CWE

Common Weakness Enumeration

A Community-Developed List of Software Weakness Types

CWE/SANS Top 25 Most Dangerous Software Errors
Home > CWE List > COMPOSITE SLICE: CWE-352: Cross-Site Request Forgery (CSRF) (2.12)  
ID

CWE-352: Cross-Site Request Forgery (CSRF)

Weakness ID: 352
Abstraction: Compound
Structure: Composite
Status: Draft
Presentation Filter:
+ Description
The web application does not, or can not, sufficiently verify whether a well-formed, valid, consistent request was intentionally provided by the user who submitted the request.
+ Composite Components
+ Extended Description
When a web server is designed to receive a request from a client without any mechanism for verifying that it was intentionally sent, then it might be possible for an attacker to trick a client into making an unintentional request to the web server which will be treated as an authentic request. This can be done via a URL, image load, XMLHttpRequest, etc. and can result in exposure of data or unintended code execution.
+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
NatureTypeIDName
ChildOfClassClass345Insufficient Verification of Data Authenticity
+ Relevant to the view "Architectural Concepts" (CWE-1008)
NatureTypeIDName
MemberOfCategoryCategory1019Validate Inputs
+ Relevant to the view "Development Concepts" (CWE-699)
NatureTypeIDName
MemberOfCategoryCategory442Web Problems
ChildOfClassClass345Insufficient Verification of Data Authenticity
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

PhaseNote
Architecture and DesignREALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

(Language-Independent classes): (Undetermined Prevalence)

Technologies

Web Server: (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Confidentiality
Integrity
Availability
Non-Repudiation
Access Control

Technical Impact: Gain Privileges or Assume Identity; Bypass Protection Mechanism; Read Application Data; Modify Application Data; DoS: Crash, Exit, or Restart

The consequences will vary depending on the nature of the functionality that is vulnerable to CSRF. An attacker could effectively perform any operations as the victim. If the victim is an administrator or privileged user, the consequences may include obtaining complete control over the web application - deleting or stealing data, uninstalling the product, or using it to launch other attacks against all of the product's users. Because the attacker has the identity of the victim, the scope of CSRF is limited only by the victim's privileges.
+ Alternate Terms
Session Riding
Cross Site Reference Forgery
XSRF
+ Likelihood Of Exploit
Medium
+ Demonstrative Examples

Example 1

This example PHP code attempts to secure the form submission process by validating that the user submitting the form has a valid session. A CSRF attack would not be prevented by this countermeasure because the attacker forges a request through the user's web browser in which a valid session already exists.

The following HTML is intended to allow a user to update a profile.

(bad)
Example Language: HTML 
<form action="/url/profile.php" method="post">
<input type="text" name="firstname"/>
<input type="text" name="lastname"/>
<br/>
<input type="text" name="email"/>
<input type="submit" name="submit" value="Update"/>
</form>

profile.php contains the following code.

(bad)
Example Language: PHP 
// initiate the session in order to validate sessions

session_start();
//if the session is registered to a valid user then allow update


if (! session_is_registered("username")) {

echo "invalid session detected!";
// Redirect user to login page

[...]

exit;

}
// The user session is valid, so process the request
// and update the information


update_profile();

function update_profile {
// read in the data from $POST and send an update
// to the database
SendUpdateToDatabase($_SESSION['username'], $_POST['email']);
[...]
echo "Your profile has been successfully updated.";

}

This code may look protected since it checks for a valid session. However, CSRF attacks can be staged from virtually any tag or HTML construct, including image tags, links, embed or object tags, or other attributes that load background images.

The attacker can then host code that will silently change the username and email address of any user that visits the page while remaining logged in to the target web application. The code might be an innocent-looking web page such as:

(attack)
Example Language: HTML 
<SCRIPT>
function SendAttack () {
form.email = "attacker@example.com";
// send to profile.php

form.submit();

}
</SCRIPT>

<BODY onload="javascript:SendAttack();">

<form action="http://victim.example.com/profile.php" id="form" method="post">
<input type="hidden" name="firstname" value="Funny">
<input type="hidden" name="lastname" value="Joke">
<br/>
<input type="hidden" name="email">
</form>

Notice how the form contains hidden fields, so when it is loaded into the browser, the user will not notice it. Because SendAttack() is defined in the body's onload attribute, it will be automatically called when the victim loads the web page.

Assuming that the user is already logged in to victim.example.com, profile.php will see that a valid user session has been established, then update the email address to the attacker's own address. At this stage, the user's identity has been compromised, and messages sent through this profile could be sent to the attacker's address.

