( w Common Weakness Enumeration
' . A Community-Developed Dictionary of Software Weakness Tyvpes

CWE Version 1.5

Edited by:
Steven M. Christey, Conor O. Harris, and Janis E. Kenderdine

Project Lead:
Robert A. Martin

MITRE



CWE Version 1.5
2009-07-27

CWE is a Software Assurance strategic initiative sponsored by the National

Cyber Security Division of the U.S. Department of Homeland Security

Copyright 2009, The MITRE Corporation

CWE and the CWE logo are trademarks of The MITRE Corporation
Contact cwe@mitre.org for more information



CWE Version 1.5
Table of Contents

Table of Contents

Individual CWE Definitions

CWE-1:
CWE-2:
CWE-3:
CWE-4:
CWE-5:
CWE-6:
CWE-7:
CWE-8:
CWE-9:

CWE-10:
CWE-11.:
CWE-12:
CWE-13:
CWE-14:
CWE-15:
CWE-16:
CWE-17:
CWE-18:
CWE-19:
CWE-20:
CWE-21.:
CWE-22:
CWE-23:
CWE-24.
CWE-25:
CWE-26:
CWE-27:
CWE-28:
CWE-29:
CWE-30:
CWE-31.:
CWE-32:
CWE-33:
CWE-34:
CWE-35:
CWE-36:
CWE-37:
CWE-38:
CWE-39:
CWE-40:
CWE-41.
CWE-42:
CWE-43:
CWE-44.
CWE-45:
CWE-46:
CWE-47:
CWE-48:
CWE-49:
CWE-50:
CWE-51.:
CWE-52:
CWE-53:
CWE-54:
CWE-55:
CWE-56:
CWE-57:

(o To7= Vi o] o FH O PSP P PP O VPP OPPPPPRI
=01V 1 (0] 0] 0 01T o | P TP PP TP PPPP
Technology-Specific ENVIFONMENT ISSUES. .......uiiiiiiieiiiie ittt ettt
J2EE ENVIFONMENT ISSUES......eiiiiiiieiiiie ittt etttk ettt ettt et s bt e ekt e e et e e st e et e e e nnbneeannee s
J2EE Misconfiguration: Data Transmission Without ENCryption...........ccccvveeiiiiiieeiiiieeccc e
J2EE Misconfiguration: Insufficient SesSion-1D LENGtN..........ooiiiiiiiiiiiiie e
J2EE Misconfiguration: MisSsing CuStOM ErrOr PAge.......cc.uiiiuiieiiiiiiiiiiee et
J2EE Misconfiguration: Entity Bean Declared RemMOLE..........cocueeiiiiiiiiiiiiiiiie e
J2EE Misconfiguration: Weak Access Permissions for EJB Methods

ASP.NET Environment Issues

Data Handling
IMProper INPUE ValIdAtION. .........ooiiiieiiiie ettt e e s
Pathname Traversal and Equivalence Errors
oo L A I I =Y<L 1= | SRS
REIAtIVE Path TIAVEISAL........ooeeiiiiiiie it e e e e e e ettt e e e e e e e e e e e e e et e e e e eeeeeeeeesssaaes
Path Traversal: ' filEAIr ... ... e ettt e e e e e e e e e e e e e e e e e eeeaeeeeerees
Path Traversal: '/../filedir'
Path Traversal: adir/.fIBNAME .........ccoooi it e e e e e e e e e e e e e e eeeeeeeaees
Path Traversal: 'dir/../../flename'
Path Traversal: '..Xfiledir'
Path Traversal: \..\filename'...
Path Traversal:
Path Traversal:
Path Traversal: "..." (THPIE DOL).....cocuiiiiiiie ettt
Path Traversal:
Path Traversal:
Path Traversal: '.../...
P o1 o] [V (=R =t A N = AVL=T £7= | TN
Path Traversal: '/absolute/pathname/Nere’... ..o e
Path Traversal: \absolute\pathname\nere'..............oooiiiii e
Path Traversal: "CiifNAmB,..........uuueieiii ettt e e e e e e et et e e e e e e e s e e e e e e s e eeeeeseeesssseaas
Path Traversal: WUNC\share\name\' (Windows UNC Share)...........cccoueeiiiiiiiiieeiiiee e

Path Equivalence

Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:

Improper Resolution of Path EQUIVAIENCE...........c..ioiiiiiiiii e

: filename.' (Trailing DOt)........eiiiiiieiiie et
filename...." (Multiple Trailing Dot)
file.name"’ (INErNal DOL)........oooiiiiiiiiie i
file...name' (Multiple Internal DOt)..........occueiiiiiieiiiie e
filename ' (Trailing SPACE)........cciiiiiiiiiieiiie e
"filename (Leading SPACE).......cccouueiiriiieiiiie ittt
'file name' (Internal WhItESPACE).........ccuuieiiiiiiiiiieiiee e
‘filename/' (Trailing Slash)
IImultiple/leading/slash'............cooo i
‘/multiple//internal/slash'....
IMUItIPIE/railiNG/SIASH/I ...
\multipleNinternal\backslash'.............cccoiiiiiiiii
filedir\' (Trailing BacksIash)............cooiiiiiiiiiii e
11" (SINGIE DOt DIFECIOIY) .. viieiiiiieiitiee ittt ettt
filedirt' (WIACAIA)........veeiiii e
‘fakedir/../realdir/flleNamE'...........oooiiii e

S1ualuU0D JO 3|qeL



Table of Contents

CWE Version 1.5
Table of Contents

CWE-58:
CWE-59:
CWE-60:
CWE-61:
CWE-62:
CWE-63:
CWE-64:
CWE-65:
CWE-66:
CWE-67:
CWE-68:
CWE-69:
CWE-70:
CWE-71:
CWE-72:
CWE-73:
CWE-74:
CWE-75:
CWE-76:
CWE-77:
CWE-78:
CWE-79:
CWE-80:
CWE-81:
CWE-82:
CWE-83:
CWE-84:
CWE-85:
CWE-86:
CWE-87:
CWE-88:
CWE-89:
CWE-90:
CWE-91:
CWE-92:
CWE-93:
CWE-94:
CWE-95:
CWE-96:
CWE-97:
CWE-98:

Inclusion’)

CWE-99:

CWE-100:
CWE-101:
CWE-102:
CWE-103:
CWE-104:
CWE-105:
CWE-106:
CWE-107:
CWE-108:
CWE-109:
CWE-110:
CWE-111:
CWE-112:
CWE-113:
CWE-114:
CWE-115:
CWE-116:
CWE-117:

Path Equivalence: WINdOws 8.3 FIlENAME..........cuuiiiiiiiiiiii ettt e aae e e 54
Improper Link Resolution Before File Access (‘Link FOIOWING")........cccvviieiiiiiiiiec e 55
UNIX Path LINK ProBIEMS.......cooiiiiiiiiie ettt ettt e s e e snaeee s
UNIX Symbolic Link (Symlink) Following
UNIX Hard LinK.......ccocooviiieniiienieneniieee
Windows Path Link Problems
Windows Shortcut FOHOWING (\LINK)......cuuiiiiieiiiei e e e e et e e e e s s atbeeeaeeenes
WINAOWS HEAIT LINK...oeitiieiiiee ettt sttt e et e sttt e e seb e e et e e s steeesnbeeeebbeeennee
Improper Handling of File Names that Identify Virtual RESOUICES..........c..ccovcviiieeeiiiiiiee e 61
Improper Handling of Windows Device Names
WiINdows Virtual File ProbIEmMS. .......coo ittt et e e as
Failure to Handle Windows ::DATA Alternate Data Stream..........ccccovveeeriiieiiieeeniee e ssiiee e 64
MaC Virtual File ProbIEMS. ......c.uiiiiiiiiiie e et ettt e et e e snnees 65
PN o] o LI B ] (0] (= PRSPPSO 65
Improper Handling of Apple HFS+ Alternate Data Stream Path.............cccoociviie i, 66
External Control of File Name or Path.........cccccooviiiiiiiiiiiie e

Failure to Sanitize Data into a Different Plane ('Injection’)
Failure to Sanitize Special Elements into a Different Plane (Special Element Injection).................... 73
Failure to Resolve Equivalent Special Elements into a Different Plane.............ccccocovvieeiiiiiienec i, 73
Improper Sanitization of Special Elements used in a Command (‘Command Injection’).................... 74
Improper Sanitization of Special Elements used in an OS Command (‘OS Command Injection’)....... 78
Failure to Preserve Web Page Structure ('Cross-site ScCripting')........ccceviiviiiieeiiiiieiee e
Improper Sanitization of Script-Related HTML Tags in a Web Page (Basic XSS)......ccccccovvveveeeiinns
Improper Sanitization of Script in an Error Message Web Page..........ccccovveeiiiiiiieecccciiieeee e
Improper Sanitization of Script in Attributes of IMG Tags in a Web Page...........ccccvveveeiiiiienee e,
Failure to Sanitize Script in Attributes in @ Web Page.........cccoocviiiii i
Failure to Resolve Encoded URI Schemes in a Web Page
Doubled Character XSS ManipUIAtionS...........ccoiiiiiiiieeiiiiiiie e csiie et e s e e e s e e e e e sarreeeeeaas
Failure to Sanitize Invalid Characters in Identifiers in Web Pages...........ccovvveeiiiiiieee e,
Failure to Sanitize AILErNate XSS SYNIAX.......cciiiiuiiiieeiiiiiiee et e e e e e e e e e e e e st e e e e s erbreeeaesaaes
Argument Injection or ModifiCatION.............cciiiiii i
Improper Sanitization of Special Elements used in an SQL Command (‘SQL Injection’)
Failure to Sanitize Data into LDAP Queries ('LDAP INjeCtion’)........cccocvveiieiiiiiiiiiie e
XML Injection (aka Blind XPath INJECION)..........uviiiiiiiiiiie et e e e e e e
DEPRECATED: Improper Sanitization of Custom Special Characters...........ccccccveeeviiiereeeiiiiienennn.
Failure to Sanitize CRLF Sequences ('CRLF INJECION").......ccuuiiiiiiiiiiiiee et
Failure to Control Generation of Code ('Code INJECION").......ccoiiiiiieeiiiiiiie e
Improper Sanitization of Directives in Dynamically Evaluated Code (‘'Eval Injection’)...............
Improper Sanitization of Directives in Statically Saved Code ('Static Code Injection’)
Failure to Sanitize Server-Side Includes (SSI) Within a Web Page...........ccccooviveeiiiiiiieiec e,
Improper Control of Filename for Include/Require Statement in PHP Program (‘PHP File

Improper Control of Resource Identifiers ('Resource Injection’)
Technology-Specific Input Validation Problems.............coiiiiiiii e
Struts Validation ProbIEmS... ...t
Struts: Duplicate Validation FOIMMS.........ccuuiiii it e s eaaaee e an
Struts: Incomplete validate() Method Definition.............oooiiiiiiiie i
Struts: Form Bean Does Not Extend Validation CIass.........ccccouieiiiiiiiiiieiiie e
Struts: Form Field Without Validator...........coiuiiiiiiieiiie e
Struts: Plug-in Framework not in Use
Struts: Unused Validation FOMM.........cooiiiiiiiii ettt e saeeas
Struts: Unvalidated ACHON FOMM.........iiiiiiiiiiiee ettt esnnae e e naneas
Struts: Validator TUMEd Off.......ooiiiii ettt e e e e
Struts: Validator Without FOrm FIeld..........cooiiiiiiiiie e e
Direct Use Of UNSAE INL.....coiiiiiiiiiiiiiiie ettt et e et nee e snbeee s
MiISSING XML ValidatioN.........ooeiiiiiiiiiie et e s e e e e e st e e e s e enta e e e e e s snrneeas
Failure to Sanitize CRLF Sequences in HTTP Headers ((HTTP Response Splitting").................... 132
[ (o ToT T S O o] |1 O PP RP 135
Misinterpretation Of INPUL.......ooiii e e e s e e e e e e e e e e e e sataeeeeeaan 137
Improper Encoding or EScaping Of OULPUL............uviiiiiiiiiiiee et iaee e 137
Improper Output SaNItiZAtION TOF LOGS......cciiiiiiii ettt e ettt e e e erre e e s sarae e e e e saees 142

iv



CWE Version 1.5
Table of Contents

CWE-118:
CWE-119:
CWE-120:
CWE-121:
CWE-122:
CWE-123:
CWE-124:
CWE-125:
CWE-126:
CWE-127:
CWE-128:
CWE-129:
CWE-130:
CWE-131:
CWE-132:
CWE-133:
CWE-134:
CWE-135:
CWE-136:
CWE-137:
CWE-138:
CWE-139:
CWE-140:
CWE-141.:
CWE-142:
CWE-143:
CWE-144:
CWE-145:
CWE-146:
CWE-147:
CWE-148:
CWE-149:
CWE-150:
CWE-151:
CWE-152:
CWE-153:
CWE-154:
CWE-155:
CWE-156:
CWE-157:
CWE-158:
CWE-159:
CWE-160:
CWE-161.:
CWE-162:
CWE-163:
CWE-164:
CWE-165:
CWE-166:
CWE-167:
CWE-168:
CWE-169:
CWE-170:
CWE-171:
CWE-172:
CWE-173:
CWE-174:
CWE-175:
CWE-176:
CWE-177:
CWE-178:

Improper Access of Indexable Resource ('Range ErTOr).........coccvevieeiiiiiiiieeciiiiiiee et 144
Failure to Constrain Operations within the Bounds of a Memory Buffer...........cccccceeeiiiiieee i, 144
Buffer Copy without Checking Size of Input ('Classic Buffer Overflow")..........cccccocvvieeeiiiiiiiencenn, 149
Stack-based BUfer OVEIMIOW. ..........oiiiiiiii et e e
Heap-based BUffer OVEITIOW. .........c.uuiiiiiicee e e e e et e e e etanes
Write-What-Where CONAItION.........oocuuiiiiiiieiiie ettt e e sbee e neaee s
Boundary Beginning Violation (‘Buffer Underwrite")
OUL-Of-DOUNAS REAT. ... .eeiiiiiii ittt a bttt e e snb e e et e e s nes
20 =T @Y= o LT Lo PSPPSR
Buffer Under-read...................
TV Yo =T (o 10 g o I 1 ¢ (o ) G PP UPR PRI
Unchecked Array INAEXING........uvieiieeiiiiet e et e e e e st e e e s et e e e e s st b e e e e e s satbeeeeessesbeeeaaeeaans
Improper Handling of Length Parameter INCONSISIENCY .......c..evveiiiiiiiiiie et
Incorrect Calculation of BUfEr SIZe.........ccuiiiiiiiiiii e
DEPRECATED (Duplicate): Miscalculated Null Termination.............cccccveeeiiiiiiieeceiiiiiee e
Y ([ a Lo T = o] =TSSP POUPURRN

Uncontrolled Format String
Incorrect Calculation of Multi-Byte String LENGth..........ccooiiiiiiiiiiiiic e
B LT 4 (o £ SRRSO
REPIESENTALION EFTOIS....uiiiiiiiiee ittt eiee sttt tee sttt e st et e st et e e steeasbeestaeenbeessbeesteesnbeesteeanseenseeenseesneeanteas
Improper Sanitization of Special EIEMENLS..........cccuiiiiiiiiiiee e
DEPRECATED: General Special Element Problems..........ccccooouvieiiiiiiiiiice e
Failure t0 Sanitize DelIMItErS........cciiuiiiiiiii ettt e as
Failure to Sanitize Parameter/Argument Delimiters...........coeeiiiiiiieii i
Failure to Sanitize Value DeliMILErS........c.uiiiiiiiiiiii ettt
Failure to Sanitize Record Delimiters
Failure to Sanitize LiNe DEIMILEIS.......cccuiiiiiiiiiiie ettt s
Failure to Sanitize Section Delimiters
Failure to Sanitize Expression/Command Delimiters
Improper Sanitization of INPUt TEIMINALOIS.........coiiiiiiii e e et e e e
Failure to Sanitize INPUL LEAETS. ......ccciiiiiii ettt e e a e e e st e e e e e s etbaaeee s
Failure to Sanitize QUOLING SYNTAX........uiiiiiiiiiiiie et ee e e e e e s e e e s s sree e e e s e sbrr e e e e e s saaaeaeeeannees
Failure to Sanitize Escape, Meta, or CONtrol SEQUENCES..........ccooiuriiiieiiiiiiieee et
Improper Sanitization of Comment DeliMILErS...........ueviiiiiiiiiee e
Improper Sanitization of Macro SYMDBOIS............cooiiiiiiiiii e
Improper Sanitization of Substitution CharacCters...........ccocvviiiieiiiiiii e
Improper Sanitization of Variable Name Delimiters..........ccuvviiiiiiiiiei e
Improper Sanitization of Wildcards or Matching SymbolS..........cccccvveiiiiiiiiec e
Improper Sanitization of Whitespace
Failure to Sanitize Paired Delimiters
Failure to Sanitize Null Byte 0r NUL CharacCter..........ccuveiieiiiiiiiiiecccciiiee et eiiana e
Failure to Sanitize Special EIEMENT..........ccooiiiiiiii e
Improper Sanitization of Leading Special EIEMENLS..........cccouviiiiiiiiiiiice e
Improper Sanitization of Multiple Leading Special EIements...........cccccveeiviiiiiiee e
Improper Sanitization of Trailing Special EIEMEeNtS..........coooiviiiiiiiiiiiiie e
Improper Sanitization of Multiple Trailing Special EIements............cccovveiiiiiiieii e,
Improper Sanitization of Internal Special EIements..........cccoviiiiiiiiiii e
Improper Sanitization of Multiple Internal Special Elements............cccoeeeiiiiiiiee i
Improper Handling of Missing Special EIEMENt............coooiiiiiiiiei e
Improper Handling of Additional Special Element.............cccooiiiiiiiii i
Failure to Resolve Inconsistent Special EIEMENtS..........ccvviiiiiiiiiiiiie e
Technology-Specific Special EIBMENES.........ccuuiiiiiiciiee et e e
Improper NUll TerMINALION. ........uiiiiiiiiee e e e s et e e e e se e e e e e e e sntreeeeeaennnes
Cleansing, Canonicalization, and Comparison Errors
[ g Tt o [TaTe N =y o SR PRSPPI
Failure to Handle Alternate ENCOTING.........ccciuiiiieiiiiiiiee ettt e e e e e e ae e e e s sabre e e e e eaees
Double Decoding of the Same Data
Failure to Handle MiXed ENCOTING........oiiiiiiiiiiiiee ittt e e e e e e eatae e e e e e enees
Failure to Handle Unicode ENCOAING........c..ueiiiiiiiiiiiee ettt ettt e e et e e e aneae e
Failure to Handle URL Encoding (Hex Encoding)
Failure t0 ReSOIVE Case SENSHIVILY........cccuiiiiii i e e e s e e e e e earreeeas

S1ualuU0D JO 3|qeL



Table of Contents

CWE Version 1.5
Table of Contents

CWE-179:
CWE-180:
CWE-181.:
CWE-182:
CWE-183:
CWE-184:
CWE-185:
CWE-186:
CWE-187:
CWE-188:
CWE-189:
CWE-190:
CWE-191:
CWE-192:
CWE-193:
CWE-194:
CWE-195:
CWE-196:
CWE-197:
CWE-198:
CWE-199:
CWE-200:
CWE-201:
CWE-202:
CWE-203:
CWE-204:
CWE-205:
CWE-206:
CWE-207:
CWE-208:
CWE-209:
CWE-210:
CWE-211:
CWE-212:
CWE-213:
CWE-214:
CWE-215:
CWE-216:
CWE-217:
CWE-218:
CWE-219:
CWE-220:
CWE-221.:
CWE-222:
CWE-223:
CWE-224:
CWE-225:
CWE-226:
CWE-227:
CWE-228:
CWE-229:
CWE-230:
CWE-231:
CWE-232:
CWE-233:
CWE-234:
CWE-235:
CWE-236:
CWE-237:
CWE-238:
CWE-239:

Incorrect Behavior Order; Early Validation.............cocoiiiiiiiiie i 210
Incorrect Behavior Order: Validate Before CanoniCalize................cooovvveiiiiiiiiiiniinirieeeeieeeeeeeee e 211
Incorrect Behavior Order: Validate Before Filter........cccoovviiiiiriiiieieiiiiieieee e varraeees 212
Collapse of Data INto UNSsafe ValUe...........cooooiiiiiiiie ittt e e 213
Permissive Whitelist

Incomplete Blacklist
Incorrect Regular Expression
Overly Restrictive Regular EXPreSSIiON..........uuiiiiiiiiiiiie et e st e st e s e e e e e eanees
Partial COMPATISON. ......cciiiiiiie ettt e e e e e e e e e e st e e e e s et et e e e e sasbaaeaeeasntbeeeeesstbaneeaean
Reliance on Data/MemOry LAYOUL..........uueieiiiiiiiieeieeiiiieee e e s sttt e e s et e e e e s satre e e e e s sabaeeeeesssbaseaesannns
N U T=T ol o T =TSP TPPPI
Integer OVerflow or WraparOUNG.........ccuuiiiiiiiiiiice ettt e s e e e st e e e e e st ee e e e s eenaaneaaeeaans
Integer Underflow (Wrap or Wraparound)
[ Yo Lo g o T=T (ot o] g T o T USSR
(015 o)t o] LT I o ] SO PPUPROE
Unexpected SigN EXIENSION.........uiii ittt e et e e s e e e e e e st e e e e e s sata e e e e e santbareaesaanes
Signed to Unsigned Conversion Error
Unsigned to Signed Conversion Error
N U aa (=T ol N W g T Uu o) o = o] S PRSPPI
Use Of INCOITect BYte OFUEIING.......ccuviiiieiiiiiiiee e e e sttt e ettt e e et e e e e st e e e s s st e e e e s s eatbeeeaeeeannenes
Information ManagemMENT EITOIS. .....uiiiiiiiiiiee ettt e et e e e e s e e e s e e e e e e s b b e e e e e s antaaaeaeaan
Information Leak (Information Disclosure)
Information Leak Through Sent Data............ccciuviiieiiiiiiiiic e et e e et e e e
Privacy Leak through Data Queries
Discrepancy INformation LEAKS...........cccuiiuiiiiieiiiiiiie ettt e e et e st e e e s e sarr e e e e e s earaeeas
Response Discrepancy INformation Leak.............cooiiiiiiiiiiiiiiiie e e e
Behavioral Discrepancy Information Leak
Internal Behavioral Inconsistency Information Leak.............
External Behavioral Inconsistency Information Leak
Timing Discrepancy INformation LEaK...........ccooiiiiiiiioiiiiiiee et
Error Message INfOrmation LEaK.........cccuuiiiiiiiiiiiii et ee ettt e ettt e e e st e e e st ae e e e s e snaareeaeeeans
Product-Generated Error Message Information Leak.............ceeeiviiiiieeiiiiiiiee e
Product-External Error Message Information LeaK............eeveeiiiiiiieiiiiiiiiei et
Cross-boundary Cleansing INformation LEaK...........ccuueviieiiiiiiiie et e e
Intended INFOrMALION LEAK........ccuuiiiiiiieiiiie ettt e nanees
Process Environment INfOrmation LEaK...........coiiiiiiiiiiiiiiie et
Information Leak Through Debug INformation...........cccccuviiiiiiiiiiiii e
Containment Errors (CONLAINEr EITOIS).......ciiiiiiiiieiiiiiiiee ettt e e e e e e e e e saraaaea e
DEPRECATED: Failure to Protect Stored Data from Modification..............ccccevvveiiiiiiiniiee e
DEPRECATED (Duplicate): Failure to provide confidentiality for stored data
Sensitive Data UNder WED ROOL..........uiiiiiiiiiii ettt e eenebee e
Sensitive Data UNAer FTP ROOL........ccoiiiiiiiiieiiie ittt sttt snee e e snneeas
Information LOSS or OMISSION.........c.ceeviereriieeeiinnennn

Truncation of Security-relevant Information
Omission of Security-relevant INfOrmMation.............coooiiiiiiiiiiiii e
Obscured Security-relevant Information by Alternate Name............ccccvevieiiiiiiiee e
DEPRECATED (Duplicate): General Information Management Problems...........cccccccoviiiieeeeninns
Sensitive Information Uncleared Before ReleaSE...........occueveiiiiiiiiii e
Failure to Fulfill API Contract (APl ADUSE").........eiiiiiiiiiiie e
Improper Handling of Syntactically Invalid Structure
Improper Handling Of ValUES..........c.uviiiiiiiiiee et e e et e e e e anees
Improper Handling of MISSING ValUES.........cccviiiie ittt e e s sabae e e
Improper Handling Of EXIra ValUES..........coocuiiiii ittt e sanae e e e e e ennes
Improper Handling of Undefined ValUEs............c.uuiiiiiiiiiiiice et
Parameter PrODIEMS........ooiuiiiiiie ettt s
Failure to Handle MiSSING Parameter.........cuuiiii oottt e e e
Improper Handling of Extra Parameters
Improper Handling of Undefined Parameters.............coviiiiiiiiiic it
Improper Handling of Structural EIEMENTS............coooiiiiiiiie e
Improper Handling of Incomplete Structural Elements
Failure to Handle Incomplete EIBMENL..........cuvviiiiiiiiiiie ettt e e

Vi



CWE Version 1.5
Table of Contents

CWE-240:
CWE-241.:
CWE-242:
CWE-243:
CWE-244:
CWE-245:
CWE-246:
CWE-247:
CWE-248:
CWE-249:
CWE-250:
CWE-251:
CWE-252:
CWE-253:
CWE-254:
CWE-255:
CWE-256:
CWE-257:
CWE-258:
CWE-259:
CWE-260:
CWE-261.:
CWE-262:
CWE-263:
CWE-264:
CWE-265:
CWE-266:
CWE-267:
CWE-268:
CWE-269:
CWE-270:
CWE-271.:
CWE-272:
CWE-273:
CWE-274:
CWE-275:
CWE-276:
CWE-277:
CWE-278:
CWE-279:
CWE-280:
CWE-281.:
CWE-282:
CWE-283:
CWE-284:
CWE-285:
CWE-286:
CWE-287:
CWE-288:
CWE-289:
CWE-290:
CWE-291:
CWE-292:
CWE-293:
CWE-294:
CWE-295:
CWE-296:
CWE-297:
CWE-298:
CWE-299:
CWE-300:

Improper Handling of Inconsistent Structural Elements
Improper Handling of Unexpected Data Type
Use of Inherently Dangerous Function
Failure to Change Working Directory in chroot Jail
Failure to Clear Heap Memory Before Release (‘Heap Inspection’)
J2EE Bad Practices: Direct Management of Connections
J2EE Bad Practices: Direct Use of Sockets
Reliance on DNS Lookups in a Security Decision

Uncaught Exception

DEPRECATED: Often Misused: Path Manipulation
Execution with Unnecessary Privileges
Often Misused: String Management
Unchecked Return Value
Incorrect Check of Function Return Value
Security Features..........ccovcvvveee i
Credentials Management
Plaintext Storage of a Password
Storing Passwords in a Recoverable Format
Empty Password in Configuration File
Hard-Coded Password
Password in Configuration File
Weak Cryptography for Passwords
Not Using Password Aging
Password Aging with Long Expiration
Permissions, Privileges, and Access Controls
Privilege / Sandbox Issues
Incorrect Privilege Assignment
Privilege Defined With Unsafe Actions
Privilege Chaining.........cccoovvvieeiiiiiieee e
Improper Privilege Management
Privilege Context Switching Error
Privilege Dropping / Lowering Errors
Least Privilege Violation
Improper Check for Dropped Privileges
Improper Handling of Insufficient Privileges
Permission ISSUES.........ccovviiiiieeeiiiie e
Incorrect Default Permissions
Insecure Inherited Permissions
Insecure Preserved Inherited Permissions
Incorrect Execution-Assigned Permissions
Improper Handling of Insufficient Permissions or Privileges
Improper Preservation of Permissions
Improper Ownership Management
Unverified Ownership
Access Control (Authorization) Issues
Improper Access Control (Authorization)
Incorrect User Management
Improper Authentication
Authentication Bypass Using an Alternate Path or Channel
Authentication Bypass by Alternate Name
Authentication Bypass by Spoofing
Trusting Self-reported IP Address
Trusting Self-reported DNS Name
Using Referer Field for Authentication
Authentication Bypass by Capture-replay
Certificate I1SSUES.........occviiiiiieiiiieeee e
Improper Following of Chain of Trust for Certificate Validation
Improper Validation of Host-specific Certificate Data
Improper Validation of Certificate Expiration
Improper Check for Certificate Revocation
Channel Accessible by Non-Endpoint (‘Man-in-the-Middle")

S1ualuU0D JO 3|qeL



Table of Contents

CWE Version 1.5
Table of Contents

CWE-301:
CWE-302:
CWE-303:
CWE-304:
CWE-305:
CWE-306:
CWE-307:
CWE-308:
CWE-309:
CWE-310:
CWE-311:
CWE-312:
CWE-313:
CWE-314:
CWE-315:
CWE-316:
CWE-317:
CWE-318:
CWE-319:
CWE-320:
CWE-321:
CWE-322:
CWE-323:
CWE-324:
CWE-325:
CWE-326:
CWE-327:
CWE-328:
CWE-329:
CWE-330:
CWE-331:
CWE-332:
CWE-333:
CWE-334:
CWE-335:
CWE-336:
CWE-337:
CWE-338:
CWE-339:
CWE-340:
CWE-341.:
CWE-342:
CWE-343:
CWE-344:
CWE-345:
CWE-346:
CWE-347:
CWE-348:
CWE-349:
CWE-350:
CWE-351:
CWE-352:
CWE-353:
CWE-354:
CWE-355:
CWE-356:
CWE-357:
CWE-358:
CWE-359:
CWE-360:
CWE-361.:

