
Location
Weaknesses in this category are organized based on which phase they

 are introduced during the software development and deployment
 process.

Configuration
Weaknesses in this category are typically introduced during the

 configuration of the software.

Code
Weaknesses in this category are typically introduced during code

 development, including specification, design, and
 implementation.

Environment
Weaknesses in this category are typically introduced during unexpected

 environmental conditions.

ASP.NET Environment Issues
ASP.NET framework/language related environment issues with security

 implications.

ASP.NET Misconfiguration: Creating Debug Binary
Debugging messages help attackers learn about the system and plan a

 form of attack.

ASP.NET Misconfiguration: Missing Custom Error Handling
An ASP .NET application must enable custom error pages in order to

 prevent attackers from mining information from the framework’s
 built-in responses.

ASP.NET Misconfiguration: Password in Configuration File
Storing a plaintext password in a configuration file allows anyone who

 can read the file access to the password-protected resource
 making them an easy target for attackers.

ASP.NET Misconfiguration: Not Using Input Validation Framework
The ASP.NET application does not use an input validation framework.

ASP.NET Misconfiguration: Use of Identity Impersonation
Configuring an ASP.NET application to run with impersonated

 credentials may give the application unnecessary privileges. The
 use of impersonated credentials allows an ASP.NET application to

 run with either the privileges of the client on whose behalf it
 is executing or with arbitrary privileges granted in its

 configuration.

String Errors
Weaknesses in this category are related to the creation and

 modification of strings.

Often Misused: String Management
Functions that manipulate strings encourage buffer overflows.

Uncontrolled Format String
The software uses externally-controlled format strings in printf-style

 functions, which can lead to buffer overflows or data
 representation problems.

Type Errors
Weaknesses in this category are caused by improper data type

 transformation or improper handling of multiple data types.

Representation Errors
Weaknesses in this category are introduced when inserting or

 converting data from one representation into another.

Cleansing, Canonicalization, and Comparison Errors
Weaknesses in this category are related to improper handling of data

 within protection mechanisms that attempt to perform sanity
 checks for untrusted data.

Failure to Sanitize Special Elements
The software fails to prevent the introduction of special elements

 with control implications into a mixed data / control stream.

Reliance on Data/Memory Layout
The software makes invalid assumptions about how protocol data or

 memory is organized at a lower level, resulting in unintended
 program behavior.

Structure and Validity Problems
Weaknesses in this category are related to improper handling of data

 that is invalid and/or improperly structured.

General Special Element Problems
Every language has its own special elements such as characters and

 reserved words. The following weaknesses (under this category)
 are expressed in general terms. Technology-specific problems
 that involve special elements, such as cross-site scripting and

 SQL injection, are covered in another CWE node.

Technology-Specific Special Elements
Weaknesses in this category are related to improper handling of

 special elements within particular technologies.

Improper Null Termination
The software does not properly terminate a string or array with a null

 character or equivalent terminator. Null termination errors
 frequently occur in two different ways. An off-by-one error

 could cause a null to be written out of bounds, leading to an
 overflow. Or, a program could use a strncpy() function call

 incorrectly, which prevents a null terminator from being added
 at all. Other scenarios are possible.

Source Code
Weaknesses in this category are typically found within source code.

Byte/Object Code
Weaknesses in this category are typically found within byte code or

 object code.

Violation of Secure Design Principles
The product violates well-established principles for secure design.

Encoding Error
The software fails to properly handle encoding or decoding of the

 data, resulting in unexpected values.

Failure to Resolve Case Sensitivity
Improperly handled case sensitive data can lead to several possible

 consequences, including: - case-insensitive passwords reducing
 the size of the key space, making brute force attacks easier -
 bypassing filters or access controls using alternate names -

 multiple interpretation errors using alternate names.

Incorrect Behavior Order: Early Validation
Software needs to validate data at the proper time, after data has
 been canonicalized and cleansed. Early validation is susceptible

 to various manipulations that result in dangerous inputs that
 are produced by canonicalization and cleansing.

Incorrect Behavior Order: Validate Before Canonicalize
Software "validates" data before it is canonicalized, which
 leaves it vulnerable to certain manipulations that are later

 removed during canonicalization. Invalid data can then avoid
 detection before it is produced by canonicalization.

Incorrect Behavior Order: Validate Before Filter
Software validates data before it has been filtered or cleansed, which

 could produce dangerous data after the filtering step.

Collapse of Data Into Unsafe Value
Software cleanses or filters data in a way that causes the data to

 "collapse" into an unsafe value.

Permissive Whitelist
An application uses a "whitelist" of acceptable values, but

 the whitelist permits at least one unsafe value.

Incomplete Blacklist
An application uses a "blacklist" of prohibited values, but

 the blacklist is incomplete.

Regular Expression Error
A regular expression is incorrectly specified in a way that causes

 data to be improperly filtered, compared, or cleansed.

Partial Comparison
User input is only partially compared to the desired input before a
 match is determined. For example, an attacker might succeed in
 authentication by providing a small password that matches the

 associated portion of the larger, correct password.

Data Handling
Weaknesses in this category are typically found in functionality that

 processes data.

Security Features
Software security is not security software. Here we’re concerned with

 topics like authentication, access control, confidentiality,
 cryptography, and privilege management.

Time and State
Distributed computation is about time and state. That is, in order for
 more than one component to communicate, state must be shared,
 and all that takes time. Most programmers anthropomorphize their

 work. They think about one thread of control carrying out the
 entire program in the same way they would if they had to do the

 job themselves. Modern computers, however, switch between tasks
 very quickly, and in multi-core, multi-CPU, or distributed

 systems, two events may take place at exactly the same time.
 Defects rush to fill the gap between the programmer’s model of
 how a program executes and what happens in reality. These

 defects are related to unexpected interactions between threads,
 processes, time, and information. These interactions happen
 through shared state: semaphores, variables, the file system,

 and, basically, anything that can store information.

Error Handling
Error handling problems occur when an application does not properly

 handle errors that occur during processing. An attacker may
 discover this type of error, as forcing these errors can occur

 with a variety of corrupt input.

Failure to Fulfill API Contract (aka ’API Abuse’)
The software uses an API in a manner contrary to its intended use.

Use of Inherently Dangerous Function
The program calls a function that can never be guaranteed to work

 safely.

Indicator of Poor Code Quality
The code has features that do not directly introduce a weakness or

 vulnerability, but indicate that the product has not been
 carefully developed or maintained.

Insufficient Encapsulation
The product does not sufficiently encapsulate critical data or

 functionality.

Always-Incorrect Control Flow Implementation
The code contains a control flow path that does not reflect the
 algorithm that the path is intended to implement, leading to

 incorrect behavior any time this path is navigated.

Insufficient Control Flow Management
The code does not sufficiently manage its control flow during

 execution, creating conditions in which the control flow can be
 modified in unexpected ways.

Numeric Errors
Weaknesses in this category are related to improper calculation or

 conversion of numbers.

Integer Coercion Error
Integer coercion refers to a set of flaws pertaining to the type

 casting, extension, or truncation of primitive data types.

Integer Overflow (Wrap or Wraparound)
An integer overflow condition exists when an integer that has not been

 properly sanity checked is used in the determination of an
 offset or size for memory allocation, copying, concatenation, or

 similarly. If the integer in question is incremented past the
 maximum possible value, it may wrap to become a very small, or

 negative number, therefore providing an unintended value.

Divide By Zero
The product divides a value by zero.

Incorrect Conversion between Numeric Types
When converting from one data type to another, such as long to

 integer, data can be omitted or
 incorrectly translated, resulting in unexpected values. If

 the resulting values are used in a sensitive
 context, then dangerous behaviors may

 occur.

Incorrect Calculation
The software performs a calculation that

 generates incorrect or unintended results that
 are later used in security-critical decisions

 or resource management.

Information Management Errors
Weaknesses in this category are related to improper handling of

 sensitive information.

Incorrect Output Sanitization
The software does not sufficiently sanitize output before it is sent

 to a different control sphere.

Range Errors
Weaknesses in this category occur when expected boundaries can be

 exceeded.

Insufficient Input Validation
The product has an absent or incorrect protection mechanism that fails

 to properly validate input that can affect the control flow or
 data flow of a program.

Information Leak (Information Disclosure)
An information leak is the intentional or unintentional disclosure of

 information that either (1) is regarded as sensitive within the
 product’s own functionality, such as a private message, or (2)
 provides information about the product or its environment that

 could be useful in an attack but is normally not available to
 the attacker, such as the installation path of a product that is

 remotely accessible. Many information leaks are resultant (e.g.
 path disclosure in PHP script error), but they can also be

 primary (e.g. timing discrepancies in crypto). There are many
 different types of problems that involve information leaks.
 Their severity can range widely depending on the type of

 information that is leaked.

Containment Errors (Container Errors)
This tries to cover various problems in which improper data are

 included within a "container."

Information Loss or Omission
The software does not record, or improperly records, security-relevant

 information that leads to an incorrect decision or hampers later
 analysis.

Technology-specific Environment Issues
Weaknesses in this category are typically introduced during unexpected

 environmental conditions in particular technologies.

Files or Directories Accessible to External Parties
Files or directories are accessible in the environment that should not

 be.

Credentials Management
Weaknesses in this category are related to the management of

 credentials.

Permissions, Privileges, and Access Controls
Weaknesses in this category are related to the management of

 permissions, privileges, and other security features that are
 used to perform access control.

Cryptographic Issues
Weaknesses in this category are related to the use of cryptography.

User Interface Security Issues
Weaknesses in this category are related to or introduced in the User

 Interface (UI).

Insufficient Authentication
The software does not properly ensure that the user has proven their

 identity.

Use of Insufficiently Random Values
The software may use insufficiently random numbers or values in a

 security context that requires unpredictable numbers.

Insufficient Verification of Data Authenticity
The software does not sufficiently verify the origin or authenticity

 of data, in a way that causes it to accept invalid data.

Improperly Implemented Security Check for Standard
The software does not properly implement one or more security-relevant

 checks as specified by the design of a standardized algorithm,
 protocol, or technique.

Privacy Violation
Mishandling private information, such as customer passwords or social

 security numbers, can compromise user privacy and is often
 illegal.

Trust of System Event Data
Security based on event locations are insecure and can be spoofed.

Use of Cookies in Security Decision
Attackers can easily modify cookies, and reliance without detailed

 validation can lead to problems like SQL injection and other
 errors.

Design Principle Violation: Client-Side Enforcement of Server-Side
 Security

The client can be modified by an attacker in a way that bypasses
 protection mechanisms that are not common to both the client

 and server.

Protection Mechanism Failure
The product does not use a protection mechanism that provides
 sufficient defense against directed attacks against the product.

Empty Password in Configuration File
Using an empty string as a password is insecure.

Hard-Coded Password
Hard coded passwords may compromise system security in a way that

 cannot be easily remedied. It is never a good idea to hardcode a
 password. Not only does hardcoding a password allow all of the
 project’s developers to view the password, it also makes fixing
 the problem extremely difficult. Once the code is in production,

 the password cannot be changed without patching the software. If
 the account protected by the password is compromised, the owners

 of the system will be forced to choose between security and
 availability.

Weak Cryptography for Passwords
Obscuring a password with a trivial encoding does not protect the

 password.

Weak Password Requirements
The product does not require that users should have strong passwords,

 which makes it easier for attackers to compromise user accounts.

Insufficiently Protected Credentials
This weakness occurs when the application transmits or stores
 authentication credentials and uses an insecure method that is

 susceptible to unauthorized interception and/or retrieval.

Missing Password Field Masking
The software fails to mask passwords during entry, increasing the

 potential for attackers to observe and capture passwords.

Unverified Password Change
When setting a new password for a user, the product does not require

 knowledge of the original password, or using another form of
 authentication.

Weak Password Recovery Mechanism
It is common for an application to have a mechanism that provides a

 means for a user to gain access to their account in the event
 they forget their password. Very often the password recovery

 mechanism is weak which has the effect of making it more likely
 that it would be possible for a person other than the legitimate

 system user to gain access to that user’s account. This
 weakness may be that the security question is too easy to guess
 or find an answer to (e.g. because it is too common). Or there

 might be an implementation weakness in the password recovery
 mechanism code that may for instance trick the system into

 e-mailing the new password to an e-mail account other than that
 of the user. There might be no throttling done on the rate of

 password resets so that a legitimate user can be denied service
 by an attacker if an attacker tries to recover their password in

 a rapid succession. The system may send the original password
 to the user rather than generating a new temporary password. In

 summary, password recovery functionality, if not carefully
 designed and implemented can often become the system’s weakest

 link that can be misused in a way that would allow an attacker
 to gain unauthorized access to the system. Weak password
 recovery schemes completely undermine a strong password

 authentication scheme.

Privilege / Sandbox Issues
A variety of vulnerabilities occur with improper handling, assignment,

 or management of privileges. These are especially present in
 sandbox environments, although it could be argued that any
 privilege problem occurs within the context of some sort of

 sandbox. Note: can heavily overlap authorization errors

Permission Issues
Weaknesses in this category are related to improper assignment or

 handling of permissions.

Improper Ownership Management
The software assigns the wrong ownership, or does not properly verify

 the ownership, of an object or resource.

Access Control Issues
Improper administration of the permissions to the users of a system

 can result in unintended access to sensitive files. An access
 control list (ACL) represents who/what has permissions to a

 given object. Different operating systems implement (ACLs) in
 different ways. In UNIX, there are three types of permissions:
 read, write, and execute. Users are divided into three classes
 for file access: owner, group owner, and all other users where
 each class has a separate set of rights. In Windows NT, there

 are four basic types of permissions for files: "No
 access", "Read access", "Change

 access", and "Full control". Windows NT extends
 the concept of three types of users in UNIX to include a list of

 users and groups along with their associated permissions. A user
 can create an object (file) and assign specified permissions to

 that object.

User Management Issues
Improper administration of the permissions to the users of a system

 can result in unintended access to sensitive files. Users can be
 assigned to the wrong group (class) of permissions resulting in
 unintended access rights to sensitive objects. This item needs
 more work. Possible sub-categories include: - user in wrong

 group - user with insecure profile / "configuration"

Incorrect Privilege Assignment
A product incorrectly assigns a privilege to a particular entity.

Privilege Defined With Unsafe Actions
A particular privilege, role, capability, or right can be used to

 perform unsafe actions that were not intended, even when it is
 assigned to the correct entity. Note: there are 2 separate

 sub-categories here: - privilege incorrectly allows entities to
 perform certain actions - object is incorrectly accessible to

 entities with a given privilege This overlaps authorization and
 access control problems.

Privilege Chaining
Two distinct privileges, roles, capabilities, or rights can be
 combined in a way that allows an entity to perform unsafe

 actions that would not be allowed without that combination.

Privilege Management Error
A product does not properly track, modify, record, or reset

 privileges.

Privilege Context Switching Error
The software does not properly manage privileges while it is switching

 between different contexts that cross privilege boundaries.

Privilege Dropping / Lowering Errors
In some contexts, a system executing with elevated permissions will

 hand off a process/file/etc. to another process/user. If the
 privileges of an entity are not reduced, then elevated

 privileges are spread throughout a system and possibly to an
 attacker.

Failure to Handle Insufficient Privileges
The software does not handle when it has insufficient privileges to

 perform an operation.

Externally Controlled Reference to a Resource in Another Sphere
The product uses an externally controlled name or reference that

 resolves to a resource that is outside of the intended control
 sphere.

