
Root

G enesis
 H ow does a security f law f ind its way into a program ? It m ay be introduced intentionally or

 inadvertently. D ifferent s trategies can be used to avoid, detec t, or com pensate for acc idental
 f laws as opposed to those intentionally inserted. O ur goal in recording th is d is tinc tion is ,
 u ltim ately, to collec t data that w ill provide a bas is for dec id ing which s trategies to use in a

 particular context.

Tim e o f In troduction
 C lass ifying identif ied security f laws , both intentional and inadvertent, according to the phase of

 the sys tem life cyc le in which they were introduced can help us unders tand both where to look for
 m ore errors and where to focus efforts to prevent their introduc tion. T he software engineering
 literature inc ludes a variety of s tudies [6,29] that have inves tigated the general ques tion of how

 and when errors are introduced into software. Software security f laws can be c lass if ied broadly as
having been introduced during the developm ent or m aintenance s tage of the software life cyc le or by

 unauthorized m odif ication of operational software (e.g., by a virus). F laws introduced during
 developm ent can usually be attributed to erroneous or incorrec tly im plem ented requirem ents or

 spec if ications . H owever, it is im portant to unders tand that f laws can orig inate throughout the
software life cyc le. A f law introduced early in the software life cyc le m ay propagate as the sys tem
 grows and becom e quite cos tly to rec tify. A m ajor f law in a requirem ent, for ins tance, is not
 unusual in a large software sys tem . If such a f law affec ts security and its correc tion is not

 deem ed cos t-effec tive, the sys tem and the f law m ay rem ain. For exam ple, an early m ultiprogram m ing
operating sys tem perform ed som e I/O -related func tions by having the supervisor execute code located

 in user m em ory while in supervisor m ode. By the tim e th is was recognized as a security f law, its
 rem oval would have caused m ajor incom patib ilities w ith other software, and it was not f ixed. It is
 also im portant to recognize the poss ib ility of m alic ious intrus ion into the sys tem during both

 developm ent and m aintenance. T he security analys t needs to assure that utilities used to build the
 sys tem (e.g., com pilers , linkers , m acro-assem blers , and software tes ting tools) are free of

 m alic ious code (note T hom psonâ� �s ex ample [25] and a l imi t ed def ense pos ed by McDe r mott [30]). The
 orig inal des igners and program m ers of a sys tem are rarely involved in its m aintenance; f laws
 introduced during m aintenance are often attributable to the m aintainer â� �s l ack of unders t andi ng of

 the sys tem as a whole. N ot infrequently, an attem pt to correc t one f law w ill c reate another.
 Vig ilance is also required to thwart m alic ious attem pts to introduce security f laws through

 software m aintenance. Ins tallation of a new vers ion of software is often cons idered a routine
 ac tivity, yet the ins taller m ay have com plete control over both software and hardware during the

 ins tallation.

Loca tion
 A security f law can be c lass if ied according to where in the sys tem it is introduced or found. M ost

 com puter security f laws occur in software, but f laws affec ting security m ay occur in hardware as
 well. A lthough th is taxonom y princ ipally addresses software f laws , program s can w ith inc reas ing

 fac ility be cas t in hardware. T his fac t and the poss ib ility that m alic ious software m ay exploit
 hardware f laws m otivate a brief sec tion address ing them .

In ten tiona l
 C harac terizing intention is tricky: som e features intentionally p laced in program s can at the sam e

 tim e inadvertently introduce security f laws (e.g., a feature that fac ilitates rem ote debugging or
 sys tem m aintenance m ay at the sam e tim e provide a trapdoor to a sys tem). W here such cases can be

 d is tinguished, they are categorized as intentional but nonm alic ious . N ot w ishing to endow program s
 w ith intentions , we nevertheless use the term s "m alic ious f law," "m alic ious code," and so on, as
 shorthand for f laws , code, etc ., that have been introduced into a sys tem by an individual w ith

 m alic ious intent. A lthough som e m alic ious f laws could be disguised as inadvertent f laws , th is
 d is tinc tion should be easy to m ake in prac ticeâ �� i nadver t ent ly c r eat ed Troj an hor se pr ogr ams are

 hardly likely!