Reflection Attack in an Authentication ProtOCOL..........c.ccuiiiiiiiiiiiie e 329
Authentication Bypass by Assumed-Immutable Data............ccccuvevieiiiiiiiie e 331
Incorrect Implementation of Authentication AlgOrithm...........cccoviiiiiiiiiie e 332
Missing Critical Step in AUtNENtICALION. .........c..vviiii i e e e e e e e eaees 332
Authentication Bypass by Primary Weakness............ocoiviiiiiiiiiiiiiiic et 333
No Authentication for Critical FUNCHON..........c.oiiiiiiiiiiii et 333
Failure to Restrict Excessive Authentication AtteMPLS.........coiiiiiiiieeiiiiiiie e 334
Use of Single-factor AUThENTICALION............coiiiiiiiii i e e e e e e 335
Use of Password System for Primary Authentication............c.ccoccviiie i 336
CrypPtOgraphiC ISSUEBS........iiiiiii ittt e et e e e e st e e e s et e e e e e et b e e e e e s satreeeessantbaneaeean 337
Failure to ENCrypt SENSItIVE Datal...........oeviiiiiiiiiie et e ettt e e e e e e e et e e e e s e stvaeeaeeanes 338
Cleartext Storage of Sensitive INfOrmMation...............eviiiiiiiiiiie e 340
Plaintext Storage in @ File or 0N DiSK..........uiiiiiiiiiic e 340
Plaintext Storage in the REQISIIY.......cccuuiiii e e e e e e s e areeaeeaaes 341
Plaintext Storage in @ COOKIE..........coiiiiiiiiiee e e e e et e e e e s etaaeeeeean 341
PlainteXt STOrage iN MEMIOIY.......ciii ittt e et e e e e et e e e e s etba e e e e s asabseeeeeesnatbeeeaesanes 342
Plaintext Storage iN GULL.........ooiiiiiiee e e s e e e e e e e e e e st b e e e e e s stbaereaeas 343
Plaintext Storage in EXECULADIE. ...........c.uuiiiiiiiiie et e a e 344
Cleartext Transmission of Sensitive INfOrMation.............cceeiiiiiiiiii e 344
KEY MaNAGEMENT EFTOIS. ...ttt ettt ettt e e e e e e e s e s s st e e e e eeeeaaaaaeaeeaeessssssasnsnsnsnenrnnnns 346
Use of Hard-coded CryptographiC KEY........cuuiiiiiiiiiiiii ettt e e e satre e e e 346
Key Exchange without Entity AUthentiCatioN.............ccciviiiiiiiiiiic e 348
Reusing a Nonce, Key Pair in ENCIYPLON.........cooiiiiiiie it e et 349
Use of a Key Past its EXPIration Date............uuiieiiiiiiieii ettt e e siiree e e s eivae e e e e e s raeea e e e snees 350
Missing Required CryptographiC STEP......c.uuiiiiiiiiiiiiee ettt 351
Inadequate ENCryption Srength............oviiiiiiiiec e 352
Use of a Broken or Risky Cryptographic Algorithm...........cccuiiiiiiiiiiiei e 353
Reversible One-Way Hash............ooiiiiii e e sbaae e e e 355
Not Using a Random IV with CBC MOUE.........c.coiiiiiiiiiiiiiie et 356
Use of Insufficiently RANAOM ValUES...........ccuuiiiiiiiiiiiiee et e e ae e e e 357
eI 0] (o T=T L A = a1 (0] o) APPSR 360
Insufficient ENtropy iN PRING.........uuiiiiiiiiiie ettt e et e e e e et e e e e e st e e e e s sanaraeeaeas 361
Improper Handling of Insufficient Entropy in TRNG.........cccooiiiiiiiii i 362
Small Space of RANAOM VAIUES.........cccoiiiiiiiii it e e e e e e e eaanes 363
o R N RS T =T To B 1 o SRS PUPRPTR 363
Same SEEA IN PRING ... ..ottt et e e bt e e sab e e e nbb e e e snteeesnnee 364
Predictable Seed iN PRING.........ooiiiiiii ettt sttt et e st e e sneee e nnneeean 364
Use of Cryptographically Weak PRING..........c.uuiiiiiiiiiiiiee ettt et e e e et e e e e e s saaaeaaeesennes 365
Small Seed SPace iN PRING.........coiiiiic ettt e e e e s e e e e e streeeaesannes 366
Predictability ProbIEMS..........ooiiiiee e a e 367
Predictable from ODServable SEate...........c.cooiiiiiiiiiiiiie e 367
Predictable Exact Value from Previous ValUES...........cccciiiiiiiiiiiiiiiie e 368
Predictable Value Range from Previous ValUES.............coccuuiiieiiiiiiiiee et 368
Use of Invariant Value in Dynamically Changing ConteXt..........cccceovuuierieiiiiiiiee e cciiieee e esiiiee e 369
Insufficient Verification of Data AUtNENTICITY..........cccviiiiiiiiiiic e 370
Origin Validation EFTOT........ciiiiiiiieiie ettt e e s st e e e s et e e e e s e aber e e e e e s satbaeeeessnntreeeaesanes 371
Improper Verification of CryptographiC SIgnature.............cccveiieeiiiiiiiee e 372
USE Of LESS TIUSIEA SOUICE....ceiiuieiiiiiie ettt ettt ettt sttt e sttt et e e st e e ente e e snbeeeatneeenn 373
Acceptance of Extraneous Untrusted Data With Trusted Data.............ccccveveeeiiiiiieee e 373
Improperly Trusted REVEISE DINS........ccoiiiiiiiii et e e e e st e e e e s s eaaraes 374
INSUFfiCIENt TYPE DISHINCHON. ......cciiiiiiie et e e e e e e e e e et e e e e s et e e e e e s eanraeaeas 375
Cross-Site Request FOrgery (CSRF)... ...t e s e e e eaavaee s 375
Failure to Add Integrity CheCK ValUE...........cooiuiiiiii et a e 379
Improper Validation of Integrity Check ValUe..........cc.eiiiiiiiiiiiee st 380
USEr INtEIACE SECUILY ISSUBS....uuiiieeiiiiiiiie ettt e e e e e e e e st e e e e s e e bt e e e e e e snrreeeeeaan 381
Product Ul does not Warn User of Unsafe ACHONS..........ccuviiiiiiiiiiiiiie e 382
Insufficient Ul Warning of Dangerous OPerationS..........cuuvieeiiiiuirieeeiiiiiiee e sciiee e e e esivaer e e e s enivneeae s 382
Improperly Implemented Security Check for Standard.............ccocvveiieiiiiiiiiee e, 383
[ A1V 10y VA Y/ [o] F= L1 (o ] PP SO PSRRI 384
Trust Of SYStEM EVENT DALA.........cciiiiiiieii it s s e e e et e e e e e st r e e e s st e e e e e e asneees 385
AT T (o S r= L= TP TPR 386

viii



CWE Version 1.5
Table of Contents

CWE-362:
CWE-363:
CWE-364:
CWE-365:
CWE-366:
CWE-367:
CWE-368:
CWE-369:
CWE-370:
CWE-371:
CWE-372:
CWE-373:
CWE-374:
CWE-375:
CWE-376:
CWE-377:
CWE-378:
CWE-379:
CWE-380:
CWE-381.:
CWE-382:
CWE-383:
CWE-384:
CWE-385:
CWE-386:
CWE-387:
CWE-388:
CWE-389:
CWE-390:
CWE-391.:
CWE-392:
CWE-393:
CWE-394:
CWE-395:
CWE-396:
CWE-397:
CWE-398:
CWE-399:
CWE-400:
CWE-401.:
CWE-402:
CWE-403:
CWE-404:
CWE-405:
CWE-406:
CWE-407:
CWE-408:
CWE-409:
CWE-410:
CWE-411:
CWE-412:
CWE-413:
CWE-414:
CWE-415:
CWE-416:
CWE-417:
CWE-418:
CWE-419:
CWE-420:
CWE-421.:
CWE-422:

R ot o] o o [1 o o FO PRSPPI 387
Race Condition Enabling Link FOHOWING.......c.ccoiiiiiiiieiiiiiie et 391
Signal Handler RAce CONITION..........cuuviiieiiiiiiiee e e et e e s e e e e e e e e e s satreeaeesannes 391
Race Condition iN SWILCN......cooiiiiiiii et s 393
Race Condition Within @ TRIrEad. ........cooiuiiiiiiiie e 394
Time-of-check Time-of-use (TOCTOU) Race Condition............cccveereeiiiiiiiiee e e 395
Context SWitching Race CONITION.........c..ueiiiiiiiiiiie e e e e r e e s eaareeee s 398
DIVIAE BY ZEIO0...ccciiieiieee ettt et e et e e e e et e e e s et a e e e e e e e a e e e e e e e bbb e e e e e s atb e e e e e e aanrraeeaeas 399
Missing Check for Certificate Revocation after Initial Check..........c.coocvviiiiiiiiii e, 401
State Issues

Incomplete Internal State DiStINCHON.........c.uviiiii i e e s earaee s 403
State SYNCHIONIZAtION ETOI.......iiiiiiiiiii et e e e e e e e s e e e e s et baa e e e e e s aanees 403
Mutable Objects Passed by REEIENCE............coiiiiiiii e 405
Passing Mutable Objects to an Untrusted Method............ccccooviiiiie e 406
TEMPOTAY FlE ISSUES.....uiiii ittt e e e e e e e s e e e e et e e e e e e s aaabbaeeeessnntbaeeaesanes 407
INSECUre TEMPOIANY FilE......eiii i e s e e e e e et e e e e s eatbaeeaeaan 407
Creation of Temporary File With Insecure PermiSSions...........ccccciviiiiiieiiiiiiiee e eevireee e 409
Creation of Temporary File in Directory with Incorrect PErmissions...........cccccoevvvveeeeeiviiieeee e, 410
Technology-Specific Time and State ISSUES...........coiiiiiiiiiiie e i eatree s 411
J2EE TimME ANd SEALE ISSUES.....oiueiiiiiiieeiitiie ettt ettt ettt et e sttt e e st e e s sbbee e snbeeesnbneeenneeeennnes 412
J2EE Bad Practices: Use Of SYStemM.eXIt().......cccuuriieeiiiiiiiieeceiiiiiie ettt et e e eiraee e 412
J2EE Bad Practices: Direct Use Of Threads........c.cooiiiiiiiiiiiiiie e 413
YIS (o] g e 1110 ] PO PP OUPPUPROTRR 414
Covert TIMING Channel..........oooi e e e e e et e e e e s etbaeeeeeas 416
Symbolic Name not Mapping t0 CorreCt ODJECT.........cciuiiiii i 417
Y To g F= I A4 (o] TP 418
| o gl e F= T (o {1 To TSP PPPPR 419
Error Conditions, Return Values, Status COUES.........cccviiiiiieiiiiie i 420
Detection of Error Condition WithOUt ACLION..........coiiiiiiiiieiiiiee e 420
Unchecked Error CONQITION.........ocuiiiiiieeiiiie ettt ettt et e e b e e et e e snteeesnneeesnaeeenas 424
Failure to Report Error in StatUS COOE........cciiiiiiiie ettt e e e s saaae e e e 426
Return of Wrong Status COUE...........uiiiieiiiiiie ettt e e e s e e e e et e e e e e s saraeeas 426
Unexpected Status Code Or REtUIN VaAlUE..........coouiiiiiiiiiiiis et 427
Use of NullPointerException Catch to Detect NULL Pointer Dereference..........cccocveeeeiiiiveneeennnns 428
Declaration of Catch for Generic EXCEPLION..........uiii it 429
Declaration of Throws for Generic EXCEPLION..........cciiiiiiiiiiiie it 430
Indicator of POOr Code QUANILY........ceiiiiiiiiie et e e e e e e e s e e e e s earreeeeeaan
ResoUrce ManagemENt EITOIS. ........oiuiie ittt sttt sbe e e sttt e e snbe e e sbaeeesnbeeennes
Uncontrolled Resource Consumption ('Resource Exhaustion’)

Failure to Release Memory Before Removing Last Reference (‘Memory Leak’)

Transmission of Private Resources into a New Sphere ('Resource Leak')........ccccceevviveveeeiicnnnnen.

UNIX File DESCHPION LEAK......ciiuiiiiie ettt ee e eete e e e e s ettt e e e e s st e e e e e st e e e e e s e sab e e e e e e s snaraeeaeeaas
Improper Resource Shutdown OF REIEASE...........coiiiiiiiii i e
Asymmetric Resource Consumption (Amplification)............cccocvieiieiiiiiiiie e
Insufficient Control of Network Message Volume (Network Amplification)............cccceevviereeeiinnee..
AlGOrtMIC COMPIEXITY .. .uiiiiiiiiiiie et e e e e e e e e e e e s et e e e e e s asaasaeeeeesntbeeeeessnens
Incorrect Behavior Order: Early AMplfiCation..........ccuveiiiiiiiiiiiic e
Improper Handling of Highly Compressed Data (Data Amplification)...........c..ccoccvveveeeiiiiiieee e
Insufficient RESOUICE POOL.........c.cooiiiiiiiiiiee e

Resource Locking Problems
Unrestricted Externally Accessible Lock
INSUFfiCieNt RESOUICE LOCKING......uiiiiiiiiiiiii e e e e e e e et e e e e e s stbareaeeaaaes
MISSING LOCK CRECK....cciiiiiiiiiie ettt e e e e e e e e e st e e e e e et e e e e e s annaaaaeaean
(Do 18] o] (I (T PP UPPP TP
U N (=T (=T T PP TR
Channel and Path EITOIS........ooouuiiiiiiiii ettt be e et e e snee e s nneee s
(O F=T o] o 1= I = () £ PP PP
Unprotected Primary Channel...........oooiiiiiiiiiic e e et e e e e
Unprotected Alternate Channel.............ooo it
Race Condition During Access to Alternate Channel............c.ccooviiiiiii i
Unprotected Windows Messaging Channel ('Shatter')........ccccceeiiiiiieiie e

S1ualuU0D JO 3|qeL



Table of Contents

CWE Version 1.5
Table of Contents

CWE-423:
CWE-424:
CWE-425:
CWE-426:
CWE-427:
CWE-428:
CWE-429:
CWE-430:
CWE-431.:
CWE-432:
CWE-433:
CWE-434:
CWE-435:
CWE-436:
CWE-437:
CWE-438:
CWE-439:
CWE-440:
CWE-441.:
CWE-442:
CWE-443:
CWE-444:
CWE-445:
CWE-446:
CWE-447:
CWE-448:
CWE-449:
CWE-450:
CWE-451.:
CWE-452:
CWE-453:
CWE-454:
CWE-455:
CWE-456:
CWE-457:
CWE-458:
CWE-459:
CWE-460:
CWE-461.:
CWE-462:
CWE-463:
CWE-464:
CWE-465:
CWE-466:
CWE-467:
CWE-468:
CWE-469:
CWE-470:
CWE-471.:
CWE-472:
CWE-473:
CWE-474:
CWE-475:
CWE-476:
CWE-477:
CWE-478:
CWE-479:
CWE-480:
CWE-481.:
CWE-482:
CWE-483:

DEPRECATED (Duplicate): Proxied Trusted Channel.............ccccoiviiiiiee i 459
Failure to Protect Alternate Path
Direct Request (‘Forced Browsing')
UNtrusted SEArCh Path........o.ooiiiiiiii e
Uncontrolled Search Path Element
Unquoted Search Path or Element
[ Eo T a0 [T Gy (o] £ PP PTPR
Deployment of Wrong HanAIEN...........cooiiiiiiii e e e e e e s earra e e e e
MISSING HANGIBT.....ciii it e e e e e e et e e e e s st e e e e e e easabaaeaeeessnteeeeeeaannees
Dangerous Handler not Disabled During Sensitive Operations...........cccccoccvvieeeeiiiiiieeee e cciieeee e, 468
Unparsed Raw Webh Content DEIIVEIY........cc.uviiiiiiiiiee ettt atee e e
Unrestricted File UPIOAG.........cooiiuiiiie ettt e e e e e e e e e et e e e e s eatraeeaeaan

101 (=T = Tot o] T = (o PP TPPTPRTNE
INterpretation CONTlICE.........iiii e e e e e s et e e e e e s et e e e e e e s natbaeeaesanes
Incomplete Model of ENAPOINt FEALUIES..........coeiiiiiiiiiei ettt e e e e e e e e e saees
Behavioral ProbIEIMS. ..........oi ettt e e e et n
Behavioral Change in New Version or ENVIFONMENT...........cooiiiiiiiiii i
Expected Behavior VIOlatioN..........c..ueiiiiiiiiii ettt e et e e e e et e e e e e e eneree s
Unintended ProxXy/INtEIMEMIAIY........ccooiiiiiiii et e e e e e e e e e e e e s eatbaaeaeaan
TAVL=d T = 1] o1 =103 L PO STPRPI
DEPRECATED (Duplicate): HTTP response splitting
Inconsistent Interpretation of HTTP Requests (HTTP Request Smuggling’)........cccceeevvvvveeeeeiinnns 477
(01T 0] T = Lo = (o] £ PP

Ul Discrepancy for Security Feature
Unimplemented or Unsupported Feature in Ul
ODbSO0lEte FEAIUIE 1M Ul..oiiiiiiiiiie ettt s b e et e e st e e s nreeeseneeas
The Ul Performs the Wrong Action...................
Multiple Interpretations of Ul Input.................
Ul Misrepresentation of Critical Information....
Initialization and CleanUP EFTOIS..........ciiei ittt e e e st e e e s st e e e e e e naneees
Insecure Default Variable INItIaliZation.............oooiiiiiiiiii e
External Initialization of Trusted Variables
Non-exit on Failed INItaliZatION. ..........cc.eeiiiii e
MISSING INIGANIZATION. ....eeeiiiiiieee e et e e e e e e e e e s br e e e e e s ntb e e e e e s senbaaeeaean
Use of Uninitialized Variable.............ooiiiiiii e
DEPRECATED: INCOrrect INItIAliZation..........ccoouiiiiiiieiiee e
[aToTo] ] o] (=] (SR @ [T T U] o PP
Improper Cleanup on Thrown Exception
Data Structure ISSUES...........ccovvuiieeeiiiiiiieeeeenis

Duplicate Key in Associative List (Alist).............

Deletion of Data StruCture SENLINEL..........cciiiiiiiiiiiieiie e e e
Addition of Data StruCtUre SENTINEL........coiiuiiiiiie e e e senee s

P OINTET ISSUBS. ... ettt ettt st ettt e sttt e s bt e e s b bt e e st e e e s bt e e e ettt e e snbeeesbbeeeanbeeennes
Return of Pointer Value Outside of Expected RaNgE.........ccceeeeiiiiiiiie et 495
Use Of Size0f() ON @ POINET TYPE...cciiiiiiiie ettt e e e e e e e e e st e e e e e s ntbaeeaaeeaans 496
INCOITECt POINTEr SCAIING.......itiiiee ettt e e e e e e e e e s st e e e e s aabae e e e e e anraeeeeesanees 497
Use of Pointer Subtraction to Determing SIiZe.........cccoeiiiiiiiiiiiiiiie et 498
Use of Externally-Controlled Input to Select Classes or Code (‘Unsafe Reflection’)....................... 499
Modification of Assumed-Immutable Data (MAID).........cccuviiieiiiiiiiiee e

External Control of Assumed-Immutable Web Parameter
PHP External Variable MOIfiCAtiON............ooiiiiiiiiiie et
Use of Function with Inconsistent IMplementations............ccc.evieeiiiiieie e
Undefined Behavior for INPUL 10 APL.........oiiiiiiiiiiee et e e e e e e e etvaeea e
N[O o[ (= g D= = =] €= oo PRSP
UsE Of ODSOIEtE FUNCHONS. .....ciuviiiiiiii ittt e e et e st e naeeas
Missing Default Case in SWItCh StatemeNt...........coooiiiiiiiie e
Unsafe Function Call from a Signal Handler..............cccoiiiiiiiiiiiiii e
USE Of INCOITECT OPEIALOT....ceiitiieiiiieeiitie et ettee ettt e et e e et e e s bt e e e st b e e e sabe e e sbbeeessbeeestneesnnneeesnneeen
Assigning instead Of COMPAIING......cccciiiiiiiieeiiiiiet e e e s e e e e e s s b re e e e s e siataeeeeeaas
Comparing iNStead Of ASSIGNING.......uuuiiiiiiiiiiii et s e e e e s st e e e e s s tber e e e e saaraeeeeessnees
Incorrect BIOCK DelMItAtiON.........c.uiiiiiiiiiiie ettt




CWE Version 1.5
Table of Contents

CWE-484:
CWE-485:
CWE-486:
CWE-487:
CWE-488:
CWE-489:
CWE-490:
CWE-491.:
CWE-492:
CWE-493:
CWE-494:
CWE-495:
CWE-496:
CWE-497:
CWE-498:
CWE-499:
CWE-500:
CWE-501:
CWE-502:
CWE-503:
CWE-504:
CWE-505:
CWE-506:
CWE-507:
CWE-508:
CWE-509:
CWE-510:
CWE-511:
CWE-512:
CWE-513:
CWE-514:
CWE-515:
CWE-516:
CWE-517:
CWE-518:
CWE-519:
CWE-520:
CWE-521.:
CWE-522:
CWE-523:
CWE-524:
CWE-525:
CWE-526:
CWE-527:
CWE-528:
CWE-529:
CWE-530:
CWE-531:
CWE-532:
CWE-533:
CWE-534:
CWE-535:
CWE-536:
CWE-537:
CWE-538:
CWE-539:
CWE-540:
CWE-541.:
CWE-542:
CWE-543:
CWE-544:

Omitted Break Statement in SWILCH.........coiiiiiiiiiii e 517
INSUFfICIENt ENCAPSUIALION. ... .uuiiiiiiiiiiei e e e et e e e s st a e e e e e e satreeeeeesnees 519
Comparison of Classes DY NAME.........ooiii i e e e st bar e e e s eaes 520
Reliance on Package-1eVel SCOPE.........ccuiiii it 521
Data Leak Between Sessions
Leftover Debug Code..........ccoevvveeenne

MODIIE COUE ISSUBS......eeiiiiiieitiee ettt bt ettt e e sbe e e e bb e e anbe e e sbeeesnrbeeeas
Public cloneable() Method Without Final (‘Object Hijack')..........cccoooiiiieiiiiiiieiee e 525
Use of Inner Class Containing Sensitive Data.............ccciuiieeiiiiiiiiie et 526
Critical Public Variable Without Final MOGIfier...........ccccoiiiiiiiiiiiiceee e 527
Download of Code Without Integrity ChecK...........ccoiiiiiiiiiiiii e 528
Private Array-Typed Field Returned From A Public Method............cccocviiiiiiiiiei e 530
Public Data Assigned to Private Array-Typed Field...........cccoevieiiiiiiiie e 531
Information Leak Of SYSteM Datal...........eeviiiiiiiiiii e e e e e e e e e s rtbareaeeenes 532
Information Leak through Class ClONING............ciiiiiiiiiiiec e a e 533
Serializable Class Containing Sensitive Data............c.coiiiiiiieiiiiiiiie e 535
Public Static Field Not Marked Final
Trust BOUNAAry ViIOIAtION. ........coiiiiiiie ittt e e st e e e e s et e e e e e aab e e e e e s snrreeaeeaan
Deserialization Of UNruStEd Data...........eeeiiiiiiiiiieiiiee ettt e et e e e
2L (7L ] o T=Tot A o o LR OPPPRN
Motivation/Intent
Intentionally INtroduced WEAKNESS...........uiiiiiiiiiiie ettt et e e e e saarae e e e
Embedded MaliCIOUS COUE.........ciiiiiiiiiiie ittt e e et e e satee e nnbeeean
LI o)=L I [0 6T T PR PRP
Non-Replicating MaliCiouS COE...........coeiiiiiiiiii et e s e e e eaens
Replicating Malicious Code (Virus or Worm)
B I =10 L 0T | PO EPTPUTPPPRN
Logic/Time Bomb

Covert Storage Channel
DEPRECATED (Duplicate): Covert Timing Channel............cccovviiiiiiiiiiiie e
Other Intentional, NONMAaliCIOUS WEAKNESS.........cccuuiiiiiiiiiiiee ettt
Inadvertently INtroduced WEAKNESS...........coiiiiiiiiiiie e e eraae e
NET ENVIFONMENT ISSUES......eiiiiiiiiiiie ettt ettt e et e e sttt e sab e e st e e ssbe e e sabeeeabeeesanteeesnneas
.NET Misconfiguration: Use of IMPersonation.............c..coiiiuuiiiieiiiiiiiee s esiiiee e e st e e e snees
Weak PassWord REQUIFEIMENTS. ......c.iiiiiiiieee et e e eecite e e e et e e e s st e e e s et e e e e e s aatbeeeeessnsaeeeeeaan
Insufficiently Protected Credentials........

Unprotected Transport of Credentials
Information Leak Through Caching...........ccoiiiiiiiiiiiiiiiie e e e
Information Leak Through Browser Caching...........ccuviiiiiiiiiiiee et
Information Leak Through Environmental Variables.............ccoovviiiiiiiiiciiiiee e
Information Leak Through CVS REPOSIIONY........cccuviiiieiiiiiiiee ettt
Information Leak Through Core DUMP FilES..........ccoiiiiiiiiiiiiiiiis et
Information Leak Through Access Control List Files..........ccccoiviiiiiiiiiiiiiicc e
Information Leak Through Backup (.~bK) Fil€S........ccueiiiiiiiiiiiec et
Information Leak Through TeSt COUE........cciciiiiie i e e e e et e e
Information Leak Through LOg FilES..........coiiiiiiiii it
Information Leak Through Server Log Files
Information Leak Through Debug Log Files
Information Leak Through Shell Error MESSAQE.........uuviieiiiiiiiiieeiiiiiiee e ccieee e s et e e siren e
Information Leak Through Servlet Runtime Error MESSAQE........uuveeeiiiuviiieeeiiiiiieeeesiiieee e e eeiveeeaenn
Information Leak Through Java Runtime Error MESSAQE........cceeeiiiiriiieeiiiiiieieeeeeiiriee e e e ssivaeeee s
File and Directory INfOrmation LEAKS.........ccoiuiiiiei it eeiiiee st e et e e e e et e e e e s satreeeaeeeees
Information Leak Through Persistent COOKIES...........ccciiiiiiieeiiiiiiiie e st e e e
Information Leak Through SoUrce COE............evieiiiiiiiiiee et e e
Information Leak Through Include Source COde..........oocoiiiiiiiieiiiiiiiie e
Information Leak Through Cleanup LOg FleS.........coooiiiiiiiiiiiie e
Use of Singleton Pattern in a Non-thread-safe Manner...................