Improper Use of Privileged APIs
When an application contains certain functions that perform operations

 requiring an elevated level of privilege on the system and
 callers of these APIs are not careful in ensuring that

 assumptions made by these APIs are valid, do not account for
 weaknesses in design/implementation of the privileged APIs, call

 these APIs from an unsafe or unexpected context, or pass/receive
 data to or from the privileged function that may allow a

 malicious user or process to elevate their privilege, the stage
 might be set for escalation of privilege, process hijacking or
 theft of sensitive data. For instance, it is important to know
 if privileged APIs fail to properly shed their privileges before
 returning to the caller or if the privileged function might make

 certain assumptions about the data, context or state information
 passed to it by the caller. It is important to always know when
 and how privileged APIs can be called in order to ensure that

 their elevated level of privilege cannot be exploited.

Insecure Default Permissions
A program, upon installation, sets insecure permissions for an object.

Insecure Inherited Permissions
A product defines a set of insecure permissions that are inherited by

 objects that are created by the program.

Insecure Preserved Inherited Permissions
A product inherits a set of insecure permissions for an object, e.g.

 when copying from an archive file, without user awareness or
 involvement.

Insecure Execution-assigned Permissions
A product, while it is executing, changes the permissions of an object

 in an insecure way that cannot be controlled by the user.

Failure to Handle Insufficient Permissions or Privileges
The application does not properly handle when it has insufficient

 permissions or privileges to access resources or system
 functionality, causing it to follow unexpected code paths that

 may leave the application in an invalid state.

Permission Preservation Failure
The software does not properly preserve permissions when copying,

 restoring, or sharing objects, which can cause them to have less
 restrictive permissions than intended.

Permission Race Condition During Resource Copy
The product, while copying or cloning a resource, does not set the

 resource’s permissions or access control until the copy is
 complete, leaving the resource exposed to other spheres while

 the copy is taking place.

Certificate Issues
A certificate is a token that associates an identity (principle) to a
 cryptographic key. Certificates can be used to check if a public

 key belongs to the assumed owner. Certificates should be
 carefully managed and checked to assure that data are encrypted

 with the intended owner’s public key.

J2EE Environment Issues
J2EE framework related environment issues with security implications.

.NET Environment Issues
This category lists weaknesses related to environmental problems in

 .NET framework applications.

Key Management Errors
Weaknesses in this category are related to errors in the management of

 cryptographic keys.

Failure to Encrypt Sensitive Data
The failure to encrypt data passes up the guarantees of
 confidentiality, integrity, and accountability that properly

 implemented encryption conveys.

Missing Required Cryptographic Step
Cryptographic implementations should follow the algorithms that define

 them exactly otherwise encryption can be faulty.

Weak Encryption
Insufficiently strong encryption schemes may not adequately secure

 secret data from attackers. Attackers can guess or use brute
 force attacks to break weakly encrypted schemes.

Reversible One-Way Hash
The product uses a hashing algorithm that produces results that can

 allow an attacker to determine the original input - or an input
 that generates the same hash - using feasible brute force or

 custom attacks.

Not Using a Random IV with CBC Mode
Not using a random initialization Vector (IV) with Cipher Block
 Chaining (CBC) Mode causes algorithms to be susceptible to

 dictionary attacks.

Use of Hard-coded Cryptographic Key
The use of a hard-coded cryptographic key significantly increases the

 possibility that encrypted data may be recovered

Key Exchange without Entity Authentication
Performing a key exchange without verifying the identity of the entity

 being communicated with will preserve the integrity of the
 information sent between the two entities; this will not,

 however, guarantee the identity of the end entity.

Reusing a Nonce, Key Pair in Encryption
Nonces should be used for the present occasion and only once.

Product UI does not Warn User of Unsafe Actions
Software systems should warn users that a potentially dangerous action

 may occur if the user proceeds. For example, if the user
 downloads a file from an unknown source and attempts to execute

 the file on their machine, then the GUI of an application can
 indicate that the file is unsafe.

Insufficient UI Warning of Dangerous Operations
A user interface provides a warning to a user regarding dangerous or

 sensitive operations, but the warning is not noticeable enough
 to warrant attention.

State Issues
Weaknesses in this category are related to improper management of

 system state.

Temporary File Issues
Weaknesses in this category are related to improper handling of

 temporary files.

Technology-Specific Time and State Issues
Weaknesses in this category are related to improper handling of time

 or state within particular technologies.

Concurrency Issues
Weaknesses in this category are related to concurrent use of shared

 resources.

Race Condition
The code does not properly control when an unmodifiable state is
 required between two operations, but a timing window exists in

 which the state can be modified by an untrusted actor or
 process.

Covert Timing Channel
Covert channels are frequently classified as either storage or timing
 channels. Timing channels convey information by modulating some

 aspect of system behavior over time, so that the program
 receiving the information can observe system behavior (e.g., the
 system’s paging rate, the time a certain transaction requires to
 execute, the time it takes to gain access to a shared bus) and

 infer protected information.

Symbolic Name not Mapping to Correct Object
A constant symbolic reference to an object is used, even though the

 reference can resolve to a different object over time.

Signal Errors
The software does not properly handle or manage a signal.

Insufficient Synchronization
The software attempts to use a shared resource in an exclusive manner,

 but fails to prevent use by another thread or process.

Insufficient Control of a Resource Through its Lifetime
The software does not correctly initialize, use, or release a resource

 according to its specifications.

Exposure of Resource to Wrong Sphere
The product exposes a resource to the wrong sphere, in ways that are

 not related to incorrectly specified permissions.

Incorrect Resource Transfer Between Spheres
The product does not properly transfer a resource/behavior to another

 sphere, or improperly imports a resource/behavior from another
 sphere, in a manner that provides unintended control over that

 resource.

External Influence of Sphere Definition
The product does not prevent the definition of control spheres from

 external actors.

Session Fixation
Authenticating a user, or otherwise establishing a new user session,

 without invalidating any existing session identifier gives an
 attacker the opportunity to steal authenticated sessions. Such a

 scenario is commonly observed when: 1. A web application
 authenticates a user without first invalidating the existing
 session, thereby continuing to use the session already

 associated with the user 2. An attacker is able to force a known
 session identifier on a user so that, once the user

 authenticates, the attacker has access to the authenticated
 session 3. The application or container uses predictable session

 identifiers. In the generic exploit of session fixation
 vulnerabilities, an attacker creates a new session on a web

 application and records the associated session identifier. The
 attacker then causes the victim to associate, and possibly

 authenticate, against the server using that session identifier,
 giving the attacker access to the user’s account through the

 active session.

Incomplete Internal State Distinction
The software does not properly determine which state it is in, causing

 it to assume it is in state X when in fact it is in state Y,
 causing it to perform incorrect operations in a

 security-relevant manner.

Mutable Objects Passed by Reference
Sending non-cloned mutable data as an argument may result in that data

 being altered or deleted by the called function, thereby putting
 the calling function into an undefined state.

Passing Mutable Objects to an Untrusted Method
Sending non-cloned mutable data as a return value may result in that

 data being altered or deleted by the calling function, thereby
 putting the class in an undefined state.

Empty Synchronized Block
The software contains an empty synchronized block.

External Control of User State Data
An application manages user state information in a way that it can be

 tampered with by the user of an application to give him or her
 an elevated level of access to the data handled by the

 application and/or its functionality. An application may store
 user state on the client in a way that enables tampering. For

 instance, state information can be stored in a cookie, in a
 hidden web form field or in some other settings file stored
 locally. State information may also be passed as a query

 parameter through the URL or come in a form of some identifier
 set by one page in the application and consumed by another to
 signify state information. In each of these cases, chances are
 that application user can tamper with the state information.

 Whenever an application cannot definitively and unambiguously
 control its own state information and state information for each

 of the application users, there is insufficient management of
 user state that may potentially be exploited by attackers.

Insecure Temporary File
Creating and using insecure temporary files can leave application and

 system data vulnerable to attack.

Creation of Temporary File With Insecure Permissions
Opening temporary files without appropriate measures or controls can

 leave the file, its contents and any function that it impacts
 vulnerable to attack.

Creation of Temporary File in Directory with Insecure Permissions
On some operating systems, the fact that the temp file exists may be

 apparent to any user.

J2EE Time and State Issues
Weaknesses in this category are related to improper handling of time

 or state within J2EE.

J2EE Bad Practices: Direct Use of Threads
Thread management in a Web application is forbidden in some

 circumstances and is always highly error prone.

Error Conditions, Return Values, Status Codes
If a function in a product does not generate the correct return/status

 codes, or if the product does not handle all possible
 return/status codes that could be generated by a function, then
 security issues may result. This type of problem is most often

 found in conditions that are rarely encountered during the
 normal operation of the product. Presumably, most bugs related

 to common conditions are found and eliminated during development
 and testing. In some cases, the attacker can directly control or

 influence the environment to trigger the rare conditions.

Missing Error Handling Mechanism
The application does not contain a standard error handling mechanism,

 which might introduce inconsistent error handling and resultant
 weaknesses.

Failure to Catch All Exceptions (Missing Catch Block)
A Servlet fails to catch all exceptions, which may reveal sensitive

 debugging information.

Uncaught Exception
Failing to catch an exception thrown from a dangerous function can

 potentially cause the program to crash.

Unchecked Return Value
Ignoring a method’s return value can cause the program to overlook

 unexpected states and conditions.

Detection of Error Condition Without Action
Sometimes an error is detected, and bad or no action is taken.

Unchecked Error Condition
Ignoring exceptions and other error conditions may allow an attacker

 to induce unexpected behavior unnoticed.

Failure to Report Error in Status Code
The software encounters an error but does not return a status code or

 return value to indicate that an error has occurred.

Return of Wrong Status Code
A function or operation returns an incorrect return value or status
 code that does not indicate an error, but causes the product to
 modify its behavior based on the incorrect result, in a way that

 leads to unpredictable behavior.

Unexpected Status Code or Return Value
The software does not properly check when a function or operation

 returns a value that is legitimate for the function, but is not
 expected by the software.

Use of NullPointerException Catch to Detect NULL Pointer Dereference
Catching NullPointerException should not be used as an alternative to

 programmatic checks to prevent dereferencing a null pointer.

Declaration of Catch for Generic Exception
Catching overly broad exceptions promotes complex error handling code

 that is more likely to contain security vulnerabilities.

Declaration of Throws for Generic Exception
Throwing overly broad exceptions promotes complex error handling code

 that is more likely to contain security vulnerabilities.

Return Inside Finally Block
The code has a return statement inside a finally block, which will

 cause any thrown exception in the try block to be discarded.

Resource Management Errors
Weaknesses in this category are related to improper management of

 system resources.

Resource Locking Problems
Weaknesses in this category are related to improper handling of locks

 that are used to control access to resources.

Resource Exhaustion
The application is susceptible to generating and/or accepting an

 excessive amount of requests that could potentially exhaust
 limited resources, such as memory, file system storage, database

 connection pool entries, or CPU. This can ultimately lead to a
 denial of service that could prevent valid users from accessing

 the application.

Transmission of Private Resources into a New Sphere (aka ’Resource
 Leak’)

The software makes resources available to untrusted parties when those
 resources are only intended to be accessed by the software.

Asymmetric Resource Consumption (Amplification)
Software that fails to appropriately monitor or control resource
 consumption can lead to adverse system performance. This
 situation is amplified if the software allows malicious users or
 attackers to consume more resources than their access level
 permits. Exploiting such a weakness can lead to asymmetric
 resource consumption, aiding in amplification attacks against

 the system or the network.

Insufficient Resource Pool
The software’s resource pool is not large enough to handle peak

 demand, which allows an attacker to prevent others from
 accessing the resource by using a (relatively) large number of

 requests for resources. Frequently the consequence is a
 "flood" of connection or sessions.

finalize() Method Without super.finalize()
The software contains a finalize() method that does not call

 super.finalize().

Explicit Call to Finalize
The software makes an explicit call to the finalize() method from

 outside the finalizer.

Free of Invalid Pointer Not on the Heap
If free is incorrectly used by a user, it may be possible to gain

 control or process execution through the use of a "write,
 what, where" primitive.

Uncontrolled Recursion
The product does not properly control the amount of recursion that

 takes place, which consumes excessive resources, such as
 allocated memory or the program stack.

J2EE Misconfiguration: Plaintext Password in Configuration File
The J2EE application stores a plaintext password in a configuration

 file.

J2EE Misconfiguration: Insufficient Session-ID Length
Session ID’s can be used to identify communicating parties in a web

 environment. If an attacker can guess or steal a session ID,
 then he/she may be able to take over the user’s session (called

 session hijacking).

J2EE Misconfiguration: Missing Error Handling
A Web application must define a default error page for 4xx errors

 (e.g. 404), 5xx (e.g. 500) errors and to catch
 java.lang.Throwable exceptions to prevent attackers from mining

 information from the application container’s built-in error
 response. The default error page should not display sensitive

 information about the software system.

J2EE Misconfiguration: Entity Bean Declared Remote
When an application exposes a remote interface for an entity bean, it

 might also expose methods that get or set the bean’s data. These
 methods could be leveraged to read sensitive information, or to
 change data in ways that violate the application’s expectations,

 potentially leading to other vulnerabilities.

J2EE Misconfiguration: Weak Access Permissions for EJB Methods
If elevated access rights are assigned to EJB methods, then an
 attacker can take advantage of the permissions to exploit the

 software system.

Channel and Path Errors
Weaknesses in this category are related to improper handling of

 communication channels and access paths.

Channel Errors
Weaknesses in this category are related to improper handling of

 communication channels.

Failure to Protect Alternate Path
The product does not sufficiently protect all possible paths that a

 user can take to access restricted functionality or resources.

Uncontrolled Search Path Element
One or more locations in a static search path is under control of the

 attacker.

Unquoted Search Path or Element
The product uses a search path that contains an unquoted element, in

 which the element contains whitespace or other separators. This
 can cause the product to access resources in a parent path.

Untrusted Search Path
If a function performs automatic path searching for resources and an

 attacker can influence that path, then the attacker may be able
 to redirect the search path to point to resources under the

 control of the attacker.

Unprotected Primary Channel
The software uses a primary channel for administration or restricted

 functionality, but it does not properly protect the channel.

Unprotected Alternate Channel
The software protects a primary channel, but it does not use the same

 level of protection for an alternate channel.

Proxied Trusted Channel
The software controls and trusts both endpoints of a channel, but one

 endpoint can be accessed by an attacker and used as a proxy to
 interact with the product.

Handler Errors
Weaknesses in this category are related to improper management of

 handlers.

Deployment of Wrong Handler
The wrong "handler" is assigned to process an object, e.g.

 calling a servlet to reveal source code of a .JSP file, or
 automatically "determines" type even if contradictory

 to an explicitly specified type.

Missing Handler
A handler is not available or implemented.

Dangerous Handler not Disabled During Sensitive Operations
The application does not properly clear or disable dangerous handlers

 during sensitive operations, which might allow an attacker to
 invoke the handler at unexpected times. This can cause the

 software to enter an invalid state.

Incomplete Identification of Uploaded File Variables (PHP)
The PHP application uses an old method for processing uploaded files

 by referencing the four global variables that are set for each
 file (e.g. $varname, $varname_size, $varname_name,

 $varname_type). These variables could be overwritten by POST
 requests, cookies, or other methods of populating or overwriting

 these global variables. This could be used to read or process
 arbitrary files by providing values such as

 "/etc/passwd".

Unrestricted File Upload
The software allows the attacker to upload or transfer files of

 dangerous types that can be automatically processed within the
 product’s environment.

Behavioral Problems
Weaknesses in this category are related to unexpected behaviors from

 code that an application uses.

Behavioral Change in New Version or Environment
A’s behavior or functionality changes with a new version of A, or a

 new environment, which is not known (or manageable) by B.

Web Problems
Weaknesses in this category involve interaction errors that are

 specific to WWW technology.