Inadverten t
 Inadvertent f laws m ay occur in requirem ents ; they m ay also f ind their way into software during

 spec if ication and coding. A lthough m any of these are detec ted and rem oved through tes ting, som e
 f laws can rem ain undetec ted and later cause problem s during operation and m aintenance of the

 software sys tem . For a software sys tem com posed of m any m odules and involving m any program m ers ,
f laws are often diff icult to f ind and correc t because m odule interfaces are inadequately docum ented

 and global variables are used. T he lack of docum entation is espec ially troublesom e during
 m aintenance when attem pts to f ix exis ting f laws often generate new f laws because m aintainers lack
unders tanding of the sys tem as a whole. A lthough inadvertent f laws do not usually pose an im m ediate

 threat to the security of the sys tem , the weakness resulting from a f law m ay be exploited by an
 in truder (see case D 1).

M alic ious
 M alic ious f laws have acquired colorfu l nam es, inc luding Trojan horse, trapdoor, tim ebom b, and

 logic -bom b. T he term "Trojan horse" was introduced by D an Edwards and recorded by Jam es Anderson
 [18] to charac terize a particular com puter security threat; it has been redefined m any tim es
 [4,18-20]. It generally refers to a program that m asquerades as a useful service but exploits

 rights of the program â� �s use râ� � ri ght s not possess ed by t he author of t he Tr oj an ho rs eâ �� i n a way the
 user does not intend.

N onm alic ious

Tro jan H orse
 S ince the author of m alic ious code needs to d isguise it som ehow so that it w ill be invoked by a

 nonm alic ious user (unless the author m eans also to invoke the code, in which case he or she
 presum ably already possesses the authorization to perform the intended sabotage), alm os t any

 m alic ious code can be called a Trojan horse. A Trojan horse that replicates itself by copying its
 code into other program files (see case M A1) is com m only referred to as a virus [21,22]. O ne that

 replicates itself by c reating new processes or f iles to contain its code, ins tead of m odifying
 exis ting s torage entities , is often called a worm [23]. D enning [26] provides a general d iscuss ion

 of these term s; d ifferences of opin ion about the term applicable to a particular f law or its
 exploitations som etim es occur [22,3].

Trapdoor
 A trapdoor is a h idden piece of code that responds to a spec ial input, allow ing its user access to

 resources w ithout pass ing through the norm al security enforcem ent m echanism (see case U 1).

Log ic /Tim e Bom b
 A tim e-bom b or logic -bom b is a p iece of code that rem ains dorm ant in the hos t sys tem until a

 certain "detonation" tim e or event occurs (see case I8). W hen triggered, a tim e-bom b m ay deny
 service by c rashing the sys tem , deleting f iles , or degrading sys tem response-tim e. A tim e-bom b

 m ight be placed w ith in either a replicating or non-replicating Trojan horse.

N on-R ep lica ting

R ep lica ting (v irus)

C overt C hanne l
 A covert channel is s im ply a path used to trans fer inform ation in a way not intended by the

 sys tem â� �s des i gners [27].

O ther
 O ther kinds of intentional but nonm alic ious security f laws are poss ib le. Func tional requirem ents
 that are written w ithout regard to security requirem ents can lead to such f laws; one of the f laws

 exploited by the "Internet worm " [3] (case U 10) could be placed in th is category.

Storage
 C overt channels are frequently c lass if ied as either s torage or tim ing channels . A s torage channel
 trans fers inform ation through the setting of b its by one program and the reading of those bits by
 another. W hat d is tinguishes th is case from that of ordinary operation is that the bits are used to

 convey encoded inform ation. Exam ples would inc lude us ing a f ile intended to hold only audit
 in form ation to convey user passwords â � � us i ng t he n ame of a fi le or per haps s tat us bi ts assoc iat ed

 w ith it that can be read by all users to s ignal the contents of the f ile.

Tim ing
 C overt channels are frequently c lass if ied as either s torage or tim ing channels . T im ing channels

 convey inform ation by m odulating som e aspec t of sys tem behavior over tim e, so that the program
 receiving the inform ation can observe sys tem behavior (e.g., the sys tem â� �s pagi ng rate, t he t i me a

 certain transac tion requires to execute, the tim e it takes to gain access to a shared bus) and
 in fer protec ted inform ation.