+ Observed Examples
ReferenceDescription
Add user accounts via a URL in an img tag
Add user accounts via a URL in an img tag
Arbitrary code execution by specifying the code in a crafted img tag or URL
Gain administrative privileges via a URL in an img tag
Delete a victim's information via a URL or an img tag
Change another user's settings via a URL or an img tag
Perform actions as administrator via a URL or an img tag
modify password for the administrator
CMS allows modification of configuration via CSRF attack against the administrator
web interface allows password changes or stopping a virtual machine via CSRF
+ Potential Mitigations

Phase: Architecture and Design

Strategy: Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, use anti-CSRF packages such as the OWASP CSRFGuard. [REF-330] Another example is the ESAPI Session Management control, which includes a component for CSRF. [REF-45]

Phase: Implementation

Ensure that the application is free of cross-site scripting issues (CWE-79), because most CSRF defenses can be bypassed using attacker-controlled script.

Phase: Architecture and Design

Generate a unique nonce for each form, place the nonce into the form, and verify the nonce upon receipt of the form. Be sure that the nonce is not predictable (CWE-330). [REF-332]
Note that this can be bypassed using XSS (CWE-79).

Phase: Architecture and Design

Identify especially dangerous operations. When the user performs a dangerous operation, send a separate confirmation request to ensure that the user intended to perform that operation.
Note that this can be bypassed using XSS (CWE-79).

Phase: Architecture and Design

Use the "double-submitted cookie" method as described by Felten and Zeller: When a user visits a site, the site should generate a pseudorandom value and set it as a cookie on the user's machine. The site should require every form submission to include this value as a form value and also as a cookie value. When a POST request is sent to the site, the request should only be considered valid if the form value and the cookie value are the same. Because of the same-origin policy, an attacker cannot read or modify the value stored in the cookie. To successfully submit a form on behalf of the user, the attacker would have to correctly guess the pseudorandom value. If the pseudorandom value is cryptographically strong, this will be prohibitively difficult. This technique requires Javascript, so it may not work for browsers that have Javascript disabled. [REF-331]
Note that this can probably be bypassed using XSS (CWE-79), or when using web technologies that enable the attacker to read raw headers from HTTP requests.

Phase: Architecture and Design

Do not use the GET method for any request that triggers a state change.

Phase: Implementation

Check the HTTP Referer header to see if the request originated from an expected page. This could break legitimate functionality, because users or proxies may have disabled sending the Referer for privacy reasons.
Note that this can be bypassed using XSS (CWE-79). An attacker could use XSS to generate a spoofed Referer, or to generate a malicious request from a page whose Referer would be allowed.
+ Detection Methods

Manual Analysis

This weakness can be detected using tools and techniques that require manual (human) analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester to record and modify an active session.

Specifically, manual analysis can be useful for finding this weakness, and for minimizing false positives assuming an understanding of business logic. However, it might not achieve desired code coverage within limited time constraints. For black-box analysis, if credentials are not known for privileged accounts, then the most security-critical portions of the application may not receive sufficient attention.

Consider using OWASP CSRFTester to identify potential issues and aid in manual analysis.

Effectiveness: High

These may be more effective than strictly automated techniques. This is especially the case with weaknesses that are related to design and business rules.

Automated Static Analysis

CSRF is currently difficult to detect reliably using automated techniques. This is because each application has its own implicit security policy that dictates which requests can be influenced by an outsider and automatically performed on behalf of a user, versus which requests require strong confidence that the user intends to make the request. For example, a keyword search of the public portion of a web site is typically expected to be encoded within a link that can be launched automatically when the user clicks on the link.

Effectiveness: Limited

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Bytecode Weakness Analysis - including disassembler + source code weakness analysis
  • Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness: SOAR Partial

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Binary / Bytecode disassembler - then use manual analysis for vulnerabilities & anomalies

Effectiveness: SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Web Application Scanner

Effectiveness: High

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Fuzz Tester
  • Framework-based Fuzzer

Effectiveness: High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Focused Manual Spotcheck - Focused manual analysis of source
  • Manual Source Code Review (not inspections)

Effectiveness: SOAR Partial

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Source code Weakness Analyzer
  • Context-configured Source Code Weakness Analyzer

Effectiveness: SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)
  • Formal Methods / Correct-By-Construction

Effectiveness: SOAR Partial

+ Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
+ Notes

Relationship

This can be resultant from XSS, although XSS is not necessarily required.

Research Gap

This issue was under-reported in CVE until around 2008, when it began to gain prominence. It is likely to be present in most web applications.