User Interface Errors
Weaknesses in this category occur within the user interface.

Initialization and Cleanup Errors
Weaknesses in this category occur in behaviors that are used for

 initialization and breakdown.

Data Structure Issues
Weaknesses in this category are related to improper handling of

 specific data structures.

Duplicate Key in Associative List (Alist)
Duplicate keys in associative lists can lead to non-unique keys being

 mistaken for an error.

Deletion of Data Structure Sentinel
The accidental deletion of a data-structure sentinel can cause serious

 programming logic problems.

Pointer Issues
Weaknesses in this category are related to improper handling of

 pointers.

Assignment of a Fixed Address to a Pointer
The software sets a pointer to a specific address other than NULL or

 0.

Attempt to Access Child of a Non-structure Pointer
Casting a non-structure type to a structure type and accessing a field

 can lead to memory access errors or data corruption.

Mobile Code Issues
Weaknesses in this category are frequently found in mobile code.

Public cloneable() Method Without Final (aka ’Object Hijack’)
A class has a cloneable() method that is not declared final, which

 allows an object to be created without calling the constructor.
 This can cause the object to be in an unexpected state.

Download of Untrusted Mobile Code Without Integrity Check
The product downloads external source or binaries and executes it

 without sufficiently verifying the origin and integrity of the
 downloaded code.

Array Declared Public, Final, and Static
The program declares an array public, final, and static, which is not

 sufficient to prevent the array’s contents from being modified.

finalize() Method Declared Public
The program violates secure coding principles for mobile code by

 declaring a finalize() method public.

Compiler Removal of Code to Clear Buffers
Sensitive memory is cleared according to the source code, but compiler

 optimizations leave the memory untouched when it is not read
 from again, aka "dead store removal."

Motivation/Intent
This category intends to capture the motivations and intentions of
 developers that lead to weaknesses that are found within CWE.

Intentionally Introduced Weakness
Weaknesses in this category were intentionally introduced by the

 developer, typically as a result of prioritizing other aspects
 of the program over security, such as maintenance.

Inadvertently Introduced Weakness
Inadvertent flaws may occur in requirements; they may also find their

 way into software during specification and coding. Although many
 of these are detected and removed through testing, some flaws

 can remain undetected and later cause problems during operation
 and maintenance of the software system. For a software system

 composed of many modules and involving many programmers, flaws
 are often difficult to find and correct because module

 interfaces are inadequately documented and global variables are
 used. The lack of documentation is especially troublesome during
 maintenance when attempts to fix existing flaws often generate

 new flaws because maintainers lack understanding of the system
 as a whole. Although inadvertent flaws do not usually pose an
 immediate threat to the security of the system, the weakness

 resulting from a flaw may be exploited by an intruder (see case
 D1).

Intentionally Introduced Nonmalicious Weakness
Nonmalicious introduction of weaknesses into software can still render

 it vulnerable to various attacks.

Embedded Malicious Code
The application contains code that appears to be malicious in nature.

Other Intentional, Nonmalicious Weakness
Other kinds of intentional but nonmalicious security flaws are

 possible. Functional requirements that are written without
 regard to security requirements can lead to such flaws; one of

 the flaws exploited by the "Internet worm" [3] (case
 U10) could be placed in this category.

Covert Channel
A covert channel is simply a path used to transfer information in a
 way not intended by the system’s designers. Typically the system

 has not given authorization for the transmission and has no
 knowledge of its occurrence.

.NET Misconfiguration: Use of Impersonation
Allowing a .NET application to run at potentially escalated levels of

 access to the underlying operating and file systems can be
 dangerous and result in various forms of attacks.

Call to Thread run() instead of start()
The program calls a thread’s run() method instead of calling start(),

 which causes the code to run in the thread of the caller instead
 of the callee.

Often Misused: Arguments and Parameters
Weaknesses in this category are related to improper use of arguments

 or parameters within function calls.

Function Call with Incorrectly Specified Arguments
The product calls a function, procedure, or routine with arguments

 that are not correctly specified, leading to always-incorrect
 behavior and resultant weaknesses.

Expression Issues
Weaknesses in this category are related to incorrectly written

 expressions within code.

Use of Incorrect Operator
The programmer accidentally uses the wrong operator, which changes

 the application logic in security-relevant ways.

Expression is Always False
The software contains an expression that will always evaluate to

 false.

Expression is Always True
The software contains an expression that will always evaluate to true.

Incorrect Syntactic Object Comparison
Object references are compared rather than objects themselves

Incorrect Semantic Object Comparison
Failure to sufficiently distinguish or equate two objects based on

 their conceptual content.

UNIX Path Link Problems
Weaknesses in this category are related to improper handling of links

 within Unix-based operating systems.

UNIX Hard Link
Failure for a system to check for hardlinks can result in

 vulnerability to different types of attacks. For example, an
 attacker can escalate their privileges if an he/she can replace

 a file used by a privileged program with a hardlink to a
 sensitive file (e.g. etc/passwd). When the process opens the
 file, the attacker can assume the privileges of that process.

UNIX Symbolic Link (Symlink) Following
A software system that allows UNIX symbolic links (symlink) as part of

 paths whether in internal code or through user input can allow
 an attacker to spoof the symbolic link and traverse the file

 system to unintended locations or access arbitrary files. The
 symbolic link can permit an attacker to read/write/corrupt a
 file that they originally did not have permissions to access.

Windows Path Link Problems
Weaknesses in this category are related to improper handling of links

 within Windows-based operating systems.

Windows Shortcut Following (.LNK)
A software system that allows Windows shortcuts (.LNK) as part of

 paths whether in internal code or through user input can allow
 an attacker to spoof the symbolic link and traverse the file

 system to unintended locations or access arbitrary files. The
 shortcut (file with the .lnk extension) can permit an attacker

 to read/write a file that they originally did not have
 permissions to access.

Windows Hard Link
Failure for a system to check for hardlinks can result in

 vulnerability to different types of attacks. For example, an
 attacker can escalate their privileges if an he/she can replace

 a file used by a privileged program with a hardlink to a
 sensitive file (e.g. etc/passwd). When the process opens the
 file, the attacker can assume the privileges of that process or

 possibly prevent a program from accurately processing data in a
 software system.

Weaknesses that Affect Files or Directories
Weaknesses in this category affect file or directory resources.

Weaknesses that Affect Memory
Weaknesses in this category affect memory resources.

Weaknesses that Affect System Processes
Weaknesses in this category affect system process resources during

 process invocation or inter-process communication (IPC).

Windows Virtual File Problems
Weaknesses in this category are related to improper handling of

 virtual files within Windows-based operating systems. Failure to Handle Windows ::DATA Alternate Data Stream
Alternate data streams (ADS) were first implemented in the Windows NT

 operating system to provide compatibility between NTFS and the
 Macintosh Hierarchical File System (HFS). In HFS, data and
 resource forks are used to store information about a file. The
 data fork provides information about the contents of the file

 while the resource fork stores metadata such as file type. An
 attacker can use an ADS to hide information about a file (e.g.
 size, the name of the process) from a system or file browser

 tools such as Windows Explorer and ’dir’ at the command line
 utility.

Mac Virtual File Problems
Weaknesses in this category are related to improper handling of

 virtual files within Mac-based operating systems.

Apple ’.DS_Store’
Software operating in a MAC OS environment where .DS_Store is in

 effect must carefully manage hard links otherwise an attacker
 may be able to leverage a hard link from .DS_Store to overwrite

 arbitrary files and gain privileges.

Apple HFS+ Alternate Data Stream
The Apple HFS+ file system permits files to have multiple data input

 streams. If an attacker can create/access a data input stream
 directly or indirectly (e.g. through Apache), then he/she may be

 able to access the file data or resource fork.

Technology-Specific Input Validation Problems
Weaknesses in this category are caused by inadequately implemented

 input validation within particular technologies.

Struts Validation Problems
Weaknesses in this category are caused by inadequately implemented

 protection schemes that use the STRUTS framework.

Direct Use of Unsafe JNI
When a Java application uses the Java Native Interface (JNI) to call
 code written in another programming language, it can expose the
 application to weaknesses in that code, even if those weaknesses

 cannot occur in Java.

Struts: Duplicate Validation Forms
The application uses multiple validation forms with the same name,

 which might cause the Struts Validator to validate a form that
 the programmer does not expect. This could introduce other

 weaknesses and indicates that validation logic is not
 up-to-date.

Struts: Incomplete validate() Method Definition
The application has a validator form that either fails to define a
 validate() method, or defines a validate() method but fails to
 call super.validate(). This could introduce other weaknesses

 related to missing input validation.

Struts: Form Bean Does Not Extend Validation Class
If a form bean does not extend an ActionForm subclass of the Validator

 framework, it can expose the application to other weaknesses
 related to insufficient input validation.

Struts: Form Field Without Validator
The application has a form field that is not validated by a
 corresponding validation form, which can introduce other

 weaknesses related to insufficient input validation.

Struts: Plug-in Framework not in Use
When an application does not use an input validation framework such as

 the Struts Validator, there is a greater risk of introducing
 weaknesses related to insufficient input validation.

Struts: Unused Validation Form
An unused validation form indicates that validation logic is not

 up-to-date.

Struts: Unvalidated Action Form
Every Action Form must have a corresponding validation form.

Struts: Validator Turned Off
Automatic filtering via a Struts bean has been turned off, which
 disables the Struts Validator and custom validation logic. This

 exposes the application to other weaknesses related to
 insufficient input validation.

Struts: Validator Without Form Field
Validation fields that do not appear in forms they are associated with

 indicate that the validation logic is out of date.

Struts: Non-private Field in ActionForm Class
An ActionForm class contains a field that has not been declared
 private, which can be accessed without using a setter or getter.

Missing XML Validation
Failure to enable validation when parsing XML gives an attacker the

 opportunity to supply malicious input.

Failure to Sanitize CRLF Sequences in HTTP Headers (aka ’HTTP Response
 Splitting’)

The software fails to adequately filter HTTP headers for CR and LF
 characters. Including unvalidated data in an HTTP header allows

 an attacker to specify the entirety of the HTTP response
 rendered by the browser. When an HTTP request contains

 unexpected CR and LF characters the server may respond with an
 output stream that is interpreted as two different HTTP

 responses (instead of one). An attacker can control the second
 response and mount attacks such as cross-site scripting and

 cache poisoning attacks.

Process Control
Executing commands or loading libraries from an untrusted source or in

 an untrusted environment can cause an application to execute
 malicious commands (and payloads) on behalf of an attacker.

Misinterpretation of Input
The software misinterprets an input, whether from an attacker or

 another product, in a security-relevant fashion.

Incorrect Output Sanitization for Logs
Writing unsanitized user input into log files can allow an attacker to

 forge log entries or inject malicious content into logs.

Insufficient Filtering of HTTP Headers for Scripting Syntax
If an application fails to filter or escape user controlled data being

 placed in the header of an HTTP response coming from the server,
 the header may contain a script that will get executed in the
 client’s browser context, potentially resulting in a cross site
 scripting vulnerability. This weakness may also enable the
 HTTP response splitting attack. It is important to carefully

 control data that is being placed both in HTTP response header
 and in the HTTP response body to ensure that no scripting syntax

 is present, taking various encodings into account.

Failure to Constrain Operations within the Bounds of an Allocated
 Memory Buffer

The software may potentially allow operations, such as reading or
 writing, to be performed at addresses not intended by the

 developer.

Length Parameter Inconsistency
The software operates on user-controlled input (including length
 parameters) without validating that the length parameters match

 the actual length of the input data. If an attacker can
 manipulate the length parameter associated with an input such

 that it is inconsistent with the actual length of the input,
 this can be leveraged to cause the target application to behave

 in unexpected, and possibly, malicious ways. One of the possible
 motives for doing so is to pass in arbitrarily large input to

 the application. Another possible motivation is the modification
 of application state by including invalid data for subsequent

 properties of the application. Such weaknesses commonly lead to
 attacks such as buffer overflows and execution of arbitrary

 code.

Write-what-where Condition
Any condition where the attacker has the ability to write an arbitrary

 value to an arbitrary location, often as the result of a buffer
 overflow.

Boundary Beginning Violation (’Buffer Underwrite’)
The software allows a condition where buffers are written to using

 buffer access mechanisms such as indexes or pointers that
 reference memory locations prior to the targeted buffer. This
 typically occurs when indexes are negative numbers or when
 pointer arithmetic results in a position before the beginning of

 the valid memory location. This can occur when a negative number
 is used as an offset, or if the pointer or its index is

 decremented to a position before the buffer.

Out-of-bounds Read
The software reads data past the end, or before the beginning, of the

 intended buffer.

Wrap-around Error
Wrap around errors occur whenever a value is incremented past the

 maximum value for its type and therefore "wraps
 around" to a very small, negative, or undefined value.

Unchecked Array Indexing
Unchecked array indexing occurs when an unchecked value is used as an

 index into a buffer.

Incorrect Calculation of Buffer Size
The software does not correctly calculate the size to be used when

 allocating a buffer, which could lead to a buffer overflow.

Miscalculated Null Termination
Miscalculated null termination occurs when the placement of a null

 character at the end of a buffer of characters (or string) is
 misplaced or omitted.

Return of Pointer Value Outside of Expected Range
A function can return a pointer to memory that is outside of the

 buffer that the pointer is expected to reference.

Unbounded Transfer (’Classic Buffer Overflow’)
A buffer overflow condition exists when a program attempts to put more

 data in a buffer than it can hold or when a program attempts to
 put data in a memory area past a buffer. In this case, a buffer

 is a sequential section of memory allocated to contain anything
 from a character string to an array of integers.

Stack-based Buffer Overflow
A stack-based buffer overflow condition is a condition where the

 buffer being overwritten is allocated on the stack (i.e., is a
 local variable or, rarely, a parameter to a function).

Heap-based Buffer Overflow
A heap overflow condition is a buffer overflow, where the buffer that

 can be overwritten is allocated in the heap portion of memory,
 generally meaning that the buffer was allocated using a routine

 such as malloc().

Buffer Over-read
The software reads data past the end of the intended buffer.

Buffer Under-read
The software reads data before the start of the intended buffer.

Incorrect Calculation of Multi-Byte String Length
The software does not properly calculate the length of strings that

 can contain wide or multi-byte characters.

Failure to Sanitize Delimiters
The software does not properly sanitize delimiters.

Failure to Sanitize Input Terminators
Terminators injected into the software through input can be used to

 compromise a system. Example: a "." in SMTP signifies
 the end of mail message data, whereas a null character can be

 used for the end of a string.

Failure to Sanitize Input Leaders
The application does not properly handle when a leading character or

 sequence ("leader") is missing or malformed, or if
 multiple leaders are used when only one should be allowed.

Failure to Sanitize Quoting Syntax
Quotes injected into an application can be used to compromise a

 system. As data are parsed, an
 injected/absent/duplicate/malformed use of quotes may cause the

 process to take unexpected actions.

Failure to Sanitize Escape, Meta, or Control Sequences
Escape, meta, or control character/sequence injected into an

 application through input can be used to compromise a system. as
 data is parsed, injected/absent/malformed escape, meta, or

 control characters/sequences may cause the process to take
 unexpected actions that result in an attack.

Failure to Sanitize Comment Element
Comments injected into an application through input can be used to

 compromise a system. As data is parsed, an injected/malformed
 comment may cause the process to take unexpected actions.

Failure to Sanitize Macro Symbol
Macro symbols injected into an application through input can be used

 to compromise a system. As data is parsed, an injected symbol
 may cause the process to take unexpected actions.

Failure to Sanitize Substitution Character
Substitution symbols injected into an application through input can be

 used to compromise a system. As data is parsed, an injected
 symbol may cause the process to take unexpected actions.

