category-810: OWASP Top Ten 2010 Category Al - INJECHON.........cciiiiiiiiie et 1944
Category-811: OWASP Top Ten 2010 Category A2 - Cross-Site Scripting (XSS).....cccccveeviiiiieeie i 1945
Category-812: OWASP Top Ten 2010 Category A3 - Broken Authentication and Session Management....... 1945
Category-813: OWASP Top Ten 2010 Category A4 - Insecure Direct Object References...........cccccvveeeeiinnns 1946
Category-814: OWASP Top Ten 2010 Category A5 - Cross-Site Request Forgery(CSRF)...........ccccvvveeeeens 1946
Category-815: OWASP Top Ten 2010 Category A6 - Security Misconfiguration..............ccccoeevvieeeeeiiiiieneennn 1946
Category-816: OWASP Top Ten 2010 Category A7 - Insecure Cryptographic Storage...........ccccveeeevevvnnennn. 1947
Category-817: OWASP Top Ten 2010 Category A8 - Failure to Restrict URL ACCESS........ccccevvvuvvieeeeeinnnnnen. 1947
Category-818: OWASP Top Ten 2010 Category A9 - Insufficient Transport Layer Protection....................... 1948
Category-819: OWASP Top Ten 2010 Category A10 - Unvalidated Redirects and Forwards........................ 1948
Category-840: BUSINESS LOQIC EITOIS.......cciiiiiiieeeiciiiees e e ettt e e ettt e e e e et et e e e s et e e e e s e s b ta e e e e e s sabaeeeeesansaaeeaeas 1948
Category-845: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 2 - Input Validation and
Data SaNItiZAtION (IDS).....cc.uviiiieiiiiiii ettt e et et e e e e e e e e e e ab e e e e e e s bbb e e e e e s atbbeeeeeaaabareaeeaannaeeaeeaaare 1950
Category-846: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 3 - Declarations and

a1 ATz Vi o] o I 1 I T PP UPROPTP 1950

Category-847: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 4 - Expressions (EXP). 1951
Category-848: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 5 - Numeric Types and

OPEIAtIONS (NUM). ..ttt ettt e e et e e e e et e e e s e ab e e e e e e e saata e e e e e s atbaseeesaasaaaeeaeeaasntseeeeesantbaneaesaanes 1951
Category-849: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 6 - Object Orientation

(OBUI). e et 1952
Category-850: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 7 - Methods (MET)....... 1952
Category-851: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 8 - Exceptional Behavior
(ERR) .ottt 1953
Category-852: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 9 - Visibility and Atomicity
(VN ettt e e enen e 1954
Category-853: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 10 - Locking (LCK)....... 1954
Category-854: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 11 - Thread APIs

(T e ettt e et et e e e e e s et en oo enes 1955
Category-855: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 12 - Thread Pools

(TP Sttt 1955
Category-856: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 13 - Thread-Safety
MISCEIIANEOUS (TSM). . iiiiiiiie ittt ettt e et e e e e ettt e e e e e s eat b et e e e e e asaeaeeeeeesasbaeeeeeaassbaseeeeeasnsaeeeeessnsreneas 1956
Category-857: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 14 - Input Output

(F1O) e e ettt nenenes 1956
Category-858: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 15 - Serialization

(SER). ettt en e 1957
Category-859: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 16 - Platform Security
(SE D). ettt et n e 1957
Category-860: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 17 - Runtime Environment
(ENV). e ettt n et 1958
Category-861: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 18 - Miscellaneous

L5103 T PP 1958
Category-864: 2011 Top 25 - Insecure Interaction Between COMPONENTS..........c.ceeeviiiiieieeiiiiieeeeesiiiieeeeeeeans 1959
Category-865: 2011 Top 25 - Risky Resource Management...........ccuvieeeiiiiriereeeiiiieeee e s esinreee e e s saraee e e s s esnnees 1959
Category-866: 2011 TOp 25 - POrOUS DEIENSES.......ueiiiiiiiiiiei ettt e e e e e e e e sarae e e e 1960
Category-867: 2011 Top 25 - Weaknesses On the CUSP......uuiiiiiiiiiiie ettt e et e e eivaeea s 1960
Category-869: CERT C++ Secure Coding Section 01 - Preprocessor (PRE)........cccccccovviiiiiiee i 1961
Category-870: CERT C++ Secure Coding Section 02 - Declarations and Initialization (DCL).............ccc.c...... 1962
Category-871: CERT C++ Secure Coding Section 03 - EXpressions (EXP).........cccovceeeiiiiiieee e 1962
Category-872: CERT C++ Secure Coding Section 04 - Integers (INT).....uiviiiiiiieei e 1962
Category-873: CERT C++ Secure Coding Section 05 - Floating Point Arithmetic (FLP)..........c.ccoovvvieeeeninns 1963
Category-874: CERT C++ Secure Coding Section 06 - Arrays and the STL (ARR)........ccccecviiveeiiiiiiieneecinns 1963

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.2
Table of Contents

Category-875:
Category-876:
Category-877:
Category-878:
Category-879:
Category-880:
Category-881.:
Category-882:
Category-883:
Category-885:
Category-886:
Category-887:
Category-889:
Category-890:
Category-891.:
Category-892:
Category-893:
Category-894:
Category-895:
Category-896:
Category-897:
Category-898:
Category-899:
Category-901:
Category-902:
Category-903:
Category-904:
Category-905:
Category-906:
Category-907:
Category-929:
Category-930:
Category-931.:
Category-932:
Category-933:
Category-934:
Category-935:
Category-936:
Category-937:
Category-938:
Category-944:
Category-945:
Category-946:
Category-947:
Category-948:
Category-949:
Category-950:
Category-951.:
Category-952:
Category-953:
Category-954:
Category-955:
Category-956:
Category-957:
Category-958:
Category-959:
Category-960:
Category-961.:
Category-962:
Category-963:
Category-964:

CERT C++ Secure Coding Section 07 - Characters and Strings (STR).......ccccceevvvviveveeeeennnen. 1964
CERT C++ Secure Coding Section 08 - Memory Management (MEM).............c.cccovvveeeeennen. 1965
CERT C++ Secure Coding Section 09 - Input Output (FIO).........cccoviieeiiiiiiieeee e 1965
CERT C++ Secure Coding Section 10 - Environment (ENV).........cccccovviiiiee i 1966
CERT C++ Secure Coding Section 11 - Signals (SIG)......ccceeeiiiiiiiie e 1967
CERT C++ Secure Coding Section 12 - Exceptions and Error Handling (ERR)...................... 1967
CERT C++ Secure Coding Section 13 - Object Oriented Programming (OOP)...........c.......... 1968
CERT C++ Secure Coding Section 14 - Concurrency (CON)......ccoovviieeeeiiiiiiereeecciiieee e 1968
CERT C++ Secure Coding Section 49 - Miscellaneous (MSC).......cccccceevvviiieeeeeiiiiieeee e 1969
SFP Primary Cluster: RISKY ValUES..........cccuiiiieiiiiiiiie ettt e 1970
SFP Primary Cluster: Unused eNntitieS...........ccoiiiiuiiiiiieiiiiiiiee ettt a e snane e 1970
SFP Primary CIUSIEI: APttt e e e e et e e e st e e e e s e aaraeeaeesanees 1970
SFP Primary Cluster: EXception Management............uuieeiiiiiieeeeiiiiiiee e e s seirereeesesnnnee e e e s ssveeeas 1970
SFP Primary ClIUStEr: MEMOIY ACCESS.....ccccuueiiiieeiiiieee e e s ettt e e e e sitae e e e s e satre e e e e s stbaeaeeesansraaeeeas 1971
SFP Primary Cluster: Memory Management...........uuvieeiiiuiiiee e e i e eeiieee e e e st e e e e s savreeea s 1971
SFP Primary Cluster: Resource Management...........eeieeiiiiriieeeiiiiiieeeeeeciiree e e e seivree e e e e saeveeens 1971
SFP Primary Cluster: Path RESOIULION..........coooviiiiiii it 1972
SFP Primary Cluster: SYNChronization............c.vueiiiiiiiieiie et 1972
SFP Primary Cluster: INnformation LEaK.............cccuuiieiiiiiiiiiic et 1972
SFP Primary Cluster: Tainted INPUL..........ooeiiiiiiiiiee e e e s e stree e e e eeannes 1973
SFP Primary ClIuster: ENtry POINES.......cooiiiiiii ittt e eivane e 1973
SFP Primary Cluster: AUtNENtICAtION.cccviiiie it eearreee s 1973
SFP Primary Cluster: ACCESS CONIOL........ccuuiiieii i e e 1974
SFP Primary CIUSEr: PriVIIEgE. ...ttt 1974
SFP Primary CIUSter: ChanNel..........c.uviiiiiiiiiiie ettt 1975
SFP Primary Cluster: Cryptography......c.ueeieeiiiiiiie ettt e e e st e e e e e saare e e e e s ennes 1975
SFP Primary CIUSIEr: MAIWAIE........cccoiiiuiiiiie ettt e e e s e e e e e st e e e e e s anees 1975
SFP Primary Cluster: Predictability............ccouiiiiiiiiicc e 1976
SFP Primary CIUSIEI: Uluuiiiii ettt e e st e e e e s et r e e e e e eataeeaaeaan 1976
SFP Primary ClIUSIEr: Other......cccoiiiiiiiie et e e s e e 1976
OWASP Top Ten 2013 Category AL - INJECHON.........ciieiiiiiiiie e e 1977
OWASP Top Ten 2013 Category A2 - Broken Authentication and Session Management....... 1977
OWASP Top Ten 2013 Category A3 - Cross-Site Scripting (XSS).......ccovvvevveeiiiiiieiee e, 1978
OWASP Top Ten 2013 Category A4 - Insecure Direct Object References..........ccccceeeevunnee.. 1978
OWASP Top Ten 2013 Category A5 - Security Misconfiguration..............ccccceeeeviiieeeeesinnneen. 1979
OWASP Top Ten 2013 Category A6 - Sensitive Data EXPOSUIE..........cccoevvuviereeeiiiivereeeeeennnn, 1979
OWASP Top Ten 2013 Category A7 - Missing Function Level Access Control...................... 1980
OWASP Top Ten 2013 Category A8 - Cross-Site Request Forgery (CSRF)........ccccovveeeeiinne 1980
OWASP Top Ten 2013 Category A9 - Using Components with Known Vulnerabilities........... 1980
OWASP Top Ten 2013 Category A10 - Unvalidated Redirects and Forwards........................ 1981
SFP Secondary Cluster: ACCESS ManNagemMENt..........cciieiiiiiiiieeiiiiiiee e ciieee e e e esiarr e e e e e saraeeeas 1981
SFP Secondary Cluster: INSECUre RESOUICE ACCESS.......uuiieiiiireieeeiiiieieeeeesiiieeeeessiireeeeesanns 1981
SFP Secondary Cluster: Insecure Resource PermisSions.........c.cooovuveeeeeiiiiiereeeieiieeeee s e 1982
SFP Secondary Cluster: Authentication BYPasS........cccouiiiiiiiieiiiiiiiiee e 1982
SFP Secondary Cluster: Digital CertifiCate............ccuveiieiiiiiiiee e 1983
SFP Secondary Cluster: Faulty Endpoint Authentication..............cccocciveiiiiiiiiee e 1983
SFP Secondary Cluster: Hardcoded Sensitive Data.........c.ccccccvveieeeiiiiiiieee e 1984
SFP Secondary Cluster: Insecure Authentication PoliCy............cccccveeiiiiiiiee e, 1984
SFP Secondary Cluster: Missing AUthentiCation..............cccvviieiiiiiiiee e 1984
SFP Secondary Cluster: Missing Endpoint Authentication.............ccccoocviiie i 1985
SFP Secondary Cluster: Multiple Binds to the Same Port..........c.ccoccviieii i 1985
SFP Secondary Cluster: Unrestricted Authentication..............cceeevviiiieee i, 1985
SFP Secondary Cluster: Channel AHACK............ccvuiiiiiiiiiiiec e 1985
SFP Secondary Cluster: ProtOCOI EITOr..........uveiiiiiiiiiiee ettt e e eavnae s 1986
SFP Secondary Cluster: Broken Cryptography.......ccc.eviiiiiiiiieei i 1986
SFP Secondary Cluster: Weak Cryptography........c.ccoociviiiiiiiiiieicc e 1986
SFP Secondary Cluster: Ambiguous EXCEPtioN TYPE......ceieiiiiiiiiieeiiiiiiiee e esiieee e e ssireee e 1987
SFP Secondary Cluster: Incorrect Exception BEhavior...........c.ceeeiiiiiiieeciiiiiiecc e 1987
SFP Secondary Cluster: Unchecked Status Condition............cceeveeiiiiiiiieeciiiiiieee e 1988
SFP Secondary Cluster: EXPOSEA Datal..........c.vveiieiiiiiiiieeiiiiiiiee et esiree et e e 1988
SFP Secondary Cluster: Exposure Temporary File..........ccoouiiieiiiiiiiiiiice et 1990