Theoretical

The CSRF topology is multi-channel:

1. Attacker (as outsider) to intermediary (as user). The interaction point is either an external or internal channel.
2. Intermediary (as user) to server (as victim). The activation point is an internal channel.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
PLOVERCross-Site Request Forgery (CSRF)
OWASP Top Ten 2007A5ExactCross Site Request Forgery (CSRF)
WASC9Cross-site Request Forgery
+ References
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 2: Web-Server Related Vulnerabilities (XSS, XSRF, and Response Splitting)." Page 37. McGraw-Hill. 2010.
[REF-329] Peter W. "Cross-Site Request Forgeries (Re: The Dangers of Allowing Users to Post Images)". Bugtraq. <http://marc.info/?l=bugtraq&m=99263135911884&w=2>.
[REF-330] OWASP. "Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet". <http://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet>.
[REF-331] Edward W. Felten and William Zeller. "Cross-Site Request Forgeries: Exploitation and Prevention". 2008-10-18. <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.1445>.
[REF-332] Robert Auger. "CSRF - The Cross-Site Request Forgery (CSRF/XSRF) FAQ". <http://www.cgisecurity.com/articles/csrf-faq.shtml>.
[REF-333] "Cross-site request forgery". Wikipedia. 2008-12-22. <http://en.wikipedia.org/wiki/Cross-site_request_forgery>.
[REF-334] Jason Lam. "Top 25 Series - Rank 4 - Cross Site Request Forgery". SANS Software Security Institute. 2010-03-03. <http://software-security.sans.org/blog/2010/03/03/top-25-series-rank-4-cross-site-request-forgery>.
[REF-335] Jeff Atwood. "Preventing CSRF and XSRF Attacks". 2008-10-14. <http://www.codinghorror.com/blog/2008/10/preventing-csrf-and-xsrf-attacks.html>.
[REF-45] OWASP. "OWASP Enterprise Security API (ESAPI) Project". <http://www.owasp.org/index.php/ESAPI>.
+ Content History
Submissions
Submission DateSubmitterOrganizationSource
PLOVER
Modifications
Modification DateModifierOrganizationSource
2008-07-01Eric DalciCigital
updated Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Alternate_Terms, Description, Relationships, Other_Notes, Relationship_Notes, Taxonomy_Mappings
2009-01-12CWE Content TeamMITRE
updated Applicable_Platforms, Description, Likelihood_of_Exploit, Observed_Examples, Other_Notes, Potential_Mitigations, References, Relationship_Notes, Relationships, Research_Gaps, Theoretical_Notes
2009-03-10CWE Content TeamMITRE
updated Potential_Mitigations
2009-05-20Tom Stracener
Added demonstrative example for profile.
2009-05-27CWE Content TeamMITRE
updated Demonstrative_Examples, Related_Attack_Patterns
2009-12-28CWE Content TeamMITRE
updated Common_Consequences, Demonstrative_Examples, Detection_Factors, Likelihood_of_Exploit, Observed_Examples, Potential_Mitigations, Time_of_Introduction
2010-02-16CWE Content TeamMITRE
updated Applicable_Platforms, Detection_Factors, References, Relationships, Taxonomy_Mappings
2010-06-21CWE Content TeamMITRE
updated Common_Consequences, Detection_Factors, Potential_Mitigations, References, Relationships
2010-09-27CWE Content TeamMITRE
updated Potential_Mitigations
2011-03-29CWE Content TeamMITRE
updated Description
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2011-06-27CWE Content TeamMITRE
updated Relationships
2011-09-13CWE Content TeamMITRE
updated Potential_Mitigations, References
2012-05-11CWE Content TeamMITRE
updated Related_Attack_Patterns, Relationships
2012-10-30CWE Content TeamMITRE
updated Potential_Mitigations
2013-02-21CWE Content TeamMITRE
updated Relationships
2013-07-17CWE Content TeamMITRE
updated References, Relationships
2014-07-30CWE Content TeamMITRE
updated Detection_Factors
2015-12-07CWE Content TeamMITRE
updated Relationships
2017-11-08CWE Content TeamMITRE
updated Applicable_Platforms, Likelihood_of_Exploit, Modes_of_Introduction, References, Relationships
Composite Components
Composite Components
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

CWE-642: External Control of Critical State Data

Weakness ID: 642
Abstraction: Class
Structure: Simple
Status: Draft
Presentation Filter:
+ Description
The software stores security-critical state information about its users, or the software itself, in a location that is accessible to unauthorized actors.
+ Extended Description

If an attacker can modify the state information without detection, then it could be used to perform unauthorized actions or access unexpected resources, since the application programmer does not expect that the state can be changed.

State information can be stored in various locations such as a cookie, in a hidden web form field, input parameter or argument, an environment variable, a database record, within a settings file, etc. All of these locations have the potential to be modified by an attacker. When this state information is used to control security or determine resource usage, then it may create a vulnerability. For example, an application may perform authentication, then save the state in an "authenticated=true" cookie. An attacker may simply create this cookie in order to bypass the authentication.