Failure to Use a Standardized Error Handling Mechanism

S1ualuU0D JO 3|qeL



Table of Contents

CWE Version 1.5
Table of Contents

CWE-545:
CWE-546:
CWE-547:
CWE-548:
CWE-549:
CWE-550:
CWE-551.:
CWE-552:
CWE-553:
CWE-554:
CWE-555:
CWE-556:
CWE-557:
CWE-558:
CWE-559:
CWE-560:
CWE-561.:
CWE-562:
CWE-563:
CWE-564:
CWE-565:
CWE-566:
CWE-567:
CWE-568:
CWE-569:
CWE-570:
CWE-571:
CWE-572:
CWE-573:
CWE-574:
CWE-575:
CWE-576:
CWE-577:
CWE-578:
CWE-579:
CWE-580:
CWE-581.:
CWE-582:
CWE-583:
CWE-584:
CWE-585:
CWE-586:
CWE-587:
CWE-588:
CWE-589:
CWE-590:
CWE-591.:
CWE-592:
CWE-593:
CWE-594:
CWE-595:
CWE-596:
CWE-597:
CWE-598:
CWE-599:
CWE-600:
CWE-601.:
CWE-602:
CWE-603:
CWE-604:
CWE-605:

Use of DYNamic Class LOAMING........uuiiiiiiiiiiiei ettt e s et e e st e e e et e e e e s et e e e s e aaaa e e e e e e entreeeas 562
Suspicious Comment
Use of Hard-coded, Security-relevant CoNStantS.............ccoiiiiiiieeeiiiiiiiee et ea e
Information Leak Through DireCtory LiStNG.........cccoiiiiiiiiee it
Missing Password Field Masking.........c.coiiiiiiiioiiiiiie et
Information Leak Through Server Error Message
Incorrect Behavior Order: Authorization Before Parsing and Canonicalization...............ccccceeeeinns 566
Files or Directories Accessible to External Parties...........cccccoviieiiiiiniiee e 567
Command Shell in Externally Accessible Dir€CtOry..........coiiiiiiieiiiiiiiee e 567
ASP.NET Misconfiguration: Not Using Input Validation FrameworK.............cccccoevviveeeeeiiiiienee e 568
J2EE Misconfiguration: Plaintext Password in Configuration File...........cccccccooviiiiiiiciiiiiiiee e, 568
ASP.NET Misconfiguration: Use of Identity Impersonation............cccccceeeviiieieeeiesiiieee e sciieee e 569
LO70] o (oW =T o A S =SSP PPPPP 569
Use of getlogin() in Multithreaded AppliCatioN............ooiiiiiiiiiii e e 570
Often Misused: Arguments and Parameters...........cooiiuiiieeiiiiiiie et esarae e e 571
Use of umask() with chmod-style ArgUMENt...........ooiiiiiiiiiiee e 571
Dead Code
Return of Stack Variable AQAreSS........cuuiiiiiieiiiiieie e e s
UNUSEA VaTBDIE.......eiiieie ettt et e e st e e et b e e nnbeeesnneeas
SQL INJECHION: HIDEIMNALE......eiiiiiiiiiiii e e s e e e s et e e e e e e s eatbaeeas
Reliance on Cookies without Validation and Integrity Checking
Access Control Bypass Through User-Controlled SQL Primary Key........ccccccoovvvveieeeiiiiiieee e, 576
Unsynchronized Access t0 Shared Datal.............eeeiiiiiiiiiiie it aaae e 577
finalize() Method Without SUper.finalize()...........cccuuiiieiiiiiiie e 578
EXPIESSION ISSUES.....cciiiiiiiiie e ettt et s ettt e e e ettt e e e st b e e e e e s e tbaaeeaeeassatreeeeessatbaeeeesanssaaeeaenaans
EXPression is AIWAYS FalSE..........ooiiiiiiiiiiei ittt e e e et e e e e et e e s e era e e e e e e
EXPresSion iS AIWAYS TTUE........uuiiieeiiiiiiiee e ettt e e e e et e e e e e st e e e e s st e e e e e s s stbreeaeesaatbeeeeessasbanaeaenanns

Call to Thread run() instead of start()
Failure to FOIOW SPECIfICAION..........viiii e e e e et e e e s eaaaeeas
EJB Bad Practices: Use of Synchronization Primitives...........cccccccvuvieiieiiiiiieiie e 583
EJB Bad Practices: Use Of AWT SWINQG......ccuuiiiiiiiiiiiie ettt e ettt esrtvee e e s seiaas e e e s s sinsaeeaeesnnnnes 583
EJB Bad Practices: Use of Java I/O
EJB Bad Practices: USe Of SOCKELS. ........iiiiiiiiiiiiiiie e
EJB Bad Practices: Use Of Class LOAUET...........coiuuiiiiiiieiiiie ettt
J2EE Bad Practices: Non-serializable Object Stored in Session
clone() Method Without SUPEI.CIONE().....ciiciiiiiiieee ettt e e e e tbae e e e e e
Object Model Violation: Just One of Equals and Hashcode Defined.............cccccoiiiieiieiiiiiineccnns
Array Declared Public, Final, and StatiC.............ccoiiiiiiieiiiiiiiee et e e
finalize() Method Declared Public
Return Inside Finally Block....................
Empty Synchronized BIOCK............ooiiiiiiiii et e
o] ([ A OF= 1| I (o T g F= 1 2=T D PP EUP PP
Assignment of a Fixed Address t0 @ POINTEL...........cciiiiiiiiiee e
Attempt to Access Child of a NON-Structure POINLE...........ccoiiiiiiiieiiiiiii e
Call to NON-UBIQUITOUS APL.....c ettt e e e e et e e e s et e e e e e s intraeaeeeaas
Free of Memory NOt 0N the HEAP........cco i et
Sensitive Data Storage in Improperly Locked MemOry..........cooviiiiiieiiiiiiiee e
AULheNntiCation BYPASsS ISSUES......cciciiiiiiiie ettt et e e e et e e e e s e et e e e s e sata e e e e e s stbaeeeeeaanns
Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created
J2EE Framework: Saving Unserializable Objects t0 DisSK.........ccccccovviieeiiiiiiiiiiec e
Comparison of Object References Instead of Object Contents............cccoccvvieeeiiiiiiiiee e
Incorrect Semantic ObJECt COMPATISON.........ccuviiiieiiciiiee et e e e e e st e e e e e st e e e e s sabaeeaaeaaaes
Use of Wrong Operator in String COMPAriSON.........ccuuuiieiiiiiiiieeeesiiiee e e s seiire e e e e e siaireeee e s eniraeeeeeeanns
Information Leak Through Query Strings in GET Request
Trust of OpenSSL Certificate Without Validation.............cccoociiiiiii i
Failure to Catch All EXCEPLIONS iN SEIVIET .........ovviiieiiiiee e
URL Redirection to Untrusted Site ('Open RedireCt))........cceiviiiiiieiiiiiiiiee e
Client-Side Enforcement of Server-Side SECUNLY........c.uuiiieiiiiiieee e
Use of Client-Side AUThENTICAtION.........c.uiiiiii e
[DTCTo] f=Tor= 1=To I = o1 =TT PP PPPUPRN
Multiple Binds t0 the SAME POr...........uiiiiiiiie e e s e e e st e e e e e saaees

Xii



CWE Version 1.5
Table of Contents

CWE-606:
CWE-607:
CWE-608:
CWE-609:
CWE-610:
CWE-611:
CWE-612:
CWE-613:
CWE-614:
CWE-615:
CWE-616:
CWE-617:
CWE-618:
CWE-619:
CWE-620:
CWE-621.:
CWE-622:
CWE-623:
CWE-624:
CWE-625:
CWE-626:
CWE-627:
CWE-628:
CWE-629:
CWE-630:
CWE-631.:
CWE-632:
CWE-633:
CWE-634:
CWE-635:
CWE-636:
CWE-637:
CWE-638:
CWE-639:
CWE-640:
CWE-641.:
CWE-642:
CWE-643:
CWE-644:
CWE-645:
CWE-646:
CWE-647:
CWE-648:
CWE-649:
CWE-650:
CWE-651.:
CWE-652:
CWE-653:
CWE-654:
CWE-655:
CWE-656:
CWE-657:
CWE-658:
CWE-659:
CWE-660:
CWE-661.:
CWE-662:
CWE-663:
CWE-664:
CWE-665:
CWE-666:

Unchecked Input for LOOP CONITION.........cccuuiiieiiiiiiiiee et e e e et e e e e e nnns 608
Public Static Final Field References Mutable ObJECt...........ccveviiiiiiiiiiie e 609
Struts: Non-private Field in ACHONFOIM CIassS.........cccuviiiiiiiiiiiiee et 609
Double-ChecKed LOCKING.......cciiiiiiiie ettt ettt e ettt e e e e e e e e st e e e e e e ara e e e e e e sntaeeeaeaan 610
Externally Controlled Reference to a Resource in Another Sphere..........ccooevieiiiiiic e, 611
Information Leak Through XML External Entity File Disclosure

Information Leak Through Indexing of Private Data...........ccccccoeiuiiiieeeiiiiiiii e
INSUFfICIENt SESSION EXPITALION. .....ciiiiiiiiiiie e e ittt e e et e e e st e e e e st e e e e s e s e e e e e e s e saabaeeeessantbareaesaanes
Sensitive Cookie in HTTPS Session Without 'Secure’ Attribute............cocccveviieeiiiee i, 614
Information Leak Through COMMENTS..........coiiiiiiiiiiiie it e e 615
Incomplete Identification of Uploaded File Variables (PHP)...........ccceoiviiiiiie e 615
REACNADIE ASSEITION. ....cciiiiiiiiii ettt e e sb et e e bb e e snbe e e s breeentbeeena 617
Exposed Unsafe ACHVEX METhOU...........oooiiiiiiii e 617
Dangling Database Cursor ('CUrsor INJECHION").........coiiiuiiiie i 618
Unverified PassWord ChHanQe.........ocoiiiuiiiie ittt e e e e e e e st e e e e s st e e e e s sntbaeeaeeanes
Variable EXIFACHON ETOr........iiiiiiiiiiiie ettt ettt et e e ettt e et e e b e e s nne e e nnneas
Unvalidated Function Hook Arguments

Unsafe ActiveX Control Marked Safe For Scripting

Executable Regular EXPreSSION EFTON...........cciiiiiiiiee ettt a e et e e e e st a e s e eaaaaeaeas
Permissive RegUIAI EXPIrESSION. .......cciiiiiiiee e e ettt e e ettt e e e st e e e e e et e e e e s et e e e e e s saabaeeeeearataaeeaeaan

Null Byte Interaction Error (POISON NUIl BYEE)......cccciiiiiiiieiieiiiiee ettt
Dynamic Variable EValUation..............coiiiiiiiiioiiii ettt e et ae e e s eaaaaea s
Function Call with Incorrectly Specified ArgUMENES..........cccvviiieiiiiiiie e 626
Weaknesses in OWASP Top Ten (2007)

Weaknesses EXamined DY SAMATE . .......ooooi ittt e e s et e e e e s raareeae e
RESOUICE-SPECITIC WEAKNESSES. .....ccciiviiiiee ettt e e e e e et e e e e et e e e e s snatrareaeeanes
Weaknesses that Affect FileS Or Dir€CtONES. ........c.uiiiiiiiiiiiiie e 629
Weaknesses that Affect Memory..........ccccceeeeeune

Weaknesses that Affect System Processes

Weaknesses USEd DY NVD..........ooiiiiiiiiii ettt et e e e st e e e e e st e e e e e s earaaeeaeeaaes

Not Failing Securely ("Failing OPEN")......cciiiiiiiie et e e e et e e s eeaaaes
Failure to Use EConomy Of MECNANISIM.........cccoiiiiiiiiie et
Failure to Use Complete MeOIAtioN...........cooiuiiiiiiiiiiiis et e e st e e e e s aaae e e e e s enees
Access Control Bypass Through User-Controlled Key...........occiuviiieiiiiiiiie i
Weak Password Recovery Mechanism for Forgotten Password

Insufficient Filtering of File and Other Resource Names for Executable Content..............ccccceec..e. 639
External Control of Critical State Data..........cceeeiuiiiriiiieiiiie e 640
Failure to Sanitize Data within XPath Expressions ("XPath injection’)............ccccccveveeiiiiiinee i, 643
Improper Sanitization of HTTP Headers for Scripting SYNtaX.........ccccveeeiieiiiiee e
Overly Restrictive Account Lockout Mechanism............c.cccccvveeenn.

Reliance on File Name or Extension of Externally-Supplied File

Use of Non-Canonical URL Paths for Authorization DeCiSIiONS...........ccccoviieeiniieeniiee e
Incorrect Use Of PrivVIlEged APIS...........uviiiiiiieiee ettt e e et e e e s s eataeaeaeseaes
Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity Checking..... 650
Trusting HTTP Permission Methods on the Server Side...........ccoocviiiiiiiiiiiiec e 652
Information Leak through WSDL Fil€........cccooiiiiiii ittt et e e 653
Failure to Sanitize Data within XQuery Expressions (‘'XQuery Injection’)...........cccceevveveeeiiiiveneenn. 654
Insufficient CompartmentaliZation..............cooiiiiiiii i e e 654
Reliance on a Single Factor in @ Security DECISION..........c..cieiiiiiiiiiie e 656
Insufficient Psychological ACCEPtability...........ccvveiiiiiiiiiiec e
Reliance on Security through OBSCUIILY........ciiiiiiiiiiic e
Violation of Secure Design PriNCIPIES..........ocoiiiiiiii e
Weaknesses in Software WHEN iN C......oouiiiiiiiiiiec e
Weaknesses in Software Written in C++

Weaknesses in Software WHEN IN JAVA.........c.ceoiuiiiiiiiieiiiie it stee e s saneeesnbeee e 664
Weaknesses in Software WHteN iN PHP ...t 665
Insufficient Synchronization

Use of a Non-reentrant Function in an Unsynchronized Context............cccccvveeeeiiiiiieeieesiiiiieee e, 667
Improper Control of a Resource Through its Lifetime.........cccevieiiiiiiiiie e 667
IMProper INItAIZALION.........oiiiiiiie e e e e s e e e e e st e e e e s snatbaeaaeeanes 668
Operation on Resource in Wrong Phase of Lifetime.........ccccuveviiiiiiiiii e 672

S1ualuU0D JO 3|qeL



Table of Contents

CWE Version 1.5
Table of Contents

CWE-667:
CWE-668:
CWE-669:
CWE-670:
CWE-671:
CWE-672:
CWE-673:
CWE-674:
CWE-675:
CWE-676:
CWE-677:
CWE-678:
CWE-679:
CWE-680:
CWE-681.:
CWE-682:
CWE-683:
CWE-684:
CWE-685:
CWE-686:
CWE-687:
CWE-688:
CWE-689:
CWE-690:
CWE-691.:
CWE-692:
CWE-693:
CWE-694:
CWE-695:
CWE-696:
CWE-697:
CWE-698:
CWE-699:
CWE-700:
CWE-701.:
CWE-702:
CWE-703:
CWE-704:
CWE-705:
CWE-706:
CWE-707:
CWE-708:
CWE-709:
CWE-710:
CWE-711:
CWE-712:
CWE-713:
CWE-714:
CWE-715:
CWE-716:
CWE-717:
CWE-718:
CWE-719:
CWE-720:
CWE-721.:
CWE-722:
CWE-723:
CWE-724:
CWE-725:
CWE-726:
CWE-727:

INSUFFICIENT LOCKING. . .eiiiiiiiiiii ettt e e ettt e e e e et e e e s et e e e e e e bbb e e e e e e s ntbeeaeessnbaaeeaean
Exposure of Resource to Wrong Sphere
Incorrect Resource Transfer BEtWeen SPNEIeS........ccccoiiiiiiiiiiiiiiie e 674
Always-Incorrect Control FIow Implementation...............eeeeiiiiiiiee e
Lack of Administrator CONrol OVEI SECUIILY........cciiiiiiieeeeiiiiiiee e s s e e e e s e e e s saare e e e e e eees

Use of a Resource after Expiration or Release
External Influence of Sphere Definition............cooiiiiiii i
L8 Toto] gl go]|[=To R =T ol U €] To ] o TR
Duplicate Operations 0N RESOUICE. ..........cciiiuiiiiee i it ee e e eeiit e e e e e s s et e e s sstaareeesaaataeeaeesasraeeeessanees
Use of Potentially Dangerous FUNCHON............coiiiiiiiie e e e et e s
WeEaKNess Base EIBMENLS. .......ccoiiiiiiiiieiiie ettt s e et e bne e e nnbeee e
[070] 0] 001 1= 1TSS EUTOPPPUPN
CRAIN EIBIMENTS. ....eiiiiiii ittt b et e e st bt e e sttt e s nbe e e e as b e e e snbaeessabeeeanbeeena
Integer Overflow to BUffer OVEIMIOW..........ccooiiiiiiiiii e a e
Incorrect Conversion between NUMEIC TYPES.....cciiiuiriieiiiiiiiee e e e ettt e e e e s e e e e e s e sarae e e e e sstreeaeesenaes
[aToo]q (=To1 Q@2 1 [o10] - L1 o] o FO PP
Function Call With Incorrect Order of Arguments
Failure to Provide Specified FUNCHONAIILY............coiiiiiiiiieiiiiiiie e
Function Call With Incorrect Number of ArQUMENTS.........ccooiiiiiiiiieiiiier e e 693
Function Call With INCOrrect ArgUmMENT TYPE...uuuiiieeiiiier e ettt e e eete e e e s e e e e et e e e e e e araaeaeeaas 694
Function Call With Incorrectly Specified Argument Value............cccoeeiiiiiiiie i 694
Function Call With Incorrect Variable or Reference as Argument..........ccccoooevvieeeeeiiiieee e v, 695
Permission Race Condition DUring RESOUICE COPY....cuiceiiiirriieeeiiiiiieeeeeiiiieeeeesssiereeeesssnnresaeesnnnes 696
Unchecked Return Value to NULL Pointer Dereference.........ccccevvuieiiieeeiiiee i 697
Insufficient Control FIOW Management..........c.uuviiiiiiiiiiiiee e e e e et e e e e eibaee e e e e
Incomplete Blacklist t0 Cross-Site SCHPLNG.....ceiiiiiiiiiiie i e e e e e e s
Protection Mechanism Failure............ccccovieiiiiiiecnieee

Use of Multiple Resources with Duplicate Identifier
Use of LOW-Level FUNCHONAITY.........cooiiiiiiii et e e e e e e s saraea e e
INCOITECE BENAVIOT OFUEN ... .eiiiiiiiieiiiie ettt sttt sttt e e st e e s nne e e neneas
INSUFFICIENT COMPAIISON. .....iiiiiiiiieiee ettt e e e et e e e e e st e e e e e s et b e e aeessasaraeeaesesntreeeeeaas
REAITECE WItNOUL EXIt.....ecitiiiiitiie ettt sttt ettt e s bt e e e ss b e e snbe e e e naneeennbeeean
(DAt o] o]0 q 1T o A O o] g o= o] £ PR R
Seven Pernicious KINGOOMIS. .......coiiiiiiie ettt s e e e s et e e e e e e st e e e e s s antbaeee e e e nnnees
Weaknesses Introduced DUNNG DeSIGN........cciiiiiiiiiiiei ettt e st e e naaees
Weaknesses Introduced During Implementation............c.c.eeeeiiiiiiee e cciiiecee e
Failure to Handle Exceptional Conditions
Incorrect Type Conversion or Cast.............. .
INCOrrect Control FIOW SCOPING......uuuiiieiiiiiiiee ettt e et e e e e st e e e e s st e e e e s aaaae e e e e e sntreeeas
Use of Incorrectly-Resolved Name or REfEreNCe.........cccuvviiiiiiiiiiiee e
Improper Enforcement of Message or Data StrUCUIE............coouveeiiiiiiriiee e
INncorrect OWNErShip ASSIGNIMENL.........iiiiiiiie it e e e e s e e e e e s e e e e e e sataeeeeeaan
N E=T g [=To IO o T T LSO OTPRP PR
Coding Standards ViIOlatioN.............uuiiieiiiiiiiee e e e e e et e e e s e e e e e s aaaraeae s
Weaknesses in OWASP TOp TN (2004)......ccioiiiiiiieie it eeie et e et e e e e et e e e e e s sabaeeas
OWASP Top Ten 2007 Category Al - Cross Site Scripting (XSS).....ccccceevveiiiieiiieciiieee e
OWASP Top Ten 2007 Category A2 - INJeCtion FIAWS...........cccuriiiiiiiiiiie e
OWASP Top Ten 2007 Category A3 - Malicious File EXECULiON.........cccceeeeviiiiieee i
OWASP Top Ten 2007 Category A4 - Insecure Direct Object Reference............ccccvveeeeiiiiieneenn.
OWASP Top Ten 2007 Category A5 - Cross Site Request Forgery (CSRF)
OWASP Top Ten 2007 Category A6 - Information Leakage and Improper Error Handling............ 731
OWASP Top Ten 2007 Category A7 - Broken Authentication and Session Management............. 731
OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage...........cccovvveeeeviiiveeeeeniinns 731
OWASP Top Ten 2007 Category A9 - Insecure COmMMUNICALIONS..........cccvvereeeiiiiiiieeeeiiiireeee e 732
OWASP Top Ten 2007 Category Al0 - Failure to Restrict URL ACCESS.......ccccevviivvriieeiiiriieeeeens 732
OWASP Top Ten 2004 Category Al - Unvalidated INPUL..........cccoviieiiiiiiieec e 732
OWASP Top Ten 2004 Category A2 - Broken Access CONtrol...........cccveeieeiiiiiiiieeceiiiiiee e 733
OWASP Top Ten 2004 Category A3 - Broken Authentication and Session Management............. 733
OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) FIaws...........cccoveeeeeiiiiieneeeinn, 734
OWASP Top Ten 2004 Category A5 - Buffer Overflows
OWASP Top Ten 2004 Category A6 - INJeCtion FIAWS...........cccvviiiiiiiiiiiec e

Xiv



CWE Version 1.5
Table of Contents

CWE-728: OWASP Top Ten 2004 Category A7 - Improper Error Handling

CWE-729: OWASP Top Ten 2004 Category A8 - Insecure Storage.............cceeeeeennn.

CWE-730: OWASP Top Ten 2004 Category A9 - Denial Of SEIVICE........cccuviieeiiiiiiiie e
CWE-731: OWASP Top Ten 2004 Category Al0 - Insecure Configuration Management.............cccccceeeenneee. 737
CWE-732: Incorrect Permission Assignment for Critical RESOUICE. ..........cccvviiieiiiiiiiee e 737
CWE-733: Compiler Optimization Removal or Modification of Security-critical Code.............ccccvveveeiiiiineneenn. 739
CWE-734: Weaknesses Addressed by the CERT C Secure Coding Standard.............cccccveveeeiiiiiereeciccinneennn. 740
CWE-735: CERT C Secure Coding Section 01 - Preprocessor (PRE)........c.cocciviieiiiiiiiee e 741
CWE-736: CERT C Secure Coding Section 02 - Declarations and Initialization (DCL)...........ccccceveeeiiiveneennn. 741
CWE-737: CERT C Secure Coding Section 03 - EXpressions (EXP).......cccccciviiiiieeiiiiiiiec e 742
CWE-738: CERT C Secure Coding Section 04 - Integers (INT)....ccccierieiiiiiiie et 742
CWE-739: CERT C Secure Coding Section 05 - Floating Point (FLP).........cccoviiiiiiiiiee e 743
CWE-740: CERT C Secure Coding Section 06 - Arrays (ARR).........oiiiiiiiiiiiee et 743
CWE-741: CERT C Secure Coding Section 07 - Characters and Strings (STR).......cccovvveiiiiiiiere e 744
CWE-742: CERT C Secure Coding Section 08 - Memory Management (MEM)...........cccoeoeiiiieeeceiiiiiien e 744
CWE-743: CERT C Secure Coding Section 09 - Input OUtpUt (FIO)........coccviiiieiiiiiiiee e 745
CWE-744: CERT C Secure Coding Section 10 - Environment (ENV).......ccccoeiiiiiiiiic et 746
CWE-745: CERT C Secure Coding Section 11 - Signals (SIG).......cceeeiiiiiiiiiie e 746
CWE-746: CERT C Secure Coding Section 12 - Error Handling (ERR)........cccoiiiiiiieiiiiiiiie e 746
CWE-747: CERT C Secure Coding Section 49 - Miscellaneous (MSC).......cccccveeiiiiiiiee e 747
CWE-748: CERT C Secure Coding Section 50 - POSIX (POS)......ciiiiiiiiiiiee it eesiiee e e s seiaanea e 747
CWE-749: Exposed Dangerous Method Or FUNCHON..........cc.ueiieiiiiiiiiee et et e et ee s 748
CWE-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors.................... 749
CWE-751: Insecure Interaction Between Components

CWE-752: RiSKy RESOUICE MaNAQEMIENL.......cciieiiiiiiiieeeiiiiee e e e s et e e e e et e e e e e e satb e e e e e s stbaeeeeesasssaaeeeesssntbeseaenan
CWE-753: POrOUS DEIENSES. ... .uiiiiiiiiiitiie ittt sttt ettt ettt e sttt e et e e e anb e e e sttt e e snbeeeanbbeeeaneeeennnes
CWE-754: Improper Check for Exceptional Conditions..............

CWE-755: Improper Handling of Exceptional Conditions

CWE-756: MiSSING CUSLOM EITOI PAJE.......cciiiiiiiieiiiititiee e e ettt e e s ettt e e e et e e e e e s et e e e e s e nbaaeeaesasanraeeeeesensraees
CWE-757: Selection of Less-Secure Algorithm During Negotiation (‘Algorithm Downgrade')..............cccvee..... 752
CWE-758: Reliance on Undefined, Unspecified, or Implementation-Defined Behavior

CWE-759: Use of a One-Way Hash without @ Salt.............ccccceeeiiiiiiie e,

CWE-760: Use of a One-Way Hash with a Predictable Salt...............ccoooiiiiiiiiii e
CWE-761: Free of Pointer not at Start Of BUfEr...........ooiiiiiiii e
CWE-762: Mismatched Memory Management ROULINES..........ccooiiiiiiiieiiiiiiice e e st eivaea e
CWE-763: Release of Invalid Pointer or REFEIENCE. ........ccoiiiiiiiiii it
CWE-764: Multiple LOCks Of @ CritiCal RESOUICE. ........ccciiiiiiiieeeeiiiieee et e e e e earae e e e e s st eeee e
CWE-765: Multiple Unlocks of a Critical Resource

CWE-766: Critical Variable Declared PUDBIIC............coiiiiiiiiii et
CWE-767: Access to Critical Private Variable via Public Method.............ccoooeiiiiiiiiiiiee e
CWE-768: Incorrect Short CirCuit EVAIULION. .........cocuiiiiiiieiiiee et
CWE-769: File DeSCrPtor EXNAUSTION. .......ccciiiiiiiie ettt e e e et e e e e st e e e e s et ae e e e e s s snrbreeeeesantbeeeas
CWE-770: Allocation of Resources Without Limits or Throttling

CWE-771: Missing Reference to Active Allocated RESOUICE...........ccoiiuiiieeeiiiiiiee e e e e e e sire e e e e
CWE-772: Missing Release of Resource after Effective Lifetime.........cooveviiiiiiiiiii e
CWE-773: Missing Reference to Active File Descriptor or Handle

CWE-774: Allocation of File Descriptors or Handles Without Limits or Throttling............cccceveeiiiiieniceiinn.
CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime.............ccoccceeiiiiienieciiineen.
CWE-776: Unrestricted Recursive Entity References in DTDs (XML BOMDB").......c.cooiviiiiiiiiiiiieeie e
CWE-777: Regular EXpression WithOUL ANCROIS. ........coiiiiiiiic et e e e e e sarae e e e e enaees
CWE-778: Insufficient LOGQING.......ccuverieeiiiiiiiiee e

CWE-779: LOgQING Of EXCESSIVE DALaA........ccuuviiiiiiiiiiiii ettt e ettt e e st e e e s sttt e e e s st ae e e e e s s atbe e e e e s snrreaaeeann
CWE-780: Use of RSA Algorithm WithOUt OAEP...........uiiii et e s
CWE-781: Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control Code..................... 777
CWE-782: Exposed IOCTL with Insufficient ACCESS CONLIOL...........cciiiuiiiieiiiiiiiee e 778
CWE-783: Operator Precedence LOGIC EITOr........ccuuiiii ittt e e e e e e e atae e e e e s saranaaaean 779
CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security Decision...