XX

CWE Version 4.2
Table of Contents

Category-965: SFP Secondary Cluster: Insecure Session Management...........cccoccvvieeeeiiiiieeeeessiiveeeee s s 1991
Category-966: SFP Secondary Cluster: Other EXPOSUIES.........ccciiiiuiiiieiiiiiiiee ettt e e e 1991
Category-967: SFP Secondary Cluster: State DiSCIOSUIE...........ccuviiieiiiiiiiee e ee e 1991
Category-968: SFP Secondary Cluster: Covert Channel............ccooiiiiiiii i 1992
Category-969: SFP Secondary Cluster: Faulty Memory Release...........cooovvveiieiiiiiiiiie et 1992
Category-970: SFP Secondary Cluster: Faulty BUffer ACCESS........ccoiiiuiiiiiiiiiiiie et 1993
Category-971: SFP Secondary Cluster: Faulty POINter USE............ccoiiiiiiiiiiiiiiiiie et 1993
Category-972: SFP Secondary Cluster: Faulty String EXPanSion............coovvviiieiiiiiiieree et 1993
Category-973: SFP Secondary Cluster: Improper NULL Termination............cccovveeiiiiiiiies e i eeiveeee e 1994
Category-974: SFP Secondary Cluster: Incorrect Buffer Length Computation............cccccoovviviieeeeiiiineee e 1994
Category-975: SFP Secondary Cluster: ArChitECIUIE...........cociiiiiiiei e e e e e e e e s sanes 1994
Category-976: SFP Secondary ClIUster: COMPIIEL..........oviiiiiiiiiiie et e e 1995
Category-977: SFP Secondary CIUSIEr: DESIGN......uuuiiiiiiiiiee ettt e e e s e e e e e e s araaeaeeaaas 1995
Category-978: SFP Secondary Cluster: IMplementation.............c.coiiiiiirie i e 1996
Category-979: SFP Secondary Cluster: Failed Chroot Jail............ccceooiiiiiiiiiei i 1996
Category-980: SFP Secondary Cluster: Link in Resource Name Resolution............cccccovcivieeeciiiiiiee e 1996
Category-981: SFP Secondary Cluster: Path Traversal...........ccccceeiiiiiiiii et 1997
Category-982: SFP Secondary Cluster: Failure to Release REeSOUICE...........cccceovvvviiieiiiiiiiee e 1998
Category-983: SFP Secondary Cluster: Faulty RESOUICE USE........cccuvieiiiiiiiiiiie ettt 1998
Category-984: SFP Secondary CIUSter: Life CYCIE........cciiiiiiiieiiiiiii et 1999
Category-985: SFP Secondary Cluster: Unrestricted CONSUMPLION.ccccvviiieeiiiiiiie e ee e e eiveees 1999
Category-986: SFP Secondary Cluster: MiSSING LOCK...........ccoiiiiiiiiiiiiiiiiie s 1999
Category-987: SFP Secondary Cluster: Multiple LOCKS/UNIOCKS..............occoiiiiiiiieiiiiiiiic e 2000
Category-988: SFP Secondary Cluster: Race Condition WINAOW.............cccciuiiieeiiiiiiiiie e 2000
Category-989: SFP Secondary Cluster: UnresStricted LOCK..........cooiuiiiieiiiiiiiee e 2001
Category-990: SFP Secondary Cluster: Tainted Input to COmMMand............ccccveeeiiiiiieie e 2001
Category-991: SFP Secondary Cluster: Tainted Input to ENVIFONMENt...........ccooiiiiiieiiiiiiieee e 2003
Category-992: SFP Secondary Cluster: Faulty Input Transformation.............ccccccvvveei i 2004
Category-993: SFP Secondary Cluster: Incorrect Input Handling...........ccccveeiiiiiiiiiic i 2004
Category-994: SFP Secondary Cluster: Tainted Input to Variable.............cccvevieiiiiiiiii e 2005
Category-995: SFP Secondary ClIUSIEI: FEATUIE..........uviiie ittt e e e e e e e e e e e e snaaeeeas 2005
Category-996: SFP Secondary CIUSIEI: SECUILY.......uuiiiiiiiiiiiiee e eeiieee e ettt e s et e e e e s e e e e s etra e e e e s senbraeeaeas 2006
Category-997: SFP Secondary Cluster: INfOrmation LOSS..........coiiiiiiiieiiiiiiiiee e e 2006
Category-998: SFP Secondary Cluster: Glitch in COMPULALION...........cccvviiieiiiiiiiee e 2006
Category-1001: SFP Secondary Cluster: Use of an Improper APl.........ccviiii i 2007
Category-1002: SFP Secondary Cluster: Unexpected Entry POINtS.........cceeieiiiiiiiii e 2008
Category-1005: 7PK - Input Validation and Representation...........cccccccvieeieiiiiiiiiie e e esiiee e e siiree e e e 2009
Category-1006: Bad CodiNG PraCliCES........uuuiiiiiiiiieii e e ieitiiiee e e e ettt e e e s et e e e s et r e e e e e st e e e e e s saabeeeeessatrareaesannes 2009
(0 11=To (o] V2N (0101 AN E T [SO PSPOOUPPP 2011
Category-1010: AUTNENTICAIE ACIOTS.......cci ettt e e e e s e e e e et e e e e e st e e e e e s sntbreeeeeeasaraaeaeeaaas 2012
(0 11=To (o] Y2l (0) B I XU g To) (A= I Y1 (0] £ PP PRPOPP 2013
Category-1012: CroSS CULING.......cuuiiieiiiiiriee e e e sttt e e e s e e e e e e st e e e e s s iatr e e e e e s stbreteeesatbaseaeeaasasseeaeesanssaeeeessanses 2015
Category-1013: ENCIYPE DALA......cccuuiriiiiiiiiiiitiieeerete e et e e e e e e e e e s s ssss s s eb b s s e e e e reteaaaaeaaeaeaeaeeesssssssasasssnsssssnsnns 2016
(0= 1=To [0 oYl 0 I S o =T |11 VA (0 £ TP PUOOUPPSPPOS 2017
(0= 11=To To] Y2l 0 RS T I 4 1) AN oo =T P PUPRSPPRP 2018
Category-1016: LIMIt EXPOSUIE.......uueiieiiiiiiieeee ittt e e e s ettae e e e e eeabaeeaeeasatreeeeaasatbaeeeessastbaseaesaasssseeeesansseeeeessanses 2019
Category-1017: LOCK COMPULET......oiiiiiiiiiiee e ettt et e et e e e e et e e e e s et e e e e e s eabb e e e e e s e asbabeeeessaatbaeeeessnsreeas 2019
Category-1018: Manage USEI SESSIONS.....c..cciiuiiiieeiiiiiiieeeeiiite e e e e e sitre e e e e s st aeteeesassbaaeaeesaiatbeeeeessnsbaeeaessansreees 2020
Category-1019: Validate INPULS..........oiiiiiiiiiie ettt e e e ee e e e e e et e e e e e s stb e et e e e sabbaseaeesasbsseeaeeassbeeeeessanses 2020
Category-1020: Verify MeSSage INtEOIITY......ccciiiiiiiiie it e e e e e e e e e s e er e e e e s e staeeeeessnees 2022
Category-1027: OWASP Top Ten 2017 Category AL - INJECHON........ccoiiiiieee it 2023
Category-1028: OWASP Top Ten 2017 Category A2 - Broken Authentication..............cccccveeeeiiiiieee e, 2023
Category-1029: OWASP Top Ten 2017 Category A3 - Sensitive Data EXPOSUIe..........cccoevivvveeeeeiiiviereesiinnns 2024
Category-1030: OWASP Top Ten 2017 Category A4 - XML External Entities (XXE)........ccccceveeviiiiiireeesiiinnen. 2024
Category-1031: OWASP Top Ten 2017 Category A5 - Broken Access CONtrol...........cccccvvvvvieeeeiiiiieeeeeeinns 2025
Category-1032: OWASP Top Ten 2017 Category A6 - Security Misconfiguration.............ccccccveveeeiiiiininee e, 2025
Category-1033: OWASP Top Ten 2017 Category A7 - Cross-Site Scripting (XSS).....cceeeivviiiieeeiiiiiieneesiiins 2026
Category-1034: OWASP Top Ten 2017 Category A8 - Insecure Deserialization...............ccccveeeeiiiiiieneeeiinns 2026
Category-1035: OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities......... 2026
Category-1036: OWASP Top Ten 2017 Category A10 - Insufficient Logging & Monitoring.............c.cccecvvvee... 2027
Category-1129: CISQ Quality Measures - Reliability..........c..oooiiiiiiiiii e 2027

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.2
Table of Contents

Category-1130: CISQ Quality Measures - Maintainability............ccccceeiiiiiiiie e 2028
Category-1131: CISQ Quality MEASUIES = SECUNLY......ccciiiiiiiee i it ee e ettt e e e e et e e e e e sarr e e e e s eabaeaae s 2029
Category-1132: CISQ Quality Measures - PerfOrmManCe............ueiiiiiiiiiii ettt 2030
Category-1134: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data
SF-Tal1ir4= e (o A I (] DS PO PSPPI 2031
Category-1135: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 01. Declarations and

a1 E 1Tz Vi To] o I 1 I T PP UPROPTIP 2032

Category-1136: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 02. Expressions (EXP)....2032
Category-1137: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 03. Numeric Types and

OPEIAtIONS (NUM). ..ttt ettt e e et e e e e et e e e s e ab e e e e e e e saata e e e e e s atbaseeesaasaaaeeaeeaasntseeeeesantbaneaesaanes 2033
Category-1138: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 04. Characters and Strings
LI TSSOSO USSP 2033
Category-1139: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 05. Object Orientation

(@]) T RPN 2034

Category-1140: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET)......... 2035
Category-1141: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior

(ERR) .ottt eaens 2035
Category-1142: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity

LT TSRS 2036
Category-1143: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 09. Locking (LCK)........... 2036

Category-1144: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 10. Thread APIs (THI).....2037
Category-1145: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 11. Thread Pools (TPS).. 2037
Category-1146: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 12. Thread-Safety
MISCEIIANEOUS (TSM)....iiiiiiiie ittt e et e e e e st e e e e e s at b et e e e e e asaebeee e e e st baeeeeesassbaseeesaasntseeeeessnsreneas 2038
Category-1147: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO).....2038
Category-1148: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER)....2039
Category-1149: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 15. Platform Security

] L0 TSRS 2039
Category-1150: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 16. Runtime Environment
(ENV). e e ettt en e 2040
Category-1151: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 17. Java Native Interface

(TN ettt n et 2040
Category-1152: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous

53 USRS 2041
Category-1153: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 50. Android (DRD).......... 2041
Category-1155: SEI CERT C Coding Standard - Guidelines 01. Preprocessor (PRE).........cccccccevvvveeeeeninnns 2042
Category-1156: SEI CERT C Coding Standard - Guidelines 02. Declarations and Initialization (DCL)........... 2042
Category-1157: SEI CERT C Coding Standard - Guidelines 03. Expressions (EXP)..........cccccovvveeiiiiiiieeeeennns 2043
Category-1158: SEI CERT C Coding Standard - Guidelines 04. Integers (INT).......ccccceeeiiiiiieeeeeiiiieeee e 2043
Category-1159: SEI CERT C Coding Standard - Guidelines 05. Floating Point (FLP).........cccccccovviiieeeeiiin, 2044
Category-1160: SEI CERT C Coding Standard - Guidelines 06. Arrays (ARR).........ccccovviiiiieeeeiiiiieee e 2045
Category-1161: SEI CERT C Coding Standard - Guidelines 07. Characters and Strings (STR)...........cc....... 2045
Category-1162: SEI CERT C Coding Standard - Guidelines 08. Memory Management (MEM)..................... 2046
Category-1163: SEI CERT C Coding Standard - Guidelines 09. Input Output (FIO).......cccccveeeviiiiiiereeeiiiiene. 2047
Category-1165: SEI CERT C Coding Standard - Guidelines 10. Environment (ENV).........ccccccovvivieeeeiinnnen. 2047
Category-1166: SEI CERT C Coding Standard - Guidelines 11. Signals (SIG).........cccccoviiieeiiiiiiiieee e, 2048
Category-1167: SEI CERT C Coding Standard - Guidelines 12. Error Handling (ERR)..........cccccooviviiiieninn, 2048
Category-1168: SEI CERT C Coding Standard - Guidelines 13. Application Programming Interfaces (API).. 2049
Category-1169: SEI CERT C Coding Standard - Guidelines 14. Concurrency (CON)........cccccccevviivieeeesiinnneen. 2049
Category-1170: SEI CERT C Coding Standard - Guidelines 48. Miscellaneous (MSC).........cccccceevviiviveeeninns 2050
Category-1171: SEI CERT C Coding Standard - Guidelines 50. POSIX (POS).......ccccciiiieeiiiiiiieeeesiiiieeeeene 2051
Category-1172: SEI CERT C Coding Standard - Guidelines 51. Microsoft Windows (WIN)ccccceeuneee. 2051

Category-1175: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 18. Concurrency (CON).. 2052
Category-1179: SEI CERT Perl Coding Standard - Guidelines 01. Input Validation and Data Sanitization

(10 TSP 2052
Category-1180: SEI CERT Perl Coding Standard - Guidelines 02. Declarations and Initialization (DCL)....... 2052
Category-1181: SEI CERT Perl Coding Standard - Guidelines 03. Expressions (EXP).........ccccoccvveeviivvnnennn. 2053
Category-1182: SEI CERT Perl Coding Standard - Guidelines 04. Integers (INT)......cccceeeiiiiieeeeeiiiiiiieee e, 2053
Category-1183: SEI CERT Perl Coding Standard - Guidelines 05. Strings (STR)......ccccovviiiieeiiiiiieeee e 2054
Category-1184: SEI CERT Perl Coding Standard - Guidelines 06. Object-Oriented Programming (OOP)..... 2054
Category-1185: SEI CERT Perl Coding Standard - Guidelines 07. File Input and Output (FIO)..................... 2054

XXii

CWE Version 4.2
Table of Contents

Category-1186: SEI CERT Perl Coding Standard - Guidelines 50. Miscellaneous (MSC)............ccccveveeeinis 2055
Category-1195: Manufacturing and Life Cycle Management CONCEIMS...........ccoccurieeeeiiiiieeeeesiiieeeeeeseivaeeaens 2055
Category-1196: SECUNLY FIOW ISSUES........ciiiiiiiee ittt e et e e e et e e e st e e e e e s ta e e e e e s saba e e e e e satraaeaeas 2056
Category-1197: INTEQIratiON ISSUEBS........c.uuiiieeiiiiiiee e e ettt e e e et e e e e et e e e e e st e e e e e s s tb e e e e e e sastbaeeaeeesntreeeeesssbeeeas 2056
Category-1198: Privilege Separation and AcCess CONtrol ISSUES.........cccuuieiiiiiiiiiiie et 2056
Category-1199: General Circuit and LogiC DeSIigN CONCEIMNS.........cciiiiiiieeeiiiiiiee e e e ciiier e e e s eeirre e e e e e sarre e e e e seaees 2057
Category-1201: Core and COMPULE ISSUES......uiiiiiiiiiiiee e e ittt e e e eeite e e e e e s st e e e e s s et e e e e e esata e e e e e s sasaaeeeessansanaeaeas 2058
Category-1202: Memory and StOrAQgE ISSUES.......uuiiiiiiiiiieeeeiiitiee e e e st e e e e s st e e e s s stb e e e e e satreeeeessabaeeeeesansrees 2058
Category-1203: Peripherals, On-chip Fabric, and Interface/lO Problems............cccoocveeiiiiiiee i, 2059
Category-1205: Security Primitives and Cryptography ISSUES..........ccccoiiiiiiiiiiiiiiiiiie et 2059
Category-1206: Power, Clock, and ReSEt CONCEIMS...........ueiiiiiiiiiiie et ecee e e e e e e aaae e e e e saareeee e 2059
Category-1207: Debug and Test ProbIEmMS..........coiiiiiiiii et e e s eae e 2060
Category-1208: Cross-Cutting ProbIemS..........ooouiiiii i e e e e st e e e e e eanes 2060
Category-1210: AUdit / LOGQING EITOIS......ciiiiiiiiiiee it e ettt e e e et e e e e st e e e e s et e e e e e e aabb e e e e e s sntaeeeeesesnnees 2061
Category-1211: AUTHENTICAION EITOIS........ccuiiiee e i ittt e et e e e e e e e e s st e e e e e s s b e e e e e e sntbeeaeesssraeaeaean 2061
Category-1212: AUTNOMZAION EFTOIS.......c..uviii ettt e e e e e e e e et e e e e e e et e e e e e e ssarreeeeesstbaeeeeeaanes 2062
Category-1213: Random NUMDET ISSUES...........uiiiiiiiiiiiie e e ittt e ettt e e e e st e e e e s et e e e e s e bb e e e e s e aatreeaeesennraeeas 2062
Category-1214: Data INTEQIILY ISSUES.......uuiii i it e ettt e e e e et e e e e e s e e e e e e s saaba e e e e s santbaeeaeeaannnees 2063
Category-1215: Data Validation ISSUES.ccciuuiiiieeiiiiiit e ettt e ettt e e e st e e e e e s et e e e e s e sata e e e e e s satbaeeeeesnnsaees 2063
Category-1216: LoCKOUt MECNANISIM EITOIS......ciiiiiiiiiie ettt e e e e e e et e e e s et ae e e e e e e araaeaeas 2064
Category-1217: USEIr SESSION EFTOIS......ccuviiie i ittt e ettt e ettt e e e e et e e e e e st e e e e s eetbaaeeeesasabbeeeeessnatbeseaesaanes 2064
Category-1218: MemOTY BUIEr EITOIS.....c..ciiiiiiiie ettt e st e st e e e e e e e e e e s et e e e e e s snraeeas 2065
Category-1219: File HandliNG ISSUES.......cuiiiiiiiiiiee ettt ettt e e e st e e st e e e s e e bt b e e e e e s satae e e e e s ananes 2065
Category-1225: DOCUMENTALION ISSUEBS.........uuuiiiiiiiiiiieeeeeiiie et e e s et e e e e et e e e e e st e e e e e s setar e e e e e e e snarreeeesssntbaeeaesan 2066
Category-1226: COMPIEXITY ISSUES......iiiiiiiiiiiie ettt e s e e s et e e e e s et b e e e e e st e reeesestbraeeaesasaaaaeeeeaans 2066
Category-1227: ENCAPSUIALION ISSUES........cciuiiiiie ettt e e ettt e e e ettt e e et e e e e e s e e e e e et a e e e e e s stbaeeeessensraeeaeas 2067
Category-1228: API [FUNCHON EITOIS.....ccciiiiiiite e e iciete e e eeitte e e e e ettt e e e s et e e e e e e st e e e e e e sata e e e e e s stbaeeeessansreaeaeas 2067
Category-1237: SFP Primary Cluster: Faulty Resource Release............ccccuveeieeiiiiiiiic et 2068
Category-1238: SFP Primary Cluster: Failure to Release MemOry.........ccceeeiiiiiieiiec i e 2068
Category-1306: CISQ Quality Measures - Reliability.............oooiiiiiiiii e 2068
Category-1307: CISQ Quality Measures - Maintainability.............ccccoeiiiiiiiii e 2070
Category-1308: CISQ Quality MEASUIES = SECUNLY......ccciiiiiiieei it e e e ettt e e e e e s st e e e e e s e e e e e s earaeeee s 2071
Category-1309: CISQ Quality Measures - EffiCiENCY........ccuuiiiiiiiiii e 2072
CWE Views