+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Architectural Concepts" (CWE-1008)
NatureTypeIDName
MemberOfCategoryCategory1011Authorize Actors
+ Relevant to the view "Development Concepts" (CWE-699)
NatureTypeIDName
MemberOfCategoryCategory371State Issues
ParentOfBaseBase15External Control of System or Configuration Setting
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

PhaseNote
Architecture and DesignOMISSION: This weakness is caused by missing a security tactic during the architecture and design phase.
Implementation
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

(Language-Independent classes): (Undetermined Prevalence)

Technologies

Web Server: (Often Prevalent)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Access Control

Technical Impact: Bypass Protection Mechanism; Gain Privileges or Assume Identity

An attacker could potentially modify the state in malicious ways. If the state is related to the privileges or level of authentication that the user has, then state modification might allow the user to bypass authentication or elevate privileges.
Confidentiality

Technical Impact: Read Application Data

The state variables may contain sensitive information that should not be known by the client.
Availability

Technical Impact: DoS: Crash, Exit, or Restart

By modifying state variables, the attacker could violate the application's expectations for the contents of the state, leading to a denial of service due to an unexpected error condition.
+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

In the following example, an authentication flag is read from a browser cookie, thus allowing for external control of user state data.

(bad)
Example Language: Java 
Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) {
Cookie c = cookies[i];
if (c.getName().equals("authenticated") && Boolean.TRUE.equals(c.getValue())) {
authenticated = true;

}

}

Example 2

The following code uses input from an HTTP request to create a file name. The programmer has not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/server.xml", which causes the application to delete one of its own configuration files (CWE-22).

(bad)
Example Language: Java 
String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);
...
rFile.delete();

Example 3

The following code uses input from a configuration file to determine which file to open and echo back to the user. If the program runs with privileges and malicious users can change the configuration file, they can use the program to read any file on the system that ends with the extension .txt.

(bad)
Example Language: Java 
fis = new FileInputStream(cfg.getProperty("sub")+".txt");
amt = fis.read(arr);
out.println(arr);

Example 4

This program is intended to execute a command that lists the contents of a restricted directory, then performs other actions. Assume that it runs with setuid privileges in order to bypass the permissions check by the operating system.

(bad)
Example Language:
#define DIR "/restricted/directory"

char cmd[500];
sprintf(cmd, "ls -l %480s", DIR);
/* Raise privileges to those needed for accessing DIR. */

RaisePrivileges(...);
system(cmd);
DropPrivileges(...);
...

This code may look harmless at first, since both the directory and the command are set to fixed values that the attacker can't control. The attacker can only see the contents for DIR, which is the intended program behavior. Finally, the programmer is also careful to limit the code that executes with raised privileges.

However, because the program does not modify the PATH environment variable, the following attack would work:

The user sets the PATH to reference a directory under that user's control, such as "/my/dir/".
The user creates a malicious program called "ls", and puts that program in /my/dir
The user executes the program.
When system() is executed, the shell consults the PATH to find the ls program
The program finds the malicious program, "/my/dir/ls". It doesn't find "/bin/ls" because PATH does not contain "/bin/".
The program executes the malicious program with the raised privileges.

Example 5

This code prints all of the running processes belonging to the current user.

(bad)
Example Language: PHP 
//assume getCurrentUser() returns a username that is guaranteed to be alphanumeric (CWE-78)
$userName = getCurrentUser();
$command = 'ps aux | grep ' . $userName;
system($command);

This program is also vulnerable to a PATH based attack (CWE-426), as an attacker may be able to create malicious versions of the ps or grep commands. While the program does not explicitly raise privileges to run the system commands, the PHP interpreter may by default be running with higher privileges than users.

Example 6

The following code segment implements a basic server that uses the "ls" program to perform a directory listing of the directory that is listed in the "HOMEDIR" environment variable. The code intends to allow the user to specify an alternate "LANG" environment variable. This causes "ls" to customize its output based on a given language, which is an important capability when supporting internationalization.

(bad)
Example Language: Perl 
$ENV{"HOMEDIR"} = "/home/mydir/public/";
my $stream = AcceptUntrustedInputStream();
while (<$stream>) {
chomp;
if (/^ENV ([\w\_]+) (.*)/) {
$ENV{$1} = $2;

}
elsif (/^QUIT/) { ... }
elsif (/^LIST/) {
open($fh, "/bin/ls -l $ENV{HOMEDIR}|");
while (<$fh>) {
SendOutput($stream, "FILEINFO: $_");

}
close($fh);

}

}

The programmer takes care to call a specific "ls" program and sets the HOMEDIR to a fixed value. However, an attacker can use a command such as "ENV HOMEDIR /secret/directory" to specify an alternate directory, enabling a path traversal attack (CWE-22). At the same time, other attacks are enabled as well, such as OS command injection (CWE-78) by setting HOMEDIR to a value such as "/tmp; rm -rf /". In this case, the programmer never intends for HOMEDIR to be modified, so input validation for HOMEDIR is not the solution. A partial solution would be a whitelist that only allows the LANG variable to be specified in the ENV command. Alternately, assuming this is an authenticated user, the language could be stored in a local file so that no ENV command at all would be needed.

While this example may not appear realistic, this type of problem shows up in code fairly frequently. See CVE-1999-0073 in the observed examples for a real-world example with similar behaviors.