CWE-785: Use of Path Manipulation Function without Maximum-sized BUffer..............cccocvveeiiiiiiiee i, 782
CWE-1000: RESEAICH CONCEPLS. . .uiiiiiiiiiiiie e eiiiet e e e ettt e e e e et e e e e e st e e e e e s et e e e e s se b b e e e e e s s atasreeeesssntbeeeeessntreeas 784
CWE-2000: Comprehensive CWE DICHONAIY..........uuiiieiiiiiieee e eciieee e e e st e e e s et e e e e s s siatr e s e e s ssataeseeessnssneeeaesaans 785

XV

S1ualuU0D JO 3|qeL



Table of Contents

CWE Version 1.5
Table of Contents

Appendix A: Graph Views

CWE-629: Weaknesses in OWASP TOP TN (2007)....ccuuueiieiiiiiiiie e eeitee e e e eitiee e e e s setvee e e e s ssnsreeaesasassaeeeessnnnes 800
CWE-631: ReSOUICE-SPECITIC WEAKNESSES. .. ..eiieiiiiiiiii e e eeiiiie e e e s ettt e e e e et e e e e e et e e e e e st ba e e e e s e santaeaeeessnsbaaeeeean 801
CWE-B78: COMPOSITES. ..eeiiiuitieiee e ittt e e e e ettt e e e e e sttt e e e e et et e e e e easbtaeeaeeasasbaeeeeeaaatbaseeeeaasstseeaeeasnsseeeeessantbaseaesaases 803
CWE-699: DEVEIOPMENT CONCEPLS. . .uiiieiiiiiiiiiee e ittt e e e e ettt e e e e st e e e e e s s tb e e e e e sasaaareeeeesastbereeessasssaaeeeeasssraeeeaaaas 804
CWE-700: Seven Pernicious KiINGOOMS.........ccuiiiiiiiiiiiie ettt e ettt e e e e st e e e e s et ae e e e s s eaar s e e e e e e snnraeeeas 823
CWE-709: NAMEA CRaAINS......uttiiiiiieeiiiee ittt ettt s e sb et et e e e sttt e e sbe e e s abb e e e anbeeesabeeeesbbeeeanteeesnbeeessreeann 825
CWE-711: Weaknesses in OWASP TOP TN (2004)........uuuiieiiiiiiiie e et e e erteee e s e etrae e e e s esaar e e e e e s saraeeeeesnnnes 826
CWE-734: Weaknesses Addressed by the CERT C Secure Coding Standard.............cccccveveeeiiiiieeeeciiineeennn. 829
CWE-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors.................... 832
CWE-1000: RESEAICH CONCEPLS. . .uiiiiiiiiiiiieeeeiitiet e e e sttt e e e e et e e e e e s e e e e e s st b e e e e s sesba s e e e e s e asasbeeeeesantbeeeeessantreeas 833
T a0 1= OO OO 852

XVi



CWE Version 1.5
CWE-1: Location

CWE-1: Location

Description
Summary
Weaknesses in this category are organized based on which phase they are introduced during the
software development and deployment process.
Relationships

Nature Type ID Name W Page
ParentOf @ 2 Environment 699
ParentOf (C] 16 Configuration 699
ParentOf (C] 17 Code 699
MemberOf v 699 Development Concepts 699

CWE-2: Environment

Description
Summary
Weaknesses in this category are typically introduced during unexpected environmental
conditions.
Relationships

Nature Type ID Name ) Page
ChildOf (C] 1 Location 699
ParentOf ® 3 Technology-specific Environment Issues 699
ParentOf me 5 J2EE Misconfiguration: Data Transmission Without Encryption 700
ParentOf me 6 J2EE Misconfiguration: Insufficient Session-1D Length 700
ParentOf me 7 J2EE Misconfiguration: Missing Custom Error Page 700
ParentOf W 8 J2EE Misconfiguration: Entity Bean Declared Remote 700
ParentOf me 9 J2EE Misconfiguration: Weak Access Permissions for EJB 700
Methods
ParentOf me 11 ASP.NET Misconfiguration: Creating Debug Binary 700
ParentOf W 12 ASP.NET Misconfiguration: Missing Custom Error Page 700
ParentOf me 13 ASP.NET Misconfiguration: Password in Configuration File 700
ParentOf ma 14 Compiler Removal of Code to Clear Buffers 699
700
ParentOf ma 15 External Control of System or Configuration Setting 699
ParentOf W] 435 Interaction Error 699
ParentOf W]l 552 Files or Directories Accessible to External Parties 699
ParentOf me 650  Trusting HTTP Permission Methods on the Server Side 699
MemberOf ) 700 Seven Pernicious Kingdoms 700

CWE-3: Technology-specific Environment Issues
Description
Summary
Weaknesses in this category are typically introduced during unexpected environmental conditions
in particular technologies.
Relationships

Nature Type ID Name Wi Page
ChildOf (C] 2 Environment 699
ParentOf @ 4 J2EE Environment Issues 699
ParentOf ® 519 .NET Environment Issues 699

CWE-4: J2EE Environment Issues

=

uoIe207 :T-IMD



CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption

CWE Version 1.5
CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption

Category ID: 4 (Category) Status: Incomplete

Description
Summary
J2EE framework related environment issues with security implications.
Relationships

Nature Type ID Name W Page

ChildOf @® 3 Technology-specific Environment Issues 699

ChildOf (C] 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration 711
Management

ParentOf W 5 J2EE Misconfiguration: Data Transmission Without Encryption 699

ParentOf W 6 J2EE Misconfiguration: Insufficient Session-ID Length 699

ParentOf me 7 J2EE Misconfiguration: Missing Custom Error Page 699

ParentOf me 8 J2EE Misconfiguration: Entity Bean Declared Remote 699

ParentOf W 9 J2EE Misconfiguration: Weak Access Permissions for EJB 699
Methods

ParentOf me 555  J2EE Misconfiguration: Plaintext Password in Configuration 699
File

Taxonomy Mappings
Mapped Taxonomy Name Node ID  Fit Mapped Node Name
OWASP Top Ten 2004 Al10 CWE More Specific  Insecure Configuration Management

CWE-5: J2EE Misconfiguration: Data Transmission
Without Encryption

Weakness ID: 5 (Weakness Variant) Status: Draft
Description
Summary
Information sent over a network can be compromised while in transit. An attacker may be able to
read/modify the contents if the data are sent in plaintext or are weakly encrypted.
Time of Introduction
¢ Implementation
e Operation
Applicable Platforms
Languages
* Java
Potential Mitigations
The application configuration should ensure that SSL or an encryption mechanism of equivalent
strength and vetted reputation is used for all access-controlled pages.
Other Notes
If an application uses SSL to guarantee confidential communication with client browsers, the
application configuration should make it impossible to view any access controlled page without
SSL. There are three common ways for SSL to be bypassed: - (1) A user manually enters URL and
types "HTTP" rather than "HTTPS". - (2) Attackers intentionally send a user to an insecure URL. -
(3) A programmer erroneously creates a relative link to a page in the application, failing to switch
from HTTP to HTTPS. (This is particularly easy to do when the link moves between public and
secured areas on a web site.)
Relationships

Nature Type ID Name W Page
ChildOf ® 2 Environment 700

ChildOf ® 4 J2EE Environment Issues 699

ChildOf ma 319 Cleartext Transmission of Sensitive Information 1000

Taxonomy Mappings




CWE Version 1.5
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms J2EE Misconfiguration: Insecure Transport
CWE-6: J2EE Misconfiguration: Insufficient Session-ID
Length
Weakness ID: 6 (Weakness Variant) Status: Incomplete
Description

Summary

The J2EE application is configured to use an insufficient session ID length.

Extended Description
If an attacker can guess or steal a session ID, then he/she may be able to take over the user's
session (called session hijacking). The number of possible session IDs increases with increased
session ID length, making it more difficult to guess or steal a session ID.

Time of Introduction
 Architecture and Design
« Implementation

Applicable Platforms
Languages

» Java

Potential Mitigations
Session identifiers should be at least 128 bits long to prevent brute-force session guessing. A
shorter session identifier leaves the application open to brute-force session guessing attacks.

Background Details
Session ID's can be used to identify communicating parties in a web environment.

Other Notes
If an attacker can guess an authenticated user's session identifier, he can take over the user's
session. The remainder of this explanation will detail a back-of-the-envelope justification for a 128
bit session identifier. The expected number of seconds required to guess a valid session identifier
is given by the equation: (2°B+1)/(2*A*S) Where: - B is the number of bits of entropy in the session
identifier. - A is the number of guesses an attacker can try each second. - S is the number of valid
session identifiers that are valid and available to be guessed at any given time. The number of
bits of entropy in the session identifier is always less than the total number of bits in the session
identifier. For example, if session identifiers were provided in ascending order, there would be
close to zero bits of entropy in the session identifier no matter the identifier's length. Assuming
that the session identifiers are being generated using a good source of random numbers, we will
estimate the number of bits of entropy in a session identifier to be half the total number of bits in
the session identifier. For realistic identifier lengths this is possible, though perhaps optimistic. If
attackers use a botnet with hundreds or thousands of drone computers, it is reasonable to assume
that they could attempt tens of thousands of guesses per second. If the web site in question is
large and popular, a high volume of guessing might go unnoticed for some time. A lower bound on
the number of valid session identifiers that are available to be guessed is the number of users that
are active on a site at any given moment. However, any users that abandon their sessions without
logging out will increase this number. (This is one of many good reasons to have a short inactive
session timeout.) With a 64 bit session identifier, assume 32 bits of entropy. For a large web site,
assume that the attacker can try 1,000 guesses per second and that there are 10,000 valid session
identifiers at any given moment. Given these assumptions, the expected time for an attacker to
successfully guess a valid session identifier is less than 4 minutes. Now assume a 128 bit session
identifier that provides 64 bits of entropy. With a very large web site, an attacker might try 10,000
guesses per second with 100,000 valid session identifiers available to be guessed. Given these
assumptions, the expected time for an attacker to successfully guess a valid session identifier is
greater than 292 years.

Relationships

y1Bua QI-uoISSas JUBIDIHNSU| (UOIRINBIFUOISIN IT2ZC :9-IMD



CWE-7: J2EE Misconfiguration: Missing Custom Error Page

CWE Version 1.5
CWE-7: J2EE Misconfiguration: Missing Custom Error Page

Nature Type ID Name W Page
ChildOf ® 2 Environment 700

ChildOf ® 4 J2EE Environment Issues 699

ChildOf ma 334 Small Space of Random Values 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms J2EE Misconfiguration: Insufficient Session-ID Length
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.3)
21 Exploitation of Session Variables, Resource IDs and other Trusted Credentials
59 Session Credential Falsification through Prediction
References

< http://lwww.securiteam.com/securityreviews/5STPOFOUEVQ.html >,

CWE-7: J2EE Misconfiguration: Missing Custom Error

Page
Description
Summary

The default error page of a web application should not display sensitive information about the
software system.
Extended Description
A Web application must define a default error page for 4xx errors (e.g. 404), 5xx (e.g. 500) errors
and catch java.lang.Throwable exceptions to prevent attackers from mining information from the
application container's built-in error response.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
* Java
Demonstrative Examples
In the snippet below, an unchecked runtime exception thrown from within the try block may cause
the container to display its default error page (which may contain a full stack trace, among other
things).
Java Example: Bad Code

Public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
try {

} catch (ApplicationSpecificException ase) {
logger.error("Caught: " + ase.toString());

}
}

Potential Mitigations

Handle exceptions appropriately in source code.

Always define appropriate error pages.

Do not attempt to process an error or attempt to mask it.

Verify return values are correct and do not supply sensitive information about the system.
Other Notes

When an attacker explores a web site looking for vulnerabilities, the amount of information that

the site provides is crucial to the eventual success or failure of any attempted attacks. If the
application shows the attacker a stack trace, it relinquishes information that makes the attacker's

4



CWE Version 1.5
CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

job significantly easier. For example, a stack trace might show the attacker a malformed SQL
query string, the type of database being used, and the version of the application container.

This information enables the attacker to target known vulnerabilities in these components.

The application configuration should specify a default error page in order to guarantee that the
application will never leak error messages to an attacker. Handling standard HTTP error codes is
useful and user-friendly in addition to being a good security practice, and a good configuration will
also define a last-chance error handler that catches any exception that could possibly be thrown by
the application.

Relationships

Nature Type ID Name W Page
ChildOf ® 2 Environment 700
ChildOf ® 4 J2EE Environment Issues 699
ChildOf ® 728 OWASP Top Ten 2004 Category A7 - Improper Error 711
Handling
ChildOf (W] 756 Missing Custom Error Page 699
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Missing Error Handling

References
M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". McGraw-Hill/Osborne.
2005.

CWE-8: J2EE Misconfiguration: Entity Bean Declared

Remote
Weakness ID: 8 (Weakness Variant) Status: Incomplete

Description
Summary
When an application exposes a remote interface for an entity bean, it might also expose methods
that get or set the bean's data. These methods could be leveraged to read sensitive information,
or to change data in ways that violate the application's expectations, potentially leading to other
vulnerabilities.
Time of Introduction
 Architecture and Design
¢ Implementation
Demonstrative Examples
XML Example: Bad Code

<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>

</entity>
</enterprise-beans>
</ejb-jar>
Potential Mitigations
Declare Java beans "local" when possible. When a bean must be remotely accessible, make

sure that sensitive information is not exposed, and ensure that your application logic performs
appropriate validation of any data that might be modified by an attacker.

Other Notes

ajoway paltejoaq ueag Aug :uonesnBiyuoaSIA IIZC 8-IMD



CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

CWE Version 1.5
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

Entity beans that expose a remote interface become part of an application's attack surface. For
performance reasons, an application should rarely use remote entity beans, so there is a good
chance that a remote entity bean declaration is an error.

Relationships

Nature Type ID Name W Page
ChildOf ® 2 Environment 700

ChildOf ® 4 J2EE Environment Issues 699

ChildOf mE 668 Exposure of Resource to Wrong Sphere 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Unsafe Bean Declaration

CWE-9: J2EE Misconfiguration: Weak Access Permissions
for EJB Methods

Weakness ID: 9 (Weakness Variant) Status: Draft

Description
Summary
If elevated access rights are assigned to EJB methods, then an attacker can take advantage of
the permissions to exploit the software system.
Time of Introduction
 Architecture and Design
« Implementation
Demonstrative Examples
The following deployment descriptor grants ANYONE permission to invoke the Employee EJB's
method named getSalary().
XML Example: Bad Code

<ejb-jar>

<assembly-descriptor>
<method-permission>
<role-name>ANYONE</role-name>
<method>
<ejb-name>Employee</ejb-name>
<method-name>getSalary</method-name>
</method-permission>
</assembly-descriptor>

<Jejb-jar>
Potential Mitigations

Follow the principle of least privilege when assigning access rights to EJB methods. Permission to
invoke EJB methods should not be granted to the ANYONE role.

Other Notes
If the EJB deployment descriptor contains one or more method permissions that grant access to
the special ANYONE role, it indicates that access control for the application has not been fully
thought through or that the application is structured in such a way that reasonable access control
restrictions are impossible.

Relationships

Nature Type ID Name Wi Page
ChildOf ® 2 Environment 700

ChildOf (C] 4 J2EE Environment Issues 699

ChildOf (W 266 Incorrect Privilege Assignment 1000
ChildOf ® 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711

Taxonomy Mappings




CWE Version 1.5
CWE-10: ASP.NET Environment Issues

Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Weak Access Permissions

CWE-10: ASP.NET Environment Issues

Description
Summary
ASP.NET framework/language related environment issues with security implications.
Relationships

Nature Type ID Name ) Page
ChildOf ® 519 .NET Environment Issues 699
ChildOf (C] 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration 711
Management
ParentOf W 11 ASP.NET Misconfiguration: Creating Debug Binary 699
ParentOf W 12 ASP.NET Misconfiguration: Missing Custom Error Page 699
ParentOf me 13 ASP.NET Misconfiguration: Password in Configuration File 699
ParentOf me 554  ASP.NET Misconfiguration: Not Using Input Validation 699
Framework
ParentOf W 556  ASP.NET Misconfiguration: Use of Identity Impersonation 699
Taxonomy Mappings
Mapped Taxonomy Name Node ID  Fit Mapped Node Name
OWASP Top Ten 2004 Al10 CWE More Specific Insecure Configuration Management
CWE-11:. ASP.NET Misconfiguration: Creating Debug
Binary
Weakness ID: 11 (Weakness Variant) Status: Draft
Description
Summary

Debugging messages help attackers learn about the system and plan a form of attack.
Extended Description
ASP .NET applications can be configured to produce debug binaries. These binaries give detailed
debugging messages and should not be used in production environments. Debug binaries are
meant to be used in a development or testing environment and can pose a security risk if they are
deployed to production.
Time of Introduction
* Implementation
¢ Operation
Applicable Platforms
Languages
 .NET
Common Consequences
Confidentiality
Attackers can leverage the additional information they gain from debugging output to mount
attacks targeted on the framework, database, or other resources used by the application.
Demonstrative Examples
The file web.config contains the debug mode setting. Setting debug to "true” will let the browser
display debugging information.
XML Example: Bad Code
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>

<compilation
defaultLanguage="c#"

SaNnss| JuswuoJIAuUg 13N'dSY :0T-IMOD



CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

CWE Version 1.5
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

debug="true"
/>

</system.web>
</configuration>

Change the debug mode to false when the application is deployed into production.

Potential Mitigations
Avoid releasing debug binaries into the production environment. Change the debug mode to false
when the application is deployed into production (See demonstrative example).

Background Details
The debug attribute of the <compilation> tag defines whether compiled binaries should include
debugging information. The use of debug binaries causes an application to provide as much
information about itself as possible to the user.

Relationships

Nature Type ID Name W Page
ChildOf ® 2 Environment 700

ChildOf ® 10 ASP.NET Environment Issues 699

ChildOf me 215 Information Leak Through Debug Information 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms ASP.NET Misconfiguration: Creating Debug Binary
CWE-12: ASP.NET Misconfiguration: Missing Custom Error
Page
Weakness ID: 12 (Weakness Variant) Status: Draft
Description

Summary

An ASP .NET application must enable custom error pages in order to prevent attackers from
mining information from the framework's built-in responses.
Time of Introduction
¢ Implementation
e Operation
Applicable Platforms
Languages
* NET
Common Consequences
Confidentiality
Default error pages gives detailed information about the error that occurred, and should not be
used in production environments.
Attackers can leverage the additional information provided by a default error page to mount
attacks targeted on the framework, database, or other resources used by the application.
Demonstrative Examples
Example 1:
Custom error message mode is turned off. An ASP.NET error message with detailed stack trace
and platform versions will be returned.
ASP.NET Example: Bad Code

<customErrors ... mode="0Off" />
Example 2:

Custom error message mode for remote user only. No defaultRedirect error page is specified.
The local user on the web server will see a detailed stack trace. For remote users, an ASP.NET




CWE Version 1.5
CWE-13: ASP.NET Misconfiguration: Password in Configuration File

error message with the server customError configuration setting and the platform version will be
returned.
ASP.NET Example: Good Code

<customErrors mode="RemoteOnly" />

Potential Mitigations
Handle exceptions appropriately in source code. The best practice is to use a custom error
message. Make sure that the mode attribute is set to "RemoteOnly" in the web.config file as shown
in the following example.
Good Code
<customErrors mode="RemoteOnly" />

The mode attribute of the <customErrors> tag in the Web.config file defines whether custom or
default error pages are used. It should be configured to use a custom page as follows:
Good Code

<customErrors mode="0On" defaultRedirect="YourErrorPage.htm" />

Do not attempt to process an error or attempt to mask it.
Verify return values are correct and do not supply sensitive information about the system.

ASP .NET applications should be configured to use custom error pages instead of the framework
default page.

Background Details
The mode attribute of the <customErrors> tag defines whether custom or default error pages are
used.

Relationships

Nature Type ID Name W Page
ChildOf ® 2 Environment 700

ChildOf ® 10 ASP.NET Environment Issues 699

ChildOf (W] 756 Missing Custom Error Page 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Missing Custom Error Handling

References
M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". McGraw-Hill/Osborne.
2005.
OWASP, Fortify Software. "ASP.NET Misconfiguration: Missing Custom Error Handling". < http://
www.owasp.org/index.php/ASP.NET_Misconfiguration:_Missing_Custom_Error_Handling >.

CWE-13: ASP.NET Misconfiguration: Password in

Configuration File

Description
Summary
Storing a plaintext password in a configuration file allows anyone who can read the file access to
the password-protected resource making them an easy target for attackers.
Time of Introduction
 Architecture and Design
« Implementation
Demonstrative Examples
The following connectionString has clear text credentials.
XML Example: Bad Code

<connectionStrings>

914 uoneinblyuo) ul plomssed :uoleinbiyuodsin LIN'dSY :€T-IMD



CWE Version 1.5
CWE-14: Compiler Removal of Code to Clear Buffers

<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />
</connectionStrings>

Potential Mitigations
Good password management guidelines require that a password never be stored in plaintext.
Implementation
credentials stored in configuration files should be encrypted.
Implementation
Use standard APIs and industry accepted algorithms to encrypt the credentials stored in
configuration files.
Relationships

Nature Type ID Name W Page
ChildOf ® 2 Environment 700

ChildOf ® 10 ASP.NET Environment Issues 699

ChildOf W 260 Password in Configuration File 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Password in Configuration File

References
Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using DPAPI". <
http://msdn.microsoft.com/en-us/library/ms998280.aspx >.
Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using RSA". <
http://msdn.microsoft.com/en-us/library/ms998283.aspx >.
Microsoft Corporation. ".NET Framework Developer's Guide - Securing Connection Strings". <
http://msdn.microsoft.com/en-us/library/89211k9b(VS.80).aspx >.

CWE-14: Compiler Removal of Code to Clear Buffers

Description
Summary
Sensitive memory is cleared according to the source code, but compiler optimizations leave the
memory untouched when it is not read from again, aka "dead store removal."
Extended Description
This compiler optimization error occurs when:
1. Secret data are stored in memory.
2. The secret data are scrubbed from memory by overwriting its contents.
3. The source code is compiled using an optimizing compiler, which identifies and removes
the function that overwrites the contents as a dead store because the memory is not used
subsequently.
Time of Introduction
¢ Implementation
¢ Build and Compilation
Applicable Platforms
Languages
« C
o C++
Detection Factors

CWE-14: Compiler Removal of Code to Clear Buffers

10



CWE Version 1.5
CWE-14: Compiler Removal of Code to Clear Buffers

Black Box
This specific weakness is impossible to detect using black box methods. While an analyst could
examine memory to see that it has not been scrubbed, an analysis of the executable would not be
successful. This is because the compiler has already removed the relevant code. Only the source
code shows whether the programmer intended to clear the memory or not, so this weakness is
indistinguishable from others.

White Box
This weakness is only detectable using white box methods (see black box detection factor).
Careful analysis is required to determine if the code is likely to be removed by the compiler.

Demonstrative Examples
The following code reads a password from the user, uses the password to connect to a back-end
mainframe and then attempts to scrub the password from memory using memset().
C Example: Bad Code
void GetData(char *MFAddr) {
char pwd[64];
if (GetPasswordFromUser(pwd, sizeof(pwd))) {

if (ConnectToMainframe(MFAddr, pwd)) {
/I Interaction with mainframe

}

memset(pwd, 0, sizeof(pwd));

}

The code in the example will behave correctly if it is executed verbatim, but if the code is compiled
using an optimizing compiler, such as Microsoft Visual C++ .NET or GCC 3.x, then the call to
memset() will be removed as a dead store because the buffer pwd is not used after its value

is overwritten [18]. Because the buffer pwd contains a sensitive value, the application may be
vulnerable to attack if the data are left memory resident. If attackers are able to access the
correct region of memory, they may use the recovered password to gain control of the system.

It is common practice to overwrite sensitive data manipulated in memory, such as passwords or
cryptographic keys, in order to prevent attackers from learning system secrets. However, with the
advent of optimizing compilers, programs do not always behave as their source code alone would
suggest. In the example, the compiler interprets the call to memset() as dead code because the
memory being written to is not subsequently used, despite the fact that there is clearly a security
motivation for the operation to occur. The problem here is that many compilers, and in fact many
programming languages, do not take this and other security concerns into consideration in their
efforts to improve efficiency. Attackers typically exploit this type of vulnerability by using a core
dump or runtime mechanism to access the memory used by a particular application and recover
the secret information. Once an attacker has access to the secret information, it is relatively
straightforward to further exploit the system and possibly compromise other resources with which
the application interacts.

Potential Mitigations
Implementation
Store the sensitive data in a "volatile" memory location if available.
Build and Compilation
If possible, configure your compiler so that it does not remove dead stores.
Architecture and Design
Where possible, encrypt sensitive data that are used by a software system.

Relationships

Nature Type ID Name Wi Page
ChildOf (C] 2 Environment 699
700
ChildOf ® 503  Byte/Object Code 699
ChildOf ® 633  Weaknesses that Affect Memory 631
ChildOf ® 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711

11

sJiayng Iea|D 01 apoI Jo [eAoway Ja1dwod FT-IMD



CWE-15: External Control of System or Configuration Setting

CWE Version 1.5
CWE-15: External Control of System or Configuration Setting

Nature Type ID Name W Page
ChildOf (W 733  Compiler Optimization Removal or Modification of Security- 1000
critical Code
ChildOf ® 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734
Affected Resources
* Memory
Taxonomy Mappings
Mapped Taxonomy Name Node ID  Fit Mapped Node Name
7 Pernicious Kingdoms Insecure Compiler Optimization
PLOVER Sensitive memory uncleared by compiler
optimization
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage
CERT C Secure Coding MSCO06-C Be aware of compiler optimization when
dealing with sensitive data
References

Michael Howard. "When scrubbing secrets in memory doesn't work". BugTrag. 2002-11-05. <
http://cert.uni-stuttgart.de/archive/bugtraq/2002/11/msg00046.html >,

< http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/
secure10102002.asp >.

Joseph Wagner. "GNU GCC: Optimizer Removes Code Necessary for Security”. Bugtraq.
2002-11-16. < http://www.derkeiler.com/Mailing-Lists/securityfocus/bugtrag/2002-11/0257.html >.

CWE-15: External Control of System or Configuration

Setting
Description
Summary

One or more system settings or configuration elements can be externally controlled by a user.
Extended Description
Allowing external control of system settings can disrupt service or cause an application to behave
in unexpected, and potentially malicious ways.
Time of Introduction
¢ Implementation
Demonstrative Examples
Example 1:
The following C code accepts a number as one of its command line parameters and sets it as the
host ID of the current machine.
C Example: Bad Code

sethostid(argv[1]):

Although a process must be privileged to successfully invoke sethostid(), unprivileged users may
be able to invoke the program. The code in this example allows user input to directly control the
value of a system setting. If an attacker provides a malicious value for host ID, the attacker can
misidentify the affected machine on the network or cause other unintended behavior.

Example 2:

The following Java code snippet reads a string from an HttpServietRequest and sets it as the
active catalog for a database Connection.

Java Example: Bad Code

conn.setCatalog(request.getParameter(“catalog"));

12



CWE Version 1.5
CWE-16: Configuration

In this example, an attacker could cause an error by providing a nonexistent catalog name or
connect to an unauthorized portion of the database.

Potential Mitigations
Compartmentalize your system and determine where the trust boundaries exist. Any input/control
outside the trust boundary should be treated as potentially hostile.
Because setting manipulation covers a diverse set of functions, any attempt at illustrating it will
inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions
addressed in the setting manipulation category, take a step back and consider the sorts of system
values that an attacker should not be allowed to control.
In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The
leverage that an attacker gains by controlling these values is not always immediately obvious, but
do not underestimate the creativity of your attacker.

Other Notes
Setting manipulation vulnerabilities occur when an attacker can control values that govern the
behavior of the system, manage specific resources, or in some way affect the functionality of the
application.

Relationships

Nature Type ID Name Wi Page
ChildOf ® 2 Environment 699
ChildOf mE 20 Improper Input Validation 700
ChildOf W] 610 Externally Controlled Reference to a Resource in Another 1000
Sphere
ChildOf Wi 642 External Control of Critical State Data 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Setting Manipulation

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.3)
13 Subverting Environment Variable Values
69 Target Programs with Elevated Privileges
76 Manipulating Input to File System Calls
77 Manipulating User-Controlled Variables

CWE-16: Configuration

Category ID: 16 (Category) Status: Draft
Description
Summary
Weaknesses in this category are typically introduced during the configuration of the software.
Relationships

Nature Type ID Name Wi Page
ChildOf ® 1 Location 699
MemberOf v 635  Weaknesses Used by NVD 635
CWE-17: Code
Description
Summary

Weaknesses in this category are typically introduced during code development, including
specification, design, and implementation.

Relationships
Nature Type ID Name W Page
ChildOf C] 1 Location 699

uonelnbiyuo)d 9T-IMD



CWE-18: Source Code

CWE Version 1.5
CWE-18: Source Code

Nature Type ID Name ) Page
ParentOf C] 18 Source Code 699
ParentOf ® 503 Byte/Object Code 699
ParentOf W] 657  Violation of Secure Design Principles 699

CWE-18: Source Code

Description
Summary
Weaknesses in this category are typically found within source code.
Relationships

Nature Type ID Name W Page
ChildOf ® 17 Code 699
ParentOf ® 19 Data Handling 699
ParentOf W] 227 Failure to Fulfill API Contract (‘'API Abuse’) 699
ParentOf ® 254 Security Features 699
ParentOf ® 361 Time and State 699
ParentOf ® 388 Error Handling 699
ParentOf mE 398 Indicator of Poor Code Quality 699
ParentOf @® 417  Channel and Path Errors 699
ParentOf (C] 429 Handler Errors 699
ParentOf ® 438 Behavioral Problems 699
ParentOf C] 442  Web Problems 699
ParentOf [C] 445 User Interface Errors 699
ParentOf ® 452 Initialization and Cleanup Errors 699
ParentOf ® 465 Pointer Issues 699
ParentOf W] 485 Insufficient Encapsulation 699

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Source Code

CWE-19: Data Handling

Description
Summary
Weaknesses in this category are typically found in functionality that processes data.
Relationships

Nature Type ID Name ) Page
ChildOf [C] 18 Source Code 699
ParentOf W] 20 Improper Input Validation 699
ParentOf W] 116 Improper Encoding or Escaping of Output 699
ParentOf mE 118 Improper Access of Indexable Resource ('Range Error’) 699
ParentOf ® 133 String Errors 699
ParentOf ® 136  Type Errors 699
ParentOf ® 137 Representation Errors 699
ParentOf C] 189  Numeric Errors 699
ParentOf ® 199 Information Management Errors 699
ParentOf me 228 Improper Handling of Syntactically Invalid Structure 699
ParentOf ® 461 Data Structure Issues 699
ParentOf W] 471 Madification of Assumed-Immutable Data (MAID) 699

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.3)
99 XML Parser Attack
100 Overflow Buffers

14



CWE Version 1.5
CWE-20: Improper Input Validation

CWE-20: Improper Input Validation

Description
Summary
The product does not validate or incorrectly validates input that can affect the control flow or data
flow of a program.
Extended Description
When software fails to validate input properly, an attacker is able to craft the input in a form
that is not expected by the rest of the application. This will lead to parts of the system receiving
unintended input, which may result in altered control flow, arbitrary control of a resource, or
arbitrary code execution.
Time of Introduction
« Architecture and Design
« Implementation
Applicable Platforms
Languages
o All
Platform Notes
Common Consequences
Availability
An attacker could provide unexpected values and cause a program crash.
Confidentiality
An attacker could read confidential data if they are able to control resource references.
Integrity
An attacker could modify data or possibly alter control flow in unexpected ways.
Likelihood of Exploit
High
Demonstrative Examples
Example 1:
This example demonstrates a shopping interaction in which the user is free to specify the quantity
of items to be purchased and a total is calculated.
Java Example: Bad Code

public static final double price = 20.00;

int quantity = currentUser.getAttribute("quantity");
double total = price * quantity;

chargeUser(total);

The user has no control over the price variable, however the code does not prevent a negative
value from being specified for quantity. If an attacker were to provide a negative value, then the
user would have their account credited instead of debited.

Example 2:

This example asks the user for a height and width of an m X n game board with a maximum
dimension of 100 squares.

C Example: Bad Code

#define MAX_DIM 100

int m,n, error; /* board dimensions */
board_square_t *board;

printf("Please specify the board height: \n");
error = scanf("%d", &m);

if (EOF == error ){

15

uoneplieA 1nduj Jadoidwy :0z-3MD



CWE-20: Improper Input Validation

CWE Version 1.5
CWE-20: Improper Input Validation

die("No integer passed: Die evil hacker'\n");

}
printf("Please specify the board width: \n");
error = scanf("%d", &n);
if (EOF == error ){
die("No integer passed: Die evil hacker'\n");

}
if (m>MAX_DIM || n > MAX_DIM) {
die("Value too large: Die evil hacker\n");

}

board = (board_square_t*) malloc( m * n * sizeof(board_square_t));

While this code checks to make sure the user cannot specify large, positive integers and consume
too much memory, it fails to check for negative values supplied by the user. As a result, an
attacker can perform a resource consumption (CWE-400) attack against this program by specifying
two, large negative values that will not overflow, resulting in a very large memory allocation and
possibly a system crash. Alternatively, an attacker can provide very large negative values which
will cause an integer overflow (CWE-190) and unexpected behavior will follow depending on how
the values are treated in the remainder of the program.