ViIieW-604; DEPIECAIEU ENMIIES.cciiiiiiii e ettt e e e e et e e e et e e e e e et e e e e e s sasbaeeeaeesssataeeeeesantbeeeaenan 2073
View-629: Weaknesses in OWASP TOP TN (2007)......uuuiiieeiiiieieeeeieiiiiee e eeiire e e e s esivaee e e e s ssiaaeeae e s snataeeeaesenns 2073
View-635: Weaknesses Originally Used by NVD from 2008 t0 2016.........cccccuvviieeiiiiiiiieeeiiiiiieeeeesiiveee e e 2074
View-658: Weaknesses in Software WHEN iN C.......ocuiviiiiiiiiiieeiiee et n 2075
View-659: Weaknesses in Software WHEN iN CHt... .ottt 2076
View-660: Weaknesses in Software WItEN IN JAVA........c.cooruiieiiiieeiiie ettt sbe e 2076
View-661: Weaknesses in Software WHten in PHP ... 2077
View-677: Weakness Base EIEMENTS..........iiiiiiiiiiie ettt st e ettt e et e e snbe e e sneeesnnnee s 2077
VIBW-B78: COMPOSITES. ...t iittiiieeiiiite et e e sttt e e e et e e e e e et e et e e e s et b et eeeeaasaaseeaeeassssaeeeessastbaseeeesasseseeaeessnsteneeesaanses 2077
View-699:; SOftware DEVEIOPIMENL..........coiiiiiie ettt e e e e e e e s sttt e e e e s bbae e e e e e satbeeeeessanrraeeaeaaans 2078
View-700: Seven Pernicious KiNGUOMS.c.uiiiii ittt e st e e e e et r e e e e e snaaa e e e e e s eanraeeas 2079
View-701: Weaknesses Introduced DUrNG DeSIGN..........uuviiiiiiiiiiiie ettt e e s e e e e e e s saaae e e e e aaees 2080
View-702: Weaknesses Introduced During Implementation.............ccouveieiiiiiieiee e 2081
VIEW-709: NAMEA CRAINS.uiiiiiiie ettt ettt et bt e e sttt e s bt e e e et b e e e sabeeeabaeeeasbeeesnbaeesanbeeeanbeeenas 2081
View-711: Weaknesses in OWASP TOp TN (2004)........ueiiiiiiiiiiiee e iiiieiee e eciiree e etraee e s aitaae e e e e s sstvaeeaesennns 2082
View-734: Weaknesses Addressed by the CERT C Secure Coding Standard (2008)...........cccceovcvvieeeeevinnnee. 2083
View-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors................... 2084
View-800: Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors................... 2085
View-809: Weaknesses in OWASP Top TeN (2010).......uuiiiiiiiiiiiiee e e ettt seivaee e e s esirre e e e e s snnaveeeaesenns 2086
View-844: Weaknesses Addressed by The CERT Oracle Secure Coding Standard for Java (2011)............. 2087
View-868: Weaknesses Addressed by the SEI CERT C++ Coding Standard (2016 Version).............ccue...... 2089
VIEW-884: CWE CrOSS-SECHON.ceittiiiiitiieiieie i ittee e ettt e sttee sttt e sttt e s sbae e e s abeeeateee s asteeesnbeeeabbeeesabeeesbeeeeasbeeennes 2090
View-888: Software Fault Pattern (SFP) CIUSIEIS..........ciiiiiiiiiie ettt e e e et 2094
View-900: Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors.............c.cccvveeee.. 2095
View-919: Weaknesses in Mobile APPlICALIONS............coiiiiiiiiiiiiiiee et e e e e e e s rarre e e e 2096
View-928: Weaknesses in OWASP TOP TN (2013)......uuiiiiiiiiiiiiiee e cciiiiee e et e e s etvaee e e e e et e e e e s ssataaeeaesenes 2096

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.2
Table of Contents

View-999: Weaknesses without Software Fault Patterns............cccoiieiiiiiii e 2098
View-1000: RESEAICH CONCEPLS. .. cciiiiiiiiiie ettt e et e e e e et e e e e e s et e e e e e s sasba e e e e e s estnsreeeeesnnsraneas 2098
View-1003: Weaknesses for Simplified Mapping of Published Vulnerabilities................cccoveeiiiiiiierc e, 2099
View-1008: ArChiteCtUral CONCEPLS. .. .uuiiie ittt ettt et e e e e et e e e e e st e e e e e e s et b aeeeeseasaraeeaesesataeeaeeaas 2101
View-1026: Weaknesses in OWASP TOP TN (2017)....uuiieiiiiiiiiee et eetet e e et e e s et e e e e s anaanee e e e e e 2102
View-1040: Quality Weaknesses with Indirect Security IMpPactS..........ccceeeiviiiiiiie i 2103
View-1128: CISQ Quality MEasSUres (2016).........cuieiiiiiiieieeiiiiiiee e e eeiite e e e e s sree e e e e seibe e e e e s esatae e e e e s saraeeeessnasrees 2104
View-1133: Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java.............cccceeeeennnns 2104
View-1154: Weaknesses Addressed by the SEI CERT C Coding Standard............cccccceeeiiiiiieeeciiiiiieeee e 2106
View-1178: Weaknesses Addressed by the SEI CERT Perl Coding Standard............ccccooevvvveeeeiiiiiere e, 2108
ViIiEeW-1194: HArdWare DESIQN........ccciuuiiieeeiiiiiit e e e eiitite e e e e e st e e e e e e et e e e e e e e tber e e e e e asatbaeeaessasbaaeeaesaasssneeeessstbeneaanan 2109
View-1200: Weaknesses in the 2019 CWE Top 25 Most Dangerous Software Errors.........ccccceeeevvveeeeeninns 2110
View-1305: CISQ Quality Measures (2020).........cceeuiiiiiiieeeiiiieiee e eeiiee e e e e s st e e e e s esiber e e e s esaeaeeaeesstbaeeeessasreees 2111
View-1350: Weaknesses in the 2020 CWE Top 25 Most Dangerous Software Weaknesses...........ccccveeeenn. 2112
View-2000: Comprehensive CWE DICHONAIY..........ueiiiiiiiiiiee et e e ettt e e e e srivee e e e s seiaar e e e e e ssanaaeaeessnntaeeeaesannes 2113

Appendix A: Graph Views

XXiV

CWE Version 4.2
Symbols Used in CWE

Symbols

Symbol Meaning
View
Category

Weakness - Class
Weakness - Base
Weakness - Variant

Compound Element - Composite

Compound Element - Named Chain
Deprecated

s GRS

XXV

3IMD Ul pasn s|oquis

CWE Version 4.2

XXVi

CWE Version 4.2
CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption

Weaknesses

CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption

Weakness ID : 5 Status: Draft
Structure : Simple
Abstraction : Variant

Description

Information sent over a network can be compromised while in transit. An attacker may be able to
read or modify the contents if the data are sent in plaintext or are weakly encrypted.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 319 Cleartext Transmission of Sensitive Information 711

Applicable Platforms
Language : Java (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Integrity Modify Application Data

Potential Mitigations
Phase: System Configuration

The application configuration should ensure that SSL or an encryption mechanism of equivalent
strength and vetted reputation is used for all access-controlled pages.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 1896
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure 711 1928
Configuration Management
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 1988
Notes
Other

If an application uses SSL to guarantee confidential communication with client browsers, the
application configuration should make it impossible to view any access controlled page without
SSL. There are three common ways for SSL to be bypassed: A user manually enters URL and
types "HTTP" rather than "HTTPS". Attackers intentionally send a user to an insecure URL.

A programmer erroneously creates a relative link to a page in the application, which does not

uondAi1oug InoylM uoIsSIwSUeRL] Bleq :uoleInBiyuosIA IIZC S-IMD

CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

CWE Version 4.2
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

switch from HTTP to HTTPS. (This is particularly easy to do when the link moves between public
and secured areas on a web site.)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Insecure
Transport
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

Weakness ID : 6 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description
The J2EE application is configured to use an insufficient session ID length.
Extended Description

If an attacker can guess or steal a session ID, then they may be able to take over the user's
session (called session hijacking). The number of possible session IDs increases with increased
session ID length, making it more difficult to guess or steal a session ID.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf E] 334 Small Space of Random Values 747
Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1018 Manage User Sessions 2020

Applicable Platforms
Language : Java (Prevalence = Undetermined)

Background Details
Session ID's can be used to identify communicating parties in a web environment.

The expected number of seconds required to guess a valid session identifier is given by the
equation: (2"B+1)/(2*A*S) Where: - B is the number of bits of entropy in the session identifier. -

A is the number of guesses an attacker can try each second. - S is the number of valid session
identifiers that are valid and available to be guessed at any given time. The number of bits of
entropy in the session identifier is always less than the total number of bits in the session identifier.
For example, if session identifiers were provided in ascending order, there would be close to zero

CWE Version 4.2
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

bits of entropy in the session identifier no matter the identifier's length. Assuming that the session
identifiers are being generated using a good source of random numbers, we will estimate the
number of bits of entropy in a session identifier to be half the total number of bits in the session
identifier. For realistic identifier lengths this is possible, though perhaps optimistic.

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Ildentity

If an attacker can guess an authenticated user's session
identifier, they can take over the user's session.

Potential Mitigations
Phase: Implementation

Session identifiers should be at least 128 bits long to prevent brute-force session guessing. A
shorter session identifier leaves the application open to brute-force session guessing attacks.

Phase: Implementation

A lower bound on the number of valid session identifiers that are available to be guessed is the
number of users that are active on a site at any given moment. However, any users that abandon
their sessions without logging out will increase this number. (This is one of many good reasons to
have a short inactive session timeout.) With a 64 bit session identifier, assume 32 bits of entropy.
For a large web site, assume that the attacker can try 1,000 guesses per second and that there
are 10,000 valid session identifiers at any given moment. Given these assumptions, the expected
time for an attacker to successfully guess a valid session identifier is less than 4 minutes. Now
assume a 128 bit session identifier that provides 64 bits of entropy. With a very large web site, an
attacker might try 10,000 guesses per second with 100,000 valid session identifiers available to
be guessed. Given these assumptions, the expected time for an attacker to successfully guess a
valid session identifier is greater than 292 years.

Demonstrative Examples
Example 1:

The following XML example code is a deployment descriptor for a Java web application deployed
on a Sun Java Application Server. This deployment descriptor includes a session configuration
property for configuring the session ID length.

Example Language: XML (bad)
<sun-web-app>

<session-config>
<session-properties>

ngn

<description>The number of bytes in this web module's session ID.</description>
</property>
</session-properties>
</session-config>

</sun-web-app>

This deployment descriptor has set the session ID length for this Java web application to 8 bytes
(or 64 bits). The session ID length for Java web applications should be set to 16 bytes (128 bits) to
prevent attackers from guessing and/or stealing a session ID and taking over a user's session.

Note for most application servers including the Sun Java Application Server the session ID length is
by default set to 128 bits and should not be changed. And for many application servers the session
ID length cannot be changed from this default setting. Check your application server documentation

y1Bua QI-uoISSas JUBIDIHNSU| (UOIRINBIFUOISIN IT2ZC :9-IMD

CWE Version 4.2
CWE-7: J2EE Misconfiguration: Missing Custom Error Page

for the session ID length default setting and configuration options to ensure that the session 1D
length is set to 128 bits.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 1896
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure 711 1928

Configuration Management
MemberOf 965 SFP Secondary Cluster: Insecure Session Management 888 1991

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Insufficient
Session-ID Length

Related Attack Patterns
CAPEC-ID Attack Pattern Name

21 Exploitation of Trusted Identifiers
59 Session Credential Falsification through Prediction
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-482]2vi Gutterman. "Hold Your Sessions: An Attack on Java Session-id Generation". 2005
February 3. < http://www.securiteam.com/securityreviews/5TPOFOUEVQ.html| >,

CWE-7: J2EE Misconfiguration: Missing Custom Error Page

Weakness ID : 7 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

CWE-7: J2EE Misconfiguration: Missing Custom Error Page

The default error page of a web application should not display sensitive information about the
software system.

Extended Description
A Web application must define a default error page for 4xx errors (e.g. 404), 5xx (e.g. 500) errors

and catch java.lang.Throwable exceptions to prevent attackers from mining information from the
application container's built-in error response.

When an attacker explores a web site looking for vulnerabilities, the amount of information that the
site provides is crucial to the eventual success or failure of any attempted attacks.
Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.2
CWE-7: J2EE Misconfiguration: Missing Custom Error Page

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 756 Missing Custom Error Page 1401

Applicable Platforms
Language : Java (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

A stack trace might show the attacker a malformed SQL
query string, the type of database being used, and the
version of the application container. This information
enables the attacker to target known vulnerabilities in
these components.

Potential Mitigations
Phase: Implementation
Handle exceptions appropriately in source code.
Phase: Implementation
Phase: System Configuration

Always define appropriate error pages. The application configuration should specify a default
error page in order to guarantee that the application will never leak error messages to an
attacker. Handling standard HTTP error codes is useful and user-friendly in addition to being a
good security practice, and a good configuration will also define a last-chance error handler that
catches any exception that could possibly be thrown by the application.

Phase: Implementation
Do not attempt to process an error or attempt to mask it.
Phase: Implementation
Verify return values are correct and do not supply sensitive information about the system.
Demonstrative Examples
Example 1:

In the snippet below, an unchecked runtime exception thrown from within the try block may cause
the container to display its default error page (which may contain a full stack trace, among other
things).

Example Language: Java (bad)

Public void doPost(HttpServletRequest request, HitpServletResponse response) throws ServletException, IOException {
try {

} catch (ApplicationSpecificException ase) {
logger.error("Caught: " + ase.toString());
}
}

MemberOf Relationships

abed 10443 woisnd BuissIy :uoneinbiyuodsIN I3ZC 2-IMD

CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

CWE Version 4.2
CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 1896
MemberOf 728 OWASP Top Ten 2004 Category A7 - Improper Error 711 1926
Handling
MemberOf 731 OWASP Top Ten 2004 Category Al10 - Insecure 711 1928
Configuration Management
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 1988
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Missing Error
Handling
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-65]M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". 2005 July 6.
McGraw-Hill/Osborne.

CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

Weakness ID : 8 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

When an application exposes a remote interface for an entity bean, it might also expose methods
that get or set the bean's data. These methods could be leveraged to read sensitive information,
or to change data in ways that violate the application's expectations, potentially leading to other
vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf C] 668 Exposure of Resource to Wrong Sphere 1314
Common Consequences

Scope Impact Likelihood

Confidentiality Read Application Data

Integrity Modify Application Data

Potential Mitigations

CWE Version 4.2
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

Phase: Implementation

Declare Java beans "local" when possible. When a bean must be remotely accessible, make
sure that sensitive information is not exposed, and ensure that the application logic performs
appropriate validation of any data that might be modified by an attacker.

Demonstrative Examples
Example 1:
The following example demonstrates the weakness.

Example Language: XML (bad)

<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>

</entity>
</enterprise-beans>
</ejb-jar>
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 1896
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure 711 1928
Configuration Management
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 1988
Notes
Other

Entity beans that expose a remote interface become part of an application's attack surface. For
performance reasons, an application should rarely use remote entity beans, so there is a good
chance that a remote entity bean declaration is an error.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Unsafe Bean
Declaration
Software Fault Patterns SFP23 Exposed Data
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods
Weakness ID : 9 Status: Draft

7

SPOYIBIN gr3 10) SUOISSIWISG SS9V Yeap :uoletnBiyuodsin I3ZC :6-IMD

CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

CWE Version 4.2
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

Structure : Simple
Abstraction : Variant

Description

If elevated access rights are assigned to EJB methods, then an attacker can take advantage of the
permissions to exploit the software system.

Extended Description

If the EJB deployment descriptor contains one or more method permissions that grant access to
the special ANYONE role, it indicates that access control for the application has not been fully
thought through or that the application is structured in such a way that reasonable access control
restrictions are impossible.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (B] 266 Incorrect Privilege Assignment 584
Common Consequences

Scope Impact Likelihood

Other Other

Potential Mitigations
Phase: Architecture and Design
Phase: System Configuration

Follow the principle of least privilege when assigning access rights to EJB methods. Permission
to invoke EJB methods should not be granted to the ANYONE role.

Demonstrative Examples
Example 1:

The following deployment descriptor grants ANYONE permission to invoke the Employee EJB's
method named getSalary().

Example Language: XML (bad)
<ejb-jar>

<assembly-descriptor>
<method-permission>
<role-name>ANYONE</role-name>
<method>
<ejb-name>Employee</ejb-name>
<method-name>getSalary</method-name>
</method-permission>
</assembly-descriptor>

</ejb-jar>

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.2
CWE-11: ASP.NET Misconfiguration: Creating Debug Binary

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 1896
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access 711 1923
Control
MemberOf 731 OWASP Top Ten 2004 Category Al10 - Insecure 711 1928
Configuration Management
MemberOf 901 SFP Primary Cluster: Privilege 888 1974
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Weak Access
Permissions
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-11: ASP.NET Misconfiguration: Creating Debug Binary

Weakness ID : 11 Status: Draft
Structure : Simple
Abstraction : Variant

Description
Debugging messages help attackers learn about the system and plan a form of attack.
Extended Description

ASP .NET applications can be configured to produce debug binaries. These binaries give detailed
debugging messages and should not be used in production environments. Debug binaries are
meant to be used in a development or testing environment and can pose a security risk if they are
deployed to production.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 489 Active Debug Code 1050

Applicable Platforms
Language : ASP.NET (Prevalence = Undetermined)
Background Details

The debug attribute of the <compilation> tag defines whether compiled binaries should include
debugging information. The use of debug binaries causes an application to provide as much
information about itself as possible to the user.