Va lida tion E rro r (Incom p le te /Inconsis ten t)
Validation f laws occur when a program fails to check that the param eters supplied or returned to it

 conform to its assum ptions about them . T hese assum ptions m ay inc lude the num ber of param eters
 provided, the type of each, the location or m axim um length of a buffer, or the access perm iss ions
 on a f ile. W e lum p together cases of incom plete validation (where som e but not all param eters are
checked) and incons is tent validation (where different interface routines to a com m on data s truc ture

 fail to apply the sam e set of checks).

D om ain E rro r (Inc lud ing O b ject R e-use , R esidua ls , and Exposed R epresen ta tion E rro rs)
 D om ain f laws occur when the intended boundaries between protec tion environm ents have holes . For

 exam ple, a user who c reates a new f ile and discovers that it contains inform ation from a f ile
 deleted by a different user has discovered a dom ain f law. (T his kind of error is som etim es A

 Taxonom y of C om puter P rogram Security F laws 10 Landwehr, Bull, M cD erm ott, and C hoi U .S . N aval
 R esearch Laboratory N R L/FR /5542--93-9591 N ovem ber 19,1993 referred to as a problem with objec t

 reuse or w ith res iduals .) W e also inc lude in th is category f laws of exposed representation [16] in
 which the lower-level representation of an abs trac t objec t, intended to be hidden in the current

dom ain, is in fac t exposed (see cases B1 and D T 1). E rrors c lassed by Abbott as "im plic it sharing of
 privileged/confidential data" w ill generally fall in th is category.

Seria liza tion /a lias ing (Inc lud ing TO C TO U E rro rs)
 A serialization f law perm its the asynchronous behavior of d ifferent sys tem com ponents to be

 exploited to cause a security violation. T hese f laws can be particularly d iff icult to d iscover. A
 security-c ritical program m ay appear to correc tly validate all of its param eters , but the f law

perm its the asynchronous behavior of another program to change one of those param eters after it has
 been checked but before it is used. M any tim e-of-check-to-tim e-of-use (TO C T TO U) f laws w ill fall in
 th is category, although som e m ay be c lassed as validation errors if asynchrony is not involved. W e

 also inc lude in th is category alias ing f laws , in which the fac t that two nam es exis t for the sam e
 objec t can cause its contents to change unexpec tedly and, consequently, invalidate checks already

 applied to it.

Iden tifica tion /Au then tica tion Inadequa te
 An identif ication/authentication f law is one that perm its a protec ted operation to be invoked

 w ithout suff ic iently checking the identity and authority of the invoking agent. T hese f laws could
 perhaps be counted as validation f laws , s ince presum ably som e routine is failing to validate

 authorizations properly. H owever, a suff ic iently large num ber of cases have occurred in which
 checking the identity and authority of the user in itiating an operation has in fac t been neglec ted

 to keep th is as a separate category.

Boundary C ond ition V io la tion (Inc lud ing R esource Exhaustion and Vio lab le C onstra in t E rro rs)
Boundary condition f laws typically ref lec t om iss ion of checks to assure cons traints (e.g., on table
 s ize, f ile allocation, or other resource consum ption) are not exceeded. T hese f laws m ay lead to

 sys tem crashes or degraded service, or they m ay cause unpredic table behavior.

O ther Exp lo itab le Log ic E rro r
 F inally, we inc lude as a catchall a category for other exploitable logic errors . Bugs that can be

 invoked by users to cause sys tem crashes , but that donâ��t i nvol ve boundary c ondit i ons, would be
 p laced in th is category, for exam ple.

D uring D eve lopm ent
 F laws introduced during developm ent of the software can orig inate in requirem ents and
 spec if ications , source code, or objec t code. A lthough the software life cyc le is norm ally p lanned
 and described as though requirem ents are fu lly defined prior to sys tem spec if ication, and
 spec if ication s tric tly precedes coding, in prac tice there is iteration in each of these s teps and
 ac ross s teps . T hus in fac t, identif ication of the tim e a security f law is introduced overlaps the
 defin ition of the place (requirem ents docum ent, spec if ication, or code) it occurs . Issues of
 concern to the security analys t for each of these subcategories are discussed here.

D uring M a in tenance
 Inadvertent f laws introduced during m aintenance are often attributable to the m aintenance

 program m erâ� �s fai l ure to unders t and t he sys t em as a whole. Si nce sof t ware pr oduct i on f acil it i es
 often have a high personnel turnover rate, and because sys tem docum entation is often inadequate,

 m aintenance ac tions can have unpredic table s ide effec ts . If a f law is f ixed on an ad hoc bas is
 w ithout perform ing a backtracking analys is to determ ine the orig in of the f law, it w ill tend to

 induce other f laws and th is cyc le w ill continue. Software m odif ied during m aintenance should be
subjec ted to the sam e review as newly developed software; it is subjec t to the sam e kinds of f laws .