Example 3:
The following example shows a PHP application in which the programmer attempts to display a
user's birthday and homepage.
PHP Example: Bad Code

$birthday = $_GET['birthday'];

$homepage = $_GET['homepage'];

echo "Birthday: $birthday<br>Homepage: <a href=$homepage>click here</a>"
The programmer intended for $birthday to be in a date format and $homepage to be a valid URL.
However, since the values are derived from an HTTP request, if an attacker can trick a victim into
clicking a crafted URL with <script> tags providing the values for birthday and / or homepage, then
the script will run on the client's browser when the webserver echoes the content. Notice that even
if the programmer were to defend the $birthday variable by restricting input to integers and dashes,
it would still be possible for an attacker to provide a string of the form:

Attack

2009-01-09--

If this data were used in a SQL statement, it would treat the remainder of the statement as a
comment. The comment could disable other security-related logic in the statement. In this case,
encoding combined with input validation would be a more useful protection mechanism.
Furthermore, an XSS (CWE-79) attack or SQL injection (CWE-89) are just a few of the potential
consequences in a failed protection mechanism of this nature. Depending on the context of the
code, CRLF Injection (CWE-93), Argument Injection (CWE-88), or Command Injection (CWE-77)
may also be possible.
Example 4:
This function attempts to extract a pair of numbers from a user-supplied string.
C Example: Bad Code
void parse_data(char *untrusted_input){

int m, n, error;

error = sscanf(untrusted_input, "%d:%d", &m, &n);

if (EOF == error ){

die("Did not specify integer value. Die evil hacker'\n");

}

/* proceed assuming n and m are initialized correctly */

}

This code attempts to extract two integer values out of a formatted, user-supplied input. However,
if an attacker were to provide an input of the form:
Attack

16



CWE Version 1.5
CWE-20: Improper Input Validation

123:

then only the m variable will be initialized. Subsequent use of n may result in the use of an
uninitialized variable (CWE-457).

Example 5:

The following example takes a user-supplied value to allocate an array of objects and then
operates on the array.

Java Example:

Bad Code

private void buildList ( int untrustedListSize ){
if (0 > untrustedListSize ){
die("Negative value supplied for list size, die evil hacker!");

}
Widget[] list = new Widget [ untrustedListSize ];
list[0] = new Widget();

}

This example attempts to build a list from a user-specified value, and even checks to ensure a non-
negative value is supplied. If, however, a 0 value is provided, the code will build an array of size 0
and then try to store a new Widget in the first location, causing an exception to be thrown.

Observed Examples

Reference

CVE-2006-3790
CVE-2006-5462
CVE-2006-5525
CVE-2006-6658
CVE-2006-6870
CVE-2007-2442
CVE-2007-3409
CVE-2007-5893
CVE-2008-0600
CVE-2008-1284
CVE-2008-1303
CVE-2008-1440
CVE-2008-1625
CVE-2008-1737
CVE-2008-1738

CVE-2008-2223
CVE-2008-2252
CVE-2008-2309

CVE-2008-2374
CVE-2008-3174
CVE-2008-3177
CVE-2008-3464
CVE-2008-3477

CVE-2008-3494
CVE-2008-3571
CVE-2008-3660
CVE-2008-3680
CVE-2008-3812
CVE-2008-3843
CVE-2008-4114
CVE-2008-5285
CVE-2008-5305
CVE-2008-5563

Description

size field that is inconsistent with packet size leads to buffer over-read

certificate signature forging allowed using extra data in a signature

incomplete blacklist allows SQL injection

request with missing parameters leads to information leak

infinite loop from DNS packet with a label that points to itself

zero-length input causes free of uninitialized pointer

infinite loop from DNS packet with a label that points to itself

HTTP request with missing protocol version number leads to crash

kernel does not validate an incoming pointer before dereferencing it

NUL byte in theme name cause directory traversal impact to be worse

missing parameter leads to crash

lack of validation of length field leads to infinite loop

lack of validation of input to an IOCTL allows code execution

anti-virus product allows DoS via zero-length field

anti-virus product has insufficient input validation of hooked SSDT functions, allowing code
execution

SQL injection through an ID that was supposed to be numeric.

kernel does not validate parameters sent in from userland, allowing code execution
product uses a blacklist to identify potentially dangerous content, allowing attacker to
bypass a warning

lack of validation of string length fields allows memory consumption or buffer over-read
driver in security product allows code execution due to insufficient validation
zero-length attachment causes crash

driver does not validate input from userland to the kernel

lack of input validation in spreadsheet program leads to buffer overflows, integer overflows,
array index errors, and memory corruption.

security bypass via an extra header

empty packet triggers reboot

crash via multiple "." characters in file extension

packet with invalid version number leads to NULL pointer dereference

router crashes with a malformed packet

insufficient validation enables XSS

system crash with offset value that is inconsistent with packet size

infinite loop from a long SMTP request

Eval injection in Perl program using an ID that should only contain hyphens and numbers.
crash via a malformed frame structure

Potential Mitigations

17

uoneplieA 1nduj Jadoidwy :0z-3MD



CWE-20: Improper Input Validation

CWE Version 1.5
CWE-20: Improper Input Validation

Architecture and Design
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. If you use
Struts, be mindful of weaknesses covered by the CWE-101 category.

Architecture and Design
Understand all the potential areas where untrusted inputs can enter your software: parameters or
arguments, cookies, anything read from the network, environment variables, request headers as
well as content, URL components, e-mail, files, databases, and any external systems that provide
data to the application. Perform input validation at well-defined interfaces.

Architecture and Design
Assume all input is malicious. Use an "accept known good" input validation strategy (i.e., use
a whitelist). Reject any input that does not strictly conform to specifications, or transform it into
something that does. Use a blacklist to reject any unexpected inputs and detect potential attacks.

Use a standard input validation mechanism to validate all input for length, type, syntax, and
business rules before accepting the input for further processing. As an example of business rule
logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is
not valid if you are expecting colors such as "red" or "blue."

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.
Even though client-side checks provide minimal benefits with respect to server-side security,
they are still useful. First, they can support intrusion detection. If the server receives input that
should have been rejected by the client, then it may be an indication of an attack. Second, client-
side error-checking can provide helpful feedback to the user about the expectations for valid
input. Third, there may be a reduction in server-side processing time for accidental input errors,
although this is typically a small savings.

Architecture and Design
Do not rely exclusively on blacklist validation to detect malicious input or to encode output
(CWE-184). There are too many ways to encode the same character, so you're likely to miss
some variants.

Implementation
When your application combines data from multiple sources, perform the validation after the
sources have been combined. The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.

Implementation
Be especially careful to validate your input when you invoke code that crosses language
boundaries, such as from an interpreted language to native code. This could create an
unexpected interaction between the language boundaries. Ensure that you are not violating any
of the expectations of the language with which you are interfacing. For example, even though
Java may not be susceptible to buffer overflows, providing a large argument in a call to native
code might trigger an overflow.

Implementation
Directly convert your input type into the expected data type, such as using a conversion function
that translates a string into a number. After converting to the expected data type, ensure that the
input's values fall within the expected range of allowable values and that multi-field consistencies
are maintained.

18



CWE Version 1.5
CWE-20: Improper Input Validation

Implementation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
whitelist schemes by introducing dangerous inputs after they have been checked. Use libraries
such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This
will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are
allowed to contain properly-encoded dangerous content.

Implementation
When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the
encoding you are using whenever the protocol allows you to do so.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Relationships

Nature Type ID Name Wi Page
ChildOf ® 19 Data Handling 699
CanPrecede W& 22 Path Traversal 1000
CanPrecede A 41 Improper Resolution of Path Equivalence 1000
CanPrecede MWE& 74 Failure to Sanitize Data into a Different Plane (‘Injection’) 1000
ChildOf WE 693 Protection Mechanism Failure 1000
ChildOf ® 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711
ChildOf @® 738 CERT C Secure Coding Section 04 - Integers (INT) 734
ChildOf @® 742 CERT C Secure Coding Section 08 - Memory Management 734
(MEM)
ChildOf @® 746 CERT C Secure Coding Section 12 - Error Handling (ERR) 734
ChildOf (C] 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734
ChildOf ® 751 Insecure Interaction Between Components 750
ParentOf W] 15 External Control of System or Configuration Setting 700
ParentOf ® 21 Pathname Traversal and Equivalence Errors 699
ParentOf mE 73 External Control of File Name or Path 699
700
ParentOf W] 77 Improper Sanitization of Special Elements used in a 700
Command (‘Command Injection’)
ParentOf W]l 79 Failure to Preserve Web Page Structure (‘Cross-site 700
Scripting’)
ParentOf W] 89 Improper Sanitization of Special Elements used in an SQL 700
Command (‘SQL Injection’)
ParentOf W] 929 Improper Control of Resource Identifiers ('Resource Injection’) 700
ParentOf me 100  Technology-Specific Input Validation Problems 699
1000
ParentOf me 102 Struts: Duplicate Validation Forms 700
ParentOf W] 103 Struts: Incomplete validate() Method Definition 700
ParentOf me 104 Struts: Form Bean Does Not Extend Validation Class 700
ParentOf me 105 Struts: Form Field Without Validator 700
1000
ParentOf W 106 Struts: Plug-in Framework not in Use 700
ParentOf me 107 Struts: Unused Validation Form 700

19

uoneplieA 1nduj Jadoidwy :0z-3MD



CWE-20: Improper Input Validation

CWE Version 1.5
CWE-20: Improper Input Validation

Nature Type ID Name ) Page
ParentOf me 108 Struts: Unvalidated Action Form 700
1000
ParentOf me 109 Struts: Validator Turned Off 700
ParentOf me 110 Struts: Validator Without Form Field 700
ParentOf ma 111 Direct Use of Unsafe JNI 699
700
ParentOf W]:| 112 Missing XML Validation 699
700
1000
ParentOf W]l 113 Failure to Sanitize CRLF Sequences in HTTP Headers 700
('HTTP Response Splitting")
ParentOf (W 114  Process Control 699
700
1000
ParentOf W 115  Misinterpretation of Input 699
1000
ParentOf (W] 117 Improper Output Sanitization for Logs 699
700
ParentOf mE 119 Failure to Constrain Operations within the Bounds of a 699
Memory Buffer 700
ParentOf - 120 Buffer Copy without Checking Size of Input (‘'Classic Buffer 700
Overflow')
ParentOf W] 134 Uncontrolled Format String 700
ParentOf W] 170 Improper Null Termination 700
ParentOf W]l 190 Integer Overflow or Wraparound 700
ParentOf ma 466 Return of Pointer Value Outside of Expected Range 700
ParentOf ma 470 Use of Externally-Controlled Input to Select Classes or Code 699
(‘Unsafe Reflection’) 700
ParentOf W 554  ASP.NET Misconfiguration: Not Using Input Validation 699
Framework 1000
ParentOf me 601 URL Redirection to Untrusted Site (‘'Open Redirect’) 699
ParentOf (W 606  Unchecked Input for Loop Condition 699
1000
ParentOf W 621  Variable Extraction Error 699
ParentOf W 622 Unvalidated Function Hook Arguments 699
ParentOf me 626 Null Byte Interaction Error (Poison Null Byte) 699
1000
MemberOf v 635  Weaknesses Used by NVD 635
ParentOf co 680 Integer Overflow to Buffer Overflow 1000
ParentOf <) 690 Unchecked Return Value to NULL Pointer Dereference 1000
ParentOf ce 692 Incomplete Blacklist to Cross-Site Scripting 1000
MemberOf ) 700 Seven Pernicious Kingdoms 700
ParentOf me 781 Improper Address Validation in IOCTL with 699
METHOD_NEITHER /O Control Code 1000
ParentOf W 785 Use of Path Manipulation Function without Maximum-sized 699
Buffer 700

Relationship Notes
CWE-116 and CWE-20 have a close association because, depending on the nature of the
structured message, proper input validation can indirectly prevent special characters from
changing the meaning of a structured message. For example, by validating that a numeric ID field
should only contain the 0-9 characters, the programmer effectively prevents injection attacks.

However, input validation is not always sufficient, especially when less stringent data types must
be supported, such as free-form text. Consider a SQL injection scenario in which a last name

is inserted into a query. The name "O'Reilly" would likely pass the validation step since itis a
common last name in the English language. However, it cannot be directly inserted into the
database because it contains the " apostrophe character, which would need to be escaped or

20



CWE Version 1.5

CWE-20: Improper Input Validation

otherwise handled. In this case, stripping the apostrophe might reduce the risk of SQL injection,
but it would produce incorrect behavior because the wrong name would be recorded.

Taxonomy Mappings

Mapped Taxonomy Name Node ID  Fit Mapped Node Name
7 Pernicious Kingdoms

OWASP Top Ten 2004 Al CWE More Specific  Unvalidated Input
CERT C Secure Coding ERRO7-C

Input validation and representation

Prefer functions that support error checking

over equivalent functions that don't

CERT C Secure Coding INT06-C Use strtol() or a related function to convert
a string token to an integer

CERT C Secure Coding MEM10-C Define and use a pointer validation function

CERT C Secure Coding MSCO08-C Library functions should validate their

parameters

Related Attack Patterns
CAPEC-ID Attack Pattern Name

3

7

8

9
10
13
14
18
22
24
28
31
32
42
43
45
46
47
52
53
63
64
66
67
71
72
73
78
79
80
81
83
85
86
88
91
99
101
104
106
108
109
110

Using Leading 'Ghost' Character Sequences to Bypass Input Filters
Blind SQL Injection

Buffer Overflow in an API Call

Buffer Overflow in Local Command-Line Utilities
Buffer Overflow via Environment Variables
Subverting Environment Variable Values
Client-side Injection-induced Buffer Overflow
Embedding Scripts in Nonscript Elements
Exploiting Trust in Client (aka Make the Client Invisible)
Filter Failure through Buffer Overflow

Fuzzing

Accessing/Intercepting/Modifying HTTP Cookies
Embedding Scripts in HTTP Query Strings

MIME Conversion

Exploiting Multiple Input Interpretation Layers
Buffer Overflow via Symbolic Links

Overflow Variables and Tags

Buffer Overflow via Parameter Expansion
Embedding NULL Bytes

Postfix, Null Terminate, and Backslash

Simple Script Injection

Using Slashes and URL Encoding Combined to Bypass Validation Logic
SQL Injection

String Format Overflow in syslog()

Using Unicode Encoding to Bypass Validation Logic
URL Encoding

User-Controlled Filename

Using Escaped Slashes in Alternate Encoding
Using Slashes in Alternate Encoding

Using UTF-8 Encoding to Bypass Validation Logic
Web Logs Tampering

XPath Injection

Client Network Footprinting (using AJAX/XSS)
Embedding Script (XSS ) in HTTP Headers

OS Command Injection

XSS in IMG Tags

XML Parser Attack

Server Side Include (SSI) Injection

Cross Zone Scripting

Cross Site Scripting through Log Files

Command Line Execution through SQL Injection
Object Relational Mapping Injection

SQL Injection through SOAP Parameter Tampering

(CAPEC Version 1.3)

21

uoneplieA 1nduj Jadoidwy :0z-3MD



CWE-21: Pathname Traversal and Equivalence Errors

CWE Version 1.5
CWE-21: Pathname Traversal and Equivalence Errors

References
Jim Manico. "Input Validation with ESAPI - Very Important". 2008-08-15. < http://
manicode.blogspot.com/2008/08/input-validation-with-esapi.html >.
"OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/index.php/ESAPI >.
Joel Scambray, Mike Shema and Caleb Sima. "Hacking Exposed Web Applications, Second
Edition". Input Validation Attacks. McGraw-Hill. 2006-06-05.
Jeremiah Grossman. "Input validation or output filtering, which is better?". 2007-01-30. < http://
jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-filtering.html >.
Kevin Beaver. "The importance of input validation". 2006-09-06. < http://
searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1214373,00.html >.

CWE-21: Pathname Traversal and Equivalence Errors

Category ID: 21 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category can be used to access files outside of a restricted directory (path
traversal) or to perform operations on files that would otherwise be restricted (path equivalence).
Extended Description
Files, directories, and folders are so central to information technology that many different
weaknesses and variants have been discovered. The manipulations generally involve special
characters or sequences in pathnames, or the use of alternate references or channels.
Applicable Platforms
Languages
« All
Potential Mitigations
Assume all input is malicious. Use an appropriate combination of black lists and white lists to
ensure only valid and expected input is processed by the system.
Relationships

Nature Type ID Name W Page

ChildOf W] 20 Improper Input Validation 699

ParentOf W] 22 Path Traversal 699

ParentOf W] 41 Improper Resolution of Path Equivalence 699

ParentOf Wi 59 Improper Link Resolution Before File Access (‘Link Following') 699

ParentOf (W] 66 Improper Handling of File Names that Identify Virtual 699
Resources

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Pathname Traversal and Equivalence Errors
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.3)
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
72 URL Encoding
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
CWE-22: Path Traversal
Weakness ID: 22 (Weakness Class) Status: Draft
Description
Summary

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize special elements that can resolve to a location that is
outside of that directory.

22




CWE Version 1.5
CWE-22: Path Traversal

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.

One of the most common special elements is the ".." sequence, which in most modern operating
systems is interpreted as the parent directory of the current location.
Alternate Terms
Directory traversal
Path traversal
"Path traversal" is preferred over "directory traversal."
Time of Introduction
e Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '." and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Other Notes
Some pathname equivalence issues are not directly related to directory traversal, rather are used
to bypass security-relevant checks for whether a file/directory can be accessed by the attacker
(e.g. a trailing "/" on a filename could bypass access rules that don't expect a trailing /, causing a
server to provide the file when it normally would not).

Incomplete diagnosis or reporting of vulnerabilities can make it difficult to know which variant is
affected. For example, a researcher might say that "..\" is vulnerable, but not test "../" which may
also be vulnerable.

Any combination of the items below can provide its own variant, e.g. "//../" is not listed
(CVE-2004-0325).

Like other Weaknesses, terminology is often based on the types of manipulations used, instead of
the underlying Weaknesses.

Some people use "directory traversal” only to refer to the injection of ".." and equivalent sequences
whose specific meaning is to traverse directories. Other variants like "absolute pathname" and
"drive letter" have the *effect* of directory traversal, but some people may not call it such, since it
doesn't involve ".." or equivalent.

23

[esianel] yred :2z-aM2D



CWE-23: Relative Path Traversal

CWE Version 1.5
CWE-23: Relative Path Traversal

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Wi Page
ChildOf ® 21 Pathname Traversal and Equivalence Errors 699
ChildOf ® 632  Weaknesses that Affect Files or Directories 631
ChildOf W] 668 Exposure of Resource to Wrong Sphere 1000
ChildOf WE 706  Use of Incorrectly-Resolved Name or Reference 1000
ChildOf ® 715 OWASP Top Ten 2007 Category A4 - Insecure Direct Object 629
Reference
ChildOf ® 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711
ChildOf @® 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734
CanFollow me 20 Improper Input Validation 1000
ParentOf (W} 23 Relative Path Traversal 699
1000
ParentOf W] 36 Absolute Path Traversal 699
1000
CanFollow W] 73 External Control of File Name or Path 1000
CanFollow W 172 Encoding Error 1000
MemberOf ) 635  Weaknesses Used by NVD 635

Relationship Notes
Pathname equivalence can be regarded as a type of canonicalization error.
Research Gaps
Most of these issues are probably under-studied
Affected Resources
* File/Directory
Relevant Properties
< Equivalence
Functional Areas
 File processing
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Path Traversal

OWASP Top Ten 2007 A4 CWE More Specific  Insecure Direct Object Reference
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control

CERT C Secure Coding FI002-C Canonicalize path names originating from

untrusted sources

Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.3)
23 File System Function Injection, Content Based
76 Manipulating Input to File System Calls

CWE-23: Relative Path Traversal

Description

Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize sequences such as ".." that can resolve to a location
that is outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.

24




CWE Version 1.5
CWE-23: Relative Path Traversal

Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Demonstrative Examples
The following URLs are vulnerable to this attack:

Bad Code
http://example.com.br/get-files.jsp?file=report.pdf
http://example.com.br/get-page.php?home=aaa.html
http://example.com.br/some-page.asp?page=index.html
A simple way to execute this attack is like this:
Attack

http://example.com.br/get-files?file=../../../../somedir/somefile
http://example.com.br/../../..I..letc/shadow
http://example.com.br/get-files?file=../../../../etc/passwd

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name W Page
ChildOf Wi 22 Path Traversal 699
1000
ParentOf Wh 24 Path Traversal: '../filedir' 699
1000
ParentOf ma 25 Path Traversal: '/../filedir' 699
1000
ParentOf Wh 26 Path Traversal: '/dir/../filename' 699
1000
ParentOf Whi 27 Path Traversal: 'dir/../../filename' 699
1000
ParentOf ma 28 Path Traversal: '..\filedir' 699
1000
ParentOf ma 29 Path Traversal: \..\filename' 699
1000

25

[esianel] yred aAleay :€z-3MD



" [filedir’

CWE-24: Path Traversal:

CWE Version 1.5
CWE-24: Path Traversal: "../filedir'

Nature Type ID Name W Page
ParentOf Wh 30 Path Traversal: \dir\..\filename' 699
1000
ParentOf Wh 31 Path Traversal: 'dir\..\..\filename' 699
1000
ParentOf me 32 Path Traversal: '..." (Triple Dot) 699
1000
ParentOf me 33 Path Traversal: ...." (Multiple Dot) 699
1000
ParentOf Whi 34 Path Traversal: "..../I' 699
1000
ParentOf ma 35 Path Traversal: ".../.../II' 699
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Relative Path Traversal
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.3)
23 File System Function Injection, Content Based
76 Manipulating Input to File System Calls
References

OWASP. "OWASP Attack listing". < http://www.owasp.org/index.php/Relative_Path_Traversal >.

CWE-24: Path Traversal: "../filedir’

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize "../" sequences that can resolve to a location that is
outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.

The "../" manipulation is the canonical manipulation for operating systems that use "/" as directory
separators, such as UNIX- and Linux-based systems. In some cases, it is useful for bypassing
protection schemes in environments for which "/ is supported but not the primary separator, such
as Windows, which uses "\" but can also accept "/".

Time of Introduction
« Architecture and Design
¢ Implementation

Applicable Platforms
Languages

o All

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '." and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a ' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are nhow assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).

26



CWE Version 1.5
CWE-25: Path Traversal: '/../filedir'

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Wi Page
ChildOf W] 23 Relative Path Traversal 699
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER " filedir

CWE-25: Path Traversal: '/../filedir’

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize "/../" sequences that can resolve to a location that is
outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
Sometimes a program checks for "../" at the beginning of the input, so a "/../" can bypass that
check.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '.' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

27

.Jesianel] yred :GZ-ImMD

AIPB/,



‘Idir/..[filename’

CWE-26; Path Traversal:

CWE Version 1.5
CWE-26: Path Traversal: '/dir/../filename'

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name W Page
ChildOf W 23 Relative Path Traversal 699
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER /. [ffiledir
CWE-26: Path Traversal: '/dir/../fillename’
Weakness ID: 26 (Weakness Variant) Status: Draft
Description

Summary

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize "/dir/../filename" sequences that can resolve to a
location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.

The '/dir/../filename’ manipulation is useful for bypassing some path traversal protection schemes.
Sometimes a program only checks for "../" at the beginning of the input, so a "/../" can bypass that
check.

Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Technology Classes
* Web-Server (Often)
Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '.' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFS) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

28



CWE Version 1.5
CWE-27: Path Traversal: 'dir/../../filename'

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name W Page
ChildOf (W 23 Relative Path Traversal 699
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER '[directory/../filename

CWE-27: Path Traversal: 'dir/../../filename’

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize multiple internal "../" sequences that can resolve to a
location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The 'directory/../../[flename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "../" sequence, so multiple "../" can bypass
that check. Alternately, this manipulation could be used to bypass a check for "../" at the
beginning of the pathname, moving up more than one directory level.
Time of Introduction
* Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2002-0298

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '.' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

29

.Jlesianel] yred :LZ2-IMD

Sweus|y/ /T HIp,



Xfiledir!

CWE-28: Path Traversal:

CWE Version 1.5
CWE-28: Path Traversal: "..\filedir'

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name W Page
ChildOf (W 23 Relative Path Traversal 699
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 'directory/../../filename

CWE-28: Path Traversal: . \filedir'

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize "..\" sequences that can resolve to a location that is
outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The '..\' manipulation is the canonical manipulation for operating systems that use "\" as directory
separators, such as Windows. However, it is also useful for bypassing path traversal protection
schemes that only assume that the "/" separator is valid.
Time of Introduction
* Implementation
Applicable Platforms

Languages
o All
Operating Systems
* Windows
Observed Examples
Reference Description

CVE-2002-0661 "\" not in blacklist for web server, allowing path traversal attacks when the server is run in
Windows and other OSes.

CVE-2002-0946 Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.

CVE-2002-1042

CVE-2002-1178

CVE-2002-1209

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).

30



CWE Version 1.5
CWE-29: Path Traversal: '\..\flename'

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Wi Page
ChildOf W] 23 Relative Path Traversal 699
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER ".Mfilename' ("dot dot backslash')

CWE-29: Path Traversal: '\..\filename'

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize ‘\..\filename" (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
This is similar to CWE-25, except using "\" instead of "/". Sometimes a program checks for "..\"
at the beginning of the input, so a "\..\" can bypass that check. It is also useful for bypassing path
traversal protection schemes that only assume that the "/* separator is valid.
Time of Introduction
« Implementation
Applicable Platforms

Languages
o All
Operating Systems
* Windows
Observed Examples
Reference Description

CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific "\.."
allowing read of arbitrary files.
CVE-2005-2142

Potential Mitigations

31

.Jlesianel] yred :62-IMD

SWEBUS[IN™,



\dir\..\filename'

CWE-30; Path Traversal:

CWE Version 1.5
CWE-30: Path Traversal: \dir\..\filename'

Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '." and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Wi Page
ChildOf ma 23 Relative Path Traversal 699
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER \..\filename' ('leading dot dot backslash")

CWE-30: Path Traversal: "\dir\..\filename'

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize "\dir\..\filename' (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
This is similar to CWE-26, except using "\" instead of "/". The \dir\..\filename' manipulation is
useful for bypassing some path traversal protection schemes. Sometimes a program only checks
for "..\" at the beginning of the input, so a "\..\" can bypass that check.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Operating Systems
* Windows
Observed Examples

32



CWE Version 1.5
CWE-31: Path Traversal: ‘dir\..\..\filename'

Reference Description
CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific "\.."
allowing read of arbitrary files.

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '.' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '"inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Wi Page
ChildOf ma 23 Relative Path Traversal 699
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 7 - \directory\..\filename

CWE-31: Path Traversal: 'dir\..\..\filename’

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize 'dir\..\..\filename' (multiple internal backslash dot dot)
sequences that can resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The 'din\..\..\filename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "..\" sequence, so multiple "..\" can bypass
that check. Alternately, this manipulation could be used to bypass a check for "..\" at the
beginning of the pathname, moving up more than one directory level.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All

33

.Jlesianel] yred :T€-IMD

SWEBUS[IN"\"\JIP,



..' (Triple Dot)

CWE-32; Path Traversal:

CWE Version 1.5
CWE-32: Path Traversal: "..." (Triple Dot)

Operating Systems

* Windows
Observed Examples
Reference Description

CVE-2002-0160

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFS) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name W Page
ChildOf W]:| 23 Relative Path Traversal 699
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 8 - 'directory\..\..\filename

CWE-32: Path Traversal: '..." (Triple Dot)

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize '..." (triple dot) sequences that can resolve to a location
that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "..." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\.." and might bypass checks that assume only two dots
are valid. Insufficient filtering, such as removal of "./" sequences, can ultimately produce valid ".."
sequences due to a collapse into unsafe value (CWE-182).
Time of Introduction
¢ Implementation
Applicable Platforms

34




CWE Version 1.5
CWE-33: Path Traversal: "...." (Multiple Dot)

Languages
- All

Observed Examples

Reference
CVE-2001-0467
CVE-2001-0480

CVE-2001-0615
CVE-2001-0963
CVE-2001-1131
CVE-2001-1193
CVE-2002-0288

Description

"\..." in web server

read of arbitrary files and directories using GET or CD with "..." in Windows-based FTP
server.

"."or".."inchat server

"..."in cd command in FTP server

"..."in cd command in FTP server

"..."in cd command in FTP server

read files using "." and Unicode-encoded "/" or "\" characters in the URL.

CVE-2003-0313 Directory listing of web server using "..."
CVE-2005-1658 Triple dot

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '." and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a ' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name W Page
ChildOf (W 23 Relative Path Traversal 699
1000

Taxonomy Mappings
Mapped Taxonomy Name
PLOVER

Mapped Node Name
"..." (triple dot)

Maintenance Notes

This manipulation-focused entry is currently hiding two distinct weaknesses, so it might need to be
split. The manipulation is effective in two different contexts: (1) it is equivalent to "..\.." on Windows,
or (2) it can take advantage of insufficient filtering, e.qg. if the programmer does a single-pass
removal of "./" in a string (collapse of data into unsafe value)

CWE-33: Path Traversal: '...." (Multiple Dot)
Description
Summary

35

|lesianel] yred :€€-ImMD

(o@ aydnininy)



.... (Multiple Dot)

CWE-33: Path Traversal:

CWE Version 1.5
CWE-33: Path Traversal: "...." (Multiple Dot)

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize '...." (multiple dot) sequences that can resolve to a
location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.