Common Consequences

Areuig Bngaq Buiresi) :uoireinbiyuodsiN 1IN'dSY TT-IMD

CWE-11: ASP.NET Misconfiguration: Creating Debug Binary

CWE Version 4.2
CWE-11: ASP.NET Misconfiguration: Creating Debug Binary

Scope Impact Likelihood
Confidentiality Read Application Data

Attackers can leverage the additional information they
gain from debugging output to mount attacks targeted on
the framework, database, or other resources used by the
application.

Potential Mitigations
Phase: System Configuration

Avoid releasing debug binaries into the production environment. Change the debug mode to
false when the application is deployed into production.

Demonstrative Examples
Example 1:

The file web.config contains the debug mode setting. Setting debug to "true" will let the browser
display debugging information.

Example Language: XML (bad)

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<compilation
defaultLanguage="c#"
debug="true"
>

</system.web>
</configuration>

Change the debug mode to false when the application is deployed into production.
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 1896
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure 711 1928
Configuration Management
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 1988
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Creating

Debug Binary
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

10

CWE Version 4.2
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

Weakness ID : 12 Status: Draft
Structure : Simple
Abstraction : Variant

Description

An ASP .NET application must enable custom error pages in order to prevent attackers from mining
information from the framework's built-in responses.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 756 Missing Custom Error Page 1401

Applicable Platforms
Language : ASP.NET (Prevalence = Undetermined)
Background Details

The mode attribute of the <customErrors> tag defines whether custom or default error pages are
used.

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Default error pages gives detailed information about the
error that occurred, and should not be used in production
environments. Attackers can leverage the additional
information provided by a default error page to mount
attacks targeted on the framework, database, or other
resources used by the application.

Potential Mitigations
Phase: System Configuration

Handle exceptions appropriately in source code. ASP .NET applications should be configured to
use custom error pages instead of the framework default page.

Phase: Architecture and Design
Do not attempt to process an error or attempt to mask it.
Phase: Implementation
Verify return values are correct and do not supply sensitive information about the system.
Demonstrative Examples
Example 1:

The mode attribute of the <customErrors> tag in the Web.config file defines whether custom or
default error pages are used.

In the following insecure ASP.NET application setting, custom error message mode is turned off.
An ASP.NET error message with detailed stack trace and platform versions will be returned.

11

abed 10443 woisnd BuissIN :uoeInBiyuodSIN 1IN'dSY Z2T-IMD

CWE Version 4.2
CWE-13: ASP.NET Misconfiguration: Password in Configuration File

Example Language: ASP.NET (bad)

<customErrors mode="0Off" />

A more secure setting is to set the custom error message mode for remote users only. No
defaultRedirect error page is specified. The local user on the web server will see a detailed stack
trace. For remote users, an ASP.NET error message with the server customError configuration
setting and the platform version will be returned.

Example Language: ASP.NET (good)

<customErrors mode="RemoteOnly" />

Another secure option is to set the mode attribute of the <customErrors> tag to use a custom page
as follows:
Example Language: ASP.NET (good)

<customErrors mode="0On" defaultRedirect="YourErrorPage.htm" />

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 1896
MemberOf 731 OWASP Top Ten 2004 Category Al10 - Insecure 711 1928
Configuration Management
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 1988
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Missing

Custom Error Handling
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-65]M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". 2005 July 6.
McGraw-Hill/Osborne.

[REF-66]OWASP, Fortify Software. "ASP.NET Misconfiguration: Missing Custom Error Handling". <
http://www.owasp.org/index.php/ASP.NET_Misconfiguration:_Missing_Custom_Error_Handling >.

CWE-13: ASP.NET Misconfiguration: Password in Configuration File

CWE-13: ASP.NET Misconfiguration: Password in Configuration File

Weakness ID : 13 Status: Draft
Structure : Simple
Abstraction : Variant

Description

12

CWE Version 4.2
CWE-13: ASP.NET Misconfiguration: Password in Configuration File

Storing a plaintext password in a configuration file allows anyone who can read the file access to
the password-protected resource making them an easy target for attackers.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (E] 260 Password in Configuration File 577
Common Consequences

Scope Impact Likelihood

Access Control Gain Privileges or Assume ldentity

Potential Mitigations
Phase: Implementation

Credentials stored in configuration files should be encrypted, Use standard APIs and industry
accepted algorithms to encrypt the credentials stored in configuration files.

Demonstrative Examples
Example 1:

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in plaintext.

Example Language: ASP.NET (bad)

<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />

</connectionStrings>

Username and password information should not be included in a configuration file or a properties
file in plaintext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 1896
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure 711 1928
Configuration Management
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 1988
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Password

in Configuration File

13

914 uoneinblyuo) ul plomssed :uoleinbiyuodsin LIN'dSY :€T-IMD

CWE Version 4.2
CWE-14: Compiler Removal of Code to Clear Buffers

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-103]Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using
DPAPI". < http://msdn.microsoft.com/en-us/library/ms998280.aspx >.

[REF-104]Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using
RSA". < http://msdn.microsoft.com/en-us/library/ms998283.aspx >.

[REF-105]Microsoft Corporation. ".NET Framework Developer's Guide - Securing Connection
Strings". < http://msdn.microsoft.com/en-us/library/89211k9b(VS.80).aspx >.

CWE-14: Compiler Removal of Code to Clear Buffers

Weakness ID : 14 Status: Draft
Structure : Simple
Abstraction : Variant

Description

Sensitive memory is cleared according to the source code, but compiler optimizations leave the
memory untouched when it is not read from again, aka "dead store removal.”

Extended Description
This compiler optimization error occurs when:

» 1. Secret data are stored in memory.

» 2. The secret data are scrubbed from memory by overwriting its contents.

» 3. The source code is compiled using an optimizing compiler, which identifies and removes
the function that overwrites the contents as a dead store because the memory is not used
subsequently.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE-14: Compiler Removal of Code to Clear Buffers

Nature Type ID Name Page
ChildOf (B] 733 Compiler Optimization Removal or Modification of Security- 1386
critical Code

Applicable Platforms
Language : C (Prevalence = Undetermined)
Language : C++ (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory
Access Control Bypass Protection Mechanism

14

CWE Version 4.2
CWE-14: Compiler Removal of Code to Clear Buffers

Scope Impact Likelihood
This weakness will allow data that has not been cleared
from memory to be read. If this data contains sensitive
password information, then an attacker can read the
password and use the information to bypass protection
mechanisms.

Detection Methods
Black Box

This specific weakness is impossible to detect using black box methods. While an analyst could
examine memory to see that it has not been scrubbed, an analysis of the executable would

not be successful. This is because the compiler has already removed the relevant code. Only
the source code shows whether the programmer intended to clear the memory or not, so this
weakness is indistinguishable from others.

White Box

This weakness is only detectable using white box methods (see black box detection factor).
Careful analysis is required to determine if the code is likely to be removed by the compiler.

Potential Mitigations
Phase: Implementation
Store the sensitive data in a "volatile" memory location if available.
Phase: Build and Compilation
If possible, configure your compiler so that it does not remove dead stores.
Phase: Architecture and Design
Where possible, encrypt sensitive data that are used by a software system.
Demonstrative Examples
Example 1:

The following code reads a password from the user, uses the password to connect to a back-end
mainframe and then attempts to scrub the password from memory using memset().

Example Language: C (bad)

void GetData(char *MFAddr) {
char pwd[64];
if (GetPasswordFromUser(pwd, sizeof(pwd))) {
if (ConnectToMainframe(MFAddr, pwd)) {
/I Interaction with mainframe

}
}

memset(pwd, 0, sizeof(pwd));

The code in the example will behave correctly if it is executed verbatim, but if the code is compiled
using an optimizing compiler, such as Microsoft Visual C++ .NET or GCC 3.x, then the call to
memset() will be removed as a dead store because the buffer pwd is not used after its value

is overwritten [18]. Because the buffer pwd contains a sensitive value, the application may be
vulnerable to attack if the data are left memory resident. If attackers are able to access the correct
region of memory, they may use the recovered password to gain control of the system.

It is common practice to overwrite sensitive data manipulated in memory, such as passwords or
cryptographic keys, in order to prevent attackers from learning system secrets. However, with the
advent of optimizing compilers, programs do not always behave as their source code alone would
suggest. In the example, the compiler interprets the call to memset() as dead code because the

15

sJiayng Iea|D 01 apoI Jo [eAoway Ja1dwod FT-IMD

CWE Version 4.2
CWE-14: Compiler Removal of Code to Clear Buffers

memory being written to is not subsequently used, despite the fact that there is clearly a security
motivation for the operation to occur. The problem here is that many compilers, and in fact many
programming languages, do not take this and other security concerns into consideration in their
efforts to improve efficiency.

Attackers typically exploit this type of vulnerability by using a core dump or runtime mechanism to
access the memory used by a particular application and recover the secret information. Once an
attacker has access to the secret information, it is relatively straightforward to further exploit the
system and possibly compromise other resources with which the application interacts.

Affected Resources
* Memory
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits

2 within the context of external information sources.

§ Nature Type ID Name Page
5 MemberOf 2 7PK - Environment 700 1896
s MemberOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 1926
QO MemberOf 747 CERT C Secure Coding Standard (2008) Chapter 14 - 734 1939
@) Miscellaneous (MSC)

S MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous 868 1969
() (MSC)

_8 MemberOf 884 CWE Cross-section 884 2090
8 MemberOf 963 SFP Secondary Cluster: Exposed Data 888 1988
o :

= Taxonomy Mappings

3 Mapped Taxonomy Name Node ID Fit Mapped Node Name

e 7 Pernicious Kingdoms Insecure Compiler Optimization

& PLOVER Sensitive memory uncleared by

_ compiler optimization

% OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage

g CERT C Secure Coding MSCO06- Be aware of compiler optimization when
o C dealing with sensitive data

©) Software Fault Patterns ~ SFP23 Exposed Data

S'. References

L [REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A

% Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools

Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-124]Michael Howard. "When scrubbing secrets in memory doesn't work". BugTrag. 2002
November 5. < http://cert.uni-stuttgart.de/archive/bugtraq/2002/11/msg00046.html >.

[REF-125]Michael Howard. "Some Bad News and Some Good News". 2002 October 1. Microsoft.
< http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure10102002.asp
>,

16

CWE Version 4.2
CWE-15: External Control of System or Configuration Setting

[REF-126]Joseph Wagner. "GNU GCC: Optimizer Removes Code Necessary for Security".
Bugtrag. 2002 November 6. < http://www.derkeiler.com/Mailing-Lists/securityfocus/
bugtrag/2002-11/0257.html >.

CWE-15: External Control of System or Configuration Setting

Weakness ID : 15 Status: Incomplete
Structure : Simple
Abstraction : Base

Description
One or more system settings or configuration elements can be externally controlled by a user.
Extended Description

Allowing external control of system settings can disrupt service or cause an application to behave
in unexpected, and potentially malicious ways.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (C] 610 Externally Controlled Reference to a Resource in Another 1222
Sphere

ChildOf C] 642 External Control of Critical State Data 1266

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page

MemberOf 1011 Authorize Actors 2013

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page

MemberOf 371 State Issues 1909

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page

ChildOf @ 20 Improper Input Validation 19

Common Consequences
Scope Impact Likelihood
Other Varies by Context

Potential Mitigations
Phase: Architecture and Design
Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design and that the compartmentalization serves to
allow for and further reinforce privilege separation functionality. Architects and designers should

17

Buias uoneinbiyuod 10 WalSAS JO [041U0D [eUIBIXT ST-IMD

CWE Version 4.2
CWE-15: External Control of System or Configuration Setting

rely on the principle of least privilege to decide when it is appropriate to use and to drop system
privileges.

Phase: Implementation
Phase: Architecture and Design

Because setting manipulation covers a diverse set of functions, any attempt at illustrating it

will inevitably be incomplete. Rather than searching for a tight-knit relationship between the
functions addressed in the setting manipulation category, take a step back and consider the sorts
of system values that an attacker should not be allowed to control.

Phase: Implementation
Phase: Architecture and Design

In general, do not allow user-provided or otherwise untrusted data to control sensitive values.
The leverage that an attacker gains by controlling these values is not always immediately
obvious, but do not underestimate the creativity of the attacker.

Demonstrative Examples
Example 1:
The following C code accepts a number as one of its command line parameters and sets it as the
host ID of the current machine.

Example Language: C (bad)

ééthostid(argv[l]);

Although a process must be privileged to successfully invoke sethostid(), unprivileged users may
be able to invoke the program. The code in this example allows user input to directly control the
value of a system setting. If an attacker provides a malicious value for host ID, the attacker can
misidentify the affected machine on the network or cause other unintended behavior.

Example 2:

The following Java code snippet reads a string from an HttpServietRequest and sets it as the active
catalog for a database Connection.

Example Language: Java (bad)

conn.setCatalog(request.getParameter(“catalog"));

CWE-15: External Control of System or Configuration Setting

In this example, an attacker could cause an error by providing a nonexistent catalog name or
connect to an unauthorized portion of the database.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 994 SFP Secondary Cluster: Tainted Input to Variable 888 2005
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Setting Manipulation

Software Fault Patterns SFP25 Tainted input to variable

18

CWE Version 4.2
CWE-20: Improper Input Validation

Related Attack Patterns
CAPEC-ID Attack Pattern Name

13 Subverting Environment Variable Values
69 Target Programs with Elevated Privileges
76 Manipulating Web Input to File System Calls
77 Manipulating User-Controlled Variables
146 XML Schema Poisoning
176 Configuration/Environment Manipulation
203 Manipulate Registry Information
270 Modification of Registry Run Keys
271 Schema Poisoning

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-20: Improper Input Validation

Weakness ID : 20 Status: Stable
Structure : Simple
Abstraction : Class

Description

The product receives input or data, but it does not validate or incorrectly validates that the input has
the properties that are required to process the data safely and correctly.

Extended Description

Input validation is a frequently-used technique for checking potentially dangerous inputs in order
to ensure that the inputs are safe processing within the code, or when communicating with other
components. When software does not validate input properly, an attacker is able to craft the input
in a form that is not expected by the rest of the application. This will lead to parts of the system
receiving unintended input, which may result in altered control flow, arbitrary control of a resource,
or arbitrary code execution.

Input validation is not the only technique for processing input, however. Other techniques attempt
to transform potentially-dangerous input into something safe, such as filtering (CWE-790) - which
attempts to remove dangerous inputs - or encoding/escaping (CWE-116), which attempts to ensure
that the input is not misinterpreted when it is included in output to another component. Other
techniques exist as well (see CWE-138 for more examples.)

Input validation can be applied to:

e raw data - strings, numbers, parameters, file contents, etc.
* metadata - information about the raw data, such as headers or size

Data can be simple or structured. Structured data can be composed of many nested layers,
composed of combinations of metadata and raw data, with other simple or structured data.

Many properties of raw data or metadata may need to be validated upon entry into the code, such
as:

19

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE Version 4.2
CWE-20: Improper Input Validation

 specified quantities such as size, length, frequency, price, rate, number of operations, time,
etc.

 implied or derived quantities, such as the actual size of a file instead of a specified size

« indexes, offsets, or positions into more complex data structures

» symbolic keys or other elements into hash tables, associative arrays, etc.

» well-formedness, i.e. syntactic correctness - compliance with expected syntax

« lexical token correctness - compliance with rules for what is treated as a token

« specified or derived type - the actual type of the input (or what the input appears to be)

 consistency - between individual data elements, between raw data and metadata, between
references, etc.

» conformance to domain-specific rules, e.g. business logic

* equivalence - ensuring that equivalent inputs are treated the same

« authenticity, ownership, or other attestations about the input, e.g. a cryptographic signature to
prove the source of the data

Implied or derived properties of data must often be calculated or inferred by the code itself. Errors
in deriving properties may be considered a contributing factor to improper input validation.

Note that "input validation" has very different meanings to different people, or within different
classification schemes. Caution must be used when referencing this CWE entry or mapping to it.
For example, some weaknesses might involve inadvertently giving control to an attacker over an
input when they should not be able to provide an input at all, but sometimes this is referred to as
input validation.

Finally, it is important to emphasize that the distinctions between input validation and output
escaping are often blurred, and developers must be careful to understand the difference, including
how input validation is not always sufficient to prevent vulnerabilities, especially when less stringent
data types must be supported, such as free-form text. Consider a SQL injection scenario in which

a person's last name is inserted into a query. The name "O'Reilly" would likely pass the validation
step since it is a common last name in the English language. However, this valid name cannot be
directly inserted into the database because it contains the " apostrophe character, which would
need to be escaped or otherwise transformed. In this case, removing the apostrophe might reduce
the risk of SQL injection, but it would produce incorrect behavior because the wrong name would
be recorded.