C ase D 1 graphically shows that sys tem upgrades , even when perform ed in a controlled environm ent and
 w ith the bes t of intentions , can introduce new flaws. In th is case, a f law was inadvertently

 in troduced into a subsequent release of a D EC operating sys tem follow ing its success ful evaluation
 at the C 2 level of the Trus ted C om puter Sys tem Evaluation C riteria (T C SEC) [12]. Sys tem analys ts

 should also be aware of the poss ib ility of m alic ious intrus ion during the m aintenance s tage. In
 fac t, viruses are m ore likely to be present during the m aintenance s tage, s ince viruses by

 defin ition spread the infec tion through executable codes .

D uring O pera tion
 T he well-public ized ins tances of virus program s [26,31,32] dram atize the need for the security
 analys t to cons ider the poss ib ilities for unauthorized m odif ication of operational software during

 its operational use. Viruses are not the only m eans by which m odif ications can occur: depending on
 the controls in p lace in a sys tem , ordinary users m ay be able to m odify sys tem software or ins tall

 replacem ents ; w ith a s tolen password, an intruder m ay be able to do the sam e th ing. Furtherm ore,
 software brought into a hos t from a contam inated source (e.g., software from a public bulletin
 board that has , perhaps unknown to its author, been altered) m ay be able to m odify other hos t

 software w ithout authorization.

R equ irem ents/Specifica tion /D esign
 Ideally, software requirem ents describe what a particular program or sys tem of program s m ust do.
 H ow the program or sys tem is organized to m eet those requirem ents (i.e., the software des ign) is

 typically recorded in a variety of docum ents , referred to collec tively as spec if ications .
Spec if ications w ith various scopes and levels of detail m ay be written for a software sys tem or its

 com ponents , and they m ay be called interface spec if ications , m odule spec if ications , func tional
 spec if ications , detailed spec if ications , and so on. Typically, the spec if ications define the

 func tions of software m odules and the param eters assoc iated w ith them . T hey are the bas is on which
 the source code is built. T he spec if ier is often respons ible for im plem enting the spec if ication as

 well. If written according to good engineering prac tice, the requirem ent and spec if ication
 docum ents should m ake the software des ign c lear to the security analys t. A t a m inim um , the

 spec if ication should com pletely docum ent the interfaces of all m odules . T his inform ation should be
 detailed enough that m aintenance program m ers can determ ine whether and how a m odif ication of one

 m odule w ill affec t others . Spec if ications that do not m eet th is c riterion are m ore likely to
 contain security f laws . Apart from checking for spec if ication com pleteness , the security analys t

 m us t assure that the security requirem ents them selves are com plete, that they m esh w ith the
 sys tem â� �s f unct i ons, and t hat t he specif i cat i ons are c ons is t ent wi th t he r equi r ements. Er rors are

 m ore likely to occur if the func tional requirem ents and security requirem ents have been developed
 and docum ented independently than if they have been coordinated. R equirem ents and spec if ications

 are relatively unlikely to contain m alic ious ly introduced f laws. T hey are norm ally reviewed
extens ively, so a spec if ication for a trapdoor or a Trojan horse would have to be well-d isguised to
 avoid detec tion. M ore likely are f laws that arise because of com petition between security

 requirem ents and other func tional requirem ents . For exam ple, security concerns m ight d ic tate that
program s never be m odif ied at an operational s ite. But if the delay in repairing errors detec ted in

 sys tem operation is perceived to be too great, there w ill be pressure to provide m echanism s in the
 spec if ication to perm it on-s ite reprogram m ing. Such m echanism s can provide built-in security
 loopholes . A lso poss ib le are inadvertent f laws that arise because of m iss ing requirem ents or

 undetec ted conflic ts am ong requirem ents .