The "...." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\..\.." and might bypass checks that assume only two dots

are valid. Insufficient filtering, such as removal of "./" sequences, can ultimately produce valid "..
sequences due to a collapse into unsafe value (CWE-182).
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Observed Examples
Reference Description
CVE-1999-1082 read files via "......" in web server (doubled triple dot?)
CVE-2000-0240 read files via "l.......... /"in URL
CVE-2000-0773 read files via "...." in web server

CVE-2001-0491 multiple attacks using "..", "...", and "...." in different commands
CVE-2001-0615 "..." or"...."in chat server
CVE-2004-2121 read files via"......" in web server (doubled triple dot?)

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '." and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Wi Page
ChildOf (Wl 23 Relative Path Traversal 699

1000
CanFollow W] 182 Collapse of Data Into Unsafe Value 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER "...." (multiple dot)

36



CWE Version 1.5
CWE-34: Path Traversal: "..../I"

Maintenance Notes
Like the triple-dot CWE-32, this manipulation probably hides multiple weaknesses that should be
made more explicit.

CWE-34: Path Traversal: "..../I"

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize '..../I' (doubled dot dot slash) sequences that can
resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.

The "..../I' manipulation is useful for bypassing some path traversal protection schemes. If "../"
is filtered in a sequential fashion, as done by some regular expression engines, then "....//" can
collapse into the "../" unsafe value (CWE-182). It could also be useful when ".." is removed, if the
operating system treats "//" and "/" as equivalent.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Observed Examples
Description
Merak Mail Server with Icewarp, Sep. 10, 2004

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name W Page
ChildOf (W 23 Relative Path Traversal 699
1000

37

.[esianel] yred v£-ImMOD

T



A

CWE-35:; Path Traversal:

CWE Version 1.5
CWE-35: Path Traversal: "...[.../I"

Nature Type ID Name W Page
ChildOf (W 182  Collapse of Data Into Unsafe Value 1000
CanFollow W]l 182 Collapse of Data Into Unsafe Value 1000

Relationship Notes

This could occur due to a cleansing error that removes a single "../" from "....//
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER "..../I' (doubled dot dot slash)

CWE-35; Path Traversal: '.../...II"

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize '.../.../I' (doubled triple dot slash) sequences that can
resolve to a location that is outside of that directory.
Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.

The ".../.../I' manipulation is useful for bypassing some path traversal protection schemes. If "../"
is filtered in a sequential fashion, as done by some regular expression engines, then ".../.../[" can
collapse into the "../" unsafe value (CWE-182). Removing the first "../" yields "..../["; the second
removal yields "../". Depending on the algorithm, the software could be susceptible to CWE-34 but
not CWE-35, or vice versa.
Time of Introduction
e Implementation
Applicable Platforms
Languages
o All
Observed Examples
Reference Description
CVE-2005-0202 ".../.... /II" bypasses regexp's that remove "./* and "../"
CVE-2005-2169 chain: ".../.../[" bypasses protection mechanism using regexp's that remove "../" resulting in
collapse into an unsafe value "../" (CWE-182) and resultant path traversal.

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as ' and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a " inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are nhow assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

38



CWE Version 1.5
CWE-36: Absolute Path Traversal

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name W Page
ChildOf W 23 Relative Path Traversal 699

1000
ChildOf (W] 182  Collapse of Data Into Unsafe Value 1000
CanFollow W 182  Collapse of Data Into Unsafe Value 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /A

CWE-36: Absolute Path Traversal

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize absolute path sequences such as "/abs/path" that can
resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Demonstrative Examples
In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object without having been sanitized. Ideally, the path should be resolved relative to
some kind of application or user home directory.
Java Example: Bad Code

String filename = System.getProperty(“com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);

Potential Mitigations
see "Path Traversal" (CWE-22)
Relationships

Nature Type ID Name W Page
ChildOf mE 22 Path Traversal 699
1000
ParentOf W 37 Path Traversal: /absolute/pathname/here' 699
1000
ParentOf me 38 Path Traversal: \absolute\pathname\here' 699
1000
ParentOf me 39 Path Traversal: 'C:dirname’ 699
1000
ParentOf W 40 Path Traversal: \\UNC\share\name\' (Windows UNC Share) 699
1000

Taxonomy Mappings

39

[esiaAel] ylred ain|osqy :9¢-IMD



CWE-37: Path Traversal: '/absolute/pathname/here’

CWE Version 1.5
CWE-37: Path Traversal: '/absolute/pathname/here'

Mapped Taxonomy Name Mapped Node Name
PLOVER Absolute Path Traversal

CWE-37: Path Traversal: ‘'/absolute/pathname/here'

Description
Summary
A software system that accepts input in the form of a slash absolute path (/absolute/pathname/
here') without appropriate validation can allow an attacker to traverse the file system to
unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2000-0614 Arbitrary files may be overwritten via compressed attachments that specify absolute path
names for the decompressed output.

CVE-2001-1269 ZIP file extractor allows full path

CVE-2002-1345 Multiple FTP clients write arbitrary files via absolute paths in server responses

CVE-2002-1818 Path traversal using absolute pathname

CVE-2002-1913 Path traversal using absolute pathname

CVE-2005-2147 Path traversal using absolute pathname

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as ' and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a ' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFSs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Wi Page
ChildOf W 36 Absolute Path Traversal 699

1000
ChildOf W] 160 Improper Sanitization of Leading Special Elements 1000
ChildOf (C] 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734

Taxonomy Mappings

40




CWE Version 1.5
CWE-38: Path Traversal: "\absolute\pathname\here'

Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER /absolute/pathname/here
CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CWE-38: Path Traversal: \absolute\pathname\here'

Description
Summary
A software system that accepts input in the form of a backslash absolute path (\absolute
\pathname\here') without appropriate validation can allow an attacker to traverse the file system to
unintended locations or access arbitrary files.
Time of Introduction
e Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-1999-1263
CVE-2002-1525
CVE-2003-0753

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as ' and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFS) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name W Page
ChildOf W] 36 Absolute Path Traversal 699

1000
ChildOf @® 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER \absolute\pathname\here (‘backslash absolute path')
CERT C Secure Coding FIO05-C Identify files using multiple file attributes

41

,ejeu\eweuumd\em|osqe\, .lesianel] ylred :8¢-amnMD



'C:dirname’

CWE-39: Path Traversal:

CWE Version 1.5
CWE-39: Path Traversal: 'C:dirname’

CWE-39:; Path Traversal: 'C:dirname’

D

escription

Summary
An attacker can inject a drive letter or Windows volume letter ('C:dirname’) into a software system
to potentially redirect access to an unintended location or arbitrary file.

Time of Introduction

A

O

* Implementation
pplicable Platforms
Languages

< All
bserved Examples
Reference Description
CVE-2001-0038
CVE-2001-0255
CVE-2001-0687
CVE-2001-0933
CVE-2002-0466
CVE-2002-1483
CVE-2004-2488 FTP server read/access arbitrary files using "C:\" filenames

Potential Mitigations

Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as ' and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a ' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are nhow assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Wi Page
ChildOf (W} 36 Absolute Path Traversal 699

1000
ChildOf (C] 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734

Taxonomy Mappings

Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER 'C:dirname’ or C: (Windows volume or 'drive letter’)
CERT C Secure Coding FIO05-C Identify files using multiple file attributes

42



CWE Version 1.5
CWE-40: Path Traversal: \UNC\share\name\' (Windows UNC Share)

CWE-40: Path Traversal: "\UNC\share\name\' (Windows

UNC Share)
Description
Summary

An attacker can inject a Windows UNC share (\\UNC\share\name') into a software system to
potentially redirect access to an unintended location or arbitrary file.
Time of Introduction
* Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2001-0687

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFS) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name W Page
ChildOf W]:| 36 Absolute Path Traversal 699
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER ‘WUNC\share\name\' (Windows UNC share)

CWE-41: Improper Resolution of Path Equivalence

Description
Summary

43

(812YyS DNN SMOPUIAN) \aweu\ateys\ONN\\, :[esianell yred :0t-3MD



CWE-41: Improper Resolution of Path Equivalence

CWE Version 1.5
CWE-41: Improper Resolution of Path Equivalence

The system or application is vulnerable to file system contents disclosure through path
equivalence. Path equivalence involves the use of special characters in file and directory names.
The associated manipulations are intended to generate multiple names for the same object.
Extended Description
Path equivalence is usually employed in order to circumvent access controls expressed using
an incomplete set of file name or file path representations. This is different from path traversal,
wherein the manipulations are performed to generate a name for a different object.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Other Notes
Some of these manipulations could be effective in path traversal issues, too.

Relationships

Nature Type ID Name W Page
ChildOf ® 21 Pathname Traversal and Equivalence Errors 699
ChildOf ® 632  Weaknesses that Affect Files or Directories 631
ChildOf WE 706  Use of Incorrectly-Resolved Name or Reference 1000
ChildOf ® 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711
ChildOf @® 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734
CanFollow me 20 Improper Input Validation 1000
ParentOf W 42 Path Equivalence: ‘filename.' (Trailing Dot) 699
1000
ParentOf W] 44 Path Equivalence: 'file.name' (Internal Dot) 699
1000
ParentOf W 46 Path Equivalence: ‘filename ' (Trailing Space) 699
1000
ParentOf W 47 Path Equivalence: ' filename (Leading Space) 699
1000
ParentOf me 48 Path Equivalence: ‘file name' (Internal Whitespace) 699
1000
ParentOf me 49 Path Equivalence: ‘filename/' (Trailing Slash) 699
1000
ParentOf me 50 Path Equivalence: '//multiple/leading/slash’ 699
1000
ParentOf W 51 Path Equivalence: '/multiple//internal/slash’ 699
1000
ParentOf me 52 Path Equivalence: '/multiple/trailing/slash//' 699
1000
ParentOf me 53 Path Equivalence: "\multiple\\internal\backslash' 699
1000

44



CWE Version 1.5
CWE-42: Path Equivalence: ‘filename.' (Trailing Dot)

Nature Type ID Name ) Page
ParentOf W 54 Path Equivalence: ‘filedir\' (Trailing Backslash) 699
1000
ParentOf W 55 Path Equivalence: '/./' (Single Dot Directory) 699
1000
ParentOf me 56 Path Equivalence: ‘filedir*' (Wildcard) 699
1000
ParentOf me 57 Path Equivalence: ‘fakedir/../realdir/filename’ 699
1000
ParentOf W 58 Path Equivalence: Windows 8.3 Filename 699
1000
CanFollow W] 73 External Control of File Name or Path 1000
CanFollow mE 172 Encoding Error 1000

Affected Resources
« File/Directory
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Path Equivalence

CERT C Secure Coding FIO02-C Canonicalize path names originating from untrusted sources
Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.3)

3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters

4 Using Alternative IP Address Encodings

CWE-42: Path Equivalence: 'filename.' (Trailing Dot)

Description
Summary
A software system that accepts path input in the form of trailing dot (‘filedir.") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system
to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2000-1114 Source code disclosure using trailing dot

CVE-2000-1133 Bypass directory access restrictions using trailing dot in URL
CVE-2001-1386 Bypass check for ".Ink" extension using ".Ink."
CVE-2002-1986, Source code disclosure using trailing dot

CVE-2004-0061 Bypass directory access restrictions using trailing dot in URL
CVE-2004-2213 Source code disclosure using trailing dot

CVE-2005-3293 Source code disclosure using trailing dot

Potential Mitigations
see the vulnerability category "Path Equivalence”
Relationships

Nature Type ID Name ) Page
ChildOf (W 41 Improper Resolution of Path Equivalence 699

1000
ChildOf me 162 Improper Sanitization of Trailing Special Elements 1000
ParentOf me 43 Path Equivalence: ‘filename...." (Multiple Trailing Dot) 699

1000

45

(1o@ Buijresy) swreus|ly, :80usfeAINbl yred :Z7-3IMD



. (Multiple Trailing Dot)

CWE-43: Path Equivalence: 'filename...

CWE Version 1.5
CWE-43: Path Equivalence: filename...." (Multiple Trailing Dot)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Trailing Dot - filedir.’

CWE-43: Path Equivalence: 'filename...." (Multiple Trailing
Dot)

Weakness ID: 43 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of multiple trailing dot (‘filedir....") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

BUGTRAQ:200402¢fche + Resin Reveals JSP Source Code ...

CVE-2004-0281 Multiple trailing dot allows directory listing
Potential Mitigations

see the vulnerability category "Pathname Traversal and Equivalence Errors"
Relationships

Nature Type ID Name Wi Page
ChildOf me 42 Path Equivalence: ‘filename.' (Trailing Dot) 699

1000
ChildOf W] 163 Improper Sanitization of Multiple Trailing Special Elements 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Trailing Dot - ‘filedir...."

CWE-44: Path Equivalence: 'file.name' (Internal Dot)

Description
Summary
A software system that accepts path input in the form of internal dot ('file.ordir") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
see the vulnerability category "Path Equivalence"
Other Notes
This variant does not have any easily findable, publicly reported vulnerabilities, but it can be an
effective manipulation in weaknesses such as validate-before-cleanse, which might remove a dot
from a string to produce an unexpected string.
Relationships

46



CWE Version 1.5
CWE-45: Path Equivalence: 'file...name' (Multiple Internal Dot)

Nature Type ID Name ) Page
ChildOf (W 41 Improper Resolution of Path Equivalence 699

1000
ParentOf me 45 Path Equivalence: ‘file...name' (Multiple Internal Dot) 699

1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Internal Dot - ‘file.ordir’

CWE-45: Path Equivalence: 'file...name' (Multiple Internal
Dot)

Weakness ID: 45 (Weakness Variant) Status: Incomplete
Description
Summary
A software system that accepts path input in the form of multiple internal dot (‘file...dir") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
< All
Potential Mitigations
see the vulnerability category "Path Equivalence"
Other Notes
This variant does not have any easily findable, publicly reported vulnerabilities, but it can be an
effective manipulation in weaknesses such as validate-before-cleanse, which might use a regular

expression that removes ".." sequences from a string to produce an unexpected string.
Relationships

Nature Type ID Name W Page
ChildOf me 44 Path Equivalence: ‘file.name' (Internal Dot) 699

1000
ChildOf W 165 Improper Sanitization of Multiple Internal Special Elements 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Internal Dot - file...dir'

CWE-46: Path Equivalence: 'filename ' (Trailing Space)

Description
Summary
A software system that accepts path input in the form of trailing space (filedir ") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Observed Examples

47

(1o@ reusaiul ajdinA) 2weuajly, :@ousfeAinb3 yred :Gy-3MO



CWE-47: Path Equivalence: ' filename (Leading Space)

CWE Version 1.5
CWE-47: Path Equivalence: ' filename (Leading Space)

Reference
CVE-2001-0054

CVE-2001-0693
CVE-2001-0778
CVE-2001-1248
CVE-2002-1451
CVE-2002-1603
CVE-2004-0280
CVE-2004-2213
CVE-2005-0622
CVE-2005-1656

Description

Multi-Factor Vulnerability (MVF). directory traversal and other issues in FTP server using
Web encodings such as "%20"; certain manipulations have unusual side effects.
Source disclosure via trailing encoded space "%20"

Source disclosure via trailing encoded space "%20"

Source disclosure via trailing encoded space "%20"

Trailing space ("+" in query string) leads to source code disclosure.

Source disclosure via trailing encoded space "%20"

Source disclosure via trailing encoded space "%20"

Source disclosure via trailing encoded space "%20"

Source disclosure via trailing encoded space "%20"

Source disclosure via trailing encoded space "%20"

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name W Page
ChildOf ma 41 Improper Resolution of Path Equivalence 699

1000
ChildOf W 162 Improper Sanitization of Trailing Special Elements 1000
CanPrecede Tl 289  Authentication Bypass by Alternate Name 1000

Taxonomy Mappings
Mapped Taxonomy Name
PLOVER

Mapped Node Name
Trailing Space - ffiledir '

CWE-47: Path Equivalence: ' filename (Leading Space)

Description
Summary
A software system that accepts path input in the form of leading space (' filedir’) without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
see the vulnerability category "Path Equivalence”

Relationships

Nature Type ID Name Wi Page
ChildOf W]l 41 Improper Resolution of Path Equivalence 699
1000

Taxonomy Mappings
Mapped Taxonomy Name
PLOVER

Mapped Node Name
Leading Space - ' filedir'

CWE-48: Path Equivalence: 'file name' (Internal
Whitespace)

Weakness ID: 48 (Weakness Variant)

Status: Incomplete

Description
Summary

48



CWE Version 1.5
CWE-49: Path Equivalence: filename/' (Trailing Slash)

A software system that accepts path input in the form of internal space (‘file(SPACE)name")
without appropriate validation can lead to ambiguous path resolution and allow an attacker to
traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2000-0293 Filenames with spaces allow arbitrary file deletion when the product does not properly
guote them; some overlap with path traversal.
CVE-2001-1567 "+" characters in query string converted to spaces before sensitive file/extension (internal
space), leading to bypass of access restrictions to the file.
Potential Mitigations
see the vulnerability category "Path Equivalence”
Other Notes
This is not necessarily an equivalence issue, but it can also be used to spoof icons or conduct
information hiding via information truncation (see user interface errors).
This weakness is likely to overlap quoting problems, e.g. the "Program Files" untrusted search path
variants. It also could be an equivalence issue if filtering removes all extraneous spaces.

Relationships

Nature Type ID Name Wi Page
ChildOf ma 41 Improper Resolution of Path Equivalence 699
1000
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER file(SPACE)name (internal space)
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service

CWE-49: Path Equivalence: 'filename/' (Trailing Slash)

Description
Summary
A software system that accepts path input in the form of trailing slash (‘filedir/") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system
to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
¢ Operation
Applicable Platforms
Languages
< All
Observed Examples
Reference Description
BID:3518
CVE-2001-0446
CVE-2001-0892
CVE-2001-0893 Read sensitive files with trailing "/*
CVE-2002-0253 Overlaps infoleak
CVE-2004-0334 Bypass Basic Authentication for files using trailing "/"
CVE-2004-1101 Failure to handle filename request with trailing "/" causes multiple consequences, including
server crash and a Visual Basic error message that enables XSS and information leak.

49

(yse|s Buijrel]) /owreus|ly, :dousfeAlinb3 yred :6-3MO



CWE-50: Path Equivalence: '//multiple/leading/slash’

CWE Version 1.5
CWE-50: Path Equivalence: '//Imultiple/leading/slash

Reference Description

CVE-2004-1814
Potential Mitigations

see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name L\ Page
ChildOf (W 41 Improper Resolution of Path Equivalence 699

1000
ChildOf Wi 162 Improper Sanitization of Trailing Special Elements 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER filedir/ (trailing slash, trailing /)

CWE-50: Path Equivalence: '//multiple/leading/slash’

Weakness ID: 50 (Weakness Variant) Status: Incomplete
Description
Summary
A software system that accepts path input in the form of multiple leading slash (‘//multiple/leading/
slash") without appropriate validation can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-1999-1456

CVE-2000-1050 Access directory using multiple leading slash.

CVE-2001-1072 Bypass access restrictions via multiple leading slash, which causes a regular expression to
fail.

CVE-2002-0275

CVE-2002-1238

CVE-2002-1483

CVE-2004-0235 Archive extracts to arbitrary files using multiple leading slash in filenames in the archive.

CVE-2004-0578

CVE-2004-1032

CVE-2004-1878

CVE-2005-1365

Potential Mitigations
see the vulnerability category "Path Equivalence”

Relationships

Nature Type ID Name Wi Page
ChildOf W]l 41 Improper Resolution of Path Equivalence 699

1000
ChildOf me 161 Improper Sanitization of Multiple Leading Special Elements 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /Imultiple/leading/slash (‘'multiple leading slash’)

CWE-51: Path Equivalence: '/multiple//internal/slash’

Description
50




CWE Version 1.5
CWE-52: Path Equivalence: '/multiple/trailing/slash//'

Summary
A software system that accepts path input in the form of multiple internal slash (‘/multiple//
internal/slash/*) without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
« Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2002-1483 Read files with full pathname using multiple internal slash.
Potential Mitigations

see the vulnerability category "Path Equivalence”
Relationships

Nature Type ID Name Wi Page
ChildOf ma 41 Improper Resolution of Path Equivalence 699
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /multiple//internal/slash (‘multiple internal slash’)

CWE-52: Path Equivalence: '/multiple/trailing/slash//’

Description
Summary
A software system that accepts path input in the form of multiple trailing slash (‘/multiple/trailing/
slash//") without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2002-1078 Directory listings in web server using multiple trailing slash

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name v Page
ChildOf ma 41 Improper Resolution of Path Equivalence 699

1000
ChildOf mn 163 Improper Sanitization of Multiple Trailing Special Elements 1000
CanPrecede il 289  Authentication Bypass by Alternate Name 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /multiple/trailing/slash// (‘'multiple trailing slash’)

CWE-53: Path Equivalence: "\multiple\\internal\backslash'’

51

Jiyse|s/Buijrelysidninwy, :@ausfeainb3 yred :zs-3IM2D



CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash)

CWE Version 1.5
CWE-54: Path Equivalence: filedir\' (Trailing Backslash)

Description
Summary
A software system that accepts path input in the form of multiple internal backslash (\multiple
\trailing\\slash') without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
« Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
see the vulnerability category "Path Equivalence”
Relationships

Nature Type ID Name Wi Page
ChildOf ma 41 Improper Resolution of Path Equivalence 699

1000
ChildOf me 165 Improper Sanitization of Multiple Internal Special Elements 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER \multiple\\internal\backslash
CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash)
Weakness ID: 54 (Weakness Variant) Status: Incomplete
Description

Summary

A software system that accepts path input in the form of trailing backslash (filedir\') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2004-0847

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name W} Page
ChildOf ma 41 Improper Resolution of Path Equivalence 699

1000
ChildOf Wi 162 Improper Sanitization of Trailing Special Elements 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER filedir\ (trailing backslash)

CWE-55: Path Equivalence: '/./' (Single Dot Directory)

Description
Summary

52



CWE Version 1.5
CWE-56: Path Equivalence: filedir*' (Wildcard)

A software system that accepts path input in the form of single dot directory exploit (‘/./') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description
BID:6042

CVE-1999-1083 Possibly (could be a cleansing error)
CVE-2000-0004

CVE-2002-0112

CVE-2002-0304

CVE-2004-0815 "/./l/lletc" cleansed to ".///etc" then "/etc"

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name W Page
ChildOf W 41 Improper Resolution of Path Equivalence 699
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /.1 (single dot directory)

CWE-56: Path Equivalence: 'filedir* (Wildcard)

Description
Summary
A software system that accepts path input in the form of asterisk wildcard (‘filedir*") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2002-0433 List files in web server using "*.ext"

CVE-2004-0696 List directories using desired path and "*"
Potential Mitigations

see the vulnerability category "Path Equivalence”
Relationships

Nature Type ID Name Wi Page
ChildOf ma 41 Improper Resolution of Path Equivalence 699

1000
ChildOf me 155 Improper Sanitization of Wildcards or Matching Symbols 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER filedir* (asterisk / wildcard)

53

(P1edp|IM) «41P3JYY, :DOUB[EAINDT Yled :9G-IMD



CWE-57: Path Equivalence: 'fakedir/../realdir/filename'’

CWE Version 1.5
CWE-57: Path Equivalence: 'fakedir/../realdir/filename’

CWE-57: Path Equivalence: 'fakedir/../realdir/filename'

Weakness ID: 57 (Weakness Variant) Status: Incomplete

Description
Summary
The software contains protection mechanisms to restrict access to 'realdir/filename’, but it
constructs pathnames using external input in the form of 'fakedir/../realdir/filename’ that are not
handled by those mechanisms. This allows attackers to perform unauthorized actions against the
targeted file.
Time of Introduction
* Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2000-0191 application check access for restricted URL before canonicalization
CVE-2001-1152
CVE-2005-1366 CGl source disclosure using "dirname/../cgi-bin"
Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name v Page
ChildOf ma 41 Improper Resolution of Path Equivalence 699
1000

Theoretical Notes
This is a manipulation that uses an injection for one consequence (containment violation using
relative path) to achieve a different consequence (equivalence by alternate name).
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER dirname/fakechild/../realchild/filename

CWE-58: Path Equivalence: Windows 8.3 Filename

Description
Summary
The software contains a protection mechanism that restricts access to a long filename on a
Windows operating system, but the software does not properly restrict access to the equivalent
short "8.3" filename.
Extended Description
On later Windows operating systems, a file can have a "long name" and a short name that
is compatible with older Windows file systems, with up to 8 characters in the filename and 3
characters for the extension. These "8.3" filenames, therefore, act as an alternate name for files
with long names, so they are useful pathname equivalence manipulations.
Time of Introduction
* Implementation
Applicable Platforms
Languages
« All
Operating Systems
* Windows
Observed Examples

54



CWE Version 1.5
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

Reference Description

CVE-1999-0012 Multiple web servers allow restriction bypass using 8.3 names instead of long names

CVE-2001-0795 Source code disclosure using 8.3 file name.

CVE-2005-0471 Multi-Factor Vulnerability. Product generates temporary filenames using long filenames,
which become predictable in 8.3 format.

Potential Mitigations

Disable Windows from supporting 8.3 filenames by editing the Windows registry. Preventing 8.3
filenames will not remove previously generated 8.3 filenames.

Relationships

Nature Type ID Name Wi Page
ChildOf (W] 41 Improper Resolution of Path Equivalence 699
1000

Research Gaps
Probably under-studied
Functional Areas
 File processing
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Windows 8.3 Filename

References
M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.

CWE-59: Improper Link Resolution Before File Access
(‘'Link Following')

Weakness ID: 59 (Weakness Base) Status: Draft
Description
Summary
The software attempts to access a file based on the filename, but it does not properly prevent that
filename from identifying a link or shortcut that resolves to an unintended resource.
Alternate Terms
insecure temporary file
Some people use the phrase "insecure temporary file" when referring to a link following
weakness, but other weaknesses can produce insecure temporary files without any symlink
involvement at all.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Operating Systems
¢ Windows (Sometimes)
¢ UNIX (Often)
Likelihood of Exploit
Low to Medium
Potential Mitigations
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Other Notes
Windows soft links can be exploited remotely since a ".LNK" file can be uploaded like a normal file.
Weakness Ordinalities

55

(,6uimol|o4 3ulq,) SS8290V 9|I4 8l10jag uolnjosay Juiq Jadoidw] :65-IMD



CWE-60: UNIX Path Link Problems

CWE Version 1.5
CWE-60: UNIX Path Link Problems

Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Wi Page
ChildOf ® 21 Pathname Traversal and Equivalence Errors 699
ChildOf ® 632  Weaknesses that Affect Files or Directories 631
ChildOf W] 706 Use of Incorrectly-Resolved Name or Reference 1000
ChildOf ® 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734
ChildOf ® 748 CERT C Secure Coding Section 50 - POSIX (POS) 734
ParentOf ® 60 UNIX Path Link Problems 699
ParentOf Y 61 UNIX Symbolic Link (Symlink) Following 1000
ParentOf me 62 UNIX Hard Link 1000
ParentOf ® 63 Windows Path Link Problems 699
ParentOf me 64 Windows Shortcut Following (.LNK) 1000
ParentOf me 65 Windows Hard Link 1000
CanFollow W] 73 External Control of File Name or Path 1000
CanFollow W]l 363 Race Condition Enabling Link Following 1000
MemberOf v 635  Weaknesses Used by NVD 635

Relationship Notes
Link following vulnerabilities are Multi-factor Vulnerabilities (MFV). They are the combination of
multiple elements: file or directory permissions, filename predictability, race conditions, and in
some cases, a design limitation in which there is no mechanism for performing atomic file creation
operations.
Some potential factors are race conditions, permissions, and predictability.
Research Gaps
UNIX hard links, and Windows hard/soft links are under-studied and under-reported.
Affected Resources
 File/Directory
Functional Areas
* File processing, temporary files
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Link Following
CERT C Secure Coding FIO02-C Canonicalize path names originating from untrusted sources
CERT C Secure Coding POS01-C Check for the existence of links when dealing with files
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.3)
17 Accessing, Modifying or Executing Executable Files
35 Leverage Executable Code in Nonexecutable Files
76 Manipulating Input to File System Calls
CWE-60: UNIX Path Link Problems
Category ID: 60 (Category) Status: Draft
Description
Summary

Weaknesses in this category are related to improper handling of links within Unix-based operating
systems.
Applicable Platforms
Languages
o All
Relationships

56



CWE Version 1.5
CWE-61: UNIX Symbolic Link (Symlink) Following

Nature Type ID Name W Page
ChildOf (W 59 Improper Link Resolution Before File Access ('Link Following’) 699
ChildOf ® 632  Weaknesses that Affect Files or Directories 631
ParentOf & 61 UNIX Symbolic Link (Symlink) Following 631

699
ParentOf me 62 UNIX Hard Link 631

699

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER UNIX Path Link problems
CWE-61: UNIX Symbolic Link (Symlink) Following
Compound Element ID: 61 (Compound Element Variant: Composite) Status: Incomplete
Description

Summary

The software, when opening a file or directory, does not sufficiently account for when the file is a
symbolic link that resolves to a target outside of the intended control sphere. This could allow an
attacker to cause the software to operate on unauthorized files.
Extended Description
A software system that allows UNIX symbolic links (symlink) as part of paths whether in internal
code or through user input can allow an attacker to spoof the symbolic link and traverse the file
system to unintended locations or access arbitrary files. The symbolic link can permit an attacker
to read/write/corrupt a file that they originally did not have permissions to access.
Alternate Terms
Symlink following
symlink vulnerability
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Likelihood of Exploit
High to Very High
Observed Examples
Reference Description
CVE-1999-1386
CVE-2000-0972 Setuid product allows file reading by replacing a file being edited with a symlink to the
targeted file, leaking the result in error messages when parsing fails.
CVE-2000-1178
CVE-2003-0517
CVE-2004-0217
CVE-2004-0689 Possible interesting example
CVE-2005-0824 Signal causes a dump that follows symlinks.
CVE-2005-1879 Second-order symlink vulnerabilities
CVE-2005-1880 Second-order symlink vulnerabilities
CVE-2005-1916 Symlink in Python program

Potential Mitigations
Symbolic link attacks often occur when a program creates a tmp directory that stores files/
links. Access to the directory should be restricted to the program as to prevent attackers from
manipulating the files.
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.