Relationships

CWE-20: Improper Input Validation

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf [P 707 Improper Neutralization 1372
ParentOf E] 179 Incorrect Behavior Order: Early Validation 417

ParentOf (V] 622 Improper Validation of Function Hook Arguments 1242
ParentOf (B] 1173 Improper Use of Validation Framework 1736
ParentOf (B) 1284 Improper Validation of Specified Quantity in Input 1857
ParentOf Q 1285 Improper Validation of Specified Index, Position, or Offset in 1859

Input

ParentOf B] 1286 Improper Validation of Syntactic Correctness of Input 1862
ParentOf Q 1287 Improper Validation of Specified Type of Input 1864
ParentOf B] 1288 Improper Validation of Consistency within Input 1865
ParentOf Q 1289 Improper Validation of Unsafe Equivalence in Input 1866

20

CWE Version 4.2
CWE-20: Improper Input Validation

Nature Type ID Name Page

PeerOf @ 345 Insufficient Verification of Data Authenticity 764

CanPrecede @ 22 Improper Limitation of a Pathname to a Restricted Directory 31
(‘Path Traversal)

CanPrecede @ 41 Improper Resolution of Path Equivalence 81

CanPrecede © 74 Improper Neutralization of Special Elements in Output Used 131
by a Downstream Component (‘Injection’)

CanPrecede @ 119 Improper Restriction of Operations within the Bounds ofa 272
Memory Buffer

CanPrecede @ 770 Allocation of Resources Without Limits or Throttling 1433

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf (V] 129 Improper Validation of Array Index 314
Relevant to the view "Architectural Concepts" (CWE-1008)
Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2020
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)
Nature Type ID Name Page
ParentOf (B) 15 External Control of System or Configuration Setting 17
ParentOf Q 73 External Control of File Name or Path 126
ParentOf V] 102 Struts: Duplicate Validation Forms 229
ParentOf (V] 103 Struts: Incomplete validate() Method Definition 230
ParentOf V] 104 Struts: Form Bean Does Not Extend Validation Class 233
ParentOf V] 105 Struts: Form Field Without Validator 235
ParentOf (V] 106 Struts: Plug-in Framework not in Use 238
ParentOf V] 107 Struts: Unused Validation Form 241
ParentOf V] 108 Struts: Unvalidated Action Form 243
ParentOf V] 109 Struts: Validator Turned Off 244
ParentOf V] 110 Struts: Validator Without Form Field 246
ParentOf V] 111 Direct Use of Unsafe JNI 248
ParentOf E] 112 Missing XML Validation 251
ParentOf (V] 113 Improper Neutralization of CRLF Sequences in HTTP 253
Headers (‘(HTTP Response Splitting’)
ParentOf C] 114 Process Control 257
ParentOf B] 117 Improper Output Neutralization for Logs 268
ParentOf C] 119 Improper Restriction of Operations within the Bounds ofa 272
Memory Buffer
ParentOf o 120 Buffer Copy without Checking Size of Input ('Classic Buffer 282
Overflow")
ParentOf Q 134 Use of Externally-Controlled Format String 337
ParentOf (E] 170 Improper Null Termination 398
ParentOf Q 190 Integer Overflow or Wraparound 440
ParentOf (E] 466 Return of Pointer Value Outside of Expected Range 996
ParentOf Q 470 Use of Externally-Controlled Input to Select Classes or Code 1004
(‘Unsafe Reflection’)
ParentOf V] 785 Use of Path Manipulation Function without Maximum-sized 1470

Buffer
Applicable Platforms

21

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE Version 4.2

CWE-20: Improper Input Validation

Language : Language-Independent (Prevalence = Often)
Likelihood Of Exploit

High

Common Consequences

Scope
Availability

Confidentiality

Integrity
Confidentiality
Availability

changes.

CWE-20: Improper Input Validation

Detection Methods

Impact Likelihood
DoS: Crash, Exit, or Restart

DoS: Resource Consumption (CPU)

DoS: Resource Consumption (Memory)

An attacker could provide unexpected values and cause
a program crash or excessive consumption of resources,
such as memory and CPU.

Read Memory

Read Files or Directories

An attacker could read confidential data if they are able to
control resource references.

Modify Memory

Execute Unauthorized Code or Commands

An attacker could use malicious input to modify data or
possibly alter control flow in unexpected ways, including
arbitrary command execution.

Automated Static Analysis

Some instances of improper input validation can be detected using automated static analysis. A
static analysis tool might allow the user to specify which application-specific methods or functions
perform input validation; the tool might also have built-in knowledge of validation frameworks
such as Struts. The tool may then suppress or de-prioritize any associated warnings. This allows
the analyst to focus on areas of the software in which input validation does not appear to be
present. Except in the cases described in the previous paragraph, automated static analysis
might not be able to recognize when proper input validation is being performed, leading to

false positives - i.e., warnings that do not have any security consequences or require any code

Manual Static Analysis

When custom input validation is required, such as when enforcing business rules, manual
analysis is necessary to ensure that the validation is properly implemented.

Fuzzing

Fuzzing techniques can be useful for detecting input validation errors. When unexpected inputs
are provided to the software, the software should not crash or otherwise become unstable, and
it should generate application-controlled error messages. If exceptions or interpreter-generated
error messages occur, this indicates that the input was not detected and handled within the
application logic itself.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = SOAR Partial
Manual Static Analysis - Binary or Bytecode

22

CWE Version 4.2
CWE-20: Improper Input Validation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Patrtial
Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Web
Application Scanner Web Services Scanner Database Scanners

Effectiveness = High
Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Fuzz
Tester Framework-based Fuzzer Cost effective for partial coverage: Host Application Interface
Scanner Monitored Virtual Environment - run potentially malicious code in sandbox / wrapper /
virtual machine, see if it does anything suspicious

Effectiveness = High
Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High
Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction Cost effective for partial coverage: Attack Modeling

Effectiveness = High
Potential Mitigations
Phase: Architecture and Design
Strategy = Attack Surface Reduction

Consider using language-theoretic security (LangSec) technigues that characterizes inputs using
a formal language and builds "recognizers"” for that language. This effectively requires parsing

to be a distinct layer that effectively enforces a boundary between raw input and internal data
representations, instead of allowing parser code to be scattered throughout the program, where
it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110]
[REF-1111]

Phase: Architecture and Design
Strategy = Libraries or Frameworks

Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that
using a framework does not automatically address all input validation problems; be mindful of
weaknesses that could arise from misusing the framework itself (CWE-1173).

Phase: Architecture and Design

Phase: Implementation

23

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE Version 4.2
CWE-20: Improper Input Validation

Strategy = Attack Surface Reduction

Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-malil, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may
be obtained indirectly through API calls.

Phase: Implementation

CWE-20: Improper Input Validation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Effectiveness = High

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client
to remove the client-side checks entirely. Then, these modified values would be submitted to
the server. Even though client-side checks provide minimal benefits with respect to server-
side security, they are still useful. First, they can support intrusion detection. If the server
receives input that should have been rejected by the client, then it may be an indication of an
attack. Second, client-side error-checking can provide helpful feedback to the user about the
expectations for valid input. Third, there may be a reduction in server-side processing time for
accidental input errors, although this is typically a small savings.

Phase: Implementation

When your application combines data from multiple sources, perform the validation after the
sources have been combined. The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.

Phase: Implementation

Be especially careful to validate all input when invoking code that crosses language boundaries,
such as from an interpreted language to native code. This could create an unexpected interaction
between the language boundaries. Ensure that you are not violating any of the expectations

of the language with which you are interfacing. For example, even though Java may not be
susceptible to buffer overflows, providing a large argument in a call to native code might trigger
an overflow.

Phase: Implementation

Directly convert your input type into the expected data type, such as using a conversion function
that translates a string into a number. After converting to the expected data type, ensure that the
input's values fall within the expected range of allowable values and that multi-field consistencies
are maintained.

Phase: Implementation

24

CWE Version 4.2
CWE-20: Improper Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
allowlist schemes by introducing dangerous inputs after they have been checked. Use

libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated
canonicalization until your input does not change any more. This will avoid double-decoding and
similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-
encoded dangerous content.

Phase: Implementation

When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set
the encoding you are using whenever the protocol allows you to do so.

Demonstrative Examples
Example 1:

This example demonstrates a shopping interaction in which the user is free to specify the quantity
of items to be purchased and a total is calculated.

Example Language: Java (bad)

public static final double price = 20.00;

int quantity = currentUser.getAttribute("quantity");
double total = price * quantity;

chargeUser(total);

The user has no control over the price variable, however the code does not prevent a negative
value from being specified for quantity. If an attacker were to provide a negative value, then the
user would have their account credited instead of debited.

Example 2:

This example asks the user for a height and width of an m X n game board with a maximum
dimension of 100 squares.

Example Language: C (bad)

#define MAX_DIM 100

/* board dimensions */
int m,n, error;
board_square_t *board;
printf("Please specify the board height: \n");
error = scanf("%d", &m);
if (EOF == error){
die("No integer passed: Die evil hacker'\n");

}
printf("Please specify the board width: \n");
error = scanf("%d", &n);
if (EOF == error){
die("No integer passed: Die evil hacker'\n");

}
if (m>MAX_DIM || n > MAX_DIM) {
die("Value too large: Die evil hacker\n");

}

board = (board_square_t*) malloc(m * n * sizeof(board_square_t));

25

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 4.2
CWE-20: Improper Input Validation

While this code checks to make sure the user cannot specify large, positive integers and consume
too much memory, it does not check for negative values supplied by the user. As a result, an
attacker can perform a resource consumption (CWE-400) attack against this program by specifying
two, large negative values that will not overflow, resulting in a very large memory allocation
(CWE-789) and possibly a system crash. Alternatively, an attacker can provide very large negative
values which will cause an integer overflow (CWE-190) and unexpected behavior will follow
depending on how the values are treated in the remainder of the program.

Example 3:

The following example shows a PHP application in which the programmer attempts to display a
user's birthday and homepage.

Example Language: PHP (bad)

$birthday = $_GET['birthday'];
$homepage = $_GET['homepage’];
echo "Birthday: $birthday
Homepage: click here"

The programmer intended for $birthday to be in a date format and $homepage to be a valid URL.
However, since the values are derived from an HTTP request, if an attacker can trick a victim into
clicking a crafted URL with <script> tags providing the values for birthday and / or homepage, then
the script will run on the client's browser when the web server echoes the content. Notice that even
if the programmer were to defend the $birthday variable by restricting input to integers and dashes,
it would still be possible for an attacker to provide a string of the form:

Example Language: (attack)

2009-01-09--

If this data were used in a SQL statement, it would treat the remainder of the statement as a
comment. The comment could disable other security-related logic in the statement. In this case,
encoding combined with input validation would be a more useful protection mechanism.

Furthermore, an XSS (CWE-79) attack or SQL injection (CWE-89) are just a few of the potential
consequences when input validation is not used. Depending on the context of the code, CRLF
Injection (CWE-93), Argument Injection (CWE-88), or Command Injection (CWE-77) may also be
possible.

Example 4:

The following example takes a user-supplied value to allocate an array of objects and then
operates on the array.

Example Language: Java (bad)

private void buildList (int untrustedListSize){
if (0 > untrustedListSize){
die("Negative value supplied for list size, die evil hacker!");
}

Widget[] list = new Widget [untrustedListSize];
list[0] = new Widget();
}

This example attempts to build a list from a user-specified value, and even checks to ensure a non-
negative value is supplied. If, however, a 0 value is provided, the code will build an array of size 0
and then try to store a new Widget in the first location, causing an exception to be thrown.

Example 5:

This Android application has registered to handle a URL when sent an intent:

26

CWE Version 4.2
CWE-20: Improper Input Validation

Example Language: Java (bad)

IntentFilter filter = new IntentFilter("com.example.URLHandler.openURL");
MyReceiver receiver = new MyReceiver();
registerReceiver(receiver, filter);

public class UrlHandlerReceiver extends BroadcastReceiver {

@Override

public void onReceive(Context context, Intent intent) {
if("com.example.URLHandler.openURL".equals(intent.getAction())) {
String URL = intent.getStringExtra("URLToOpen");
int length = URL.length();

The application assumes the URL will always be included in the intent. When the URL is not
present, the call to getStringExtra() will return null, thus causing a null pointer exception when

length() is called.
Observed Examples

Reference

CVE-2008-5305

CVE-2008-2223

CVE-2008-3477

CVE-2008-3843

CVE-2008-3174

CVE-2007-3409

CVE-2006-6870

CVE-2008-1303

CVE-2007-5893

CVE-2006-6658

CVE-2008-4114

CVE-2006-3790

CVE-2008-2309

CVE-2008-3494

CVE-2008-3571

CVE-2006-5525

Description

Eval injection in Perl program using an ID that should only contain hyphens
and numbers.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5305

SQL injection through an ID that was supposed to be numeric.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2223

lack of input validation in spreadsheet program leads to buffer overflows,
integer overflows, array index errors, and memory corruption.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3477

insufficient validation enables XSS
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3843

driver in security product allows code execution due to insufficient validation
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3174

infinite loop from DNS packet with a label that points to itself
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3409

infinite loop from DNS packet with a label that points to itself
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6870

missing parameter leads to crash
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1303

HTTP request with missing protocol version number leads to crash
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5893

request with missing parameters leads to information exposure
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6658

system crash with offset value that is inconsistent with packet size
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4114

size field that is inconsistent with packet size leads to buffer over-read
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3790

product uses a denylist to identify potentially dangerous content, allowing
attacker to bypass a warning
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2309

security bypass via an extra header
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3494

empty packet triggers reboot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3571

incomplete denylist allows SQL injection

27

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 4.2
CWE-20: Improper Input Validation

Reference

CVE-2008-1284

CVE-2008-0600

CVE-2008-1738

CVE-2008-1737

CVE-2008-3464

CVE-2008-2252

CVE-2008-2374

CVE-2008-1440

CVE-2008-1625

CVE-2008-3177

CVE-2007-2442

CVE-2008-5563

CVE-2008-5285

CVE-2008-3812

CVE-2008-3680

CVE-2008-3660

Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5525

NUL byte in theme name causes directory traversal impact to be worse
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1284

kernel does not validate an incoming pointer before dereferencing it
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0600

anti-virus product has insufficient input validation of hooked SSDT functions,
allowing code execution
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1738

anti-virus product allows DoS via zero-length field
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1737

driver does not validate input from userland to the kernel
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3464

kernel does not validate parameters sent in from userland, allowing code
execution

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2252

lack of validation of string length fields allows memory consumption or buffer
over-read

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2374

lack of validation of length field leads to infinite loop
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1440

lack of validation of input to an IOCTL allows code execution
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1625

zero-length attachment causes crash
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3177

zero-length input causes free of uninitialized pointer
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2442

crash via a malformed frame structure
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5563

infinite loop from a long SMTP request
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5285

router crashes with a malformed packet
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3812

packet with invalid version number leads to NULL pointer dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3680

crash via multiple "." characters in file extension
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3660

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf

ID Name Page

635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2074

722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 1922

738 CERT C Secure Coding Standard (2008) Chapter5- 734 1930
Integers (INT)

742 CERT C Secure Coding Standard (2008) Chapter9 - 734 1934
Memory Management (MEM)

746 CERT C Secure Coding Standard (2008) Chapter 13- 734 1938
Error Handling (ERR)

747 CERT C Secure Coding Standard (2008) Chapter 14 - 734 1939
Miscellaneous (MSC)

28

CWE Version 4.2
CWE-20: Improper Input Validation

Nature Type ID Name Page

MemberOf 751 2009 Top 25 - Insecure Interaction Between 750 1940
Components

MemberOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 1962

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory 868 1965

Management (MEM)

MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous 868 1969
(MSC)

MemberOf 994 SFP Secondary Cluster: Tainted Input to Variable 888 2005

MemberOf 1003 Weaknesses for Simplified Mapping of Published 1003 2099
Vulnerabilities

MemberOf 1005 7PK - Input Validation and Representation 700 2009

MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input 1154 2047
Output (FIO)

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous 1200 2110
Software Errors

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous 1350 2112
Software Weaknesses

Notes

Relationship

CWE-116 and CWE-20 have a close association because, depending on the nature of the
structured message, proper input validation can indirectly prevent special characters from
changing the meaning of a structured message. For example, by validating that a numeric
ID field should only contain the 0-9 characters, the programmer effectively prevents injection
attacks.

Maintenance

As of 2020, this entry is used more often than preferred, and it is a source of frequent confusion.
It is being actively modified for CWE 4.1 and subsequent versions.

Maintenance

Concepts such as validation, data transformation, and neutralization are being refined, so
relationships between CWE-20 and other entries such as CWE-707 may change in future
versions, along with an update to the Vulnerability Theory document.

Maintenance

Input validation - whether missing or incorrect - is such an essential and widespread part of
secure development that it is implicit in many different weaknesses. Traditionally, problems such
as buffer overflows and XSS have been classified as input validation problems by many security
professionals. However, input validation is not necessarily the only protection mechanism
available for avoiding such problems, and in some cases it is not even sufficient. The CWE team
has begun capturing these subtleties in chains within the Research Concepts view (CWE-1000),
but more work is needed.