Source C ode
 T he source code im plem ents the des ign of the software sys tem given by the spec if ications . M os t

 f laws in source code, whether inadvertent or intentional, can be detec ted through a careful
 exam ination of it. T he c lasses of inadvertent f laws described previous ly apply to source code. For

 a large software sys tem , inadvertent f laws in source code are frequently a by-produc t of
 inadequately defined m odule or process interfaces . P rogram m ers attem pting to build a sys tem to

 inadequate spec if ications are likely to m isunders tand the param eters to be passed across an
 in terface, the requirem ents for synchronizing concurrent processes , or the proper form ats for data

 input or output. T hese m isunders tandings m anifes t them selves as source code f laws. M any such f laws
 in a sys tem m ay indicate poor sys tem docum entation and m ay require sys tem docum ents to be

rewritten. Intentional but nonm alic ious f laws can be introduced in source code for several reasons .
 A program m er m ay introduce m echanism s that are not inc luded in the spec if ication but that are

 in tended to help in debugging and tes ting the norm al operation of the code. H owever, the tes t
 scaffold ing m ay c ircum vent security controls . If the scaffold ing is left in p lace in the

 operational sys tem , it provides a security f law. O ne of the attacks used by the Internet W orm
 exploited jus t such a m echanism ; th is m echanism perm itted rem ote execution of an operating sys tem
 com m and without requiring user authentication (case U 10). P rogram m ers m ay also dec ide to provide

undocum ented fac ilities that s im plify m aintenance but provide security loopholes â �� t he i nc l us i on of a
 "patch area" that fac ilitates reprogram m ing outs ide the scope of the configuration m anagem ent
 sys tem would fall in th is category. Technically sophis ticated m alic ious f laws can be introduced at

 the source code level. A program m er, whether an authorized m em ber of a developm ent team or an
 in truder, working at the source code level can invoke spec if ic operations that w ill com prom ise

 sys tem security. A lthough m alic ious source code can be detec ted through m anual review of software,
 m uch software is developed w ithout any such review; source code is frequently not provided to

 purchasers of software packages (even if it is supplied, the purchaser is unlikely to have the
 resources necessary to review it for m alic ious code). If the program m er is aware of the review

 process , he m ay well be able to d isguise the f laws he introduces . A m alic ious source code f law m ay
 be introduced direc tly by any individual who gains write access to source code f iles , but source
 code f laws can also be introduced indirec tly. For exam ple, if a program m er authorized to write

 source code f iles inadvertently invokes a Trojan horse editor (or com piler, linker, loader, etc .),
 the Trojan horse could use the program m erâ� �s pr ivi l eges to modi fy s our ce c ode fi l es. I ns t ances of
 subtle indirec t tam pering w ith source code are diff icult to docum ent, but T rojan horse program s

 that gross ly m odify all a user â� �s fi l es, and hence t he s our ce c ode fi l es, have been c r eat ed.

O bject C ode
 O bjec t code program s are generated by com pilers or assem blers and represent the m achinereadable
 form of the source code. Because m ost com pilers and assem blers are subjec ted to extens ive tes ting

 and form al validation procedures before release, inadvertent f laws in objec t program s that are not
 s im ply a trans lation of source code f laws are rare, particularly if the com piler or assem bler is

 m ature and has been w idely used. W hen such errors do occur as a result of errors in a com piler or
 assem bler, they typically show them selves through incorrec t behavior of program s in unusual cases ,

 so they can be quite d iff icult to track down and rem ove. Because th is kind of f law is rare, the
 prim ary security concern at the objec t code level is w ith m alic ious f laws . Because objec t code is
d iff icult for a hum an to m ake sense of (if it were not, software com panies would not have different

polic ies for selling source code and objec t code for their produc ts), it is a good hid ing place for
 m alic ious security f laws (again, see T hom pson [25]). Lacking sys tem and source code docum entation,

 an intruder w ill have a hard tim e patching source code to introduce a security f law w ithout
 s im ultaneous ly altering the vis ib le behavior of the program . T he insertion of a m alic ious objec t

 code m odule or replacem ent of an exis ting objec t m odule by a vers ion of it that incorporates a
T rojan horse is a m ore com m on threat. W riters of self-replicating Trojan horses (viruses) [21] have

 typically taken th is approach: a bogus objec t m odule is prepared and inserted in an in itial target
 sys tem . W hen it is invoked, perhaps during sys tem boot or running as a subs titute vers ion of an

 exis ting utility, it can search the disks m ounted on the sys tem for a copy of itself and, if it
 f inds none, insert one. If it f inds a related, uninfec ted vers ion of a program , it can replace it