Failure to Sanitize Variable Name Delimiter
Variable name delimiters injected into an application through input

 can be used to compromise a system. As data is parsed, an
 injected delimiter may cause the process to take unexpected

 actions that result in an attack. Example: "$" for an
 environment variable.

Failure to Sanitize Wildcard or Matching Symbol
Wildcard or matching elements (e.g. ’*’) injected into an application

 through input can be used to compromise a system. As data is
 parsed, an injected element may cause the process to take

 unexpected actions.

Failure to Sanitize Whitespace
White space injected into an application through input can be used to
 compromise a system. As data is parsed, improperly handled white

 space may cause the process to take unexpected actions.

Failure to Sanitize Paired Delimiters
The software does not properly handle the characters that are used to

 mark the beginning and ending of a group of entities, such as
 parentheses, brackets, and braces.

Failure to Sanitize Null Byte or NUL Character
NUL characters or null bytes injected into an application through

 input can be used to compromise a system. As data is parsed, an
 injected NUL character or null byte may cause the process to

 take unexpected actions that result in an attack.

Failure to Sanitize Special Element
Weaknesses in this attack-focused category fail to sufficiently filter

 and interpret special elements in user-controlled input which
 could cause adverse effect on the software behavior and

 integrity.

Addition of Data Structure Sentinel
The accidental addition of a data-structure sentinel can cause serious

 programming logic problems.

Failure to Sanitize Parameter/Argument Delimiters
Parameter delimiters injected into an application can be used to

 compromise a system. As data is parsed, an
 injected/absent/malformed delimiter may cause the process to

 take unexpected actions.

Failure to Sanitize Value Delimiters
Value delimiters injected into an application can be used to

 compromise a system. As data is parsed, an
 injected/absent/malformed delimiter may cause the process to

 take unexpected actions.

Failure to Sanitize Record Delimiters
Record delimiters injected into an application can be used to

 compromise a system. As data is parsed, an
 injected/absent/malformed delimiter may cause the process to

 take unexpected actions.

Failure to Sanitize Line Delimiters
Line delimiters injected into an application can be used to compromise

 a system. As data is parsed, an injected/absent/malformed
 delimiter may cause the process to take unexpected actions.

Failure to Sanitize Section Delimiters
Section delimiters injected into an application can be used to

 compromise a system. As data is parsed, an
 injected/absent/malformed delimiter may cause the process to

 take unexpected actions that result in an attack. One example of
 a section delimiter is the boundary string in a multipart MIME

 message. In many cases, doubled line delimiters can serve as a
 section delimiter.

Failure to Sanitize Expression/Command Delimiters
Delimiters between expressions or commands injected into the software

 through input can be used to compromise a system. As data is
 parsed, an injected/absent/malformed delimiter may cause the

 process to take unexpected actions that result in an attack.

External Control of System or Configuration Setting
One or more system settings or configuration elements can be

 externally controlled by a user. Allowing external control of
 system settings can disrupt service or cause an application to

 behave in unexpected, and potentially malicious, ways.

Failure to Sanitize Leading Special Element
Leading special elements injected into an application through input

 can be used to compromise a system. As data is parsed,
 improperly handled leading special elements may cause the
 process to take unexpected actions that result in an attack.

Failure to Sanitize Trailing Special Element
Trailing special elements injected into an application through input

 can be used to compromise a system. As data is parsed,
 improperly handled trailing special elements may cause the
 process to take unexpected actions that result in an attack.

Failure to Sanitize Internal Special Element
Internal special elements injected into an application through input

 can be used to compromise a system. As data is parsed,
 improperly handled internal special elements may cause the
 process to take unexpected actions that result in an attack.

Failure to Handle Missing Special Element
The software does not handle when an expected special element

 (character or reserved word) is missing.

Failure to Handle Additional Special Element
The software does not handle when an additional unexpected special

 element (character or reserved word) is used.

Failure to Resolve Inconsistent Special Elements
The software does not handle when an inconsistency exists between two

 or more special characters or reserved words, e.g. if paired
 characters appear in the wrong order, or if the special

 characters are not properly nested.

Failure to Sanitize Multiple Leading Special Elements
Multiple leading special elements injected into an application through

 input can be used to compromise a system. As data is parsed,
 improperly handled multiple leading special elements may cause
 the process to take unexpected actions that result in an attack.

Failure to Sanitize Multiple Trailing Special Elements
Multiple trailing special elements injected into an application

 through input can be used to compromise a system. As data is
 parsed, improperly handled multiple trailing special elements

 may cause the process to take unexpected actions that result in
 an attack.

Failure to Sanitize Multiple Internal Special Elements
Multiple internal special elements injected into an application

 through input can be used to compromise a system. As data is
 parsed, improperly handled multiple internal special elements

 may cause the process to take unexpected actions that result in
 an attack.

Failure to Handle Alternate Encoding
The software does not properly handle when an input uses an alternate

 encoding that is valid for the control sphere to which the input
 is being sent.

Double Decoding of the Same Data
The software decodes the same input twice, which can limit the

 effectiveness of any protection mechanism that occurs in between
 the decoding operations.

Failure to Handle Mixed Encoding
The software does not properly handle when the same input uses several

 different (mixed) encodings.

Failure to Handle Unicode Encoding
The software does not properly handle when an input contains Unicode

 encoding.

Failure to Handle URL Encoding (Hex Encoding)
The software does not properly handle when all or part of an input has

 been URL encoded.

Overly Restrictive Regular Expression
A regular expression is overly restrictive, which prevents dangerous

 values from being detected.

Permissive Regular Expression
The product uses a regular expression that does not sufficiently

 restrict the set of allowed values.

Use of Incorrect Byte Ordering
The software mixes up the order in which bytes are processed (e.g.
 big-endian and little-endian), causing a wrong number to be used

 in a security-critical context.

Integer Underflow (Wrap or Wraparound)
The product subtracts one value from another, such that the result is

 less than the minimum allowable integer value, which produces a
 value that is not equal to the correct result. This can happen

 in signed and unsigned cases.

Off-by-one Error
A product calculates or uses an incorrect maximum or minimum value

 that is 1 more, or 1 less, than the correct value.

Incorrect Sign Extension
If one extends a signed number incorrectly, if negative numbers are

 used, an incorrect extension may result.

Signed to Unsigned Conversion Error
A signed-to-unsigned conversion error takes place when a signed

 primitive is used as an unsigned value, usually as a size
 variable.

Unsigned to Signed Conversion Error
An unsigned-to-signed conversion error takes place when a large

 unsigned primitive is used as a signed value.

Numeric Truncation Error
Truncation errors occur when a primitive is cast to a primitive of a

 smaller size and data is lost in the conversion.

Pathname Traversal and Equivalence Errors
Files, directories, and folders are so central to information

 technology that many different weaknesses and variants have been
 discovered. The manipulations generally involve special

 characters or sequences in pathnames, or the use of alternate
 references or channels. They can be used to access files outside

 of a restricted directory (path traversal or link following) or
 to access files that are otherwise protected (path equivalence).

Unchecked Input for Loop Condition
The product does not properly check inputs that are used for loop

 conditions, potentially leading to a denial of service because
 of excessive looping.

Null Byte Interaction Error (Poison Null Byte)
The product does not properly handle null bytes or NUL characters when

 passing data between different representations or components.

Failure to Sanitize Data into a Different Plane (aka ’Injection’)
The software fails to adequately filter user-controlled input data for
 syntax that has control-plane implications. Software has certain

 assumptions about what constitutes data and control
 respectively. It is the lack of verification of these

 assumptions for user-controlled input that leads to injection
 problems. Injection problems span a wide range of

 instantiations. This is usually attempted in order to alter the
 control flow of the process.

Information Leak Through Sent Data
The accidental leaking of sensitive information through sent data
 refers to the transmission of data which are either sensitive in

 and of itself or useful in the further exploitation of the
 system through standard data channels.

Privacy Leak through Data Queries
When trying to keep information confidential, an attacker can often

 infer some of the information by using statistics.

Discrepancy Information Leaks
A discrepancy information leak is an information leak in which the

 product behaves differently, or sends different responses, in a
 way that reveals security-relevant information about the state

 of the product, such as whether a particular operation was
 successful or not.

Error Message Information Leaks
The product includes sensitive information within an error message.

Cross-boundary Cleansing Information Leak
The software does not properly remove sensitive data from a source

 when preparing it for, or transferring it to, an untrusted
 destination. For example, an internal IP address might be

 discovered. This discloses information about the IP addressing
 scheme of the internal network and can be valuable to attackers.

Intended Information Leak
A product’s design or configuration explicitly requires the

 publication of information that could be regarded as sensitive
 by an administrator.

Process Environment Information Leak
Certain information about a process could be obtained from other
 processes within the operating system, including arguments and

 environment variables. This can be an externally controlled
 infoleak, but some protective mechanisms may exist that could

 make it internally controlled.

Information Leak Through Debug Information
The application contains debugging code that can leak sensitive

 information to untrusted parties.

Sensitive Information Uncleared Before Release
The software does not fully clear previously used information in a

 data structure, file, or other resource, before making that
 resource available to a party in another control sphere.

Information Leak of System Data
Revealing system data or debugging information helps an adversary

 learn about the system and form an attack plan.

Information Leak Through Caching
The application uses a cache to maintain a pool of objects, threads,

 connections, pages, or passwords to minimize the time it takes
 to access them or the resources to which they connect. If

 implemented improperly, these caches can allow access to
 unauthorized information or cause a denial of service

 vulnerability.

Information Leak Through Environmental Variables
Environmental variables may contain sensitive information about a

 remote server.

File and Directory Information Leaks
Weaknesses in this category are related to information leaks in files

 and directories.

Information Leak Through Query Strings in GET Request
The web application uses the GET method to process requests that

 contain sensitive information, which can expose that information
 through the browser’s history, Referers, web logs, and other

 sources.

Information Leak Through Indexing of Private Data
The product performs an indexing routine against private documents,

 but does not sufficiently verify that the actors who can access
 the index also have the privileges to access the private

 documents.

Response Discrepancy Information Leak
A response discrepancy information leak occurs when the product sends

 different messages in direct response to an attacker’s request,
 in a way that allows the attacker to learn about the inner state

 of the product. The leaks can be inadvertent (bug) or
 intentional (design).

Behavioral Discrepancy Information Leak
A behavioral discrepancy information leak occurs when the product’s

 actions indicate important differences based on (1) the internal
 state of the product or (2) differences from other products in

 the same class. Attacks such as OS fingerprinting rely heavily
 on both behavioral and response discrepancies.

Timing Discrepancy Information Leak
Two separate operations in a product require different amounts of time

 to complete, in a way that is observable to an attacker and
 reveals security-relevant information about the state of the

 product, such as whether a particular operation was successful
 or not.

Internal Behavioral Inconsistency Information Leak
Two separate operations in a product cause the product to behave

 differently in a way that is observable to an attacker and
 reveals security-relevant information about the internal state
 of the product, such as whether a particular operation was

 successful or not.

External Behavioral Inconsistency Information Leak
The software behaves differently than other products like it, in a way

 that is observable to an attacker and reveals security-relevant
 information about which product is being used, or its operating

 state.

Product-Generated Error Message Information Leak
The software identifies an error condition and creates its own

 diagnostic or error messages that contain sensitive information.

Product-External Error Message Information Leak
The software performs an operation that triggers a diagnostic or error

 message that is not under direct control of the product, e.g. an
 error generated by the programming language that the product

 uses. This is inherently a resultant vulnerability from a
 weakness within the product or an interaction error. It might be

 controllable by configuration, e.g. in PHP error messages.

Path Traversal
The software, when constructing file or directory names from input,

 does not properly sanitize special character sequences that
 resolve to a file or directory name that is outside of the

 intended directory or directories.

Failure to Resolve Path Equivalence
The system or application is vulnerable to file system contents

 disclosure through path equivalence. Path equivalence involves
 the use of special characters in file and directory names. The

 associated manipulations are intended to generate multiple names
 for the same object. Path equivalence is usually employed in

 order to circumvent access controls expressed using an
 incomplete set of file name or file path representations. This

 is different from path traversal, wherein the manipulations are
 performed to generate a name for a different object.

Failure to Resolve Links Before File Access (aka ’Link Following’)
Link following weaknesses involve insufficient protection against

 links or shortcuts that can resolve to a file other than the one
 that was intended.

Failure to Handle File Names that Identify Virtual Resources
The product does not properly handle a file name that identifies a

 "virtual" resource that is not directly specified
 within the directory that is associated with the file name,

 causing the product to perform file-based operations on a
 resource that is not a file.

External Control of File Name or Path
Allowing user input to control paths used in filesystem operations may

 enable an attacker to access or modify otherwise protected
 system resources.

Information Leak Through Shell Error Message
A command shell error message indicates that there exists an unhandled

 exception in the web application code. In many cases, an
 attacker can leverage the conditions that cause these errors in

 order to gain unauthorized access to the system.

Information Leak Through Servlet Runtime Error Message
A servlet error message indicates that there exists an unhandled
 exception in your web application code and may provide useful

 information to an attacker.

Information Leak Through Java Runtime Error Message
In many cases, an attacker can leverage the conditions that cause
 unhandled exception errors in order to gain unauthorized access

 to the system.

Information Leak Through Server Error Message
Certain conditions, such as network failure, will cause a server error

 message to be displayed. While error messages in and of
 themselves are not dangerous, per se, it is what an attacker can

 glean from them that might cause eventual problems.

Failure to Protect Stored Data from Modification
Data should be protected from direct modification.

Failure to Provide Confidentiality for Stored Data
Non-final public fields should be avoided, if possible, as the code is

 easily temperable.

Sensitive Data Under Web Root
The application stores sensitive data under the web document root with

 insufficient access control, which might make it accessible to
 untrusted parties.

Sensitive Data Under FTP Root
The application stores sensitive data under the FTP document root with

 insufficient access control, which might make it accessible to
 untrusted parties.

Relative Path Traversal
The software, when constructing file or directory names from input,

 does not properly sanitize sequences such as ".." that
 resolve to a file or directory name that is outside of the

 intended directory.

Absolute Path Traversal
The software, when constructing file or directory names from input,

 does not properly sanitize absolute path sequences such as
 "/path/here."

Truncation of Security-relevant Information
The application truncates the display, recording, or processing of

 security-relevant information in a way that can obscure the
 source or nature of an attack.

Omission of Security-relevant Information
The application does not record or display information that would be

 important for identifying the source or nature of an attack, or
 determining if an action is safe.

Obscured Security-relevant Information by Alternate Name
The software records security-relevant information according to an

 alternate name of the affected entity, instead of the canonical
 name.

UI Misrepresentation of Critical Information
The UI does not properly represent critical information to the user,

 allowing the information - or its source - to be obscured or
 spoofed. This is often a component in phishing attacks.

DEPRECATED (Duplicate): General Information Management Problems
This weakness can be found at CWE-199.

Failure to Follow Specification
The software fails to follow the specifications for the implementation

 language, environment, framework, protocol, or platform.

Trusting HTTP Permission Methods on the Server Side
If functionality on the server side trusts that the HTTP GET method

 will not allow for a resource representation residing at the URI
 being accessed to be modified (as per specification of the HTTP
 GET) and does not provide additional controls to impede such

 modification, the application will be vulnerable to resource
 modification and deletion attacks. An application may disallow

 the HTTP requests to perform DELETE, PUT and POST operations on
 the resource representation believing that that will be enough
 to prevent unintended resource alterations. However, there is

 nothing in the HTTP protocol itself that prevents the HTTP GET
 method from performing more than just query of the data. For

 instance, it is a common practice with REST based Web Services
 to have HTTP GET requests modifying resources on the server

 side. Whenever that happens however, the access control needs
 to be properly enforced in the application and no assumptions

 should be made that only HTTP DELETE, PUT, and POST methods have
 the power to alter the representation of the resource being

 accessed in the request.