Terminology

The "input validation" term is extremely common, but it is used in many different ways. In some
cases its usage can obscure the real underlying weakness or otherwise hide chaining and
composite relationships. Some people use "input validation" as a general term that covers
many different neutralization techniques for ensuring that input is appropriate, such as filtering,
canonicalization, and escaping. Others use the term in a more narrow context to simply mean
"checking if an input conforms to expectations without changing it." CWE uses this more narrow
interpretation.

Taxonomy Mappings

29

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 4.2
CWE-20: Improper Input Validation

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Input validation and representation
OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input
CERT C Secure Coding ERRO7- Prefer functions that support error
C checking over equivalent functions that
don't
CERT C Secure Coding FIO30-C CWE More Exclude user input from format strings
Abstract
CERT C Secure Coding MEM10- Define and use a pointer validation
C function
WASC 20 Improper Input Handling

Software Fault Patterns SFP25

Tainted input to variable

Related Attack Patterns
CAPEC-ID Attack Pattern Name

3

7

8

9
10
13
14
22
23
24
28
31
42
43
45
46
47
52
53
63
64
67
71
72
73
78
79
80
81
83
85
88
101
104
108
109
110
120

Using Leading 'Ghost' Character Sequences to Bypass Input Filters
Blind SQL Injection

Buffer Overflow in an API Call

Buffer Overflow in Local Command-Line Utilities
Buffer Overflow via Environment Variables
Subverting Environment Variable Values
Client-side Injection-induced Buffer Overflow
Exploiting Trust in Client

File Content Injection

Filter Failure through Buffer Overflow

Fuzzing

Accessing/Intercepting/Modifying HTTP Cookies
MIME Conversion

Exploiting Multiple Input Interpretation Layers
Buffer Overflow via Symbolic Links

Overflow Variables and Tags

Buffer Overflow via Parameter Expansion
Embedding NULL Bytes

Postfix, Null Terminate, and Backslash

Cross-Site Scripting (XSS)

Using Slashes and URL Encoding Combined to Bypass Validation Logic
String Format Overflow in syslog()

Using Unicode Encoding to Bypass Validation Logic
URL Encoding

User-Controlled Filename

Using Escaped Slashes in Alternate Encoding
Using Slashes in Alternate Encoding

Using UTF-8 Encoding to Bypass Validation Logic
Web Logs Tampering

XPath Injection

AJAX Fingerprinting

OS Command Injection

Server Side Include (SSI) Injection

Cross Zone Scripting

Command Line Execution through SQL Injection
Object Relational Mapping Injection

SQL Injection through SOAP Parameter Tampering
Double Encoding

30

CWE Version 4.2
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

CAPEC-ID
135
136
153
182
209
230
231
250
261
267
473
588

References

Attack Pattern Name

Format String Injection

LDAP Injection

Input Data Manipulation

Flash Injection

XSS Using MIME Type Mismatch
XML Nested Payloads

Oversized Serialized Data Payloads
XML Injection

Fuzzing for garnering other adjacent user/sensitive data
Leverage Alternate Encoding
Signature Spoof

DOM-Based XSS

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-166]Jim Manico. "Input Validation with ESAPI - Very Important”. 2008 August 5. < http://
manicode.blogspot.com/2008/08/input-validation-with-esapi.html >.

[REF-45]O0WASP. "OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

[REF-168]Joel Scambray, Mike Shema and Caleb Sima. "Hacking Exposed Web Applications,
Second Edition". 2006 June 5. McGraw-Hill.

[REF-48]Jeremiah Grossman. "Input validation or output filtering, which is better?". 2007 January 0.
< http://jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-filtering.html >.

[REF-170]Kevin Beaver. "The importance of input validation". 2006 September 6. < http://
searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1214373,00.html >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-1109]"LANGSEC: Language-theoretic Security". < http://langsec.org/ >.

[REF-1110]"LangSec: Recognition, Validation, and Compositional Correctness for Real World
Security". < http://langsec.org/bof-handout.pdf >.

[REF-1111]Sergey Bratus, Lars Hermerschmidt, Sven M. Hallberg, Michael E. Locasto, Falcon D.
Momot, Meredith L. Patterson and Anna Shubina. "Curing the Vulnerable Parser: Design Patterns
for Secure Input Handling". USENIX ;login:. 2017. < https://www.usenix.org/system/files/login/
articles/login_springl7_08_bratus.pdf >.

CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path

Traversal')

Weakness ID :

Description

22 Status: Stable
Structure : Simple
Abstraction : Base

31

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

CWE-22: Improper Limitation of a Pathname

CWE Version 4.2
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

The software uses external input to construct a pathname that is intended to identify a file or
directory that is located underneath a restricted parent directory, but the software does not properly
neutralize special elements within the pathname that can cause the pathname to resolve to a
location that is outside of the restricted directory.

Extended Description

Many file operations are intended to take place within a restricted directory. By using special
elements such as ".." and "/" separators, attackers can escape outside of the restricted location
to access files or directories that are elsewhere on the system. One of the most common special
elements is the "../" sequence, which in most modern operating systems is interpreted as the
parent directory of the current location. This is referred to as relative path traversal. Path traversal
also covers the use of absolute pathnames such as "/usr/local/bin”, which may also be useful in

accessing unexpected files. This is referred to as absolute path traversal.

In many programming languages, the injection of a null byte (the 0 or NUL) may allow an attacker
to truncate a generated filename to widen the scope of attack. For example, the software may add
"ixt" to any pathname, thus limiting the attacker to text files, but a null injection may effectively
remove this restriction.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf @ 668 Exposure of Resource to Wrong Sphere 1314
ChildOf (C) 706 Use of Incorrectly-Resolved Name or Reference 1371
ParentOf Q@ 23 Relative Path Traversal 42
ParentOf E] 36 Absolute Path Traversal 70
CanFollow @ 20 Improper Input Validation 19
CanFollow (B] 73 External Control of File Name or Path 126
CanFollow @ 172 Encoding Error 402

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

to a Restricted Directory (‘Path Traversal')

Nature Type ID Name Page

ChildOf C] 706 Use of Incorrectly-Resolved Name or Reference 1371

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page

ParentOf (E] 23 Relative Path Traversal 42

ParentOf (B 36 Absolute Path Traversal 70
Weakness Ordinalities

Primary :

Resultant :

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Alternate Terms

Directory traversal :

32

CWE Version 4.2

CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Path traversal : "Path traversal" is preferred over "directory traversal," but both terms are attack-

focused.

Likelihood Of Exploit

High

Common Consequences

Scope
Integrity
Confidentiality
Availability

Integrity

Confidentiality

Availability

Detection Methods

Impact
Execute Unauthorized Code or Commands

The attacker may be able to create or overwrite critical
files that are used to execute code, such as programs or
libraries.

Modify Files or Directories

The attacker may be able to overwrite or create critical
files, such as programs, libraries, or important data. If
the targeted file is used for a security mechanism, then
the attacker may be able to bypass that mechanism.
For example, appending a new account at the end

of a password file may allow an attacker to bypass
authentication.

Read Files or Directories

The attacker may be able read the contents of unexpected
files and expose sensitive data. If the targeted file is used
for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, by reading a
password file, the attacker could conduct brute force
password guessing attacks in order to break into an
account on the system.

DoS: Crash, Exit, or Restart

The attacker may be able to overwrite, delete, or corrupt
unexpected critical files such as programs, libraries,

or important data. This may prevent the software from
working at all and in the case of a protection mechanisms
such as authentication, it has the potential to lockout every
user of the software.

Automated Static Analysis

Likelihood

Automated techniques can find areas where path traversal weaknesses exist. However, tuning
or customization may be required to remove or de-prioritize path-traversal problems that are only
exploitable by the software's administrator - or other privileged users - and thus potentially valid
behavior or, at worst, a bug instead of a vulnerability.

Effectiveness = High

Manual Static Analysis

Manual white box techniques may be able to provide sufficient code coverage and reduction of
false positives if all file access operations can be assessed within limited time constraints.

Effectiveness = High

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Bytecode Weakness Analysis - including disassembler + source code weakness analysis Cost

33

(,res1anel] yred,) A1019811Q pa1dli1say e 0]

aweuyred e jo uonenwi sadoidwi :zz-IMD

CWE Version 4.2
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

effective for partial coverage: Binary Weakness Analysis - including disassembler + source code
weakness analysis

Effectiveness = High
Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial
Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Web
Application Scanner Web Services Scanner Database Scanners

Effectiveness = High
Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Fuzz
Tester Framework-based Fuzzer

Effectiveness = High
Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High
Architecture or Desigh Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

Effectiveness = High
Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating

34

CWE Version 4.2
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked. Use a built-in path canonicalization
function (such as realpath() in C) that produces the canonical version of the pathname, which
effectively removes ".." sequences and symbolic links (CWE-23, CWE-59). This includes:
realpath() in C getCanonicalPath() in Java GetFullPath() in ASP.NET realpath() or abs_path() in
Perl realpath() in PHP

Phase: Architecture and Design
Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Phase: Operation
Strategy = Firewall

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.

Effectiveness = Moderate

An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Phase: Architecture and Design
Phase: Operation
Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the

35

CWE Version 4.2
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Phase: Architecture and Design

Strategy = Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLS, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLSs,
and reject all other inputs. For example, ID 1 could map to "inbox.txt" and ID 2 could map to
"profile.txt". Features such as the ESAPI AccessReferenceMap [REF-185] provide this capability.

Phase: Architecture and Design

Phase: Operation

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

Strategy = Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed
in a particular directory or which commands can be executed by the software. OS-level examples
include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the
software to specify restrictions on file operations. This may not be a feasible solution, and it

only limits the impact to the operating system; the rest of the application may still be subject to
compromise. Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness = Limited

The effectiveness of this mitigation depends on the prevention capabilities of the specific
sandbox or jail being used and might only help to reduce the scope of an attack, such as
restricting the attacker to certain system calls or limiting the portion of the file system that can be
accessed.

Phase: Architecture and Design
Phase: Operation

Strategy = Attack Surface Reduction

Store library, include, and utility files outside of the web document root, if possible. Otherwise,
store them in a separate directory and use the web server's access control capabilities to prevent
attackers from directly requesting them. One common practice is to define a fixed constant in
each calling program, then check for the existence of the constant in the library/include file; if the
constant does not exist, then the file was directly requested, and it can exit immediately. This
significantly reduces the chance of an attacker being able to bypass any protection mechanisms
that are in the base program but not in the include files. It will also reduce the attack surface.

Phase: Implementation

Ensure that error messages only contain minimal details that are useful to the intended audience,
and nobody else. The messages need to strike the balance between being too cryptic and

not being cryptic enough. They should not necessarily reveal the methods that were used

to determine the error. Such detailed information can be used to refine the original attack to
increase the chances of success. If errors must be tracked in some detail, capture them in log
messages - but consider what could occur if the log messages can be viewed by attackers.
Avoid recording highly sensitive information such as passwords in any form. Avoid inconsistent
messaging that might accidentally tip off an attacker about internal state, such as whether a
username is valid or not. In the context of path traversal, error messages which disclose path
information can help attackers craft the appropriate attack strings to move through the file system
hierarchy.

Phase: Operation

Phase: Implementation

36

CWE Version 4.2
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Strategy = Environment Hardening

When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Demonstrative Examples
Example 1:
The following code could be for a social networking application in which each user's profile
information is stored in a separate file. All files are stored in a single directory.
Example Language: Perl (bad)

my $dataPath = "/users/cwe/profiles";
my $username = param("user");
my $profilePath = $dataPath . "/* . $username;
open(my $fh, "<$profilePath") || ExitError("profile read error: $profilePath");
print "\n";
while (<$fh>) {
print "$_\n";

print "\n";

While the programmer intends to access files such as "/users/cwe/profiles/alice" or "/users/cwe/
profiles/bob", there is no verification of the incoming user parameter. An attacker could provide a
string such as:

Example Language: (attack)

.[I..l..letc/passwd

The program would generate a profile pathname like this:

Example Language: (result)

/users/cwe/profiles/../../..letc/passwd

When the file is opened, the operating system resolves the "../" during path canonicalization and
actually accesses this file:

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

Example Language: (result)

/etc/passwd

As a result, the attacker could read the entire text of the password file.

Notice how this code also contains an error message information leak (CWE-209) if the user
parameter does not produce a file that exists: the full pathname is provided. Because of the lack
of output encoding of the file that is retrieved, there might also be a cross-site scripting problem
(CWE-79) if profile contains any HTML, but other code would need to be examined.

Example 2:

In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object.

Example Language: Java (bad)

String filename = System.getProperty("com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);

37

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

CWE Version 4.2
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

However, the path is not validated or modified to prevent it from containing relative or absolute
path sequences before creating the File object. This allows anyone who can control the system
property to determine what file is used. Ideally, the path should be resolved relative to some kind of
application or user home directory.

Example 3:

The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /nome/user/ directory and attempts to read the file in the final
resulting path.

Example Language: Perl (bad)

my $Username = GetUntrustedInput();
$Username =~ s\.\.V//;

my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:
Example Language: (attack)

.[..I..letc/passwd

will have the first "../" stripped, resulting in:

Example Language: (result)

.I..letc/passwd

This value is then concatenated with the /home/user/ directory:

Example Language: (result)

/home/user/../..letc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).

Example 4:

The following code attempts to validate a given input path by checking it against an allowlist and
once validated delete the given file. In this specific case, the path is considered valid if it starts with
the string "/safe_dir/".

Example Language: Java (bad)

String path = getlinputPath();
if (path.startsWith("/safe_dir/"))

File f = new File(path);
f.delete()
An attacker could provide an input such as this:

Example Language: (attack)

/safe_dir/../important.dat

38

CWE Version 4.2
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

The software assumes that the path is valid because it starts with the "/safe_path/" sequence, but
the "../" sequence will cause the program to delete the important.dat file in the parent directory

Example 5:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The HTML code is the same as in the previous example with the action
attribute of the form sending the upload file request to the Java servlet instead of the PHP code.

Example Language: HTML (good)

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:
<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>
</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

Example Language: Java (bad)

public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,
I0Exception {
response.setContentType(“text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
/I the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
/I verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data”) != -1) {
/Il extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getinputStream()));

pLine = br.readLine();
String filename = pLine.substring(pLine.lastindexOf("\\"), pLine.lastindexOf("\""));

/l output the file to the local upload directory
try {
BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null;) {
if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonenwit sadoidw) :gz-aMD

}
} /lend of for loop
bw.close();
} catch (IOException ex) {...}
/I output successful upload response HTML page
}
/I output unsuccessful upload response HTML page
else

{3

39

CWE Version 4.2
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

This code does not check the filename that is provided in the header, so an attacker can use

"..I" sequences to write to files outside of the intended directory. Depending on the executing
environment, the attacker may be able to specify arbitrary files to write to, leading to a wide variety
of consequences, from code execution, XSS (CWE-79), or system crash.

Also, this code does not perform a check on the type of the file being uploaded. This could allow an
attacker to upload any executable file or other file with malicious code (CWE-434).

Observed Examples

Reference Description

CVE-2010-0467 Newsletter module allows reading arbitrary files using "../" sequences.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0467

CVE-2009-4194 FTP server allows deletion of arbitrary files using ".." in the DELE command.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4194

CVE-2009-4053 FTP server allows creation of arbitrary directories using ".." in the MKD
command.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4053

CVE-2009-0244 OBEX FTP service for a Bluetooth device allows listing of directories, and
creation or reading of files using ".." sequences.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0244

CVE-2009-4013 Software package maintenance program allows overwriting arbitrary files using
"..I" sequences.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4013

CVE-2009-4449 Bulletin board allows attackers to determine the existence of files using the
avatar.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4449

CVE-2009-4581 PHP program allows arbitrary code execution using ".." in filenames that are
fed to the include() function.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4581

CVE-2010-0012 Overwrite of files using a .. in a Torrent file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0012

CVE-2010-0013 Chat program allows overwriting files using a custom smiley request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0013

CVE-2008-5748 Chain: external control of values for user's desired language and theme
enables path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5748

CVE-2009-1936 Chain: library file sends a redirect if it is directly requested but continues to
execute, allowing remote file inclusion and path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1936

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

Functional Areas
 File Processing
Affected Resources
 File or Directory
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2074

MemberOf 715 OWASP Top Ten 2007 Category A4 - Insecure Direct 629 1919
Object Reference

40

CWE Version 4.2
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Nature Type ID Name Page

MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access 711 1923
Control

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 1935
Input Output (FIO)

MemberOf 802 2010 Top 25 - Risky Resource Management 800 1943

MemberOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct 809 1946
Object References

MemberOf 865 2011 Top 25 - Risky Resource Management 900 1959

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 1965
(FIO)

MemberOf 884 CWE Cross-section 884 2090

MemberOf 932 OWASP Top Ten 2013 Category A4 - Insecure Direct 928 1978
Object References

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1997

MemberOf 1031 OWASP Top Ten 2017 Category A5 - Broken Access 1026 2025
Control

MemberOf 1131 CISQ Quality Measures - Security 1128 2029

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous 1200 2110
Software Errors

MemberOf 1308 CISQ Quality Measures - Security 1305 2071

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous 1350 2112
Software Weaknesses

Notes
Relationship

Pathname equivalence can be regarded as a type of canonicalization error.
Relationship

Some pathname equivalence issues are not directly related to directory traversal, rather are used
to bypass security-relevant checks for whether a file/directory can be accessed by the attacker
(e.g. a trailing "/" on a filename could bypass access rules that don't expect a trailing /, causing a
server to provide the file when it normally would not).