+ Observed Examples
ReferenceDescription
Mail client stores password hashes for unrelated accounts in a hidden form field.
Privileged program trusts user-specified environment variable to modify critical configuration settings.
Telnet daemon allows remote clients to specify critical environment variables for the server, leading to code execution.
Untrusted search path vulnerability through modified LD_LIBRARY_PATH environment variable.
Untrusted search path vulnerability through modified LD_LIBRARY_PATH environment variable.
Calendar application allows bypass of authentication by setting a certain cookie value to 1.
Setting of a language preference in a cookie enables path traversal attack.
Application allows admin privileges by setting a cookie value to "admin."
Application allows admin privileges by setting a cookie value to "admin."
Application allows admin privileges by setting a cookie value to "admin."
Shopping cart allows price modification via hidden form field.
Shopping cart allows price modification via hidden form field.
Server allows client to specify the search path, which can be modified to point to a program that the client has uploaded.
+ Potential Mitigations

Phase: Architecture and Design

Understand all the potential locations that are accessible to attackers. For example, some programmers assume that cookies and hidden form fields cannot be modified by an attacker, or they may not consider that environment variables can be modified before a privileged program is invoked.

Phase: Architecture and Design

Strategy: Attack Surface Reduction

Store state information and sensitive data on the server side only. Ensure that the system definitively and unambiguously keeps track of its own state and user state and has rules defined for legitimate state transitions. Do not allow any application user to affect state directly in any way other than through legitimate actions leading to state transitions. If information must be stored on the client, do not do so without encryption and integrity checking, or otherwise having a mechanism on the server side to catch tampering. Use a message authentication code (MAC) algorithm, such as Hash Message Authentication Code (HMAC) [REF-529]. Apply this against the state or sensitive data that you has to be exposed, which can guarantee the integrity of the data - i.e., that the data has not been modified. Ensure that a strong hash function is used (CWE-328).

Phase: Architecture and Design

Store state information on the server side only. Ensure that the system definitively and unambiguously keeps track of its own state and user state and has rules defined for legitimate state transitions. Do not allow any application user to affect state directly in any way other than through legitimate actions leading to state transitions.

Phase: Architecture and Design

Strategy: Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. With a stateless protocol such as HTTP, use some frameworks can maintain the state for you. Examples include ASP.NET View State and the OWASP ESAPI Session Management feature. Be careful of language features that provide state support, since these might be provided as a convenience to the programmer and may not be considering security.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.

Phases: Operation; Implementation

Strategy: Environment Hardening

When using PHP, configure the application so that it does not use register_globals. During implementation, develop the application so that it does not rely on this feature, but be wary of implementing a register_globals emulation that is subject to weaknesses such as CWE-95, CWE-621, and similar issues.

Phase: Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques use data flow analysis to minimize the number of false positives. This is not a perfect solution, since 100% accuracy and coverage are not feasible.

Phase: Testing

Use dynamic tools and techniques that interact with the software using large test suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The software's operation may slow down, but it should not become unstable, crash, or generate incorrect results.

Phase: Testing

Use tools and techniques that require manual (human) analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester to record and modify an active session. These may be more effective than strictly automated techniques. This is especially the case with weaknesses that are related to design and business rules.
+ Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory7522009 Top 25 - Risky Resource Management
MemberOfViewView884CWE Cross-section
MemberOfCategoryCategory963SFP Secondary Cluster: Exposed Data
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
Software Fault PatternsSFP23Exposed Data
+ References
[REF-528] OWASP. "Top 10 2007-Insecure Direct Object Reference". 2007. <http://www.owasp.org/index.php/Top_10_2007-A4>.
[REF-529] "HMAC". Wikipedia. 2011-08-18. <http://en.wikipedia.org/wiki/Hmac>.
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 4: Use of Magic URLs, Predictable Cookies, and Hidden Form Fields." Page 75. McGraw-Hill. 2010.
+ Content History
Submissions
Submission DateSubmitterOrganizationSource
2008-01-30Evgeny LebanidzeCigital
Modifications
Modification DateModifierOrganizationSource
2008-07-01Sean EidemillerCigital
added/updated demonstrative examples
2008-09-08CWE Content TeamMITRE
updated Common_Consequences, Relationships
2008-10-14CWE Content TeamMITRE
updated Description
2009-01-12CWE Content TeamMITRE
updated Applicable_Platforms, Common_Consequences, Demonstrative_Examples, Description, Name, Observed_Examples, Potential_Mitigations, References, Relationships, Relevant_Properties, Type
2009-03-10CWE Content TeamMITRE
updated Potential_Mitigations
2009-07-27CWE Content TeamMITRE
updated Related_Attack_Patterns
2010-02-16CWE Content TeamMITRE
updated Potential_Mitigations
2010-06-21CWE Content TeamMITRE
updated Potential_Mitigations
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2012-05-11CWE Content TeamMITRE
updated Demonstrative_Examples, Potential_Mitigations, References, Relationships
2012-10-30CWE Content TeamMITRE
updated Potential_Mitigations
2014-02-18CWE Content TeamMITRE
updated Potential_Mitigations
2014-07-30CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2017-01-19CWE Content TeamMITRE
updated Related_Attack_Patterns, Relationships
2017-11-08CWE Content TeamMITRE
updated Applicable_Platforms, Demonstrative_Examples, Enabling_Factors_for_Exploitation, Modes_of_Introduction, References, Relationships, Relevant_Properties
Previous Entry Names
Change DatePrevious Entry Name
2008-04-11Insufficient Management of User State
2009-01-12External Control of User State Data