Failure to Provide Specified Functionality
The code does not function according to its published specifications,

 potentially leading to incorrect usage.

Improper Handling of Values
Weaknesses in this category are related to improper handling of values

 that are associated with parameters, fields, or arguments.

Parameter Problems
Weaknesses in this category are related to improper handling of

 parameters, fields, or arguments.

Element Problems
Weaknesses in this category are caused by improper handling of complex

 structures.

Failure to Handle Wrong Data Type
The application does not properly handle when a particular element is

 of the wrong type, e.g. it expects a digit (0-9) but is provided
 with a letter (A-Z).

Failure to Handle Missing Value
The software does not handle when a parameter, field, or argument name

 is specified, but the associated value is missing, i.e. it is
 empty, blank, or null.

Failure to Handle Extra Value
The software does not handle when more values are specified than

 expected.

Failure to Handle Undefined Value
The software does not handle when a value is not defined or supported

 for the associated parameter, field, or argument name.

Path Traversal: ’../filedir’
A software system that accepts input in the form of dot dot slash

 (’../’) without appropriate validation can allow an attacker to
 traverse the file system to access an arbitrary file. Note that

 ’..’ is ignored if the current working directory is the root
 directory.

Path Traversal: ’/../filedir’
A software system that accepts input in the form of a leading dot dot

 slash (’/../filedir’) without appropriate validation can allow
 an attacker to traverse the file system to access an arbitrary
 file. Note that ’..’ is ignored if the current working directory

 is the root directory.

Path Traversal: ’/dir/../filename’
A software system that accepts input in the form of a leading

 directory dot dot slash (’/directory/../filename’) without
 appropriate validation can allow an attacker to traverse the

 file system to access an arbitrary file.

Path Traversal: ’dir/../../filename’
A software system that accepts input in the form of a directory

 doubled dot dot slash (’directory/../../filename’) without
 appropriate validation can allow an attacker to traverse the

 file system to access an arbitrary file.

Path Traversal: ’..\filename’
A software system that accepts input in the form of a dot dot
 backslash (’..\filename’) without appropriate validation can
 allow an attacker to traverse the file system to access an
 arbitrary file. Note that ’..’ is ignored if the current working

 directory is the root directory.

Path Traversal: ’\..\filename’
A software system that accepts input in the form of a leading dot dot

 backslash (’\..\filename’) without appropriate validation can
 allow an attacker to traverse the file system to access an
 arbitrary file. Note that ’..’ is ignored if the current working

 directory is the root directory.

Path Traversal: ’\dir\..\filename’
A software system that accepts input in the form of a leading
 directory dot dot backslash (’\directory\..\filename’) without
 appropriate validation can allow an attacker to traverse the

 file system to access an arbitrary file.

Path Traversal: ’dir\..\filename’
A software system that accepts input in the form of a leading
 directory doubled dot dot backslash (’directory\..\..\filename’)

 without appropriate validation can allow an attacker to traverse
 the file system to access an arbitrary file.

Path Traversal: ’...’ (Triple Dot)
A software system that accepts input in the form of a triple dot
 (’...’) without appropriate validation can allow an attacker to
 traverse the file system to access an arbitrary file. This can

 be used to cause problems for systems that strip out ’..’ from
 input in an attempt to remove relative path traversal.

Path Traversal: ’....’ (Multiple Dot)
A software system that accepts input in the form of a multiple dot

 (’....’) without appropriate validation can allow an attacker to
 traverse the file system to access an arbitrary file. This can

 be used to cause problems for systems that strip out ’..’ from
 input in an attempt to remove relative path traversal.

Path Traversal: ’....//’
A software system that accepts input in the form of a doubled dot dot

 slash (’....//’) without appropriate validation can allow an
 attacker to traverse the file system to access an arbitrary

 file. This can be used to cause problems for systems that strip
 out ’../’ from input in an attempt to remove relative path

 traversal.

Path Traversal: ’.../...//’
A software system that accepts input in the form of a doubled triple

 dot slash (’.../...//’) without appropriate validation can allow
 an attacker to traverse the file system to access an arbitrary

 file. This can be used to cause problems for systems that strip
 out ’..’ from input in an attempt to remove relative path

 traversal.

Failure to Handle Missing Parameter
If too few arguments are sent to a function, the function will still

 pop the expected number of arguments from the stack.
 Potentially, a variable number of arguments could be exhausted

 in a function as well.

Failure to Handle Extra Parameter
The software does not handle when a particular parameter, field, or

 argument name is specified two or more times.

Failure to Handle Undefined Parameter
The software does not handle when a particular parameter, field, or

 argument name is not defined or supported by the product.

Failure to Handle Missing Element
The software improperly handles the situation where an expected

 element is not provided.

Failure to Handle Incomplete Element
The application does not properly handle when a particular element is

 not completely specified.

Failure to Resolve Inconsistent Elements
The software does not handle when multiple parameters, fields,

 arguments, or values should be consistent, but are not.

Failure to Change Working Directory in chroot Jail
When a product uses the chroot() system call to create a jail, but

 does not change the working directory afterward, this might
 allow attackers to access files outside of the jail.

Failure to Clear Heap Memory Before Release
Using realloc() to resize buffers that store sensitive information can

 leave the sensitive information exposed to attack, because it is
 not removed from memory.

J2EE Bad Practices: Direct Management of Connections
The J2EE application directly manages connections, instead of using

 the container’s connection management facilities.

J2EE Bad Practices: Direct Use of Sockets
The J2EE application directly uses sockets instead of using framework

 method calls.

Reliance on DNS Lookups in a Security Decision
Attackers can spoof DNS entries. Do not rely on DNS names for

 security.

Often Misused: Path Manipulation
Passing an inadequately-sized output buffer to a path manipulation

 function can result in a buffer overflow.

Design Principle Violation: Failure to Use Least Privilege
Failure to adhere to the principle of least privilege amplifies the

 risk posed by other weaknesses.

Misinterpreted Function Return Value
If a function’s return value is not properly checked, the function

 could have failed without proper acknowledgement.

Plaintext Storage of a Password
Storing a password in plaintext may result in a system compromise.

Storing Passwords in a Recoverable Format
The storage of passwords in a recoverable format makes them subject to

 password reuse attacks by malicious users. If a system
 administrator can recover the password directly -- or use a
 brute force search on the information available to him --, he

 can use the password on other accounts.

Password in Configuration File
Storing a password in a configuration file may result in system

 compromise. An attacker could gain access to this file and learn
 the stored password or worse yet, change the password to one of

 their choosing.

Not Using Password Aging
If no mechanism is in place for managing password aging, users will

 have no incentive to update passwords in a timely manner.

Password Aging with Long Expiration
Allowing password aging to occur unchecked can result in the

 possibility of diminished password integrity.

Exposed Unsafe ActiveX Method
An ActiveX control is intended for use in a web browser, but it

 exposes dangerous methods that perform actions that are outside
 of the browser’s security model (e.g. the zone or domain). If
 there is no integrity checking or origin validation, this method

 could be invoked by attackers.

Unsafe ActiveX Control Marked Safe For Scripting
An ActiveX control is intended for restricted use, but it has been

 marked as safe-for-scripting.

Least Privilege Violation
The elevated privilege level required to perform operations such as

 chroot() should be dropped immediately after the operation is
 performed.

Failure to Check Whether Privileges Were Dropped Successfully
If one changes security privileges, one should ensure that the change

 was successful

Unverified Ownership
The software does not properly verify that a critical resource is

 owned by the proper entity.

Missing or Inconsistent Access Control
The software does not perform access control checks in a consistent

 manner across all potential execution paths.

Access Control Bypass Through User-Controlled Key
The system’s access control functionality does not prevent one user

 from gaining access to another user’s records by modifying the
 key value identifying the record. Retrieval of a user record

 occurs in the system based on some key value that is under user
 control. The key would typically identify a user related

 record stored in the system and would be used to lookup that
 record for presentation to the user. It is likely that an

 attacker would have to be an authenticated user in the system.
 However, the authorization process would not properly check the

 data access operation to ensure that the authenticated user
 performing the operation has sufficient entitlements to perform

 the requested data access, hence bypassing any other
 authorization checks present in the system. One manifestation

 of this weakness would be if a system used sequential or
 otherwise easily guessable session ids that would allow one user
 to easily switch to another user’s session and view/modify their

 data.

Channel Accessible by Non-Endpoint (aka ’Man-in-the-Middle’)
The product does not adequately verify the identity of actors at both
 ends of a communication channel, or does not adequately ensure

 the integrity of the channel, in a way that allows the channel
 to be accessed or influenced by an actor that is not an

 endpoint.

Reflection Attack in an Authentication Protocol
Simple authentication protocols are subject to reflection attacks if a

 malicious user can use the target machine to impersonate a
 trusted user.

Improper Implementation of Authentication Algorithm
Authentication techniques should follow the algorithms that define

 them exactly, otherwise it might be possible to bypass the
 authentication. A malformed or improper implementation of an

 algorithm may weaken the technique.

Missing Critical Step in Authentication
Authentication techniques should follow the algorithms that define

 them exactly, otherwise authentication can be jeopardized. A
 missing critical step in the implementation of an algorithm may

 weaken the authorization technique.

No Authentication for Critical Function
The software does not perform any authentication for functionality
 that requires a provable user identity or consumes a significant

 amount of resources.

Failure to Restrict Excessive Authentication Attempts
The software does not implement sufficient measures to prevent

 multiple failed authentication attempts within in a short time
 frame, making it more susceptible to brute force attacks.

Use of Single-factor Authentication
The use of single-factor authentication can lead to unnecessary risk

 of compromise when compared with the benefits of a dual-factor
 authentication scheme.

Use of Password System for Primary Authentication
The use of password systems as the primary means of authentication may

 be subject to several flaws or shortcomings, each reducing the
 effectiveness of the mechanism.

Incorrect Behavior Order: Authorization Before Parsing and
 Canonicalization

If a web server does not fully parse requested URLs before it examines
 them for authorization, it may be possible for an attacker to

 bypass authorization protection.

Authentication Bypass Issues
The software does not properly perform authentication, allowing it to

 be bypassed through various methods.

Overly Restrictive Account Lockout Mechanism
Account lockout is a security feature often present in applications as
 a countermeasure to the brute force attack on the password based
 authentication mechanism of the system. After a certain number

 of failed login attempts the users’ account may be disabled for
 a certain period of time or until it is unlocked by an

 administrator. Other security events may also possibly trigger
 account lockout. An attacker may however use this very security

 feature as a means to denying service to legitimate system
 users. It is therefore important to ensure that the account

 lockout security mechanism is not overly restrictive.

Using Non-Canonical Paths for Authorization Decisions
If an application defines policy namespaces and makes authorization

 decisions based on URL containing a particular encoding for the
 path (e.g. using one way of representing an IP address) without

 having a default policy to deny access, an alternate (but
 equivalent) encoding for the path may be used to bypass the

 authorization checks. Therefore it is important to specify
 access control policy that is based on the path information in

 some canonical form with all alternate encodings rejected (which
 can be accomplished by a default deny rule).

Authentication Bypass by Alternate Path/Channel
A product requires authentication, but the product has an alternate

 path or channel that does not require authentication. Note: this
 is often seen in web applications that assume that access to a

 particular CGI program can only be obtained through a
 "front" screen. But this problem is not just in web

 apps.

Direct Request (’Forced Browsing’)
The web application fails to adequately enforce appropriate

 authorization on all restricted URLs, scripts or files. Such web
 applications often make the false assumption that such resources
 can only be reached through a given navigation path and so only

 apply authorization at certain points in the path.

Authentication Bypass by Alternate Name
The software performs authentication based on the name of the resource

 being accessed, but there are multiple names for the resource,
 and not all names are checked.

Authentication Bypass by Spoofing
Weaknesses in this attack-focused category are caused by improperly

 implemented authentication schemes that are subject to spoofing
 attacks.

Trusting Self-reported DNS Name
The use of self-reported DNS names as authentication is flawed and can

 easily be spoofed by malicious users.

Using Referer Field for Authentication
The referer field in HTTP requests can be easily modified and, as

 such, is not a valid means of message integrity checking.

Trusting Self-reported IP Address
The use of IP addresses as authentication is flawed and can easily be

 spoofed by malicious users.

Authentication Bypass by Capture-replay
A capture-replay flaw exists when the design of the software makes it

 possible for a malicious user to sniff network traffic and
 bypass authentication by replaying it to the server in question

 to the same effect as the original message (or with minor
 changes).

Failure to Follow Chain of Trust in Certificate Validation
Failure to follow the chain of trust when validating a certificate

 results in the trust of a given resource which has no connection
 to trusted root-certificate entities.

Failure to Validate Host-specific Certificate Data
The failure to validate host-specific certificate data may mean that,

 while the certificate read was valid, it was not for the site
 originally requested.

Trust of OpenSSL Certificate Without Validation
The failure to validate certificate data may mean that an attacker may

 be claiming to be a host which it is not.

Failure to Validate Certificate Expiration
The failure to validate certificate operation may result in trust

 being assigned to certificates which have been abandoned due to
 age.

Failure to Check for Certificate Revocation
If a certificate is used without first checking to ensure it was not

 revoked, the certificate may be compromised.

Authentication Bypass by Assumed-Immutable Data
The authentication scheme or implementation uses key data elements

 that are assumed to be immutable, but can be controlled or
 modified by the attacker, e.g. if a web application relies on a

 cookie "Authenticated=1"

Authentication Bypass by Primary Weakness
The authentication algorithm is sound, but the implemented mechanism

 can be bypassed as the result of a separate weakness that is
 primary to the authentication error.

Plaintext Storage of Sensitive Information
The application stores sensitive information in plaintext within a
 resource that might be accessible to another control sphere,

 when the information should be encrypted or otherwise protected.

Plaintext Transmission of Sensitive Information
Transmitting sensitive data in plaintext makes the data more easily

 accessible than if encrypted. This significantly lowers the
 difficulty of exploitation by attackers.

J2EE Misconfiguration: Data Transmission Without Encryption
Information sent over a network can be compromised while in transit.

 An attacker may be able to read/modify the contents if the data
 are sent in plaintext or are weakly encrypted.

Sensitive Cookie in HTTPS Session Without "Secure" Attribute
The Secure attribute for sensitive cookies in HTTPS sessions is not

 set, which could cause the user agent to send those cookies in
 plaintext over an HTTP session.

Plaintext Storage in a File or on Disk
Storing sensitive data in plaintext in a file, or on disk, makes the

 data more easily accessible than if encrypted. This
 significantly lowers the difficulty of exploitation by

 attackers.

Plaintext Storage in the Registry
Storing sensitive data in plaintext in the registry makes the data

 more easily accessible than if encrypted. This significantly
 lowers the difficulty of exploitation by attackers.

Plaintext Storage in a Cookie
Storing sensitive data in plaintext in a cookie makes the data more

 easily accessible than if encrypted. This significantly lowers
 the difficulty of exploitation by attackers.

Plaintext Storage in Memory
Storing sensitive data in plaintext in memory makes the data more

 easily accessible than if encrypted. This significantly lowers
 the difficulty of exploitation by attackers.

Plaintext Storage in GUI
Storing sensitive data in plaintext within the GUI makes the data more

 easily accessible than if encrypted. This significantly lowers
 the difficulty of exploitation by attackers.

Plaintext Storage in Executable
Sensitive information should not be stored in plaintext in an

 executable. Attackers can reverse engineer a binary code to
 obtain secret data.