 w ith an infec ted copy. W hen a user unwittingly m oves an infec ted program to a different sys tem and
 executes it, the virus gets another chance to propagate itself. Ins tead of replac ing an entire

 program , a virus m ay append itself to an exis ting objec t program , perhaps as a segm ent to be
 executed f irs t. C reating a virus generally requires som e knowledge of the operating sys tem and

 program m ing conventions of the target sys tem ; viruses , espec ially those introduced as objec t code,
typically cannot propagate to d ifferent hos t hardware or operating sys tem s. A direc t penetration at
 the objec t code level occurs when a user or intruder m alic ious ly alters objec t code or introduces
 bogus objec t code. U nwitting propagation of a virus by a user is a form of indirec t penetration.

Software
In c lass ifying the place a software f law is introduced, we adopt the view of a security analys t who

is searching for such f laws. W here should one look f irs t? Because operating sys tem flaws are likely
 to have the m ost severe effec ts , th is is probably the bes t p lace to begin. But the search needs to
 be focused. T he taxonom y for th is area sugges ts particular sys tem func tions that should be
 sc rutin ized c losely. In som e cases , im plem entation of these func tions m ay extend outs ide the
 operating sys tem perim eter into support and application software; in th is case, that software m ust

 also be reviewed. Software f laws can occur in operating sys tem program s, support software, or
 application (user) software. T his is a rather coarse divis ion, but even so the boundaries are not

 always c lear.

H ardware
 Issues of concern at the hardware level inc lude the des ign and im plem entation of processor

hardware, m ic roprogram s, and supporting chips , and any other hardware or f irm ware func tions used to
 realize the m achineâ� �s i nst r uct i on set ar chi t ec ture. It is not unc o mmon for ev en wi dely distr i but ed
 processor chips to be incom pletely spec if ied, to deviate from their spec if ications in spec ial

 cases , or to inc lude undocum ented features . Inadvertent f laws at the hardware level can cause
 problem s such as im proper synchronization and execution, b it loss during data trans fer, or
incorrec t results after execution of arithm etic or logical ins truc tions (see case M U 9). Intentional
 but nonm alic ious f laws can occur in hardware, particularly if the m anufac turer inc ludes

 undocum ented features (for exam ple, to ass is t in tes ting or quality control). H ardware m echanism s
 for resolving resource contention eff ic iently can introduce covert channels (see case D 2).

 M alic ious m odif ication of ins talled hardware (e.g., ins talling a bogus replacem ent chip or board)
generally requires phys ical access to the hardware com ponents , but m ic rocode f laws can be exploited

 w ithout phys ical access . An intrus ion at the hardware level m ay result in im proper execution of
 program s, sys tem shutdown, or, conceivably, the introduc tion of subtle f laws exploitable by

 software.

O pera ting System
 O perating sys tem func tions norm ally inc lude m em ory and processor allocation, process m anagem ent,

 device handling, f ile m anagem ent, and accounting, although there is no s tandard defin ition. T he
 operating sys tem determ ines how the underlying hardware is used to define and separate protec tion

dom ains , authenticate users , control access , and coordinate the sharing of all sys tem resources . In
 addition to func tions that m ay be invoked by user calls , traps , or interrupts , operating sys tem s

 often inc lude program s and processes that operate on behalf of all users . T hese program s provide
network access and m ail service, schedule invocation of user tasks , and perform other m iscellaneous

 services . Sys tem s often m ust grant privileges to these utilities that they deny to individual
users . F inally, the operating sys tem has a large role to p lay in sys tem in itialization. A lthough in

 a s tric t sense in itialization m ay involve program s and processes outs ide the operating sys tem
 boundary, th is software is usually intended to be run only under h ighly controlled c ircum stances

 and m ay have m any spec ial privileges , so it seem s appropriate to inc lude it in th is category.

Support
 Support software com prises com pilers , editors , debuggers , subroutine or m acro libraries , database

 m anagem ent sys tem s, and any other program s not properly w ith in the operating sys tem boundary that
m any users share. T he operating sys tem m ay grant spec ial privileges to som e such program s; these we

 call privileged utilities . In U nix, for exam ple, any "setuid" program owned by "root" effec tively
 runs w ith access-checking controls d isabled. T his m eans that any such program will need to be

sc rutin ized for security f laws , s ince during its execution one of the fundam ental security-checking
 m echanism s is d isabled.