Terminology

Like other weaknesses, terminology is often based on the types of manipulations used, instead
of the underlying weaknesses. Some people use "directory traversal" only to refer to the injection
of ".." and equivalent sequences whose specific meaning is to traverse directories. Other variants
like "absolute pathname" and "drive letter" have the *effect* of directory traversal, but some

people may not call it such, since it doesn't involve ".." or equivalent.

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

Research Gap

Many variants of path traversal attacks are probably under-studied with respect to root cause.
CWE-790 and CWE-182 begin to cover part of this gap.

Research Gap

Incomplete diagnosis or reporting of vulnerabilities can make it difficult to know which variant is
affected. For example, a researcher might say that "..\" is vulnerable, but not test "../" which may
also be vulnerable. Any combination of directory separators ("/", "\", etc.) and numbers of "." (e.g.
"....") can produce unique variants; for example, the "//../" variant is not listed (CVE-2004-0325).
See this entry's children and lower-level descendants.

Taxonomy Mappings

41

CWE-23: Relative Path Traversal

CWE Version 4.2
CWE-23: Relative Path Traversal

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Path Traversal
OWASP Top Ten 2007 A4 CWE More Specific Insecure Direct Object Reference
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control
CERT C Secure Coding FIO02-C Canonicalize path names originating
from untrusted sources
SEI CERT Perl Coding IDS00- Exact Canonicalize path names before
Standard PL validating them
WASC 33 Path Traversal
Software Fault Patterns SFP16 Path Traversal
OMG ASCSM ASCSM-
CWE-22

Related Attack Patterns
CAPEC-ID Attack Pattern Name

64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
76 Manipulating Web Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
126 Path Traversal
References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >,

[REF-45]OWASP. "OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

[REF-185]OWASP. "Testing for Path Traversal (OWASP-AZ-001)". < http://www.owasp.org/
index.php/Testing_for_Path_Traversal (OWASP-AZ-001) >.

[REF-186]Johannes Ullrich. "Top 25 Series - Rank 7 - Path Traversal". 2010 March 9. SANS
Software Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/03/09/top-25-series-
rank-7-path-traversal/ >.

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. 1st Edition. 2006. Addison Wesley.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-23: Relative Path Traversal

Weakness ID : 23 Status: Draft
Structure : Simple
Abstraction : Base

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize sequences such as ".." that can resolve to a location
that is outside of that directory.

Extended Description

42

CWE Version 4.2

CWE-23: Relative Path Traversal

This allows attackers to traverse the file system to access files or directories that are outside of the

restricted directory.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 22 Improper Limitation of a Pathname to a Restricted Directory 31
(‘Path Traversal’)

ParentOf (V] 24 Path Traversal: '../filedir’ 48
ParentOf (V] 25 Path Traversal: '/../filedir' 50
ParentOf (V] 26 Path Traversal: '/dir/../filename’ 51
ParentOf (V] 27 Path Traversal: 'dir/../../filename' 53
ParentOf (V] 28 Path Traversal: "..\filedir' 55
ParentOf O 29 Path Traversal: \..\filename' 57
ParentOf (V] 30 Path Traversal: \dir\..\filename' 58
ParentOf (V] 31 Path Traversal: 'dir\..\..\filename' 60
ParentOf V] 32 Path Traversal: "..." (Triple Dot) 62
ParentOf (V] 33 Path Traversal: '...." (Multiple Dot) 64
ParentOf (V] 34 Path Traversal: "..../I" 66
ParentOf O 35 Path Traversal: '.../..II" 68
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf (B] 22 Improper Limitation of a Pathname to a Restricted Directory 31

(‘Path Traversal’)
Relevant to the view "Software Development" (CWE-699)

Confidentiality

Nature Type ID Name Page

MemberOf 1219 File Handling Issues 2065
Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood

Integrity Execute Unauthorized Code or Commands

ion.fllds?tlallty The attacker may be able to create or overwrite critical

vailability files that are used to execute code, such as programs or
libraries.
Integrity Modify Files or Directories

The attacker may be able to overwrite or create critical
files, such as programs, libraries, or important data. If
the targeted file is used for a security mechanism, then
the attacker may be able to bypass that mechanism.
For example, appending a new account at the end

of a password file may allow an attacker to bypass
authentication.

Read Files or Directories

43

[esianel] yred aAleay :€z-3MD

CWE-23: Relative Path Traversal

CWE Version 4.2
CWE-23: Relative Path Traversal

Scope Impact Likelihood

The attacker may be able read the contents of unexpected
files and expose sensitive data. If the targeted file is used
for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, by reading a
password file, the attacker could conduct brute force
password guessing attacks in order to break into an
account on the system.

Availability DoS: Crash, Exit, or Restart

The attacker may be able to overwrite, delete, or corrupt
unexpected critical files such as programs, libraries,

or important data. This may prevent the software from
working at all and in the case of a protection mechanisms
such as authentication, it has the potential to lockout every
user of the software.

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[.../I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked. Use a built-in path canonicalization
function (such as realpath() in C) that produces the canonical version of the pathname, which
effectively removes ".." sequences and symbolic links (CWE-23, CWE-59). This includes:
realpath() in C getCanonicalPath() in Java GetFullPath() in ASP.NET realpath() or abs_path() in
Perl realpath() in PHP

Demonstrative Examples

44

CWE Version 4.2
CWE-23: Relative Path Traversal

Example 1:

The following URLs are vulnerable to this attack:

Example Language: (bad)

http://example.com.br/get-files.jsp?file=report.pdf
http://example.com.br/get-page.php?home=aaa.html
http://example.com.br/some-page.asp?page=index.html

A simple way to execute this attack is like this:

Example Language: (attack)

http://example.com.br/get-files?file=../../../../somedir/somefile
http://lexample.com.br/../../../..letc/shadow
http://example.com.br/get-files?file=../../../../etc/passwd

Example 2:

The following code could be for a social networking application in which each user's profile
information is stored in a separate file. All files are stored in a single directory.

Example Language: Perl (bad)

my $dataPath = "/users/cwe/profiles";
my $username = param("user");
my $profilePath = $dataPath . "/* . $username;
open(my $fh, "<$profilePath") || ExitError("profile read error: $profilePath");
print "\n";
while (<$fh>) {
print "$_\n";

print "\n";

While the programmer intends to access files such as "/users/cwe/profiles/alice" or "/users/cwe/
profiles/bob", there is no verification of the incoming user parameter. An attacker could provide a
string such as:

Example Language: (attack)

.[I..1..letc/passwd

The program would generate a profile pathname like this:

Example Language: (result)

/users/cwe/profiles/../../..letc/passwd

When the file is opened, the operating system resolves the "../" during path canonicalization and
actually accesses this file:
Example Language: (result)

/etc/passwd

As a result, the attacker could read the entire text of the password file.

Notice how this code also contains an error message information leak (CWE-209) if the user
parameter does not produce a file that exists: the full pathname is provided. Because of the lack
of output encoding of the file that is retrieved, there might also be a cross-site scripting problem
(CWE-79) if profile contains any HTML, but other code would need to be examined.

45

[esianel] yred aAleay :€z-3MD

CWE-23: Relative Path Traversal

CWE Version 4.2
CWE-23: Relative Path Traversal

Example 3:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The action attribute of an HTML form is sending the upload file request to the
Java servlet.

Example Language: HTML (good)

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:

<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>

</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

Example Language: Java (bad)

public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,
I0Exception {
response.setContentType(“text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
/I the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
/I verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data”) != -1) {
/I extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getinputStream()));

pLine = br.readLine();
String filename = pLine.substring(pLine.lastindexOf("\\"), pLine.lastindexOf("\""));

I/l output the file to the local upload directory
try {
BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null;) {
if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

} /lend of for loop
bw.close();
} catch (IOException ex) {...}
/I output successful upload response HTML page

}

/I output unsuccessful upload response HTML page
else

{3

As with the previous example this code does not perform a check on the type of the file being
uploaded. This could allow an attacker to upload any executable file or other file with malicious
code.

46

CWE Version 4.2
CWE-23: Relative Path Traversal

Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-22,
CWE-23). Depending on the executing environment, the attacker may be able to specify arbitrary
files to write to, leading to a wide variety of consequences, from code execution, XSS (CWE-79), or

system crash.

Observed Examples

Reference
CVE-2002-0298

CVE-2002-0661

CVE-2002-0946

CVE-2002-1042

CVE-2002-1209

CVE-2002-1178

CVE-2002-1987

CVE-2005-2142

CVE-2002-0160

CVE-2001-0467

CVE-2001-0963

CVE-2001-1193

CVE-2001-1131

CVE-2001-0480

CVE-2002-0288

CVE-2003-0313

CVE-2005-1658

CVE-2000-0240

Description

Server allows remote attackers to cause a denial of service via certain

HTTP GET requests containing a %2e%?2e (encoded dot-dot), several "/../"
sequences, or several "../" in a URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0298

“\" not in denylist for web server, allowing path traversal attacks when the
server is run in Windows and other OSes.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0661

Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0946

Directory traversal vulnerability in search engine for web server allows remote
attackers to read arbitrary files via "..\" sequences in queries.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1042

Directory traversal vulnerability in FTP server allows remote attackers to read
arbitrary files via "..\" sequences in a GET request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1209

Directory traversal vulnerability in servlet allows remote attackers to execute
arbitrary commands via "..\" sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1178

Protection mechanism checks for "/.." but doesn't account for Windows-specific
"\.." allowing read of arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1987

Directory traversal vulnerability in FTP server allows remote authenticated
attackers to list arbitrary directories via a "\.." sequence in an LS command.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2142

The administration function in Access Control Server allows remote attackers
to read HTML, Java class, and image files outside the web root via a "..\.."
sequence in the URL to port 2002.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0160

"\..." in web server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0467

"..."in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0963

"..."in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1193

"..."in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1131

read of arbitrary files and directories using GET or CD with "..." in Windows-
based FTP server.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0480

read files using "." and Unicode-encoded "/" or "\" characters in the URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0288

Directory listing of web server using "..."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0313

Triple dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1658
read files via "/.......... /" in URL

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0240

47

[esianel] yred aAleay :€z-3MD

" [filedir’

CWE-24: Path Traversal:

CWE Version 4.2
CWE-24: Path Traversal: "../filedir'

Reference Description
CVE-2000-0773 read files via "...." in web server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0773

CVE-1999-1082 read files via "......" in web server (doubled triple dot?)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1082
CVE-2004-2121 read files via "......" in web server (doubled triple dot?)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2121
CVE-2001-0491 multiple attacks using "..", "...", and "...." in different commands
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0491
CVE-2001-0615 "..."or"..."in chat server

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0615
CVE-2005-2169 chain: ".../.../[" bypasses protection mechanism using regexp's that remove "../"
resulting in collapse into an unsafe value "../" (CWE-182) and resultant path

traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2169
CVE-2005-0202 ".../....[II" bypasses regexp's that remove "./" and "../"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0202

CVE-2004-1670 Mail server allows remote attackers to create arbitrary directories via a ".." or
rename arbitrary files via a "....//" in user supplied parameters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1670

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 884 CWE Cross-section 884 2090

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1997
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Relative Path Traversal

Software Fault Patterns SFP16 Path Traversal

Related Attack Patterns
CAPEC-ID Attack Pattern Name

76 Manipulating Web Input to File System Calls
139 Relative Path Traversal
References

[REF-192]OWASP. "OWASP Attack listing". < http://www.owasp.org/index.php/
Relative_Path_Traversal >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-24: Path Traversal: '../filedir'

Weakness ID : 24 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

48

CWE Version 4.2
CWE-24: Path Traversal: "../filedir'

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "../" sequences that can resolve to a location that is
outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The "../" manipulation is the canonical manipulation for operating systems that use "/* as directory
separators, such as UNIX- and Linux-based systems. In some cases, it is useful for bypassing
protection schemes in environments for which "/* is supported but not the primary separator, such
as Windows, which uses "\" but can also accept "/".

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 23 Relative Path Traversal 42

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the

49

.Jlesianel] yred vz-aMOD

AIPB[Y/,

. [filedir'

CWE-25: Path Traversal:

CWE Version 4.2
CWE-25: Path Traversal: '/../filedir'

...[l..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1997
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER " [filedir

Software Fault Patterns SFP16 Path Traversal

CWE-25: Path Traversal: '/../filedir’

Weakness ID : 25 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "/../" sequences that can resolve to a location that is
outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

Sometimes a program checks for "../" at the beginning of the input, so a "/../" can bypass that
check.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 23 Relative Path Traversal 42

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

50

CWE Version 4.2
CWE-26: Path Traversal: '/dir/../filename'

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[.../I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1997
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER '/..[filedir

Software Fault Patterns SFP16 Path Traversal

CWE-26: Path Traversal: '/dir/../filename’
Weakness ID : 26 Status: Draft

51

.Jlesianel] yred :92-ImMo

Sweus|y//Ip/,

‘Idir/..[filename’

CWE-26; Path Traversal:

CWE Version 4.2
CWE-26: Path Traversal: '/dir/../filename'

Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "/dir/../filename" sequences that can resolve to a
location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The '/dir/../[flename' manipulation is useful for bypassing some path traversal protection schemes.
Sometimes a program only checks for "../" at the beginning of the input, so a "/../" can bypass that
check.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 23 Relative Path Traversal 42

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Technology : Web Server (Prevalence = Often)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially

52

CWE Version 4.2
CWE-27: Path Traversal: 'dir/../../filename'

dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1997
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER '[directoryl/../filename

Software Fault Patterns SFP16 Path Traversal

CWE-27: Path Traversal: 'dir/../../filename'

Weakness ID : 27 Status: Draft
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize multiple internal "../" sequences that can resolve to a
location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The 'directory/../../[flename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "../" sequence, so multiple "../" can bypass that
check. Alternately, this manipulation could be used to bypass a check for "../" at the beginning of
the pathname, moving up more than one directory level.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

53

.Jlesianel] yred :LZ2-IMD

Sweus|y/ /T HIp,

'dir/../../[filename'

CWE-27: Path Traversal:

CWE Version 4.2
CWE-27: Path Traversal: 'dir/../../filename'

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 42

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..[I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-0298 Server allows remote attackers to cause a denial of service via certain
HTTP GET requests containing a %2e%?2e (encoded dot-dot), several "/../"
sequences, or several "../" in a URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0298

MemberOf Relationships

54

CWE Version 4.2
CWE-28: Path Traversal: "..\filedir'

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1997
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER ‘directoryl/../../filename

Software Fault Patterns SFP16 Path Traversal

CWE-28: Path Traversal: ‘. \filedir'

Weakness ID : 28 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "..\" sequences that can resolve to a location that is
outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The '..\" manipulation is the canonical manipulation for operating systems that use "\" as directory
separators, such as Windows. However, it is also useful for bypassing path traversal protection
schemes that only assume that the "/" separator is valid.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf Q 23 Relative Path Traversal 42

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

55

.Jlesianel] yred :82-IMD

ARSI,

Xfiledir!

CWE-28: Path Traversal:

CWE Version 4.2
CWE-28: Path Traversal: "..\filedir'

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-0661 "\" not in denylist for web server, allowing path traversal attacks when the
server is run in Windows and other OSes.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0661

CVE-2002-0946 Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0946

CVE-2002-1042 Directory traversal vulnerability in search engine for web server allows remote
attackers to read arbitrary files via "..\" sequences in queries.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1042

CVE-2002-1209 Directory traversal vulnerability in FTP server allows remote attackers to read
arbitrary files via "..\" sequences in a GET request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1209

CVE-2002-1178 Directory traversal vulnerability in servlet allows remote attackers to execute
arbitrary commands via "..\" sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1178

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1997

Taxonomy Mappings
56

CWE Version 4.2
CWE-29: Path Traversal: '\..\flename'

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER " \filename' ('dot dot backslash")
Software Fault Patterns SFP16 Path Traversal

CWE-29: Path Traversal: '\..\filename'

Weakness ID : 29 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize \..\flename' (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

This is similar to CWE-25, except using "\" instead of "/*. Sometimes a program checks for "..\"
at the beginning of the input, so a "\..\" can bypass that check. It is also useful for bypassing path
traversal protection schemes that only assume that the "/* separator is valid.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 42

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on

57

.Jlesianel] yred :62-IMD

SWEBUS[IN™,

\dir\..\filename'

CWE-30; Path Traversal:

CWE Version 4.2
CWE-30: Path Traversal: \dir\..\filename'

looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific
"\.." allowing read of arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1987

CVE-2005-2142 Directory traversal vulnerability in FTP server allows remote authenticated
attackers to list arbitrary directories via a "\.." sequence in an LS command.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2142

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1997
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER \..\filename' ('leading dot dot
backslash’)
Software Fault Patterns SFP16 Path Traversal

CWE-30: Path Traversal: "\dir\..\filename'

Weakness ID : 30 Status: Draft
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize \dir\..\filename' (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.