Use of a Key Past its Expiration Date
The product uses a cryptographic key or password past its expiration

 date, which diminishes its safety significantly by increasing
 the timing window for cracking attacks against that key.

Use of a Broken or Risky Cryptographic Algorithm
The use of a broken or risky cryptographic algorithm is an unnecessary

 risk that may result in the disclosure of sensitive information.

Insufficient Entropy
The software uses an algorithm or scheme that produces insufficient

 entropy, leaving patterns or clusters of values that are more
 likely to occur than others.

Small Space of Random Values
The number of possible random values is smaller than needed by the

 product, making it more susceptible to brute force attacks.

PRNG Seed Error
A Pseudo-Random Number Generator (PRNG) uses seeds incorrectly.

Use of Cryptographically Weak PRNG
The product uses a Pseudo-Random Number Generator (PRNG) in a security

 context, but the PRNG is not cryptographically strong.

Predictability Problems
Weaknesses in this category are related to schemes that generate

 numbers or identifiers that are more predictable than required
 by the application.

Predictable from Observable State
A number or object is predictable based on observations that the

 attacker can make about the state of the system or network, such
 as time, process ID, etc.

Predictable Exact Value from Previous Values
An exact value or random number can be precisely predicted by

 observing previous values.

Predictable Value Range from Previous Values
A relatively small set of likely values or random numbers can be
 predicted, typically by observing previous values or non-random

 patterns within the generator. This reduces the amount of
 effort needed in a brute force attack.

Insufficient Entropy in PRNG
The lack of entropy available for, or used by, a Pseudo-Random Number

 Generator (PRNG) can be a stability and security threat.

Failure to Handle Insufficient Entropy in TRNG
True random number generators generally have a limited source of

 entropy and therefore can fail or block.

Same Seed in PRNG
A PRNG uses the same seed each time the product is initialized. If an

 attacker can guess (or knows) the seed, then he/she may be able
 to determine the "random" number produced from the

 PRNG.

Predictable Seed in PRNG
A PRNG is initialized from a predictable seed, e.g. using process ID

 or system time.

Small Seed Space in PRNG
A PRNG uses a relatively small space of seeds.

Use of Invariant Value in Dynamically Changing Context
The product uses a constant value, name, or reference, but this value

 can (or should) vary across different environments.

Origin Validation Error
The software does not properly verify that the source of data or

 communication is valid.

Improperly Verified Signature
The software does not verify, or improperly verifies, the

 cryptographic signature for data.

Use of Less Trusted Source
The software has two different sources of the same data or
 information, but it uses the source that has less support for

 verification, is less trusted, or is less resistant to attack.

Acceptance of Extraneous Untrusted Data With Trusted Data
The software, when processing trusted data, accepts any untrusted data

 that is also included with the trusted data, treating the
 untrusted data as if it were trusted.

Improperly Trusted Reverse DNS
The software trusts the hostname that is provided when performing a
 reverse DNS resolution on an IP address, without also performing

 forward resolution.

Insufficient Type Distinction
The software does not properly distinguish between different types of

 elements in a way that leads to insecure behavior.

Failure to Add Integrity Check Value
If integrity check values or "checksums" are omitted from a
 protocol, there is no way of determining if data has been

 corrupted in transmission.

Failure to Check Integrity Check Value
If integrity check values or "checksums" are not validated

 before messages are parsed and used, there is no way of
 determining if data has been corrupted in transmission.

Taking Actions based on File Name or Extension of a User Supplied File
When server side functionality relies on file name and/or file

 extension of a user supplied file to determine the proper course
 of action, such as selecting the correct process to which

 control should be passed, deciding what data should be made
 available or what resources should be allocated, it becomes
 possible for an attacker to deliberately cause the server side

 code to misclassify the supplied file in order to gain some
 advantage. It might become possible for an attacker to cause

 exhaustion of resources, denial of service, information
 disclosure of debug or system data (including application source
 code), or being bound to a particular server side process. This

 weakness may be due to a vulnerability in any of the
 technologies used by the web and application servers, due to

 misconfiguration or to a flaw in the application itself.

Reliance on Obfuscation or Encryption of Security-Relevant Inputs
 without Integrity Checking

When an application relies on obfuscation or incorrectly applied /
 weak encryption to protect client controllable tokens or

 parameters, that may have an effect on the user state, system
 state or some decision made on the server, without protecting

 the tokens/parameters for integrity, the application is
 vulnerable to an attack where an adversary blindly traverses
 the space of possible values of the said token/parameter in

 order to attempt to gain an advantage. The goal of the attacker
 is to find another admissible value that will somehow elevate

 his or her privileges in the system, disclose information or
 change the behavior of the system in some way beneficial to the

 attacker. If the application fails to protect these critical
 tokens/parameters for integrity it will not be able to determine

 that these values have been tampered with. Measures that are
 used to protect data for confidentiality should not be relied

 upon to provide the integrity service.

Cross-Site Request Forgery (CSRF)
The web product does not, or can not, sufficiently verify whether a

 well-formed, valid, consistent request was intentionally
 provided by the user who submitted the request. Note: CSRF is

 multi-channel: 1. Attacker-to-victim (injection; external or
 internal channel) 2. Victim-to-server (activation; internal

 channel)

Multiple Interpretations of UI Input
The UI has multiple interpretations of user input but does not prompt

 the user when it selects the less secure interpretation.

Path Traversal: ’/absolute/pathname/here’
A software system that accepts input in the form of a slash absolute

 path (’/absolute/pathname/here’) without appropriate validation
 can allow an attacker to traverse the file system to unintended

 locations or access arbitrary files.

Path Traversal: ’\absolute\pathname\here’
A software system that accepts input in the form of a backslash
 absolute path (’\absolute\pathname\here’) without appropriate
 validation can allow an attacker to traverse the file system to

 unintended locations or access arbitrary files.

Path Traversal: ’C:dirname’
An attacker can inject a drive letter or Windows volume letter
 (’C:dirname’) into a software system to potentially redirect

 access to an unintended location or arbitrary file.

Path Traversal: ’\\UNC\share\name\’ (Windows UNC Share)
An attacker can inject a Windows UNC share (’\\UNC\share\name’) into a

 software system to potentially redirect access to an unintended
 location or arbitrary file.

Race Condition Enabling Link Following
A race condition exists when an application checks the status of a

 file or directory before accessing it, but that file can be
 replaced with a link, causing the application to act on an

 unexpected file.

Signal Handler Race Condition
Race conditions occur frequently in signal handlers, since they are

 asynchronous actions. These race conditions may have any number
 of root-causes and symptoms.

Race Condition in Switch
The code contains a switch statement in which the switched variable

 can be modified while the switch is still executing, resulting
 in unexpected behavior.

Race Condition within a Thread
If two threads of execution use a resource simultaneously, there
 exists the possibility that resources may be used while invalid,

 in turn making the state of execution undefined.

Time-of-check Time-of-use Race Condition
Time-of-check, time-of-use race conditions occur when between the time

 in which a given resource (or its reference) is checked, and the
 time that resource is used, a change occurs in the resource to

 invalidate the results of the check.

Context Switching Race Condition
A product performs a series of non-atomic actions to switch between

 contexts that cross privilege or other security boundaries, but
 a race condition allows an attacker to modify or misrepresent

 the product’s behavior during the switch.

Race Condition in Checking for Certificate Revocation
If the revocation status of a certificate is not checked before each
 privilege requiring action, the system may be subject to a race

 condition, in which their certificate may be used before it is
 checked for revocation.

State Synchronization Error
State synchronization refers to a set of flaws involving contradictory

 states of execution in a process which result in undefined
 behavior.

J2EE Bad Practices: Use of System.exit()
A J2EE application uses System.exit(), which also shuts down its

 container.

Interaction Error
An interaction error occurs when two entities work correctly when

 running independently, but they interact in unexpected ways when
 they are run together. This could apply to products, systems,

 components, etc.

Use of Externally-Controlled Input to Select Classes or Code (aka
 ’Unsafe Reflection’)

The application uses reflection capabilities to manage classes or
 code, but does not sufficiently control which classes or code

 can be selected based on external input.

Modification of Assumed-Immutable Data (MAID)
The software does not properly protect an assumed-immutable element

 from being modified by an attacker.

Use of Function with Inconsistent Implementations
The code uses a function that has inconsistent implementations across

 operating systems and versions, which might cause
 security-relevant portability problems.

NULL Pointer Dereference
A NULL pointer dereference occurs when the application dereferences a

 pointer that it expects to be valid, but is NULL, typically
 causing a crash or exit.

Use of Obsolete Functions
The code uses deprecated or obsolete functions, which suggests that

 the code has not been actively reviewed or maintained.

Failure to Use Default Case in Switch
The failure to account for the default case in switch statements may

 lead to complex logical errors and may aid in other, unexpected
 security-related conditions.

Unsafe Function Call from a Signal Handler
The program has a signal handler that calls an unsafe function,

 leading to unpredictable results.

Incorrect Block Delimitation
The code does not explicitly delimit a block that is intended to

 contain 2 or more statements, creating a logic error.

Omitted Break Statement
The program omits a break statement within a switch or other

 construct, causing the same code to execute in multiple
 conditions, when it is only expected to execute in one

 condition.

Suspicious Comment
The code contains comments that suggest the presence of bugs,

 incomplete functionality, or weaknesses.

Use of Hard-coded, Security-relevant Constants
The program uses hard-coded constants instead of symbolic names for

 security-critical values, which increases the likelihood of
 mistakes during code maintenance or security

 policy change.

Dead Code
The software contains dead code, which can never be executed.

Return of Stack Variable Address
A function returns the address of a stack variable, which will cause

 unintended program behavior, typically in the form of a crash.

Unused Variable
The variable’s value is assigned but never used, making it a dead

 store.

Failure to Release Memory Before Removing Last Reference (aka ’Memory
 Leak’)

The software does not sufficiently track and release allocated memory
 after it has been used, which slowly consumes remaining memory.

 This is often triggered by improper handling of malformed data
 or unexpectedly interrupted sessions.

UNIX File Descriptor Leak
A process does not close sensitive file descriptors before invoking a

 child process, which allows the child to perform unauthorized
 I/O operations using those descriptors.

Dangling Database Cursor (aka ’Cursor Injection’)
A cursor is a feature in Oracle PL/SQL and other languages that

 provides a handle for executing and accessing the results of SQL
 queries. If a cursor is not closed properly, then it could

 become accessible to other users while retaining the same
 privileges that were originally assigned, leaving the cursor

 "dangling." For example, an improper dangling cursor
 could arise from unhandled exceptions. The impact of the issue

 depends on the cursor’s role, but SQL injection attacks are
 commonly possible.

Improper Resource Shutdown or Release
The program fails to release - or incorrectly releases - a system

 resource before it is made available for re-use.

Incomplete Cleanup
The software does not properly "clean up" and remove

 temporary or supporting resources after they have been used.

Network Amplification
The software fails to appropriately monitor or control transmitted

 network traffic volume such that the volume of traffic
 transmitted by each entity is commensurate with the entity’s

 permissions. In the absence of a policy to restrict asymmetric
 resource consumption, the application or system cannot
 distinguish between legitimate transmissions and traffic

 intended to serve as an amplifying attack on target systems.
 Systems can often be configured to restrict the amount of
 traffic sent out on behalf of a client, based on the client’s

 origin or access level. This is usually defined in a resource
 allocation policy. In the absence of a mechanism to keep track

 of transmissions, the system or application can be easily abused
 to transmit asymmetrically greater traffic than the request or

 client should be permitted to.

Algorithmic Complexity
An algorithm in a product has an inefficient worst-case computational
 complexity that may be detrimental to system performance and can

 be triggered by an attacker, typically using crafted
 manipulations that ensure that the worst case is being reached.

Incorrect Behavior Order: Early Amplification
The software allows an entity to perform a legitimate but expensive

 operation before sufficient authentication or authorization has
 taken place.

Failure to Handle Highly Compressed Data (Data Amplification)
The software does not properly handle a compressed input with a very

 high compression ratio that produces a large output. An example
 of data amplification is a "decompression bomb," a

 small ZIP file that can produce a large amount of data when it
 is decompressed.

Path Equivalence: ’filename.’ (Trailing Dot)
A software system that accepts path input in the form of trailing dot

 (’filedir.’) without appropriate validation can lead to
 ambiguous path resolution and allow an attacker to traverse the

 file system to unintended locations or access arbitrary files.

Path Equivalence: ’file.name’ (Internal Dot)
A software system that accepts path input in the form of internal dot

 (’file.ordir’) without appropriate validation can lead to
 ambiguous path resolution and allow an attacker to traverse the

 file system to unintended locations or access arbitrary files.

Path Equivalence: ’filename ’ (Trailing Space)
A software system that accepts path input in the form of trailing

 space (’filedir ’) without appropriate validation can lead to
 ambiguous path resolution and allow an attacker to traverse the

 file system to unintended locations or access arbitrary files.

Path Equivalence: ’ filename (Leading Space)
A software system that accepts path input in the form of leading space

 (’ filedir’) without appropriate validation can lead to
 ambiguous path resolution and allow an attacker to traverse the

 file system to unintended locations or access arbitrary files.

Path Equivalence: ’file name’ (Internal Whitespace)
A software system that accepts path input in the form of internal
 space (’file(SPACE)name’) without appropriate validation can

 lead to ambiguous path resolution and allow an attacker to
 traverse the file system to unintended locations or access

 arbitrary files.

Path Equivalence: ’filename/’ (Trailing Slash)
A software system that accepts path input in the form of trailing

 slash (’filedir/’) without appropriate validation can lead to
 ambiguous path resolution and allow an attacker to traverse the

 file system to unintended locations or access arbitrary files.

Path Equivalence: ’//multiple/leading/slash’
A software system that accepts path input in the form of multiple

 leading slash (’//multiple/leading/slash’) without appropriate
 validation can lead to ambiguous path resolution and allow an
 attacker to traverse the file system to unintended locations or

 access arbitrary files.

Path Equivalence: ’/multiple//internal/slash’
A software system that accepts path input in the form of multiple

 internal slash (’/multiple//internal/slash/’) without
 appropriate validation can lead to ambiguous path resolution and

 allow an attacker to traverse the file system to unintended
 locations or access arbitrary files.

Path Equivalence: ’/multiple/trailing/slash//’
A software system that accepts path input in the form of multiple

 trailing slash (’/multiple/trailing/slash//’) without
 appropriate validation can lead to ambiguous path resolution and

 allow an attacker to traverse the file system to unintended
 locations or access arbitrary files.

Path Equivalence: ’\multiple\\internal\backslash’
A software system that accepts path input in the form of multiple

 internal backslash (’\multiple\trailing\\slash’) without
 appropriate validation can lead to ambiguous path resolution and

 allow an attacker to traverse the file system to unintended
 locations or access arbitrary files.

Path Equivalence: ’filedir\’ (Trailing Backslash)
A software system that accepts path input in the form of trailing

 backslash (’filedir\’) without appropriate validation can lead
 to ambiguous path resolution and allow an attacker to traverse

 the file system to unintended locations or access arbitrary
 files.

Path Equivalence: ’/./’ (Single Dot Directory)
A software system that accepts path input in the form of single dot

 directory exploit (’/./’) without appropriate validation can
 lead to ambiguous path resolution and allow an attacker to
 traverse the file system to unintended locations or access

 arbitrary files.

Path Equivalence: ’filedir*’ (Wildcard)
A software system that accepts path input in the form of asterisk

 wildcard (’filedir*’) without appropriate validation can lead to
 ambiguous path resolution and allow an attacker to traverse the

 file system to unintended locations or access arbitrary files.