57

Buimo|jo4 (uijwAS) Yul] dIjoqwAS XINN T9-IMD



CWE-62: UNIX Hard Link

CWE Version 1.5
CWE-62: UNIX Hard Link

Other Notes
Fault: filename predictability, insecure directory permissions, non-atomic operations, race
condition.
These are typically reported for temporary files or privileged programs.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name W Page
ChildOf (W 59 Improper Link Resolution Before File Access (‘Link Following’) 1000
ChildOf ® 60 UNIX Path Link Problems 631

699
Requires W] 216 Containment Errors (Container Errors) 1000
Requires ® 275 Permission Issues 1000
Requires W] 340 Predictability Problems 1000
Requires WE 362  Race Condition 1000
Requires W] 386 Symbolic Name not Mapping to Correct Object 1000

Research Gaps
Symlink vulnerabilities are regularly found in C and shell programs, but all programming languages
can have this problem. Even shell programs are probably under-reported.
"Second-order symlink vulnerabilities" may exist in programs that invoke other programs that follow
symlinks. They are rarely reported but are likely to be fairly common when process invocation is
used. Reference: [Christey2005]

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER UNIX symboalic link following

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.3)
27 Leveraging Race Conditions via Symbolic Links

References

Steve Christey. "Second-Order Symlink Vulnerabilities". Bugtraq. 2005-06-07. < http://
www.securityfocus.com/archive/1/401682 >.

Shaun Colley. "Crafting Symlinks for Fun and Profit". Infosec Writers Text Library. 2004-04-12. <
http://www.infosecwriters.com/texts.php?op=display&id=159 >.

CWE-62: UNIX Hard Link

Description
Summary
The software, when opening a file or directory, does not sufficiently account for when the name
is associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the software to operate on unauthorized files.
Extended Description
Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. /etc/passwd). When the process opens the file,
the attacker can assume the privileges of that process.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages

58



CWE Version 1.5
CWE-63: Windows Path Link Problems

< All
Operating Systems
¢ UNIX
Observed Examples
Reference Description
BUGTRAQ:2003020#nBSD chpass/chfn/chsh file content leak
ASA-0001

CVE-1999-0783

CVE-2001-1494 Hard link attack, file overwrite; interesting because program checks against soft links
CVE-2002-0793

CVE-2003-0578

CVE-2004-1603

CVE-2004-1901

CVE-2005-1111 Hard link race condition

Potential Mitigations
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name W Page
ChildOf W 59 Improper Link Resolution Before File Access ('Link Following’) 1000
ChildOf ® 60 UNIX Path Link Problems 631

699
ChildOf @® 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734
PeerOf me 71 Apple '.DS_Store' 1000

Research Gaps
Under-studied. It is likely that programs that check for symbolic links could be vulnerable to hard
links.
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER UNIX hard link

CERT C Secure Coding FIO05-C Identify files using multiple file attributes
CWE-63: Windows Path Link Problems
Category ID: 63 (Category) Status: Draft
Description

Summary

Weaknesses in this category are related to improper handling of links within Windows-based
operating systems.
Applicable Platforms

Languages
o All
Operating Systems
e Windows
Relationships
Nature Type ID Name W Page
ChildOf W 59 Improper Link Resolution Before File Access ('Link Following') 699
ChildOf ® 632  Weaknesses that Affect Files or Directories 631
ParentOf me 64 Windows Shortcut Following (.LNK) 631

699

59

swia|qoid Muli yred SMOpuip :€9-4MOD



CWE-64: Windows Shortcut Following (.LNK)

CWE Version 1.5
CWE-64: Windows Shortcut Following (.LNK)

Nature Type ID Name W Page
ParentOf W 65 Windows Hard Link 631
699

CWE-64: Windows Shortcut Following (.LNK)

Description
Summary
The software, when opening a file or directory, does not sufficiently handle when the file is a
Windows shortcut (.LNK) whose target is outside of the intended control sphere. This could allow
an attacker to cause the software to operate on unauthorized files.
Extended Description
The shortcut (file with the .Ink extension) can permit an attacker to read/write a file that they
originally did not have permissions to access.
Alternate Terms
Windows symbolic link following
symlink
Time of Introduction
e Operation
Applicable Platforms
Languages
o All
Operating Systems
* Windows
Likelihood of Exploit
Medium to High
Observed Examples
Reference Description
CVE-2000-0342
CVE-2001-1042
CVE-2001-1043
CVE-2001-1386 ".LNK."-.LNK with trailing dot
CVE-2003-1233 Rootkits can bypass file access restrictions to Windows kernel directories using

NtCreateSymbolicLinkObject function to create symbolic link
CVE-2005-0587

Potential Mitigations
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name W Page
ChildOf W]:| 59 Improper Link Resolution Before File Access ('Link Following’) 1000
ChildOf ® 63 Windows Path Link Problems 631

699
ChildOf ® 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734

Research Gaps
Under-studied. Windows .LNK files are more "portable” than Unix symlinks and have been used in
remote exploits. Some Windows API's will access LNK's as if they are regular files, so one would
expect that they would be reported more frequently.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

60




CWE Version 1.5
CWE-65: Windows Hard Link

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Windows Shortcut Following (.LNK)
CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CWE-65: Windows Hard Link

Description
Summary
The software, when opening a file or directory, does not sufficiently handle when the name is
associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the software to operate on unauthorized files.
Extended Description
Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. AUTOEXEC.BAT). When the process opens
the file, the attacker can assume the privileges of that process, or prevent the program from
accurately processing data.
Time of Introduction
¢ Implementation

e Operation

Applicable Platforms
Languages
o All
Operating Systems
* Windows

Observed Examples
Reference Description

CVE-2002-0725
CVE-2003-0844

Potential Mitigations
Follow the principle of least privilege when assigning access rights to files. Denying access to

a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.

Relationships

Nature Type ID Name W Page
ChildOf W]:| 59 Improper Link Resolution Before File Access ('Link Following’) 1000
ChildOf ® 63 Windows Path Link Problems 631

699
ChildOf ® 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734

Research Gaps
Under-studied
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Windows hard link
CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CWE-66: Improper Handling of File Names that Identify
Virtual Resources

Weakness ID: 66 (Weakness Base) Status: Draft

Description
Summary

61

AUl pleH SMOPUIM :§9-4MO



CWE-67: Improper Handling of Windows Device Names

CWE Version 1.5
CWE-67: Improper Handling of Windows Device Names

The product does not handle or incorrectly handles a file name that identifies a "virtual" resource
that is not directly specified within the directory that is associated with the file name, causing the
product to perform file-based operations on a resource that is not a file.

Extended Description
Virtual file names are represented like normal file names, but they are effectively aliases for other
resources that do not behave like normal files. Depending on their functionality, they could be
alternate entities. They are not necessarily listed in directories.

Time of Introduction
 Architecture and Design
* Implementation

¢ Operation
Applicable Platforms
Languages
« All
Relationships
Nature Type ID Name W Page
ChildOf ® 21 Pathname Traversal and Equivalence Errors 699
ChildOf W] 706 Use of Incorrectly-Resolved Name or Reference 1000
ParentOf me 67 Improper Handling of Windows Device Names 699
1000
ParentOf ® 68 Windows Virtual File Problems 699
ParentOf W 69 Failure to Handle Windows ::DATA Alternate Data Stream 699
1000
ParentOf ® 70 Mac Virtual File Problems 699
ParentOf me 71 Apple '.DS_Store' 1000
ParentOf me 72 Improper Handling of Apple HFS+ Alternate Data Stream Path 699
1000

Affected Resources
 File/Directory
Functional Areas
 File processing
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Virtual Files

CWE-67: Improper Handling of Windows Device Names

Description

Summary
The software constructs pathnames from user input, but it does not handle or incorrectly handles
a pathname containing a Windows device name such as AUX or CON. This typically leads to
denial of service or an information leak when the application attempts to process the pathname as
a regular file.

Extended Description
Failing to properly handle virtual filenames (e.g. AUX, CON, PRN, COM1, LPT1) can result in
different types of vulnerabilities. In some cases an attacker can request a device via injection of
a virtual filename in a URL, which may cause an error that leads to a denial of service or an error
page that reveals sensitive information. A software system that allows device names to bypass
filtering runs the risk of an attacker injecting malicious code in a file with the name of a device.

Time of Introduction
 Architecture and Design
¢ Implementation
e Operation

62



CWE Version 1.5
CWE-68: Windows Virtual File Problems

Applicable Platforms
Languages
o All
Operating Systems
* Windows
Likelihood of Exploit
High to Very High
Observed Examples
Reference Description
CVE-2000-0168
CVE-2001-0492
CVE-2001-0493
CVE-2001-0558
CVE-2002-0106
CVE-2002-0200
CVE-2002-1052
CVE-2004-0552
CVE-2005-2195

Potential Mitigations
Be familiar with the device names in the operating system where your system is deployed. Check
input for these device names.
Other Notes
Historically, there was a bug in the Windows operating system that caused a blue screen of death,
but even after that issue was fixed, DOS device names continue to be a factor.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name W Page

ChildOf W]:| 66 Improper Handling of File Names that Identify Virtual 699
Resources 1000

ChildOf ® 68 Windows Virtual File Problems 631

ChildOf ® 632  Weaknesses that Affect Files or Directories 631

ChildOf @® 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734

Affected Resources

 File/Directory
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Windows MS-DOS device names
CERT C Secure Coding FIO32-C Do not perform operations on devices that are only appropriate for
files
References

M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.

CWE-68: Windows Virtual File Problems

Description
Summary
Weaknesses in this category are related to improper handling of virtual files within Windows-
based operating systems.
Applicable Platforms
Languages

63

SWa|q0.d 3|14 [eNHIA SMOPUIA :89-IMD



CWE-69:; Failure to Handle Windows ::DATA Alternate Data Stream

CWE Version 1.5
CWE-69: Failure to Handle Windows ::DATA Alternate Data Stream

< All

Relationships

Nature Type ID Name Wi Page

ChildOf ma 66 Improper Handling of File Names that Identify Virtual 699

Resources

ChildOf ® 632 Weaknesses that Affect Files or Directories 631

ParentOf W 67 Improper Handling of Windows Device Names 631

ParentOf me 69 Failure to Handle Windows ::DATA Alternate Data Stream 631

699

Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Windows Virtual File problems
CWE-69: Failure to Handle Windows ::DATA Alternate Data
Stream
Weakness ID: 69 (Weakness Variant) Status: Incomplete
Description

Summary

The software does not properly prevent access to, or detect usage of, alternate data streams
(ADS).
Extended Description
An attacker can use an ADS to hide information about a file (e.g. size, the name of the process)
from a system or file browser tools such as Windows Explorer and 'dir' at the command line utility.
Alternately, the attacker might be able to bypass intended access restrictions for the associated
data fork.
Time of Introduction
» Architecture and Design
* Implementation
Applicable Platforms

Languages
o All
Operating Systems
e Windows
Observed Examples
Reference Description

CVE-1999-0278
CVE-2000-0927

Potential Mitigations

Software tools are capable of finding ADSs on your system.

Ensure that the source code correctly parses the filename to read or write to the correct stream.
Background Details

Alternate data streams (ADS) were first implemented in the Windows NT operating system

to provide compatibility between NTFS and the Macintosh Hierarchical File System (HFS). In

HFS, data and resource forks are used to store information about a file. The data fork provides
information about the contents of the file while the resource fork stores metadata such as file type.

Other Notes
Fault: multiple identifiers, non-atomic object
Relationships

Nature Type ID Name Wi Page
ChildOf W]l 66 Improper Handling of File Names that Identify Virtual 699

Resources 1000
ChildOf ® 68 Windows Virtual File Problems 631

64



CWE Version 1.5
CWE-70: Mac Virtual File Problems

Nature Type ID Name ) Page
699
ChildOf ® 634  Weaknesses that Affect System Processes 631

Affected Resources
e System Process
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Windows ::DATA alternate data stream

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.3)
11 Cause Web Server Misclassification

References
Don Parker. "Windows NTFS Alternate Data Streams". 2005-02-16. < http://
www.securityfocus.com/infocus/1822 >.
M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.

CWE-70: Mac Virtual File Problems

Category ID: 70 (Category) Status: Draft
Description
Summary
Weaknesses in this category are related to improper handling of virtual files within Mac-based
operating systems.
Applicable Platforms

Languages
< All
Relationships
Nature Type ID Name W Page
ChildOf W]:| 66 Improper Handling of File Names that Identify Virtual 699
Resources
ChildOf C] 632  Weaknesses that Affect Files or Directories 631
ParentOf me 71 Apple .DS_Store' 631
699
ParentOf W 72 Improper Handling of Apple HFS+ Alternate Data Stream Path 631
699

Affected Resources
 File/Directory

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Mac Virtual File problems

CWE-71: Apple '.DS_Store'

Description
Summary
Software operating in a MAC OS environment, where .DS_Store is in effect, must carefully
manage hard links, otherwise an attacker may be able to leverage a hard link from .DS_Store to
overwrite arbitrary files and gain privileges.
Time of Introduction
 Architecture and Design
« Implementation
e Operation
Applicable Platforms

65

swsa|qo.id 3[l4 [eniA e :0L-IMD



CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

CWE Version 1.5
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

Languages
< All
Observed Examples
Reference Description

BUGTRAQ:2001094dre security problems in Apache on Mac OS X
CVE-2005-0342 The Finder in Mac OS X and earlier allows local users to overwrite arbitrary files and gain
privileges by creating a hard link from the .DS_Store file to an arbitrary file.

Relationships

Nature Type ID Name W Page
PeerOf me 62 UNIX Hard Link 1000
ChildOf W]:| 66 Improper Handling of File Names that Identify Virtual 1000
Resources
ChildOf ® 70 Mac Virtual File Problems 631
699

Research Gaps
Under-studied
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER DS - Apple .DS_Store
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.3)
18 Embedding Scripts in Nonscript Elements
19 Embedding Scripts within Scripts
32 Embedding Scripts in HTTP Query Strings
63 Simple Script Injection
86 Embedding Script (XSS ) in HTTP Headers
91 XSS in IMG Tags

Maintenance Notes
This entry, which originated from PLOVER, probably stems from a common manipulation that
is used to exploit symlink and hard link following weaknesses, like /etc/passwd is often used for
UNIX-based exploits. As such, it is probably too low-level for inclusion in CWE.

CWE-72: Improper Handling of Apple HFS+ Alternate Data
Stream Path

Weakness ID: 72 (Weakness Variant) Status: Incomplete

Description
Summary
The software does not properly handle special paths that may identify the data or resource fork of
a file on the HFS+ file system.
Extended Description
If the software chooses actions to take based on the file name, then if an attacker provides
the data or resource fork, the software may take unexpected actions. Further, if the software
intends to restrict access to a file, then an attacker might still be able to bypass intended access
restrictions by requesting the data or resource fork for that file.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Operating Systems
* Mac OS

66



CWE Version 1.5
CWE-73: External Control of File Name or Path

Demonstrative Examples
A web server that interprets FILE.cgi as processing instructions could disclose the source code
for FILE.cgi by requesting FILE.cgi/..namedfork/data. This might occur because the web server
invokes the default handler which may return the contents of the file.

Observed Examples
Reference Description
CVE-2004-1084

Background Details
The Apple HFS+ file system permits files to have multiple data input streams, accessible through
special paths. The Mac OS X operating system provides a way to access the different data input
streams through special paths and as an extended attribute:

- Resource fork: file/..namedfork/rsrc, file/rsrc (deprecated), xattr:com.apple.ResourceFork
- Data fork: file/..namedfork/data (only versions prior to Mac OS X v10.5)

Additionally, on filesystems that lack native support for multiple streams, the resource fork and file
metadata may be stored in a file with "._" prepended to the name.

Forks can also be accessed through non-portable APIs.
Forks inherit the file system access controls of the file they belong to.

Programs need to control access to these paths, if the processing of a file system object is
dependent on the structure of its path.

Other Notes
Fault: multiple identifiers, non-atomic object
Relationships

Nature Type ID Name W Page
ChildOf W]:| 66 Improper Handling of File Names that Identify Virtual 699
Resources 1000
ChildOf ® 70 Mac Virtual File Problems 631
699

Research Gaps
Under-studied

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Apple HFS+ alternate data stream

References
Apple Inc.. < http://docs.info.apple.com/article.html?artnum=300422 >.

CWE-73: External Control of File Name or Path

Description
Summary
The software allows user input to control or influence paths that are used in filesystem operations.
Extended Description
This could allow an attacker to access or modify system files or other files that are critical to the
application.
Path manipulation errors occur when the following two conditions are met:
1. An attacker can specify a path used in an operation on the filesystem.
2. By specifying the resource, the attacker gains a capability that would not otherwise be
permitted.
For example, the program may give the attacker the ability to overwrite the specified file or run
with a configuration controlled by the attacker.
Time of Introduction
 Architecture and Design

67

yyed 40 SWeN 3|14 40 [043U0D [eUIBIXT €2-IMD



CWE-73: External Control of File Name or Path

CWE Version 1.5
CWE-73: External Control of File Name or Path

¢ Implementation
¢ Operation
Applicable Platforms
Languages
o All
Operating Systems
« UNIX (Often)
* Windows (Often)
¢ Mac OS (Often)
Common Consequences
Confidentiality
Integrity
Availability
The application can operate on unexpected files. Confidentiality is violated when the targeted
filename is not directly readable by the attacker. Integrity is violated if the filename is written to, or
if the filename is for a program or other form of executable code. Availability can be violated if the
attacker specifies an unexpected file that the application modifies. Availability can also be affected
if the attacker specifies a filename for a large file, or points to a special device or a file that does
not have the format that the application expects.
Likelihood of Exploit
High to Very High
Demonstrative Examples
Example 1:
The following code uses input from an HTTP request to create a file name. The programmer has
not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/
server.xml", which causes the application to delete one of its own configuration files (CWE-22).
Java Example: Bad Code

String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);

(File.delete();

Example 2:

The following code uses input from a configuration file to determine which file to open and

echo back to the user. If the program runs with privileges and malicious users can change the

configuration file, they can use the program to read any file on the system that ends with the

extension .txt.

Java Example: Bad Code
fis = new FilelnputStream(cfg.getProperty("sub")+".txt");

amt = fis.read(arr);
out.printin(arr);

Observed Examples

Reference Description
CVE-2008-5748 Chain: external control of values for user's desired language and theme enables path
traversal.

CVE-2008-5764 Chain: external control of user's target language enables remote file inclusion.

Potential Mitigations
Architecture and Design
When the set of filenames is limited or known, create a mapping from a set of fixed input
values (such as numeric IDs) to the actual filenames, and reject all other inputs. For example,
ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as the ESAPI
AccessReferenceMap provide this capability.

68



CWE Version 1.5
CWE-73: External Control of File Name or Path

Architecture and Design

Operation
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict all access to files within a
particular directory.

Examples include the Unix chroot jail and AppArmor. In general, managed code may provide
some protection.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Implementation
Assume all input is malicious. Use an "accept known good" input validation strategy (i.e., use
a whitelist). Reject any input that does not strictly conform to specifications, or transform it into
something that does. Use a blacklist to reject any unexpected inputs and detect potential attacks.

For filenames, use stringent whitelists that limit the character set to be used. If feasible, only
allow a single "." character in the filename to avoid weaknesses such as CWE-23, and exclude
directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file extensions,
which will help to avoid CWE-434.

Implementation
Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical
version of the pathname, which effectively removes ".." sequences and symbolic links (CWE-23,
CWE-59).

Installation

Operation
Use OS-level permissions and run as a low-privileged user to limit the scope of any successful
attack.

Operation

Implementation
If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary
of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Testing
Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

69

yyed 40 SWeN 3|14 40 [043U0D [eUIBIXT €2-IMD



CWE-74: Failure to Sanitize Data into a Different Plane (‘Injection’)

CWE Version 1.5
CWE-74: Failure to Sanitize Data into a Different Plane (‘Injection’)

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Wi Page
ChildOf W] 20 Improper Input Validation 699
700
CanPrecede W& 22 Path Traversal 1000
CanPrecede A 41 Improper Resolution of Path Equivalence 1000
CanPrecede WA 59 Improper Link Resolution Before File Access ('Link Following’) 1000
CanPrecede & 98 Improper Control of Filename for Include/Require Statement 1000
in PHP Program ('PHP File Inclusion’)
CanPrecede & 434 Unrestricted File Upload 1000
ChildOf me 610 Externally Controlled Reference to a Resource in Another 1000
Sphere
ChildOf Wi 642  External Control of Critical State Data 1000
ChildOf ® 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711
ChildOf ® 752 Risky Resource Management 750
CanAlsoBe ma 99 Improper Control of Resource Identifiers (‘Resource Injection’) 1000

Relationship Notes
The external control of filenames can be the primary link in chains with other file-related
weaknesses, as seen in the CanPrecede relationships. This is because software systems use
files for many different purposes: to execute programs, load code libraries, to store application
data, to store configuration settings, record temporary data, act as signals or semaphores to other
processes, etc.

However, those weaknesses do not always require external control. For example, link-following
weaknesses (CWE-59) often involve pathnames that are not controllable by the attacker at all.

The external control can be resultant from other issues. For example, in PHP applications, the
register_globals setting can allow an attacker to modify variables that the programmer thought
were immutable, enabling file inclusion (CWE-98) and path traversal (CWE-22). Operating with
excessive privileges (CWE-250) might allow an attacker to specify an input filename that is not
directly readable by the attacker, but is accessible to the privileged program. A buffer overflow
(CWE-119) might give an attacker control over nearby memory locations that are related to
pathnames, but were not directly modifiable by the attacker.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Path Manipulation
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.3)
13 Subverting Environment Variable Values
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
72 URL Encoding
76 Manipulating Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
References

"OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/index.php/ESAPI >.

CWE-74: Failure to Sanitize Data into a Different Plane

(‘'Injection’)
Description
Summary

70



CWE Version 1.5
CWE-74: Failure to Sanitize Data into a Different Plane (‘Injection’)

The software fails to adequately filter user-controlled input data for syntax that has control-plane
implications.
Extended Description
Software has certain assumptions about what constitutes data and control respectively. It is the
lack of verification of these assumptions for user-controlled input that leads to injection problems.
Injection problems span a wide range of instantiations. This is usually attempted in order to alter
the control flow of the process.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Many injection attacks involve the disclosure of important information -- in terms of both data
sensitivity and usefulness in further exploitation
Authentication
In some cases injectable code controls authentication; this may lead to remote vulnerability
Access Control
Injection attacks are characterized by the ability to significantly change the flow of a given
process, and in some cases, to the execution of arbitrary code.
Integrity
Data injection attacks lead to loss of data integrity in nearly all cases as the control-plane data
injected is always incidental to data recall or writing.
Accountability
Often the actions performed by injected control code are unlogged.
Likelihood of Exploit
Very High
Potential Mitigations
Requirements specification: Programming languages and supporting technologies might be
chosen which are not subject to these issues.
Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter control-plane syntax from all
input.
Other Notes
Injection problems encompass a wide variety of issues -- all mitigated in very different ways. For
this reason, the most effective way to discuss these weaknesses is to note the distinct features
which classify them as injection weaknesses. The most important issue to note is that all injection
problems share one thing in common -- i.e., they allow for the injection of control plane data into
the user-controlled data plane. This means that the execution of the process may be altered
by sending code in through legitimate data channels, using no other mechanism. While buffer
overflows, and many other flaws, involve the use of some further issue to gain execution, injection
problems need only for the data to be parsed. The most classic instantiations of this category of
weakness are SQL injection and format string vulnerabilities.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Wi Page
ChildOf W] 20 Improper Input Validation 699

ChildOf W] 707 Improper Enforcement of Message or Data Structure 1000
ChildOf ® 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711
CanFollow W] 20 Improper Input Validation 1000

71

(,uonoalul,) sue|d 1ualsyyid e Olul elRQ SZ1IIUES 0] 8JNn|red /-JMD



CWE-74: Failure to Sanitize Data into a Different Plane (‘Injection’)

CWE Version 1.5
CWE-74: Failure to Sanitize Data into a Different Plane (‘Injection’)

Nature Type ID Name W Page
ParentOf W 75 Failure to Sanitize Special Elements into a Different Plane 699
(Special Element Injection) 1000
ParentOf W] 77 Improper Sanitization of Special Elements used in a 699
Command ('Command Injection’) 1000
ParentOf ma 79 Failure to Preserve Web Page Structure (‘Cross-site 699
Scripting’) 1000
ParentOf ma 88 Argument Injection or Modification 699
1000
ParentOf W]:| 89 Improper Sanitization of Special Elements used in an SQL 699
Command (‘SQL Injection’) 1000
ParentOf W]l 920 Failure to Sanitize Data into LDAP Queries ('LDAP Injection’) 699
1000
ParentOf W] 91 XML Injection (aka Blind XPath Injection) 699
1000
ParentOf W] 93 Failure to Sanitize CRLF Sequences ('CRLF Injection') 699
1000
ParentOf mE 94 Failure to Control Generation of Code (‘Code Injection’) 699
1000
ParentOf ma 929 Improper Control of Resource Identifiers ('Resource Injection’) 699
1000
CanFollow mE 116 Improper Encoding or Escaping of Output 1000
ParentOf W] 134 Uncontrolled Format String 699
1000
ParentOf W 138 Improper Sanitization of Special Elements 699

Relationship Notes
In the development view (CWE-699), this is classified as an Input Validation problem (CWE-20)
because many people do not distinguish between the consequence/attack (injection) and the
protection mechanism that prevents the attack from succeeding. In the research view (CWE-1000),
however, input validation is only one potential protection mechanism (output encoding is another),
and there is a chaining relationship between improper input validation and the failure to enforce the
structure of messsages to other components. Other issues not directly related to input validation,
such as race conditions, could similarly impact message structure.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Injection problem (‘data’ used as something
else)

OWASP Top Ten 2004 A6 CWE More Specific  Injection Flaws
Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.3)

3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters

7 Blind SQL Injection

8 Buffer Overflow in an API Call

9 Buffer Overflow in Local Command-Line Utilities

10 Buffer Overflow via Environment Variables

13 Subverting Environment Variable Values

14 Client-side Injection-induced Buffer Overflow

24 Filter Failure through Buffer Overflow

28 Fuzzing

34 HTTP Response Splitting

40 Manipulating Writeable Terminal Devices

42 MIME Conversion

43 Exploiting Multiple Input Interpretation Layers

45 Buffer Overflow via Symbolic Links

46 Overflow Variables and Tags

72



CWE Version 1.5

CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

CAPEC-ID Attack Pattern Name (CAPEC Version 1.3)
47 Buffer Overflow via Parameter Expansion

51 Poison Web Service Registry

52 Embedding NULL Bytes

53 Postfix, Null Terminate, and Backslash

64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
66 SQL Injection

67 String Format Overflow in syslog()

71 Using Unicode Encoding to Bypass Validation Logic

72 URL Encoding

76 Manipulating Input to File System Calls

78 Using Escaped Slashes in Alternate Encoding

79 Using Slashes in Alternate Encoding

80 Using UTF-8 Encoding to Bypass Validation Logic

83 XPath Injection

84 XQuery Injection

91 XSS in IMG Tags

101 Server Side Include (SSI) Injection

106 Cross Site Scripting through Log Files

108 Command Line Execution through SQL Injection

CWE-75: Failure to Sanitize Special Elements into a

Different Plane (Special Element Injection)
Weakness ID: 75 (Weakness Class)
Description

Summary

Status: Draft

The software fails to adequately filter user-controlled input for special elements with control

implications.
Time of Introduction
 Architecture and Design
« Implementation
Applicable Platforms
Languages
o All
Potential Mitigations

Requirements specification: Programming languages and supporting technologies might be

chosen which are not subject to these issues.
Implementation

Utilize an appropriate mix of white-list and black-list parsing to filter special element syntax from

all input.
Relationships
Nature Type ID Name
ChildOf W] 74 Failure to Sanitize Data into a Different Plane ('Injection’)
ParentOf ma 76 Failure to Resolve Equivalent Special Elements into a

Different Plane

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Special Element Injection

Wi Page
699

1000

699

1000

CWE-76: Failure to Resolve Equivalent Special Elements
into a Different Plane

Weakness ID: 76 (Weakness Base)

Status: Draft

(uonoalul Juswa|3 e19ads) aue|d 1UaJa}}IQ B 01Ul

sluawa(3 [e199dS azNiues 03 ainjeq :G/-IMD



CWE-77: Improper Sanitization of Special Elements

used in a Command ('Command Injection’)

CWE Version 1.5
CWE-77: Improper Sanitization of Special Elements used in a Command ('Command Injection’)

Description
Summary
The software fails to adequately filter non-typical special elements that are equivalent to control-
relevant special elements that are already being filtered.
Time of Introduction
 Architecture and Design
« Implementation
Applicable Platforms
Languages
o All
Likelihood of Exploit
High to Very High
Potential Mitigations
Requirements specification: Programming languages and supporting technologies might be
chosen which are not subject to these issues.
Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter equivalent special element
syntax from all input.
Other Notes
Can include encoded special characters.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name ) Page
ChildOf mE 75 Failure to Sanitize Special Elements into a Different Plane 699
(Special Element Injection) 1000

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Equivalent Special Element Injection

CWE-77: Improper Sanitization of Special Elements used in

a Command ('Command Injection")

Description
Summary
The software constructs all or part of a command using externally-influenced input from an
upstream component, but it does not sanitize or incorrectly sanitizes special elements that could
modify the intended command when it is sent to a downstream component.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
e All
Common Consequences
Access Control
Command injection allows for the execution of arbitrary commands and code by the attacker.
Likelihood of Exploit
Very High

74



CWE Version 1.5
CWE-77: Improper Sanitization of Special Elements used in a Command (‘Command Injection’)

Demonstrative Examples
Example 1:
The following simple program accepts a filename as a command line argument and displays the
contents of the file back to the user. The program is installed setuid root because it is intended for
use as a learning tool to allow system administrators in-training to inspect privileged system files
without giving them the ability to modify them or damage the system.
C Example:
int main(char* argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat *;

strcat(cmd, argv[1]);
system(cmd);

Because the program runs with root privileges, the call to system() also executes with root
privileges. If a user specifies a standard filename, the call works as expected. However, if an
attacker passes a string of the form ";rm -rf /", then the call to system() fails to execute cat due to a
lack of arguments and then plows on to recursively delete the contents of the root partition.