System In itia liza tion
 Sys tem in itialization, although it m ay be handled routinely, is often com plex. F laws in th is area

 can occur either because the operating sys tem fails to es tablish the in itial protec tion dom ains as
 spec if ied (for exam ple, it m ay set up ownership or access control inform ation im properly) or

 because the sys tem adm inis trator has not spec if ied a secure in itial configuration for the sys tem .
 In case U 5, im properly set perm iss ions on the m ail d irec tory led to a security breach. Viruses
 com m only try to attach them selves to sys tem in itialization code, s ince th is provides the earlies t

 and m ost predic table opportunity to gain control of the sys tem (see cases PC 1-4, for exam ple).

M em ory M anagem ent
 M em ory m anagem ent and process m anagem ent are func tions the operating sys tem provides to control

 s torage space and C PU tim e. E rrors in these func tions m ay perm it one process to gain access to
 another im properly, as in case I6, or to deny service to others , as in case M U 5.

Process M anagem ent/Schedu ling
 M em ory m anagem ent and process m anagem ent are func tions the operating sys tem provides to control

 s torage space and C PU tim e. E rrors in these func tions m ay perm it one process to gain access to
 another im properly, as in case I6, or to deny service to others , as in case M U 5.

D evice M anagem ent (inc lud ing I/O , ne twork ing)
 D evice m anagem ent often inc ludes com plex program s that operate in parallel w ith the C PU . T hese

 fac tors m ake the writing of device handling program s both challenging and prone to subtle errors
that can lead to security f laws (see case I2). O ften, these errors occur when the I/O routines fail

 to respec t param eters provided them (case U 12) or they validate param eters provided in s torage
locations that can be altered, d irec tly or indirec tly, by user program s after checks are m ade (case

 I3).

F ile M anagem ent
File sys tem s typically use the process , m em ory, and device m anagem ent func tions to c reate long-term

 s torage s truc tures . W ith few exceptions , the operating sys tem boundary inc ludes the f ile sys tem ,
 which often im plem ents access controls to perm it users to share and protec t their f iles . E rrors in

 these controls , or in the m anagem ent of the underlying f iles , can eas ily result in security f laws
 (see cases I1, M U 8, and U 2).

Iden tifica tion /Au then tica tion
 T he identif ication and authentication func tions of the operating sys tem usually m aintain spec ial
 f iles for user ID s and passwords and provide func tions to check and update those f iles as

 appropriate. It is im portant to sc rutin ize not only these func tions , but also all of the poss ib le
 ports of entry into a sys tem to ensure that these func tions are invoked before a user is perm itted

 to consum e or control other sys tem resources .

O ther/U nknown

Priv ileged U tili ites
 P rivileged utilities are often com plex and som etim es provide func tions that were not antic ipated

 when the operating sys tem was built. T hese charac teris tics m ake them diff icult to develop and
 likely to have f laws that, because they are also granted privileges , can com prom ise security. For

 exam ple, daem ons, which m ay ac t on behalf of a sequence of users and on behalf of the sys tem as
 well, m ay have privileges for reading and writing spec ial sys tem files or devices (e.g.,

com m unication lines , device queues , m ail queues) as well as for f iles belonging to individual users
 (e.g., m ailboxes). T hey frequently m ake heavy use of operating sys tem fac ilities , and their

 privileges m ay turn a s im ple program m ing error into a penetration path. F laws in daem ons provid ing
rem ote access to res tric ted sys tem capabilities have been exploited to perm it unauthenticated users

to execute arbitrary sys tem com m ands (case U 12) and to gain sys tem privileges by writing the sys tem
 authorization f ile (case U 13).

U npriv ileged U tili ites
 Even unprivileged software can represent a s ignif icant vulnerability because these program s are

 w idely shared, and users tend to rely on them im plic itly. T he dam age inf lic ted by f lawed,
 unprivileged support software (e.g., by an em bedded Trojan horse) is norm ally lim ited to the user

who invokes that software. In som e cases , however, s ince it m ay be used to com pile a new release of
 a sys tem , support software can even sabotage operating sys tem integrity (case U 1). Inadvertent

 f laws in support software can also cause security f laws (case I7); intentional but nonm alic ious
 f laws in support software have also been recorded (case B1).