Path Equivalence: ’dirname/fakechild/../realchild/filename’
A software system that accepts path input in the form of

 ’dirname/fakechild/../realchild/filename’ without appropriate
 validation can lead to ambiguous path resolution and allow an
 attacker to traverse the file system to unintended locations or

 access arbitrary files. See example at
 ’http://www.securityfocus.com/bid/1025/discuss’ for more detail.

Path Equivalence: Windows 8.3 Filename
On later Windows operating systems, a file can have a "long

 name" and a short name that is compatible with older
 Windows file systems, with up to 8 characters in the filename

 and 3 characters for the extension. These "8.3"
 filenames, therefore, have the "alternate name"

 property for files with long names, so are useful pathname
 equivalence manipulations.

Unrestricted Lock on Critical Resource
A critical resource can be locked or controlled by an attacker,
 indefinitely, in a way that prevents access to that resource by

 others, e.g. by obtaining an exclusive lock or mutex, or
 modifying the permissions of a shared resource. Inconsistent

 locking discipline can lead to deadlock.

Insufficient Resource Locking
A product does not sufficiently lock resources, in a way that either
 (1) allows an attacker to simultaneously access those resources,

 or (2) causes other errors that lead to a resultant weakness.

Sensitive Data Storage in Improperly Locked Memory
The application stores sensitive data in memory that is not locked,
 or that has been improperly locked, which might cause the memory

 to be written to swap files on disk by the virtual memory
 manager.

Missing Lock Check
A product does not check to see if a lock is present before performing

 sensitive operations on a resource.

Double Free
The product calls free() twice on the same memory address, potentially

 leading to modification of unexpected memory locations.

Use After Free
Referencing memory after it has been freed can cause a program to

 crash, use unexpected values, or execute code.

Path Equivalence: ’filename....’ (Multiple Trailing Dot)
A software system that accepts path input in the form of multiple

 trailing dot (’filedir....’) without appropriate validation can
 lead to ambiguous path resolution and allow an attacker to
 traverse the file system to unintended locations or access

 arbitrary files.

Race Condition During Access to Alternate Channel
The product opens an alternate channel intended for communication with

 an authorized user, but the channel is unprotected and a race
 condition allows an attacker to access the channel before the

 authorized user does.

Unprotected Windows Messaging Channel (’Shatter’)
The software does not properly verify the source of a message in the

 Windows Messaging System while running at elevated privileges,
 creating an alternate channel through which an attacker can

 directly send a message to the product.

Unparsed Raw Web Content Delivery
Raw content or supporting code is stored under the web root with an

 extension that is not specially handled by the server such as
 ".inc" or ".pl", causing the content or code

 to be delivered to the user without the pre-processing that was
 expected, typically resulting in an information leak.

Interpretation Conflict
Product A handles inputs or steps differently than Product B, which
 causes A to perform incorrect actions based on its perception of

 B’s state. Note: this is generally found in proxies, firewalls,
 anti-virus software, and other intermediary devices that allow,

 deny, or modify traffic based on how the client or server is
 expected to behave.

Unintended Proxy/Intermediary
A product can be used as an intermediary or proxy between an attacker

 and the ultimate target, so that the attacker can either bypass
 access controls or hide activities.

Incomplete Model of Endpoint Features
A product acts as an intermediary or monitor between two or more

 endpoints, but it does not have a complete model of an
 endpoint’s features, behaviors, or state. This causes the

 product to perform incorrect actions based on this incomplete
 model.

Interpretation Conflict in Web Traffic (aka ’HTTP Request Smuggling’)
When malformed or abnormal HTTP requests are interpreted by one or

 more entities in the data flow between the user and the web
 server, such as a proxy or firewall, they can be interpreted

 inconsistently, allowing the attacker to "smuggle" a
 request to one device without the other device being aware of

 it.

Path Equivalence: ’file...name’ (Multiple Internal Dot)
A software system that accepts path input in the form of multiple

 internal dot (’file...dir’) without appropriate validation can
 lead to ambiguous path resolution and allow an attacker to
 traverse the file system to unintended locations or access

 arbitrary files.

Expected Behavior Violation
A feature, API, or function being used by a product behaves

 differently than the product expects.

DEPRECATED (Duplicate): HTTP response splitting
This weakness can be found at CWE-113.

UI Discrepancy for Security Feature
A user interface - whether a GUI or not - does not correctly interact

 with the security features in an application, however the
 interface provides feedback consistent with the user’s
 expectations, leading to a discrepancy between actual

 configurations and user expectations.

Unimplemented or Unsupported Feature in UI
A UI function for a security feature appears to be supported and gives

 feedback to the user that suggests that it is supported, but the
 underlying functionality is not implemented.

Obsolete Feature in UI
A UI function is obsolete and the product does not warn the user.

The UI Performs the Wrong Action
The UI performs the wrong action with respect to the user’s request.

Insecure Default Variable Initialization
The software, by default, initializes an internal variable with an

 insecure or less secure value than is possible.

External Initialization of Trusted Variables
The software initializes critical internal variables using inputs that

 can come from externally controlled sources.

Non-exit on Failed Initialization
The software does not exit or otherwise modify its operation when

 security-relevant errors occur during initialization, such as
 when a configuration file has a format error, which can cause
 the software to execute in a less secure fashion than intended

 by the administrator.

Missing Initialization
The software does not initialize critical variables, which causes the

 execution environment to use unexpected values.

Use of Uninitialized Variable
The code uses a variable that has not been initialized, leading to

 unpredictable results.

DEPRECATED: Incorrect Initialization
This weakness has been deprecated because its name and description did

 not match. The description duplicated CWE-454, while the name
 suggested a more abstract initialization problem. Please refer

 to CWE-665 for the more abstract problem.

Improper Cleanup on Thrown Exception
The product does not sufficiently clean up its state when an exception

 is thrown, leading to unexpected state or control flow.

Use of sizeof() on a Pointer Type
The code calls sizeof() on a malloced pointer type, which always
 returns the wordsize/8. This can produce an unexpected result

 if the programmer intended to determine how much memory has been
 allocated.

Incorrect Pointer Scaling
In C and C++, one may often accidentally refer to the wrong memory due

 to the semantics of when math operations are implicitly scaled.

Use of Pointer Subtraction to Determine Size
The application subtracts one pointer from another in order to

 determine size, but this calculation can be incorrect if the
 pointers do not exist in the same memory chunk.

External Control of Assumed-Immutable Web Parameter
The web application does not sufficiently verify inputs that are

 assumed to be immutable but are actually externally
 controllable, such as hidden form fields.

PHP External Variable Modification
A PHP application does not properly protect against the modification

 of variables from external sources, such as query parameters or
 cookies. This can expose the application to numerous weaknesses

 that would not exist otherwise.

Public Static Final Field References Mutable Object
A public or protected static final field references a mutable object,

 which allows the object to be changed by malicious code, or
 accidentally from another package

Call to Non-ubiquitous API
An API function that does not exist on all versions of the target

 platform was identified. Some functions that offer security
 features supported by the OS are not available on all versions

 of the OS in common use. Likewise, functions are often
 deprecated or made obsolete for security reasons and should not

 be used.

Undefined Behavior for Input to API
The behavior of this function is undefined unless its control

 parameter is set to a specific value.

Assigning instead of Comparing
The code uses an operator for assignment when the intention was to

 perform a comparison.

Comparing instead of Assigning
The code uses an operator for comparison when the intention was to

 perform an assignment.

Comparison of Classes by Name
The program compares classes by name, which can cause it to use the

 wrong class if two different classes are treated as the same.

Reliance on Package-level Scope
Java packages are not inherently closed; therefore, relying on them

 for code security is not a good practice.

Data Leak Between Sessions
The product does not sufficiently enforce boundaries between the

 states of different sessions, causing data to be provided to, or
 used by, the wrong session.

Leftover Debug Code
The application can be deployed with active debugging code that can

 create unintended entry points.

Private Array-Typed Field Returned From A Public Method
The product has a method that is declared public, but returns a
 reference to a private array, which could then be modified in

 unexpected ways.

Public Data Assigned to Private Array-Typed Field
Assigning public data to a private array is equivalent to giving

 public access to the array.

Information Leak through Class Cloning
The code contains a class with sensitive data, but the class is

 cloneable. The data can then be accessed by cloning the class.

Serializable Class Containing Sensitive Data
The code contains a class with sensitive data, but the class does not

 explicitly deny serialization. The data can be accessed by
 serializing the class through another class.

Static Field Not Marked Final
An object contains a field that is not marked final, which might allow

 it to be modified in unexpected ways.

Trust Boundary Violation
The product mixes trusted and untrusted data in the same data

 structure or structured message.

Deserialization of Untrusted Data
The application deserializes untrusted data without sufficiently

 verifying that the resulting data will be valid.

Use of Dynamic Class Loading
Dynamically loaded code has the potential to be malicious.

clone() Method Without super.clone()
The software contains a clone() method that fails to call

 super.clone() to obtain the new object.

J2EE Framework: Saving Unserializable Objects to Disk
When the J2EE container attempts to write unserializable objects to

 disk there is no guarantee that the process will complete
 successfully.

Use of Inner Class Containing Sensitive Data
Inner classes are translated into classes that are accessible at

 package scope and may expose code that the programmer intended
 to keep private to attackers.

Critical Public Variable Without Final Modifier
The product has a critical public variable that is not final, which

 allows the variable to be modified to contain unexpected values.

Trojan Horse
Since the author of malicious code needs to disguise it somehow so

 that it will be invoked by a nonmalicious user (unless the
 author means also to invoke the code, in which case he or she
 presumably already possesses the authorization to perform the
 intended sabotage), almost any malicious code can be called a

 Trojan horse. A Trojan horse that replicates itself by copying
 its code into other program files (see case MA1) is commonly

 referred to as a virus. One that replicates itself by creating
 new processes or files to contain its code, instead of modifying

 existing storage entities, is often called a worm. Denning
 provides a general discussion of these terms; differences of
 opinion about the term applicable to a particular flaw or its

 exploitations sometimes occur.

Trapdoor
A trapdoor is a hidden piece of code that responds to a special input,

 allowing its user access to resources without passing through
 the normal security enforcement mechanism.

Logic/Time Bomb
A time-bomb or logic-bomb is a piece of code that remains dormant in

 the host system until a certain "detonation" time or
 event occurs. When triggered, a time-bomb may deny service by

 crashing the system, deleting files, or degrading system
 response-time. A time-bomb might be placed within either a

 replicating or non-replicating Trojan horse.

Spyware
"Spyware" is a commonly used term with many definitions and

 interpretations, although it is generally meant to refer to
 software that collects information or installs functionality

 that human users might not allow if they were fully aware of the
 actions being taken by the software.

Non-Replicating Malicious Code
Non-replicating malicious code only resides on the target system or

 software that is attacked; it does not attempt to spread to
 other systems.

Replicating Malicious Code (Virus or Worm)
Replicating malicious code, including viruses and worms, will attempt

 to attack other systems once it has successfully compromised the
 target system or software.

Covert Storage Channel
Covert channels are frequently classified as either storage or timing

 channels. A storage channel transfers information through the
 setting of bits by one program and the reading of those bits by

 another. What distinguishes this case from that of ordinary
 operation is that the bits are used to convey encoded

 information. Examples would include using a file intended to
 hold only audit information to convey user passwords--using the

 name of a file or perhaps status bits associated with it that
 can be read by all users to signal the contents of the file.

 Steganography, concealing information in such a manner that no
 one but the intended recipient knows of the existence of the
 message, is a good example of a covert storage channel.

DEPRECATED (Duplicate): Covert Timing Channel
This weakness can be found at CWE-385.

Unprotected Transport of Credentials
Login pages not using adequate measures to protect the user name and

 password while they are in transit from the client to the
 server.

Information Leak Through Browser Caching
For each web page, the application should have an appropriate caching

 policy specifying the extent to which the page and its form
 fields should be cached.

Information Leak Through CVS Repository
A common mistake by administrators or developers is to leave the CVS

 directory as a subdirectory on many of the folders in the web
 server. Information contained within that directory (such as

 usernames, filenames, path root and IP addresses) could be
 recovered by an attacker and used for malicious purposes.

Information Leak Through Core Dump Files
The application generates a core dump file in a directory that is

 accessible to parties outside of the intended control sphere.

Information Leak Through Access Control List Files
These files allow the attacker to know the setup of the security

 Access Control Lists. This will give the attacker information
 that may allow the attacker to bypass the security of the site.

Information Leak Through Backup (.~bk) Files
Often, old files are renamed with an extension such as .~bk to
 distinguish them from production files. The source code for old

 files that have been renamed in this manner and left in the
 webroot can often be retrieved.

Information Leak Through Test Code
Accessible test applications can pose a variety of security risks.

 Since developers or administrators rarely consider that someone
 besides themselves would even know about the existence of these

 applications, it is common for them to contain sensitive
 information or functions.

Information Leak Through Log Files
Information written to log files can be of a sensitive nature and give

 valuable guidance to an attacker.

Information Leak Through Server Log Files
A server.log file was found. This can give information on whatever

 application left the file. Usually this can give full path names
 and system information, and sometimes usernames and passwords.

Information Leak Through Debug Log Files
The application does not sufficiently restrict access to a log file

 that is used for debugging.

Information Leak Through Cleanup Log Files
The application fails to protect or delete a log file related to

 cleanup.Information Leak Through Persistent Cookies
Persistent cookies are cookies that are stored on the browser’s hard

 drive. This can cause security and privacy issues depending on
 the information stored in the cookie and how it is accessed.

Information Leak Through Source Code
There are situations where it is critical to remove source code from
 an area or server. For example, obtaining Perl source code on a

 system allows an attacker to view the logic of the script and
 extract extremely useful information such as code bugs or logins

 and passwords.

Information Leak Through Directory Listing
A directory listing is inappropriately exposed, yielding potentially

 sensitive information to attackers.

Information Leak Through XML External Entity File Disclosure
The product processes an XML document that can contain XML entities

 with URLs that resolve to documents outside of the intended
 sphere of control, causing the product to embed incorrect

 documents into its output.

Information Leak through WSDL File
Web services architecture may require exposing a WSDL file that
 contains information on the publicly accessible services and how

 callers of these services should interact with them (e.g. what
 parameters they expect and what types they return). An
 information disclosure leak may occur if: 1. WSDL file is

 accessible to a wider audience that intended 2. WSDL file
 contains information on the methods/services that should not be

 publicly accessible or information about deprecated methods This
 problem is made more likely due to the WSDL often being

 automatically generated from the code 3. Information in WSDL
 file helps guess names/locations of methods/resources that

 should not be publicly accessible

Information Leak Through Include Source Code
If an include file source is accessible, the file can contain

 usernames and passwords, as well as sensitive information
 pertaining to the application and system.

Information Leak Through Comments
While adding general comments is very useful, some programmers tend to

 leave important data, such as: filenames related to the web
 application, old links or links which were not meant to be

 browsed by users, old code fragments, etc. An attacker who finds
 these comments can map the application’s structure and files,

 expose hidden parts of the site, and study the fragments of code
 to reverse engineer the application, which may help develop

 further attacks against the site.

Use of Singleton Pattern in a Non-thread-safe Manner
The use of a singleton pattern may not be thread-safe.

Command Shell in Externally Accessible Directory
A possible shell file exists in /cgi-bin/ or other accessible

 directories. This is extremely dangerous and can be used by an
 attacker to execute commands on the web server.

Use of getlogin() in Multithreaded Application
The application uses the getlogin() function in a multithreaded

 context, potentially causing it to return incorrect values.

Use of umask() with chmod-style Argument
The product calls umask() with an incorrect argument that is specified

 as if it is an argument to chmod().