CWE-613: Insufficient Session Expiration

Weakness ID: 613
Abstraction: Base
Structure: Simple
Status: Incomplete
Presentation Filter:
+ Description
According to WASC, "Insufficient Session Expiration is when a web site permits an attacker to reuse old session credentials or session IDs for authorization."
+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
+ Relevant to the view "Architectural Concepts" (CWE-1008)
NatureTypeIDName
MemberOfCategoryCategory1018Manage User Sessions
+ Relevant to the view "Development Concepts" (CWE-699)
NatureTypeIDName
MemberOfCategoryCategory3617PK - Time and State
CanPrecedeClassClass287Improper Authentication
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

PhaseNote
Architecture and Design
ImplementationREALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Access Control

Technical Impact: Bypass Protection Mechanism

+ Demonstrative Examples

Example 1

The following snippet was taken from a J2EE web.xml deployment descriptor in which the session-timeout parameter is explicitly defined (the default value depends on the container). In this case the value is set to -1, which means that a session will never expire.

(bad)
Example Language: Java 
<web-app>
[...snipped...]

<session-config>
<session-timeout>-1</session-timeout>

</session-config>

</web-app>
+ Potential Mitigations

Phase: Implementation

Set sessions/credentials expiration date.
+ Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
+ Notes

Other

The lack of proper session expiration may improve the likely success of certain attacks. For example, an attacker may intercept a session ID, possibly via a network sniffer or Cross-site Scripting attack. Although short session expiration times do not help if a stolen token is immediately used, they will protect against ongoing replaying of the session ID. In another scenario, a user might access a web site from a shared computer (such as at a library, Internet cafe, or open work environment). Insufficient Session Expiration could allow an attacker to use the browser's back button to access web pages previously accessed by the victim.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
WASC47Insufficient Session Expiration
+ Content History
Submissions
Submission DateSubmitterOrganizationSource
WASC
Modifications
Modification DateModifierOrganizationSource
2008-07-01Sean EidemillerCigital
added/updated demonstrative examples
2008-07-01Eric DalciCigital
updated Potential_Mitigations, Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Relationships, Other_Notes, Taxonomy_Mappings
2009-03-10CWE Content TeamMITRE
updated Relationships
2010-02-16CWE Content TeamMITRE
updated Taxonomy_Mappings
2010-09-27CWE Content TeamMITRE
updated Taxonomy_Mappings
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2012-05-11CWE Content TeamMITRE
updated Relationships
2012-10-30CWE Content TeamMITRE
updated Potential_Mitigations
2014-06-23CWE Content TeamMITRE
updated Relationships
2014-07-30CWE Content TeamMITRE
updated Relationships
2017-11-08CWE Content TeamMITRE
updated Modes_of_Introduction, Relationships

CWE-346: Origin Validation Error

Weakness ID: 346
Abstraction: Base
Structure: Simple
Status: Draft
Presentation Filter:
+ Description
The software does not properly verify that the source of data or communication is valid.
+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
+ Relevant to the view "Architectural Concepts" (CWE-1008)
NatureTypeIDName
MemberOfCategoryCategory1014Identify Actors
+ Relevant to the view "Development Concepts" (CWE-699)
NatureTypeIDName
ChildOfClassClass284Improper Access Control
ChildOfClassClass345Insufficient Verification of Data Authenticity
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

PhaseNote
Architecture and Design
ImplementationREALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

(Language-Independent classes): (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Access Control
Other

Technical Impact: Gain Privileges or Assume Identity; Varies by Context

An attacker can access any functionality that is inadvertently accessible to the source.
+ Demonstrative Examples

Example 1

This Android application will remove a user account when it receives an intent to do so:

(bad)
Example Language: Java 
IntentFilter filter = new IntentFilter("com.example.RemoveUser");
MyReceiver receiver = new MyReceiver();
registerReceiver(receiver, filter);

public class DeleteReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {
int userID = intent.getIntExtra("userID");
destroyUserData(userID);

}

}

This application does not check the origin of the intent, thus allowing any malicious application to remove a user. Always check the origin of an intent, or create a whitelist of trusted applications using the manifest.xml file.