Example 2:

The following code is from an administrative web application designed to allow users to kick

off a backup of an Oracle database using a batch-file wrapper around the rman utility and then

run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single
command line parameter, which specifies what type of backup to perform. Because access to the
database is restricted, the application runs the backup as a privileged user.

Java Example: Bad Code

String btype = request.getParameter("backuptype");
String cmd = new String(“cmd.exe /K \"

c:\\utiN\rmanDB.bat "

+btype+

"&&c:\\utl\\cleanup.bat\"")
System.Runtime.getRuntime().exec(cmd);

The problem here is that the program does not do any validation on the backuptype parameter
read from the user. Typically the Runtime.exec() function will not execute multiple commands,

but in this case the program first runs the cmd.exe shell in order to run multiple commands with a
single call to Runtime.exec(). Once the shell is invoked, it will happily execute multiple commands
separated by two ampersands. If an attacker passes a string of the form "& del c:\\dbms\\*.*", then
the application will execute this command along with the others specified by the program. Because
of the nature of the application, it runs with the privileges necessary to interact with the database,
which means whatever command the attacker injects will run with those privileges as well.
Example 3:

The following code from a system utility uses the system property APPHOME to determine the
directory in which it is installed and then executes an initialization script based on a relative path
from the specified directory.

Java Example: Bad Code

(,uonoalu] puewwo),) puerWWOD © Ul pasn
sjusawsa|3 eloads Jo uonezniues Jadosdwy 2 /-IMD

String home = System.getProperty("APPHOME");
String cmd = home + INITCMD;
java.lang.Runtime.getRuntime().exec(cmd);

The code above allows an attacker to execute arbitrary commands with the elevated privilege of
the application by modifying the system property APPHOME to point to a different path containing
a malicious version of INITCMD. Because the program does not validate the value read from the
environment, if an attacker can control the value of the system property APPHOME, then they can
fool the application into running malicious code and take control of the system.

75



CWE Version 1.5
CWE-77: Improper Sanitization of Special Elements used in a Command ('Command Injection’)

Example 4:

The following code is from a web application that allows users access to an interface through
which they can update their password on the system. Part of the process for updating passwords
in certain network environments is to run a make command in the /var/yp directory, the code for
which is shown below.

Java Example: Bad Code

System.Runtime.getRuntime().exec("make");

The problem here is that the program does not specify an absolute path for make and fails to clean
its environment prior to executing the call to Runtime.exec(). If an attacker can modify the $PATH
variable to point to a malicious binary called make and cause the program to be executed in their
environment, then the malicious binary will be loaded instead of the one intended. Because of

the nature of the application, it runs with the privileges necessary to perform system operations,
which means the attacker's make will now be run with these privileges, possibly giving the attacker
complete control of the system.

Example 5:

The following code is a wrapper around the UNIX command cat which prints the contents of a file
to standard out. It is also injectable:

C Example: Bad Code

#include <stdio.h>

#include <unistd.h>

int main(int argc, char **argv) {
char cat[] = "cat *;
char *command,;
size_t commandLength;
commandLength = strlen(cat) + strlen(argv[1]) + 1;
command = (char *) malloc(commandLength);
strncpy(command, cat, commandLength);
strncat(command, argv[1], (commandLength - strlen(cat)) );
system(command);
return (0);

}
Used normally, the output is simply the contents of the file requested:

$ .JcatWrapper Story.txt
When last we left our heroes...

However, if we add a semicolon and another command to the end of this line, the command is
executed by catWrapper with no complaint:

used in a Command ('Command Injection’)

Attack

CWE-77: Improper Sanitization of Special Elements

$ ./catWrapper Story.txt; Is
When last we left our heroes...
Story.txt

SensitiveFile.txt
PrivateData.db

a.out*

If catWrapper had been set to have a higher privilege level than the standard user, arbitrary
commands could be executed with that higher privilege.
Potential Mitigations

Architecture and Design
If at all possible, use library calls rather than external processes to recreate the desired
functionality

Implementation
Utilize black-list parsing to filter non-relevant command syntax from all input.

76



CWE Version 1.5
CWE-77: Improper Sanitization of Special Elements used in a Command (‘Command Injection’)

Implementation
Ensure that all external commands called from the program are statically created, or -- if they
must take input from a user -- that the input and final line generated are vigorously white-list
checked.
Run time: Run time policy enforcement may be used in a white-list fashion to prevent use of any
non-sanctioned commands.
Assign permissions to the software system that prevents the user from accessing/opening
privileged files.
Other Notes
Command injection is a common problem with wrapper programs. Often, parts of the command
to be run are controllable by the end user. If a malicious user injects a character (such as a semi-
colon) that delimits the end of one command and the beginning of another, he may then be able to
insert an entirely new and unrelated command to do whatever he pleases. The most effective way
to deter such an attack is to ensure that the input provided by the user adheres to strict rules as to
what characters are acceptable. As always, white-list style checking is far preferable to black-list
style checking.
Dynamically generating operating system commands that include user input as parameters
can lead to command injection attacks. An attacker can insert operating system commands or
modifiers in the user input that can cause the request to behave in an unsafe manner. Such
vulnerabilities can be very dangerous and lead to data and system compromise. If no validation of
the parameter to the exec command exists, an attacker can execute any command on the system
the application has the privilege to access.
Command injection vulnerabilities take two forms:
1. An attacker can change the command that the program executes: the attacker explicitly
controls what the command is.
2. An attacker can change the environment in which the command executes: the attacker
implicitly controls what the command means.
In this case we are primarily concerned with the first scenario, in which an attacker explicitly
controls the command that is executed. Command injection vulnerabilities of this type occur when:
1. Data enters the application from an untrusted source.
2. The data is part of a string that is executed as a command by the application.
3. By executing the command, the application gives an attacker a privilege or capability that the
attacker would not otherwise have.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Wi Page
ChildOf mE 20 Improper Input Validation 700
ChildOf mE 74 Failure to Sanitize Data into a Different Plane (‘Injection’) 699
1000
ChildOf (C] 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629
ChildOf ® 722  OWASP Top Ten 2004 Category Al - Unvalidated Input 711
ChildOf ® 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711
ParentOf ma 78 Improper Sanitization of Special Elements used in an OS 699
Command (‘'OS Command Injection’) 1000
ParentOf ma 624 Executable Regular Expression Error 699
1000

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

Mapped Taxonomy Name Node ID  Fit Mapped Node Name
7 Pernicious Kingdoms Command Injection
CLASP Command injection

(,uonoalu] puewwo),) puerWWOD © Ul pasn
sjusawsa|3 eloads Jo uonezniues Jadosdwy 2 /-IMD

77



CWE-78: Improper Sanitization of Special Elements

used in an OS Command ('OS Command Injection’)

CWE Version 1.5
CWE-78: Improper Sanitization of Special Elements used in an OS Command ('OS Command
Injection’)

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
OWASP Top Ten 2004 Al CWE More Specific  Unvalidated Input
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.3)
6 Argument Injection
11 Cause Web Server Misclassification
15 Command Delimiters
23 File System Function Injection, Content Based
43 Exploiting Multiple Input Interpretation Layers
75 Manipulating Writeable Configuration Files
76 Manipulating Input to File System Calls
References

G. Hoglund and G. McGraw. "Exploiting Software: How to Break Code". Addison-Wesley. February
2004.

CWE-78: Improper Sanitization of Special Elements used in
an OS Command ('OS Command Injection’)

Weakness ID: 78 (Weakness Base) Status: Draft
Description
Summary
The software constructs all or part of an OS command using externally-influenced input from an
upstream component, but it does not sanitize or incorrectly sanitizes special elements that could
modify the intended OS command when it is sent to a downstream component.
Extended Description
This could allow attackers to execute unexpected, dangerous commands directly on the operating
system. This weakness can lead to a vulnerability in environments in which the attacker does
not have direct access to the operating system, such as in web applications. Alternately, if
the weakness occurs in a privileged program, it could allow the attacker to specify commands
that normally would not be accessible, or to call alternate commands with privileges that the
attacker does not have. The problem is exacerbated if the compromised process fails to follow
the principle of least privilege, because the attacker-controlled commands may run with special
system privileges that increases the amount of damage.

There are at least two subtypes of OS command injection:

1) The application intends to execute a single, fixed program that is under its own control.

It intends to use externally-supplied inputs as arguments to that program. For example, the
program might use system("nslookup [HOSTNAME]") to run nslookup and allow the user to
supply a HOSTNAME, which is used as an argument. Attackers cannot prevent nslookup from
executing. However, if the program does not remove command separators from the HOSTNAME
argument, attackers could place the separators into the arguments, which allows them to
execute their own program after nslookup has finished executing.

2) The application accepts an input that it uses to fully select which program to run, as well as
which commands to use. The application simply redirects this entire command to the operating
system. For example, the program might use "exec([COMMAND])" to execute the [COMMAND]
that was supplied by the user. If the COMMAND is under attacker control, then the attacker can
execute arbitrary commands or programs. If the command is being executed using functions
like exec() and CreateProcess(), the attacker might not be able to combine multiple commands
together in the same line.

From a weakness standpoint, these variants represent distinct programmer errors. In the first

variant, the programmer clearly intends that input from untrusted parties will be part of the

arguments in the command to be executed. In the second variant, the programmer does not

78



CWE Version 1.5
CWE-78: Improper Sanitization of Special Elements used in an OS Command (‘OS Command
Injection’)

intend for the command to be accessible to any untrusted party, but the programmer probably has
not accounted for alternate ways in which malicious attackers can provide input.

Alternate Terms
Shell injection
Shell metacharacters
Terminology Notes
The "OS command injection" phrase carries different meanings to different people. For some,
it refers to any type of attack that can allow the attacker to execute OS commands of his or her
choosing. This usage could include untrusted search path weaknesses (CWE-426) that cause
the application to find and execute an attacker-controlled program. For others, it only refers
to the first variant, in which the attacker injects command separators into arguments for an
application-controlled program that is being invoked. Further complicating the issue is the case
when argument injection (CWE-88) allows alternate command-line switches or options to be
inserted into the command line, such as an "-exec" switch whose purpose may be to execute the
subsequent argument as a command (this -exec switch exists in the UNIX "find" command, for
example). In this latter case, however, CWE-88 could be regarded as the primary weakness in a
chain with CWE-78.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Availability
Non-Repudiation
Attackers could execute unauthorized commands, which could then be used to disable the
software, or read and modify data for which the attacker does not have permissions to access
directly. Since the targeted application is directly executing the commands instead of the attacker,
any malicious activities may appear to come from the application or the application's owner.
Likelihood of Exploit
High
Demonstrative Examples
Example 1:
This example is a web application that intends to perform a DNS lookup of a user-supplied domain
name. It is subject to the first variant of OS command injection.
Perl Example: Bad Code

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn

use CGI gw(:standard);
$name = param(‘'name’);
$nslookup = "/path/to/nslookup";
print header;
if (open($th, "$nslookup $name|")) {
while (<$fh>) {
print escapeHTML($_);
print "<br>\n";

}
close($fh);

Suppose an attacker provides a domain name like this:
Attack

cwe.mitre.org%20%3B%20/bin/Is%20-I

79

sjuawa|3 [e10ads jo uonezniues Jadosdwi :g82-IMD



CWE-78: Improper Sanitization of Special Elements

CWE Version 1.5
CWE-78: Improper Sanitization of Special Elements used in an OS Command ('OS Command
Injection’)

The "%3B" sequence decodes to the ";" character, and the %20 decodes to a space. The open()
statement would then process a string like this:

/path/to/nslookup cwe.mitre.org ; /bin/ls -

As a result, the attacker executes the "/bin/Is -I" command and gets a list of all the files in the
program's working directory. The input could be replaced with much more dangerous commands,
such as installing a malicious program on the server.

Example 2:

The example below reads the name of a shell script to execute from the system properties. It is

subject to the second variant of OS command injection.

Java Example: Bad Code

String script = System.getProperty("SCRIPTNAME");
if (script != null)
System.exec(script);
If an attacker has control over this property, then he or she could modify the property to point to a
dangerous program.
Observed Examples

Reference Description

CVE-1999-0067 Canonical example. CGI program does not sanitize "|" metacharacter when invoking a
phonebook program.

CVE-2001-1246 Language interpreter's mail function accepts another argument that is concatenated to a
string used in a dangerous popen() call.

CVE-2002-0061 Web server allows command execution using "|" (pipe) character.

CVE-2002-1898 Shell metacharacters in a telnet:// link are not properly handled when the launching
application processes the link.

CVE-2003-0041 FTP client does not filter "|" from filenames returned by the server, allowing for OS
command injection.

CVE-2007-3572 Chain: incomplete blacklist for OS command injection

CVE-2008-2575 Shell metacharacters in a filename in a ZIP archive

CVE-2008-4304 OS command injection through environment variable.

CVE-2008-4796 OS command injection through https:// URLs

Potential Mitigations

Architecture and Design
If at all possible, use library calls rather than external processes to recreate the desired
functionality.

Architecture and Design
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which commands can be
executed by your software.
Examples include the Unix chroot jail and AppArmor. In general, managed code may provide
some protection.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.

Architecture and Design
For any data that will be used to generate a command to be executed, keep as much of that data
out of external control as possible. For example, in web applications, this may require storing the
command locally in the session's state instead of sending it out to the client in a hidden form field.

Architecture and Design
Use languages, libraries, or frameworks that make it easier to generate properly encoded output.
Examples include the ESAPI Encoding control.

used in an OS Command ('OS Command Injection’)

80



CWE Version 1.5
CWE-78: Improper Sanitization of Special Elements used in an OS Command (‘OS Command
Injection’)

Implementation
Properly quote arguments and escape any special characters within those arguments. If
some special characters are still needed, wrap the arguments in quotes, and escape all other
characters that do not pass a strict whitelist. Be careful of argument injection (CWE-88).

Implementation
If the program to be executed allows arguments to be specified within an input file or from
standard input, then consider using that mode to pass arguments instead of the command line.

Implementation
If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated.
Some languages offer multiple functions that can be used to invoke commands. Where possible,
identify any function that invokes a command shell using a single string, and replace it with a
function that requires individual arguments. These functions typically perform appropriate quoting
and filtering of arguments. For example, in C, the system() function accepts a string that contains
the entire command to be executed, whereas execl(), execve(), and others require an array of
strings, one for each argument. In Windows, CreateProcess() only accepts one command at a
time. In Perl, if system() is provided with an array of arguments, then it will quote each of the
arguments.

Implementation
Assume all input is malicious. Use an "accept known good" input validation strategy (i.e., use
a whitelist). Reject any input that does not strictly conform to specifications, or transform it into
something that does. Use a blacklist to reject any unexpected inputs and detect potential attacks.

Use a standard input validation mechanism to validate all input for length, type, syntax, and
business rules before accepting the input for further processing. As an example of business rule
logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is
not valid if you are expecting colors such as "red" or "blue."

When constructing OS command strings, use stringent whitelists that limit the character set based
on the expected value of the parameter in the request. This will indirectly limit the scope of an
attack, but this technique is less important than proper output encoding and escaping.

Note that proper output encoding, escaping, and quoting is the most effective solution for
preventing OS command injection, although input validation may provide some defense-in-depth.
This is because it effectively limits what will appear in output. Input validation will not always
prevent OS command injection, especially if you are required to support free-form text fields
that could contain arbitrary characters. For example, when invoking a mail program, you might
need to allow the subject field to contain otherwise-dangerous inputs like ";" and ">" characters,
which would need to be escaped or otherwise handled. In this case, stripping the character
might reduce the risk of OS command injection, but it would produce incorrect behavior because
the subject field would not be recorded as the user intended. This might seem to be a minor
inconvenience, but it could be more important when the program relies on well-structured subject
lines in order to pass messages to other components.
Even if you make a mistake in your validation (such as forgetting one out of 100 input fields),
appropriate encoding is still likely to protect you from injection-based attacks. As long as it is not
done in isolation, input validation is still a useful technique, since it may significantly reduce your
attack surface, allow you to detect some attacks, and provide other security benefits that proper
encoding does not address.

Testing

Implementation
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

81

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjusawsa|3 eloads Jo uonezniues Jadoidwy] :8/-IJMD



CWE-78: Improper Sanitization of Special Elements
used in an OS Command ('OS Command Injection’)

CWE Version 1.5
CWE-78: Improper Sanitization of Special Elements used in an OS Command ('OS Command
Injection’)

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Operation
Run the code in an environment that performs automatic taint propagation and prevents any
command execution that uses tainted variables, such as Perl's "-T" switch. This will force you to
perform validation steps that remove the taint, although you must be careful to correctly validate
your inputs so that you do not accidentally mark dangerous inputs as untainted (see CWE-183
and CWE-184).

Operation
Use runtime policy enforcement to create a whitelist of allowable commands, then prevent use of
any command that does not appear in the whitelist. Technologies such as AppArmor are available
to do this.

System Configuration
Assign permissions to the software system that prevent the user from accessing/opening
privileged files. Run the application with the lowest privileges possible (CWE-250).

Relationships

Nature Type ID Name Wi Page
ChildOf mE 77 Improper Sanitization of Special Elements used in a 699
Command (‘Command Injection’) 1000
CanAlsoBe ma 88 Argument Injection or Modification 1000
ChildOf ® 634  Weaknesses that Affect System Processes 631
ChildOf ® 714 OWASP Top Ten 2007 Category A3 - Malicious File 629
Execution
ChildOf ® 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711
ChildOf ® 741 CERT C Secure Coding Section 07 - Characters and Strings 734
(STR)
ChildOf ® 744 CERT C Secure Coding Section 10 - Environment (ENV) 734
ChildOf ® 751 Insecure Interaction Between Components 750
CanFollow W] 184 Incomplete Blacklist 1000
MemberOf v 630  Weaknesses Examined by SAMATE 630
MemberOf v 635  Weaknesses Used by NVD 635

Research Gaps
More investigation is needed into the distinction between the OS command injection variants,
including the role with argument injection (CWE-88). Equivalent distinctions may exist in other
injection-related problems such as SQL injection.

Affected Resources
e System Process

Functional Areas
e Program invocation

Taxonomy Mappings

Mapped Taxonomy Name Node ID  Fit Mapped Node Name

PLOVER OS Command Injection

OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution

OWASP Top Ten 2004 A6 CWE More Specific  Injection Flaws

CERT C Secure Coding ENV03-C Sanitize the environment when invoking
external programs

CERT C Secure Coding ENV04-C Do not call system() if you do not need a
command processor

CERT C Secure Coding STR02-C Sanitize data passed to complex
subsystems

Related Attack Patterns

82



CWE Version 1.5
CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')

CAPEC-ID Attack Pattern Name (CAPEC Version 1.3)
6 Argument Injection

15 Command Delimiters

43 Exploiting Multiple Input Interpretation Layers

88 OS Command Injection

108 Command Line Execution through SQL Injection

White Box Definitions
A weakness where the code path has:
1. start statement that accepts input
2. end statement that executes an operating system command where
a. the input is used as a part of the operating system command and
b. the operating system command is undesirable
Where "undesirable" is defined through the following scenarios:
1. not validated
2. incorrectly validated
References

G. Hoglund and G. McGraw. "Exploiting Software: How to Break Code". Addison-Wesley. February
2004.

CWE-79: Failure to Preserve Web Page Structure (‘Cross-
site Scripting’)
Description
Summary
The software does not sufficiently validate, filter, escape, and encode user-controllable input
before it is placed in output that is used as a web page that is served to other users.
Extended Description
Cross-site scripting (XSS) vulnerabilities occur when:
1. Untrusted data enters a web application, typically from a web request.
2. The web application dynamically generates a web page that contains this untrusted data.
3. During page generation, the application does not prevent the data from containing content
that is executable by a web browser, such as JavaScript, HTML tags, HTML attributes, mouse
events, Flash, ActiveX, etc.
4. A victim visits the generated web page through a web browser, which contains malicious
script that was injected using the untrusted data.

5. Since the script comes from a web page that was sent by the web server, the web browser
executes the malicious script in the context of the web server's domain.

6. This effectively violates the intention of the web browser's same-origin policy, which states
that scripts in one domain should not be able to access resources or run code in a different
domain.

There are three main kinds of XSS:

The server reads data directly from the HTTP request and reflects it back in the HTTP response.
Reflected XSS exploits occur when an attacker causes a user to supply dangerous content

to a vulnerable web application, which is then reflected back to the user and executed by the
web browser. The most common mechanism for delivering malicious content is to include it as

a parameter in a URL that is posted publicly or e-mailed directly to victims. URLs constructed

in this manner constitute the core of many phishing schemes, whereby an attacker convinces
victims to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content
back to the user, the content is executed and proceeds to transfer private information, such as
cookies that may include session information, from the user's machine to the attacker or perform
other nefarious activities.

83

(,6undios a11s-ss0u),) ain1onJIS abed gapn 9Alasald 01 ainjred :6/-IMD



CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')

CWE Version 1.5
CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')

The application stores dangerous data in a database, message forum, visitor log, or other
trusted data store. The dangerous data is subsequently read back into the application and
included in dynamic content. Stored XSS exploits occur when an attacker injects dangerous
content into a data store that is later read and included in dynamic content. From an attacker's
perspective, the optimal place to inject malicious content is in an area that is displayed to either
many users or particularly interesting users. Interesting users typically have elevated privileges
in the application or interact with sensitive data that is valuable to the attacker. If one of these
users executes malicious content, the attacker may be able to perform privileged operations
on behalf of the user or gain access to sensitive data belonging to the user. For example, the
attacker might inject XSS into a log message, which might not be handled properly when an
administrator views the logs.

In DOM-based XSS, the client performs the injection of XSS into the page; in the other types,
the server performs the injection. DOM-based XSS generally involves server-controlled, trusted
script that is sent to the client, such as Javascript that performs sanity checks on a form before
the user submits it. If the server-supplied script processes user-supplied data and then injects it
back into the web page (such as with dynamic HTML), then DOM-based XSS is possible.
In many cases, the attack can be launched without the victim even being aware of it. Even with
careful users, attackers frequently use a variety of methods to encode the malicious portion of the
attack, such as URL encoding or Unicode, so the request looks less suspicious.
Alternate Terms
XSS
CSS
"CSS" was once used as the acronym for this problem, but this could cause confusion with
"Cascading Style Sheets," so usage of this acronym has declined significantly.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
e All
Architectural Paradigms
* Web-based (Often)
Technology Classes
* Web-Server (Often)
Platform Notes
Common Consequences
Confidentiality
The most common attack performed with cross-site scripting involves the disclosure of
information stored in user cookies. Typically, a malicious user will craft a client-side script, which
-- when parsed by a web browser -- performs some activity (such as sending all site cookies to a
given E-mail address). This script will be loaded and run by each user visiting the web site. Since
the site requesting to run the script has access to the cookies in question, the malicious script
does also.
Access Control
In some circumstances it may be possible to run arbitrary code on a victim's computer when
cross-site scripting is combined with other flaws.

84



CWE Version 1.5
CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')

Confidentiality

Integrity

Availability
The consequence of an XSS attack is the same regardless of whether it is stored or reflected.
The difference is in how the payload arrives at the server.

XSS can cause a variety of problems for the end user that range in severity from an annoyance
to complete account compromise. Some cross-site scripting vulnerabilities can be exploited
to manipulate or steal cookies, create requests that can be mistaken for those of a valid user,
compromise confidential information, or execute malicious code on the end user systems for
a variety of nefarious purposes. Other damaging attacks include the disclosure of end user
files, installation of Trojan horse programs, redirecting the user to some other page or site,
running "Active X" controls (under Microsoft Internet Explorer) from sites that a user perceives as
trustworthy, and modifying presentation of content.
Likelihood of Exploit
High to Very High
Enabling Factors for Exploitation
Cross-site scripting attacks may occur anywhere that possibly malicious users are allowed to post
unregulated material to a trusted web site for the consumption of other valid users, commonly on
places such as bulletin-board web sites which provide web based mailing list-style functionality.
Detection Factors
Itis relatively easy for an attacker to find XSS vulnerabilities. Some of these vulnerabilities can be
found using scanners, and some exist in older web application servers.
Demonstrative Examples
Example 1:
This example covers a Reflected XSS (Type 1) scenario.
The following JSP code segment reads an employee ID, eid, from an HTTP request and displays it
to the user.
JSP Example: Bad Code

<% String eid = request.getParameter("eid"); %>
Employee ID: <%= eid %>

The following ASP.NET code segment reads an employee ID number from an HTTP request and
displays it to the user.
ASP.NET Example: Bad Code

protected System.Web.Ul.WebControls.TextBox Login;
protected System.Web.Ul.WebControls.Label EmployeelD;

EmployeelD.Text = Login.Text;
... (HTML follows) ...
<p><asp:label id="EmployeelD" runat="server" /></p>

The code in this example operates correctly if the Employee ID variable contains only standard
alphanumeric text. If it has a value that includes meta-characters or source code, then the code will
be executed by the web browser as it displays the HTTP response. Initially this might not appear to
be much of a vulnerability. After all, why would someone enter a URL that causes malicious code
to run on their own computer? The real danger is that an attacker will create the malicious URL,
then use e-mail or social engineering tricks to lure victims into visiting a link to the URL. When
victims click the link, they unwittingly reflect the malicious content through the vulnerable web
application back to their own computers. This mechanism of exploiting vulnerable web applications
is known as Reflected XSS.

Example 2:
This example covers a Stored XSS (Type 2) scenario.

85

(,6undios a11s-ss0u),) ain1onJIS abed gapn 9Alasald 01 ainjred :6/-IMD



CWE Version 1.5
CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')

The following JSP code segment queries a database for an employee with a given ID and prints
the corresponding employee's name.
JSP Example: Bad Code

<%

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs = null) {
rs.next();
String name = rs.getString("name");
%>
Employee Name: <%= name %>

The following ASP.NET code segment queries a database for an employee with a given employee
ID and prints the name corresponding with the ID.
ASP.NET Example: Bad Code

protected System.Web.Ul.WebControls.Label EmployeeName;

string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
sda.Fill(dt);

string name = dt.Rows[0]["Name"];

EmployeeName.Text = name;

This code functions correctly when the values of name are well-behaved, but it does nothing to
prevent exploits if they are not. This code can appear less dangerous because the value of name
is read from a database, whose contents are apparently managed by the application. However,

if the value of name originates from user-supplied data, then the database can be a conduit for
malicious content. Without proper input validation on all data stored in the database, an attacker
can execute malicious commands in the user's web browser. This type of exploit, known as Stored
XSS, is particularly insidious because the indirection caused by the data store makes it more
difficult to identify the threat and increases the possibility that the attack will affect multiple users.

XSS got its start in this form with web sites that offered a "guestbook" to visitors. Attackers would
include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page
would execute the malicious code. As the examples demonstrate, XSS vulnerabilities are caused
by code that includes unvalidated data in an HTTP response. To summarize the basic points of
Stored XSS:

A source outside the application stores dangerous data in a database or other data store
The dangerous data is subsequently read back into the application as trusted data
The data is then included in dynamic content.

Observed Examples
Reference Description
CVE-2006-4308 Chain: only checks "javascript:" tag
CVE-2007-5727 Chain: only removes SCRIPT tags, enabling XSS
CVE-2008-0971 Persistent XSS in a security product
CVE-2008-4730 Reflected XSS not properly handled when generating an error message
CVE-2008-5080 Chain: protection mechanism failure allows XSS