SQL Injection: Hibernate
Using Hibernate to execute a dynamic SQL statement built with

 user-controlled input can allow an attacker to modify the
 statement’s meaning or to execute arbitrary SQL commands.

Access Control Bypass Through User-Controlled SQL Primary Key
Without proper access control, executing a SQL statement that contains

 a user-controlled primary key can allow an attacker to view
 unauthorized records.

Unsynchronized Access to Shared Data
The product does not properly synchronize shared data, such as static

 variables across threads, which can lead to undefined behavior
 and unpredictable data changes.

EJB Bad Practices: Use of Synchronization Primitives
The program violates the Enterprise JavaBeans (EJB) specification by

 using thread synchronization primitives.

EJB Bad Practices: Use of AWT Swing
The program violates the Enterprise JavaBeans (EJB) specification by

 using AWT/Swing.

EJB Bad Practices: Use of Java I/O
The program violates the Enterprise JavaBeans (EJB) specification by

 using the java.io package.

EJB Bad Practices: Use of Sockets
The program violates the Enterprise JavaBeans (EJB) specification by

 using sockets.

EJB Bad Practices: Use of Class Loader
The program violates the Enterprise JavaBeans (EJB) specification by

 using the class loader.

J2EE Bad Practices: Non-serializable Object Stored in Session
The application stores a non-serializable object as an HttpSession

 attribute, which can hurt reliability.

Object Model Violation: Just One of Equals and Hashcode Defined
The software fails to maintain equal hashcodes for equal objects.

Duplicate Operations on Resource
The product performs the same operation on a resource two or more

 times, when the operation should only be applied once.

Use of Potentially Dangerous Function
The program invokes a potentially dangerous function that could

 introduce a vulnerability if it is used incorrectly, but the
 function can also be used safely.

Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects
 are Created

The software modifies the SSL context after connection creation has
 begun.

Use of Wrong Operator in String Comparison
The product uses the wrong operator when comparing a string, such as

 using "==" when the equals() method should be used
 instead.

URL Redirection to Untrusted Site
A web application accepts a user-controlled input that specifies a

 link to an external site, and uses that link in a Redirect.
 This simplifies phishing attacks.

Use of Client-Side Authentication
A client/server product performs authentication within client code

 but not in server code, allowing server-side authentication to
 be bypassed via a modified client that omits the authentication

 check.

Multiple Binds to the Same Port
When multiple sockets are allowed to bind to the same port, other

 services on that port may be stolen or spoofed.

Double-Checked Locking
The program uses double-checked locking to access a resource without

 the overhead of explicit synchronization, but the locking is
 insufficient.

Insufficient Session Expiration
According to WASC, "Insufficient Session Expiration is when a web

 site permits an attacker to reuse old session credentials or
 session IDs for authorization."

Reachable Assertion
The product contains an assert() or similar statement that can be

 triggered by an attacker, which leads to an application exit or
 other behavior that is more severe than necessary.

Variable Extraction Error
The product processes user-provided information and extracts this

 information into arbitrary variables, without verifying that the
 names of the specified variables are valid. For example, in PHP,

 calling extract() or import_request_variables() without the
 proper arguments could allow arbitrary global variables to be
 overwritten, including superglobals. Similar functionality might
 be possible in other interpreted languages, including custom

 languages.

Unvalidated Function Hook Arguments
A product adds hooks to user-accessible API functions, but does not

 properly validate the arguments. This could lead to resultant
 vulnerabilities.

Executable Regular Expression Error
The product uses a regular expression that either (1) contains an
 executable component with user-controlled inputs, or (2) allows
 a user to enable execution by inserting pattern modifiers. Case
 (2) is possible in the PHP preg_replace() function, and possibly
 in other languages when a user-controlled input is inserted into

 a string that is later parsed as a regular expression.

Dynamic Variable Evaluation
Many interpreted languages support the use of a "$$varname"

 construct to set a variable whose name is specified by the
 $varname variable. In PHP, these are referred to as
 "variable variables." Functions might also be invoked

 using similar syntax, such as $$funcname(arg1, arg2). If the
 variable names are not controlled, an attacker can read or write

 to arbitrary variables, or access arbitrary functions. The
 resultant vulnerabilities depend on the behavior of the

 application, both at the control transfer point and in any
 control/data flow that is reachable by the related variables or

 functions.

Function Call With Incorrect Order of Arguments
The software calls a function, procedure, or routine, but the caller

 specifies the arguments in an incorrect order, leading to
 resultant weaknesses.

Function Call With Incorrect Number of Arguments
The software calls a function, procedure, or routine, but the caller
 specifies too many arguments, or too few arguments, leading to

 undefined behavior and resultant weaknesses.

Function Call With Incorrect Argument Type
The software calls a function, procedure, or routine, but the caller

 specifies an argument that is the wrong data type, leading to
 resultant weaknesses.

Function Call With Incorrectly Specified Argument Value
The software calls a function, procedure, or routine, but the caller
 specifies an argument that contains the wrong value, leading to

 resultant weaknesses.

Function Call With Incorrect Variable or Reference as Argument
The software calls a function, procedure, or routine, but the caller

 specifies the wrong variable or reference as one of the
 arguments, leading to undefined behavior and resultant

 weaknesses.

Design Principle Violation: Not Failing Securely
When the product encounters an error condition or failure, its design

 requires it to fall back to a state that is less secure than
 other options that are available, such as selecting the weakest

 encryption algorithm or using the most permissive access control
 restrictions.

Design Principle Violation: Not Using Economy of Mechanism
The product uses a more complex mechanism than necessary, which could

 lead to resultant weaknesses when the mechanism is not correctly
 understood, modeled, configured, implemented, or used.

Design Principle Violation: Not Using Complete Mediation
The product does not perform access checks on a resource every time

 the resource is accessed by an entity, which can create
 resultant weaknesses if that entity’s rights or privileges

 change over time.

Insufficient Filtering of File and Other Resource Names for Executable
 Content

When an application does not restrict the valid names of resources
 (e.g. files) supplied by the user, various problems may arise

 down the line when these resources are used. For instance, if
 the names of these resources contain scripting characters, it is
 possible that a script may get executed in the client’s browser
 if the application ever displays the name of the resource on a

 dynamically generated webpage. Or if the resources are consumed
 by some application parser, a specially crafted name can exploit

 some vulnerability internal to the parser, potentially resulting
 in execution of arbitrary code on the server machine. The
 problems will vary based on the context of usage of such

 malformed resource names and whether vulnerabilities are present
 in or assumptions are made by the targeted technology that would

 make code execution possible.

Unsafe Treatment of XPath Input
When an application fails to properly validate and sanitize user input

 and uses that input to dynamically construct an XPath
 expression used to retrieve data from an XML database the user

 will be able to control the structure of such query. The net
 effect is that user will have control over the information

 selected from the XML database and may use that ability to
 control application flow and bypass important checks (e.g.

 authentication). This weakness is similar to other weaknesses
 that enable injection style attacks, such as SQL injection,

 command injection and LDAP injection. The main difference is
 that the target of attack here is the XML database.

Unsafe Treatment of XQuery Input
When an application fails to properly validate and sanitize user input

 and uses that input to dynamically construct XQuery
 expressions used to retrieve data from an XML database the user

 will be able to control the structure of such query. The net
 effect is that user will have control over the information

 selected from the XML database and may use that ability to
 control application flow and bypass important checks (e.g.

 authentication). This weakness is similar to other weaknesses
 that enable injection style attacks, such as SQL injection,

 command injection and LDAP injection. The main difference is
 that the target of attack here is the XML database.

Design Principle Violation: Insufficient Compartmentalization
The product does not sufficiently compartmentalize functionality or

 processes that require different privilege levels, rights, or
 permissions.

Design Principle Violation: Reliance on a Single Factor in a Security
 Decision

A security mechanism relies exclusively, or to a large extent, on the
 evaluation of a single condition or the integrity of a single
 object or entity in order to make a decision about granting

 access to restricted resources or functionality.

Design Principle Violation: Failure to Satisfy Psychological
 Acceptability

A security mechanism is too difficult or inconvenient to use,
 encouraging non-malicious users to disable or bypass the

 mechanism, whether by accident or on purpose.

Design Principle Violation: Reliance on Security through Obscurity
The strength of a security mechanism depends heavily on its obscurity,

 such that knowledge of its algorithms or key data is sufficient
 to allow the mechanism to be compromised.

Design Principle Violation: Lack of Administrator Control over
 Security

The product uses security features in a way that prevents the
 product’s administrator from tailoring security settings to

 reflect the environment in which the product is being used.
 This introduces resultant weaknesses.

Failure to Handle Windows Device Names
Failing to properly handle virtual filenames (e.g. AUX, CON, PRN,

 COM1, LPT1) can result in different types of vulnerabilities. In
 some cases an attacker can request a device via injection of a
 virtual filename in a URL, which may cause an error that leads

 to a denial-of-service or an error page that reveals sensitive
 information. A software system that allows device names to

 bypass filtering runs the risk of an attacker injecting
 malicious code in a file with the name of a device.

Use of a Non-reentrant Function in an Unsynchronized Context
The software calls a non-reentrant function in a context where a

 competing thread may have an opportunity to call the same
 function or otherwise influence its state.

Insufficient Locking
The software does not properly acquire a lock on a resource, leading

 to unexpected resource state changes and behaviors.

Incorrect or Incomplete Initialization
The software does not follow the proper procedures for initializing a

 resource and might leave the resource in an improper state for
 future uses.

Operation on Resource in Wrong Phase of Lifetime
The software performs an operation on a resource at the wrong phase of

 the resource’s lifecycle, which can lead to unexpected
 behaviors.

Use of a Resource after Expiration or Release
The software fails to renew or discontinue the use of a resource after

 expiration, release or revocation.

Failure to Sanitize Special Elements into a Different Plane (Special
 Element Injection)

The software fails to adequately filter user-controlled input for
 special elements with control implications.

Failure to Sanitize Data into a Control Plane (aka ’Command
 Injection’)

The software fails to adequately filter command (control plane) syntax
 from user-controlled input (data plane) and then allows

 potentially injected commands to execute within its context.

Failure to Sanitize Directives in a Web Page (aka ’Cross-site
 scripting’ (XSS))

The software does not sufficiently sanitize user-controllable input
 for content before it is prepared in output that is used as a

 web page.

Argument Injection or Modification
The software does not sufficiently delimit the arguments being passed

 to a component in another control sphere, allowing alternate
 arguments to be provided, leading to potentially

 security-relevant changes.

Failure to Sanitize Data into SQL Queries (aka ’SQL Injection’)
The application fails to adequately filter SQL syntax from
 user-controllable input. This can lead to such input being
 interpreted as SQL rather than ordinary user data and be

 executed as part of a dynamically generated SQL query. This is a
 specific form of an injection problem, one that explicitly

 affects SQL databases, in which SQL commands are injected into
 data-plane input in order to effect the execution of dynamically

 generated SQL statements.

Failure to Sanitize Data into LDAP Queries (aka ’LDAP Injection’)
The software does not sufficiently sanitize special elements that are
 used in LDAP queries or responses, allowing attackers to modify
 the syntax, contents, or commands of the LDAP query before it is

 executed.

XML Injection (aka Blind XPath Injection)
The software does not properly filter or quote special characters or

 reserved words that are used in XML, allowing attackers to
 modify the syntax, content, or commands of the XML before it is

 processed by an end system.

Custom Special Character Injection
The software does not properly filter or quote special characters or
 reserved words that are used in a custom or proprietary language

 or representation that is used by the product, allowing
 attackers to modify the syntax, content, or commands before they

 are processed by an end system.

Failure to Sanitize CRLF Sequences (aka ’CRLF Injection’)
The software uses CRLF (carriage return line feeds) as a special

 element, e.g. to separate lines or records, but it does not
 properly sanitize CRLF sequences from inputs.

Code Injection
The product does not sufficiently filter code (control-plane) syntax

 from user-controlled input (data plane) when that input is used
 within code that the product generates.

Insufficient Control of Resource Identifiers (aka ’Resource
 Injection’)

The software allows user-controlled input to control resource
 identifiers. This may enable an attacker to access or modify

 otherwise protected system resources.

Failure to Resolve Equivalent Special Elements into a Different Plane
The software fails to adequately filter non-typical special elements

 that are equivalent to control-relevant special elements that
 are already being filtered.

Failure to Sanitize Data into an OS Command (aka ’OS Command
 Injection’)

The software fails to adequately filter OS command syntax from
 user-controlled input and then allows potentially injected

 commands to execute within its context. A software system that
 accepts and executes input in the form of operating system

 commands (e.g. system(), exec(), open()) could allow an attacker
 with lesser privileges than the target software to execute

 commands with the elevated privileges of the executing process.
 The problem is exacerbated if the compromised process fails to

 follow the principle of least privilege.

Failure to Sanitize Script-Related HTML Tags in a Web Page (Basic XSS)
The web application fails to adequately filter user-controlled input
 and sanitize its own output for any special characters, such as

 "<", ">", and "&". This
 may allow such characters to be treated as control characters,

 which are executed client-side in the context of the user’s
 session. Although this can be classified as an injection

 problem, the more pertinent issue is the failure to convert such
 special characters to respective context-appropriate entities

 before displaying them to the user.

Failure to Sanitize Directives in an Error Message Web Page
This Weakness occurs when a web developer displays user-controlled

 input on an error page (e.g. a customized 403 Forbidden page).
 If the input has not been appropriately filtered and sanitized

 prior to inclusion in the target page, an attacker can influence
 a victim to view/request a web page that causes an error,

 containing malicious HTML input, such as scripts.

Failure to Sanitize Script in Attributes of IMG Tags in a Web Page
A Web application that trusts input in the form of HTML IMG tags is
 potentially vulnerable to XSS attacks. Attackers can embed XSS

 exploits into the values for IMG attributes (e.g. SRC) that is
 streamed and then executed in a victim’s browser. Note that when

 the page is loaded into a user’s browsers, the exploit will
 automatically execute.

Failure to Sanitize Script in Attributes in a Web Page
The software does not filter "javascript:" or other URI’s

 from dangerous attributes within tags, such as onmouseover,
 onload, onerror, or style.

Failure to Resolve Encoded URI Schemes in a Web Page
The web application fails to filter user-controlled input for

 executable script disguised with URI encodings.

Doubled Character XSS Manipulations
The web application fails to filter user-controlled input for

 executable script disguised using doubling of the involved
 characters.

Invalid Characters in Identifiers
The software does not strip out invalid characters in the middle of

 tag names, schemes, and other identifiers, which are still
 rendered by some web browsers that ignore the characters.

Alternate XSS Syntax
The software fails to adequately filter user-controlled input for

 alternate script syntax.

Insufficient Control of Directives in Dynamically Evaluated Code (aka
 ’Eval Injection’)

The software allows user-controlled input to be fed directly into a
 function (e.g. "eval") that dynamically evaluates and

 executes the input as code, usually in the same interpreted
 language that the product uses. Direct Dynamic Code Evaluation

 is prevalent in handler/dispatch procedures that might want to
 invoke a large number of functions, or set a large number of

 variables.

Insufficient Control of Directives in Statically Saved Code (Static
 Code Injection)

The software allows user-controlled input to be fed directly into an
 output file that is later processed as code, such as a library

 file or template.

Insufficient Control of Filename for Include/Require Statement in PHP
 Program (aka ’PHP File Inclusion’)
The software allows user-controlled data to be directly processed by

 the PHP interpreter before inclusion in the script through use
 of "require," "include," or similar

 statements.

Failure to Sanitize Server-Side Includes (SSI) Within a Web Page
The software fails to adequately filter server-side include

 (control-plane) syntax from user-controlled input (data plane)
 and then allows potentially injected server-side includes to be

 acted upon.