58

CWE Version 4.2
CWE-30: Path Traversal: \dir\..\filename'

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

This is similar to CWE-26, except using "\" instead of "/". The "\dir\..\filename' manipulation is useful
for bypassing some path traversal protection schemes. Sometimes a program only checks for "..\"
at the beginning of the input, so a "\..\" can bypass that check.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 42

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[.../I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

59

.Jlesianel] yred :0e-IMO

SWEUS[IN\\JIP\,

'dir\..\..\filename'

CWE-31: Path Traversal:

CWE Version 4.2
CWE-31: Path Traversal: 'dir\..\..\filename'

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific
"\.." allowing read of arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1987

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1997
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER 7 - \directory\..\filename

Software Fault Patterns SFP16 Path Traversal

CWE-31: Path Traversal: 'dir\..\..\filename'

Weakness ID : 31 Status: Draft
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize 'dir\..\..\filename' (multiple internal backslash dot dot)
sequences that can resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The 'dir\..\..\filename' manipulation is useful for bypassing some path traversal protection schemes.
Sometimes a program only removes one "..\" sequence, so multiple "..\" can bypass that check.
Alternately, this manipulation could be used to bypass a check for "..\" at the beginning of the
pathname, moving up more than one directory level.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

60

CWE Version 4.2
CWE-31: Path Traversal: ‘dir\..\..\filename'

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 42

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-0160 The administration function in Access Control Server allows remote attackers
to read HTML, Java class, and image files outside the web root via a "..\.."
sequence in the URL to port 2002.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0160

MemberOf Relationships

61

.Jlesianel] yred :T€-IMD

SWEBUS[IN"\"\JIP,

... (Triple Dot)

CWE-32; Path Traversal:

CWE Version 4.2
CWE-32: Path Traversal: "..." (Triple Dot)

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1997
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER 8 - 'directory\..\..\filename
Software Fault Patterns SFP16 Path Traversal
References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-32: Path Traversal: '..." (Triple Dot)

Weakness ID : 32 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '..." (triple dot) sequences that can resolve to a location
that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The '..." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\.." and might bypass checks that assume only two dots

are valid. Incomplete filtering, such as removal of "./" sequences, can ultimately produce valid "..
seguences due to a collapse into unsafe value (CWE-182).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 23 Relative Path Traversal 42

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations

62

CWE Version 4.2
CWE-32: Path Traversal: "..." (Triple Dot)

Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[.../I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2001-0467 "\..."in web server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0467

CVE-2001-0615 "..."or"..."in chat server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0615
CVE-2001-0963 "..."in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0963
CVE-2001-1193 "..."in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1193
CVE-2001-1131 "..."in cd command in FTP server

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1131

CVE-2001-0480 read of arbitrary files and directories using GET or CD with "..." in Windows-
based FTP server.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0480

CVE-2002-0288 read files using "." and Unicode-encoded "/" or "\" characters in the URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0288

CVE-2003-0313 Directory listing of web server using "..."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0313

CVE-2005-1658 Triple dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1658

63

.Jlesianel] yred :2e-amMo

(rog eiduy)

.... (Multiple Dot)

CWE-33: Path Traversal:

CWE Version 4.2
CWE-33: Path Traversal: "...." (Multiple Dot)

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1997
Notes

Maintenance

This manipulation-focused entry is currently hiding two distinct weaknesses, so it might need
to be split. The manipulation is effective in two different contexts: it is equivalent to "..\.." on
Windows, or it can take advantage of incomplete filtering, e.g. if the programmer does a single-
pass removal of "./" in a string (collapse of data into unsafe value, CWE-182).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER "..." (triple dot)
Software Fault Patterns SFP16 Path Traversal
CWE-33: Path Traversal: "...." (Multiple Dot)
Weakness ID : 33 Status: Incomplete

Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '...." (multiple dot) sequences that can resolve to a
location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The '...." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\..\.." and might bypass checks that assume only two dots
are valid. Incomplete filtering, such as removal of "./" sequences, can ultimately produce valid ".."
sequences due to a collapse into unsafe value (CWE-182).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 23 Relative Path Traversal 42
CanFollow E] 182 Collapse of Data into Unsafe Value 425

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

64

CWE Version 4.2
CWE-33: Path Traversal: "...." (Multiple Dot)

Common Consequences

Scope
Confidentiality
Integrity

Potential Mitigations

Impact Likelihood
Read Files or Directories
Modify Files or Directories

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a

single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..[I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference
CVE-2000-0240

CVE-2000-0773

CVE-1999-1082

CVE-2004-2121

CVE-2001-0491

CVE-2001-0615

Description

read files via "/.......... /"in URL
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0240
read files via "...." in web server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0773
read files via "......" in web server (doubled triple dot?)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1082
read files via "......" in web server (doubled triple dot?)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2121
multiple attacks using "..", "...", and "...." in different commands
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0491
"."or"..."in chat server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0615

MemberOf Relationships

65

|lesianel] yred :€€-ImMD

(o@ aydnininy)

Al

CWE-34: Path Traversal:

CWE Version 4.2
CWE-34: Path Traversal: "..../I"

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1997
Notes

Maintenance

Like the triple-dot CWE-32, this manipulation probably hides multiple weaknesses that should be
made more explicit.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER "...." (multiple dot)
Software Fault Patterns SFP16 Path Traversal

CWE-34: Path Traversal: '..../I'

Weakness ID : 34 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '....//' (doubled dot dot slash) sequences that can
resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The "..../I' manipulation is useful for bypassing some path traversal protection schemes. If "../"

is filtered in a sequential fashion, as done by some regular expression engines, then "....//" can
collapse into the "../" unsafe value (CWE-182). It could also be useful when ".." is removed, if the
operating system treats "//" and "/" as equivalent.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 42
CanFollow Q 182 Collapse of Data into Unsafe Value 425

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories

66

CWE Version 4.2
CWE-34: Path Traversal: "..../I"

Scope Impact Likelihood
Integrity Modify Files or Directories

Detection Methods
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial
Architecture or Desigh Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction

Effectiveness = High
Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2004-1670 Mail server allows remote attackers to create arbitrary directories via a ".." or
rename arbitrary files via a "....//" in user supplied parameters.

67

.[esianel] yred v£-ImMOD

T

A

CWE-35:; Path Traversal:

CWE Version 4.2
CWE-35: Path Traversal: "...[.../I"

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1670

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1997
Notes

Relationship
This could occur due to a cleansing error that removes a single "../" from "..../["

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER "..../I' (doubled dot dot slash)
Software Fault Patterns SFP16 Path Traversal

CWE-35: Path Traversal: '.../...II"

Weakness ID : 35 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '.../.../I' (doubled triple dot slash) sequences that can
resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The ".../.../I' manipulation is useful for bypassing some path traversal protection schemes. If "../"

is filtered in a sequential fashion, as done by some regular expression engines, then ".../.../[" can
collapse into the "../" unsafe value (CWE-182). Removing the first "../" yields "..../["; the second
removal yields "../". Depending on the algorithm, the software could be susceptible to CWE-34 but
not CWE-35, or vice versa.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 23 Relative Path Traversal 42
CanFollow E] 182 Collapse of Data into Unsafe Value 425

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

68

CWE Version 4.2
CWE-35: Path Traversal: ".../.../I"

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..[I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2005-2169 chain: ".../.../[" bypasses protection mechanism using regexp's that remove "../"
resulting in collapse into an unsafe value "../" (CWE-182) and resultant path

traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2169
CVE-2005-0202 "...I.../II" bypasses regexp's that remove "./" and "../"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0202
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1997

69

.[esianel] yred :Ge-IMOD

e

Il

CWE-36: Absolute Path Traversal

CWE Version 4.2
CWE-36: Absolute Path Traversal

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER AW/
Software Fault Patterns SFP16 Path Traversal

CWE-36: Absolute Path Traversal

Weakness ID : 36 Status: Draft
Structure : Simple
Abstraction : Base

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize absolute path sequences such as "/abs/path" that can
resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf Q 22 Improper Limitation of a Pathname to a Restricted Directory 31
(‘Path Traversal’)

ParentOf V] 37 Path Traversal: ‘/absolute/pathname/here’ 74
ParentOf V] 38 Path Traversal: \absolute\pathname\here' 75
ParentOf V] 39 Path Traversal: 'C:dirname’ 77
ParentOf V] 40 Path Traversal: WUNC\share\name\' (Windows UNC Share) 80
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf E] 22 Improper Limitation of a Pathname to a Restricted Directory 31

(‘Path Traversal’)
Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1219 File Handling Issues 2065

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Execute Unauthorized Code or Commands
Con.flde_r?nahty The attacker may be able to create or overwrite critical
Availability files that are used to execute code, such as programs or
libraries.
Integrity Modify Files or Directories

70

CWE Version 4.2
CWE-36: Absolute Path Traversal

Scope Impact Likelihood
The attacker may be able to overwrite or create critical
files, such as programs, libraries, or important data. If
the targeted file is used for a security mechanism, then
the attacker may be able to bypass that mechanism.
For example, appending a new account at the end
of a password file may allow an attacker to bypass
authentication.
Confidentiality Read Files or Directories

The attacker may be able read the contents of unexpected
files and expose sensitive data. If the targeted file is used
for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, by reading a
password file, the attacker could conduct brute force
password guessing attacks in order to break into an
account on the system.

Availability DoS: Crash, Exit, or Restart

The attacker may be able to overwrite, delete, or corrupt
unexpected critical files such as programs, libraries,

or important data. This may prevent the software from
working at all and in the case of a protection mechanisms
such as authentication, it has the potential to lockout every
user of the software.

Demonstrative Examples
Example 1:

In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object.

Example Language: Java (bad)

String filename = System.getProperty("com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);

However, the path is not validated or modified to prevent it from containing absolute path
sequences before creating the File object. This allows anyone who can control the system property
to determine what file is used. Ideally, the path should be resolved relative to some kind of
application or user home directory.

Example 2:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The action attribute of an HTML form is sending the upload file request to the
Java servlet.

Example Language: HTML (good)

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:

<input type="file" name="filename"/>

<input type="submit" nhame="submit" value="Submit"/>

</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

71

[esiaAel] ylred ain|osqy :9¢-IMD

CWE-36: Absolute Path Traversal

CWE Version 4.2
CWE-36: Absolute Path Traversal

Example Language: Java (bad)

public class FileUploadServlet extends HttpServiet {

protected void doPost(HttpServletRequest request, HttpServlietResponse response) throws ServletException,
I0Exception {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
/I the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
/I verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data”) != -1) {
/Il extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getinputStream()));

pLine = br.readLine();
String filename = pLine.substring(pLine.lastindexOf("\\"), pLine.lastindexOf("\""));

/I output the file to the local upload directory
try {
BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null;) {
if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

}
} /lend of for loop
bw.close();
} catch (IOException ex) {...}
/I output successful upload response HTML page
}
/I output unsuccessful upload response HTML page
else

{3

As with the previous example this code does not perform a check on the type of the file being
uploaded. This could allow an attacker to upload any executable file or other file with malicious
code.

Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-22,
CWE-23). Depending on the executing environment, the attacker may be able to specify arbitrary
files to write to, leading to a wide variety of consequences, from code execution, XSS (CWE-79), or
system crash.

Observed Examples

Reference Description
CVE-2002-1345 Multiple FTP clients write arbitrary files via absolute paths in server responses

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1345

CVE-2001-1269 ZIP file extractor allows full path

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1269

CVE-2002-1818 Path traversal using absolute pathname

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1818

CVE-2002-1913 Path traversal using absolute pathname

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1913

CVE-2005-2147 Path traversal using absolute pathname

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2147

72

CWE Version 4.2
CWE-36: Absolute Path Traversal

Reference
CVE-2000-0614

CVE-1999-1263

CVE-2003-0753

CVE-2002-1525

CVE-2001-0038

CVE-2001-0255

CVE-2001-0933

CVE-2002-0466

CVE-2002-1483

CVE-2004-2488

CVE-2001-0687

Description

Arbitrary files may be overwritten via compressed attachments that specify
absolute path names for the decompressed output.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0614

Malil client allows remote attackers to overwrite arbitrary files via an e-mail
message containing a uuencoded attachment that specifies the full pathname
for the file to be modified.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1263

Remote attackers can read arbitrary files via a full pathname to the target file in
config parameter.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0753

Remote attackers can read arbitrary files via an absolute pathname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1525

Remote attackers can read arbitrary files by specifying the drive letter in the
requested URL.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0038

FTP server allows remote attackers to list arbitrary directories by using the
"Is" command and including the drive letter name (e.g. C:) in the requested
pathname.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0255

FTP server allows remote attackers to list the contents of arbitrary drives via a
Is command that includes the drive letter as an argument.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0933

Server allows remote attackers to browse arbitrary directories via a full
pathname in the arguments to certain dynamic pages.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0466

Remote attackers can read arbitrary files via an HTTP request whose
argument is a filename of the form "C:" (Drive letter), "//absolute/path”, or ".." .
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1483

FTP server read/access arbitrary files using "C:\" filenames
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2488

FTP server allows a remote attacker to retrieve privileged web server system
information by specifying arbitrary paths in the UNC format (\\computername
\sharename).

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0687

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2090
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1997

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit
PLOVER
Software Fault Patterns

Related Attack Patterns

CAPEC-ID Attack Pattern Name
597 Absolute Path Traversal

Mapped Node Name
Absolute Path Traversal

SFP16 Path Traversal

References

73

[esiaAel] ylred ain|osqy :9¢-IMD

CWE-37: Path Traversal: '/absolute/pathname/here’

CWE Version 4.2
CWE-37: Path Traversal: '/absolute/pathname/here'

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-37: Path Traversal: '/absolute/pathname/here'

Weakness ID : 37 Status: Draft
Structure : Simple
Abstraction : Variant

Description

A software system that accepts input in the form of a slash absolute path ('/absolute/pathname/
here") without appropriate validation can allow an attacker to traverse the file system to unintended
locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 160 Improper Neutralization of Leading Special Elements 384
ChildOf (B} 36 Absolute Path Traversal 70

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing

input validation, consider all potentially relevant properties, including length, type of input, the

full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a

74

CWE Version 4.2
CWE-38: Path Traversal: "\absolute\pathname\here'

directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the

"..[..II" string in a

sequential fashion, two instances of "../" would be removed from the original

string, but the remaining characters would still form the "../" string.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation

before being valid

ated (CWE-180). Make sure that the application does not decode the same

input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference
CVE-2002-1345

CVE-2001-1269
CVE-2002-1818
CVE-2002-1913
CVE-2005-2147

CVE-2000-0614

Description

Multiple FTP clients write arbitrary files via absolute paths in server responses
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1345

ZIP file extractor allows full path
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1269

Path traversal using absolute pathname
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1818

Path traversal using absolute pathname
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1913

Path traversal using absolute pathname
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2147

Arbitrary files may be overwritten via compressed attachments that specify
absolute path names for the decompressed output.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0614

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits

within the context of

Nature Type
MemberOf

MemberOf

external information sources.

ID Name Page

743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 1935
Input Output (FIO)

877 CERT C++ Secure Coding Section 09 - Input Output 868 1965

(FIO)
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1997
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER

CERT C Secure Coding FIO05-C

/absolute/pathname/here
Identify files using multiple file attributes

Software Fault Patterns SFP16 Path Traversal

CWE-38: Path Traversal: "\absolute\pathname\here'

Weakness ID : 38
Structure : Simple
Abstraction : Variant

Description

Status: Draft

75

,SJGH\SWEUHIBd\Sln|OSC]E\, .lesianel] ylred :8¢-amnMD

CWE Version 4.2
CWE-38: Path Traversal: \absolute\pathname\here'

A software system that accepts input in the form of a backslash absolute path (\absolute\pathname
\here") without appropriate validation can allow an attacker to traverse the file system to unintended
locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 36 Absolute Path Traversal 70

Applicable Platforms
Language : L