Example 2

These Android and iOS applications intercept URL loading within a WebView and perform special actions if a particular URL scheme is used, thus allowing the Javascript within the WebView to communicate with the application:

(bad)
Example Language: Java 
// Android

@Override
public boolean shouldOverrideUrlLoading(WebView view, String url){
if (url.substring(0,14).equalsIgnoreCase("examplescheme:")){
if(url.substring(14,25).equalsIgnoreCase("getUserInfo")){
writeDataToView(view, UserData);
return false;

}
else{
return true;

}

}

}
(bad)
Example Language: Objective-C 
// iOS

-(BOOL) webView:(UIWebView *)exWebView shouldStartLoadWithRequest:(NSURLRequest *)exRequest navigationType:(UIWebViewNavigationType)exNavigationType
{
NSURL *URL = [exRequest URL];
if ([[URL scheme] isEqualToString:@"exampleScheme"])
{
NSString *functionString = [URL resourceSpecifier];
if ([functionString hasPrefix:@"specialFunction"])
{
// Make data available back in webview.
UIWebView *webView = [self writeDataToView:[URL query]];

}
return NO;

}
return YES;

}

A call into native code can then be initiated by passing parameters within the URL:

(attack)
Example Language: JavaScript 
window.location = examplescheme://method?parameter=value

Because the application does not check the source, a malicious website loaded within this WebView has the same access to the API as a trusted site.

+ Observed Examples
ReferenceDescription
DNS server can accept DNS updates from hosts that it did not query, leading to cache poisoning
DNS server can accept DNS updates from hosts that it did not query, leading to cache poisoning
DNS server caches glue records received from non-delegated name servers
user ID obtained from untrusted source (URL)
LDAP service does not verify if a particular attribute was set by the LDAP server
product does not sufficiently distinguish external HTML from internal, potentially dangerous HTML, allowing bypass using special strings in the page title. Overlaps special elements.
product records the reverse DNS name of a visitor in the logs, allowing spoofing and resultant XSS.
+ Weakness Ordinalities
OrdinalityDescription
Primary
(where the weakness exists independent of other weaknesses)
Resultant
(where the weakness is typically related to the presence of some other weaknesses)
+ Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
+ Notes

Maintenance

This entry has some significant overlap with other CWE entries and may need some clarification. See terminology notes.

Terminology

The "Origin Validation Error" term was used by Taimur Aslam in his August 1995 thesis. Although not formally defined, an issue is considered to be an origin validation error if either (1) "an object [accepts] input from an unauthorized subject," or (2) "the system [fails] to properly or completely authenticate a subject." A later section says that an origin validation error can occur when the system (1) "does not properly authenticate a user or process" or (2) "does not properly authenticate the shared data or libraries." The only example provided in the thesis (covered by OSVDB:57615) involves a setuid program running command-line arguments without dropping privileges. So, this definition (and its examples in the thesis) effectively cover other weaknesses such as CWE-287 (Improper Authentication), CWE-285 (Improper Authorization), and CWE-250 (Execution with Unnecessary Privileges). There appears to be little usage of this term today, except in the SecurityFocus vulnerability database, where the term is used for a variety of issues, including web-browser problems that allow violation of the Same Origin Policy and improper validation of the source of an incoming message.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
PLOVEROrigin Validation Error
+ References
[REF-324] Taimur Aslam. "A Taxonomy of Security Faults in the UNIX Operating System". 1995-08-01. <http://cwe.mitre.org/documents/sources/ATaxonomyofSecurityFaultsintheUNIXOperatingSystem%5BAslam95%5D.pdf>.
+ Content History
Submissions
Submission DateSubmitterOrganizationSource
PLOVER
Modifications
Modification DateModifierOrganizationSource
2008-07-01Eric DalciCigital
updated Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Relationships, Relationship_Notes, Taxonomy_Mappings, Weakness_Ordinalities
2009-05-27CWE Content TeamMITRE
updated Related_Attack_Patterns
2010-12-13CWE Content TeamMITRE
updated Related_Attack_Patterns
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2011-06-27CWE Content TeamMITRE
updated Common_Consequences
2012-05-11CWE Content TeamMITRE
updated Related_Attack_Patterns, Relationships
2014-02-18CWE Content TeamMITRE
updated Applicable_Platforms, Common_Consequences, Demonstrative_Examples, Maintenance_Notes, References, Relationship_Notes, Relationships, Terminology_Notes
2014-06-23CWE Content TeamMITRE
updated Related_Attack_Patterns
2014-07-30CWE Content TeamMITRE
updated Relationships
2017-11-08CWE Content TeamMITRE
updated Modes_of_Introduction, References, Relationships

CWE-441: Unintended Proxy or Intermediary ('Confused Deputy')

Weakness ID: 441
Abstraction: Class
Structure: Simple
Status: Draft
Presentation Filter:
+ Description
The software receives a request, message, or directive from an upstream component, but the software does not sufficiently preserve the original source of the request before forwarding the request to an external actor that is outside of the software's control sphere. This causes the software to appear to be the source of the request, leading it to act as a proxy or other intermediary between the upstream component and the external actor.
+ Extended Description

If an attacker cannot directly contact a target, but the software has access to the target, then the attacker can send a request to the software and have it be forwarded from the target. The request would appear to be coming from the software's system, not the attacker's system. As a result, the attacker can bypass access controls (such as firewalls) or hide the source of malicious requests, since the requests would not be coming directly from the attacker.

Since proxy functionality and message-forwarding often serve a legitimate purpose, this issue only becomes a vulnerability when:

  • The software runs with different privileges or on a different system, or otherwise has different levels of access than the upstream component;
  • The attacker is prevented from making the request directly to the target; and
  • The attacker can create a request that the proxy does not explicitly intend to be forwarded on the behalf of the requester. Such a request might point to an unexpected hostname, port number, or service. Or, the request might be sent to an allowed service, but the request could contain disallowed directives, commands, or resources.
+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
+ Relevant to the view "Architectural Concepts" (CWE-1008)
NatureTypeIDName
MemberOfCategoryCategory1014Identify Actors
+ Relevant to the view "Development Concepts" (CWE-699)
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

PhaseNote
Architecture and DesignREALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

(Language-Independent classes): (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Non-Repudiation
Access Control

Technical Impact: Gain Privileges or Assume Identity; Hide Activities

+ Alternate Terms
Confused Deputy:This weakness is sometimes referred to as the "Confused deputy" problem, in which an attacker misused the authority of one victim (the "confused deputy") when targeting another victim.
+ Observed Examples
ReferenceDescription
FTP bounce attack. The design of the protocol allows an attacker to modify the PORT command to cause the FTP server to connect to other machines besides the attacker's.
RPC portmapper could redirect service requests from an attacker to another entity, which thinks the requests came from the portmapper.
FTP server does not ensure that the IP address in a PORT command is the same as the FTP user's session, allowing port scanning by proxy.
Web server allows attackers to request a URL from another server, including other ports, which allows proxied scanning.
CGI script accepts and retrieves incoming URLs.
Bounce attack allows access to TFTP from trusted side.
Web-based mail program allows internal network scanning using a modified POP3 port number.
URL-downloading library automatically follows redirects to file:// and scp:// URLs
+ Potential Mitigations

Phase: Architecture and Design

Enforce the use of strong mutual authentication mechanism between the two parties.
+ Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory956SFP Secondary Cluster: Channel Attack
+ Notes

Maintenance

This could possibly be considered as an emergent resource.

Relationship

This weakness has a chaining relationship with CWE-668 (Exposure of Resource to Wrong Sphere) because the proxy effectively provides the attacker with access to the target's resources that the attacker cannot directly obtain.

Theoretical

It could be argued that the "confused deputy" is a fundamental aspect of most vulnerabilities that require an active attacker. Even for common implementation issues such as buffer overflows, SQL injection, OS command injection, and path traversal, the vulnerable program already has the authorization to run code or access files. The vulnerability arises when the attacker causes the program to run unexpected code or access unexpected files.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
PLOVERUnintended proxy/intermediary
PLOVERProxied Trusted Channel
WASC32Routing Detour
+ References
[REF-432] Norm Hardy. "The Confused Deputy (or why capabilities might have been invented)". 1988. <http://www.cap-lore.com/CapTheory/ConfusedDeputy.html>.
+ Content History
Submissions
Submission DateSubmitterOrganizationSource
PLOVER
Modifications
Modification DateModifierOrganizationSource
2008-07-01Eric DalciCigital
updated Potential_Mitigations, Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Relationships, Observed_Example, Other_Notes, Taxonomy_Mappings
2008-11-24CWE Content TeamMITRE
updated Maintenance_Notes, Relationships, Taxonomy_Mappings, Time_of_Introduction
2010-02-16CWE Content TeamMITRE
updated Taxonomy_Mappings
2010-04-05CWE Content TeamMITRE
updated Related_Attack_Patterns
2010-06-21CWE Content TeamMITRE
updated Other_Notes
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2011-06-27CWE Content TeamMITRE
updated Common_Consequences
2012-05-11CWE Content TeamMITRE
updated Related_Attack_Patterns, Relationships
2012-10-30CWE Content TeamMITRE
updated Potential_Mitigations
2013-02-21CWE Content TeamMITRE
updated Alternate_Terms, Applicable_Platforms, Description, Maintenance_Notes, Name, Observed_Examples, References, Relationship_Notes, Relationships, Theoretical_Notes, Type
2014-07-30CWE Content TeamMITRE
updated Relationships
2015-12-07CWE Content TeamMITRE
updated Relationships
2017-01-19CWE Content TeamMITRE
updated Relationships
2017-11-08CWE Content TeamMITRE
updated Modes_of_Introduction, Relationships
Previous Entry Names
Change DatePrevious Entry Name
2013-02-21Unintended Proxy/Intermediary

More information is available — Please select a different filter.
Page Last Updated: October 30, 2017